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Abstract
In measurement-based probabilistic timing analysis, the execution conditions imposed to tasks
as measurement scenarios, have a strong impact to the worst-case execution time estimates. The
scenarios and their effects on the task execution behavior have to be deeply investigated. The
aim has to be to identify and to guarantee the scenarios that lead to the maximum measurements,
i.e. the worst-case scenarios, and use them to assure the worst-case execution time estimates.

We propose a contention analysis in order to identify the worst contentions that a task can
suffer from concurrent executions. The work focuses on the interferences on shared resources
(cache memories and memory buses) from parallel executions in multi-core real-time systems.
Our approach consists of searching for possible task contenders for parallel executions, modeling
their contentiousness, and classifying the measurement scenarios accordingly. We identify the
most contentious ones and their worst-case effects on task execution times. The measurement-
based probabilistic timing analysis is then used to verify the analysis proposed, qualify the
scenarios with contentiousness, and compare them. A parallel execution simulator for multi-core
real-time system is developed and used for validating our framework.

The framework applies heuristics and assumptions that simplify the system behavior. It
represents a first step for developing a complete approach which would be able to guarantee the
worst-case behavior.

2012 ACM Subject Classification Computer systems organization → Real-time system archi-
tecture

Keywords and phrases Contention analysis, parallel executions, measurement-based probabil-
istic timing analysis, probabilistic worst-case execution time

Digital Object Identifier 10.4230/OASIcs.WCET.2018.4

1 Introduction

Today’s multi- and many-core platforms provide an amount of computational resource
unconceivable a decade ago for real-time systems. While performance increases due to the
availability of multiple cores and the possibility for parallel execution, the determinism is
heavily challenged by the use of optimization features like cache memories or pipelines.
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With multiple cores being accessible, task concurrently running (co-running) on different
cores suffer from interferences while racing for shared resources like cache memories and
buses. Due to concurrent accesses and bottlenecks, shared resource interferences have a
prominent impact on tasks executions. Timing anomalies and worst-case conditions appear
more often and the worst-case task execution time increases.

Isolation techniques and deterministic policies like Round Robin bus scheduling may be
applied for reducing interferences. They would come at the cost of expensive implementations
and decreased average performances. A valid alternative would consist in effectively modeling
the interferences that each task suffers under different execution conditions. This way, the
interference effects can be made predictable resulting into deterministic models to tasks and
system behaviors.

Probabilistic models are emerging as flexible and reliable representations for tasks worst-
case executions [7]. In those models, the classical deterministic Worst-Case Execution Time
(WCET) is generalized with a probability distribution, the probabilistic WCET (pWCET),
where it is quantified how likely an execution time may be exceeded.

Measurement-Based Probabilistic Timing Analysis (MBPTA) can be used for estimating
pWCETs. It is sensitive to the measurement scenario which has been considered for measuring
execution times [1, 13]. By measurement scenario it is intended, for example, a specific task
mapping on multi-core processors, specific task inputs, environmental conditions, etc.. Each
scenario would enforce a particular interference pattern on system resources with its specific
impact to the task behavior; a scenario is representative also of interference conditions.
The trace of measurements depends on such scenarios and the EVT exploits the worst-case
specific to the scenario applied. The pWCET estimate would be the worst-case for only the
specific scenario applied [8, 13].

In order to have safe pWCET estimates, it is necessary to determine the scenario that
leads to the maximum execution time measurements, and consequently to the maximum
pWCET estimate. The scenario exploration has to be efficient, since the measurement
scenarios within multi-core systems can be in huge number, and reliable in offering the
maximum pWCETs.

Contributions. In this work, we propose a contention analysis to explore the measurements
scenarios for parallel real-time applications executed within multi-core platforms. The
goal is to characterize all the scenarios and identify the worst-case from which to estimate
the maximum pWCET. We name it contention analysis because it focuses on modeling
interferences from contentions within cache memories and memory buses. At this stage, we
do not deal with data synchronization problems e.g., deadlocks in parallel executions. Graph
analyses, interference models, and contentiousness metrics are developed to characterize the
worst parallel execution condition that tasks may suffer. The MBPTA is used for qualifying
and comparing the execution scenarios.

