982 research outputs found

    Realization of high fidelity power-hardware-in-the-loop capability using a MW-scale motor-generator set

    Get PDF
    Power-Hardware-in-the-Loop (PHIL) is a vital technique for realistic testing of prototype systems. While the application of power electronics-based amplifiers to enable PHIL capability has been widely reported, the use of Motor-Generator (MG) sets as the PHIL interfaces has not been fully investigated. This paper presents the realization of the first MW-scale PHIL setup using an MG set as the power amplifier, which offers a promising solution for testing novel systems for the integration of distributed energy resources. Uniquely, the paper presents a methodology that introduces augmented frequency and phase control loops that can be integrated to commercially-available MG set’s existing frequency controller for precise frequency and phase tracking. Internal Model Control (IMC) is used for the controllers design and tuning. The developed control algorithm is tested in a MW-scale MG set that couples a GB transmission network model simulated in a real time simulator to an 11 kV distribution network. Experimental results are presented, which demonstrate that the proposed control methodology is highly effective in maintaining the synchronization between the simulated and physical systems, thereby capable of enabling the MG set as a PHIL interface

    Experimental Test bed to De-Risk the Navy Advanced Development Model

    Get PDF
    This paper presents a reduced scale demonstration test-bed at the University of Texas’ Center for Electromechanics (UT-CEM) which is well equipped to support the development and assessment of the anticipated Navy Advanced Development Model (ADM). The subscale ADM test bed builds on collaborative power management experiments conducted as part of the Swampworks Program under the US/UK Project Arrangement as well as non-military applications. The system includes the required variety of sources, loads, and controllers as well as an Opal-RT digital simulator. The test bed architecture is described and the range of investigations that can be carried out on it is highlighted; results of preliminary system simulations and some initial tests are also provided. Subscale ADM experiments conducted on the UT-CEM microgrid can be an important step in the realization of a full-voltage, full-power ADM three-zone demonstrator, providing a test-bed for components, subsystems, controls, and the overall performance of the Medium Voltage Direct Current (MVDC) ship architecture.Center for Electromechanic

    Advancements in Real-Time Simulation of Power and Energy Systems

    Get PDF
    Modern power and energy systems are characterized by the wide integration of distributed generation, storage and electric vehicles, adoption of ICT solutions, and interconnection of different energy carriers and consumer engagement, posing new challenges and creating new opportunities. Advanced testing and validation methods are needed to efficiently validate power equipment and controls in the contemporary complex environment and support the transition to a cleaner and sustainable energy system. Real-time hardware-in-the-loop (HIL) simulation has proven to be an effective method for validating and de-risking power system equipment in highly realistic, flexible, and repeatable conditions. Controller hardware-in-the-loop (CHIL) and power hardware-in-the-loop (PHIL) are the two main HIL simulation methods used in industry and academia that contribute to system-level testing enhancement by exploiting the flexibility of digital simulations in testing actual controllers and power equipment. This book addresses recent advances in real-time HIL simulation in several domains (also in new and promising areas), including technique improvements to promote its wider use. It is composed of 14 papers dealing with advances in HIL testing of power electronic converters, power system protection, modeling for real-time digital simulation, co-simulation, geographically distributed HIL, and multiphysics HIL, among other topics

    Overview of Real-Time Simulation as a Supporting Effort to Smart-Grid Attainment

    Get PDF
    abstract: The smart-grid approach undergoes many difficulties regarding the strategy that will enable its actual implementation. In this paper, an overview of real-time simulation technologies and their applicability to the smart-grid approach are presented as enabling steps toward the smart-grid’s actual implementation. The objective of this work is to contribute with an introductory text for interested readers of real-time systems in the context of modern electric needs and trends. In addition, a comprehensive review of current applications of real-time simulation in electric systems is provided, together with the basis to understand real-time simulation and the topologies and hardware used to implement it. Furthermore, an overview of the evolution of real-time simulators in the industrial and academic background and its current challenges are introduced.The final version of this article, as published in Energies, can be viewed online at: http://www.mdpi.com/1996-1073/10/6/81

    Supervisory Control System Architecture for Advanced Small Modular Reactors

    Full text link
    This technical report was generated as a product of the Supervisory Control for Multi-Modular SMR Plants project within the Instrumentation, Control and Human-Machine Interface technology area under the Advanced Small Modular Reactor (SMR) Research and Development Program of the U.S. Department of Energy. The report documents the definition of strategies, functional elements, and the structural architecture of a supervisory control system for multi-modular advanced SMR (AdvSMR) plants. This research activity advances the state-of-the art by incorporating decision making into the supervisory control system architectural layers through the introduction of a tiered-plant system approach. The report provides a brief history of hierarchical functional architectures and the current state-of-the-art, describes a reference AdvSMR to show the dependencies between systems, presents a hierarchical structure for supervisory control, indicates the importance of understanding trip setpoints, applies a new theoretic approach for comparing architectures, identifies cyber security controls that should be addressed early in system design, and describes ongoing work to develop system requirements and hardware/software configurations

