
This version is available at https://doi.org/10.14279/depositonce-7182

Copyright applies. A non-exclusive, non-transferable and limited
right to use is granted. This document is intended solely for
personal, non-commercial use.

Terms of Use

Rosli, F.; Elhossini, A.; Juurlink, B. (2015). Real-Time Vision System for License Plate Detection and
Recognition on FPGA. PARS: Parallel-Algorithmen, -Rechnerstrukturen und -Systemsoftware, 32(1), pp.
69-79. https://hdl.handle.net/20.500.12116/1930

Rosli, F.; Elhossini, A.; Juurlink, B.

Real-Time Vision System for License Plate
Detection and Recognition on FPGA

Published versionJournal article |

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DepositOnce

https://core.ac.uk/display/159636774?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Real-Time Vision System for License Plate Detection and
Recognition on FPGA

Faird Rosli , Ahmed Elhossini, Ben Juurlink

Embedded Systems Architectures (AES)
Technical University of Berlin

Einsteinufer 17
D-10587, Berlin, Germany

{mohd.f.mohdrosli1,ahmed.elhossini,b.juurlink}@tu-berlin.de
Abstract: Rapid development of the Field Programmable Gate Array (FPGA) offers
an alternative way to provide acceleration for computationally intensive tasks such as
digital signal and image processing. Its ability to perform parallel processing shows the
potential in implementing a high speed vision system. Out of numerous applications
of computer vision, this paper focuses on the hardware implementation of one that is
commercially known as Automatic Number Plate Recognition (ANPR).Morphological
operations and Optical Character Recognition (OCR) algorithms have been imple-
mented on a Xilinx Zynq-7000 All-Programmable SoC to realize the functions of an
ANPR system. Test results have shown that the designed and implemented processing
pipeline that consumed 63 % of the logic resources is capable of delivering the results
with relatively low error rate. Most importantly, the computation time satisfies the
real-time requirement for many ANPR applications.

1 Introduction
In recent years, the significant evolution of computer vision can be seen as it is making
its way into an increasing number of application domains. The research and development
in the field of computer or machine vision has defined methods for processing and ana-
lyzing images from real world to provide human capabilities of understanding images to
machines and robots. There is a strong and growing demand for computer vision sys-
tems in the automotive domain. Intelligent cars that are available in the market nowadays
are equipped with various camera-based driver assistance systems such as lane detection,
night view assist, pedestrian detection and traffic sign recognition [Gr13].

Figure 1: System Configuration for
ANPR on FPGA.

These applications are required to work reliably in a
large range of lighting and climatic conditions and
to process a very high frame rate video signal in
real-time. Besides those above-mentioned appli-
cations, the Automatic Number Plate Recognition
(ANPR) is also one of the computer vision appli-
cations that is widely used in the automotive do-
main. However, it is better known as a surveillance
technology rather than a driver assistance system.
Vehicles are usually identified by their registration
number which are easily readable by humans. But for machines, a plate number is a grey

69

image defined as a mathematical function that represents light intensity at a certain point
within an image [Ma07].

The main objective of this paper is to develop a framework of embedded components for
custom computer vision applications that run on a reconfigurable hardware and operate in
real-time. The proposed framework was customized for an application in the automotive
domain. The ANPR application is implemented on FPGA as illustrated in Figure 1 which
is suitable for a wide range of applications. The application is constructed using basic
computer vision and image processing algorithms. Various hardware cores are developed
for each algorithm that later can simply be reused by other vision applications.

The paper is organized as follows: Section 2 gives overview of the related work to this pa-
per. Section 3 describes the proposed methods for license plate detection and recognition.
Section 4 reveals the architecture of each processing block. Section 5 presents the testing
procedure and analysis of the implemented license plate detection and recognition system.
Finally, Section 6 summarizes the whole work that is done so far and concludes the work.

