
Simulation of Real-Time Scheduling with Various

Execution Time Models

Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-Marie Déplanche,

Sébastien Dubé

To cite this version:

Maxime Chéramy, Pierre-Emmanuel Hladik, Anne-Marie Déplanche, Sébastien Dubé. Simula-
tion of Real-Time Scheduling with Various Execution Time Models. 9th IEEE International
Symposium on Industrial Embedded Systems (SIES), Jun 2014, Pise, Italy. <hal-01052656>

HAL Id: hal-01052656

https://hal.archives-ouvertes.fr/hal-01052656

Submitted on 8 Aug 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HAL-Univ-Nantes

https://core.ac.uk/display/52999341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr
https://hal.archives-ouvertes.fr/hal-01052656

Simulation of Real-Time Scheduling with Various

Execution Time Models

Maxime Chéramy∗, Pierre-Emmanuel Hladik∗, Anne-Marie Déplanche† and Sébastien Dubé‡

∗CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France

Univ de Toulouse, INSA, LAAS, F-31400 Toulouse, France
†IRCCyN UMR CNRS 6597, (Institut de Recherche en Communications et Cybernétique de Nantes), ECN,

1 rue de la Noe, BP92101, F-44321 Nantes cedex 3, France
‡Hella Engineering France S.A.S.

4 rue du Professeur Vellas, 31300 Toulouse, France

Abstract—In this paper, we present SimSo, a simulator that
aims at facilitating the design of experimental evaluations for
real-time scheduling algorithms. Currently, more than twenty-
five algorithms were implemented. Special attention is paid to
the execution time model of tasks. We show that the worst-case
execution time for experimental simulation can introduce a bias
in evaluation and we discuss as a work in progress how cache
effects could be taken into consideration in the simulation.

I. INTRODUCTION

Davis and Burns referenced more than thirty real-time
scheduling algorithms in 2011 [7] and more than a dozen
of new algorithms have emerged since then. Such a large
number of scheduling algorithms makes their evaluation and
comparison difficult. The evaluation generally comes from
theoretical analysis, simulation or an actual implementation,
according to criteria that can include utilization bounds, suc-
cess rates, number of preemptions, number of migrations,
and/or algorithm complexity.

This evaluation is difficult by using theoretical analyses
such as schedulability tests or resource augmentation. On the
other hand, while using a real system would seem to be a better
approach, the effective implementation of a scheduler as an
operating system component requires a substantial amount of
time and the results are specific to the considered system. As a
consequence, we think that simulation is a good compromise
to efficiently evaluate scheduling algorithms.

Contribution. This paper briefly presents SimSo, a tool
that simulates real-time schedulers. SimSo aims at facilitating
the design of experimental evaluations: its interface makes
possible to implement the scheduling algorithms in a realistic
way; some tools enable to design experiments by defining and
collecting the measures; and various tasksets generators are
provided.

Our long-term objective is to compare the various sched-
ulers while taking into account the effect of the hardware
architecture (e.g. caches, dynamic frequency scaling, or system
overheads) on their performance. These hardware components
have an effect on the computation time of the jobs and, as
a consequence, a way to model these effects through the
simulation is required. SimSo propose a flexible way to define
various models of execution time that we discuss. We show
the effect of worst-case execution time model on experimental

results and we discuss as a work in progress how cache effects
could be taken into consideration in the simulation.

Paper organization. The remainder of this paper is orga-
nized as follows: in Section II, related work is recalled. Sec-
tion III gives a short insight of SimSo. Section IV discusses the
bias introduced by the worst-case execution time assumption
and the possibility to introduce directly the cache effects in
the simulation. Finally, Section V provides some concluding
remarks and envisages future work.

II. RELATED WORK

Davis and Burns exposed in [7] four performance metrics
to compare the effectiveness of various scheduling algorithms:
(i) utilization bounds: the bound on utilization factor to
guarantee the schedulability of a system; (ii) approximation
ratio: comparison of the performance of an algorithm with an
optimal one; (iii) resource augmentation: the gap on processor
speed to fulfill the schedulability; and (iv) empirical measures:
evaluation of the performance of scheduling algorithms on
randomly generated tasksets. Our work addresses metric iv.

