218 research outputs found

    Automatic Number Plate Recognition on FPGA

    Get PDF
    Automatic Number Plate Recognition (ANPR) systems have become one of the most important components in the current Intelligent Transportation Systems (ITS). In this paper, a FPGA implementation of a complete ANPR system which consists of Number Plate Localisation (NPL), Character Segmentation (CS), and Optical Character Recognition (OCR) is presented. The Mentor Graphics RC240 FPGA development board was used for the implementation, where only 80% of the available on-chip slices of a Virtex-4 LX60 FPGA have been used. The whole system runs with a maximum frequency of 57.6 MHz and is capable of processing one image in 11ms with a successful recognition rate of 93%

    Real-Time Vision System for License Plate Detection and Recognition on FPGA

    Get PDF
    Rapid development of the Field Programmable Gate Array (FPGA) offers an alternative way to provide acceleration for computationally intensive tasks such as digital signal and image processing. Its ability to perform parallel processing shows the potential in implementing a high speed vision system. Out of numerous applications of computer vision, this paper focuses on the hardware implementation of one that is commercially known as Automatic Number Plate Recognition (ANPR).Morphological operations and Optical Character Recognition (OCR) algorithms have been implemented on a Xilinx Zynq-7000 All-Programmable SoC to realize the functions of an ANPR system. Test results have shown that the designed and implemented processing pipeline that consumed 63 % of the logic resources is capable of delivering the results with relatively low error rate. Most importantly, the computation time satisfies the real-time requirement for many ANPR applications

    Development and performance evaluation of a multistatic radar system

    Get PDF
    Multistatic radar systems are of emerging interest as they can exploit spatial diversity, enabling improved performance and new applications. Their development is being fuelled by advances in enabling technologies in such fields as communications and Digital Signal Processing (DSP). Such systems differ from typical modern active radar systems through consisting of multiple spatially diverse transmitter and receiver sites. Due to this spatial diversity, these systems present challenges in managing their operation as well as in usefully combining the multiple sources of information to give an output to the radar operator. In this work, a novel digital Commercial Off-The-Shelf (COTS) based coherent multistatic radar system designed at University College London, named ‘NetRad’, has been developed to produce some of the first published experimental results, investigating the challenges of operating such a system, and determining what level of performance might be achievable. Full detail of the various stages involved in the combination of data from the component transmitter-receiver pairs within a multistatic system is investigated, and many of the practical issues inherent are discussed. Simulation and subsequent experimental verification of several centralised and decentralised detection algorithms in terms of localisation (resolution and parameter estimation) of targets was undertaken. The computational cost of the DSP involved in multistatic data fusion is also considered. This gave a clear demonstration of several of the benefits of multistatic radar. Resolution of multiple targets that would have been unresolvable in a conventional monostatic system was shown. Targets were also shown to be plotted as two-dimensional vector position and velocities from use of time delay and Doppler shift information only. A range of targets were used including some such as walking people which were particularly challenging due to the variability of Radar Cross Section (RCS). Performance improvements were found to be dependant on the type of multistatic radar, method of data fusion and target characteristics in question. It is likely that future work will look to further explore the optimisation of multistatic radar for the various measures of performance identified and discussed in this work

    A design of license plate recognition system using convolutional neural network

    Get PDF
    This paper proposes an improved Convolutional Neural Network (CNN) algorithm approach for license plate recognition system. The main contribution of this work is on the methodology to determine the best model for four-layered CNN architecture that has been used as the recognition method. This is achieved by validating the best parameters of the enhanced Stochastic Diagonal Levenberg Marquardt (SDLM) learning algorithm and network size of CNN. Several preprocessing algorithms such as Sobel operator edge detection, morphological operation and connected component analysis have been used to localize the license plate, isolate and segment the characters respectively before feeding the input to CNN. It is found that the proposed model is superior when subjected to multi-scaling and variations of input patterns. As a result, the license plate preprocessing stage achieved 74.7% accuracy and CNN recognition stage achieved 94.6% accuracy

    IMPROVED LICENSE PLATE LOCALIZATION ALGORITHM BASED ON MORPHOLOGICAL OPERATIONS

    Get PDF
    Automatic License Plate Recognition (ALPR) systems have become an important tool to track stolen cars, access control, and monitor traffic. ALPR system consists of locating the license plate in an image, followed by character detection and recognition. Since the license plate can exist anywhere within an image, localization is the most important part of ALPR and requires greater processing time. Most ALPR systems are computationally intensive and require a high-performance computer. The proposed algorithm differs significantly from those utilized in previous ALPR technologies by offering a fast algorithm, composed of structural elements which more precisely conducts morphological operations within an image, and can be implemented in portable devices with low computation capabilities. The proposed algorithm is able to accurately detect and differentiate license plates in complex images. This method was first tested through MATLAB with an on-line public database of Greek license plates which is a popular benchmark used in previous works. The proposed algorithm was 100% accurate in all clear images, and achieved 98.45% accuracy when using the entire database which included complex backgrounds and license plates obscured by shadow and dirt. Second, the efficiency of the algorithm was tested in devices with low computational processing power, by translating the code to Python, and was 300% faster than previous work

    New Approach of Indoor and Outdoor Localization Systems

    Get PDF
    Accurate determination of the mobile position constitutes the basis of many new applications. This book provides a detailed account of wireless systems for positioning, signal processing, radio localization techniques (Time Difference Of Arrival), performances evaluation, and localization applications. The first section is dedicated to Satellite systems for positioning like GPS, GNSS. The second section addresses the localization applications using the wireless sensor networks. Some techniques are introduced for localization systems, especially for indoor positioning, such as Ultra Wide Band (UWB), WIFI. The last section is dedicated to Coupled GPS and other sensors. Some results of simulations, implementation and tests are given to help readers grasp the presented techniques. This is an ideal book for students, PhD students, academics and engineers in the field of Communication, localization & Signal Processing, especially in indoor and outdoor localization domains

    Real-time 3D object detection and SLAM fusion in a low-cost LiDAR test vehicle setup

    Get PDF
    Recently released research about deep learning applications related to perception for autonomous driving focuses heavily on the usage of LiDAR point cloud data as input for the neural networks, highlighting the importance of LiDAR technology in the field of Autonomous Driving (AD). In this sense, a great percentage of the vehicle platforms used to create the datasets released for the development of these neural networks, as well as some AD commercial solutions available on the market, heavily invest in an array of sensors, including a large number of sensors as well as several sensor modalities. However, these costs create a barrier to entry for low-cost solutions for the performance of critical perception tasks such as Object Detection and SLAM. This paper explores current vehicle platforms and proposes a low-cost, LiDAR-based test vehicle platform capable of running critical perception tasks (Object Detection and SLAM) in real time. Additionally, we propose the creation of a deep learning-based inference model for Object Detection deployed in a resource-constrained device, as well as a graph-based SLAM implementation, providing important considerations, explored while taking into account the real-time processing requirement and presenting relevant results demonstrating the usability of the developed work in the context of the proposed low-cost platform

    Vision-based Detection of Mobile Device Use While Driving

    Get PDF
    The aim of this study was to explore the feasibility of an automatic vision-based solution to detect drivers using mobile devices while operating their vehicles. The proposed system comprises of modules for vehicle license plate localisation, driver’s face detection and mobile phone interaction. The system were then implemented and systematically evaluated using suitable image datasets. The strengths and weaknesses of individual modules were analysed and further recommendations made to improve the overall system’s performance
    corecore