We target the case of multi-core platform with shared cache, and a parallel execution
simulator is developed and applied to an avionic case study. At this stage, the solution
proposed is a partial one, which applies heuristics and assumptions that simplify the system
behavior. It represents a first step for developing a complete approach which would be able
to guarantee the worst-case behavior.

Organization of the paper. Section 2 presents the background in terms of computational
modeling and analysis tools applied. Section 3 details the contention analysis and its main
contributions. Analysis complexity and safety guarantees for pWCET estimates are outlined.
In Section 4, it is described the experimental setup and the results of the simulation-based
evaluation. Section 5 is for conclusions and future work.
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Related Work. Measurement-based [probabilistic] timing analysis relies on measurements
of actual task execution times for estimating either deterministic or probabilistic upper-
bounds [9, 7]. An open challenge to them is the coverage problem and the so called
confidence/representativity of the input measurements [9]. Our work particularly addresses
this challenge with regard to task parallel execution and contention due to shared memory
and memory bus.

Within a probabilistic framework, the definition of measurement scenarios and the
confidence in the estimate can be addressed [1]. The confidence is related to the observation
of events whose probability of occurrence is very low e.g., 10−15. In our work the confidence
defines the ability of selecting the worst scenario as the scenario which defines the task
worst-case execution times.

In multi-core settings with competition to access shared resources, the combination of
local cache misses and interference delay can be large and highly variable. The analysis of
contentions represents a big challenge for the predictability of real-time embedded systems.
In recent years, some progress on WCET and memory interference analysis has been achieved
for multi-core systems. Some approaches have considered the impact that contention has on
WCET estimates [11, 3]. They act to enrich static timing analysis models accounting for
interference impacts. Some other approaches’ goal is to bound interference with scheduling
choices [17]. Our work copes with MBPTA and the contention analysis characterizes worst-
case execution scenarios for guaranteeing more confident pWCET estimates.

For validating our approach, it has been developed a processor simulator which is a
simplified implementation of a multi-core processor. We use it to test the solution proposed
and to validate the effect of certain changes to the system behavior. The simulator enables
characterizing the simultaneous accesses by the cores to shared resources like cache memories
and memory bus. With the assumptions made, the simulator oversimplifies the system
behavior focusing on memory accessing only. The assumptions made to develop it will be
released in future works in the effort to complete system modeling and converging to realistic
system behaviors.

Existing simulators have been investigated before developing our own. For example,
the gem5 simulator is a highly configurable architecture simulator that supports different
computing architectures like ARM. It tends to simulate the real behavior of the system, but
it makes it quite complex to extrapolate specific behaviors since it takes into account too
many mechanisms that could happen.

SimSo [6] is a multi-core scheduling simulator that takes into account cache temporal
impacts. In order to compute cache effects on task executions, SimSo makes use of the
frequency of access model [6, 5]. As the number of cycles per instruction depends on the state
of the processor, the best way to model is to use state machines instead of a deterministic
function like the frequency of access model. Thus, the need for more realism with respect to
the system behavior which is driving the development of our simulator. On the other hand,
multi-core and cache aspects of SimSo inspired our work. Our cache simulator makes use of
a trace of memory addresses to access, and so execute address by address. The multi-core
simulation is represented with accesses concurrently applied.

2 Models and Tools

Probabilistic Worst-Case Execution Time Model. Interferences and contentions do not
only increase task execution times, they also bring variability to the task behavior at
runtime. Probabilistic models can better catch the underlying task execution uncertainty
than deterministic models.

WCET 2018
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A sequence of execution time measurements Cj can be gathered in a trace T = (Cj) j∈[[1;n]].
The MBPTA estimates pWCETs, denoted by C λ, by applying the EVT to a trace of
measurements T [7, 8]. WCET thresholds 〈WCET ; p〉 are extracted from C λ, and can be
used to describe the task behavior, instead of using the whole distribution C λ. In 〈WCET ; p〉,
WCET is the timing upper-bound on the task execution time and p is the probability for
WCET to be exceeded at runtime. With 〈WCET1; p1〉 and 〈WCET2; p2〉, by decreasing
probability p p1 ≤ p2, it is WCET1 ≤WCET2. This means that WCET1 has more chances
to be exceeded at runtime thanWCET2; the probability p can be seen as a level of confidence
on the WCET threshold. Different probabilities can be considered e.g., 10−6, 10−9 and 10−12

with the associated WCET thresholds.
Figure 1 and Figure 2 depict respectively, for an example task, a trace of execution

time measurements and the pWCET estimate together with two WCET thresholds at given
probabilities.

