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Abstract: Recently released research about deep learning applications related to perception for au-
tonomous driving focuses heavily on the usage of LiDAR point cloud data as input for the neural
networks, highlighting the importance of LiDAR technology in the field of Autonomous Driving
(AD). In this sense, a great percentage of the vehicle platforms used to create the datasets released
for the development of these neural networks, as well as some AD commercial solutions available
on the market, heavily invest in an array of sensors, including a large number of sensors as well
as several sensor modalities. However, these costs create a barrier to entry for low-cost solutions
for the performance of critical perception tasks such as Object Detection and SLAM. This paper
explores current vehicle platforms and proposes a low-cost, LiDAR-based test vehicle platform
capable of running critical perception tasks (Object Detection and SLAM) in real time. Additionally,
we propose the creation of a deep learning-based inference model for Object Detection deployed in a
resource-constrained device, as well as a graph-based SLAM implementation, providing important
considerations, explored while taking into account the real-time processing requirement and present-
ing relevant results demonstrating the usability of the developed work in the context of the proposed
low-cost platform.

Keywords: autonomous driving; deep learning methods; LiDAR scanners; 3D object detection;
onboard inference; SLAM; vehicles setup

1. Introduction

Autonomous vehicle technology is making a prominent appearance in our society in
the form of advanced driver assistance systems (ADAS) in both research and commercial
vehicles. These technologies aim to reduce the amount and severity of accidents (these
vehicles should be able to reduce 75–80% of current traffic fatalities [1], increase mobility
for people with disabilities [2] and the elderly, reduce emissions, and use infrastructure
more efficiently. In a simple way, autonomous vehicle navigation can be understood
as encompassing five main components (Perception, Localization and Mapping, Path
Planning, Decision Making, and Vehicle Control). Perception is all about forming an
accurate and detailed environmental model of what is around you. The data used come
from different types of sensors such as cameras (monocular or stereo), RADAR (RAdio
Detection And Ranging), and LiDAR (Light Detection and Ranging) sensors. The LiDAR
sensor is becoming a key element in self-driving cars, mainly because of its long-range
scanning abilities (360◦ scanning, its high resolution provides full 5D information (X, Y, and
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Z coordinates, reflectivity, and time)) and the good performance under different lighting
conditions (night or day) due to its light sources, i.e., lasers. Unlike cameras, LiDAR is
not blinded when pointed in the direction of the sun and at night, LiDAR has a very
high performance [3]. Depending on the LiDAR sensor, the data per point can be range,
intensity, reflectivity, ambient, angle, and timestamp. However, the LiDAR sensor has some
disadvantages, namely, it is still expensive technology compared to other solutions, it is
affected by some specific atmospheric weather conditions, as in the case of fog and smoke
presence. Research work [4] has shown that recent LiDAR sensors (higher angle resolution)
perform well in rainy conditions. However, there are still several weather conditions
requiring analysis; freezing rain, sticky snow, as well the temperature LiDAR range are
some examples of variables that have not been considered in these LiDAR benchmarks
studies. Moreover, sensors cameras, which might be found in other vehicles or traffic
cameras, are susceptible to laser damage [5]. All these issues might hamper perception
systems based on LiDAR to cover all scenarios.

Information provided by LiDAR, in the form of a 3D point cloud, has been processed
for providing two fundamental components to reach the highest levels for autonomous
driving (levels four and five), namely, Perception and Localization/Mapping. Perception
is here described as the autonomous vehicle ability to detect objects in the surrounding
environment in a real-time manner. However, this is a very challenging task due to the
sparse and unstructured nature of the high dimensional data contained in point clouds, the
number of points in a point cloud (which typically comprises more than 120,000 points [4])
and the limitations in computation power and power supply as expected in real-case
applications, where vehicle setups do not contain a GPU-based server. Turning the task
of accomplishing a perception algorithm able to meet the requirements imposed by the
application, where it is expected for solutions to deliver outputs in a real-time manner
(often, the target inference time is set as 10 Hz) [6], almost impractical. Autonomous
perception has been focusing on learned features following the steps of deep learning
object detection and classification algorithms based on Convolutions Neural Networks
(CNNs) that have proven to be competitive with increased performance [6]. The inference
time performance of such solutions addressed in the literature on public benchmarks is
higher or near to the maximum acceptable value, even though solutions are deployed
in powerful servers. Hence, the impossibility of directly deploying the computationally
intensive CNNs on the resource-constrained processing units equipped in the vehicle setup
is foreseen, as performance degradation is expected.

Localization/Mapping refers to the ability to determine the global and local location
of the ego vehicle and map the environment/surroundings from sensor data and other
perception outputs [7]. This component includes the problem of determining the pose
of the ego vehicle and measuring its own motion. Due to the difficulty of determining
the exact pose (position and orientation) of the vehicle, the localization problem is often
formulated as a pose estimation problem [7]. Currently, the process of map building and
localization, while driving, is known as SLAM (Simultaneous Localization and Mapping)
and is an important process in the autonomous vehicles field. Visual SLAM algorithms
are a subgenre of these methods, which only use visual information. For this process,
LiDAR devices are more convenient to scan outside environments. LiDAR SLAM (SLAM
supported by LiDAR) typically includes tasks such as odometry, scene recognition, loop
closing, and re-localization to improve the map quality and keep the mapping precision [8].

