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Résumé

Afin de simuler des foules d’humains virtuels en temps réeleamnaniére réaliste,
trois éléments principaux doivent étre réunis. Premiérgnaquantité c’est-a-dire la
capacité de simuler des milliers de personnages. Deuxi@migtaqualité car chaque
humain virtuel dans une foule doit avoir une apparence etwiraation uniques. Fina-
lement, l'efficacitéest primordiale, car une opération habituellement coné&léomme
efficace sur un seul humain virtuel devient extrémementersi quand elle est appli-
guée sur une grande population. Le développement d'unéesttire capable de gérer
ces trois aspects est un probléme intéressant et stimulani@us avons adressé dans
notre recherche.

Notre premiere contribution est une architecture efficadeerible, nommée YaQ,
capable de simuler des milliers de personnages en temp€eétd plateforme, dévelop-
pée a 'EPFL, au VRLAB, est le résultat de plusieurs annéagdeerche. Elle intégre
des techniques de I'état de I'art a plusieurs niveaux. Ya@w put de procurer des
algorithmes efficaces et des solutions en temps réel poptgreglobalement et massi-
vement des environnements a grande échelle. L'utilisat®iYaQ est donc appropriée
dans de nombreux domaines d’application, tels que les jel®o\et la réalité virtuelle.
Notre architecture est spécialement efficace dans sa getg® grandes quantités de
données utilisées pour simuler des foules.

Afin de simuler de grandes foules, beaucoup de copies daengénérées a partir
d’un petit ensemble de modéles d’humains. A partir de cetpsimucune mesure n'est
prise pour varier individuellement chaque humain, de newbrclones apparaissent
dans la foule. Nous présentons plusieurs algorithmes afirenidre chaque individu
unique dans la foule. Premiérement, nous introduisons omeatle méthode permettant
de distinguer les parties du corps d’un humain et appliquessvariétés de couleurs et
motifs sur chacune d’entre elles. Deuxi€mement, nous piése deux techniques pour
moadifier la forme et le profil d’'un humain virtuel : une méthalmple et efficace pour
attacher des accessoires aux individus, ainsi que des qatilr agrandir le squelette
et le maillage d’'une copie. Finalement, nous contribuoraefgent a la variété d’ani-
mations en introduisant des variations sur le haut du cpegrsnettant a un individu de
faire un téléphone par exemple, ou d’avoir une main dansdagyau encore de porter
des accessoires lourds.

Afin d’obtenir une grande quantité d'individus dans une éoulutilisation de ni-
veaux de détail est indispensable. Nous explorons lesigodules plus adéquates pour
a la fois simuler de grandes foules avec des niveaux de détailissi éviter des transi-
tions perturbantes lorsqu’un humain virtuel passe d’'upedsentation a une autre. Afin
d’y parvenir, nous développons des solutions pour rendpiu@art des techniques de
variété applicables sur tous les niveaux de détail.

Mots-clés :foules virtuelles, temps-réel, rendu, variété, animatiateur de foules
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Abstract

To simulate realistic crowds of virtual humans in real titigee main requirements
need satisfaction. First of alfjuantity, i.e., the ability to simulate thousands of charac-
ters. Secondlyguality, because each virtual human composing a crowd needs to look
unique in its appearance and animation. Finadfficiencyis paramount, for an opera-
tion usually efficient on a single virtual human, becomesesitly costly when applied
on large crowds. Developing an architecture able to mankgere@e aspects is a chal-
lenging problem that we have addressed in our research.

Our first contribution is an efficient and versatile archibee called YaQ, able to
simulate thousands of characters in real time. This platfoleveloped at EPFL-VRLab,
results from several years of research and integratesdaftéite-art techniques at all lev-
els: YaQ aims at providing efficient algorithms and realdisolutions for populating
globally and massively large-scale empty environments) Yaus fits various applica-
tion domains, such as video games and virtual reality. Ochitacture is especially
efficient in managing the large quantity of data that is ugesirhulate crowds.

In order to simulate large crowds, many instances of a sraatfshuman templates
have to be generated. From this starting point, if no carakisrt to vary each character
individually, many clones appear in the crowd. We presentérsé algorithms to make
each individual unique in the crowd. Firstly, we introduceeav method to distinguish
body parts of a human and apply detailed color variety anepes to each one of them.
Secondly, we present two techniques to modify the shape rafitepof a virtual human:
a simple and efficient method for attaching accessoriedividuals, and efficient tools
to scale the skeleton and mesh of an instance. Finally, veecalstribute to varying
individuals’ animation by introducing variations to thepgr body movements, thus al-
lowing characters to make a phone call, have a hand in thekgbpor carry heavy
accessoriestc.

To achieve quantity in a crowd, levels of detail need to balusé/e explore the
most adequate solutions to simulate large crowds with $evkbetail, while avoiding
disturbing switches between two different representatiina virtual human. To do so,
we develop solutions to make most variety techniques siealafall levels of detail.

Keywords:
Virtual Crowd, Real-Time, Rendering, Variety, Animatid@rowd Engine



CHAPTER 1

Introduction

Figure 1.1: YaQis a software architecture dedicated to the real-time sitiar of large crowds
of varied virtual humans.

Crowd simulation has a large application field ranging frarch@ecture design to en-
tertainment, virtual training, security, therapy for sddisorders using virtual reality expo-
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sureetc. Applications dedicated to urban design or security hawngtneeds for realism. In
the Architecture domain for instance, to compare and vedidasigns of public places, vir-
tual humans’ navigation is simulated for the given envirents. Then, at a post-processing
stage the resulting locomotion trajectories are studiedsuich a case, the correctness of
simulation results, as compared to real humans’ navigaisombviously a crucial objective
whilst performances are secondary - only reasonable catipatiimes are required. Other
applications such as video games or more generally viraadity, require interactivity.

Interactivity means that simulation results are progkesdgirendered to the user, whose
actions or reactions have an impact on the simulation contés a result, the simulation
is computed online, in order to account for a user’s actiansl, in real-time, to ensure im-
mediate, smooth and believable rendering of the simulatimtent to the user. We call this
type of simulation Interactive Virtual Crowds. For smoothual output, display screen has
to be refreshed at least 85 Hz. As a result, a short computation timé{ns) is avail-
able between two simulation steps, whilst the number ofstéslachieve in order to refresh
and render each virtual human state is high; it requires tupglaumans’ global positions
according to their goal and occurring interactions, conmgutheir postures, updating their
appearance model accordingly, and finally, rendering tttethe screen. The complexity of
the simulation thus directly depends on the number of huroamgposing the crowd. One of
the most important criteria for applications requiringelrsictive Virtual Crowds is the quality
of the experience brought to the user, no matter the realfgimeowvhole simulation result.
Consequently, Interactive Virtual Crowds attempt to pdeMbelievable experiences to users,
i.e., to obtain a satisfying behavior, motion and visual appeaedor virtual humans in front
of the spectator, whereas those in the background or ingiaileas are of lesser importance.

1.1 Motivations and Contributions

Over the last four years, we have worked on a software platicalled YaQ dedicated to
simulation, animation and rendering of Interactive Vitt@Gaowds, and running on main-
stream desktop computer¥aQ benefits from several years of research and development
at EPFL-VRLab. The objective ofaQis to create and animate Interactive Virtual Crowds
consisting of thousands of pedestrians, in order to magspapulate given environments.
An example of results obtained witfaQis illustrated in Figurel.1. Our major contributions
have been focused on three main aspects: first, creatinge¢hiéemture ofyaQin order to
simulate large crowds in real time. Second, exploring renddevel-of-detail techniques to
display as many characters as possible. Finally, our last@ain contribution consisted in
exploring variety techniques in order to make each instafieevirtual human unique.

1.1.1 YaQ Architecture

YaQis an engine completely dedicated to the real-time simutatif crowds. The main
challenge when building such an architecture, is to be abtteal with the large quantity of
information that needs to be stored, processed, and usedlitime. Data have to be stored
in adequate structures, so that they can be easily share@@ieded. Also, they need to be
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intelligently sorted to minimize the number of context shigs at runtime.

Our main contribution in this domain is the detailed mechanbf YaQ it is built to
tightly pack the data associated to virtual humans in orastdre once information that can
be shared by several instances; several lists of human edsoated according to different
criteria at each simulation frame to accelerate the praogss the pipeline; and automatic
methods to compute, serialize, and store heavy data in aatedidatabase are exploited.

1.1.2 Rendering Levels of Detail

To simulate large crowds at high frame rates, it is necessanse several levels of de-
tail (LOD). Characters close to the camera are accuratelyereed and animated with more
costly methods, while those farther away are representtitleds detailed, faster represen-
tations. The common process is to use many instances of &sahaf human templatese.,
virtual human types identified by their mesh, skeleton,ueed and LOD. There are mainly
three LOD used in crowd applications, depicted in Figite classical deformable meshes,
enveloping a skeleton and skinned to perform skeletal aimms rigid meshes, which are
pre-computed geometric postures of a deformable meshngmaktors, representing a char-
acter with only two textured triangles forming a quad. Defable meshes are altered by the
online computation of their skeleton movements. Althoughk tmethod is more expensive
than using rigid meshesficny et al, 2004, it allows to perform special animations chosen
or produced at runtime, like looking at the camera (see Eigur(left)), or mimicking facial
expressions. Yet, impostors are naturally the most exg@dditOD in the domain of crowds.
Their main advantage is their rendering efficiency, sindg two triangles per character are
displayed.

1.1.3 Crowd Variety

Our main interest is focused on real-time applications whbe visual uniqueness of the
characters composing a crowd is paramount. On the one htargdraquired to display
several thousands of virtual humans at high frame ratesguevels of detail. On the other
hand, each character has to be different from all othersitandual quality highly detailed,
as illustrated in Figuré.2

Instantiating many characters from a limited set of humarplates leads to the presence
of multiple similar characters everywhere in the scene. &l the creation of an individual
mesh for each character is not feasible, for it would havehigh requirements in terms of
design and memory. Thus, methods have to be introduced tdyresth instance, so that
it is visually different from all the others. Such methodscaheed to be scalable for all
LOD used in crowd simulations to avoid inconsistencies aitidividual appearances. Our
main contribution is the introduction of techniques to iwNe the variety of crowds in three
domains: visual appearance, shape, and animation.

Visual Appearance. We have developed a fast and scalable technique to obtagaeini
characters from a small set of basic human templates (seeeFid?). Using a dedicated
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Figure 1.2: Five human templates taking full advantage of accessonésegmentation maps.

texture, calledsegmentation mapwve are able to distinguish different parts of the virtual
human’s bodye.g, skin, hair, shirt, pants. For each body part, we are ablppbyaa unique
color, thus making two instances of a same human templateydifferent. As compared
to previous approaches, our technique allows to have snt@stkitions between body parts
and to enhance character visual appearance with distndttails, such as make-up, or
fabric patterns. This method is scalable, so that all characan be displayed consistently
with any LOD used in crowd simulations.

Shape. Our contribution in the domain of shape variety is twofoldtsty, we introduce
accessories: simple meshes attached to the individualsier to modify their profilee.g,
hats, wigs, glasses, or jewelry. We distinguish two typescoessories: simple ones, that can
be directly attached to a human mesh, and complex accesstirét require a modification
of the human animatiorg.g, shopping bags, suitcases, puppets, balloetts, We have
developed accessories to make them scalable: they can temitseall rendering LOD.
Specifically in the case of impostors, we use a method at tked |[@vel to correctly place
accessories, and solve occlusion issues inherent to tres &€ representation with a new
algorithm. The additional use of accessories on top of otheety techniques allow to
transform instances of a same human mesh into unique in@ilsdOur second contribution
is to directly modify the instantiated mesh and skeletonlofiman: using a dedicated design
tool, it is possible to choose at which scale a skeleton candgnified, resulting in human
instances of different sizes. Also, usifad mapsa human instance’s mesh can be deformed
to result in a fat, pregnant, or thin character.
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Animation. In the domain of animation, variety is also very importafiall virtual hu-
mans walk at the same speed and with the same gait, charlacikrdoser to an army than
a crowd of independent pedestrians. We have several cotinils in this domain: first of
all, we use a locomotion engine based on the workG&fdon et al.20043b] to generate
offline many locomotion cycles at different speeds and wéesal gaits, using captured
motion data. Second, we use a dedicated IK solBeeflocher and Boulj2004 to add to
these cycles upper body variations, such as having one hahd pocket, or on the hip, for
instance. Third, further modifications of the animation actieved online and in real time
to adapt human movements to complex accessories if theyamgar

1.2 Summary of Chapters

We summarize here the topics detailed in each chapter ofititisment.

Chapter 2: Related Work. We start by presenting an overview of the related work
achieved in the domain of real-time crowds. In this chapter,mainly focus on previous
work on crowd rendering, crowd appearance variety, and attosvd architectures.

Chapter 3. Overview. In this chapter, we present an overview of the architectuze w
have built: YaQ We first present the main components of this structure. &/ @étail how
the whole crowd-related data are processed and storéanFinally, we shortly introduce
how crowd navigation is handled. This subject is howeverurthér detailed in this docu-
ment, for it is not the topic of our thesis (see the workgfifsin, 2009 for more details).

Chapter 4. Appearance Variety. This chapter presents our techniques to improve the
appearance variety of human instances. We detail our contappearance sets, segmenta-
tion maps, and how they can be implemented.

Chapter 5: Shape Variety. We introduce shape variety in crowds by exploiting acces-
sories. Their principles and implementation are detaifethis chapter. We also present
techniques and tools to modify the skeleton and the meshobf leaman instance.

Chapter 6: Animation Variety. In this chapter, we show the techniques used to in-
troduce variety of animation at two levels: generating ssMecomotion cycles at various
speeds, and modifying upper body postures both offline atideonAlso, we present the
motion Kit, a structure built to help the animation of chaeas, whichever the LOD they are
using.

Chapter 7: Real-time Pipeline. The pipeline ofYaQis here described in four steps:
scaling, simulation, animation, and rendering.
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Chapter 8: Results and Case Studies. This chapter is a special section that presents
how some features ofaQhave been applied in various situations (segmentation @pps
plied to buildings, accessories and segmentation mapsioechin a theme park simulation),
and howYaQas a whole has been used for several applications (culterahbe, vestibular
reeducation, agoraphobia).

Chapter 9: Conclusion. We finally present our conclusion by summarizing our contri-
butions and introducing interesting directions for futwark.



CHAPTER 2

Related Work

Crowd behavior is an intriguing subject that has been stusiiece the end of the nineteenth
century Bon, 1895. The attempts to reproduce such scenes with computer aiiong are
however quite recent. Our crowd engi@Q addresses three main issues in the context of
real-time interactive virtual crowds: rendering largeveds using a level-of-detail approach,
using color and shape variation techniques to provide eatitiidual with a unique appear-
ance, and making them navigate autonomously in their emwiemt. In this chapter, we thus
address the work that has been achieved in these three dofB8airtion®.1t0 2.3), and also
study other crowd architectures that have been developéddlfdeatured real-time crowd
simulations in SectioR.4.

2.1 Real-time Crowd Visualization

Rendering crowds in real time is a challenging problem: ralividuals need to be updated
and rendered at lea8% times per second to ensure interactivity. To decrease tadeue
computation resources, a level-of-detail (LOD) approachsually taken: highly detailed,
but costly meshes are used to render characters close toitlt@pview, while lower, faster
rendering methods are exploited for the larger part of tbhevdr at farther distance&jder
and Day 2005. Characters close to the camera are usually renderechas eiie of the two
following models (also illustrated in Figuiz1):

e Deformable meshessually enveloping a skeleton and skinned to perform sideda-
imations. Deformable meshes are animated online and ininea] first by computing

15
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their skeleton movements, and second, by deforming the aeesirdingly. Such com-

putations are quite expensive, limiting the possible nurebdeformable meshes in a
crowd. They are favored for a high level of detail, becausy ttan perform special

animations chosen or produced at runtime, like looking atddimera, or mimicking

facial expressions.

¢ Rigid meshesor pre-computed geometric postures of a deformable meséy ave
the advantage of being faster processed online than detidemeeshes, since the mesh
deformation is pre-computed. However, this solution hghé&i memory requirements
and does not allow for procedural animations.

In some cases, levels of detail were directly applied to tieler of polygons composing the
human meshes. For instance, De Heras Ciechoetski[ Ciechomski et a) 2004 used rigid
meshes only, and reduced the number of triangles of the rme@gttethe increasing distance
to the camera. As for the rendering of the massive, low-tggol parts of the crowd, we
distinguish two approaches: the point-based approachhandage-based approach.

g 8

Figure 2.1: (left to right) A deformable mesh, skinned and animated in real time; a rigid
mesh,i.e,, pre-computed posture of the same mesh; and an impostog-eoprputed image
of the same mesh, textured onto a quad to give the illusior3af enesh.

2.1.1 Point-based Approach

In 1985, Levoy and Whitted first had the idea of using a poadédal technique: they decou-
pled the modeled geometry from the rendering process by ymimts as a meta-primitive.
This meta-primitive plays the role of a mediator betweertthditionally modeled geometry
and the rendering pipeline: geometrical objects are firsiveded into points (the meta-
primitive), to be rendered on the screémyoy and Whitted1985. Wand and Strasser pre-
sented a multi-resolution rendering algorithm based adpproach to render large crowds
of animated characters: having for sole input the keyfram@ations of meshes, a hierarchy
of point samples and triangles is built to represent theouarresolutions of the scené&fnd
and Stral3er2004. Their results are illustrated in Figu22 Rudomin and Millan later
combined point-based rendering for distant charactens digplaced subdivision surfaces
for characters at a closer rangeudomin and Millan2004.
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Figure 2.2: Results obtained infffand and Stral3e2007, using a hierarchy of points and trian-
gles.

2.1.2 Image-based Approach

Combining an image-based technique with highly detailedhmas to render large crowds in
real time is the most common approach. The quality of a clerappearance is usually
very high when close to the camera, using a deformable ait riggsh, and degrades over
the distance, until it becomes an animat@gostor Impostors are sets of 2D pre-computed
images of discrete keyframes of animated virtual humangges are pre-computed using
various view angles in order to fit any relative position betw the camera and humans.
These images are then exploited at runtime in place of 3D medeen rendering the scene.
Impostors can thus represent a character in the scene wightwa triangles forming a
guad, and textured with one of these images. An example &f @némage is presented on
the right-side of Figur@.1 The main advantage of impostors is their rendering effayien
since only two triangles per character are displayed. Tiejor drawback is their memory
requirements, higher than the ones of rigid meshes.

Aubel et al. first applied the concept of impostors to virtual humahstel et al, 200Q.
Tecchiaet al. used the same concept to render large crowds of varied ¢aesdbecchia
and Chrysanthg200d. They reduced the impostor memory consumption first by \wgyk
with symmetrical animations, thus limiting the number ofiges required for each keyframe
(images can be mirrored), and second, by tightly packingrtfagjes together, removing all
empty space around each of thefe¢chia et al.2002ha].

Later, Dobbyret al. presented the first hybrid approach, combining impostotis sigid
meshes inDobbyn et al, 2003. Rigid meshes were used at the forefront, replaced by im-
postors whenever the distance to the point of view becamkatge. To ensure no disturbing
popping artifacts when switching from a level of detail t@trer, a "pixel to texel" ratio was
enforced. The results they obtained is illustrated in FeguB. Following this work, several
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Figure 2.3: Dobbyn et al. combined rigid meshes with impostors to retalgre crowds and
keep a high appearance quality close to the canigoalpyn et al, 2009.

studies have been conducted in order to determine which 1SQBei most adequate, and at
which distances LOD switching should be achieved to avoppay artifacts Hamill et al,
2005 McDonnell et al, 2005. More recently, Millan and Rudomin combined impostors and
instanced geometries to render very large crowds. Thd@mesng approach has the advan-
tage of maximizing the use of the GPU, however it limits thenber of possible animations
too [Millan and Rudomin2004. YaQalso benefits from a level-of-detail strategy. We use
three levels: at the forefront, highly detailed deformableshes capable of facial and hand
animation are used. Then, at a farther distance, pre-cadpigid meshes are displayed,
and finally, when characters appear very small, impost@sised Maim et al, 2009. In
Figure2.1, we illustrate these three LOD. We further detail our apphaa ChapteB.

Impostors being memory hungry, a new and efficient level ¢ditleas been introduced
by Kavanet al. A polypostor represents a virtual human with a small set@fdlygons,
animated by displacing their verticesgvan et al. 200§. This representation offers much
lower memory consumption, since only one texture per vittuanan needs to be stored, and
each animation corresponds to a series of vertex displagsmAn image of an animated
polypostor is showed in Figuiz4.

Figure 2.4: A polypostor is a 2D polygonal representation of a virtuainam. Its animation is
only based on the displacement of its vertidéa\jan et al, 2009.

Recently, Barczakt al. presented a solution entirely programmed on the GPU to rende
large crowds with three GPU-based levels of detail: clogbe@oint of view, characters are
rendered with hardware tessellation and displacement imgpat a reasonable distance, a
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conventional rendering approach is used; at a far distaneglified shaders and geometry
are exploitedBarczak et al.2009.

Another issue inherent to impostors is to solve occlusiomsmiwo of them intersect. In-
deed, impostors being rendered as a quad, or two triangles;ate occlusion between them
if they are at the same depth results in disturbing artifa@thaufler introduced nailboards,
able to overcome visibility artifacts by storing small deiffsets in the alpha channel of
their texture Bchaufler 1997. However, this method is limited to orthographic or near-
orthographic views. Aubett al. also introduced a technique to avoid visibility issues by
dividing an impostor into a series of body paitg,, several quads, each assigned with a
specific depth valuedubel et al, 200q. This technique is suitable when used on body parts
only, but it is not adapted for subtle cases, where pixelsl nede processed individually.
Kavanet al. order the body parts of a polypostor by creating a visibiitsgph, based on the
3D model. In Chapteb.2, we present a GPU-based per-pixel approach, allowing teesol
occlusion problems at the pixel level, such as positionmgimpostor of a backpack and its
straps on the shoulders of a virtual human impostor.