    Aero-Propulsion Control Research in Support of NASA Aeronautics Research Strategic Thrusts

    Get PDF
    In the past few years, NASA (National Aeronautics and Space Administration) Aeronautics Research Mission Directorate (ARMD) has introduced and updated a New Blueprint for Transforming Global Aviation . This blueprint consists of six NASA Aeronautics Research Strategic Thrusts " The updated vision is designed to ensure that through NASA's aeronautical research the United States will maintain its leadership in the sky and sustain aviation so that it remains a key economic driver and cultural touchstone for the nation. In mid-2016, technology development roadmaps were developed by ARMD for each of the strategic research thrusts and these roadmaps are continually being updated based on feedback from the broader aeronautics research community. The NASA Aeronautics research vision is implemented through a set of 4 programs " Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP), Integrated Aviation Systems Program (IASP), and Transformative Aeronautics Concepts Program (TACP). The Intelligent Control and Autonomy Branch (ICAB) at NASA Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies for aero-propulsion systems that will help meet the goals of the ARMD programs. These efforts are primarily under the various projects under AAVP, AOSP, and TACP. The ICAB current research tasks in support of ARMD program are described in this paper. The paper provides motivation, background, technical approach and recent accomplishments for these tasks, as well as a couple of tasks completed in the previous fiscal year

    Real-Time Hardware-In-the-Loop Testing of IEC 61850 GOOSE based Logically Selective Adaptive Protection of AC Microgrid

    Get PDF
    The real-time (RT) hardware-in-the-loop (HIL) simulation-based testing is getting popular for power systems and power electronics applications. The HIL testing provides the interactive environment between the actual power system components like control and protection devices and simulated power system networks including different communication protocols. Therefore, the results of the RT simulation and HIL testing before the actual implementation in the field are generally more acceptable than offline simulations. This paper reviews the HIL testing methods and applications in the recent literature and presents a step-by-step documentation of a new HIL testing setup for a specific case study. The case study evaluates improved version of previously proposed communication-dependent logically selective adaptive protection algorithm of AC microgrids using the real-time HIL testing of IEC 61850 generic object-oriented substation event (GOOSE) protocol. The RT model of AC microgrid including the converter-based distributed energy resources and battery storage along with IEC 61850 GOOSE protocol implementation is created in MATLAB/Simulink and RT-LAB software using OPAL-RT simulator platform. The Ethernet switch acts as IEC 61850 station bus for exchanging GOOSE Boolean signals between the RT target and the actual digital relay. The evaluation of the round-trip delay using the RT simulation has been performed. It is found that the whole process of fault detection, isolation and adaptive setting using Ethernet communication is possible within the standard low voltage ride through curve maintaining the seamless transition to the islanded mode. The signal monitoring inside the relay is suggested to avoid false tripping of the relay.©2021 Institute of Electrical and Electronics Engineers. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/This work was mainly carried out in the SolarX research project funded by the Business Finland under Grant No. 6844/31/2018. Some part of this work was carried out during the VINPOWER research project funded by the European Regional Development Fund (ERDF), Project No. A73094. The financial support provided through these projects is greatly acknowledged.fi=vertaisarvioitu|en=peerReviewed

    Advanced laboratory testing methods using real-time simulation and hardware-in-the-loop techniques : a survey of smart grid international research facility network activities

    Get PDF
    The integration of smart grid technologies in interconnected power system networks presents multiple challenges for the power industry and the scientific community. To address these challenges, researchers are creating new methods for the validation of: control, interoperability, reliability of Internet of Things systems, distributed energy resources, modern power equipment for applications covering power system stability, operation, control, and cybersecurity. Novel methods for laboratory testing of electrical power systems incorporate novel simulation techniques spanning real-time simulation, Power Hardware-in-the-Loop, Controller Hardware-in-the-Loop, Power System-in-the-Loop, and co-simulation technologies. These methods directly support the acceleration of electrical systems and power electronics component research by validating technological solutions in high-fidelity environments. In this paper, members of the Survey of Smart Grid International Research Facility Network task on Advanced Laboratory Testing Methods present a review of methods, test procedures, studies, and experiences employing advanced laboratory techniques for validation of range of research and development prototypes and novel power system solutions

    Power electronics implementation of dynamic thermal storage as effective inertia in large energy systems