This research project aims at developing and integrating a real-time 3D object detection
and a SLAM algorithm, both based on LiDAR 3D measurements (where higher-level
features, rather than the direct use of the point cloud, are followed) into a vehicle setup.
This paper explores current vehicle platforms and proposes a low-cost, LiDAR-based test
vehicle platform capable of running critical perception tasks (Object Detection and SLAM)
in real time.

To the best of the authors’ knowledge, this is the first academic attempt of on-board
inference focusing on the deep learning algorithms processing point clouds for driverless
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vehicles application. Here, we demonstrate how the computation-intensive inference
algorithms can be deployed for resource-constrained edge devices. The proposed SLAM
comprises several features that mitigate the error drift, resulting in an improved ability
for mapping and locating relevant objects, while overcoming the main limitation of such
algorithms, the inability to close loops. Moreover, both 3D object detection and SLAM
algorithms are both integrated into the same test vehicle, continuously processing the same
data, i.e., point cloud provided by the scanner LiDAR equipped in the test vehicle. This
setup is a low-cost version, as it does not follow a multi-model approach as is typically
seen in the literature, where vehicles are designed for dataset generation.

The paper is organized as follows: Section 2 describes related work regarding systems
for 3D object detection, SLAM, and vehicles setup used in the literature for the acquisition
of points. Section 3 addresses the architecture of the proposed test vehicles, where all
the components adopted are discussed, a five-step methodology used to select, train, and
fine-tune a deep learning model for deployment in a hardware device is discussed, and
the overview of the architecture of the proposed SLAM algorithm is presented. Section 4
presents benchmarks of the floating-point and integer versions of the models previously
presented in Section 3. In Section 4, the comparison of the quantitative test of the floating-
point and integer versions of each model configuration are performed, and the performance
results of the SLAM are presented and discussed. Finally, Section 5 presents the conclusions
of the research and development carried out throughout this project.

2. Related Work
2.1. Object Detection

Over the last few years, the number of 3D Object Detection (OD) methods discussed
in the literature has increased exponentially. These detectors targeting perception appli-
cations for driverless vehicles are categorized into single-stage architectures, e.g., models
SECOND [9], PointPillars [10], and Fusion of Fusion Net [11], and dual-stage solutions [6],
such as Fast Point-RCNN [12], Patch Refinement [13], and Part-A2-anchor [14]. The former
architecture integrates stages as follows: (1) data preprocessing, (2) features extraction
CNN-based backbone, and (3) multi-head detection head, as a set of connected layers to di-
rectly perform object detection and classification. On the other hand, dual-stage approaches
add a new stage between stage (2) and (3) to generate a set of region proposals, called
intermediate proposals, using a proposal generator, such as Region Proposal Network
(RPN). These proposals are further refined by subjecting their content to additional feature
extraction layers, which are then inputted into stage (3). Single-stage detectors are known
for being more time-efficient but offer lower precision compared to dual-stage detectors.
For instance, SECOND and Patch Refinement achieve a precision of 84 and 89%, and an
inference time of 40 and 150 ms, respectively, for car detection in easy difficulty detection
mode for the KITTI benchmark [15].

Resource-constrained Edge-devices, such as GPUs, FPGAs, and ASICs, have limited
computation power and memory but can be easily integrated into the vehicle setup due to
their low form-factor and low power consumption. Dedicated hardware accelerators have
gained prominence due to their robustness, flexibility (unlike ASICs) and performance as
they achieve a higher performance per watt than microcontrollers or GPUs [16]. Meeting
applications’ requirements is a challenging task for edge devices. Inspired by research
work [17], which consisted of the first hardware-software codesign resulting in a parame-
terized and runtime configurable FPGA hardware architecture compatible with several
networks, several frameworks, such as HADDOC2 [18], DNNWEAVER [19], Hls4ml [20],
and Vitis AI [21] have emerged, focusing not only on compiling the model for the target
platform but also on compressing the network to reduce the memory footprint and infer-
ence time. Optimization techniques such as quantization, pruning, and code optimizations
are often adopted. The differences between the frameworks are in the supported (1) input
model format, (2) deep learning operators, (3) optimization techniques, and (4) platform
devices. Vitis AI is the most complete framework, as is the only one that supports the
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widely adopted machine learning libraries (Caffe, TensorFlow, and Pytorch) for a large set
of platforms from Xilinx (but does not support Intel platforms such as HADDOC2 and
DNNWEAVER). This framework supports ample basic functions of deep learning and
not only specific functions or CNNs [16]. However, unlike HADDOC2 and Hls4ml, user
licenses are required to fully utilize the framework capabilities.

2.2. SLAM

Since the emergence of SLAM algorithms, specifically graph-based algorithms, the
following two tasks stand out in the whole process: Odometry and graph optimization.
Odometry consists of aligning successive LiDAR scans using a point cloud registration tech-
nique. By successively composing these transformations, each point cloud is transformed
back to the reference frame of the first point cloud. Finally, the map can be gendered by
combining all the transformed point clouds. Algorithms such as Normal Distributions
Transform (NDT) [22,23] and Generalized Iterative Closest Point (GICP) are the most
adopted methods. However, both algorithms are affected by the nearest neighbors search-
ing on a dense points cloud, when is necessary to run applications in real-time. Algorithms
in the literature, such as [3,24], resort to parallelization technics to overcome this limitation.
Although odometry solutions create consistent maps, they are only suitable for mapping
small areas, as an error drift is expected for longer sequences. To overpass this obstacle, the
graph-optimization approach has been adopted. Here, a graph is incrementally created,
where the nodes and the edges represent the vehicle absolute poses and the relative poses,
respectively.