2 Related Work
In this paper we investigate employing FPGA to implement a framework for computer
vision and specifically for automatic license plate recognition. The most common ap-
proaches applied to detect the license plate within an image are the combination of edge
detection and binary morphology as explained in [SGD06]. The detection rate with this
method is highly affected by the quality of the image. They are based on the assumption
that car plates have strong edges that will survive strong filtering. Unfortunately, this is not
very effective for urban environment. License plate detection and segmentation algorithm
with histogram projection as proposed in [As13] and [Hs09] is found to be challenging es-
pecially when the image contains a lot of details in the background. Defining the threshold
value require a few steps of mathematical calculation and the process of finding the peak
may introduce some delay in the processing. A simpler approach that produces satisfac-
tory result is by using greyscale morphology that is already used in [Iw] and [Od]. Optical
character recognition (OCR), that is normally used to translate images of handwritten text
into machine encoded text, is applicable for the recognition of license plate characters. The
work in [ZDF10] divides a handwritten character into several rectangular zones to obtain
a 13-element feature vector. Each element represents the number of foreground pixel in
each defined zone. In [SDR12] a similar method is used to divide a 32 x 32 pixel charac-
ter image into 16 zones. The authors have proposed eight directional distribution features
which are calculated for each zone. Three different classification methods, which are ar-
tificial neural networks (ANN), support vector machine (SVM) and k-nearest-neighbour
(KNN) are used to recognise the characters.

Some of the methods and algorithms described above can be combined and implemented
on embedded hardware platform. For example, license plate detection and recognition on
an embedded DSP platform was introduced in [ALB07]. The total processing time, be-
ginning from image acquisition until character classification requires 41.35 ms. Another
implementation of plate localisation on Xilinx Virtex-4 was described in [ZBR11] and is
capable of processing one image in 3.8 ms and it consumes less than 30% of the on-chip
resources. No recognition stage was presented in that work. A complete ANPR system is
implemented on FPGA in [Je13]. The system utilizes 80 % of the Xilinx Virtex-4 LX40 re-

70

sources and is capable of processing a standard definition image (640 x 480) in less than 10
ms. Algorithms for license plate detection are also developed in [TKA07] using Handel-C
and then translated into Verilog HDL with Celoxca’s DK4 to implement on Virtex II Pro.
Performance comparison between the software and the hardware implementation is stated
at the end of the paper. The resource utilization for their hardware implementation is about
2 to 3 times more than the work in [ZBR11] and yet requires longer processing time for an
input image with a smaller resolution. However,their results show that the same algorithms
execute 4 times faster with the hardware than the software.

In this paper we adopted some of the listed methods and algorithms to design and im-
plement a pipelined processing system for computer vision on a reconfigurable hardware.
The proposed work presents hardware modules for various morphology based filters, along
with connected component analysis and k-means classifier. These components are ar-
ranged in a single pipeline for ANPR. These components are designed to be easily used in
various computer vision applications.

3 Proposed Algorithm
In this section we propose an algorithm for ANPR. The input to the algorithms is a frontal
image of the car as shown in Figure 2a.

(a) Input (b) Grey-Scale (c) Morph. Closing (d) Top-Hat Outpu

(e) Binary Output (f) Morph. Cleaning (g) Cleaned Output (h) Bounding Box

Figure 2: Output of Various Processing Stages (Actual Output of the Hardware System)

3.1 License Plate Detection
3.1.1 Top-Hat Filtering
The input image is converted to grey-scale (Figure 2b). Several stages of mathematical
morphology are chosen to locate the license plate of the vehicle in the image. Firstly,
the closing operation with a structuring element of 7 x 7 pixel is applied to erase the
characters of the license plate (Figure 2c). When image subtraction is performed between
the resulting image and the initial grey-scale image, an image as shown in Figure 2d is
obtained. This operation is known as black Top-Hat morphology. It returns an image
containing objects or elements that are smaller than the structuring element and darker than
their surroundings. Since European license plates mostly have white background and the
characters are black in colour, they will remain as foreground objects in the output image.
A binary image (Figure 2e) is obtained from the Top-Hat image by using thresholding.
3.1.2 Background Cleaning and Plate Segmentation
Grey-scale morphology is applied to the top-hat image to find the region that contains the
vehicle license plate. The license plate location can be detected roughly with a closing

71

Figure 3: Bounding Box for Each Character. Figure 4: A letter ”K” is di-
vided into 8 zones.