    Get PDF
    Modern large energy systems such as electricity grids and electrified transportation encounter increasing processed power in multi-physics domains, such as electrical, mechanical, thermal, and chemical. Although many systems are becoming predominantly electrical dependent, an integrated multi-physics energy approach creates additional avenues to higher power density, system efficiency, and reliability. Power electronics, serving as power conversion mechanisms, are key linking subsystems consisting of electronic devices, electro-mechanical units, energy storage, etc. This dissertation first studies the use of power electronic drives to implement dynamic thermal storage as effective inertia in solar-interfaced grid-connected low-energy buildings, as an example of a stationary large energy system. Dynamic management of energy components is used to offset variability of stochastic solar resources. Emphasis is on power electronic HVAC (heating, ventilation, and air-conditioning) drives, which can act as an effective electric swing bus to mitigate solar power variability. In doing so, grid power flows become substantially more constant, reducing the need for fast grid resources or dedicated energy storage such as batteries. The work defines a bandwidth over which such HVAC drives can operate. A practical band-pass filter is realized with a lower frequency bound such that the building maintains consistent temperature, and an upper frequency bound to ensure that commanded HVAC fan speeds do not update arbitrarily fast, avoid acoustic discomfort to occupants, and prevent undue hardware wear and tear. The dissertation then moves onto investigation of a mobile energy system, specifically more electric aircraft (MEA), with the purpose of evaluating thermal inertia’s efficacy in a microgrid-like inertia-lacking electrical system. Thermal energy inherent in the cabin air and aircraft fuel serves as a dynamic management solution to offset stochastic load power in the MEA power system. Power electronic controlled environmental control system (ECS) drives, emulating dynamic thermal inertia, showcase a more constant generator output power, allowing potential to downsize required generator ratings. An operating bandwidth is proposed similar to that of building HVAC systems, subject to additional degrees of constraints unique on MEA. A more sensitive virtual synchronous machine control boosts desirable inertia in sub-seconds scales in the MEA power system. To validate the thermal storage as effective inertia in both stationary and mobile energy systems, comprehensive simulation studies and experimental work are conducted at multiple levels. For the energy-efficient building research platform, building electrical and thermal energy systems modeling is addressed, including solar and HVAC systems as well as batteries and large-scale thermal storage. A lab-scale power system features various update rates of a variable frequency fan drive over stochastic solar data. A full-scale multiple-day case study provides insight on potential grid-side and storage-related benefits. The simulation and experimental studies are supported by 18 months of solar data collected on sub-millisecond time scales as a basis to evaluate efficacy, determine solar frequency-domain content, and analyze mitigation of variability. For the MEA research platform, steady-state and dynamic behaviors of electrical components in the Boeing 787 power systems, including electric machines, power converters, batteries, transformers, and loads, are modeled. In particular, in-depth discussions cover a multi-timescale parametric electrical battery model for use in dynamic electric transportation simulations. An integrated thermal model within electrical components and electrical systems captures temperature variations and ECS thermal dynamics. Simulation studies based on realistic load power demand over a 5-hour mission profile show mitigation of generator power transients while maintaining relatively comfortable cabin temperature bounds. Finally a scaled-down lab power system is implemented on a microcontroller-tied industrial drive to demonstrate feasibility in a potential commercial system

    A European Platform for Distributed Real Time Modelling & Simulation of Emerging Electricity Systems

    Get PDF
    This report presents the proposal for the constitution of a European platform consisting of the federation of real-time modelling and simulation facilities applied to the analysis of emerging electricity systems. Such a platform can be understood as a pan-European distributed laboratory aiming at making use of the best available relevant resources and knowledge for the sake of supporting industry and policy makers and conducting advanced scientific research. The report describes the need for such a platform, with reference to the current status of power systems; the state of the art of the relevant technologies; and the character and format that the platform might take. This integrated distributed laboratory will facilitate the modelling, testing and assessment of power systems beyond the capacities of each single entity, enabling remote access to software and equipment anywhere in the EU, by establishing a real-time interconnection to the available facilities and capabilities within the Member States. Such an infrastructure will support the remote testing of devices, enhance simulation capabilities for large multi-scale and multi-layer systems, while also achieving soft-sharing of expertise in a large knowledge-based virtual environment. Furthermore the platform should offer the possibility of keeping confidential all susceptible data/models/algorithms, enabling the participants to determine which specific data will be shared with other actors. This kind of simulation platform will benefit all actors that need to take decisions in the power system area. This includes national and local authorities, regulators, network operators and utilities, manufacturers, consumers/prosumers. The federation of labs is created through real-time remote access to high-performance computing, data infrastructure and hardware and software components (electrical, electronic, ICT) assured by the interconnection of different labs with a server-cloud architecture where the local computers or machines interact with other labs through dedicated VPN (Virtual Private Network) over the GEANT network (the pan-European research and education network that interconnects Europe’s National Research and Education Networks ). The local VPN servers bridge the local simulation platform at each site and the cloud ensuring the security of the data exchange while offering a better coordination of the communication and the multi-point connection. It is then possible the integration of the different sub-systems (distribution grid, transmission grid, generation, market, and consumer behaviour) with a holistic approach
    • …
    corecore