65 research outputs found

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Serious Games in Cultural Heritage

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    Overview of crowd simulation in computer graphics

    Get PDF
    High-powered technology use computer graphics in education, entertainment, games, simulation, and virtual heritage applications has led it to become an important area of research. In simulation, according to Tecchia et al. (2002), it is important to create an interactive, complex, and realistic virtual world so that the user can have an immersive experience during navigation through the world. As the size and complexity of the environments in the virtual world increased, it becomes more necessary to populate them with peoples, and this is the reason why rendering the crowd in real-time is very crucial. Generally, crowd simulation consists of three important areas. They are realism of behavioral (Thompson and Marchant 1995), high-quality visualization (Dobbyn et al. 2005) and convergence of both areas. Realism of behavioral is mainly used for simple 2D visualizations because most of the attentions are concentrated on simulating the behaviors of the group. High quality visualization is regularly used for movie productions and computer games. It gives intention on producing more convincing visual rather than realism of behaviors. The convergences of both areas are mainly used for application like training systems. In order to make the training system more effective, the element of valid replication of the behaviors and high-quality visualization is added

    Comparing and Evaluating Real Time Character Engines for Virtual Environments

    Get PDF
    As animated characters increasingly become vital parts of virtual environments, then the engines that drive these characters increasingly become vital parts of virtual environment software. This paper gives an overview of the state of the art in character engines, and proposes a taxonomy of the features that are commonly found in them. This taxonomy can be used as a tool for comparison and evaluation of different engines. In order to demonstrate this we use it to compare three engines. The first is Cal3D, the most commonly used open source engine. We also introduce two engines created by the authors, Piavca and HALCA. The paper ends with a brief discussion of some other popular engines

    Generating, animating, and rendering varied individuals for real-time crowds

    Get PDF
    To simulate realistic crowds of virtual humans in real time, three main requirements need satisfaction. First of all, quantity, i.e., the ability to simulate thousands of characters. Secondly, quality, because each virtual human composing a crowd needs to look unique in its appearance and animation. Finally, efficiency is paramount, for an operation usually efficient on a single virtual human, becomes extremely costly when applied on large crowds. Developing an architecture able to manage all three aspects is a challenging problem that we have addressed in our research. Our first contribution is an efficient and versatile architecture called YaQ, able to simulate thousands of characters in real time. This platform, developed at EPFL-VRLab, results from several years of research and integrates state-of-the-art techniques at all levels: YaQ aims at providing efficient algorithms and real-time solutions for populating globally and massively large-scale empty environments. YaQ thus fits various application domains, such as video games and virtual reality. Our architecture is especially efficient in managing the large quantity of data that is used to simulate crowds. In order to simulate large crowds, many instances of a small set of human templates have to be generated. From this starting point, if no care is taken to vary each character individually, many clones appear in the crowd. We present several algorithms to make each individual unique in the crowd. Firstly, we introduce a new method to distinguish body parts of a human and apply detailed color variety and patterns to each one of them. Secondly, we present two techniques to modify the shape and profile of a virtual human: a simple and efficient method for attaching accessories to individuals, and efficient tools to scale the skeleton and mesh of an instance. Finally, we also contribute to varying individuals' animation by introducing variations to the upper body movements, thus allowing characters to make a phone call, have a hand in their pocket, or carry heavy accessories, etc. To achieve quantity in a crowd, levels of detail need to be used. We explore the most adequate solutions to simulate large crowds with levels of detail, while avoiding disturbing switches between two different representations of a virtual human. To do so, we develop solutions to make most variety techniques scalable to all levels of detail

    Real-time motion planning, navigation, and behavior for large crowds of virtual humans

    Get PDF
    Simulating crowds in real time is a challenging problem that touches many different aspects of Computer Graphics: rendering, animation, path planning, behavior, etc. Our work has mainly focused on two particular aspects of real-time crowds: motion planning and behavior. Real-time crowd motion planning requires fast, realistic methods for path planning as well as obstacle avoidance. The difficulty to find a satisfying trade-off between efficiency and believability is particularly challenging, and prior techniques tend to focus on a single approach. We have developed two approaches to completely solve crowd motion planning in real time. The first one is a hybrid architecture able to handle the path planning of thousands of pedestrians in real time, while ensuring dynamic collision avoidance. The scalability of this architecture allows to interactively create and distribute regions of varied interest, where motion planning is ruled by different algorithms. Practically, regions of high interest are governed by a long-term potential field-based approach, while other zones exploit a graph of the environment and short-term avoidance techniques. Our architecture also ensures pedestrian motion continuity when switching between motion planning algorithms. Tests and comparisons show that our architecture is able to realistically plan motion for thousands of characters in real time, and in varied environments. Our second approach is based on the concept of motion patches [Lee et al., 2006], that we extend to densely populate large environments. We build a population from a set of blocks containing a pre-computed local crowd simulation. Each block is called a crowd patch. We address the problem of computing patches, assembling them to create virtual environments (VEs), and controlling their content to answer designers' needs. Our major contribution is to provide a drastic lowering of computation needs for simulating a virtual crowd at runtime. We can thus handle dense populations in large-scale environments with performances never reached so far. Our results illustrate the real-time population of a potentially infinite city with realistic and varied crowds interacting with each other and their environment. Enforcing intelligent autonomous behaviors in crowds is a difficult problem, for most algorithms are too computationally expensive to be exploited on large crowds. Our work has been focused on finding solutions that can simulate intelligent behaviors of characters, while remaining computationally inexpensive. We contribute to crowd behaviors by developing situation-based behaviors, i.e., behaviors triggered depending on the position of a pedestrian. We have also extended our crowd motion planning architecture with an algorithm able to simulate group behaviors, which much enhances the user perception of the watched scene