operation. The structuring element for this operation has a size of 1 x 45 pixel. The
length is chosen such that it has at least twice the length of a license plate character. After
that, unwanted elements that does not belong to the license plate area are removed by
using morphological opening with a rectangular structuring element 15 x 25 pixel (Figure
2f). The resulting image contains several light areas, and the area of the license plate
appears to be lighter than others. Thresholding is applied to produce a binary image that
maintains the license plate area and suppresses the darker regions (Figure 2g). Finally,
binary morphology dilation with a structuring element of 5 x 5 pixel is applied to enhance
the edges of the binary image. Plate segmentation is performed by applying the connected
component labelling algorithm to distinguish these regions. A bounding box algorithm is
applied to find the rectangular boundary that encloses each region.
3.2 License Plate Recognition
3.2.1 Character Segmentation
The process of finding characters on a license plate is actually the same as finding the
license plate in the input image. Connected component labelling is applied to give a label
for each character and a bounding box that encloses each character is defined so that it can
be segmented from the image and sent to the recognition (classifier) unit. The bounding
box that encloses a detected object must have a minimum width and height to distinguish
between characters and noise. The result of character segmentation is shown in Figure 3.
3.2.2 Feature extraction
An image of a license plate character is partitioned into 8 zones (Figure 4) and the num-
ber of foreground pixels in each zone (pixel density) is calculated. Thus, an image can
have a feature vector of at least 8 elements. Additionally, several types of edges of each
extracted character can also be determined to produce a feature vector of the character.

Figure 5: Edge Types in Feature Extrac-
tion

There are 14 different types of edges (Figure 5)
and the number of occurrences of each type is
calculated for each zone. Combined with the
pixel density of each zone a total of 72 ele-
ments in the features vector of each character
is calculated.
3.2.3 Character Classification
The detected characters are classified using a
simplified k-means clustering algorithm. For each alphabetical character, at least 5 sample
images are taken and a feature vector is extracted from each image. A mean vector for
a character is determined by using the extracted feature vectors. Each mean vector is
stored in a database which is used for the classification task. There are 36 types or classes
of characters that the designed vision system must be able to recognize (26 alphabetical
characters + 10 numerical digits).

72

4 Implementation
In this section we present the details of the proposed architecture. Each component is
modelled using VHDL and simulated using Xilinx ISE development tools from Xilinx.
The target device is Xilinx Artix-7 architecture. The design is assumed to stream the
image data pixel by pixel in every clock cycle which makes it suitable for streaming data
from various image sources such as cameras.

Figure 6: The Architecture of the Processing Pipeline

4.1 Complete Processing Pipeline
The complete processing pipeline shown in Figure 6 is composed of two main parts. The
first part is the detection unit, which is composed of the pre-processing and the license
plate segmentation units. It receives a stream of input images in RGB format and produces
a binary image of a license plate. The second part is the recognition unit that receives
the binary image and performs character segmentation in its first processing stage. Two
license plate character images are segmented simultaneously. Therefore parallel execution
of character classification is possible.
4.2 License Plate Detection Unit
In this stage the position of the license plate is detected using a series of morphological
operations and connected component labelling as explained earlier. Two main units in this
stage: the pre-processing unit, and segmentation unit.
4.2.1 Image Pre-processing Unit
During the pre-processing stage (Figure 7), the grey converter unit prepares a grey-scale
image to the black Top-Hat unit by converting the colour space of the RGB image. The
background cleaning and thresholding of the resulting image of black Top-Hat morphology
are executed in parallel. This processing unit will produce two different output images
similar to that are shown in Figure 2e and Figure 2g.
Morphological Filter:The architecture for grey-scale morphology is based on the design
in [Ba11]. For a rectangular structuring element, efficient separable implementations are
applicable as shown in Figure 8. The implementation of this architecture allows users
to select between various morphological operation and structuring elements sizes using
a configuration word. Additionally, the length of the row buffer, which is implemented
using block RAM can also be adjusted via the configuration word. To implement opening
and closing, the proposed architecture must be duplicated and ordered accordingly.
Top-Hat Filtering:The Top-Hat filter is performed by subtracting the grey-scale image
and morphological image . The architecture of a separable morphological filter with struc-
turing element 7 x 7, explained in the previous section, is instantiated twice here. One is
used as dilation and the other as erosion. The architecture for the FPGA implementation
of the Top-Hat transform is shown in Figure 9.

73

Figure 7: Image Pre-processing Unit

Figure 8: 7x7 Configuration of the Morpho-
logical Filter Unit

Figure 9: Top-Hat Morphological Filter.