Empirical evaluations of scheduling algorithms focus on
the overheads involved in scheduling decisions. The main
studied causes of overheads are context switches, preemptions,
migrations and computational complexity. Two approaches
are typically considered to evaluate them. The first one is
based on performance measured on a real platform with a
dedicated operating system, e.g. the experiments done with
LITMUSRT [4], an extension of the Linux Kernel developed
at the University of North Carolina, or the experimental
work of Lelli et al. [13] on a dedicated implementation of
Linux with RM and EDF-based multiprocessor schedulers.
This method could also be conducted on a cycle-accurate
simulated architecture with a real operating system as in [19].
The second approach is to use tools dedicated to the simulation
of real-time systems. Most of these tools are designed to
validate, test and analyze systems. MAST [9] proposes a set
of tools to model and analyze distributed real-time systems
and it also includes a simulator, JSimMAST. Cheddar [17]
proposes a GUI comprising a simulator, many feasibility tests
and it is also used to simulate AADL models. STORM [18]
and YARTISS [5] offer a simulator to conduct evaluation on
scheduling algorithms with the possibility to easily join new
scheduling policies.

III. SIMSO

To facilitate the experimentation of scheduling algorithms,
we thus propose a dedicated and open source tool: SimSo1,
a real-time scheduling simulator designed to be easy to use
as well as extend [6]. SimSo simulates the execution of a
taskset on one or multiple processors, where a taskset consists
of periodic tasks defined by their period, deadline, worst-case
execution time and eventually additional parameters.

A. Architecture

The core of SimSo relies on SimPy [16], a process-based
discrete-event simulation framework. The design of SimSo is
influenced by real systems: there are processors, tasks, jobs,
timers, etc. The instances of Processors are the central part of
the simulation because they simulate the functional behavior
of a processor and of the operating system. Each processor
can execute a job or be interrupted to execute a method of
the scheduler. The design of SimSo and the use of discrete-
event simulation allow us to set various time overheads to
simulate the context-switches, scheduler calls, locks, etc. Such
overheads are applied on the processor they are supposed to
occur.

B. Writing a Scheduler

One of the advantages of using a simulator is to simplify
the experimentation. Writing a scheduler should therefore be
as easy as possible and rely on useful methods. A scheduler for
SimSo is a Python class that inherits from the Scheduler class
and is loaded dynamically into the simulator. In practice, most
of the schedulers are implemented with less than 200 lines of
code. The language is different to the one that would be used
on a real implementation, however, this does not change the
underlying algorithms and logic.

The scheduler interface in SimSo is partly influenced by
real operating systems, but kept as simple as possible. Its
similarity with a realistic system allows us to raise practical
issues regarding the implementation that could have been hard
or even impossible to integrate into theoretical studies. For
instance, we need to decide which processor should run the
scheduler and this may have an impact on the performance or
even the schedulability. Another example is the finite precision
of the timers: this may introduce a tiny difference compared
to the theoretical schedule and cause a major issue.

We have already implemented more than twenty-five sched-
ulers including: uniprocessor schedulers with RM, DM, FP,
EDF and M-LLF; partitioned approach such as P-EDF and P-
RM; global algorithms: G-RM, G-EDF, G-FL, EDF-US, PriD,
EDZL, M-LLF and U-EDF; PFair schedulers with PD2 and its
work-conserving variant ER-PD2; BFair and DP-Fair variants
with LLREF, LRE-TL, DP-WRAP, BF and NVNLF; semi-
partitioned approaches with EDHS, EKG and RUN; DVFS
schedulers with Static-EDF and CC-EDF.

C. Execution Time Model

When simulation is used to study the schedulability of a
system, it is usual that the tasks meet their worst-case execution

1SimSo: http://homepages.laas.fr/mcheramy/simso/

time at each job. However, as explained in section IV-A, this is
actually very pessimistic and it is not a realistic assumption. A
a consequence, the Liu and Layland model should be adapted:
for instance, the multiframe model is a way to tackle this
problem [15].

Also, many scheduling evaluations only focus on the
number of preemptions and migrations because they are the
source of overheads. A preemption induces a system overhead
due to the context-switching, but it may also increase the
computation time of a job by causing extra cache misses. To
increase realism, it would be interesting to integrate Cache-
Related Preemption Delays within the computation time of the
jobs. This is even mandatory for the evaluation of cache-aware
schedulers.