Well-known methods, such as Levenberg–Marquardt (LM), Gauss–Newton, or vari-
ants from gradient descent, have been adopted in many applications with acceptable results.
However, to reach values in accuracy and efficiency with use-value, hard efforts, and ad-
vanced mathematical techniques are necessary. Furthermore, correct parameterization is
necessary.

The open-source C++ library general graph optimization (g2o) [25] is an instance that
implements standard methods such as Gauss–Newton and Levenberg–Marquardt (LM)
for the optimization of nonlinear least-squares problems. To enhance its performance,
this library exploits the sparse connectivity of the graph by adopting and using advanced
methods to solve sparse linear systems. Moreover, it takes advantage of modern processors
such as SIMD instructions and cache usage optimization techniques.

However, the efficiency of the graph optimization (as in g2o) decreases due to the
increase in its size (more nodes and edges), which increases with the trajectory. This
problem can be dimmed using graph pruned technics [26].

On the other hand, the initialization of the graph far away from the global minimum
might drastically affect its efficiency. The values from odometry are used frequently to
initialize the graph. However, it is known that it is not a convenient choice because
of error accumulation with the trajectory. Adding different kinds of edges constraints
helps to mitigate the odometry drift drawback, then improving the effectiveness of the
graph optimization. Loops and floor plane detection are two community constraints used.
NDT is often adopted for feature extraction on the loop detection [27], while RANSAC is
the preferable algorithm for the floor detection task [28]. On the other hand, the graph
optimization accuracy can be affected by a trajectory without loops. Furthermore, when
constraining edges are added to the graph, a registration process is performed among the
edge points.

Finally, the registration between point clouds, loop detection, and graph optimization
is the most nuclear process, affecting the tradeoff between system efficiency and accuracy.
The registration between point clouds has a linear efficiency, i.e., it is the same throughout
the trajectory of the vehicle; its efficiency depends on the number of points used in the
registration between the current and the previous point cloud. However, the efficiency of
the graph optimization decreases due to the increase in its size (more nodes and edges),
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which increases with the trajectory. Summing up, SLAM task performance is tight bounded
to the parameter settings in its main processes.

2.3. Test Vehicles

Perception and Localization/Mapping are fundamental components to reach the
highest levels for Autonomous Driving (AD). Sensors providing support to these compo-
nents fit in a wide array of families, including, but not limited to, (1) cameras, (2) LiDAR,
(3) Radar (Radio Detection and Ranging) for Perception, (4) GNSS (Global Navigation
Satellite Systems), and (5) IMU and odometers for localization/mapping:

1. Camera technology is currently the most widely considered for autonomous vehicles.
Cameras capture images with detailed texture information; however, they are prone
to weather conditions and changes in illumination. Thermal cameras are more robust
to different weather conditions and illuminations due to reading the heat signatures
of target objects in the scene, and operate on longer infrared (IR) wavelength regions,
thus not seeing reflected light;

2. LiDAR sensors provide 3D point clouds that accurately represent depth data relat-
ing to surrounding environments structures and objects. Comparatively to passive
cameras, LiDAR sensors are considered active sensors as they emit laser beams at
a determined frequency, relying on the received reflections of the emitted beams to
infer data such as distance and signal intensities to characterize reflecting surfaces;

3. RADAR sensors emit waves in radio frequency, which are reflected by surrounding
structures and objects. Unlike cameras, they have greater robustness to illuminance
and weather variations, but offer more challenges for perception application such as
OD due to the lower resolution of the acquired data;

4. GNSS use a global satellite system, such as GPS and GLONASS, to provide accurate
data related to the vehicle’s absolute position in the world;

5. IMU and odometers measure the vehicle’s acceleration/rotation data and odometry
data, respectively. Unlike the previously considered sensor families, the data obtained
from these sensors are internal to the vehicle, and when used with other sensors, can
greatly help with estimating an accurate localization of the vehicle.

The currently used sensors in the AD area hint at the existing benefits of using a
multi-modality approach. Data collection for the creation of datasets is an example of an
application that greatly benefits from sensor fusion. However, as one starts adding sensor
modalities and the number of sensors to a vehicle, aiming to increase the coverage of the
vehicle’s surroundings, the cost of building such an infrastructure raises sharply, both
related to the price of the sensors themselves but also to the inherent costs of retrofitting a
vehicle with the sensor setup and legal procedures for the test vehicle to be able to drive
and acquire data from open public roads.

Many AD test vehicles are fitted with an array of sensors as described. An overview
of the existing vehicle platforms and sensor setups is presented in Table 1. The DARPA
Urban Challenge [29] showcased one of the first autonomous vehicles, Boss, which mostly
used a combination of a camera, RADAR, and LiDAR sensors to achieve first place in the
competition.