    Authoring virtual crowds: a survey

    Get PDF
    Recent advancements in crowd simulation unravel a wide range of functionalities for virtual agents, delivering highly-realistic,natural virtual crowds. Such systems are of particular importance to a variety of applications in fields such as: entertainment(e.g., movies, computer games); architectural and urban planning; and simulations for sports and training. However, providingtheir capabilities to untrained users necessitates the development of authoring frameworks. Authoring virtual crowds is acomplex and multi-level task, varying from assuming control and assisting users to realise their creative intents, to deliveringintuitive and easy to use interfaces, facilitating such control. In this paper, we present a categorisation of the authorable crowdsimulation components, ranging from high-level behaviours and path-planning to local movements, as well as animation andvisualisation. We provide a review of the most relevant methods in each area, emphasising the amount and nature of influencethat the users have over the final result. Moreover, we discuss the currently available authoring tools (e.g., graphical userinterfaces, drag-and-drop), identifying the trends of early and recent work. Finally, we suggest promising directions for futureresearch that mainly stem from the rise of learning-based methods, and the need for a unified authoring framework.This work has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska Curie grant agreement No 860768 (CLIPE project). This project has received funding from the European Union’s Horizon 2020 Research and Innovation Programme under Grant Agreement No 739578 and the Government of the Republic of Cyprus through the Deputy Ministry of Research, Innovation and Digital PolicyPeer ReviewedPostprint (author's final draft

    Challenges in Crowd Simulation

    Get PDF
    The purpose of this paper is to identify the problems to solve in order to simulate real-time crowds in a Virtual Environment. We try to classify these problems and study how they have been addressed until now by the research community and our Lab in particular. We then discuss for each problem what are the,future challenges and how to address them

    Virtual Heritage

    Get PDF
    Virtual heritage has been explained as virtual reality applied to cultural heritage, but this definition only scratches the surface of the fascinating applications, tools and challenges of this fast-changing interdisciplinary field. This book provides an accessible but concise edited coverage of the main topics, tools and issues in virtual heritage. Leading international scholars have provided chapters to explain current issues in accuracy and precision; challenges in adopting advanced animation techniques; shows how archaeological learning can be developed in Minecraft; they propose mixed reality is conceptual rather than just technical; they explore how useful Linked Open Data can be for art history; explain how accessible photogrammetry can be but also ethical and practical issues for applying at scale; provide insight into how to provide interaction in museums involving the wider public; and describe issues in evaluating virtual heritage projects not often addressed even in scholarly papers. The book will be of particular interest to students and scholars in museum studies, digital archaeology, heritage studies, architectural history and modelling, virtual environments

    Multiresolution Techniques for Real–Time Visualization of Urban Environments and Terrains

    Get PDF
    In recent times we are witnessing a steep increase in the availability of data coming from real–life environments. Nowadays, virtually everyone connected to the Internet may have instant access to a tremendous amount of data coming from satellite elevation maps, airborne time-of-flight scanners and digital cameras, street–level photographs and even cadastral maps. As for other, more traditional types of media such as pictures and videos, users of digital exploration softwares expect commodity hardware to exhibit good performance for interactive purposes, regardless of the dataset size. In this thesis we propose novel solutions to the problem of rendering large terrain and urban models on commodity platforms, both for local and remote exploration. Our solutions build on the concept of multiresolution representation, where alternative representations of the same data with different accuracy are used to selectively distribute the computational power, and consequently the visual accuracy, where it is more needed on the base of the user’s point of view. In particular, we will introduce an efficient multiresolution data compression technique for planar and spherical surfaces applied to terrain datasets which is able to handle huge amount of information at a planetary scale. We will also describe a novel data structure for compact storage and rendering of urban entities such as buildings to allow real–time exploration of cityscapes from a remote online repository. Moreover, we will show how recent technologies can be exploited to transparently integrate virtual exploration and general computer graphics techniques with web applications
    corecore