The MBPTA is sensitive to the execution scenario applied for measuring. A scenario s is
an abstraction and represents a specific execution condition for the task and the system. It is
an instantiation of the set of possible conditions e.g., task inputs I, environment state Env
and task mapping Map. s is a function f(I, Env,Map, . . .) and it affects the behavior of the
task and it can also change at runtime. The trace of measurements T s under s describes the
expected execution behavior of the task under the condition. The pWCET estimation C λ,s

models the largest task execution times under s, Figure 3.
An embedded real-time system has a finite number of execution scenarios S = {s1, s2, . . . ,

sk}. Among them, there would be the worst scenario sworst as the scenario which ends up into
the worst measurements and the worst pWCET estimates. The problem of enumerating all the
s ∈ S, is a complex problem as it could exist a large, but finite, number of parameters defining
the scenarios. This work aims at determining sworst that includes the worst interference from
cache and memory buses due to parallel executions. sworst has to be guaranteed from an
effective characterization of all the possible execution conditions, including the worst ones [9].

It is important to note that we call the pWCET from each trace "worst-case", but it is
only the worst-case under the considered scenario. The contention analysis here is focusing
on a subset of interferences/contentions conditions. It explores them efficiently, and it defines
the worst scenario among them. For validating it we make use of the MBPTA tool called
diagXtrm [8] which accepts traces of execution time measurements as input and it estimates
pWCETs from those. diagXtrm evaluates the confidence of EVT applicability as well
as the quality of the pWCET estimates for each measurement scenario applied. It also
compares multiple scenarios in terms of both average and worst-case behaviors. diagXtrm is
developed in R and is publicly available at https://forge.onera.fr/projects/diagxtrm2.
diagXtrm and MBPTA in this work, are only used to verify the soundness of the contention
analysis we propose.

https://forge.onera.fr/projects/diagxtrm2
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Directed Acyclic Graph Model. In case of precedence constraints, the execution partial
ordering between real-time tasks can be represented by a Directed Acyclic Graph (DAG)
G(V,E) where V is a set of N nodes and E is a set of directed edges [2, 10].

Each node ni ∈ V corresponds to a task and it can be weighted w(ni) by the task pWCET
C λ
i or WCET thresholds 〈WCET ; p〉. Edges represent the order of execution between the

tasks. The edge ei,j directly connects two nodes ni and nj , with ni preceding nj . An entry
node in a DAG is a node with no predecessors; an exit node is a node without successors.

The precedence constraints encoded in DAGs impose that a node cannot start its execution
before all his predecessors ended theirs. Edges can be weighted w(ei,j) representing the
communication delay which postpones task executions, i.e. task offsets. A path from ni to
nj in a DAG exists if and only if it is possible to reach nj from ni; the path is the set of
nodes from ni to nj and the sequence of edges, {{ni, nk, nr, . . . ns, nj}, {ei,k, ek,r, . . . es,j}}.
Tasks that are linked directly by sharing an edge or by a path are said to be functionally
dependent because the activation of a task requires the termination of the other one. DAGs
can be used to represent mono- and multi-rate task sets. In the latter, it necessary to define
DAG reduction mechanisms with multiple task instances and communication buffers [12].
The buffers are for guaranteeing the correct communication pattern and the respect of the
precedence constraints across multiple task occurrences.

3 Contentions from Parallel Executions

Parallelizing task executions, whenever it is possible, enables speeding up on average the
real-time application. However, co-running tasks suffer from interferences and timing an-
omalies which could drastically reduce the worst-case performance. Those cases have to be
scrupulously modeled in order to make the system predictable.

Independence Analysis. In case of precedence constraints, the tasks that can execute simul-
taneously on different cores are those functionally independent. Having G(V,E) representing
the real-time application, two tasks ni and nj are said to be independent, denoted ni∇nj , if
and only if it does not exist any path from ni to nj in G. At runtime, independent tasks ni
and nj are contenders since they can interfere with each other by introducing contention on
shared resources.