Additionally, in the same year, Montemerlo et al. [30] presented Junior, a robotic vehi-
cle also capable of navigating urban environments autonomously, achieving second place
in the same competition. In this challenge, the Boss vehicle platform had roughly twice the
amount of LiDAR sensors and also used two camera sensors. Google’s Waymo [34] also
uses LiDAR, camera, and RADAR sensors for perception tasks, and also includes an IMU,
GPS, and audio capturing sensors such as microphones. Additionally, many vehicles have
been used as mobile platforms for dataset creation, which pushes AD research forward.
An extensive survey on the existing multi-modal datasets and corresponding data vehicles
used can be found in [34]. Two of the most used datasets in the field of research are
KITTI and nuScenes. KITTI is a multi-sensor moving platform aimed at enabling research
on stereo, optical flow, visual odometry/SLAM, 3D object detection, and 3D tracking
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tasks [3]. The vehicle platform features stereo camera systems, a LiDAR sensor and an
OXTS RT 3003 localization system, which combines GPS, GLONASS, an IMU, and RTK
correction signals. According to the authors, to compensate ego motion in the 3D laser
measurements, they used the position information from the GPS/IMU system. nuScenes
is a public large-scale dataset for AD developed by Aptiv Autonomous Mobility and is a
multi-sensor/multimodal moving platform that can be used for multiple computer vision
tasks, such as object detection and tracking. As with KITTI, the vehicle platform features
an array of sensors including RGB cameras, LiDAR, and RADAR sensors.

Table 1. Platforms and sensor setups.

Vehicle Year Sensor Setup Ref.

Volkswagen
Passat 2008

5 LiDARs (different manufacturers),
5 RADARs, GPS-based Inertial

Navigation System (INS)
[30]

Chevrolet Tahoe 2008 10 LiDARs, 3 RADARs (2 front, 1 rear),
2 cameras [29]

Volkswagen
Passat B6 2012 4 Cameras (2 grayscale, 2 color),

LiDAR, OXTS positioning system [3]

Mercedes Benz
S class 2013

Stereo camera (front), 2 mono cameras
(front/back), 4 short-range RADARs,

4 long-range RADARs
[31]

Different
vehicles 2017

Short-, mid-, and long-range LiDARs,
camera, RADAR, GPS; also features

audio detection
[32]

Renault Zoe 2019 Cameras (color), LiDAR, 5 RADARs [33]

From the presented vehicle platforms and sensor setups, some key takeaways can be
extracted: most solutions aim at dealing with multiple complex tasks such as perception
tasks for AD scenarios, requiring costly hardware and configurations for the performance
of these tasks, or dataset creation, where such vehicle platforms often include a multitude
of sensor modalities and a large number of sensors overall to try and cover a high number
of scenarios in different conditions (weather, buildings, roads, etc.). This, in turn, means
spending a considerable amount of funds to fully equip these vehicles, including data
processing platforms such as costly network configurations and computer hardware. In this
sense, none of the above-mentioned works, and virtually no related works in the literature,
to the best of the authors’ knowledge, aim at providing a low-cost infrastructure for the
performance of real-time perception tasks, such as OD and SLAM, on unconstrained road
scenarios, particularly on onboard hardware such as resource-constrained edge devices.

3. Architecture
3.1. Test Vehicle Architecture

The developed test vehicle infrastructure had to be able to provide a stable data
exchange network between the various perception sensors and the final computation
endpoints that would execute object detection and SLAM tasks, as well as all the power
needed and mechanical support for all of its components. The base car used was a five-door
Mercedes Benz E Class Station Wagon (S213). The station wagon chassis type was selected
especially due to its spacious trunk for interior equipment installation, and for its long low
roof to accommodate all the sensors and required mechanical structure with easy access.

The mechanical structure was built with extruded aluminum profiles and attached to
a pair of roof bars with appropriately sized T slotted nuts. It is composed of a base frame
that covers almost the entire roof, with a front-mounted perforated steel plate, and a center
tower. The full setup comprises the following sensors and can be observed in Figure 1:

• 1× Velodyne VLS 128 (LiDAR);
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• 1× Xenics Gobi 640 (Thermal Camera);
• 1× JAI AD130GE (NIR +RGB Camera);
• 4× Mako G319 (RGB Camera).
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However, for the purpose of this article, the main sensor is the LiDAR; nonetheless, the
test vehicle is equipped to act as a platform for both data collection, performance analysis,
and practical test runs that enable the development and field validation of perception
pipelines.

The LiDAR is mounted on top of the center tower with a clear 360◦ field of view of the
road. The thermal and NIR+RGB cameras occupy the space in the center tower below the
LiDAR. The RGB cameras are all placed on the front steel plate, covering the left, center,
and right view, except for one RGB camera that is mounted at the rear directly onto the
base frame in order to obtain a perspective of the rear view of the vehicle. The orientation
of the RGB cameras is easily adjustable if needed. All the cameras are housed in ventilated
3D-printed covers. These covers are designed to avoid accidental damage caused by rain
and road debris. On each side of the base frame, there is a watertight junction box where
all the required wiring looms meet. One side accommodates the data-related cables and
the other, the power supply connections. To power all the installed equipment, a cable
runs from the roof structure to the car backseat through the left back door and connects to
a power control box. This power control box has switches to turn each sensor on and off
individually and connects to a 12-volts 15-amps socket.