As a consequence of the two previous remarks, it is
desirable to have the possibility to simulate a system with
customized durations of jobs, depending on the purpose of
the simulation. Several Execution Time Models (ETM) are
already available in SimSo and others could be added. The
simplest model consists of using the WCET of the tasks for
their execution time. A second one uses a random duration for
each job to meet a given average execution time (ACET). The
ACET model uses a normal distribution defined by its mean,
its standard deviation and is bounded by the WCET. Another
model detects the jobs that have undergone a preemption or a
migration, and extends their WCET2 using fixed time penalties.
Finally, a more complex model tries to simulate the state of
the caches. In this latter model, the execution time of the
jobs depends on the events that happen during their activation
period. This ETM is also interesting because it simulates the
impact of shared caches and, as a consequence, it is impossible
to know in advance when a job will end since it depends on
external events (see Section IV-B).

The first three models can also deal with Dynamic Voltage
and Frequency Scaling (DVFS). The current DVFS model
simply considers that a job consumes its computation time
proportionally to the processor speed. This is obviously a
simplified assumption, but it is possible to implement more
realistic ETM models to deal with DVFS.

D. Generation of Tasksets and Collecting Simulation Results

The tasksets can be manually specified by the user or be
generated by SimSo. Indeed, in order to ease the work of
the experimenter, SimSo provides several methods to generate
the tasksets. The method presented by Kato et al generates
a taskset defined by its total utilization but with a variable
number of tasks [11] while the algorithms UUniFast-Discard
and RandFixedSum generate a taskset with a given number of
tasks and total utilization [8]. These algorithms are combined
with various period generators: uniform, log-uniform or among
a set of periods. It is also possible to use other methods that
are not provided by SimSo.

During the simulation of a system with SimSo, every
significant events are traced. Whereas this approach is actually
heavier than just counting events such as the preemptions and
migrations during the simulation, it provides more flexibility.

2In this case, the WCET is defined as the worst-case execution time without
any interruption.

A set of methods are available to ease the retrieval of usual
metrics such as success rate, number of preemptions and
migrations, number of scheduler calls, laxity, etc. And it is
also possible to post-treat the trace in order to collect some
specific data.

SimSo provides a graphical user interface that helps to
configure a system and run it. That GUI is capable of dis-
playing common measures such as preemptions, migrations,
or execution times. It is also possible to display a gantt
chart, which is very useful during the development of a
scheduler. However, this GUI only shows the results for a
single simulation but the simulations can be fully-automated
using Python scripts.

IV. DISCUSSION ABOUT EXECUTION TIME MODELS

A recurring criticism against the use of simulation is the
lack of realism. This is probably due to over-simplified task
and architecture models. But we also believe that simulation
is a convenient and flexible way to conduct large evaluations.
As a consequence, we are willing to make the simulation more
realistic. In this section, we are discussing the use of the WCET
in the simulation and how we could integrate the cache effects.

A. Worst-Case Execution Time

In the literature, the empirical measures are conducted such
that all tasks meet their worst-case execution time at each job.
However, the use of the WCET is in fact very pessimistic:
the worst-case is an upper-bound and the jobs of a task never
consume all this time; also, the active jobs never meet their
WCET all at the same time.

This assumption could induce an erroneous evaluation of
the scheduling algorithms performances. For instance, some
algorithms are naturally robust to a punctual overload and can
adapt their response to this demand. Moreover, this assumption
could give an advantage to the scheduling algorithms that use
the WCET as a parameter and highly depend on it. It seems
reasonable to study the performance of scheduling policies
not only in the worst-case situation, but also with variable
execution times.

As explained in section III-C, the execution time model in
SimSo can be easily implemented in various ways. To show
the impact of variations in the execution time, a Gaussian
random behavior bounded by the worst-case response time is
implemented. The expectation and the standard deviation of the
task durations are fixed relatively to the worst-case execution
time. For each job, a computation time is randomly generated
to respect an average-case response time (ACET) and bounded
by the worst-case execution time.

The figure 1 shows results with an ACET equal to 75%
of the WCET for one hundred tasksets scheduled between 0-
1000ms with EDF, RUN and U-EDF schedulers. Each taskset
contains 50 synchronous periodic tasks with implicit deadlines.
These tasks are scheduled on 4 processors for a total utiliza-
tion between 75% and 97.5%. The periods of the tasks are
chosen using a log-uniform distribution on the range 2-100ms
and rounded to the closest integer. Their utilization factor is
generated using the RandFixedSum algorithm. The execution
time of each job is equal to the product of the period and the
utilization factor.