2.2 Crowd Appearance Variety

Rendering large crowds is usually based on the instantiatia small set ohuman tem-
plates A human template is a virtual human type, defined by thre@ m@anponents:

e Atleast one mesh, usually composed of triangles. From ahfigbtresolution mesh, it
is possible to derive several meshes at lower resoluti@ss (fiangles) and use them
as levels of detalil.

e A unique skeleton, that defines the human template’s joimtisteir size. The mesh
is skinned around the skeleton to enable animation.

e A texture, mapped onto the mesh with UV coordinates.

If such templates are instantiated many times, large cravadsbe created. However, all
instances of a same template have exactly the same lookhiB@etison, several approaches
have tried to add variety to instances of a same templatéelfotlowing sections, we distin-
guish two approaches: one focused on color variety of itg®nand another concentrated
on shape variety.

2.2.1 Color Variety

In a recent study, McDonnedit al. showed that introducing color variety was paramount
to avoid a clone effect\lcDonnell et al, 200g. A first step to improve variety is to create
several textures per template, and use them randomly animestion. Although this solution
offers the best results, designers cannot create one g¢efdureach instance for obvious
reasons. Previous work on color variety is based on the ifldaviding a human template
into several body parts, identified by specific intensitrehe alpha channel of the template
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texture, as illustrated in Figua5. At runtime, each body part of each character is assigned
a color in order to modulate the texture. Tecchial. used several passes to render each
impostor body partTecchia et al.2002ha]. Dobbynet al. extended the method and avoided
multi-pass rendering using programmable graphics haml{izasbbyn et al, 2005.

Figure 2.5: Variety in appearance is achieved by dividing a human interse body parts and
coloring each part with varied colors. The body parts areedihtiated by a specific intensity in
the alpha channel of the texturédcchia et al.20023.

Based on the same idea, Gosseliral. showed how to vary characters sharing the same
texture by changing their tints. They also presented a ndetbselectively add decals to
the characters’ uniformsjosselin et a.2004. However, their approach is only applied to
armies of similar characters, and the introduced diffeesrare not sufficient when working
with crowds of civilians. An illustration of their results showed in Figur@.6. Galvaoet
al. presented another solution to obtain color variety withaimg the alpha channel, which
can then be exploited for other purposé€s|vao et al.200§. In Chapter4, we present
our approach to obtain improved color variety, using segatem maps. With segmenta-
tion maps, it is possible to obtain much more subtle effdits, make-up, freckles, cloth
patternsetc.[Maim et al, 2009.

2.2.2 Shape Variety

A second approach to further vary individuals in a crowd iswtadify the shape of instances.
When we use the term "shape modification”, we englobe the acileved to directly mod-

ify the mesh of an instance, but also the research that hasdogelucted in the domain of
cloth simulation for crowds, and the addition of accessoeghes.

One of the basic approaches to generate new human meshesagiio between existing
models [ee and Magnenat-Thalman200]. To make such an operation intuitive, one
solution is to extract high-level parameters from the @éxgsinodels. Then, new meshes are
created by providing a user-defined set of parameters, whiclkiefine how to morph the
models Beo et al.2003 Allen et al, 2004. Another solution is to use anthropometric data
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Figure 2.6: Crowd using color variety and decals fro@dsselin et a).2004.

to correctly choose how a human mesh can be resizedetS#goroposed such an approach
to generate virtual populations: the generation of humatidsois based on the kinematic
properties of anthropometry (size, shape, proportiosp[et al.2004. Unfortunately, the
generation process was slow, and crowds were thus limitadew dozen characters. Kasap
and Magnenat-ThalmanriKfsap and Magnenat-Thalmari2z007 presented an improved
technique, also based on anthropometric parameters. Tiie dhe body into segments,
and deform each of them with freeform deformation methods ralial functions, while
preserving skinning information. More recently, Galatcal. presented a solution to vary
the shape of humans composing a crowd: they apply varietiffateht levels: body mass,
limb size, and muscle bulge. Body mass and muscle bulgetyasiachieved by combining
weighted displacement maps. The limb size and characteighthare modified using a
skeleton displacement tool: scaling values are assodiatath joint. The mesh follows the
skeleton deformations, according to its skinning propsrfsalvao et al.200g. The results
obtained with their work is illustrated in Figu&?7.

Figure 2.7: Results obtained inGalvao et al. 200§ by varying the color, limb size, muscle
bulge, and body mass of characters.
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To modify the shape of a virtual human, it is also possibletach various small meshes
to its body. Recently, Dudash demonstrated in an NVidiasvyb@per how to divide a human
mesh into several pieces and use these pieces to recompaskmashesudash 2007.

In his example, several warriors were divided accordingp&rtarmor pieces and weapons.

Finally, clothes simulation is another approach to furthary charactersRyder and
Day, 2003, but for real-time crowd applications, their animatiom@ns too expensive
to be used. Dobbyet al. proposed to pre-simulate cloth mesh deformation and use the
resulting animation at runtime on impostors (see Figu8[Dobbyn et al.200q. The same
year, McDonnelkt al. presented a perceptual study of virtual humans wearing cheflole
clothing at different levels of detaiMcDonnell et al, 2004.

Figure 2.8: The physical simulation of clothes is pre-computed andsedwon rigid meshes and
impostors Pobbyn et al.200q.

2.3 Crowd Motion Planning and Navigation

The first studied approache., agent-based, represents a natural way to simulate crasvds a
independent individuals interacting with each other. Salgforithms usually handle short
distance avoidance, and navigation remains local. Regnmidposed to use simple rules
to model crowds of interacting agentedynolds 1987, 1999. Heigeaset al. introduced

a physically-based interactive particle system to modedrgent crowd behavior often en-
countered in emergency situationsdigeas et al2003. Kirchner and Shadschneider used
static potential fields to rule a cellular automatéiirghner and Shadschneid@007. Nev-
ertheless, the main problem with agent-based algorithntiseis low performance. With
these methods, simulating very large crowds in real timenfeasible without distributing
the workload on parallel processoFdynolds2004. Moreover, such approaches forbid the
construction of autonomous adaptable behaviors, and dgm@mage crowds of pedestrians
with local objectives.
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Figure 2.9: Reynolds takes advantage of the parallel processors of $3et® simulate large
crowds of fishes with an agent-based methdynolds 2004.

To solve the problems inherent in local navigation, someatbieinal approaches have
been extended with global navigation. Swi@l., given constraints at specific time intervals
on character poses, positions, orientations, used a mgitaqh to generate the adequate mo-
tion [Sung et al.2005. Lau and Kuffner used pre-computed search trees of motipa ©
accelerate the search for the best paths and motion seguemeach an objectivé fu and
Kuffner, 2009. Lamarche and Donikian used automatic topological moxiehetion of the
environment for navigatiorifamarche and Donikigr2004. Their results for outdoor navi-
gation is illustrated in Figur@.10 Although these approaches offer appealing results, they
are not fast enough to simulate thousands of pedestriaesitime. Pettr&t al. presented
thenavigation grapha structure automatically extracted from an environmenigetry, al-
lowing to solve global path planning requeseiiré et al.2006 Pettré et al.2007. The
main advantage of this technique is that it handles unevdnrariti-layered terrains. Nev-
ertheless, it does not treat inter-pedestrian collisiandance. Finally, Helbingt al. used
agent-based approaches to handle motion planning, butyriagused on emergent crowd
behaviors in particular scenarkiglbing et al, 1994 200( .

Another approach for motion planning is inspired from fluychemics. Such techniques
use a grid to discretize the environment into cells. Huglsesl ulensity fields to steer pedes-
trians toward their goals and avoid collisiofjghes 2002 2003. Chenney used flow tiles
to represent small stationary regions of velocity fieldd tan be pieced together to drive
crowds [Chenney 2004. More recently, Treuilleet al. used a dynamic potential field to
represent the best path to a goal. Pedestrians are steemdiag to the potential gradient,
avoiding collision with the environment and other pedesisi (see Figur2.11) [Treuille
et al, 2004. Fluid dynamics represent an interesting solution in egapions where the lack
of individuality of each pedestrian is unimportant. Indetgse solutions are usually meant
to steer large groups of avatars towards a shared goal.

Recently, a new branch of research tries to extract patfesns real pedestrian avoid-
ance behaviors in order to rule their modelsiner et al.2007 Paris et al.2007 Lee et al,
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Figure 2.10: Outdoor navigation of pedestrians ingmarche and Donikigr2004. Path plan-
ning is based on the topological properties of the envirarimehile inter-pedestrian avoidance
is ruled by a neighborhood graph.

Figure 2.11: In [Treuille et al, 2004, crowds are steered by a potential field to reach their goals
while avoiding collisions.

2007. As of today, the obtained performance does not fit to langeractive crowds.

YaQuses an architecture with levels of detail to plan the motiblarge crowds. Based
on a navigation graph, we divide the environment into regimirvarying interests. In regions
of high interest, we exploit a potential field-based appho&ince we only use it locally, we
can plan motion for many more groups and with finer grid céléstwith an algorithm purely
based oniit. In other regions, motion planning is ruled bynésagation graph and short-term
collision avoidance algorithms. Our local use of a potérigdd-based approach allows us
to plan motion for many more groups and with finer grid cellsrthvith a purely potential
field algorithm.

2.4 Crowd Architectures

Similarly to YaQ there exist some architectures able to handle all aspéc®wds,i.e.,
rendering, motion planning, behavior, and animation.

Musseet al. presented/iCrowd, a hierarchical model to simulate crowds in real time in
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collaborative virtual environments. Their platform comés LOD techniques for the geome-
try display and animatiorMlusse et al.1998 and group-based intelligent behaviokélsse
and Thalmann2001. The Agent Behaviour SimulatoABS is another behavioral model
dedicated to real-time crowd simulation. The pedestriaasendered with an image-based
technique (see Sectiahl) [Tecchia and Chrysanthp@00d, while their navigation and
behavior are ruled by 2D map$dcchia et al.2001]: a map to detect inter-pedestrian colli-
sions, a map to detect collisions with the environment, ardrhaps to rule the pedestrians’
simple and complex behaviors (see FigRr&2).

Figure 2.12: ABS: the Agent Behavior Simulator, rules pedestrian bafravbased on several
2D maps of the environmenté¢cchia et al.2001].

Gianget al. and O’Sullivanet al. developedALOHA (Adaptive Level Of Detail for
Human Animation), a framework applying a LOD approach todkemetry, motion, and
behavior of crowdsGiang et al. 2000 O’Sullivan et al, 2003. Unlike the usual approach,
the geometry LODs of ALOHA are created in a bottom-up apgnoabe process starts
with a low-resolution mesh and progressively improves fhigearance of the virtual human
using subdivision surfaces. As for the motion, charactéag geyframed animations at a
low level, and use a reaching-and-grasping system for hig@®s. Behavior LODs are
handled differently, depending on the situation: convéreal LODs are used when char-
acters are socializing and talking/answering to each d#es Figure.13, while Artificial
Intelligence LODs are developed for other cases.

Sunget al. presented a scalable crowd simulator that provides viguahvincing
crowds in terms of rendering, animation, and behavior. Tagstem has two levels: at a
high level, a controller takes care of local behavior of dggmased on their position in space
and what is happening in their close neighborhood. At a Idexl, a probabilistic finite
state machine decides of the pedestrians actiSnsq et al. 2004, the crowd animation
is based on a Snap Together Motion procéseicher et al.200§. Shao and Terzopoulos
presented an agent-based model to simulate croflusd and Terzopoulp2005. The ren-
dering engine is adapted from a commercial software paclagktheir main contribution is
on the behavioral level. Their approach is bottom-up: ieadtehaviors are used as building
blocks to support more complex motivational behaviors. déasion-making of pedestrians
is controlled by an action selection mechanism. More rdgeRelechancet al. presented
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Figure 2.13: Group of characters socializing i@[Sullivan et al, 2003.

the HIDAC (High-Density Autonomous Crowds) system. Although theyndo detail how
the rendering and animation of pedestrians is performea; thsplay realistic characters
in order to be able to simulate densely crowded places, wierngal humans may push
each other, falletc. Behaviors are determined for each agent individually, \&itivo-level
approach: at a high level, navigation, learning, commuiuoand decision-making are han-
dled [Pelechano and Badle2004, and at a lower level, perception of the environment and
reactive behaviors allow to handle collision avoidareelgchano et gl2007.



CHAPTER 3

Overview

In this chapter, we present an overviewMaQ our crowd engine. We first provide a general
insight on its architecture in Sectidhl In Section3.2, we fully detail the main input of
YaQ the human template and its different rendering levels tditle=inally, in Sectior3.3,
we present how the large amount of data necessary to sinauatsvd is handled and stored
by YaQ

3.1 YaQ Architecture

As illustrated in Figure3.1, YaQ architecture is composed of two offline and one online
elementsVariety, Navigation andReal-time

Variety. When displaying crowds, on the one hand, each charactesrieagt a unique
appearance (see Figu8e?) in order to simulate individuality. On the other hand, ibsth
fastidious to design every single character and to storegpearance model: this would
result in unconceivable memory consumption and design. tthe solution is to start with
a limited set of human templates, from which we apply thréewtint types of variations to
create thousands of unique instances. The process is stibetna green in Figur8.1 We
later devote one chapter to each of these types:

¢ In Chapterd, we detail the techniques used to modify the colors and sigagfivirtual
humanse.g, their clothes, skin, hair.

e Chapter5 focuses on methods that help changing the shape of a virtunaah; for
instance, accessorizing characters, or making them/stetler,etc.

27
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e The last type of variety we introduce for crowds is the indualization of their anima-
tions. To simulate a crowd iMaQ many locomotion animations at various speeds are
generated in a pre-process with a dedicated engih@rflon et al.2004gb]. Other,
more quiet animations, such as standing, talking, or gitime hand-designed. In or-
der to animate humans whatever their rendering level ofldetaD), we have created
a dedicated structure, calleabtion kit A motion kit contains the information to play
an animation at any LOD. Thus, instead of associating an atiom to each human
instance, we associate a motion kit, which provides the @atecdata, whichever the
LOD of the instance. Our strategy to handle animationga) to vary them, and to
create motion Kits is explained in Chapéer

Navigation. This component o¥aQtakes care of structuring the environment to plan the
motion of the whole crowd. The structure we use is based ouligaed cell-decomposition
technique called navigation grapghdttre et al.200§ Pettré et al.2007: from a 3D model of

a scene, a navigation graph is automatically derived. turap and models both the geome-
try and the topology of the navigable space. The navigatiaplgis used as a basic structure
to categorize the environment into regions of various eder With the same concept of
levels of detail we use for rendering, regions of high/medlow interest are identified in
the environment, and ruled by different motion planningalipms. Each algorithm, in its
own way, provides waypoints to steer virtual humans in teaé towards their goals. A
second interesting aspect of navigation graphs is to use thetriggering situation-based
behaviors. Using a semantic model of the environment (spa€3.1), the navigation graph
is augmented with semantic data to develop crowd behavspescific actions are triggered
in desired areas of the environment. We provide an overviethe Navigation component
in Figure3.1(in red). Also, a short introduction on this subject is aablé in Sectiorl0.1

of the Appendix For a more detailed presentation of this component, theerda advised to
refer to the work of Yersin, 2009.

Real-time. Once the Variety and Navigation components have computedndtances
and the waypoints to navigate them, the Real-Time comparanstart the simulation. Each
frame of simulation is separated into four different stagiésstrated in blue in Figur&.1
The first stage, the Scaler, assesses the importance offfitweni areas of the screei.,

it decides of the level-of-detail strategy for the curreainfie. Second, the Simulator steers
the instances toward their next waypoint, while avoidinijjgions between them. The Ani-
mator modifies the posture of the instances to reflect theotion or other action changes.
Finally, the Renderer efficiently displays the varied ins&s and the environment, as well
as their projected shadows, to the screen. The Real-timpaoent is detailed in Chaptér

3.2 Virtual Human Representations

In an ideal world, graphic cards would be able, at each fraovender an infinite number of
triangles with an arbitrary complex shading on them. To &lize crowds of virtual humans,
we would simply use thousands of very detailed meshgag, capable of hand and facial
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Figure 3.1: The architecture of YaQ is divided into three components fiinst step, the Variety
component (in green) and the Navigation component (in reelcpmpute the necessary data
(instances and waypoints). In a second step, these datadate the Real-time component (in
blue).

animations. Unfortunately, in spite of the recent prograhla graphics hardware advances,
we are still compelled to stick to a limited triangle budget frame. This budget is spent
wisely to be able to display dense crowds without too manggqeible degradations. The
concept of levels of detail (LOD), extensively treated im titerature Luebke et al.2003,

is exploited to meet our real-time constraints. For a crowditual humans specifically,
and depending on the location of the camera, a charactandered with a particular repre-
sentation, resulting from the compromise of rendering eost quality. In this section, we
first introduce the data structure we use to create and sienvidual humans: the human
template. Then, we describe the three levels of detail a huemaplate uses: the deformable
mesh, the rigid mesh, and finally the impostor.

3.2.1 Human Template

A type of human such as a woman, man, or child is described asnarm template, which
consists of :
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Figure 3.2: By applying variety techniques at three levels, instandes same template seem
unique. Color variations are used to create clothes andpskierns, shape variations are intro-
duced with accessories, such as wigs or glasses, and varnouations are exploited for further
individualization.

e A skeleton, composed of 86 joints, representing articoihes]

e A set of meshes, all respresenting the same virtual humamyithua decreasing num-
ber of triangles;

e Several appearance sets, used to vary its appearance;

¢ A set of animation sequences which it can play.

Each rendered virtual human is derived from a human templatgeit is an instance of
a human template. In order for all the instances of a same htemaplate to look different,
we use several appearance sets, that allow to vary the ¢expynlied to the instances, and
modulate the colors of the texture (see Chagjer

3.2.2 Deformable Mesh

A deformable mesh is a representation of a human templatpased of triangles. 1YaQ

it is enveloping a skeleton, used for animation: when thdesie moves, the vertices of
the mesh follow smoothly its joint movements, similarly torskin [Magnenat-Thalmann

et al, 1989. We call such an animation skeletal animation Each vertex of the mesh is
influenced by one or a few joints. Thus, at every keyframe @ramation sequence, a vertex
is deformed by the weighted transformation of the jointauificing it. The corresponding
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equation is:
o(t) =Y xixg "o (3.1)
=1

whereu(t) is the deformed vertex at timeinfluenced by: joints, \! is the global transform
of joint ¢ at timet, X;“f is the inverse global transform of the joint in the referepasition,
andv™/ is the vertex in its reference position. This technique isvkn as skeletal subspace
deformation, or skinning.

The skinning can be efficiently performed by the GPU: the aeéble mesh sends the
joint transformations of its skeleton to the GPU, that tagas® of moving each vertex ac-
cording to its joint influences. However, it is important &ke into account the limitations
of graphic cards (Shader Model 2 & B\idia, 2009), that can store only up t®56 atomic
valuesj.e., 256 vectors of four floating points. The joint transformatiofackeleton can be
sent to the GPU a$ x 4 matricesj.e., four atomic values. This way, the maximum number
of joints a skeleton can have reaches:

256 _

=64 (3.2)

When wishing to perform hand and facial animatiaisjoints are not sufficient. Our solu-
tion is to send each joint transformation to the GPU as a uraternion and a translation,
i.e., two atomic values. This allows to double the number of pimbssible to send. Note
that one usually does not wish to use all the atomic strustaf@a GPU exclusively for the
joints of a skeleton, since it is usually exploited to pracether data.

Rendering deformable meshes is very costly, due primavily pipeline flush occuring
each time a new virtual human is rendered, and also to thenekgevertex skinning and joint
transmission. Nevertheless, it would be a great quality doalo without them, indeed:

e They are the most flexible representation to animate, atigwven for facial and hand
animation (if using a sufficiently detailed skeleton).

e Such animation sequences, called skeletal animationshaag to store in memory:
for each keyframe, only the transformation of deformingngsji.e., those moved in
the animation, need to be kept. Thus, a tremendous quantikypse animations can
be exploited in the simulation, increasing crowd movemaniety.

e Procedural and composited animations are suited for thigsentatione.g, look at
the camera, or on-the-fly idle motion generation (see fomgta Egge<t al. [Egges
et al, 20049).

¢ Blending is also possible for smooth transitions betweéerdint skeletal animations.

Unfortunately, the use of deformable meshes as the solegepiation of virtual humans in

a crowd is too prohibitive. We therefore use them in a limiednber and only at the fore-

front of the camera. Note that before switching to rigid nessiwe use several deformable
meshes, keeping the same animation algorithm, but with & mes decreasing number of

triangles.
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Skinned and textured deformable meshes require skilledjums. But once finished,
they are automatically used as the raw material to deriveubisequent representations: the
rigid meshes and the impostors.

3.2.3 Rigid Meshes

Arigid mesh is a precomputed geometric posture of a defolemabsh, thus sharing the very
same appearance. A rigid animation sequence is alwayseéasfpom an original skeletal
animation, and from an external point of view, both look aelikHowever, the process to
create them is different. To compute a keyframe of a rigidraion, the corresponding
keyframe for the skeletal animation is retrieved. It pr@dda skeleton posture (or joint
transformations). Then, in a preprocess, each vertex mmed on the CPU, as opposed
to a skeletal animation, where the vertex deformation isexeld online, and on the GPU.
Once the rigid mesh is deformed, it is stored as a keyframa,table of vertices, normals
(3D points), and texture coordinates (2D points). This pssds repeated for each keyframe
of arigid animation. At runtime, a rigid animation is simghayed as a succession of several
postures or keyframes. There are several advantages msisth a representation:

e It is much faster to display, because the skeleton defoamaind vertex skinning
stages are already done and stored in keyframes. The cormationi between the
CPU and the GPU is kept to a minimum, since no joint transféiona need to be
sent, and pipeline flushing is significantly reduced.