All the selected sensors are equipped with 1Gbps ethernet interfaces. To connect all the
sensors in a network and guarantee that there is enough bandwidth to capture data from
all the sensors reliably, the usual approach would be to use a powerful enough network
switch and create a conventional LAN with a start topology. However, this presents
the following two problems: powerful switches are usually big enough and require a
considerable amount of power that its installation in a vehicle is complicated, and the
bandwidth that can be processed is ultimately capped by the bandwidth of the network
card of the processing computer. The computer to be used was a Fujitsu CELSIUS H770
and it is equipped with a 1Gbps ethernet interface. To solve these problems, instead of
a network switch, the network was created using a Thunderbolt 3 hub connected to the
Thunderbolt 3 enabled USB-C port of the laptop. The TS3-Plus hub from CalDigit was
used and enclosed in one of the watertight junction boxes. This hub has eight extra USB
ports as follows:

• 5× USB-A 3.1 (Gen. 1 5 Gbps);
• 1× USB-C 3.1 (Gen. 1 5 Gbps);
• 1× USB-C 3.1 (Gen. 2 10 Gbps);
• 1× USB-C Thunderbolt 3 (40 Gbps).

To each one of these extra ports, a USB ethernet 1Gps network card was attached,
connecting to each sensor. This setup allows the use of the 40 Gbps Thunderbolt 3 port of
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the laptop to connect each sensor of the setup, greatly increasing the available bandwidth
for data exchange, at a cost of not having other useful features from a managed switch-
like, sensor interconnectivity, VLAN control, load management, among others. The data
processing is performed under ROS. Broadly speaking, each sensor is represented by a ROS
nodelet running in the processing laptop that captures the streamed data and redirects it
to the main ROS core process. Each recording nodelet captures all the relevant data and
stores it, if necessary, to .rosbag files. In the case of the LiDAR sensor, network packets
are streamed from the sensor and picked up by a special ROS nodelet, which converts the
packets into usable 3D point cloud points. These point cloud points are then broadcasted
back to the ROS core process and are available for use for tasks such as object detection or
SLAM.

3.2. Object Detection Algorithm

Figure 2 depicts the five-step methodology followed to implement the deep learning-
based inference model in the vehicle setup. It includes a literature review for selecting a
3D Object Detection model, an FPGA-based platform (Xilinx Ultrascale + ZCU102) and
a compatible framework (Vitis AI). After this step, the 3D object model is subjected to
the training and evaluation phase, both performed on the server-side (Intel Core i9 with
64 GB RAM and a Quadro RTX 6000 GPU) to ensure that our model meets the application
requirements on the server. In this context, the proposed development flow follows an
iterative approach, where the model is updated, and the steps of training and evaluation
are repeated whenever required. The KITTI dataset [15] is used for the evaluation of this
workflow. When this goal is accomplished, Xilinx tools are used in the deployment phase
(3). Here, Vivado and Petalinux are used to configure and build hardware and software
components for the selected board. Vitis AI allows the optimization and compression of
the model obtained in the previous step. Before mapping model’ operators to instructions
for the Intellectual Property (IP) core, called Xilinx Deep Learning Processing Unit (DPU),
provided by Xilinx, the performance of the optimized and compressed version of the
3D object detection model is analyzed with regard to accuracy degradation and speed
improvement. The process flow only starts the compilation step (3) when an optimal
balance between performance metrics is achieved. Otherwise, the development flow
restarts in stage (2). As steps in (3) are performed in the server, it only provides insights
about the accuracy and trade-off between metrics, the condition criteria for an on-board
inference time lower than 100 ms needs further validation. To do so, Vitis AI output files
are loaded onto the FPGA-based board for model execution and the inference times are
observed. To assess inference time criteria, but with satisfactory accuracy performance,
steps (2), (3), and (4) might need to be repeated. A detailed description of the platform
generation flow is provided in [35].

For the selection of a 3D Object Detection model, the main criteria used were of a
low complexity and had a good balance between performance metrics. We opted for the
model PointPillars, as this model relies on 2D dense convolutions to the detriment of more
complex 3D convolution-based features extraction networks and achieves high-quality
detection within short intervals of time. To make this possible, in the pre-processing stage,
the point cloud is restructured into a volumetric representation in the form of pillars, and
data augmentation is performed on each pillar for each of its points, up to a maximum of
100 per pillar, leading to points holding nine features. These features are then subjected to a
linear layer, called the Pillar Feature Network, resulting in a set of 64 features for describing
the geometrical and location information per pillar. Computed features are scattered back
to the pillars’ original positions, generating a 64 channel pseudo-image, which enables the
application of the 2D CNNs-based RPN for feature extraction. Finally, a lighter version
of the Single Shot Detector network [36] is used as a detection head. PointPillars uses a
feature extraction network that contains three sequential convolution blocks composed of
3, 5, and 5 convolution layers and 64, 128, and 256 filters, respectively.
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Figure 2. The methodology proposed for implementing an onboard inference in a vehicle setup
equipped with a LiDAR.