The experiments named EDF, RUN and U-EDF are ob-
tained using the WCET for the computation times of the jobs,
and experiments EDF-A, RUN-A and U-EDF-A use ACET
on the same tasksets. The effective utilization with ACET is
given by the top axis. We show that EDF is not sensitive to the
WCET parameter: for the same effective utilization, WCET
and ACET experiments give the same number of preemp-
tions. If we only consider WCET, RUN does approximatively
30% less preemptions than U-EDF for a utilization of 95%.
However, if we consider ACET for the same system, they are
quite similar. It exhibits the fact that the scheduling decisions
made by the RUN algorithm are more affected by the WCET
parameter than U-EDF. Such an observation suggests us some
possible improvements to the RUN algorithm that will be
easily assessed with SimSo.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 70 75 80 85 90 95 100

 52.5 56.25 60 63.75 67.5 71.25 75

N
u

m
b

e
r

o
f

p
re

e
m

p
ti

o
n

s

Utilization (%)

Effective utilization (%)

G-EDF
RUN

U-EDF
G-EDF-A

RUN-A
U-EDF-A

Fig. 1. Number of preemptions (including migrations) for G-EDF, RUN and
U-EDF using the WCET and the ACET.

Remark that during the design of an industrial application,
WCET is rarely used to evaluate the schedulability of an
application. Konig et al. explain in [12] that engine control
applications are not schedulable using classic methods with
WCET, but the systems are still effective in practice. Although
the WCET is useful to have a theoretical evaluation of the
schedulability for hard real-time systems, these practical cases
invite criticism about the use of WCET as parameter in
scheduling algorithms and in the evaluation of their perfor-
mance.

For all these reasons, we think that the experimental evalu-
ations that usually rely on the WCET should be completed by
other experiments that use more realistic computation times.

B. Influence of Caches

As mentioned in Section III-C, many experimental studies
focus on the number of preemptions and migrations be-
cause they are the sources of runtime overheads. Mogul and
Borg [14] showed that the cache related preemption delay
is actually greater that the direct overheads caused by the
operating system.

Moreover, on multiprocessor architectures with shared
caches, the parallel execution of jobs may have an influence
on the general performance of the system. Several studies have
shown that avoiding co-scheduling tasks that heavily use a
shared cache can reduce the overall execution time, e.g. the
concept of megatasks [1]. Finally, other works focus on cache

space isolation techniques to avoid cache contention on shared
caches [10], [3].

The impact of a preemption on the caches depends on the
programs involved, when it occurs or what happens between
the interruption of a job and its resumption. Whereas it is
possible in SimSo to add a fixed overhead to simulate a
context switch, the present task model does not bring enough
information to estimate the real impact of a preemption. The
same conclusion applies regarding the influence of shared
caches.

Therefore, we want to enrich the Liu and Layland task
model with additional informations that would characterize
the memory behavior of the tasks. As a matter of fact, other
scientific communities have also been studying the influence
of caches on the execution of programs. In particular, many
statistical cache models aim at evaluating the number of cache
misses [2]. Those are often based on the following metrics:

• Stack Distance Profile: A distribution of distances that
indicates the probabilities that a cache access is done
at a given position in an LRU cache;

• MIX or API: The number of memory reference per
instruction;

• CPI: The average number of cycles needed to execute
an instruction.

Using this information, the number of instructions and the
time penalty associated to a cache miss or hit, it is possible to
estimate the computation time of a job. It is then possible to
simulate the impact of preemptions, migrations, and also the
impact of cache sharing between several jobs.

Based on such statistical models, SimSo is already capable
to simulate the impact of (data) caches using data collected
from real programs. Such data can be collected from real
programs and, in our case, we use the Gem5 simulator in order
to do so for various benchmarks (MiBench, Mälardalen, and
a few custom programs). However, we are still evaluating the
accuracy of the cache models and their use in our context.
This is a mandatory step before conducting any reliable
experiments. Once this verification is done, that would allow
us to study cache-aware schedulers.

V. CONCLUSION

Our objective is to ease the comparison of the numerous
scheduling policies. We have decided to use simulation because
it can simplify the implementation of a scheduler while offer-
ing more flexibility than a real system would allow. Our main
contribution is SimSo, an effective tool to evaluate real-time
scheduling algorithms. A particular care has been taken to keep
a realistic scheduling interface so that practical decisions are
not eluded. At the present time, more than twenty-five sched-
ulers and various tasksets generators are proposed to assist
the experimenter. Experiments can be automated with Python
scripts to collect and analyze data. Future work includes a
large evaluation of the scheduling algorithms and introducing
more complex task behaviors such as shared resources and
precedence relations.