¢ It looks exactly the same as the skeletal animation usedrtergee it.

The gain in speed brought by this new representation is deratle. It is possible to display
about 10 times more rigid meshes than deformable mesheSé&xtion7.4.3for detailed
results). However, the rigid meshes need to be displayddefafrom the camera than de-
formable meshes, because they allow for neither procedniaiations, nor blending, and
no composited, facial, or hand animation are possible eithe

3.2.4 Impostor

An impostor is the less detailed representation, and extegsexploited in the domain of
crowd rendering Tecchia et al.2002a Dobbyn et al. 2005 Millan and Rudomin 20049.
An impostor represents a virtual human with only two textunéangles, forming a quad,
which is enough to keep the desired illusion at long rangeftioe camera. Similarly to a
rigid animation, an impostor animation is a succession styres, or keyframes, inspired
from an original skeletal animation. The main differencéwa rigid animation is that it is
only a 2D image of the posture that is kept for each keyfranstead of the whole geometry.
Creating an impostor animation is complex and time consgmirhus, its construction is
achieved in a preprocess, and the result is then stored idaiabase in a binary format
(see Sectior8.3.2, similarly to a rigid animation. We detail here how each fkasne of
an impostor animation is developed. The first step when géingrsuch a keyframe for a
human template is to create two textures, or atlas:
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e A normal map, storing in its texels the 3D normals as RGB camepts. This nor-
mal map is necessary to apply the correct shading to theaviniwumans rendered as
impostors. Indeed, if the normals were not saved, a terflateshading would be
applied to the virtual human, since it is represented witly dmo triangles. Switch-
ing from a rigid mesh to an impostor would thus lead to awfybpiag artefacts. In
Figure3.3(center), we show an example of such a representation foahsin walk-
ing postures. The generated image RGB components repibgedirections of the
human’s normals.

e A UV map, storing in its texels the 2D texture coordinates &dodmponents. This
information is also very important, because it allows torectly apply a texture to
each texel of an impostor. Otherwise, we would need to gémeara atlas for every
texture of a human template. We show an example of a UV mapJ@king human
in Figure3.3(right)

Figure 3.3: Images of walking humangLeft) The textured and shaded results, as rendered in
YaQ (Center)The RGB channels of the image are used to represent the 3&lidire of the
normals: Red in the X direction, Green in the Y direction, &bde in the Z direction.(Right)

The RG channels of the image are used to represent the texordinates.

Since impostors are only 2D quads, we need to store normdlsexture coordinates
from several points of view, so that, at runtime, when the@a@moves, we can display the
correct keyframe from the correct camera view point.

In summary, each texture described above holds a single possre for several points
of view. This is why we also call such textures atlas. We thai® in Figure3.4a1024 x 1024
atlas for a particular keyframe. The top of the atlas is usestdre the UV map, and its
bottom the normal map.

The main advantage of impostors is that they are very efticgmce only two triangles
per virtual human are displayed. Thus, they constitute thgdst part of the crowd. How-
ever, their rendering quality is poor, and thus they caneogxploited close to the camera.
Moreover, the storage of an impostor animation is very gpsile to the high number of
textures that need to be saved.

We summarize in Tabl8.1 and Figure7.4 the performance and animation storage for
each virtual human representation. We observe that eaglusten the representation hier-
archy allows to increase by an order of magnitude the numislisplayable characters. We
also note that the faster the display of a representati@nlatiger the memory storage. Fi-
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Figure 3.4: A 1024 x 1024 atlas storing the UV map (above) and the normal map (belova) of
virtual human performing a keyframe of an animation fromesal/points of view.

100

01

0.01

0.001

Figure 3.5: Storage space in\/b] on a logarithm scale for one second of animation of each level
of detail: (a) deformable mesHhbp) rigid mesh,(c) impostor.

nally, rigid meshes and impostors are stored in GPU memdrighws usually much smaller
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Level of Max Displayable| Animation | Animation | Memory
detall Number Frequency| Storage | Location
Q@Q30H z [Hz] Cos{Mb/s]
deformable mesh ~ 200 25 ~ 0.03 CPU
rigid mesh ~ 2,000 20 ~ 0.3 GPU
impostor ~ 20,000 10 ~ 15 GPU

Table 3.1: Characteristics and costs associated to the animatiorchflegel of detail.

than CPU memory.

3.3 YaQ Data

The main problem when dealing with thousands of characseteeiquantity of informa-
tion that needs to be stored and processed for each one of Breessing the data is very
demanding, even for modern processors, while storing itireg intelligent structures that
can be efficiently accessed and shared.

In this section, we first present hovaQtightly packs the data associated to a human
template in order to avoid storing information that can beret over the levels of detail, for
instance. Then, we present how lists of human instancemgtemilar structures can be or-
ganized to limit the number of state switches at runtimealmnwe introduce our database,
where all the heavy pre-computed data is serialized an@dtiar make the initialization
phase of the simulation as fast as possible.

3.3.1 Human Template Data

The organization of resources inside a human templataistifited in Figur8.6.

Appearance Set. As previously stated, appearance sets, which we detail apt@é4,

are used to apply various colors to the body parts of a hunstarnoe. Each appearance setis
unique, and associated to a single human template. Thellgecsgveral appearance sets per
template, but never more than one template per appearanc@/een creating an instance
of a human template, one appearance set belonging to théaterngpchosen to modulate the
colors of this instance. If a human template is instantiagatral times, some instances will
share the same appearance set.

Deformable Mesh. Storing a deformable mesh¥aQsums up to saving four arrays: one
array filled with all the vertices of the 3D mesh, one arrayttwesthe normals associated to
all vertices, one array of UV coordinates, and finally, omayof indices. The indices allow

to correctly draw the mesh by grouping vertices into tri@sglusing their corresponding
normals for the shading, and mapping the texture with the oM dinates.
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Appearance Set

Texture Map

Lk
|
|
|
|
\

Normals

Uvs

Figure 3.6: Shared resources between representations of a human tem(aadeformable
mesh,(b) rigid mesh,(c) impostor.

Rigid Mesh. A rigid mesh is always associated to an animation, sincadyreleformed.
To store one keyframe of a rigid animation, the whole set dieces needs to be stored again,
for they are not placed at the same positions as in a defoenmabsh. The same applies to
the normals. The UV coordinates remain the same, becausextiaee is still mapped in the
same way. Finally, the indices can be reused too from a daiflolerto a rigid mesh, if care
is taken to keep the same ordering in the different arrays.

Impostors. Forimpostors, no information is shared with the other repngations. All the
data required to shade and texture the quad are stored itldBgeesented in Sectid2.4

3.3.2 Database Management



3.3. YAQ DATA 37

Many elements of data used at runtime¥amQare permanent,e., they are not changed
over the whole simulation, and can even be reused betweanations. In order to keep
them available at all times and to store them efficiently, ae an external database.

To animate virtual humans, the locomotion engine of Glardbml. [Glardon et al.
20043b] is used to generate various locomotion cycles (see Chéptéithough this engine
is fast enough to generate a walk or run cycle in real timgnnot keep up that rhythm with
thousands of virtual humans. When this problem first ocquiteslidea of precomputing a
series of locomotion cycles and storing them in a database cg. Since then, this system
has proved very useful for storing other permanent data.nfdie tables that can be found
in our database are the following:

e Skeletal animations,

Rigid animations,

Impostor animations,

Motion Kits,
e Human templates, and

e Accessories.

In this section, we detail the advantages and drawbacks vee¢ lmyeusing such a database,
and what kind of information we can safely store there.

All skeletal, rigid and impostor animations we use in readdican neither be generated
online, nor at the initialization phase of the applicatibecause the user would have to wait
during an important amount of time before the simulatiomtzhes. This is why the database
is used. With it, the only work that needs to be done at inz#ion is to load the animation
sequences, so that they are ready when needed at runticheugh this loading phase may
look time consuming, it is quite fast, since all the animatitata is serialized into a binary
format. Within the database, the animation tables have ifoportant fields': unique id
motion kit id template idandserialized data For each animation entry, its motion kit id
is later used to create the necessary links (further ddtaml€hapter6), while its template
id is needed to find to which human template it belongs. It alkwvs to restrain the number
of animations to load to the strict minimuime., only those needed for the human templates
used in the application. It is mainly the serialized data #i@ws to distinguish a skeletal
from a rigid or a impostor animation. Note here that storirgk@letal animation is different
from storing a deformable mesh, which we have previouslgitést in this section. For a
skeletal animation, we mainly serialize into the databdisth@ information concerning the
orientation of each skeleton joint at each keyframe. Witlgalror an impostor animation
however, since the mesh or the image is already animatediatiaeto store is the same as
previously described.

Another table in the database is used to store the motion Kits important to note
that since they are mainly composed of simple data, likegereand strings, they are not

1A field can be understood as a column in the database thatsaltovgueries.
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serialized in the database. Instead, each of their elenemtoduced as a specific field.
When loading a motion kif/ from the database, its basic information is directly exedc
to be saved in our application. The motion kits are thoroyghésented in Chapté:

We have inserted in the database a table in order to storestheapent data of human
templates. Indeed, we have some human templates alreadye@snd ready to be used
in the crowd simulation. This table has the following fieldsnique id name skeleton
hierarchy, andskeleton postuteThe skeleton hierarchy is a string summarizing the skeleto
featuresij.e, all the joint names, ids, and parent. When loading a hunraplage, this string
is used to create its skeleton hierarchy. The skeleton posta string giving the default
posture of a skeleton: with the previous field, the joints #melr parents are identified,
but they are not placed. In this specific field, we get for eadht jits default position and
orientation, relatively to its parent.

Finally, the database possesses two tables dedicateddssacies. An accessory is a
mesh used to add variety and believability to the shape ofitheal humans. For instance, it
can be a wig, a pair of glasses, a betg.. (see Chaptes for more details). In a first table, we
store the elements specific to an accessory, independentiythe human template wearing
it: unique id nametype serialized dataln the serialized data is stored all the vertex, normal
and texture information to make an accessory displayaliie.sEcond table is necessary to
share information between the accessories and the humantatessy As later specified in
Chapters, the displacement of a specific accessory relatively to kegkejoint is different
for each human template. This displacement is stored asxm@b, in this second table,
we employ a field calletemplate idand a fieldaccessory ido know exactly where the field
matrix must be used. Thus, for each accessory / human templateecagoiesponds an
entry within this table. Note that we also store there thetjto which the accessory needs
to be attached. This is because in some special cases, thedlifiega from a skeleton to
another. For instance, when we attach a back pack to a chidlage, the joint used is a
vertebra that is different from the one for an adult template

Using a database to store serialized information has prtwvbe very useful, because it
greatly accelerates the initialization time of the apglma The main problem is its size,
which increases each time a new element is introduced intéldwever, with real-time
constraints, we allow ourselves to have a sufficiently lalgi@base within reasonable limits
to obtain varied crowds.
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Appearance Variety

When simulating a small group of virtual humans, it is easyneke them look singularly

different: one can use several human templates and tetureach virtual human present
in the scene, and assign them different animations. Howexen the group extends to a
crowd of thousands of people, this solution becomes uridadrirst, in terms of design, it

is unimaginable to create one mesh and series of animatemsividual. Moreover, the

memory space required to store all the data would be far towadding. There is no direct
solution to this problem, but it is however possible to aetigood results by multiplying

the levels where variety can be introduced.

First of all, the visual appearance of individuals can beadarseveral human templates
can be used. Then, for each template, several textures cdesigned. Also, the color of
each part of a texture can be varied so that two virtual hunssagd from the same template
and sharing the same texture have not the same clothes /Iskiincolor.

Second, we can also modify the shape of human instanceseavithad methods: we have
developed the idea of accessorias, “augmenting” a human mesh with various objects such
as a hat, a watch, a back pack, glass¢s, Also, we have recently worked on modifying
the shape of human instances directly. Based on a standardrhiemplate, variations are
applied to the skeleton and vertices, in order to modifiy @astance’s obesity and height.
This aspect of variety is presented in Chafiter

Finally, variety can be achieved through animation. We tyaioncentrate on the loco-
motion domain, where we vary the movements of the virtual &snn two ways. Firstly,
by generating in a preprocess several locomotion cyclekk¢vead runs) at different speeds,
that are then played by the virtual humans online. Secomdiyyse offline inverse kinemat-
ics to enhance the animation sequences with particular ments, like having a hand in the
pocket, or at the ear as if making a phone call. Animationetgiis presented in Chaptér

39
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In the following sections, we further develop each necgsstep to vary a crowd in
appearance: in Sectighl, we show the three levels where variety can be achieved., Tinen
Sectiord.2, we present our early work on color variety, and how we sedetkthe texture of
a virtual human into body parts. In Sectidr8, we introduce the segmentation maps, an
improved approach to differentiate body parts and appliebgariations in colors. Finally,
in Sectiond.4, we present our conclusion on the topic of crowd appearaagcety.

4.1 Appearance Variety at Three Levels

When referring to appearance variety, we mean how we maalthat rendering aspect of
each individual of a crowd. In the context of our wokr, thietids completely independent
from the animation sequences played, the motion plannindpebehavior of the virtual
humans. First of all, let us remind that a human template iata structure containing: a
skeleton, defining what and where its joints are, a set of egstepresenting its different
levels of detail, several appearance sets, textures and their corresponding segmentation
maps, and finally, a set of animation sequences that can entydyed by this human tem-
plate. For further indications on the human template stinectthe reader is invited to refer
to Section3.2.1 We apply appearance variety at three different levels.

Figure 4.1: Five different human templates: their shape, texturedettkes are different.

The first coarsest level is simply the number of human teraplased. It seems obvious
that the more human templates, the more variety. In Figueve show five different human
templates. The main issue when working with many human tat@pis the time required to
design them first, and the memory requirements to store tfheir number thus needs to be
limited. In order to mitigate this problem, we further vahethuman templates by creating
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several textures and appearance sets for each one of theapp&arance set is defined as a
texture and its associated segmentation maps (more omt8esatiord.3).

The second level of variety is represented by the texturenapearance set. Indeed,
once an instance of a human template is provided with an appea set, it automatically
assumes the appearance of the corresponding texture. @ecananging appearance set,
and thus, texture, does not change the shape of the humalatenffor instance, if its mesh
contains a pony tail, it will remain whatever the textureleggh However, it can impressively
modify the appearance of the human template. In Figu2ewe show five different textures
applied to the same human template.

Figure 4.2: Five different textures mapped onto five instances of theedamman template.

Finally, at the third level, we can play with color variety each body part of the texture,
thanks to the segmentation maps of the appearance set. ureHE@, we show several
instances of a same human template, using the same textlyethe body part colors are
modulated. We fully dedicate Sectidn3to this particular level. But first, and in order to
fully understand segmentation maps, we briefly explain ictiSe 4.2 our previous approach
to color variety fle Heras Ciechomski et 22009 and its limitations, which have been later
overcome with segmentation maps.

4.2 Previous Work on Color Variety

To obtain variation inside a single texture, previous warlcolor variety proposed a solution
to differentiate character body parts, and then apply ausa@pmbination of colors to each
of them.
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Figure 4.3: We instantiate several times the same human template véthaime texture. Only
per-body-part color variety is used to modify their appaaea

4.2.1 Principles

Previous work increasing variety in color appearance ferdfaracters composing a crowd
share the common idea of storing the segmentation of body pea single alpha layeig.,
each body part is represented by a defined level of intensttyecalpha channel. Figure4
depicts a typical texture and its associated alpha zone fifamethod is based on texture
color modulation: the final colat’, of each body part is a modulation of its texture calgr
by a random colo€’;.:

Cy = C,C,. (4.1)

ColorsC, Cy, andC,. can take values betweérD and1.0. In order to have a large panel of
reachable colorg); should be as bright as possihle,, near tol.0. Indeed, ifC; is too dark,
the modulation by, will give only darker colors. On the other hand(if is a bright color,
the modulation by, will provide not only bright colors, but also dark ones. Thiplains
why part of the texture has to be reduced to a bright luminaregthe shading information
and the roughness of the material. The drawback of passeng#in parts of the texture to
luminance is that funky colors can be generated, characters are dressed in colors that do
not match. Some constraints have to be added when modutatios randomly.

4.2.2 HSB Color Spaces

Once the different body parts are identified with the alphendie! of the human texture, it is
important to constrain the colors that each part can takkedd, if no constraint was applied
at this stage, virtual humans would end up with completetyloan colors, as illustrated in
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Figure 4.4: Texture used for color varietyLeft) the RGB channels represent the basic texture,
which is very bright to allow for color modulationgRight) the alpha channel of the texture is
used to differentiate body parts. Each body part takes afgpalpha intensity.

Figure4.5.

The usual RGB system represents a color with three valuesspmnding to the con-
tribution of the three primary colors: red, green, and blWth this system however, it is
very counterintuitive for a designer to constrain per-bpdyt color ranges effectively. We
have created a dedicated tool to help the designer in ttksuasg a different mode of color
representation.gmith, 1979 proposed a model that deals with everyday life color cotssep
i.e., hue, saturation and brightness, which are closer to theahwulor perception than the
RGB system. This system is called the HSB (or HSV) color m¢sket Figuret.6):

¢ the hue defines the specific shade of color, as a value betha®thi360 degrees;

e the saturation denotes the purity of the colice, highly saturated colors are very
bright, while low saturated colors are washed-out, liketglas Saturation can take
values betweefi and100,

¢ the brightness measures how light or dark a color is, as &\@tweert) and100;

In the process of designing virtual human color varietyal@ed constraints are dealt
with: some body parts need very specific colors. For instasida colors are taken from a
specific range of unsaturated shades with red and yellowrthome, almost deprived of blue
and green. Eyes are described as a range from brown to grddatuenwith different levels
of brightness. These simple examples show that one caneat iz xdom color generator as
is. The HSB color model offers control on color variety in atuitive an flexible manner.
Indeed, as shown in Figuee7, by specifying a range for each of the three parameters, it is
possible to define a 3D color space, called the HSB map.
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(a) | T

Figure 4.5: (a) Human instances have their body part colors randomly ch@bgRor each body
part, a designer has constrained the range of possiblesoadimg our dedicated tool, based on

the HSB color model.

O'-‘360

&«—— Saturation

g ——>

SSauly

Hue circle
Figure 4.6: HSB color space. Hue is represented by a circular region.pArs¢e square region

may be used to represent saturation and brightiessthe vertical axis of the square indicates
brightness, while the horizontal axis corresponds to a#tur.
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Figure 4.7: The HSB space is constrained to a three dimensional colaespih the following
parameterga) hue from20 to 250, saturation fron80 to 80 and brightness from0 to 100. (b)
Colors are then randomly chosen inside this space to adetyam the eye texture of a character.

4.3 Segmentation Maps

To further vary the instances of a same human template, thecheresented in Sectigh2

is perfectly adequate when viewing crowds at far distaneksvever, using a single alpha
layer to segment body parts has several drawbacks. No diliiieering can be used on
the texture, because incorrect interpolated values woelltetzhed in the alpha channel at
body part borders, as shown in Fig4r&(a). Moreover, for individuals close to the camera,
the method tends to produce too sharp transitions betweey jparts,e.g, between skin
and hair, as depicted in Figue8 (b), due to the impossibility of associating a texel to
several body parts at the same time. Also, character clpséting the need for a new
method capable of handling detailed color variety. Subtékenup, or detailed patterns
on clothes greatly increase the variety of a single humamlen Furthermore, changing
illumination parameters of materialg,g, their specularity, provides more realistic results.
Previous methods would require costly fragment shaderchiag to achieve such effects.
We apply a versatile solution based segmentation map® overcome previous method
drawbacks.

4.3.1 Principles

For each texture of a human template, we create a series okesggtion maps. A segmen-
tation map is a four channel image (RGBA), delimiting foud@artsi.e., one per channel,
and sharing the same parameterization as the texture ofpfpeaeance set (compare the
right-side of Image (b) with the left-side of Image (d) in &g 4.8). This method allows
for each texel to partially belong to several body parts atséime time through its channel
intensities: the intensity of each body part is defined tghmut the whole body of each char-
acter,i.e., 256 levels of intensity are possible for each périneaning it is not present at this
location, and255 meaning it is fully present. As a result, it is possible toigegransitions
between body parts much smoother than in previous appreaakeshown on the close-up
of Figure4.8(c) and (d). Moreover, using segmentation maps to effigraiitinguish body
parts provides two additional advantages over previousoast
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11

Figure 4.8: Close-up on the transition between skin and hair: artifacfgevious methodga)
with bilinear filtering andb) nearest filtering(c) Smooth transitions obtained with segmentation
maps and bilinear filtering(d) Detailed transition between skin (red channel) and haegar
channel) on the segmentation map.

C.

e Possibility to apply different illumination models to eabbdy part. With previous
methods, achieving such effects requires costly fragnteader branching.

e Possible mipmapping activation and use of linear filterimiich greatly reduce alias-
ing. Since previous methods use the alpha channel of theréstd segment their body
parts, they cannot benefit from this algorithm, which catisesppearance of artefacts
at body part seams (see Figur®).