3.3. SLAM

In this work, we propose an architecture for GraphSLAM using the open-source
framework ROS [37]. Our proposal is aimed mainly at 3D LiDAR data assembled on cars.
In ROS, processes are represented as nodes in a graph structure, connected by topics, which
is very convenient for GraphSLAM task. Figure 3 shows the processes flow of the proposed
GraphSLAM, where four main processes stand out, namely, Point cloud filter, Odometry,
Floor Detection, and Graph Optimization.
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The point cloud filter allows for the downsampling of the point cloud, i.e., reducing the
number of points using a voxelized grid approach. Next, to perform the odometry related
operations, we followed the approach presented in [24], where a multi-threaded GICP,
running in a GPU, is addressed. This approach does also implement an NDT algorithm.
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Regarding the Floor detection process, it relies on the RANSAC algorithm to add edges of
constraint. This approach is useful when no loop is detected in the trajectory.

Due to the advantages discussed above, mainly in scalability and efficiency, we
propose to use the g2o framework for graph optimization. However, according to the
problem in the efficiency, due to the size increase with the trajectory, we opted to prune the
resulting graph. This method is applied when there is at least a loop-closing. The detection
of a loop-closing (Figure 4.) consists of recognizing whether the current position of the car
was previously visited.
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A graph was built by leveraging data outputted from the odometry process, where ver-
tices correspond to vehicle poses labelled with information of the absolute pose (translation
and rotation) concerning a fixed vertex (often, the start point of the car). Each edge contains
the translation and rotation relative between its vertices and the uncertainty associated
with the connection.

Taking Figure 5. as an example, we have a set of vertices V = {1,2,3,4,5,6,7,8}, a set of
edges E = {12,23,27,34,45,56,67,78} and a loop-closing represented by the edge {27}, while
paths are seen as a list of ordered vertices
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Figure 5. PoseGraph built from odometry data.

In the example displayed in Figure 5, Pt = {1,2,3,4,5,6,7,8} corresponds to the car
trajectory. However, there is another path, P2 = {1,2,7}, which can be defined from vertex {1}
to vertex {7}.

These graphs are updated here, i.e., vertexes and edges are added to the already
existing graph every time the car reaches a new position. Finally, when the vehicle arrives
at vertex {7}, a loop-close is performed (edge {27}) and added to the graph and ultimately
path P2 is detected. The loop-closing adds important contradictory information in the
graph that removes the drift error from the odometry process.

Graph Pruning is only applied right after the vehicle has reached vertex {7}, and the
result of this operation is represented as follows: G{V, E}, where V = {1,2,3,4,5,6,7} and
E = {12,23,27,34,45,56,67} (c.f. Figure 6. Left).
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Let Vrem = {3,4,5,6} be the difference between both paths, i.e., removing all elements in
P1 present in P2 and Erem = {23,34,45,56} to identify all of the edges formed by vertices Vrem
present in E. Thereafter, a pruned graph Gp = {Vp, Ep}, with Vp = {1,2,7} and Ep = {12,27}, is
computed by removing the vertexes Vrem and the edges Erem in G, as showcased in Figure 6
(right-hand graph). Due to the advantages brought by the inclusion of the loop-closer
function on SLAM as discussed before, we performed a general optimization to the graph
whenever a new loop was included.

4. Results
4.1. Object Detection Performance Analysis

After performing the workflow steps (1) to (4) with the original PointPillars pipeline
configuration, we could conclude that the quantized version of the original PointPillars
configuration is viable for model inference in this application without having a substantial
impact on performance when running it on the server-side, as shown in Table 2. However,
when running on the edge device, this difference increases massively, almost doubling the
inference time and failing to meet the inference time application requirement. It occurs due
to the resource-constrained environment of the edge device.

Table 2. Inference Time, given in ms, metric benchmark results.

Model
Configuration.

Floating-Point
Model

Quantized
Model (Server)

Quantized Model
(Edge Device)

Original PointPillars
Conf. 47.0 42.6 105.3

Configuration
updated for resource

constraint devices
43.0 38.4 60.3

The most compute-intensive pipeline stage is the feature extractor; thus, we have
focused on updating this stage’s configuration. Upon performing the workflow in Figure 2.
several times, we identified the following configuration, which keeps the number of blocks
and layers but with fewer filters, namely, 32 (for layers in block one), 32 (block two), 64
(block three), as the most beneficial for on-board inference. Reducing the number of filters
decreases the number of feature maps and channels and the number of arithmetic oper-
ations. As a result, the original feature extractor configuration achieves higher precision
results over the selected configuration.

This trend is also observed for quantized models, c.f. Table 2, with the most complex
structure achieving higher results. The proposed methodology and model updates led to
positive results by surpassing the requirements by over 60% in inference speeds for both
configurations.

Reducing the complexity of the feature extraction network has almost no effect on the
model accuracy performance for the detection of large objects, such as cars, as suggested
by the floating-point model results in Table 3. However, a significant score drop happens
for cyclist detection. The effect of the compression techniques on performance follows the
same trend, as quantized models still offer high-quality detection for cars and pedestrians.
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For instance, the score of the quantized sample of the original PointPillars is just around
0.5% lower than the floating-point model. However, adjusting the arithmetic operations
for hardware limitations of the edge device, converting weights, bias, and input data for
an 8-bit fixed-point representation leads to the scores dropping by around 10% for the
detection of cyclists.