The potential contenders Γ(ni) of a task ni i.e. tasks that can execute in parallel to
ni or equivalently tasks independent from ni: Γ(ni) = {nj ∈ G | ni∇nj}. Seeking for
contenders consists in determining the complement of the undirected transitive closure1 of
the DAG. Then, by taking the complement graph G of the undirected transitive closure of
the DAG, only independent tasks share an edge. The resulting graph G is called the graph
of independences, as opposed to the initial G.

Γ∗(ni) is the set of tasks which are independent from each other and independent from
ni: Γ∗(ni)

def= {nj , nk ∈ G | ni∇nj , ni∇nk, nj∇nk}, and is derived from G. Note that, ni is
included in both Γ(ni) and Γ∗(ni) and Γ∗(ni) ⊆ Γ(ni). We call this process independence
analysis; the next steps are for exploring Γ∗(ni) and its possible subsets in the quest of
contentiousness.

1 The transitive closure allows adding an edge between two nodes if they are not independent i.e. if there
exists a path from one to another.

WCET 2018
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Contender List. Given Γ∗(ni), we now seek for the list of possible contenders to ni. A set
of c tasks, including ni, in which every couple of tasks share an edge in G consists of a clique
cliquec(ni). The clique is relative to ni and has size (cardinality) c = |cliquec(ni)|. To note
that any clique of ni is a subset of Γ∗(ni), cliquec(ni) ⊆ Γ∗(ni).

For each task ni there exists a maximal size to its cliques. cliquemax(ni) is the maximum
(largest in size) clique for ni in G; cliquemin(ni) denotes the minimum (smallest in size)
clique for ni in G. Both the maximum clique and the minimum clique are not usually unique.
For a cliquec(ni), the c− 1 tasks cliquec(ni)/{ni} (cliquec(ni) without ni) are the potential
contenders of ni. The complete set of contender for ni are all the cliques cliquecs(ni)/{ni}
for c ∈ [|cliquemin(ni)|, |cliquemax(ni)|]. For a M -core processor, only up to M − 1 tasks can
run in parallel to ni. Then, cliques whose size c exceeds M are rejected because impossible
to happen scenarios.

We assume that the more tasks are executed in parallel, the more interference between
the co-running tasks there is. This is true with cache memories and the model we apply,
where more concurrent tasks would evict larger portion of cache or more frequent eviction,
increasing memory latencies. With memory buses it would be the same considering the
same modeling with constant rates, where more concurrent accesses would increase memory
communication latencies. Hence for, in order to identify the worst contention scenario, the
contender list of ni should only be composed of the largest sets of contender tasks within
Γ∗(ni).

What can be called valid contender list of ni ContenderList(ni), is defined as:
ContenderList(ni)

def= {cliquec(ni)/ni : c = min(|cliquemax(ni)|,M)}. The task sets
in ContenderList(ni) are all of size min(|cliquemax(ni)| − 1,M − 1).

Contender Classification. The objective of the worst contention analysis is identifying for
ni, its min(M −1, |cliquemax(ni)|−1) worst contenders within ContenderList(ni). Running
them in parallel together with ni would foster the worst interferences for ni.

The classical approach to worst contention analysis would consist in executing all the
possible combinations for all the task sets in the contender list. However, the size of the
contender list may be too large for an affordable exhaustive search. We define a learning
procedure called contender classification in order to reduce the complexity of the worst
contention analysis.

In this work we focus on contentions from the memory hierarchy and buses for parallel
applications and co-running tasks. Inspired by it [15], we measure the number of accesses
to the shared cache accesses. The number of accesses can be either lines fetched from the
shared cache to the private caches, or writes to the shared cache. Such number of accesses
has to be normalized, either in number of instructions or in time units t. We define the
memory bandwidth usage mem_band as: mem_band def= accesses/t. The rationale behind
the mem_band metric is that a task whose memory bandwidth usage is high, leads to a lot
of potential interferences for co-running tasks. mem_band adds to the maximal cliques for
the worst-case scenarios.

Tasks with different execution lengths would impact differently the contentions. If the
task under analysis has a large execution time and runs together with small execution time
tasks, then the larger task would not be impacted by interferences in the last part of its
execution. We overcome this issue by letting all the tasks execute continuously for the entire
execution of the task under analysis. This way, the task would experience the greatest amount
of interference during its entire execution: there are not zones without contention. At this
stage, we do not investigate the effects of offsets between tasks; future work will be devoted to
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that. Figure 4 describes the assumption we make with different interference sections (vertical
lines) from the two interfering tasks task_j and τ_k for task_i. The repeated executions are
such that task_j is executed continuously twice and task_k is executed four times, while
starting synchronously.