We have empirically determined to use eight body paks,two RGBA segmentation maps
for each appearance set. The results obtained with eight pads are satisfying for our
specific needs, but the method can be used with more segiwentaps if more parts are
needed. For instance, it would be possible to use the metiraaldtling color variety to a
city by creating segmentation maps for buildings, as intoedl in Sectior8.1

To provide one more level of variety, it is possible to defiegesal pairs of segmenta-
tion maps per human template texture, allowing to createreit patterns as illustrated in
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Figure4.9 make-up, cloth patterns, freckle=tc, and localized specular parameters.

texture

(Y (N N

red skin freckles make-up

segmentation maps

o
o
°

Figure 4.9: (top to bottoma human template original texture; several pairs of segatientmaps
sharing the same parameterization; examples of uniqueokeight colors for each character;
detailed effects obtained with segmentation maps and &pégiparameters on faces (make-up,
freckles, glossy lips, etc.) and on the whole body (clothegpas, shiny shoes, etc.).

Ideally, for a given pixel of the texture, we wish the sum df thtensities of each body
part to react255, i.e., a texel partially belongs to several body parts, but the setithese
adherences should reathn%. However, segmentation maps are designed manually, with a
software like Adobe Photoshopdlobg 2009, and it may happen that the sum of intensity
levels for some texels do not reagh5. In this case, unwanted artefacts may later appear
within the smooth transitions between body parts. For m#aimagine the transition be-
tween the hair and the skin of a virtual human. A pixel of thgnsentation map may reach
a contribution of100 for the skin part, while the hair part contribution is1&f0. Their sum
amounts t@20. Although this is not an issue while designing the segmehtety parts in
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Photoshop, it leads to problems when trying to normalizetmgributions in the application.
Indeed, with simple normalization, such pixels compengsencomplete sum with a black
contribution, thus producing a final color much darker thapeeted. This is illustrated in
Figure4.10 The proposed solution is to compensate this lack with whggead of black, to
get a real smooth transition without unwanted dark zones.

Figure 4.10: A blue to red gradient(Left) The sum of the red and blue contributions does not
reach 255 in some pixels, causing the gradient to suffer anunwanted black contribution,
(Right) A white contribution is added so that the sum of contribugigmalways 255.

4.3.2 Color Computation and Storage

At its creation, a character is assigned a unique set of 8@ colorsc,, for its eight body
parts (also illustrated in Figure9), randomly selected within constrained color spaces. For
each pixel composing a body, a final color is computed as a c@tibn of these eight colors,
weighted by the channel intensities of the segmentatiorsmigr instance, a body pixgl
with texture coordinateg, v) has its final color;,, computed as:

= Z Z I o(u, v)cpy(s, a). (4.2)

s€(51,52) a€(R,G,B,A)

Here,c, is the color of the original texture (top of Figude9) at coordinatesu, v). The
identifier s represents either the first or the second segmentation roaptfre pair used:
(51, S2). The function defined a& ,(u, v) is the intensity of the texel with coordinates v)
for channel: of segmentation mag, and finally,c,,(s, a) is the color of the corresponding
body part. Note that Equatioh.2 computes a sum on two segmentation maps and four
channels per segmentation map, totaling to eight comperieneight body parts.

To compute the final pixel color of each character, we havdempnted a dedicated
fragment shader (see Sectihf.2 of the Appendiy. At its creation, each character is as-
signed a unique set of eight random colaysto be applied to the eight body parts. Sending
these colors to the shader as uniforms would be time congurrnstead, eight unique body
part colors per character are computed at initializatiod, stored in eight contiguou3G B
texels, of al024 x 1024 image, called Color Look-Up Table (CLUT). Once filled, thelTL
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is only sent once to the shader. In order to arrange as masy&eight RGB colors as
possible, the alpha channel of the look-up image is alsoogepl. Thus, only six RGBA
texels per virtual human are used.

Therefore, it is possible to store a set of up%f‘;lﬂ = 131, 072 unique combinations
of colors. Previous methods were limited40096 combinations, because they could not
address every row of the look-up image by only using the afjpizeanel of a human texture.
Finally, to further improve detailed variety, we also asse&ach body part specularity pa-
rameters. Note that these parameters are not saved with{DLtO T, but directly sent to the
GPU. We show an illustration of a CLUT in Figudell

Figure 4.11: A CLUT image used to store the color of each virtual human bpdsts and
accessories (detailed in Sectiér3.2).

In terms of storage, each segmentation map pair correspomas 1024 x 1024 textures
of about 1MB each, compressed in DDS format (DXTCS5). The nemalb pairs defined for
each human template texture is up to the designer. As for th&rCit is not compressed to
avoid artifacts when reading pixel by pixel the colors tolggp the characters. It approx-
imately weights 4MB. The total memory storage cost for using approach is thus only
dependent on the number of human templates exploited araptiearance sets defined for
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Figure 4.12: Appearance sets applied to instances of a single humanaemplote the different
specular effects on the body parts and the varying clotle pest

each of them. Segmentation maps are generic: they can beruaeg number and on any
textured object to vary its appearance. For instance, tmenginstances of accessories (see
Figurel.2). They are also scalable to any LOD, and thus, keep the agpeaiof a char-
acter consistent. In Figur21, we illustrate this scalability on a single character reade

in three LOD. The final results obtained by introducing appeee variety are illustrated in
Figure4.12 where several instances of a single human template arkagesh taking full
advantage of all available appearance sets and coloryariet

We detail in Sectiord0.20f the Appendixone approach to implement segmentation maps
in a fragment shader, using GLSL with Shader Model 3.0 hardwa

4.4 Conclusion

In this chapter, we have introduced a new simple techniqaepdy variety in visual appear-
ance to object instances. The first step to add visual appeasariety is to create several
different textures for each template. The next step is ty tta colors of clothes, skin and
hair of instances sharing the same texture. For that, we leongnt the usual template tex-
ture with two segmentation maps that allow delimiting eigbdly parts that can be colorized
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differently for each instance at runtime. Finally, in ordersimulate different types and
colors of materials, the designer can specify illuminapanameters for each body part.

Thanks to this technique, crowds are enhanced with subtkeap, freckles and beard
effects, or detailed cloth patterns, and smooth transtimiween body parts are ensured (see
Figure 3.2). At initialization, the instances are created, and ranadofors within defined
spaces are chosen for each of them. The sets of chosen cadbiea contiguously stored
in a Color Look-Up Table on the GPU.

All the successive steps of this technique have been fullgileée, and a commented
fragment shader, implemented in GLSL, can be found in Appebd.2 We have illustrated
the use of appearance sets on several examples, demawsthegir versatility. Moreover,
appearance sets are easily scalable for all LOD commonlpisg.
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CHAPTER 4. APPEARANCE VARIETY



CHAPTER 5

Shape Variety

We have already described in Chaptérow to obtain varied clothes and skin colors by using
several appearance sets. Unfortunately, even with thebaitpies, the feeling of watching
the same person is not completely overcome. The main reasthre ilack of variety in
the human templates used. Indeed, it is very often the samamuaemplate (or a small
number of them) that is used for the whole crowd, resultingange groups of similarly
shaped humans. We cannot increase too much the number ohttemalates, because it
requires a lot of work for a designer to create the human tetepits textures, its skinning, its
different levels of detailetc. Note that the number of human templates is also limited by the
storage capacity of the computer running the simulatiorfuiiher add variety to characters
composing the crowd, it is possible to modify their shapethia chapter, we present two
methods to achieve this. First of all, characters can besaoceed with items such as bags,
hats, wigs, glasses, moustachets, Secondly, we propose a technique to modify the height
of a human skeleton, and the shape of its mesh.

Accessorizing crowds is kept simple and efficient by writttgyvn two assumptions:

(1) Accessories are not deformed. This makes the desighiaggomuch simpler, and also
alleviates the underlying runtime computations.

(2) An accessory is associated to a human template by attadisi vertices to a single
specific joint of the character’'s skeleton. Thus, every muoet of this single joint
directly reflects on the attached accessory.

Although these assumptions limit the variety of accessotleey greatly simplify their cre-
ation and usage. Also, the available set of accessoriedl imgje enough to offer a great
improvement on crowd variety, as illustrated in FigGr2

53
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To add variety to the morphology of human templates, we cadifntheir height and
shape. For each template, the designer can specify skeletbskinning alterations. Skele-
ton modifications allow for global height variations and etwcalized effects such as broad
or narrow shoulders, while skinning deformations increageshape unigueness by scaling
each vertex independently to obtain thin, fat, muscular@ednant templates.

We first present a general introduction to accessories gradate them into two types in
Section5.1 Then, in Sectiok.2, we show how it is possible to adapt them for all rendering
levels of detail (LOD)j.e., deformable meshes, rigid meshes, and impostors. In $ex8p
we describe our implementation of accessoriegaQ A discussion on their limitations and
possible extensions is presented in Secliagh Finally, we introduce how to further modify
the shape and height of a human template in Se&ibn

5.1 Accessories

In real life, people have different haircuts, they wear loaitglasses, carry bags, or suitcases,
etc. These particularities may look like details, but it is witletsum of those details that we
are able to distinguish anyone. In this section, we firstarplvhat exactly are accessories.
Then, we show from a technical point of view the differentdgrof accessories we have
identified, and how to apply them to all rendering levels dbde

An accessory is a simple mesh representing any elementahdtecadded to the original
mesh of a virtual human. It can be a hat as well as a handbatpssss, a clown nose, a wig,
an umbrella, a cellphonetc. Accessories have two main purposes: first, they allow tdyeasi
add shape variety to virtual humans. Second, they make cieasdook more believable:
even without intelligent behavior, a virtual human walkiagund with a shopping bag or
a cellphone looks more realistic than one just walking adourhe addition of accessories
allows a spectator to identify himself to a virtual humargdogse it performs actions that the
spectator himself does everyday. We basically distinginshdifferent kinds of accessories
that are incrementally complex to develop. The first groupoisiposed of accessories that
do not influence the movements of a virtual human. For ingtawbtether someone wears
a hat or not will not influence the way he walks. The second ggathers the accessories
requiring a small variation in the animation clip playedg, a virtual human moving with
an umbrella or with a bag still walks the same way, but the aroontact with the accessory
needs an adapted animation sequence.

5.1.1 Simple Accessories

The first group of accessories does not necessitate angudartmodification of the ani-
mation clips played. They simply need to be correctly “ptHoen a virtual human. Each
accessory can be represented as a simple mesh, indepemderinfy virtual human. First,
let us lay the problem for a single character. The issue isrider the accessory at the correct
position and orientation, accordingly to the movementsiefcharacter. To achieve this, we
can “attach” the accessory to a specific joint of the virtuahlan. Let us take a real example
to illustrate our idea: imagine a walking person wearing & Bapposing that the hat has
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the correct size and does not slide, it basically has the saowement as the head of the
person as he walks. Technically, this means that the sdriaainices representing the head
movement are the same for the hat movement. However, the nat placed at the exact
position of the head. It usually is on top of the head and caari@mted in different ways,
as shown in Figur&.1 Thus, we also need the correct displacement between tlgdiaa
position and the ideal hat position on top of it. In summar\greate a simple accessory, our
needs are the following:

e For each accessory:

— A mesh (vertices, normals, texture coordinates),
— Atexture.

e For each human template / accessory couple:

— The joint to which the accessory must be attached,
— A matrix representing the displacement of the accessdatjvely to the joint.

Note that the matrix representing the displacement of thessory is not only specific to
one accessory, but specific to each human template / acgesagle. This allows us to vary
the position, the size, and the orientation of the hat dejpgnzh which virtual human mesh
we are working with. This is depicted in Figuel, where the same hat is worn differently
by two human templates. It is also important to note that tia fo which the accessory
is attached is also dependent on the human template. Thisatdise case at first: a single
joint was specified for each accessory, independently fl@rhtuman templates. However,
we have noticed that depending on the size of a virtual hus@ng accessories may have to
be attached to different joints. For instance, a backpaokiattached to the same vertebra
ifitis for a child or a grown up template. Finally, with thisformation, we are able to assign
each human template a different set of accessories, giratBasing the feeling of variety.

5.1.2 Complex Accessories

The second group of accessories we have identified is thehaheegquires slight modifi-
cations of the animation sequences played, the hand close to the ear to make a phone
call, or a hindered arm sway due to carrying a heavy bag. Goimgethe rendering of the
accessory, we still keep the idea of attaching it to a spgaiiint of the virtual human. The
additional difficulty is the modification of the animatiorips to make the action realistic.
We only focus on locomotion animation sequences. Our ravernaais a database of motion
captured walk and run cycles that can be applied to virtuaidns. There are two options
to modify an animation related to an accessory. Let us takestvamples, illustrating these
cases:

e If we want a virtual human to carry a bag for instance, the aiom modifications
are limited to the arm sway, and maybe a slight bend of theesfmrcounterweight
the bag. Such modifications can be applied procedurallyaanantime, by blocking
some joint movements, and / or clamping their rotation.
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Figure 5.1: Two human templates wearing the same hat, in their defasttup®. The pink,
yellow and blue points represent the position and oriemriadf the root, the head joiritn1), and
the hat accessorfyn2), respectively.

e If it is a cellphone accessory that we want to add, we need ¢p kiee hand of the
character close to its ear and avoid any collision over theledlocomotion cycle. This
kind of modifications is too complex to be achieved at runtiimesuch cases, we work
with an inverse kinematic tool to modify the animation cycle a pre-process. From
each animation clip, an adjustment of the arm motion is peréal in order to obtain a
new animation clip integrating the desired movement. Tlaesmation modifications
can be generalized to other movements that are independemtainy accessory, for
instance, hands in the pockets.

The process to render complex accessories is exactly the aamendering simple acces-
sories, and detailed in Secti®3.2 The animation stage however, has some particularities
for complex accessories, and requires special care. WeatedChapte to these animation
modifications.

5.2 Levels of Detail for Accessories

There are several important steps in the pre-process oflmgden accessory, so that it can
later be correctly placed and oriented for all human tenaglafFirst of all, we identify the

joint to which the accessory should be attached. In mosscése same joint is selected for
all human templates, but when they are too different in simepest adapted joint can differ,
e.g, a backpack would be attached to a different vertebra onld @hd on an adult template.
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The chosen joint is called thetach joint In a second phase, the accessory is transformed,
so that it perfectly coincides with the mesh of each humamtate. These changes are
expressed relatively to the attach joint a a 4 transformation matri®; .cssory, Saved for
each human template and accessory combination.

At the initialization of the crowd simulation, all chararteare assigned various acces-
sories that are then displayed at runtime. Note that thesgraments are not randomly
achieved. First of all, each accessory is categorized wibeific type (backpack, hat,
glassesetc) and a specific theme (casual, old-fashioned, fuetg). Secondly, the human
templates for which this accessory will be available aresendoy the designer. This classi-
fication allows to choose which accessories are to be usead apglication, thus offering a
large variety of possibilities within the limits of extrayance set by the designer. The final
4 x 4 transformation matri¥’ of the accessory in world space is computed at each time step
with the equation:

Rt
T = |: 0 1 :| - TcharnointTaccessory (51)

whereT,,,, is the character transformation matrix in world coordisasndI,;,, is the
attach joint deformation matrix, relative 1Qy,,,..

Accessories are scalable to all LOD commonly used in crowtlkitions. For de-
formable meshes, Equati@nlis directly computed at runtime. In the case of rigid meshes
and impostors, we explain below dedicated methods to egalsite accessories. Beforehand,
it is important to mention that switching from an accessizdeformable mesh to a rigid
one is unnoticeable as they share the exact same appeafaneesure transparent switch-
ing between accessorized rigid meshes and impostors, weeipexel to texel ratio metrics
described in[Dobbyn et al. 2003.

5.2.1 Rigid Meshes

Rigid meshes are precomputed postures, or keyframes, ofrdable meshes performing
a given animation sequence. Their main advantage is thaymandc deformation of the
skeleton is necessary at runtime. However, it also imphasmatrixT},,; in Equation5.1
is not available to place an accessory.

A naive approach would be to store the accessory animatiaoms for a rigid mesh:
store the positions of all the accessory vertices at eacfrdtag. However, we here take
advantage from our assumption (1): the accessory’'s mesévi meformed: every time
a rigid mesh keyframe is stored, the matrides,,;: to which accessories are attached are
also saved. We have identified six potentially “attachapéits: the skull, for glasses and
hats, a vertebra for backpacks, elbows, for watches anéletacand finally wrists, to place
objects in the character’'s hands, given there is no fingenatmn. Thus, for one rigid
mesh keyframe, only six matrices represenfiig,; are saved. The storage cost for a single
keyframe is thus independent from the number of accessavigsreas the naive approach
would require to save one keyframe for each of them.
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5.2.2 Impostors

Accessories for impostors are generated in a pre-procesgie tiles are sampled all around
the object in orthographic mode and savedir? x 512 normal anduv maps. In Fig-
ure5.2(b) and (c), we illustrate av map and a normal map for a hat. Sampling the circum-
scribed sphere of an object is often achieved with sphecmaidinates, although it leads to
an excessive amount of samples near the poles, as compaitezl équator. Also, finding
the correct tile at runtime requires costly trigonometeenputations. As depicted in Fig-
ure5.2(a), we apply a Sukharev grid on each spherical face of a cldyeljova and LaValle
2004: this method uses a cube map to discretize a sphere anibdistsamples on it. With
this method, samples are distributed on the sphere in a mocé amiform way than with
spherical coordinates. Moreover, with this method, findhegcorrect tile online sums up to

a fast cube map look-uereene1984. Note that the memory storage cost for an accessory
impostor is constant and independent from the number of&eds generated for a human
impostor. More precisely, we store one map and one normal map per accessory in DDS
format (DXTC5), for a total of only 680KB (including mipmaps/Ne note that some chan-
nels have more precision than others. Thus, to make surethpressed atlas have as little
artifacts as possible, we use the most accurate channetséctise data we need.

VUG
Y o T L WAl
i .

Figure 5.2: (a) Sampled tiles for a hat impostor creatiofb) The resultinguv map and(c)
normal map.

To correctly place an accessory impostor, we use a dedioatéidhe pipeline, illustrated
in Figure5.3(a), and composed of five steps:

Step 1. Compute the accessory transformation matfiwith Equation5.1, that provides
the orientation and position of the accessory, should iebeered as a 3D mesh. To obtain
T, we pre-compute and save the six matri@és,, for each human impostor keyframe,
similarly to the rigid mesh approach, since no skeletal eédion is performed online for
impostors either.

Step 2. Retrieve a normal and@ map tile, representing the accessory from the correct
point of view. The adequate view is deduced by expressingctineent camera position
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relatively toT', i.e., in accessory space. The resulting direction vector detesthe tile to
use in the cube map, as illustrated in Figara(a) [Greeng1984.

Step 3: Compute the exact position of the accessory impos#&yrthe quad. This position
does not correspond to the one where the 3D mesh would bereghdecause the center of
the quad and the center of the 3D mesh do not necessarilyspomd. To have an impostor
correctly positioned at runtime, we make sure, in a pregsscand when generating each
tile, to save the offsetX,Y) between the 2D quad center and the 3D accessory center,
projected onto the quad. At runtime, the translation paft7 is transformed into camera
space, and offset byX, Y') so that the impostor is properly placed. Note thistonly offset

on theX andY axes in camera space. At this stage, the deptthere the quad has to be
rendered is still the same as the one originally computéed.iThe algorithm to compute
each fragment depth is detailed in Step 5.

Step 4: Rotate the quad around the camefaxis so that it is correctly oriented. We
illustrate the necessity of this stage in Figtr8 (c), where a side view of a hat positioned
on a human impostor is shown. Since the character wears thedhiaed backwards, the
guad has to be rotated to correctly imitate the 3D hat oriemta The computation of this
rotation is achieved at runtime by first transforming thetion partR of 7" into camera
space, and then extracting #saxis component.

Preprocess Runtime

1.
i Compute T

v

'Find Correct Tile

'

(X,Y) = Offset Tile

!

joint

Orient Tile
ZaCC 3 ;
- Compute
Z-Z
f o> Fragment Depth
ZC -n

a.

Figure 5.3: (a) Pipeline of accessory impostor positionin¢b) Impostors with no occlusion
treatment(c) Impostors with our fragment depth computation.
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Step 5: Compute the depth of each impostor pixel (or fragment) tachvisual artifacts,
as in Figure5.3 (b). The main problem when addressing such an issue withsp@etive
projection is that depth values in tiebuffer do not vary linearly. Our dedicated algorithm
solves visibility problems inherent in impostors. Moregvéis robust and allows to use
any projection, even perspective. Here, we first explainripgortant values to compute in
a preprocess, and how they are later exploited in real tintetermine the depth of each
fragment.

When each tile is generated offline, the near and far clipplages are set as close to the
object as possible. Note that the near plane thus has thedgtteas the accessory vertex
closest to the camera. Then, on the GPU, the 3D accessogx\agpth values in camera
space are passed from the vertex to the fragment shader.aElorfmgment, these values
are interpolated. We then compute, for each fragment, a diegthz,.. as the normalized
distance between the fragment and the near plane:

z — Z
P L . (5.2)
Zf — Zn

wherez, andz; are the near and far clipping plane depths, apg, is the fragment
depth value interpolated from the vertices. For each fragmeg.. is saved in one of the
unused channels of the map (see Figuré.2 (b)).

In addition, for each tile, two important parameters needdnesd at this stage, still in
camera space: the distance— z, between the near and far planes, which later allows to
denormalizez,.., and the distance._,, between the depth of the 3D accessory center and
the near plane.

At Step 5 of the runtime pipeline, the four quad vertices arg sntouched to the vertex
shader, where they are transformed into camera space.sAhthment, these vertices all have
the same depth as the 3D accessory center, defifiBdTiey are then sent to the fragment
shader, where we compute the final depth of each fragmentarofverations. First, the
value z,.. is retrieved from the,v map to be denormalized. Then, the depth,... of the
fragment is computed in camera space:

Zeamera = Zfrag + 2en — (Zacc(zf - Zn)) (53)

where zy,,, is the fragment depth value in camera space, interpolated the depth

of the quad vertices in the GPU. The first part of Equao®shows that each fragment
has a depth of;,,, + z._, at thenearest If the accessory was to be rendered with its 3D
mesh, this value would correspond to the depth of its velttesest to the camera. From this
distance, the second part of Equat®B offsets each fragment by the denormalized value of
Zace- Based on its initial computation (see Equatto®), this offset is at the maximum equal
to the distance between andzy, i.e., the 3D accessory vertex that is the farthest from the
camera.

