Real-Time Hardware-In-the-Loop Testing of IEC 61850 GOOSE based Logically Selective Adaptive Protection of AC Microgrid

Abstract

The real-time (RT) hardware-in-the-loop (HIL) simulation-based testing is getting popular for power systems and power electronics applications. The HIL testing provides the interactive environment between the actual power system components like control and protection devices and simulated power system networks including different communication protocols. Therefore, the results of the RT simulation and HIL testing before the actual implementation in the field are generally more acceptable than offline simulations. This paper reviews the HIL testing methods and applications in the recent literature and presents a step-by-step documentation of a new HIL testing setup for a specific case study. The case study evaluates improved version of previously proposed communication-dependent logically selective adaptive protection algorithm of AC microgrids using the real-time HIL testing of IEC 61850 generic object-oriented substation event (GOOSE) protocol. The RT model of AC microgrid including the converter-based distributed energy resources and battery storage along with IEC 61850 GOOSE protocol implementation is created in MATLAB/Simulink and RT-LAB software using OPAL-RT simulator platform. The Ethernet switch acts as IEC 61850 station bus for exchanging GOOSE Boolean signals between the RT target and the actual digital relay. The evaluation of the round-trip delay using the RT simulation has been performed. It is found that the whole process of fault detection, isolation and adaptive setting using Ethernet communication is possible within the standard low voltage ride through curve maintaining the seamless transition to the islanded mode. The signal monitoring inside the relay is suggested to avoid false tripping of the relay.©2021 Institute of Electrical and Electronics Engineers. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/This work was mainly carried out in the SolarX research project funded by the Business Finland under Grant No. 6844/31/2018. Some part of this work was carried out during the VINPOWER research project funded by the European Regional Development Fund (ERDF), Project No. A73094. The financial support provided through these projects is greatly acknowledged.fi=vertaisarvioitu|en=peerReviewed

    Similar works