Given the mem_band defined as a constant rate, the synchronous case with repetition
guarantees the maximum rate of contentiousness for the task under investigation. We are
well aware that this is simplistic assumption and perhaps an unrealistic case, but it is a
starting point to study parallel task contentiousness. Moreover, mem_band accounts only
for the temporal interferences at the shared memory bus level. The approach in this work is
an initial step toward an heuristic able to reduce the cost for identifying worst-case execution
conditions. It is obvious that the final metric would take mem_band into account together
with other effects, and has to be developed incrementally.

3.1 Contention Analysis Discussion
A task ni running on a M -core processor ΦM is denoted as ΦM (ni). Two tasks ni and nj
running in parallel within ΦM are denoted by ΦM (ni ‖ nj); obviously ni and nj are running
on different cores within ΦM . The ‖ notation also applies for p tasks n1 ‖ . . . ‖ np.

What we propose, is an approach for maximizing the execution time measurements with
some possible worst interference task mapping configuration sworst in order to produce a
safe pWCET at system deployment. It is based on heuristics and restrictive assumptions to
avoid exhaustive search. The main steps of the contention analysis can be summed up with
the following four basic functions:
1. Contender List Search ∀ni ∈ G, ContenderList(ni) is the result of the contender list

search and the G transformation into G. This step includes the independence analysis;
2. Contentiousness Characterization: ∀ni ∈ G, mem_band(ni) is measured using τmon in

case of ΦM (ni||τmon(t)). τmon(t) is an artifact task used to monitor other task effect on
shared resources;

3. Contender Task Sets Classification: ∀ni ∈ G, sort(ContenderList(ni)) sorts the task sets
from the ones with the greatest sum of memory bandwidth usage values
sort(ContenderList(ni))[·] to those with the least sum of memory bandwidth usage
values sort(ContenderList(ni))[|ContenderList(ni)|];

4. Worst Contention Scenario Measurements: ∀ni ∈ G, T (ni) is the measurement trace
under sworst ΦM (ni||sort(ContenderList(ni))[1]) to which the EVT is applied.

This paper offers a narrow perspective to contentions from parallel executions for the
assumptions and definitions made. The proposed contentions analysis guarantees the worst
execution condition among those and accounted for here.

The computation time complexity of independence analysis and contention list search
(step 1) is O(3N/3) and depends on the number of tasks N , [16].

Thanks to their memory bandwidth usage, each task set in the contender list can be
ordered from the most contentious to the least. The task contentiousness characterization
and classification for all the N tasks in G would take

∑N
i=1 tni , where tni is the execution

time of ni. One execution per task is sufficient for the task contentiousness characterization
because we consider single-path tasks. The simplistic single-path task assumption could
resemble to an unrealistic case. Instead, it can be applied to any actual task representation
where only the worst-case path is exercised all the time, As

∑N
i=1 tni

< N×T , where T would
be the largest task execution time in G, the computation time complexity of characterizing
the contentiousness (step 2 and step 3) is O(N) on the number of tasks.

WCET 2018
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By executing ni together with its most contentious tasks in its contender list, we assure
the worst contention scenario sworst for ni. Measuring according to sworst for all the tasks
of the application (step 4) has computation time complexity O(N) on the number of tasks.

4 Case Study and Simulation

In this section we present the case study used for the experimental evaluation of the proposed
contention analysis. First, we briefly describe the simulator we develop for parallel execution
and contention measurements. Then, we detail the real-time application we apply for
validating our contention analysis. Finally, we outline the results of the contention analysis
with the simulator developed and the application selected.

Platform Simulation. One of our driving interests is to develop a generalizable and realistic
multi-core parallel execution simulator with memory hierarchy. The simulator allows observing
and controlling specific resources like cache memory and memory bus.