Table 3. Accuracy Degradation (denoted as the difference in performance from the original configuration to the new
configuration) results on KITTI BEV.

Model Configuration
Floating-Point

Model (%)
Quantized
Model (%)

Easy Moderate Hard Easy Moderate Hard

Original PointPillars
Car N.A N.A N.A −0.2 −0.68 −0.38

Cyclist N.A N.A N.A −5.3 −6.9 −3.3
Pedestrian N.A N.A M.A −3.8 −7.2 −2.6

Configuration updated for resource
constraint devices

Car 0.22 0.44 0.27 −0.46 −8.2 −1.18
Cyclist −7.31 −8.92 −5.46 −8.79 −10.85 −10.59

Pedestrian −1.53 −5.62 −6 −2.71 −6.96 −1.48

Therefore, compression techniques are superb in reducing the inference time while
maintaining notable performance for most of the objects, but with a high cost on cyclist
detections.

As expected, these changes can be observed in the qualitative performance analysis.
Figures 7 and 8 show the performance of the proposed model for the abovementioned
classes. Figure 7 shows some examples of the detection operation over different point clouds
captured in different scenarios, where we can observe that the detection of the class Car
is not significantly affected by the quantization application. This conclusion is also based
on the results in the previous table. However, the same cannot be stated for small objects,
as in frames containing such objects, the number of false negatives increases, as shown in
Figure 8. Here, the proposed model did not detect the van as expected, since the model was
not trained to detect this type of object, and thus it is not seen as a false negative but as a
true negative, while the cyclist remained unseen in some frames during this sequence by the
proposed model, while their floating counterpart model could detect it.

Energy consumption and resource usage are also two relevant performance metrics.
Although GPU-based servers are the preferable hardware for running such computing
demanding 3D object detection models, its application in vehicle setups is not reasonable
due to power consumption and space demand. Although hybrid FPGA-CPU devices
do not provide the same level of computation power, they demand less power supply
while offering satisfactory flexibility. The hardware configuration of this platform directly
affects power consumption, resource utilization, and throughput. In this context, the DPIU
instantiated in the FPGA is configured with two cores, one for each of the model deep
learning processes found in the PointPillars pipeline, i.e., Pillar Feature Network and
RPN, while the remaining stages of its pipeline, which refer to the pre-processing and
post-processing stages, are performed in the CPU side of the hardware platform.

This configuration along with the maximum parallelism provided by the target device
achieves power consumptions lower than 15 W, while consuming just 60% of the total
BRAM blocks and DSP units available, while the Slice LUTs and CLB registers usages is
lower than 30%. The inference time performance achieved in this work provides a margin
(40 ms) to reduce the power consumption and resource usage, while the solution keeps
meeting the inference time requirement. For instance, updating DPU for using a single
core reduces the power consumption by 5 W and resource usage by 30%, while a penalty
of 10 ms is reported. This is a relevant aspect, as it reduces the power consumption for
levels that can be easily supported by the test vehicle, as more than 50% of the resources in



Sensors 2021, 21, 8381 13 of 20

the FPGA-side are still available for the implementation of other algorithms, such as the
SLAM.
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4.2. SLAM Performance Analysis

The data acquired by the setup vehicles are used to assess the performance of the
proposed solution regarding metrics efficiency and accuracy. For this purpose, we assess
two methodologies, the pruned and unpruned graphs.

Figure 9 illustrates a trajectory, with a duration of 123 s, at a sampling rate of 10 Hz
frames/point clouds that composes this trajectory containing, on average, 170,000 points.
Figure 10 shows the effect of accumulated error drift for trajectories that end at the start
point. The efficiency of the odometry process to this trajectory is 0.01 s, and the drift error
is near to 11.1 m.
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Figure 10. GraphSlam (blue) and GraphSlam subject to pruning (red).

Figure 10 shows the trajectory of the previous figure but with and without the ap-
plication of the graph pruning. The results of its application can be seen in Table 4. The
reported results show an improvement in the efficiency of about over 9.5 s in the graph
optimization process between pruned and not pruned graphs. According to Figure 3, the
rest of the following processes: Filtered points, Floor detection, and Odometry, consume
nearly 16.2 s. The time elapsed when the no-pruned graph is applied is 84.5 s, while the
pruned graph process takes 75 s.

On the other hand, the distance between the endpoints of the trajectories (0.39 m)
is less than the maximum error of the trajectory (0.53 m), which shows there is not a
continuous increase in the error when the pruned graph strategy is used (Figure 9.).

To better demonstrate some of the obtained location and mapping results from the
prototype, we start by showing a short sequence where the test vehicle starts in a parking
lot, takes a right-hand turn and drives through a straight main road. This is depicted
in Figures 11 and 12, corresponding to the first and last moments of data capture and
processing, and to the identification of world features in the point cloud and corresponding
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data in the constructed map, respectively. Both Figures are output of the processing of the
same point cloud sequence, but Figure 11 displays the trajectory whereas Figure 12 shows
how the mapping generation is performed.

Table 4. Performance between no-pruned and pruned graphs. In both cases, the detected loop count is equal to 11 and the
distance between the starting and endpoints is equal to 0.39 m.