Finally, we use the perspective transform to expeess.... in the canonical view volume,
i.e., between-1.0 and1.0:
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Sf+ Sp n 2.0s¢sy,

depthsrqg = (5.4)

Sf—n S f—nZcamera

wheres,, ands; are the depths of the scene near and far planes in camerg spalce
sy_y IS the distance between them. Note that in the OpenGL Shadinguage, the depth
assigned to each fragment ranges betw&érand 1.0. The result to Equatiob.4 there-
fore has to be normalized. This method produces optimaltsesthen the computation of
depth values is performed for both human impostors and #ueessories, as shown in Fig-
ure5.3(c). Also, note that the presented accessory impostor rdesrelso compatible with
more sophisticated virtual human impostor methods sucheasrie of Kavan et al. 2008§.

5.3 Accessories Implementation

In this Section, we focus on the architectural aspect of ssmées. We present with small
pseudocode snippets, how to store, load, and render them.

5.3.1 Loading and Initialization

First of all, each accessory has a typgy, “hat” or “back pack”. We empirically differentiate
seven different types. In order to avoid the attributionfof,instance, a cowboy hat and a
cap on the same head, we never allow a character to wear nar@tie accessory of each
type. To distribute accessories to the whole crowd, we neexzktend the following data
structures (introduced in Secti@):

e Human template: each human template is provided with a list of ids correspand
to the accessories it can wear. This list is sorted by types Why, we know which
template can wear which accessory. This process is negessare all human tem-
plates cannot wear all accessories. For instance, a scagalbuld suit the template
of a child, but for an adult template, it would look much lestidvable.

e Human instance: each human instance possesses one accessory slot pegeyiss.

This allows to later add up to seven accessories (one of gpeh to the same virtual
human.

We also create two data structures to make the accessonpulisin process efficient:

e Accessory entity:each accessory possesses a list of human instance idsaefing
the virtual humans wearing it. They are sorted by human tatepl

e Accessory repository: an empty repository is created to hold all accessories thade
from the database. They are sorted by type.
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We show a schematic view of the accessory repository in Efgér(left): all accessories are
listed and sorted by type. Each accessory possesses aHistnain instance ids using it. At
initialization, the above data structures are filled, basethe content of our database (intro-
duced in Sectio.3.2. We detail this process in the three following pseudocaulepets:

01 // Create accessory entity and fill accessory repository.
02 For each accessory a in database:

03 | oad a’s data contained in the database,

04 create a’'s vertex buffer (for later rendering),

05 insert a into the accessory repository (sorted by type).

01 // Fill each human tenplate’s accessory |ist.

02 For each human tenplate h:

03 For each accessory a suitable to h :

04 insert a’sidinto h's list | (sorted by type).

01 // Fill each human instance’s accessory slots and

02 // fill each accessory’s list of instances wearing it.
03 For each human instance i:

04 get human tenplate h of i,

05 get accessory id list | of h,

06 For each accessory type t in |:

07 choose randonmly an accessory a of type t,

08 assign a to the correct accessory slot of i,

09 push i’s id in a s human instance id list (sorted by human tenpl ate).

The process of filling these data structures is done only andeitialization, because we
assume that once specific accessories have been assignedrticarhuman, they never
change. However, it would be easy to change the accessooigsat runtime, through a
call to the last loop. Note that a single vertex buffer is tzdaor each loaded accessory,
independently from the number virtual humans wearing it.

5.3.2 Rendering

Since the lists introduced in the previous section are atesoaccording to our needs, the
rendering of accessories is much facilitated. We show infélewing pseudocode our
pipeline:

01 For each accessory type t of the repository:

02 For each accessory a of type t:

03 bi nd vertex buffer of a,

04 send a’' s appearance paraneters to the GPU,

05 get a’s list | of human instance ids (sorted by human tenplate).
06 For each human tenplate h in |:

07 get the joint j of h to which a is attached,

08 get the original position matrix nil of j,

09 get the displacenment natrix n2 of couple [a,h],

10 For each humen instance i of h:

11 get matrix nB of i’'s current position,

12 get matrix m4 of j's current deformation for i,
13 mul tiply current nodelview matrix by m (i=1..4),
14 call to vertex buffer rendering.

This pseudocode is especially optimized in order to mingsitate switches. First of all,
at line 03, each accessory has its vertex buffer binded. \Wepoacess this way, indepen-
dently from the human instances, because an accessoryatareges its shape or texture.
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Then, we process through each accessory’s human instarise (lihe 05). This list
is sorted by human template (line 06), allowing us to re&ievormation common to all
its instancesj.e., the jointj to which is attached the accessory (line 07), along with its
original position matrixn1 in the skeleton (line 08), and the original displacementixat2
betweenn1 and the desired position of the accessory (line 09). An eXaitipstratingm1
andm?2 with a hat attached to the head joint of two human templatslsasvn in Figures.1

Once the human template data is retrieved, we iterate owdr ieatance wearing the
accessory (line 10). A human instance also has specific datast required: its position
for the current frame, in matrix3 (line 11), and the displacement of its joint, relatively to
its original posture, depending on the animation playedanatrix m4 (line 12). Figures.4
illustrates the transformation represented by these twidcea.

Finally, by multiplying the matrices extracted from the hamtemplate and instance, we
are able to define the exact position and orientation of thessory (line 13). The rendering
of the vertex buffer is then called and the accessory is aygal correctly (line 14).

Figure 5.4: (Left) a human template in default postu&ight) An instance of the human tem-
plate playing an animation clip. The displacement of theybodlatively to the world origin
(m3) is depicted in red, the displacement of the head joint dudecahimation clip(m4) in
yellow.
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5.3.3 Empty Accessories

We have identified seven different accessory types. Andutiirt the accessory attribution
pipeline, we assign seven accessories per virtual humaa.ntimber is quite large and the
results obtained can be unsatisfying: indeed, if all chtaraovear a hat, glasses, jewelry,
a back packetc, they look more like christmas trees than believable peopMe need
the possibility to have people without accessories too. IllGvdor this, we could simply
randomly choose for each human instance’s accessory dtether it is used or not. This
solution works, but a more efficient one can be considerededd, at the rendering phase
of a large crowd, testing each slot of each body to know whathe used or not implies
useless code branching., precious computation time.

We therefore propose a faster solution to this problem bgitorg empty accessories.
An empty accessory is a fake one, possessing no geometryenex\buffer. It only pos-
sesses a unique id, similarly to all other accessories. ifdlization, before loading the real
accessories from the database, the following pseudocakedsited:

01 For each accessory type t:

02 create one enpty accessory e of type t,

03 put e in the accessory repository (sorted by type),
04 For each human tenplate h:

05 put e s idin h's accessory id list.

The second loop over the human templates at line 04 is negdssarder to make all
empty accessories compatible with all human templatese@ms pre-process is done, the
loading and attribution of accessories is achieved aslddtai Sections.3.1 This prelim-
inary introduction of empty accessories causes later ffagsible insertion in some of the
accessory slots of the bodies. Note that if, for instancedy lentity gets an empty accessory
for hat, reciprocally, the id of this body will be added to #rapty accessory’s body id list.
This is illustrated with an example in Figue5 (right), where human instande(referred
to asBodyl) wears an empty accessory in the glasses category. One nmalewioow the
rendering of an empty accessory is achieved. If keeping dhgespipeline as detailed in
Section5.3.2 we meet troubles when attempting to render an empty acgedgoreover,
some useless matrix computations would be done. Our soligisimple. Since the empty
accessories are the first ones to be inserted into the acgespository (sorted by type), we
only need to skip the first element of each type to avoid themngutation and rendering.
The pseudocode given in Sectibr8.2only needs a supplementary line, which is:

01b skip first elenent of t.

With this solution, we take full advantage of accessoriésaining varied people, not only
through the vast choice of accessories, but also througpbdbsibility of not wearing them.
And there is no need for expensive tests within the renddoioy. In Figures.6, we show the
results obtained with a single human template instantisé®@ral times, using accessories
in addition to the appearance variety detailed in Chagater

5.3.4 Color Variety Storage

In Chapter4, we detailed how to apply color variety to the different bgudyts of a texture.
The same method can be applied to the accessories. A huntaretexsegmented in eight
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Figure 5.5: (Left) a representation of the accessory repository, sorted kg tifach accessory
possesses its own list of body (or human instance) ids. RewEpy, all bodies possess slots
filled with their assigned accessorie@Right) an illustrated example of the accessory slots for
body with id1.

Figure 5.6: Several instances of a single human template, varied thrtheyappearance sets and
several segmentation maps, and accessories.
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body parts, each having its specific color range. At inizediion, for each instantiated virtual
human and each body part, a color is randomly chosen in a tangedulate the original
color of the texture.

Since accessories are smaller and less complex than vimtmaéns, we only use four
different partsj.e., one segmentation map per appearance set. Then, simaathg tchar-
acters, each instance of each accessory is randomly addopnecolors within theH S B
ranges defined for each part. These four random colors hewé@be stored. We reemploy
the Color Look-Up Table (CLUT) of human instances to saveciblers of accessories. In
order not to confuse the color variety of the body parts anddtof the accessories, we store
the latter contiguously from the bottom-right of the CLUBésFigure4.11), whereas the
human instance colors are stored from the top-left. Eactacker thus needs eight texels for
its own color variety and x 4 other texels for all its potential accessories. This sumsup
36 texels per character. A024 x 1024 CLUT is therefore able to roughly store more than
29, 000 unique color variety sets.

5.4 Accessory Limitations

The accessories presented above are a nice solution terfatld variety to a crowd of
human instances. They are simple to use, scalable, anddpruigually appealing results.
Nevertheless, to keep the accessorizing process as simpissible, we have made assump-
tions that limit our technique.

Firstly, the mesh is presumed to be attached to a single Jomiting the possibilities. It
would be possible to skin an accessory with more joints, Baptng it to any template with-
out changing the mesh vertices would prove to be difficulcoBely, to attach accessories
to moving characters, we assume to work with skeletons aelétsik animations, which is
not necessarily the case. Nevertheless, this limitationezssily be overcome by attaching
an accessory, for instance, to one of the vertices compasengharacter instead of a joint.

Thirdly, the technique does not provide solutions for siatiniy movements independent
from the attach jointe.g, a hat too big sliding on a child’s head. However, this cowd b
implemented as a supplementary layer on top of the curresitipwing algorithm. Finally,
some accessories cannot be used as presented here, béesiuseesumed weight should
alter the animation of the characters. For instance, a fmndhn easily be placed in a
virtual human’s hand, but if the performed animation segeés not altered, the bag seems
weightless, and the resulting effect is not realistic. Weeheome up with two solutions to
solve this issue, which are presented in the next chaptereder, the range of accessories
unconcerned by this limitation is sufficiently large to aldg obtain unique instances in
crowds.
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5.5 Shape and Height

A second possibility to add shape variety to instances ofreedauman template is to modify
their morphology, like their height and shape. A dedicatenl has been created in order
to help a designer for such a task: for each template, thgukescan specify skeleton and
skinning alterations. Skeleton modifications allow for ligb height variations and more
localized effects like broad / narrow shoulders, while skiig deformations increase the
shape uniqueness by scaling each vertex independentlytéainadhin, fat, muscular and

pregnant templates. Combined shape and height effectdumteated in Figure.7.

Figure 5.7: The space of interactive height and shape variety at creafibe human template
grows up in the right axis, while it gets more fat on the lefisax

5.5.1 Shape

Modifying the shape of a human mesh is achieved in three steps

Step 1. Using a commercial 3D package like 3DSMaxufodesk 20093, it is possible
for a designer to paint BatMapfor a given template, as seen in Figl®. The FatMap is
an extra gray-scal&’V’ texture that is used to emphasize body areas that store &akeD
areas represent regions where the skin will be most defqrengdon the belly, and lighter
areas are much less deformed, like the head. When the aredtibe FatMap is complete,
the grayscale values at each texel are used to automatit@ione value for each vertex of
the template’s mesh. Each of these values, called\Valeight is attached to the vertex as an
additional attribute.
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Figure 5.8: Two FatMaps designed in 3DSMak(itodesk 20094. Dark areas represent regions
more influenced by fat or muscle modification, while lightartp are less modified.

Step 2. The next step is to compute in which direction the verticesaoved when scaled.
We have found that using the normal of a vertex as its scalmegtibn provided bad results,
especially at the shoulders and armpits. Instead, we cantpatscaling direction of each
vertex as the weighted normal of the bones influencing it: eflach joint; influencing a
vertexv, we first compute the vectgt i.e., the vector connectingto its child j, (asj. — j).
Second, we compute the vector connectindp v asj.v = v — j,. Finally, we can obtain
the normat; to j that passes throughas:

- - A j];f

Wherej is the unit vector in direction. The final vector,, normal tov, is computed as the
sum of normals computed with Equatiérb for all joints influencingv, weighted by their
level of influence (which is provided from the skinning phas¢he vertex):

4
N, = Zﬁj - weight; (5.6)

=0

wheren; is the unit vector in direction;, computed with EquatioB.5, andweight; is the
level of influence of jointj on vertexv. Note that the above equations cannot be computed
if j is a childless joint. In such a case, we use an approximabi@valuaten,; asv — j,,
wherej,, is the position of jointj in the world coordinates.
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Step 3. Once the direction of the body scaling is computed for eactexethe actual
scaling can take place. The extent to which we scale the b®digfined by datScale
randomly chosen within a pre-defined range. Each veriexhus deformed as:

v/ =v+ (n, - (1 — fatWeight,) - fatScale) (5.7)

where fatW eight, is the weight associated toat the creation of the FatMap (see Step 1).

A design tool has been created in order to help a designeeiagtex editing phase. It
allows the designer to test the FatMap created in anothewaied, and to decide of minimal
and maximal values to which vertices are authorized to bkedciee., the valuedatScale
can take.

5.5.2 Height

Our second contribution is to modify the height of a humangiate, by scaling its skeleton.
To help the designer in this task, we provide additional fiomalities to the design tool
presented above: for a given human template skeleton, dbalgpace of height scaling can
be defined. Fine-grained local tuning for each joint can bksaspecifiedi.e., minimal and
maximal scale parameters on they, andz world axes. These data allow several different
skeletons to be generated from a single template, which Wéheaneta-skeletanFor each
new skeleton, a global scale factor is randomly chosen witfe given range. Then, the
associated new scale for each of its bones is deduced. SalbgkKeletons mixed with broad

/ narrow shoulders are thus created.

The skin of the various skeletons also needs adaptationh &atexv of the original
template is displaced by each jointhat influences it:

v' = v+ (worldMatrizSkeleton,
-(inverseWorldMatrixMetaSkeleton; - v - scale;))

whereinverseW orldMatrixMetaSkeleton; is the matrix that allows to express vertex
in the original joint reference, andoridM atrizSkeleton; is the transformation matrix of
joint 5 in the newly generated skeleton.

Both methods, skeleton modification and displaced skinocest are compatible when
applied consecutively. Some results of the technique egpt a template are illustrated in
Figure5.9. The main limitation to this approach is that it is not coraptiwith other levels
of detail (LOD) at low cost. In both cases, our current solutis to generate a series of
skeletons and meshes in a pre-process, and compute rigliemésmpostors for each of
them. Unfortunately, this solution is quite limiting in bes of memory. Finding solutions to
efficiently scale this work is our main concern for future wor
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Figure 5.9: Results of shape and height modifications shown on multigances of a single
template.



CHAPTER 6

Animation Variety

As explained in previous chapters, it is possible to varydppearance and shape of in-
dividuals, even when issued from the same human templatevet®y, we introduced in
Chapter3 the necessity to also provide a large variety of animatigrsdb the simulation.
The most important factor for virtual humans to look differés to modify their visual ap-
pearancei.e., their body part colors, and their shape. A second impoftastor, although
less paramount is their animation. If they all perform th@sanimation, the results are not
realistic enoughNicDonnell et al, 200g. In this chapter we describe three techniques to
vary the animation of navigating charactears,, working with locomotion animations. First,
in Section6.1, we introduce variety in the animation by generating a lang®unt ofloco-
motioncycles (walking and running), andle cycles (like standing, talking, sittingfc). In
Section6.2, we detail themotion kit a data structure, previously introduced in ChaBi¢nat
efficiently handles animations at all levels of detail (LODhen, in Sectior®.3, we present

a second technique of animation varigtg. how pre-computed animation cycles can be
augmented with upper-body variations, like having a hantherhip, or in a pocket. Finally,
in Section6.4, we introduce the third technique to achieve variety: pdoical modifications
applied at runtime on locomotion animations to allow crowasvear complex accessories
(introduced in Sectiob.1.9.

6.1 Animation Types

In order to obtain variety in animation, there is a great neea large set of raw animation
cycles that can then be further varied. Varied animatione i@ be created for each human

71
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template, and stored on a centralized animation clip dawba be used directly by the
human instances.

For a typical crowd scenario, we create two kinds of clige andlocomotionclips,
that we morphologically adapt for each template. Idle ciips usually hand-designed. We
take care to make these animations cyclic, and categomere iihnthe database, according to
their type: sitting or standing, talking or listeningtc. For locomotion clips, walk and run
cycles are generated from a locomotion engine based on mcajoture data. WWe compute
such locomotion clips for a set of speeds. Thus, during tiged-animation, it is possible
to directly obtain an adequate animation for a virtual hupgaven its current locomotion
velocity, and its morphological parameters.

Figure 3.1 presents a convenient schema to visualize and situate tloeisanimation
components (in the Variety box), within the overéQarchitecture.

6.1.1 Idle Animation Clips

Since idle motion clips are created by a designer, they arseeery different, and no addi-
tional variety technique is required to make them uniques ©not the case for locomotion
cycles, which are further discussed in the remaining of¢hapter.

Idle clips are used in specific cases. At the initializatibiYaQ it is possible for the user
to indicate a series of navigation graph vertices, where tnddvike to see idle pedestrians.
The reader is invited to refer to Sectid0.1of the Appendix for an introduction on navi-
gation graphs. The user thus provides a list of graph vesitite number of pedestrians he
wishes to put there, and the type of idle animations he wéetpédestrians to play. Then,
at runtime, and thanks to the meta-information associatexzath idle clip in the database,
pedestrians are randomly picked and inserted in the chaaph gertex, and they start play-
ing the type of idle animations that has been assigned to.tl@&ame is taken to make idle
clips cyclic, and that their starting/ending frame is thenedor all clips of the same type
(having the same meta-information). Thus, when an idle gteéd@ has finished playing an
animation, it can randomly pick another animation of the sayppe without any transition
problem. We do not further detail this type of animationshes they are sufficiently varied
to not require any further treatment.

6.1.2 Locomotion Animation Clips

We recall here the locomotion engine @lfardon et al.20043ab] that we have used to gen-
erate our original set of walk and run cycles.

Glardonet al. have introduced a PCA-based locomotion engine capableimizing on
the fly human-like characters of any size and proportion meggting complete locomotion
cycles. They have captured walk and run motions from sepexle, from which they have
created a normalized model. There are mainly three higé-lgarameters which allow to
modulate these motions:

e Personification weights: five people, different in heighd @it have been captured
while walking and running. This variable allows the userhoase how he wishes to
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parametrize these different styles.

e Speed: the five subjects have been captured at differentisp€bis parameter allows
to choose at which velocity the walk/run cycle should be gaieel.

e Locomotion weights: this parameter defines whether thesagch walk or a run ani-
mation.

Thus, the engine is able to generate a whole range of vargeaiotion cycles for a given
character. To efficiently animate the locomotion of eachviddal, we generate in a pre-
process a certain number of locomotion cycles for each hueraplate. We have used this
engine to generate oved0 different locomotion cycles per human template: for eacé on
of them, we sample walk cycles at speeds varying ftobnm /s up to2 m/s and, similarly

for the run cycles, betweeh5 m/s and3 m/s. Each human template is also assigned
a particular personification weight so that it has its owrt.g&Vith such a high number
of animations, we are already able to perceive a sense dtyan the way the crowd is
moving. Virtual humans walking together with different éonotion styles and speeds add
to the realism of the simulation.

6.2 Motion Kits

We have developed three levels of representations for tteatihumans: deformable
meshes, rigid meshes, and impostors. When playing an anmsgquence, a virtual hu-
man is treated differently depending on its current distagred eccentricity to the camera,
i.e., the current LOD it uses. For clarity purpose, we have giasheanimation clip a dif-
ferent name depending on which level of detail it appliesatoanimation clip intended for
a deformable mesh is skeletal animationone for a rigid mesh is agid animation and
finally, an animation clip for an impostor is ampostor animation

We have already shown that the main advantage of using léstedierepresentations is
the speed of rendering. However, for the memory, the cogboing) an animation sequence
for a deformable mesks. a rigid meshvs. an impostor is increasingly expensive (see
Figure7.4). From this, it is obvious that the number of animation sexes stored must
be limited for the less detailed representations. It is &ise that we want to keep as many
skeletal animation clips as possible for the deformableh@gsfirstly, because their storage
requirement is cheap, and secondly, for variety purposetedd, deformable meshes are at
the forefront, close to the camera, and several virtual msnpdaying the same animation
clip are immediately noticed.