The simulated architecture is composed of four cores, with two levels of cache, L1 Data
Cache (DC) and Instruction Cache (IC), and L2. The L2 cache is shared between the four
cores and is accessed through a bus. The cache memories make use of the LRU policy and
the write-through policy. The L1 cache memories are 4-way associative with 8 blocks per
set i.e. 32 blocks in total, and whose access penalty is 1 cycle. The L2 cache memories are
4-way associative with 32 blocks per set i.e. 128 blocks in total, and whose access penalty is
4 cycles. The bus makes use of the FIFO policy. This architecture is similar to the LEON4
processor [4].

The way it has been implemented, the simulator allows choosing for the size of the cache
memories and their arbitration policy, as well as the bus policy. Tasks are modeled with a
trace of memory accesses i.e. a sequence of reads or writes to a memory location. With this,
we represent memory accesses and we cope with the defined mem_band. Such traces are
randomly generated with different profiles, but they can be built from the assembly code
of the task for a given platform. The task profiling with traces is generic enough to apply
to different task characteristics. It would suffice adapt the memory access and reproduce
different task behaviors. We stress what is randomly generated are memory accesses; cache
misses results from the replacement policy implemented, and are not random.

More details about the platform simulator, like the core execution and the task profiling
based on a trace of memory accesses, may be found at https://forge.onera.fr/projects/
multicore-simulator. Figure 5 details the main elements already implemented on the
simulator. mem_band defined describes the constant rate accesses to the cache memory
shared between cores through the bus.

https://forge.onera.fr/projects/multicore-simulator
https://forge.onera.fr/projects/multicore-simulator
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Figure 6 DAG G for the FAS case study with
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Table 1 Results of the contender list search
applied to the FAS case study.

task |cliquemax(ni)| # Γ(ni)
gps0 4 4
gyro0 4 4
str0 4 4
GPS_Acq85 4 4
Gyro_Acq79 4 4
Str_Acq90 4 4
FDIR100 1 1
tc0 4 26
GNC_US109 3 6
PDE117 4 31
TM_TC127 4 22
gnc0 4 50
GNC_DS111 4 6
pde0 4 31
tm0 4 22
PWS122 4 28
SGS119 4 28
pws0 4 28
sgs0 4 28

Application Setup. For this case study, we make use of the Flight Application Software
(FAS) application of the Automated Transfer Vehicle designed by EADS Astrium Space
Transportation for resupplying the International Space Station [12]. FAS is composed of 19
tasks and 21 precedence constraints, which can be represented by the DAG G(V,E) given in
Figure 6. It is a relatively small real-time application, but is already enough to show the
advantage of using the contention analysis we propose.

For these experiments, we make use of the mono-rate version of the FAS application,
but as already mentioned, our approach can cope with multi-rates as soon as their DAG
representation is available. G for FAS is the closure representation of G; each arc from one
node connects two independent tasks. Already with FAS, there exist lots of independent
tasks, as high as 16 for task tc0. A smart and efficient contention analysis is much needed to
avoid exhaustive exploration.

With respect to the implementation of the FAS tasks, we use a randomly generated
trace of memory accesses for each task. Not knowing the exact original implementation, we
have generated traces with different characteristic for the 19 tasks. They have been made
from uniform distributions with different supports or Poisson distributions with different
rates to reproduce different behaviors; the length of the traces is randomly picked from a
uniform distribution. Task parameters like period and deadlines are defined according to [14].
The random generation of tasks profiles does not limit the generality of our work, since the
contentiousness part would model the task for whatever access trace is considered. Also,
real implementations can be included with measurements applied to characterize the access
profiles.

4.1 Contention Analysis
Table 1 presents the results of the independence analysis and contender list search for the
FAS case study, step 1 – contenderList(). As some contender lists are quite long, only the
maximum clique size and the size of the contender list are given for each task. The maximal

WCET 2018
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Table 2 Statistics of the contentiousness characterization for the tasks in the GPS_Acq85
contender list.

task execution time (cycles) L1 hit/misses L2 hit/misses bus accesses mem_band rank

GPS_Acq85 1025 123/177 93/84 204 0.68 -
Str_Acq90 811 225/75 28/47 118 0.40 2

tc0 271 89/11 0/11 34 0.34 3
gyro0 374 53/47 3/44 57 0.57 1

Gyro_Acq79 641 285/15 0/15 68 0.23 5
str0 261 94/6 0/6 32 0.32 4
gps0 355 55/45 5/40 54 0.54 -

found clique for all tasks in the graph is of size five. However, as the number of available
processor is four, cliques of size greater than four are not considered for the analysis. Some
tasks exhibit a high number of task sets in their contender list, up to fifty for the gnc0 task.
That is the main motivation for the contender classification and to avoid evaluating all the
combinations.