Figure 10: Background Cleaning Unit
Background Cleaning: The background cleaning consists of two morphological opera-
tions, which are opening and closing. The morphological closing is done with a horizontal
filter, which has a structuring element of 1 x 45, whereas the opening is done with a normal
rectangular structuring element of 15 x 25. Additionally, it also contains a global thresh-
olding unit and a binary morphology, which is used to dilate the resulting binary image
from the previous processing stages. The processing pipeline for the background cleaning
is shown in Figure 10. The architecture shown in Figure 8 is employed in all stages.

Figure 11: Connected Component Labelling Unit

74

Figure 12: The Bounding Box Module

4.2.2 License Plate Segmentation Unit

Connected Component Labelling:Connected component labelling is a commonly used
algorithm segment images based on the neighbourhood of pixels. Connected component
labelling gives a label to every group of pixels that are neighbour to each other. The
algorithm requires at least two passes to process pixels. A modification for connected
component labelling is introduced in [MBJ08] that provides a single pass algorithm that
eliminates the need of frame buffering and significantly reducing the latency. A simpli-
fied block diagram of the developed unit based on the single pass connected component
labelling is shown in Figure 11. The neighbourhood context within a window of the size
2x2 provides the labels of the adjacent pixels to the current pixel. Unlike the architectures
proposed in [MBJ08] and [JB08], the neighbourhood pixel labels are stored in registers
A, B and C. These are shifted with every clock cycle as the window is scanned across the
image. The merger control block updates the merger table when two objects are merged
and handles new labels.

Bounding Box:Figure 12 shows the implementation of the bounding box processor for a
binary image that contains multiple labels. Compared to other segmentation algorithms
such as watershed and Hough transform, it provides low processing and computation cost.
When the first pixel of an object is detected, the coordinates of that pixel is loaded into
xmin, xmax, ymin and ymax. The y-coordinate of the following object pixel is stored into
the ymax. The current x-coordinate is compared with xmin and xmax. At the end of the
frame, the four registers indicate the extent of the object pixels within the image [Ba11].

4.3 License Plate Recognition Unit

Characters in the license plate are segmented using the same method used in plate segmen-
tation. The image of each character is processed by several modules to extract features that
will be used for character classification.

4.3.1 Feature Extraction Unit

Zoning Unit:The character sub-image is divided into eight zones as shown in Figure 4.
Zoning of a character image is possible when its width and length are known. These
parameters are calculated during the segmentation of a character using bounding box. The
borders that define the zones can be calculated by dividing the width and height by 2 and
4 respectively.

75

Figure 13: Edge Matching Unit

Edge Matching Unit: As explained earlier, there are 14 types of edges that an image
can have. Each type is detected using the circuit shown in Figure 13. The coefficient of
each field is initialized in registers c1 to c4 via a configuration word. The row buffer is
used to store the previous row of the image. The result of the comparison will switch the
multiplexer that selects the operand for the adder. If an edge match occurs, the register that
stores the number of detected edges will increment. It will be reset when a new character
image is received.

Feature Extraction Unit:As explained in section 4.3.1, a character image is divided into
eight zones. Therefore, feature extraction is done for each zone instead of the whole im-
age. The hardware architecture for feature extraction of a character image is implemented
according to Figure 14. The zone selector acts like a demultiplexer that receives a zone
number from the zoning unit and enables a corresponding zone. Each zone will produce
a feature vector that contains 9 elements. Therefore, the architecture will produce a total
number of 72 feature elements for a character.

Figure 14: Feature Extraction Module.

4.3.2 Classification Unit

The classification algorithm requires a database that stores the mean vector for each license
plate character. Entries of this database are stored in array of registers. The classification
unit includes 36 arrays for each class. The absolute error between a feature vector and each
mean vector is determined by doing element-wise subtraction of the feature vectors. The

76

sum of absolute error is calculated by simply adding up all the elements in the error vector.
Pairwise classification algorithm is used in this case, where two errors are compared at
the same time. The pairwise classification unit is implemented as shown in Figure 15.

Figure 15: Pairwise Classification Unit

5 Results
The implemented processing pipeline is tested
with several images containing frontal view of
cars. A test-bench that is created that reads an
image and send it to the processing pipeline.
The test-bench simulates a video stream, with
standard video frame rate that can be adjusted
in the test-bench. The pipeline will process the video stream and produce the output image
of each processing stage. These images will be written as a bitmap file by the test bench
for debugging purposes. The license plate characters are given out at the other end of the
pipeline. Xilinx ISim simulator 14.5 was used to perform all types of simulations, both
behavioural and timing as well as synthesising the design.