The issue arising is then switching from a level of represton to another. For instance,
what should happen if a deformable mesh performing a walleagaches the limit at which
it switches to the rigid mesh representation? If a rigid ation with the same walk cycle
(same speed) has been pre-computed, switching is doneldimddbwever, if the only rigid
animation available is a fast run cycle, the virtual humalh‘{pop” from a representation to
the other, which is a disturbing artifact that may attraetelge of the observer. We therefore
need each skeletal animation to be linked to a ressemblijdjanimation, and similarly to
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an impostor animation. For this reason, we have develop=thdhion kitdata structure. We
first describe the motion kit data structure in SectfoB.1and then its implementation in
Section6.2.2

6.2.1 Data Structure

A motion kit holds several items:

A name, identifying what sort of animation it represets}, walk_1.5

Its type, determined by four identifieraction subaction left arm action andright
arm action

A link to a skeletal animation,

A link to a rigid animation,

A link to an impostor animation.

The only knowledge stored in each virtual human instancleastirrent motion kit it uses.
Then, at the Animator stage of the runtime pipeline (see thalH8me Component in Fig-
ure3.1), depending on the distance of the virtual human to the cantiee correct animation
clip is used. Note that there is always a 1:1 relation betwseemotion kit and a skeletal
animation,i.e., a motion Kit is useless if there is no corresponding ske@tamation. As
for the rigid and impostor animations, their number is muciaker than for skeletal anima-
tions, and thus, several motion kits may point to the samd ggimpostor animation. For
instance, imagine a virtual human using a motion kit représg a walk cycle at.7 m/s.
The motion kit has the exact skeletal animation needed fef@chable mesh (same speed).
If the virtual human is a rigid mesh, the motion kit may pomatrigid animation at.5 m/s,
which is the closest one available. And finally, the motiargkso points to the impostor an-
imation with the closest speed. The presented data steutwery useful to easily switch
from a representation to another.

In Figure 6.1, we show a schema representing a motion kit and its links fferdnt
animation clips. All the motion kits and the animations amed in a database, along with
the links joining them (see Secti@3.2. One may wonder what the four identifiers are for.
They are used as categories to sort the motion kits. With autdhssification, it is easy to
randomly choose a motion kit for a virtual human, given dgartanstraints.

Firstly, theaction typedescribes the general kind of movements represented bydhe m
tion kit. It is defined as either:

¢ idle/standfor all animations where the virtual human is standing orfeiég,
o idle/sitfor all animations where the virtual human is sitting,
¢ locomotion/walkfor all walk cycles, or

e locomotion/rurfor all run cycles.
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Figure 6.1: Example of motion kit structure. On the left, a virtual humastantiated from a
human template points to the motion kit it currently useghincenter, a motion kit with its links
identifying the corresponding animations to use for all Bartemplates and LOD.

The second identifier is th®ubaction typewhich more restrains the kind of activity of
the motion kit. Its list is non-exhaustive, but it containssdriptors such agalk, dance
listen etc. We have also added a special subaction caltate which is used when a motion
kit does not fit in any of the other subaction types. Let us tloée some action / subaction
couples are likely to contain no motion kit at all. For ingtana motion kit categorized as a
sit action and alancesubaction is not likely to exist.

The third and fourth identifierdeft andright arm actionsare used to add some specific
animation to the arms of the virtual humans. For instancé&taal human can walk with the
left hand in its pocket and the right hand holding a cellphowe further detail how such
animation clips are generated in Sect@®B. For now, it is sufficient to know that these two
identifiers are used to further categorize a motion kit. €heme three options to set these
identifiers: none which means that no special arm activity is achievaakef indicating
that the hand is in its pocket; aedllphone for having the hand close to the ear, as if making
a phone call. This list can be extended to other possible ations. For instance, holding
an umbrella, pull a caster suitcase, or scratch one’s head.

When we create a varied crowd wiaQ it is simple for each virtual human to randomly
ask for one of all the available motion kits. If the need is engpecifice.g, a virtual human
sitting on a bench, it is easy to choose only the adequatemkitis, thanks to the identifiers.
To illustrate this, we show an example in Figér&, where a virtual human is playing skeletal
animation, linked to a motion kit with the following idengfis: [walk] [none] [cellphone]
[pocket].

6.2.2 Implementation

In YaQ at initialization, the motion kits of the chosen human téatgs are uploaded from
the database, and stored in a four-dimensional table:

Tabl e[ action id ][ subaction id ][ left armaction id ][ right armactionid].
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Figure 6.2: A virtual human using a motion kit with identifierdwalk] [none] [cellphone]
[pocket].

For each combination of the four identifiers, a list of motkats corresponding to the given
criteria is stored. As previously mentioned, not all conalbions are possible, and thus, some
lists are empty.

In our architecture, an animation (whatever its LOD) is defant on the human template
playing it : for a deformable mesh, a skeletal animation seqa specifies how its skeleton
is moved, which causes the vertices of the mesh to get detbonéhe GPU. Since each
human template has its own skeleton, it is impossible toeskach an animation with other
human templates. Indeed, it is easy to imagine the differ¢nere is between a child and
an adult skeleton. For a rigid animation, the already deéafmertices and normals are
sent to the GPU. Thus, such an animation is specific to a masdhgan only be performed
by a virtual human having this particular set of vertices, issued from the same human
template. Finally, an impostor animation clip is stored asequence of pictures of the
virtual human. It is possible to modify the texture and calsed for the instances of the
same human template, but it seems obvious that such pictane®t be shared by different
human templates. This specificity is reflected in our impletagon, where three lists of
skeletal, rigid, and impostor animations are stored fohdaonan template.

It follows that each motion kit should also be human temptigpendent, since it has a
physical link to the corresponding animation triplet. Howe this way of managing the data
is far from optimal, because usually an animation (whatégekOD) is always available
for all the existing human templates. It means that, foraneg, if a template possesses
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an animation imitating a monkey, all other human templatesli&ely to have it too in
their animation repertoire. Thus, making the informationtained in a motion kit human
template-dependent would be redundant. We introduce twplsirules that allow us to keep
a motion kit independent from a human template:

(1) For any motion kit, all human templates have the corredpw animations.

(2) For all animations of all human templates, there is agsgronding motion Kit.

Thanks to these assertions, we can keep a motion kit indepéefrdm the human tem-
plates. We now explain how to still keep the knowledge of utaaimation triplet is linked
with which motion kit. First, note that each human templaietains amongst other things:

e A list of skeletal animations,
e Alist of rigid animations,

¢ A list of impostor animations.

Following the two rules mentioned above, all human tempglatatain the same number
of skeletal animations, the same number of rigid animatiand the same number of impos-
tor animations. If we manage to sort these animation listslaily for all human templates,
we can link the motion kits with them by using their index iretiists. We show a simple
example in Figuré.1, where a structure representing a human template is ddpiCie the
left-side of the image, a motion Kit is represented, withitsllparameters. Particularly, it
possesses three links that indicate where the corresgpadimations can be found for all
human templates. These links are represented with arrotte ifigure, but in reality, they
are simply integers that can be used to index each of the @émiegation lists for all human
templates.

With this technique, we are able to treat all motion kits peledently from the human
templates using them. The only constraint is to respecs (uleand(2).

6.3 Upper Body Movements

Further variations in locomotion clips are introduced iderto increase individuality in
motion. Indeed, in reality, individuals composing a crowe earely walking the same way,
arms resting alongside the body (the exception would bearylimarch activities). Most
of the time, hands are used to hold objects (cellphone), idideh in clothes (pocket), or
simply rest on the hip. Upper body variations are thus inioed in the cycles which keep
the forward-backward movement of the pelvis when walking amning. Example of such
variations are visible in Figuré.3.
Further variations in motion clips are introduced in orderiricrease individuality in

motion. Indeed, in reality, individuals composing a crowe earely walking the same way,
arms resting alongside the body (the exception would bearylimarch activities). Most
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of the time, hands are used to hold objects (cell phone, bagefk), are hidden in clothes
(pocket), or simply rest on the hip. Upper body variatiores thius introduced in the cycles
which keep the forward-backward movement of the pelvis wialking and running. A
varied locomotion cycle is created in a pre-process of thregs: first, we generate the cycle
with default upper body animation. Then, the designer miyndafines a set of constraints,
which enforce a specific arm postueeg, forcing some joints of the hand to reach a goal
position attached to the pelvis to simulate a hand in a poékeally, using an IK solver, we
iterate over each frame of the original cycle to obtain th&réd arm position.

Figure 6.3: Examples of upper body movements (hands in the pocket, pbalhehand on
hip, ...) added to a generic locomotion cycle.

The task of augmenting a locomotion cycle with upper body eneents, such as those
illustrated in Figures.3, proves to be more difficult than what it looks at first sigmdéed,
simply blocking the arm of a virtual human in a certain pasitis not sufficient; since the
character is walking, such an approach would result in thel lealliding with other body
parts. For upper-body motions to be correctly introduckdy tneed to be adapted at each
animation keyframe in order to follow the movements of thenary locomotion cycle. Such
atask is too costly to be achieved in real time, and thus nedusachieved in a pre-process,
i.e., based on the initial locomotion cycle, a new cycle must beegated.

A varied locomotion cycle is created in two passes. The fassgenerates the primary

cycle with default upper-body animation. The second passsisting in adding the sec-
ondary upper-body motion, is achieved using a prioritizeegtse Kinematics (IK) solveBaer-
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locher and Boulic2004. This tool allows to enforce several constraints at theeséime,
with levels of priority if necessary. To solve the IK probletine following inputs are needed:

e The original locomotion cycle;

¢ A hand-designed “first guess” posture of the hand and armgudedicated software,
such as MotionBuilder4utodesk 20094;

e The set of constraints to apply to the hand and/or arm. Eankt@nt is described
with two points on the body that we require to be placed asectoseach other as
possible. For instance, in Figuéed, the three colored cubes on the hand have to be
positioned as close as possible to the three correspondioged cubes attached to the
pelvis.

Figure 6.4: Set of controlled effectors attached to the hand and casrelpg goal positions
attached to the pelvis.

Once the inputs are provided, the IK solver is run for eacmé&af the animation, starting
with the first guess posture of the arm. When all frames haes lmemputed, the final
orientation of the modified joints are used to overwrite thginal orientations. We illustrate
in Figure6.5a locomotion cycle that has been augmented with the righd irathe pocket.

In order to make these variations scalable to all levels tdijeve need to pre-compute
some rigid animations, exactly as we do for primary locommotycles. For the impostors
however, we have observed that there is no need to pre-cerapah variations, for they are
too subtle to be noticed at far distances. Thus, when a Vinlwaan transits from a rigid
animation to an impostor animation, its upper body aninmafibit uses one) is switched to
a standard locomotion, with arms alongside the body.
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Figure 6.5: Example of posture from an accessorized locomotion cycle.

6.4 Complex Accessories

The main drawback of upper-body variations as presentdtipitevious section is that they
need to be pre-computed and stored in the animation datalasdra-animations. In some
simpler cases, the use of an IK solver is not necessary, gridiag some online modifica-
tions is sufficient to obtain realistic results. This is tlase for most complex accessories
(bags, flowers, boxes, suitcaset;), except for the cellphone, where the hand needs to stay
close to the ear. In this case the technique of Se@&i8rs used.

Similarly to simple accessories, complex accessories ttaeheed to a single skeleton
joint. Also, the accessory attribution and rendering pssaemains the same for both types.
The main changes happen at the Animator stage of the runtipedie (see Figurd.1).
The use of complex accessories is processed in four steps.

Step 1. Atinitialization, and for each complex accessory, the glesr can specify which
joints will be constrained and in which way. We have impletedntwo possibilities to
constrain a joint online: it can be frozen in a chosen origgona or its movement can be
limited within a given range of angles. For instance, caigya bunch of flowers requires the
shoulder movement is to be limited to a chosen angle rangie Wie elbow is completely
frozen at an angle of about 90 degrees.
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Step 2. Atruntime, during the animation phase, joints are first updas usual, based on
the current animation keyframe. Once the skeleton possuidly updated, the joints that
need special modifications are treated in the next two steps.

Step 3. The frozen joints are the most easy to update: whichevert#te sf their current
animation matrix (computed in Step 2), we completely ovéenit with the chosen orien-
tation. Note that care is taken to keep the same joint’s laéina in the matrix, because it
determines the length separating the joint to its child, gtimalild never be modified.

Step 4. For joints with constrained orientation ranges, the preagsnore difficult. In-
deed, an orientation matrix often defines a rotation on séa&es, and finding out the overall
angle of its movement is not intuitive. To solve this probjeme first transform the matrix
of Step 2 into an exponential map. An exponential map is attra composed of three
floats, like a 3D vector, which are able to represent any 3Bti@t. The advantage of this
representation is that its norm corresponds to the exadt afdghe described rotation. It is
thus much easier to clamp a rotation expressed with an expahmap than with a matrix:
first, we take the norm of the exponential mapand clamp it within the minimal and max-
imal authorized angles (provided at Step 1) as= clamp(n, minggie, MaTangie). TheN,
the clamped exponential mapis recomputed as = ¢ - n, whereeé is the normalized vector
represented by. Finally, the rotation matrix is derived fromi and used to overwrite the one
that was computed in Step 2.

We illustrate the results obtained with this approach inuFeg6.6 and6.7. The main
drawback of this approach is the difficulty we have to adafritigid meshes and impostors.
Indeed, no online animation can be performed on these epesONs. A first solution is
to pre-compute the constrained animations, but the unidgrimemory requirements would
soon be too demanding. Another possibility is to use anradtere representation to rigid
meshes and impostors. For instance, using a polypostoesasided in Kavan et al, 2009,
would solve our problem, since its 2D polygon can be updatedraime.
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Figure 6.6: Results obtained in an urban environment when modifyingigger body at runtime
to make virtual humans carry bags, puppets, balloons, fiovese.

Figure 6.7: More complex accessories carried by virtual humans in a ¢hgank environment.



CHAPTER 7

Real-Time Pipeline

In the Real-time component dMaQarchitecture (schematized in Figufel), decomposing
the process that occurs at each frame into stages allowBdieefly handle the data needed
to simulate thousands of characters in real time. A secomebitant point to satisfy real-
time constraints is to be able to group similar data and m®tteem together in order to limit
costly CPU and GPU state switches. Each stage becomes s#slpdor a specific task and
thus can be developed, tested and optimized separately.intportant to note that in the
following description of the Real-Time pipeline, each gtdgs direct access to the instances
composing the crowd.

We distinguish four different stages ¥aQ pipeline: the Scaler, detailed in Sectidr,
the Simulator, presented in Sectidr2, the Animator (Sectioi.3), and finally, the Renderer,
introduced in Sectioid.4.

7.1 Scaler

The Scaler is the first stage of the pipeline. The work donéimdtage consists in finding
which simulation and rendering level-of-detail is used vidrich area of the scene for the
current simulation frame.

7.1.1 Score Allocation

The Scaler receives two inputs: a navigation graph filleth wittual human ids and a camera
view frustum. From these inputs, the Scaler’s role is to ge@each navigation graph vertex
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Figure 7.1: The real-time component MaQarchitecture is composed of four steps: the Scaler,
the Simulator, the Animator, and the Renderer.

with two scores. Firstly, a level of detail (LOD), determihiey finding the distance from the
vertex to the camera and its eccentricity from the middlehefd¢creen. This LOD score is
then used to choose the appropriate virtual human repeganin the vertex. Secondly, the
Scaler associates with each vertex a score of interesttingsim an environment divided into

regions of different interest (ROI). For each region, weasd®a different motion planning
algorithm. Regions of high interest use accurate, but mos#yctechniques, while regions
of lower interest may exploit simpler methods.

Using the navigation graph as a hierarchical structure ¢wige virtual humans with
scores is an efficient technique that allows to avoid testidgidually each character. The
processing of data is achieved as follows: firstly, eactexent the graph is tested against the
camera view frustumi,e., frustum culled. Empty vertices are not even scored, nahéur
held in the process for the current frame; indeed, there istavest to keep them in the
subsequent stages of the pipeline. On the other hand,e=fiiled with at least one character
and outside the camera view are kept, but they are not assaneLOD score, since they
are outside the view frustum, and thus, their virtual hurmmemesnot displayed. As for their
ROI score, they get the lowest one: a minimal simulation agically moves the related
virtual humans along their path, and no dynamic collisiooidance need be achieved. This
minimal simulation is necessary, even though the chameter invisible, because without
care, when they quit the camera field, they immediately stowing, and thus, get packed on
the borders of the view frustum, causing a disturbing efi@cthe user. Finally, the vertices
that are filled and visible are assigned a higher ROI scomktlzn are further investigated
to sort their embedded virtual humans by human template, L8DD appearance set.
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7.1.2 Human Instance Lists

At the end of this first stage, three important human instdiste are obtained, sorted ac-
cording to different criteria. Updating these lists at efreime takes some time. However,
it is very useful to group data in order to process it throlghriext stages of the pipeline:
simple approaches that process virtual humans one aftéiheman no specific order, pro-
voke costly state switches for both the CPU and GPU. For aciexiti use of the available
computing power, and to approach hardware peak performatata flowing through the
same path need to be grouped.

To correctly handle virtual human instances, we start bp@ating a unique identifier
to each one of them. Since human instances need to be acaoessany different contexts,
several lists of these identifiers are set up, sorted acugrii different criteria, and kept
up-to-date. We mainly distinguish three lists of humananses (or identifiers representing
them): the rendering list, the navigation list, and the ation list. All lists are kept up-to-
date in the first step of the runtime pipeline, which is dethih Chapter.

Rendering list. This list is sorted to optimize the rendering of all instasclt is sorted
according to four criteria:

e By human template. This first criteria seems logical: inderdtances of a same
human template share a lot of common datg, skeleton, mesh, appearance sets.

e By steering type. We distinguish two types of steering whiedjuire a different posi-
tioning (see Chaptes: the “locomotion” mode, when pedestrians walk or run, are th
“idle” mode, when they perform more quiet actions such dsngl sitting,etc).

e By level of detail. The rendering system is very differenteéader each type of repre-
sentation.

e By appearance set. As previously demonstrated, some aestasiare the same ap-
pearance set (but not the same body part colors) and thusathe texture (more
details in Chapte4.

Note that impostors are very different from deformable giddimeshes. For this reason, we
use a different list to render them, sorted by human templste@appearance set (to avoid
constantly switching the texture), by animation, and findly keyframe. This animation-
based ordering allows us to limit the number of atlas swiclan atlas is read once for all
the impostors that use it, before switching to another atlas

Navigation list. Our navigation list is sorted out to optimize the simulatigrdates
of virtual humans, depending on the region where they auatstl,i.e., regions of high,
medium, or no interest. Indeed, as introduced in Appe@i4, virtual humans are steered
with motion planning techniques of various accuracy, ddpenon their position. We thus
use a list sorted with four criteria. First, the level of ir@st (high, medium, or low), to
know which algorithm to use. Second, by graph vertex: eactex®f the navigation graph
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containing humans is introduced in this list. Third, by siegtype (we only navigate the hu-
mans in the locomotion mode). A graph vertex can belong tersépaths, as later detailed.
We thus finally sort the list of human instance according toghth they are following.

Animation list. The main animation of human instances is usually achieved thie
same lists used for rendering. An ideal list for this stagelde sorted by human template,
by steering type (walking humans are not animated the sameawatanding humans, see
Chapter6), and by level of detail. Since the rendering list is exattly same, except for the
appearance set sorting criterion, we do not require to er@atew list for animation. The
additional work we achieve for facial and procedural anioret however, is quite different,
because it only applies to deformable meshes. Thus, sudtioaddlanimations use a much
simpler list, indexing only the deformable meshes in noipaldr order.

In a recent work Pettré et al.2004, we have experimented different steering methods.
An interesting observation we have made is that with a vgrgummber of characters in a very
large scale (tens of thousands), the performance of therelift steering methods remained
about the same. Memory latency to jump from an instance tother was the bottleneck
when dealing with big crowds.

7.2 Simulator

The second stage of the pipeline is tBenulator, which uses the second list introduced
above to iterate through all levels of interest and obtagnddrresponding filled vertices. At
this stage, virtual humans are considered as individual@btp, and depending on the ROI,
the proper motion planning method is applied. In other wptlde Simulator ensures that
each virtual human instance comes closer to its next waypan its next short-term goal,
and handles dynamic inter-pedestrian collision avoidaMae&distinguishes three different
levels of interest:

Level O: regions of high interest are typically zones in front of teenera, or where par-
ticular events are happening. Such regions are governegbbieatial field-based algorithm
similar to [Treuille et al, 2004, based on a precomputed grid. To avoid the costly spreading
of the potential field, we limit its computation to the solgimn of high interest. Note that
in regions of this level of interest, pedestrians are sttewards special waypoints corre-
sponding to the center of a neighbor cell with the lowest piidé  The navigation graph
waypoints are not used here.

Level 1: in regions still visible but of lower interest, pedestriaare smoothly steered
towards their navigation graph waypoint with an algorithimikar to Reynolds’ seek be-
haviour [Reynolds 1999. In addition, a short-term collision avoidance methodxleited:
taking advantage of the grid structure, a pedestrian chiadke cells ahead if another pedes-
trianis close by. Ifitis the case, an intermediate waypigiiitroduced to avoid the collision.
Once the collision is resolved, the pedestrian is assigseateixt navigation graph waypoint
again, and resumes its progress on its path.

Level 2: in regions of no interest,e., outside the camera view frustum, pedestrians
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are steered linearly towards their next navigation grapypeat and do not perform any
collision avoidance.

The last operation performed by the Simulator is to updagebishavior of the virtual
humans. The navigation graph vertices contain zero or nenastic keywords correspond-
ing to a specific behavior. For each vertex annotated witreaip behavior, the Simulator
applies the corresponding actions to its pedestrians. @&$i@tmg behaviors are typically
expressed through accessories acquisition and dynamitadion changess.g, going out
of a shop with a shopping bag, or looking at a specific intgrestt.