As representative example, we detail the worst contention analysis and its experi-
mental evaluation for the task GPS_Acq85. From the independence analysis and the
contender list search, the GPS_Acq85 contender list is: ContenderList(GPS_Acq85) =
{{Str_Acq90, tc0, gyro0}, {Str_Acq90, tc0, Gyro_Acq79},
{str0, tc0, gyro0}, {str0, tc0, Gyro_Acq79}}. There are six tasks to simulate for contentious-
ness and contention analysis.

All six tasks involved (GPS_Acq85, Str_Acq90, tc0, gyro0, Gyro_Acq79, str0) are first
executed one time in isolation, Φ4 (nj), in order to characterize their contentiousness. The
results are given in Table 2 where execution times are in CPU cycles. Table 2 presents
also the measurements of cache misses, bus access, and the resulting mem_band. As the
platform simulator considered here has no prefetching mechanism, the memory bandwidth
usage is computed as mem_band = bus_accesses

number_of_instructions , with the number of instructions
specified by the task characteristics for the simulation. A ranking is attributed to each task,
with the contentiousness defined according to the memory bandwidth usage mem_band.
Rank 1 is for the largest memory bandwidth usage among the contenders. The task set
tsi represents a possible execution scenario for GPS_Acq85 (cliques). The task ranking is
propagated to the contender list, ordering the task sets from the most contentious set, denoted
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Figure 8 GPS_Acq85 and four interference
scenarios tsi: expected behaviors and comparison
with box plots.
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Figure 9 GPS_Acq85 and four interference
scenarios tsi: the pWCET estimated and com-
parison in logarithmic scale and with the inverse
cumulative distribution representation.

by ts1, to the least contentious task set ts4. It is sort(ContenderList(GPS_Acq85)) =
{ts1, ts2, ts3, ts4}, with ts1 = {Str_Acq90, tc0, gyro0}, ts2 = {str0, tc0, gyro0}, ts3 =
{Str_Acq90, tc0, Gyro_Acq79}, and ts4 = {str0, tc0, Gyro_Acq79}.

Once identified and ranked the tsi, for each tsi, 500 consecutive execution time meas-
urements are obtained: the classification between tsis according to their contentiousness is:
max(ts1) > max(ts2) > max(ts3) ' max(ts4). The measurements, as expected behavior,
validate the ranking proposed with the contentiousness. sworst for GPS_Acq85 consists of
executing it in parallel of the tasks in ts1 i.e. Φ4 (GPS_Acq85||Str_Acq90||tc0||gyro0).

diagXtrm is applied to the four traces T tsi and it provides the statistical analysis (box
plots, first order, and second order statistics) as well as the worst-case analysis (pWCET)
for each input trace. All the average behaviors are plotted in the box plot of Figure 8; the
scenarios are compared on average. The pWCET estimates are plotted in Figure 9 with the
inverse cumulative distribution representation. The worst pWCET, the greatest distribution
between the four possible pWCETs, and it comes from the worst-case scenario ts1 C λ,ts1,
Φ4(GPS_Acq85, ts1). The scenario comparison as in Figure 9 validates that the worst-case
scenario among the 4 considered is the one from the most contentious clique. It is worth
noting that diagXtrm applied to the 4 scenarios passes all the tests for confident pWCET
estimates; only for space reasons this is not illustrated with a plot.

5 Conclusions and Future Works

We propose a contention analysis which enables measuring, at low cost, the worst contentions
for parallel executing tasks. The maximum execution times are reproduced from the worst
parallel execution conditions among those investigated. The whole procedure is an heuristic
approach conceived to guarantee identifying the worst contention conditions and to reduce
the computation costs. It represents a first step toward an efficient and complete contention
analysis.

The proposed contention analysis framework still has some limitations that have to be
addressed in future works. Among others, we intend to release the single-path assumption
and consider multi-path tasks. Furthermore, we intend to enrich the contentiousness metric,
mem_band to account for multiple effects.

WCET 2018
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