Pruned Graphs Statistic of the Correspondence
between Trajectories

Total Time of Graph-Optimization in
the Trajectory (s)

No meandis = 0.32 m
maxdis = 0.53 m
stddis = 0.1 m

vardis = 0.01 m

68.3

Yes 58.8Sensors 2021, 21, x FOR PEER REVIEW 16 of 20 
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Figure 11. Examples of captured point cloud data and location and mapping data for a sequence of frames, where the image
from the top corner is the first extracted frame and the bottom right consists of the last frame of this sequence. Every image
displayed here is vertically divided into (top) point cloud provided by the LiDAR sensors and (bottom) SLAM output.

In the above figure, the estimated locations for the test vehicle are represented by the
colored circles leaving a trail through all the visited locations, with the current estimate
represented by a big red translucent circle. In addition, the point cloud in Figure 11 is
not the point cloud returned by the LiDAR sensor, but rather the estimated map points
produced by the prototype. To enable this comparison, the following set of figures (through)
show several examples of the current captured point cloud (top) and the estimated map
points and locations (bottom) for the same sequence.
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Figure 12. A highlight of identifiable world features in point cloud data (e.g., well-defined walls and parked cars) and
corresponding data in the constructed map.

With the presented sequence, it is possible to see how the map-building process
evolves and how the surrounding world features are accurately updated in the map.
Figure 11 shows some examples of it. Here, in the top left corner, the vehicle is parked
and then sets off, moving through a road. In the last extracted frame, we can see a line
describing the trajectory of the vehicle since we left its parking spot.

Test vehicle positions naturally evolve during a driving sequence. In some situations,
rather than just constantly driving in new environments, some of the courses will feature a
loop (i.e., a sequence where, during the drive, the vehicle returns to a previously visited
location). In the figure presented below, such a case is demonstrated, with a snippet of a
map view of the traversed area on OpenStreetMaps, a computed map and their overlap in
Figure 13.
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Figure 13. Example of a driving sequence: (left) Manual overlap of map view with computed vehicle positions in the map;
and (right) Driving sequence featuring the loop, displaying only the estimated vehicle positions.

Additionally, Figure 14 shows the moments before and after the loop in that sequence
being detected and the update of the map points.
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Figure 14. Map points and vehicle positions (top) prior and (bottom) after closer loop detection,
with the highlight of a map closure event occurring. The green line corresponds to the first trajectory,
whereas the red line represents the trajectory of the second time that the vehicle passes through the
same place.

5. Conclusions

This research work focused on addressing a low-cost test vehicle setup able to integrate
both sensors and processing hardware for running important algorithms for efficient
autonomous vehicles, as is the case of 3D Object detection and SLAM.

The main goal of the research works on 3D Object detection it is to enhance the
precision performance on the server-side, where no considerations are taken about the
requirements and restrictions of the real-case applications. The adoption of devices smaller
in size, but also power consumption, computation power, and memory resources has
shown to require some adaptions to the 3D Object Detection models. A methodology
was proposed, covering the generation and configuration of both hardware and software,
the 3D Object detection fine-tuning, and compression techniques’ application, aiming at
achieving an optimal trade-off between precision and processing time, while the inference
time requirements imposed by the application are met. The proposed hardware platform
shows it to be able to assure such a goal, where the model performance matches with
the server-side version for large objects such as cars, while degradation of up to 10%
was reported for small objects, such as cyclists. Moreover, the average inference time is
60 ms, quite a lot lower than the inference time threshold (100 ms). Regarding the model
accuracy, it was probed to perform properly on the task of detecting vehicles; however, the
accuracy drops significantly for small objects, such as vehicles and pedestrians. Given the
application nature, it is mandatory for solutions to be robust and reliable. In this sense, our
results have shown that due to the limitations of LiDAR perceiving small objects, as well
as its limitations under some atmospheric conditions, the 3D object detection solutions
are not mature enough to fulfil all the application requirements. Therefore, a multi-modal
approach seems to be the proper roadmap, where different sensors will complement each
other, helping 3D object detection to overcome most of the limitations herein discussed.

The implementation solution for performing the role of SLAM in the test vehicle
follows an architecture comprising four components, point cloud filtering, odometry,
floor detection, and graph optimization. The latter component prunes the outputted
graph, significantly improving the mapping and location tasks of the proposed approach.
Moreover, the proposed solution has been shown to be capable of performing well in
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scenarios where the vehicle returns to a previously visited location, thanks to the loop-
closure detection feature. However, long driving without returning to a previously visited
location affects the ability of the solution to compute the vehicle location due to error drifts.
Therefore, this error might increase to unacceptable values after several hours of vehicle
utilization. This limitation shows that it might be required for LiDAR to be fused with
other sensors, for instance, GPS or IMUs, to mitigate this error location accumulative error.

This paper addresses the steps required to integrate both the developed OD and SLAM
prototypes on the test vehicle. Afterward, we presented the results obtained by feeding
the prototypes with live data from a Velodyne VLS-128 LiDAR sensor on test drives and
provided a qualitative evaluation of the obtained results for each of the prototypes. The
results demonstrate the applicability of the developed prototypes to perform soft real-time
OD and SLAM on live data from the test vehicle.
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