7.3 Animator

The Animator, the third stage of the real-time pipeline,@sponsible for the animation of
each virtual human, whichever the representation it isgysie., deformable mesh, rigid

mesh, or impostor. The lists of visible virtual humans, sdfby human template, LOD, and
appearance set in the Scaler phase, are the main data sgrusé in this stage.

The three different rendering levels of detail are depicteéfigure 9.1 The anima-
tion process is similar for all representations: dependimghe animation time, the correct
keyframe is identified and retrieved. Then, each represents modified accordingly.

Deformable Meshes. Below are described the specific tasks that are achievedhéor t
deformable meshes:

For each human tenpl ate:
get its skel eton,
For each deformabl e mesh LOD:
For each appearance set:
For each virtual human id:

get the correspondi ng body,
update the animation tinme (normalized between 0.0 and 1.0),
perform general skeletal aninmation,
performfacial skeletal anination,
perform hand skel etal animation.

Note that the second loop iterates over several LOD of dedblenmeshes. This situation
happens when several meshes with a different number oftearare usec.g, we can use
deformable meshes of 6,000 triangles at the fore-front essldetailed deformable meshes,
of 1,000 triangles behind. Performing a skeletal animatwinether it is for the face, the
hands or all the joints of a virtual human, can be summariaddur steps. First, the correct
keyframe, depending on the animation time, is retrievedeNlwat at this step, it is possible
to perform a blending operation between two animations. firted keyframe used is then
the interpolation of the ones retrieved from each animatidre second step is to duplicate
the original skeleton relative joint matrices in a cacheer,hin the cache, the matrices of the
joints modified by the keyframe are overwritten. Finally,tae relative matrices (including
those not overwritten) are multiplied to obtain global reas, and each of them is post-
multiplied by the inversed global matrices of the skeletblote that optional animations,
like facial animation, are usually performed only for thet@eformable mesh LOD.g,, the
most detailed mesh, at the fore-front.
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Rigid Meshes. For the rigid meshes, the role of the Animator is much redusiede all
the deformations are pre-computed:
For each human tenpl ate:
For each rigid nesh LOD:
For each appearance set:
For each virtual human id:

get the correspondi ng body,
update the animation tinme (between 0.0 and 1.0).

Note that once again, we could pre-compute rigid animatfonseveral meshes with a
different number of triangles. This is why the second loomtsoduced. However, most
of the time, we limit the number of rigid mesh LOD to 1, for stmy animations for several
meshes would quickly become too expensive.

Impostors. Finally, for the impostors, since a keyframe of an impostometion is only
represented by two texture atlas, no specific deformati@uséo be achieved. However,
we assign the Animator a special job: to update a new listrdfi@i human ids, specifically
sorted to allow a fast rendering of impostors. This list wasvpusly introduced as the
animation list in Sectiof7.1.2 At initialization, and for each human template, a specstl |
of virtual human ids is created, sorted by appearance spbastar animation, and keyframe.
The first task achieved by the Animator is to reset the impagiecific list in order to refill it
accordingly to the current state of the simulation. To rdiil list, an iteration is performed
over the current rendering list (sorted by human templa@) ] and appearance set), which
has just been updated in the Scaler stage:
For each human tenpl ate:
get its inpostor ani mations,
For the only inpostor LOD:
For each appearance set as:
For each virtual human vh:
get the body of vh,
update the animation tinme (between 0.0 and 1.0),
get body’s current inpostor aninmation id a,

get body’'s current inpostor keyfrane id k,
put vh's id in special list[as][a][k].

This way, the impostor specific list is updated every timedai passes through the Anima-
tor stage, and is thus ready to be exploited at the next ahdtkge, the Renderer.

7.4 Renderer

The Renderer represents the phase where draw calls aralyare$ued to the GPU to
display the environment and the crowd. Indeed, it is impdrta minimize first the state
changes overhead, and second, the number of draw calls.

7.4.1 Shadows

In our architecture, illumination ambiances are set froar firectional lights, whose direc-
tion and diffuse and ambient colors are prealably (or irtt@raly) defined by the designer.
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The light coming from the sun is the only one casting shadois.we lack a real-time
global illumination system, the three other lights are pnt¢so provide enough freedom for
the designer to give a realistic look to the scene. This cardigpn has given us satisfaction
as we mainly work on outdoor scenes. See Figugdor results.

Figure 7.2: Dense crowd in a large environment.

Virtual humans cast shadows on the environment and, rezaflypthe environment casts
shadows on them. This is achieved using a shadow mappingtalgdWilliams, 1978 Woo
et al, 19970 implemented on the GPU. At each frame, virtual humans arderd twice:

e The first pass is from the directional light view perspectivee, the sun. The resulting
z-buffer values are stored in the shadow map.

e The second pass is from the camera view perspective. Eaehipixansformed into
light perspective space and itsvalue is compared with the one stored in the shadow
map. Thus, it is possible to know if the current pixel is inéta or not.

So, we need to render twice the number of virtual humansyrga#tsent. Though with
modern graphics hardware, rendering te-anly framebuffer is twice as fast as rendering
to a complete framebuffer, one expects a certain drop inrdmed rate. Moreover, standard
shadow mapping suffers from important aliasing artefamtatied at shadow borders. Indeed,
the resolution of the shadow map is finite, and the largerdbaes, the more aliasing artefacts
appear. To alleviate this limitation, several strategresused:
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Figure 7.3: Shadowed scene with apparent directional light frustum.

¢ Dynamically constrain the shadow map resolution to visdblaracters, and

e Combine percentage closer filteririgdeves et al1987 with stochastic samplingjook,
1984, to obtain fake soft shadowslfalsky, 2009.

We now further describe how to dynamically constrain thedsiaamap resolution to visible
characters. A directional light, as its name indicates,efsnéd only by a direction. Ren-
dering from a directional light implies using an orthograpbrojection,i.e., its frustum is a
box, as depicted in Figurg3. An axis-aligned bounding box (AABB) is a box whose faces
have normals that coincide with the world axé&djler and Haines1999. They are very
compact to store; only two extreme points are necessarytéordme the whole box. AABB
are often used as bounding volumesy, in a first pass of a collision detection algorithm, to
efficiently eliminate simple cases.

A directional light necessarily has an orthographic frost@ligned along its own axes.
So, we can consider this frustum as an AABB. The idea is to caengt each frame the box
englobing all the visible virtual humans, so that it is asitigs possible. Indeed, using an
AABB as small as possible allows to have a less stretchedoshathp. At each frame, we
compute this AABB in a four-step algorithm:

1. The crowd AABB is computed in world coordinates, usingbies navigation graph
vertices. By default, the AABB height is set to two metersonder to bound the
characters at their full height.

2. The light space axes are defined, based on the light naedadiirection’_ . :

L, =normalize((0,1,0)" x L, ).
L, =normalize(L, x L, ).

3. Thedirectional light coordinate system is defined agthematrix M, = [L,, L, L.].

4. The eight points composing the AABB (in world coordinata® multiplied by, !,
i.e, the transpose a¥/;. This operation expresses these points in our light coatdin
system.
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Note that remultiplying the obtained points by; would express the crowd AABB back into
world coordinates. In Figur&.3 are illustrated the shadows obtained with this algorithm.
Practically, to be able to choose an adequate resolutiandive situatione.g, detailed
shadows for characters close to the camera, we use threeedifishadow maps: one for the
shadows cast by the environment, one for the people (defdenaad rigid meshes) near the
camera, and one for people far from it (impostors).

7.4.2 Virtual Human Rendering

Once the first pass has been executed, the second pass i® usaddr all the virtual hu-
mans and their shadows. To reduce state change overheauyrtiter of draw calls are
minimized, thanks to our rendering list of visible humande by human template, LOD
and appearance set.

Deformable Meshes. In the following pseudo-code, we show the second pass in the
deformable mesh rendering process:

For each hunan tenpl ate:
For each deformabl e mesh LOD:
bi nd vertex, nornal, index, and texture buffer,
send to the GPU the joint ids influencing each vertex,
send to the GPU their correspondi ng wei ghts,
For each appearance set:
send to the GPU texture specul ar paraneters,
bi nd texture and segnentati on naps,
For each virtual human id:
get the correspondi ng body,
send the joint orientations fromcache,
send the joint translations fromcache.

Note that the process of the first pass is quite similar, aljhodata useless for shadow
computation is not seng,g, normal and texture parameters. In this rendering phagecam
see the full power of the sorted lists: all the instances adraesdeformable mesh have the
same vertices, normals and texture coordinates. Thus tteegdinates need to be binded
only once per deformable mesh LOD. The same applies for theaapnce sets: even though
they are used by several virtual humans, each needs to berdgrance to the GPU. Note
that each joint transformation is sent to the GPU as two veatd four floating points,
retrieved from the cache filled in the Animator phase.

Rigid Meshes. For the rigid meshes, the process is quite different, silcedex defor-
mations have been achieved in a pre-process. We developheesecond pass in pseudo-
code:

For each human tenpl ate:
For each rigid nesh LOD:

bi nd texture coordi nate buffer,

bi nd i ndices buffer,

For each appearance set:
send to the GPU texture specul ar paraneters,
bi nd texture and segnentati on naps,
For each virtual human id:
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get the correspondi ng body,
get the correct rigid ani mati on keyfrane,
bind its vertex and nornal buffers.

In the rendering phase of the rigid meshes, only the textooedinates and indices can be
binded at the LOD level, in opposition to the deformable nesshvhere all mesh data is
binded at this level. The reason is obvious: for a deformatsh, all the components
representing its mesh information (vertices, normats) are the same for all instances.
It is only later, on the GPU, that the mesh is deformed to fitskeleton posture of each
individual. For a rigid mesh, its texture coordinates, glavith its indices (to access the
buffers), remain the same for all of their instances. Howesiace the vertices and normals
are displaced in a pre-process and stored in the keyframeesi@id animation, it is only at

the individual level, when we know the animation playedt thair binding can be achieved.

Note that since the vertices sent to the GPU are already rdefyrthere is no specific
work to be achieved in the vertex shader. Concerning thecsh@dmputation phase.e.,
the first pass, the pseudo-code is the same, but withoutrgpndeless data, like normal and
texture information.

Impostors. Rendering impostors is fast, thanks to the animation lislictvis sorted by
human template, appearance set, animation, and keyfrardas apdated at the Animator
phase. Here follows the corresponding pseudo-code:

For each human tenpl ate:
get its inpostor ani mations,
For each appearance set:
bi nd texture and segnentation maps,
For each inpostor animation:
For each keyfrane:
bi nd normal map,
bi nd W map,
For each virtual human id:
get the correspondi ng body,
get the correct point of view,
send to GPU texture coordi nates where
to get the correct virtual human posture
and point of view

With our dedicated list, if several virtual humans issuenhfrthe same human template and
appearance set are playing exactly the same keyframe, threhand UV atlases are bound
only once.

7.4.3 Performance

In this chapter, we have detailed different step¥afs pipeline to simulate crowds.

We now expose the performance obtained with this architecds a reminder, in Fig-
ure 3.1, the storage requirements are summarized, depending canthmation types. In
Figures7.4and7.5 we compare the frame rates obtained in two cases. Firgtignworted
virtual human lists are exploited, as detailed in Secfidh2 Secondly, when the runtime
animation and rendering stages do not use sorted lists,itaatlgt each virtual human, one
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tom) simple deformable meshes. The red lines show the resulésnedl when working with
sorted lists, the green ones with a naive approach. Theisticsite the results for 30 frames per
second.
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Figure 7.6: (left) Virtual humans navigating in a complex environmeniglft) Same configu-
ration of virtual humans with apparent levels of detail; @dr the rigid meshes, in green: the
impostors.

after another, in no specific order. With such a processhalirtformation needed by the
GPU has to be sent for each virtual human, independently frendata that may be shared
by several of them. The conditions in which the tests have bebieved are as follows: five
human templates, steering and animation enabled, no slsadovaccessories, no collision
avoidance. As one can observe in Figar4 when using highly detailed deformable meshes,
the results obtained with or without sorted lists are alnsosilar. This can be explained by
the communication sent from the CPU to the GPU (joint tragsmn): such transmissions
imply a pipeline flush for each rendered virtual human, theoning the bottleneck of the
application. However, when less detailed representa@wasexploited, the advantage of
sorting the lists becomes clear in Figuté. An image directly obtained from our running
architecture is shown in Figui@6. On the right-side, one can observe the distance at which
the virtual humans switch to lower representations: in redtiae rigid meshes, and in green
the impostors.
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CHAPTER 8

Results and Case Studies

In this chapter, we present the results obtained Wdak) We analyze the achieved perfor-
mance, and present various case studies in w¥aphas been successfully used:

e Case Study 1: Buildings.In Section8.1, we illustrate the versatility of segmentation
maps (described in Chaptéy by using them in a completely different context.

e Case Study 2: Theme Park.In Section8.2, we present a concrete example where
accessories (Chaptdy and segmentation maps (Chap#are combined to simulate
a theme park populated with human instances that are umcggpearance.

e Case Study 3: Ancient Pompeii.ln Section8.3, we present howaQhas been used
to simulate a Roman population in the Ancient city of Pompeé&his application has
been developed in the framework of a European project oru€lliHeritage.

e Case Study 4. Medical Domain. In Section8.4, we present two applications of
YaQin the medical domain. FirstlyfaQis currently used in the office of a physical
therapist to treat some patients’ equilibrium problemse $cond application dfaQ
aims at supporting the work of psychiatrists in helping im& of agoraphobia (with
crowds). This application has not yet been tested on achis&rgs, because we are
finalizing the integration o¥aQin a CAVE! to improve the feeling of immersion of
future patients.

LCAVE is the abbreviation for Cave Automatic Virtual Enviraent. It is a large cube in which a person
can stand. Each cube face is a screen on which virtual reéaldges are projected for the viewpoint of the
person, thus drastically improving the feeling of immensior a user, as compared to a single screen.

97
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8.1 Case Study 1: Buildings

Segmentation Map Texture Mesh Instance _ :-

CLut

Appearance Set

Figure 8.1: Relations between data structures. Each mesh instancesgessa set of colors in
the CLUT. Applying colors smoothly to the texture parts ibiaged with the use of segmentation
maps.

We have fully detailed our approach and implementation gieapances sets in Chap-
ter 4. We have presented images where this approach was sudlyeapflied on virtual
humans. In this section, we demonstrate the versatilityrabhdstness of appearance sets by
using them on an additional example. Indeed, although theeisf appearance variety may
seem limited to crowds, it can be encountered in many otlssrszavhere objects are suscep-
tible to be instantiated several times. The example we ptdwe is the case of buildings,
instantiated many times to form a city.

texture

segmentation maps

Figure 8.2: Each instance of a building template randomly chooses agaaippce set (a texture
and a segmentation map).

Applying color variety to buildings in a city is similar to ¢hcrowd approach. In Fig-
ure 8.1, we describe the different data structures employed. Attkation of a building
template, the designer produces a series of appearanceaetscomposed of one texture,
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and one or more segmentation maps, depending on the numbet®tomposing the build-
ing. As a reminder, note that each segmentation map canffieteditiate more than four
parts, one per channel. When the building template is itist&d, one color is chosen for
each part, and stored in a Color Look-Up Table (see Sedtidsd).

For each building template, several appearance sets careaed. Figure3.2 shows
some examples of appearance sets applied to the same Quidiplate. As a result, a

Figure 8.3: Appearance sets applied to instances of six building tet@pla

designer can easily modify building colors, patterns, amdemal properties. In Figuré.3,
buildings take full advantage of appearance sets: althawgjhgle texture is applied to each
of them, thanks to the segmentation maps, it is possibleiatify the windows, and define
particular specular and reflective parameters for them.

8.2 Case Study 2: Theme Park

We have previously detailed various techniques that carsbd to vary the appearance of
human instances (see in Fig@& a crowd using color variety techniques and accessories).

In this section, we present a case study of these techniginese appearance sets and
accessories have been combined to generate a crowd of uniguemn instances. To further
illustrate the versatility of the segmentation map mettamdessories are also segmented so
as to increase their variety. Note that we do not furtheribiétase techniques here, for they
have already been presented. We rather show the resultseafminpance obtained in the
concrete simulation of a large crowd of varied instancesspexific context.
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Figure 8.4: Appearance sets composed of two segmentation maps (eiditpaots) applied to
instances of six human templates. Accessories are vartbcBgpearance sets composed of one
segmentation map (maximum four different parts).

8.2.1 Scenario

Our particular scenario takes place in a theme park. The igatkmposed of numerous
doorways that cluster the environment into several atmargsh When a character passes
through a doorway, its colors and accessories change asgdalthe area theme: circus,
heaven, hell, halloween, etc. With this scenario, we detnatgsthat our appearance variety
methods can be integrated to complex real-time crowd agijdics. A video of this specific
simulation is available onlineMaim et al, 2009: the video shows a simulation of over
5,000 characters moving in the theme park environment5®f000 triangles). Dynamic
shadows are computed for the characters and the sceneatarignd collision avoidance
are enabled, and our three rendering LOD are used. F&jGiustrates crowds benefiting
from our techniques in the theme park with two images. Witteasories and segmentation
maps, we obtain unique and visually appealing individuals.

8.2.2 Performance

The following results and the video introduced above haenlproduced on an AMD64 X2
5200 with 2GB of RAM and an Nvidia 7900 GTX 512MB graphics bavirtual humans
and accessories are rendered using OpenGL pseudo-imgjanci

In Figure8.6, we show the number of characters, each wedrita3 accessories, that we

can render at 30 fps. For deformable meshes (Fi§i€)), the number of displayable char-
acters only slightly changes, since the bottleneck of tpelpie remains the mesh skinning.
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Figure 8.5: Unique characters simulated in a theme park.

Also, each character has ove000 triangles,.e., 5 to 12 times an accessory triangle count.
With rigid meshes (Figur&.6 (b)), accessories are proportionally more costly, foreher
no skinning phase, and the cost of rendering an accessanglei sums up to the same as
rendering a rigid mesh triangle. As for impostors (Fig8ré (c)), displaying an accessory
or a character has the same fixed cost: two triangles. Thetlgesformance is thus sizable.
However, it is possible in several cases to avoid rendermegssory impostors that are suf-
ficiently small to be indistinguishable at far distances), glasses, jewelry. In this manner,
many more human impostors can be rendered than depictedunef8.6 (c). The fragment
depth computation implies disabling early culling optiatinns done by the GPU. However,
as shown in Figur®.6 (d), the more accessory impostors, the less this compuataffects
the frame rate. Figur8.6 also depicts results with and without segmentation mapsalFo
LOD, using segmentation maps implies less charactersubea# the additional pixel color
computation. However, this cost is not prohibitive.
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Oacc l1acc 2acc 3acc

lacc 2acc 3acc

[] No segmentation map Segmentation map

Figure 8.6: Number of displayable characters at 30 fps with 0 to 3 acciesstor(a) deformable
meshes(b) rigid meshes(c) impostors, andd) impostors with depth computation.

Finally, with no accessories nor segmentation maps, langsvds can be rendered, but
they are composed of numerous similar instances, whichtidesirable. With our methods,
instead of huge crowds of mirror image characters, we ddfgid crowds of unique instances.
In Figurel.2, only five human templates are instantiated several tinodg,déxploiting their
textures, accessories, and segmentation maps. To iteigeaversatility of the segmentation
map method, accessories are also segmented to increaseatietly. We demonstrate in the
mentioned video that our methods can be integrated to comgéd-time crowd applications.

8.3 Case Study 3: Ancient Pompeii

The architecture ofaQhas also been used to simulate crowds in a real-time culteraghge
application: Pompeii was a Roman city, destroyed and calylburied during an eruption
of the volcano Mount Vesuvius. We have revived its past byuteipng a 3D model of its
previous appearance with crowds of Virtual Romans. In tadien, we introduce howaQ
has been able to simulate Ancient Pompeii life in real time.

First, we receive in input an annotated city model, gendrateng procedural model-
ing [Muller et al, 2006 Maim et al, 2007]. These annotations contain semantic data, such
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as land usage, building age, and window/door lab¥&Qis responsible for automatically
interpreting the semantics to populate the environmenttagger special behaviors in the
crowd, depending on the location of the characters. A videdable online Maim et al,
2007 shows the results obtained while simulating virtual Rosmana district of Ancient
Pompeii. We do not further detail how the virtual Romans esgpiintelligent behaviors, for
it is beyond the scope of this document. We however focus ewigual resultsi.e., which
variety techniques have been used and how they have beeitegpl

Color Variety. For this simulation, seven roman templates were used (tviabesptwo
plebeians, two patricians, and one legionary). To ensuggiad/crowd, each template used
segmentation maps to introduce color variety to their @stlskin, hair, and eyes. Designing
the constrained color ranges for each body part (see Se¢tibd of each template has
been a particularly demanding task; indeed, color spaces been chosen according to
archaeological data: slaves wore dark colors, mainly inles@f brown, while rich Romans
exhibited bright colors, as depicted in Fig@§.

Figure 8.7: Virtual Romans simulated in a reconstructed district of dintPompeii. The colors
worn by instances reflect their status: slaves, poor, rich, e

Accessories. In order to further increase their appearance variety, tin@d Romans
wear accessories adapted to their time: amphoras and ramead imainly. To be true to the
ancient traditions, amphoras are attached to differentgalepending on the Roman’s status:
middle- and low-class Romans may carry amphoras on thed, vdale richer instances do
not have such practices (see Figar8).

Animation Variety. Inthe Pompeii simulation, animation has been varied with tch-
niques: first of all, dedicated upper-body movements arecpneputed and introduced in
locomotion animations, as introduced in Sect®B. These upper body movements have
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Figure 8.8: (left) A middle-class Virtual Roman carries amphoras in her has also on
her head, whiler{ght) a rich Virtual Roman may carry bread in her hands, but wowitdhear
anything on her head.