In the last section, we have discussed the usage of worst-
case execution time in experiments. This assumption may not

be very realistic but more importantly, schedulers that heavily
rely on the WCET could benefit from simulation using WCET.
In that sense, we have suggested to conduct experimentations
using average-case execution times instead.

We have also shown how the execution time model of
SimSo can be extended to take into account cache effects.
We do not try to simulate the exact behavior of the cache
memory, but modeling their statistical performance and impact
on the scheduling of tasks. This work is in progress and we
are currently evaluating the accuracy of the results.

ACKNOWLEDGMENT

The work presented in this paper was conducted under
the research project RESPECTED (http://anr-respected.laas.fr/)
which is supported by the French National Agency for Re-
search (ANR), program ARPEGE.

REFERENCES

[1] J. Anderson, J. Calandrino, and U. Devi, “Real-time scheduling on
multicore platforms,” in Proc. of RTAS, 2006.

[2] V. Babka, P. Libič, T. Martinec, and P. Tůma, “On the accuracy of cache
sharing models,” in Proc. of ICPE, 2012.

[3] B. Berna and I. Puaut, “PDPA: period driven task and cache partitioning
algorithm for multi-core systems,” in Proc. of RTNS, 2012.

[4] J. Calandrino, H. Leontyev, A. Block, U. C. Devi, and J. Anderson,
“LITMUSRT : A testbed for empirically comparing real-time multipro-
cessor schedulers,” in Proc. of RTSS, 2006.

[5] Y. Chandarli, F. Fauberteau, D. Masson, S. Midonnet, and M. Qamhieh,
“YARTISS: A Tool to Visualize, Test, Compare and Evaluate Real-Time
Scheduling Algorithms,” in Proc. of WATERS, 2012.

[6] M. Chéramy, A.-M. Déplanche, and P.-E. Hladik, “Simulation of real-
time multiprocessor scheduling with overheads,” in Proc. of SIMUL-

TECH, 2013.

[7] R. Davis and A. Burns, “A survey of hard real-time scheduling for
multiprocessor systems,” ACM Comput. Surv., vol. 43, no. 4, 2011.

[8] P. Emberson, R. Stafford, and R. Davis, “Techniques for the synthesis
of multiprocessor tasksets,” in Proc. of WATERS, 2010.

[9] M. Gonzalez Harbour, J. Gutierrez Garcia, J. Palencia Gutierrez, and
J. Drake Moyano, “MAST: Modeling and analysis suite for real time
applications,” in Proc. of ECRTS ’01, 2001.

[10] N. Guan, M. Stigge, W. Yi, and G. Yu, “Cache-aware scheduling and
analysis for multicores,” in Proc. of EMSOFT, 2009.

[11] S. Kato and N. Yamasaki, “Portioned EDF-based scheduling on multi-
processors,” in Proc. of EMSOFT, 2008.

[12] F. Konig, D. Boers, F. Slomka, U. Margull, M. Niemetz, and G. Wirrer,
“Application specific performance indicators for quantitative evaluation
of the timing behavior for embedded real-time systems,” in Proc. of

DATE, 2009.

[13] J. Lelli, D. Faggioli, T. Cucinotta, and G. Lipari, “An experimental
comparison of different real-time schedulers on multicore systems,”
Journal of Systems and Software, vol. 85, no. 10, 2012.

[14] J. C. Mogul and A. Borg, “The effect of context switches on cache
performance,” SIGPLAN Not., vol. 26, no. 4, 1991.

[15] A. K. Mok and D. Chen, “A multiframe model for real-time tasks,” in
Proc. of RTSS, 1996.

[16] SimPy, Online: http://simpy.readthedocs.org/, 2014.

[17] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar: A flexible
real time scheduling framework,” Ada Lett., vol. XXIV, no. 4, 2004.

[18] R. Urunuela, A.-M. Déplanche, and Y. Trinquet, “STORM a simulation
tool for real-time multiprocessor scheduling evaluation,” in Proc. of

ETFA, 2010.

[19] D. Zhu, D. Mosse, and R. Melhem, “Multiple-resource periodic schedul-
ing problem: how much fairness is necessary?” in Proc. of RTSS, 2003.

