18,089 research outputs found

    Realism in Statistical Analysis of Worst Case Execution Times

    Get PDF
    This paper considers the use of Extreme Value Theory (EVT) to model worst-case execution times. In particular it considers the sacrifice that statistical methods make in the realism of their models in order to provide generality and precision, and if the sacrifice of realism can impact the safety of the model. The Gumbel distribution is assessed in terms of its assumption of continuous behaviour and its need for independent and identically distributed data. To ensure that predictions made by EVT estimations are safe, additional restrictions on their use are proposed and justified

    Software timing analysis for complex hardware with survivability and risk analysis

    Get PDF
    The increasing automation of safety-critical real-time systems, such as those in cars and planes, leads, to more complex and performance-demanding on-board software and the subsequent adoption of multicores and accelerators. This causes software's execution time dispersion to increase due to variable-latency resources such as caches, NoCs, advanced memory controllers and the like. Statistical analysis has been proposed to model the Worst-Case Execution Time (WCET) of software running such complex systems by providing reliable probabilistic WCET (pWCET) estimates. However, statistical models used so far, which are based on risk analysis, are overly pessimistic by construction. In this paper we prove that statistical survivability and risk analyses are equivalent in terms of tail analysis and, building upon survivability analysis theory, we show that Weibull tail models can be used to estimate pWCET distributions reliably and tightly. In particular, our methodology proves the correctness-by-construction of the approach, and our evaluation provides evidence about the tightness of the pWCET estimates obtained, which allow decreasing them reliably by 40% for a railway case study w.r.t. state-of-the-art exponential tails.This work is a collaboration between Argonne National Laboratory and the Barcelona Supercomputing Center within the Joint Laboratory for Extreme-Scale Computing. This research is supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, under contract number DE-AC02- 06CH11357, program manager Laura Biven, and by the Spanish Government (SEV2015-0493), by the Spanish Ministry of Science and Innovation (contract TIN2015-65316-P), by Generalitat de Catalunya (contract 2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Formal and Informal Methods for Multi-Core Design Space Exploration

    Full text link
    We propose a tool-supported methodology for design-space exploration for embedded systems. It provides means to define high-level models of applications and multi-processor architectures and evaluate the performance of different deployment (mapping, scheduling) strategies while taking uncertainty into account. We argue that this extension of the scope of formal verification is important for the viability of the domain.Comment: In Proceedings QAPL 2014, arXiv:1406.156

    Toward Contention Analysis for Parallel Executing Real-Time Tasks

    Get PDF
    In measurement-based probabilistic timing analysis, the execution conditions imposed to tasks as measurement scenarios, have a strong impact to the worst-case execution time estimates. The scenarios and their effects on the task execution behavior have to be deeply investigated. The aim has to be to identify and to guarantee the scenarios that lead to the maximum measurements, i.e. the worst-case scenarios, and use them to assure the worst-case execution time estimates. We propose a contention analysis in order to identify the worst contentions that a task can suffer from concurrent executions. The work focuses on the interferences on shared resources (cache memories and memory buses) from parallel executions in multi-core real-time systems. Our approach consists of searching for possible task contenders for parallel executions, modeling their contentiousness, and classifying the measurement scenarios accordingly. We identify the most contentious ones and their worst-case effects on task execution times. The measurement-based probabilistic timing analysis is then used to verify the analysis proposed, qualify the scenarios with contentiousness, and compare them. A parallel execution simulator for multi-core real-time system is developed and used for validating our framework. The framework applies heuristics and assumptions that simplify the system behavior. It represents a first step for developing a complete approach which would be able to guarantee the worst-case behavior