Execution Time (ms) Accuracy
Processing stage Proposed Sys. FPGA Sys.[Je13] DSP Sys. [Je13] Proposed Sys. FPGA Sys.[Je13] DSP Sys. [Je13]

Platform- Resolution Zynq 7020 Virtex 4 LX 40 ARM-DSP-Soc 640 x 480 640 x 480 1920 x 1080
Pre-processing 6.012 4.7

License plate detection 0.12 0.11 90% 97% 97%
Character segmentation 0.0203 1.4
Character recognition 0.0204 0.7 83.3% 97% 97%

Total 6.1727 6.91 71.35

Table 1: Performance and accuracy results
5.1 Detection, Recognition, and Performance Results

If the FPGA is set to operate at maximum clock frequency to process an image with VGA
resolution, license plate detection can be accomplished in less than 10 ms. This should
satisfy real-time processing requirement of any ANPR application, especially for the de-
tection of fast moving cars on a highway. The processing pipeline manages to achieve
a plate detection rate of 90 % and recognition rate of 83 % as shown in Table 1. The
pre-processing stages (morphology operations plus the connected component analysis)
consumes 97% of the total time required by the system to process a single frame. The
proposed architecture outperform the FPGA architecture presented in [Je13] in terms of
processing time per-frame (Table 1). In addition, the architecture proposed in this paper
is fully pipelined. This means that we can achieve higher throughput for a video stream.
The DSP implementation presented in [Je13] is operating on Full-HD resolution which
will require more time to process (71.35ms). However, the proposed architecture can be
simply modified for Full-HD resolution, with minimal effect on the performance. Another
advantage of the presented work is that it does not employ any off-chip resource which is
not the case in [Je13]. The work presented in [Je13] presented a higher accuracy. This is
due to the fact that ANN is employed for the classification stage. The simplified K-means
algorithm employed in this paper requires larger training database which can be used to
increase the accuracy of the system.

77

Device utilization summary (xc7z020-1-clg484)
Number of Slice Registers: 8456 out of 106400 7%
Number of Slice LUTs: 33975 out of 53200 63%
Number used as Memory: 88 out of 17400 0%
Specific Feature Utilization
Number of Block RAM/FIFO: 127 out of 140 90%
Number of BUFG/BUFGCTRL/BUFHCEs 4 out of 104 3%
Number of DSP48E1s: 3 out of 220 1%

Table 2: Device utilization summary of the processing pipeline.
5.2 Resource Utilization and Implementation Results
A detailed logic utilization is listed in Table 2. The processing pipeline has a maximum
operating frequency of 57.823 MHz. Multipliers are only used for translating pixel co-
ordinate memory addresses. Block RAMs are mostly used as row and frame buffers for
morphological filtering, license plate and character image segmentation. Figure 16 sum-
marizes the resource allocation to every stage of the processing pipeline. The classifier
takes almost half of the on-chip resources due to the large adder trees used to calculate the
sum of absolute errors. Other components that mainly use block RAM for their task such
as plate detection and character segmentation requires only 2 %. Compared to the work
presented in [Je13], 80% of the Virtex-4LX 4M gate FPGA were consumed to build com-
plete ANPR system. The Zynq 7020 chip employed in this paper has smaller size and only
63% of the resources were consumed which allows more customization of the pipeline.

46 %

Classifier

6 %
Feature extraction

2 %

Character segmentation
2 %

License plate segmentation 7 %

Pre-processing
37 %

Unused

Figure 16: Resource Allocation for Each pro-
cessing Stage.

6 Conclusions
In this paper, a processing pipeline for
the license plate detection and recogni-
tion system has been designed and imple-
mented on an FPGA. It consists of two
main parts which are assigned for license
plate localization and license plate charac-
ter recognition respectively. Most of the
on-chip resources are allocated to the li-
cense plate recognition part to make it ca-
pable of processing multiple characters in parallel. The pipeline has been designed to be
highly reconfigurable so that it can be ported to another FPGA device that offers more
logic resource. According on the test results, the morphological approach is proven to be
very effective for the license plate detection task with accuracy up to 90%. The classifica-
tion with k-means clustering also proves to be reliable with accuracy up to 83%. Parallel
execution of the recognition unit reduces the computation time which allows the proposed
architecture to process a single frame in approximately 10 ms. The pipelined operation of
the system can be used to hide this latency and increase the frame rate. The processing
pipeline can be customized to improve the flexibility of the vision system and to support
other applications.