    Study of the Reliability of Statistical Timing Analysis for Real-Time Systems

    Get PDF
    Presented at 23rd International Conference on Real-Time Networks and Systems (RTNS 2015). 4 to 6, Nov, 2015, Main Track. Lille, France.Probabilistic and statistical temporal analyses have been developedas a means of determining the worst-case execution and responsetimes of real-time software for decades. A number of such methodshave been proposed in the literature, of which the majority claim tobe able to provide worst-case timing scenarios with respect to agiven likelihood of a certain value being exceeded. Further, suchclaims are based on either some estimates associated with a probability,or probability distributions with a certain level of confidence.However, the validity of the claims are very much dependent on anumber of factors, such as the achieved samples and the adopteddistributions for analysis.In this paper, we investigate whether the claims made are in facttrue as well as the establishing an understanding of the factors thataffect the validity of these claims. The results are of importancefor two reasons: to allow researchers to examine whether there areimportant issues that mean their techniques need to be refined; andso that practitioners, including industrialists who are currently usingcommercial timing analysis tools based on these types of techniques,understand how the techniques should be used to ensure theresults are fit for their purposes

    Simulation of Real-Time Scheduling with Various Execution Time Models

    Get PDF
    Presented during the Work-in-Progress session (WiP session)International audienceIn this paper, we present SimSo, a simulator that aims at facilitating the design of experimental evaluations for real-time scheduling algorithms. Currently, more than twenty-five algorithms were implemented. Special attention is paid to the execution time model of tasks. We show that the worst-case execution time for experimental simulation can introduce a bias in evaluation and we discuss as a work in progress how cache effects could be taken into consideration in the simulation

    Open Challenges for Probabilistic Measurement-Based Worst-Case Execution Time

    Get PDF
    The worst-case execution time (WCET) is a critical parameter describing the largest value for the execution time of programs. Even though such a parameter is very hard to attain, it is essential as part of guaranteeing a real-time system meets its timing requirements. The complexity of modern hardware has increased the challenges of statically analyzing the WCET and reduced the reliability of purely measuring the WCET. This has led to the emergence of probabilistic WCETs (pWCETs) analysis as a viable technique. The low probability of appearance of large execution times of a program has motivated the utilization of rare events theory like extreme value theory (EVT). As pWCET estimation based on EVT has matured as a discipline, a number of open challenges have become apparent when applying the existing approaches. This letter enumerates key challenges while establishing a state of the art of EVT-based pWCET estimation methods

    An Evolutionary Algorithm to Generate Real Urban Traffic Flows

    Get PDF
    In this article we present a strategy based on an evolutionary algorithm to calculate the real vehicle ows in cities according to data from sensors placed in the streets. We have worked with a map imported from OpenStreetMap into the SUMO traffic simulator so that the resulting scenarios can be used to perform different optimizations with the confidence of being able to work with a traffic distribution close to reality. We have compared the results of our algorithm to other competitors and achieved results that replicate the real traffic distribution with a precision higher than 90%.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by project number 8.06/5.47.4142 in collaboration with the VSB-Technical University of Ostrava and Universidad de Málaga UMA/FEDER FC14-TIC36, programa de fortalecimiento de las capacidades de I+D+i en las universidades 2014-2015, de la Consejería de Economía, Innovación, Ciencia y Empleo, cofinanciado por el fondo europeo de desarrollo regional (FEDER). Also, partially funded by the Spanish MINECO project TIN2014-57341-R (http://moveon.lcc.uma.es). The authors would like to thank the FEDER of European Union for financial support via project Movilidad Inteligente: Wi-Fi, Rutas y Contaminación (maxCT) of the "Programa Operativo FEDER de Andalucía 2014-2020. We also thank all Agency of Public Works of Andalusia Regional Government staff and researchers for their dedication and professionalism. Daniel H. Stolfi is supported by a FPU grant (FPU13/00954) from the Spanish Ministry of Education, Culture and Sports

    Do international human rights treaties improve respect for human rights?

    Get PDF
    After the non-binding Universal Declaration of Human Rights, many global and regional human rights treaties have been concluded. Critics argue that these are unlikely to have made any actual difference in reality. Others contend that international regimes can improve respect for human rights in state parties, particularly in more democratic countries or countries with a strong civil society devoted to human rights and with transnational links. Our findings suggest that rarely does treaty ratification have unconditional effects on human rights. Instead, improvement in human rights is typically more likely the more democratic the country or the more international non-governmental organizations its citizens participate in. Conversely, in very autocratic regimes with weak civil society, ratification can be expected to have no effect and is sometimes even associated with more rights violation.
    • …
    corecore