References
[ALB07] Arth, Clemens; Limberger, F.; Bischof, H.: Real-Time License Plate Recognition on an

Embedded DSP-Platform. In: Computer Vision and Pattern Recognition, 2007. CVPR
’07. IEEE Conference on. pp. 1–8, June 2007.

78

[As13] Ashourian, M.; Daneshmandpoura, N.; Tehrania, O. Sharifi; Moallem, P.: Real Time Im-
plementation of a License Plate Location Recognition System Based on Adaptive Mor-
phology. International Journal of Engineering, 2013.

[Ba11] Bailey, Donald G.: Design for Embedded Image Processing on FPGAs. ”John Wiley and
Sons (Asia) Pte Ltd”, 2011.

[Gr13] Grimm, Michael: Camera-based driver assistance systems. Advanced Optical Technolo-
gies, 2013.

[Hs09] Hsieh, Ching-Tang; Chang, Liang-Chun; Hung, Kuo-Ming; Huang., Hsieh-Chang: A
real-time mobile vehicle license plate detection and recognition for vehicle monitoring
and management. In: Pervasive Computing (JCPC), 2009 Joint Conferences on. pp.
197–202, Dec 2009.

[Iw] Iwanowski, Marcin: Automatic car number plate detection using morphological image
processing. PhD thesis, Warsaw University of Technology, Institute of Control and Indus-
trial Electronics EC Joint Research Centre, Institute of Environment and Sustainability.

[JB08] Johnston, Christopher T.; Baily, Donald G.: FPGA implementation of a Single Pass Con-
nected Components Algorithm. In: 4th IEEE International Symposium on Electronic
Design, Test and Applications. 2008.

[Je13] Jeffrey, Zoe; Zhai, Xiaojun; Bensaali, Faycal; Sotudeh, Reza; Ariyaeeinia, Aladdin: Au-
tomatic Number Plate Recognition System on an ARM-DSP and FPGA Heterogeneous
SoC Platforms. In: Poster session presented at Hot Chips: A Symposium on High Perfor-
mance Chips,HC25 ,Stanford, Palo Alto, United States. 2013.

[Ma07] Martinsky, Ondrej: Algorithmic and Mathematical Principles of Automatic Number Plate
Recognition Systems. Master’s thesis, Brno University of Technology, 2007.

[MBJ08] Ma, Ni; Bailey, D.G.; Johnston, C.T.: Optimised single pass connected components anal-
ysis. In: ICECE Technology, 2008. FPT 2008. International Conference on. pp. 185–192,
Dec 2008.

[Od] Odone, Francesca: Experiments on a License Plate Recognition System. PhD thesis,
DISI, Università degli Studi di Genova.

[SDR12] Siddharth, Kartar Singh; Dhir, Renu; Rani, Rajneesh: Comparative Recognition of
Handwritten Gurmukhi Numerals Using Different Feature Sets and Classifiers. Inter-
national Conference on Recent Advances and Future Trends in Information Technology
(iRAFIT2012), 2012.

[SGD06] Shapiro, Vladimir; Gluhchev, Georgi; Dimov, Dimo: Towards a Multinational Car Li-
cense Plate Recognition System. Machine Vision and Applications, 17(3):173–183, 2006.

[TKA07] T. Kanamori, H. Amano, M. Arai; Ajioka., Y.: A High Speed License Plate Recognition
System on an FPGA. In: Field Programmable Logic and Applications, 2007. FPL 2007.
International Conference on. pp. 554–557, Aug 2007.

[ZBR11] Zhai, X.; Bensaali, F.; Ramalingam, S.: Real-time license plate localisation on FPGA. In:
Computer Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer
Society Conference on. pp. 14–19, June 2011.

[ZDF10] Zhong, Chongliang; Ding, Yalin; Fu, Jinbao: Handwritten Character Recognition Based
on 13-point Feature of Skeleton and Self-Organizing Competition Network. In: Intelli-
gent Computation Technology and Automation (ICICTA), 2010 International Conference
on. volume 2, pp. 414–417, May 2010.

79