Figure 8.9: Virtual Romans walking in a street of Ancient Pompeii.

been designed specifically for these Roman templates: waaneput either hand on their
hips (FigureB.8(left)); rich men may show their open right palm in a salutsipon; middle-
class men can have their right hand rest on their left showtdpresent a respectful salute
(Figure8.9). The second technique we use to apply animation varietgni¢es to the method
introduced in SectioB.4to bear complex accessories: freezing some joints in a pnede
orientation. In this particular case, we do not freeze ptiot constrain the movements of
Romans wearing complex accessories, but to bend the backm&R slaves. This effect is
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clearly visible on the video referenced above.

8.4 Case Study 4: Medical Domain

As presented in the previous sections, there are manyisiisaind events that can be simu-
lated withYaQ Recently, our crowd engine has aroused the interest oégsainals in vari-
ous fields of the medical domain, to help training patientfesing from diverse pathologies.
In Section8.4.1, we first present how the crowd engine has been used to traengasuf-
fering from equilibrium problems. Then, in Secti8m.2 we introduce howaQhas been
adapted to be used in a CAVE. A previous collaboration with Riquier, psychiatrist, has
been conducted to help patients suffering from social phobne idea of integrating crowds
in a CAVE could potentially lead to another future collaliara, in order to train patients
who are victims of agoraphobia (with crowds) in a virtual eomment.

8.4.1 Vestibular Reeducation

Vestibular reeducation is a physical treatment of vessibuistability. This treatment, super-
vised by a physical therapist, is a balance training thapttent performs, resulting in an
improved balance and a decreased risk of falling. Jérémpig physical therapist spe-
cialized in dizziness and instability since 1989, has tmltated with the EPFL-VRLAB to
test a new training exercise for patients with vestibulabpgms: immerse them in a crowd
of virtual humans passing by him (see Fig8c&0.

Figure 8.10: Jérdme Grapinet, physical therapist, has created a newisxdor his patients,
usingYaQ

Mr. Grapinet states that théaQcrowd engine answers to a need that has been present
for a long time: being able to immerse victims of an inner eastpule injury, or victims
of instability, in a virtual situation for training purpose In both casesyaQ can be used
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to reaccustom vision to random optokinetic stimulatfothat are unpredictable, and that
mimics a real situation which usually greatly troubles ttadignt: mingling in a crowd,
walking in a supermarket, etc.

Figure 8.11: (left) Mr. Grapinet’s projection cabin (in pink) has no right argland allows a
patient to feel fully immersed in the projected virtual wbr{right) The projection cabin used to
display the crowd simulation ofaQ

Technically, previous attempts to immerse patients in sugtanner have been achieved
with head mounted displays (HMD). These attempts were notlasive, for the field of
view is too limited with such displaysYaQ has been tested in another context, using a
projection cabin, especially created to improve optokmstimulations (see pink cabin in
Figure8.11left). This cabin of approximately/6” allows to have a wide field of view with
a dome-shaped roof and no border seams, as compared to a GA¥Eigure3.11right).

Mr. Grapinet is satisfied ofaQand uses it to train his patients. Results of a dedicated
study he performed will be published in the yearly congrdgt® International Vestibular
Rehabilitation Society (Congres de la Société Internalede Réhabilitation vestibulaire),
taking place in Luxembourg on May 15th, 2009. More detail$tos collaboration can also
be found on Mr. Grapinet’s web sit&fapinet 200§.

8.4.2 CAVE

We have adaptedaQso that it can be displayed on the multiple screens of a CAVE. O
goal is to help psychiatrists to train their patients vidiof agoraphobia (with crowds), by
immersing them in a virtual crowd. The CAVE is a very usefgtallation here, for it almost
completely surrounds a user, and thus increases his fegfimymersion. Note that as of
today, no actual patient has testéalQin the CAVE. We first want to test our installation
on non-phobic persons to assess the improved feeling of isiome as compared to using a
single projection screen. In this section, we present Ma®has been adapted to simulate
crowds in the CAVE with stereo display and head tracking,esaled in Figure3.12

Rendering on multiple screens. The first step to us&aQin the CAVE is to be able
to adapt it for rendering on four screens at once. For thisge® we have used an nVidia

°The term “optokinetic” refers to the twitching movementdlé eye when moving objects are viewed.
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Figure 8.12: The CAVE of the EPFL-VRLAB uses simple home video projectoraimmerse a
user in a virtual environment. Head tracking enables tragki user’'s orientation and position
inside the CAVE allowing for interaction with the walkingriaal humans.

Quadro Plex system. This system contains 2 GPUs of type QuaxXi4500 X2, and pos-
sesses 8 DVI outputs. A virtual screen is segmented intoddterent viewports. Each of
them represents a single screen in the CAVE. To render areimia@ll four screens, at each
frame, the camera is first positioned to face the front vieentit sequentially also renders
each lateral view, and finally the floor view. The process oflexing a single image in the
CAVE is thus a four pass rendering operation.

Head tracking. To track the head movements of a user, we use a PhaseSpao®& moti
capture system composed of 8 cameras that surround thensawééhe CAVE. The user
entering the CAVE wears a head-tracking device composelreétmarkers that allow the
system to track the head position and orientation. Indéedetinformations are required to
compute the correct perspective projection for each saédre CAVE. Whenever the user

is moving inside the CAVE, the projection matrices are dyitafty modified to sustain the
immersion.

Anaglyphic stereo. To furtherimprove the user’'s immersion level, we achievegyphic
stereo rendering using red-and-blue glasses. To do so,ndereach frame twice, once for
the red channel (left eye) and once for the green and blueneffm(right eye).

Screen calibrations. The screens of the CAVE are slightly curved. In order to azirre
this, each screen image is first rendered to a texture. Themexture is applied to a polygon
mesh, which is reshaped to match the curvature of the screens
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CHAPTER 9

Conclusion

In this thesis, we have described how the architectuMagfhas been built to ensure the sim-
ulation, animation and rendering of large and interactiresvds in real time. We illustrate in
Figuresl.1and9.1 (top) the results typically obtained when simulating a aowan urban
environment withvaQ taking advantage of all the variety techniques descriletdrb. We
distinguish two major contributions in our work. Our firsttobution is the general archi-
tecture ofYaQ its structure, and mechanism to make real-time simulaifidarge crowds
possible. Our second contribution is the introduction afietg at many different levels:
color, shape, and animation.

9.1 YaQ Architecture

Contributions. The specificity ofYaQis to be able to simultaneously address crowd
navigation, animation and rendering in real tim¥aQ integrates techniques at the level
of the state of the art for solving each of these problemsuc8ires dedicated to crowds
have been specifically created: human instances are wigahdsinto lists at every frame
of the simulation to minimize state switches, motion kits areated to help the animation
of individuals at all LOD, a dedicated database is used &lligently store serialized data
that can be shared by several entities. At all st&pfallows to set-up a desired trade-off
between performance and realism. It can thus be used fmusapplication domains, such
as video games where performance is preponderant, to VReglity applications where
the level of realism that can be obtained is a crucial coteri
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Future Work. The simulation part ofvaQ has been designed from scratch to run in a
sequential way. Nowadays, there are new opportunities poave this design by exploiting
multi-core CPUs. It would be an interesting topic of reshatix identify the parts of the
simulation that can be parallelized and/or distributed@resal cores. For instance, we are
confident that major parts of the collision avoidance co@aptimized with parallelization.
Also, every operation that is achieved on virtual humangs/iddally before rendering could
potentially be parallelized. A first step would be to bettguleit the several cores of today’s
home computers. In a second step, distributing the sinomain several machines at the
same time would offer the possibility to simulate even lagyewds.

9.2 Appearance Variety

Contributions. To modify the appearance of individuals, we have introduaatety at
several levels: for each human template, several textuessraated. Then, body parts are
identified for each textures.g, hair, skin, shirt, skirt, using segmentation maps. We empi
ically exploit two segmentation maps per texture, and cas ttelimit eight body parts, but
there is no limitation to this number, and more segmentatiaps can be used if more parts
need to be identified. Once segmentation maps are desigaedtiene a virtual human is
instantiated, its body part colors are randomly selectedimconstrained ranges. The sets
of chosen colors are then contiguously stored in a Color LidpKkTable on the GPU. Fi-
nally, specific materials and fabrics can be simulated bygimg a body part’s illumination
parameters. For instance, it is possible to simulate shinogs, glossy lips, leather trousers,
etc. Thanks to this technique, crowds are enhanced with subtkep, freckles and beard
effects, or detailed cloth patterns, and smooth transtioetween body parts are ensured.
We present an example of color variety applied to a singledrutemplate in Figur.2

We have presented the different steps of the technique, lrowinsits versatility by ap-
plying it to various examples (humans, accessories, Imgk)i Finally, variety is scalable,
so that it can be applied to all LOD usedYaQ as illustrated Figur8.1, for instance.

Future Work. In our work, we have prsesented how to modify specular paemné¢o
simulate various types of clothes. The diffuse element®fRhong lighting equation could
also be parametrizable by the designer for more variety,eocould completely replace our
lighting equation with a more sophisticated one, allowingimulate materials like velvet,
silk, satin,etc More globally, an interesting path we would like to takehe future is to use
a single human template, and make all its elements custbieira order to obtain varied
crowds: the main idea is to procedurally generate the huneshrat runtime, on the GPU,
based on many individual parameters for each body part. &ueapproach would need to be
scalablej.e., its structure needs to be thoroughly studied in order todadle on all LOD.
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9.3 Shape Variety

Contributions. Several techniques to modify the shape of a human instaneeldeen
proposed. Firstly, the use of accessories much improveditteeences at the shape level:
elements such as hats, wigs, backpacks are attached toionefjthe human skeleton, and
follow its movements when deformed. Two human instancasge$rom a same human
template can thus have different hair cuts for instanceglvgreatly modifies the perception
of a user. Accessories have been studied to be scalablecdnelye applied to deformable
meshes, rigid meshes, and impostors. A second contribwidmave proposed is to modify
an instance’s shape by working on its skeleton height, anitsanesh width. The resulting
effects are impressive, allowing a designer to easily mpdefjnancy, starting with a flat
belly, or making fat bodies from skinny modekstc. The main limitation of this second
approach is its lack of scalability. However, this is maidiye to a lack of time, rather
than an actual deadlock, and solutions to deal with thistéitian are proposed in the next
paragraph.

Future Work. First of all, the accessories could easily be adapted teskehariations,
i.e,, modifications on bones’ height and width. With shape vemet at the mesh level how-
ever, accessories need to be adapted by hand for each ddfoumean mesh. Part of our
future work consists in searching a way for accessories tmnaatically adapt to the shape
modifications. Second, shape and height variety is a rgcstibied technique that still
requires to be scaled to all LOD. Our current approach cay loalapplied to deformable
meshes. However, we are confident that adaptations can beé founake this new technique
scalable. For rigid meshes, the modifications of a skelebownllsl be saved and applied to
its influenced vertices, although this implies a more cosgiglate of rigid meshes. Another
solution could be to directly apply a general scaling of thesinso that the virtual human has
the correct height. However, this would require testingee § this distortion is noticeable
or not. As for impostors, the same general scaling of the goatt be applied. Since they
are rendered at far distances, the slight stretching oftktete would not be noticeable. An-
other lead for future work would be to implement the polyposipresented indavan et al,
2009, and adapt directly their 2D polygons to best fit the shapgeddrmable meshes.

9.4 Animation Variety.

Contributions. Variety at the animation level has been introduced in thragswFirstly,
using a dedicated locomotion engiri@l@rdon et al.20044ab], we are able to generate many
walk and run cycles at various speeds, and with differertsg&econdly, in a pre-process,
it is possible to iterate a second time over the generatelésye order to add upper-body
variations that require the use of an IK solver. For instatids technique allows us to have
a walking human with a hand in its pocket, or on its hip withot¢rpenetrating body parts.
Last, but not least, we integrate additional upper-body iffcadions directly at runtime, to
allow virtual humans to wear complex accessories, such @gpstg bags, suitcases, bal-
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loons,etc. An example of such accessories is shown in FiguB The only prerequisite for
this approach is that the animation modifications do notea@tsrpenetration of body parts.
At runtime, we simply constrain the joints by freezing theirentation at a given angle, or
clamping this angle within a constrained range. Anothemation modification that can
be achieved at runtime is to perform interactive facial ations. For instance, pedestrians
close to the camera can look at the user.

Future Work. We see three main improvements on the animation side. Reight mod-
ifications currently cause some problems with the body atidmalndeed, to correctly an-
imate a human instance that has a skeletoB0ahore centimeters for instance, requires a
retargeting of the motion clips, which is not yet automdljcachieved. To make height
modifications compliant with animation, we should adapt animation database so that
motion cycles are not linked to a single template, but saatm®brding to a leg height. This is
perfectly possible, using the locomotion engine previpdslscribed. Second, when virtual
humans bump into each other they currently slide away frooh egher resulting in cum-
bersome foot sliding artefacts. This could be improved yiragl collision animation clips
in our database. Then at runtime, depending on the type b$iocol (frontal, lateral etc),
the most appropriate clip would be selected and played.llizinge would like to enhance
our animation repertoire with virtual humans able to clintdirs, sit on and stand up from
benches and chairs, picking up objects in the scete, This would require the use of a
LOD-based real-time IK solver in the system: costly and eaieuiterative IK would be used
for characters at the forefront while faster analytic Sohg would be exploited at farther
distances.
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Figure 9.1: (top) YaQsimulating and navigating a crowd of varied virtual humamsicity
environment.(bottom) The 3 different rendering representations become appadefdrmable
meshes (in red), rigid meshes (in green) and impostors (ie) bl
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Figure 9.2: Appearance sets applied to instances of a single humandeamplote the different
specular effects on the body parts and the varying clotle pest

paupl®
gEumn

Figure 9.3: Virtual humans can carry complex accessories, such as hgadind balloons. This
effect is achieved by freezing and clamping specific joirithe upper body at runtime.
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Appendix

10.1 Introduction on Navigation in YaQ

YaQallows autonomous, goal-oriented navigation for ped@ssricomposing virtual popu-
lations. Users control the pedestrians’ activity by givihgm goals, and consequently, can
dispatch the population as desired in a virtual environmlertrder to achieve goal-directed
navigation, we first need to plan several paths. As illusttan Figure3.1, YaQintegrates
an efficient navigation planning solution based on a nawgagraph, which captures the
geometry and topology of an environment into a compact datatsre Pettré et al.2006
Pettré et al.2007. A fully detailed presentation of the motion planning tatfues used in
YaQis available in Jrersin 2009

10.1.1 Navigation Graph and Semantic Model

As illustrated in red in Figur8.1, given ascene modelt is possible to computerzavigation
graph based on an approximate cell-decomposition of the naleggtace. Each cell has
a circular shape, and captures a portion of the obstadteafreas in the environment. Two
cells are interconnected when their respective shapes/arapping. Cells’ connectivity is
also captured into the navigation graph. This approachpalde of handling complex and
large environments, even when composed of uneven surfaoedor terrains) or layered
ones (buildings, cities). An example of a navigation graptlisplayed in Figur&0.1

An optionalsemantic modeatan also be used as a second input to generate a navigation
graph annotated with high-level information. Such a modeisually a simplified environ-
ment geometry demarcating zones where specific behaviersxgected from pedestrians.
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Figure 10.1: A navigation graph is composed of circles representinggzdle areas. When two
circles intersect, pedestrians are allowed to navigata fsne navigable area to the other.

For instance, a semantic model could provide positions@ivskindows, so that pedestrians
look at these points when passing nearby, or areas wheras shesituated so that individ-
uals are provided with shopping bags before leaving the .sfiephnically, such areas are
identified in the semantic model, and all graph verticesas®d within this area are tagged
with a specific behavior. When a pedestrian enters this 2ond] perform the associated
action.

10.1.2 Navigation Planning

Once the navigation graph has been generated, it is possilplan the paths that pedes-
trians will use. On the one hand, getting a unique and difiteable locomotion trajectory
for each pedestrian is essential for preserving belieigbiOn the other hand, attributing
a goal to every single pedestrian would result in a fastigli@msk and expensive computa-
tions at run-time. Ouplanner(see Figure3.1) allows batched processing: first of all, users
providedirectivesto choose how the pedestrians will be dispatched in the wétdee, as
schematized. A directive simply specifies an initial and stidation point. Secondly, for
each directive, the navigation graph is explored using €higks algorithm in order to find
global paths, starting from the shortest one to progrelysivager ones. These paths are
large passages consisting of navigable areas to cross.eAsil, leach pedestrian is assigned
to one of these paths, giving a first level of variety in tr&gees. In a last step, individual
trajectories are derived for each pedestrian by selecthgyarwaypointscontained within
the global path, resulting in a second level of variety fajectories. Consequently, each
pedestrian moves along its own unique path. Users can @eatany directives as desired
to populate environments. Note that this individualizatad trajectories is achieved only
once at initialization and provides realistic results, @ydspreading pedestrians having the
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same destination.

In real time, virtual humans are steered along their plaqag by tracking successively
waypoints as planned at pre-process. As previously mesdiatifferent algorithms are used
for crowd steering, depending on the environment’s regansterest. For regions of high
interest, a costly but accurate potential field-based igctenis exploited Treuille et al,
20049. To allow the potential field computation at runtime, an iéiddal structure has first
to be created at initialization: grid, composed of cells, is disposed over the navigation
graph [Yersin et al, 2009.

The resulting locomotion trajectories are unique. Howgtrezy also emphasize an in-
dividual behavior of pedestrianise., they always walk alone. In any urban environment, it
iIs common to observe people walking in groups of 2 or more.sTlue have extended the
planner to perform the optional task of joining pedestriansmall groups of 2 to 5 people:
based on specific user directivég,, the number and size of groups within the crowd, the
planner takes care of assigning close waypoints on a sarégpaiembers of a same group.
Note that groups are created randomly with the constraattttie same human template is
not used twice in the same group. This extension has provaindogly impact on the spec-
tator perception of the crowd. The resulting distributidrpedestrians on varied paths and
in different groups is illustrated in Figud®.2

Figure 10.2: Pedestrians are widely distributed in the scene, thankbaglanner (see Fig-
ure 3.1 that finds a large variety of paths for a given set of origihedtination points. Groups of
2 to 5 people are also created to further increase the reafishe simulation.

10.2 Implementation of Segmentation Maps

The color variety technique described in Chagtean be mainly implemented in a fragment
shader. We here detail how to do it in GLSL, using Shader M8d&hardware. Note that
for the sake of clarity and brevity, the following code shdwasv to apply color variety with
an appearance set composed of a single segmentation.mapach fragment can at most
belong to four different parts. However, once the concegtasped, it is easily extended to
multiple segmentation maps.
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10.2.1 Color Contributions

To facilitate the fragment shader comprehension, in a fiegi,sve begin by describing the
basic code applying color variation to every fragment of oretance. Then, in a second
phase, we will add the necessary lines to include custonpeegbart illumination effects
(specularity and reflection).

The uniforms needed for the basic color variation algoriibmthe following:

uni f orm sanpl er 2D text ure;

uni f orm sanpl er 2D segnent ati onMap;
uni f orm sanpl er 2D cl ut;

uni form vec2 cl ut Coor d;

Thet ext ur e andsegnent at i onMap sampler2D handles represent the components
of the appearance set used for the current object instance.

Each instance possesses one set of four col@s,one per part. Thel ut texture
contains the color sets of all instances in the scene, aidara particular way. Firstly,
to simplify the CLUT addressing, colors belonging to a singistance are always placed
contiguously on the same row of the CLUT texture. Secondg/store a set of four RGB
colors in only three texels to save space: since the CLUT R@BA texture, it is possible
to store the three first colors in the RGB channels of threel$exand use their vacant A
channel to store the RGB components of the fourth color.

Finally, the uniformc| ut Coor d contains the 2D coordinates that index the first color
of the current instance. Note that since colors of a samasethaays contiguous in a same
row, we can efficiently iterate through the current set byantreasing the: coordinate of
cl ut Coor d.

The following code snippet shows how to color fragments:

01 vec3 col or Accum

vec3( 0.0 );
02 vec3 cl ut Fet chFourth 0);

vec3( O.

03 float whiteContribution 1.0;

04

05 const vec4 textureFetch =

06 texture2D( texture, gl_TexCoord[ O ].st );

07 const vec4 segMapFetch =

08 texture2D( segnentati onMap, gl _TexCoord[ O ].st );
09

10 /1 lterate through the RGE channels of the segnentation nap.
11 for (int i =0; i <3; ++i )

12

13 const vec4 clutFetch =

14 t ext ure2D(

15 clut,

16 vec2( clutCoord.x + INV_CLUT_RES+*i, clutCoord.y )
17 )

18

19 clut FetchFourth.r = clutFetch. a;

20

21 col or Accum += segMapFetch.r = cl utFetch.rgb;

22

23 whi teContribution -= segvapFetch.r;

24

25 /'l Segmentation map and col or accum

26 /1 bonus texel swi zzling.
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27 seghvapFet ch = segMapFet ch. gbar;

28 cl ut Fet chFourth = cl ut Fet chFourth. gbr;
29

30

31 /1 Get color accum bonus.

32 whi teContribution -= segvapFetch.r;

33 col or Accum += segMapFetch.r * cl utFetchFourth. rgb;
34

35 gl _FragColor.rgb =

36 textureFetch = ( max( col orAccum vec3( 1.0 ) )

37 + vec3( max( whiteContribution, 0.0 ) )

At lines 01 to 03 we declare three local variables. The végialml or Accumwill
accumulate the weighted contribution of each part’s color.

At lines 05 and 07, the texture and segmentation map are ddtiessed by the same im-
plicit built-in varyinggl _TexCoor d[ 0] . st , since they share the same parameteriza-
tion. The corresponding fetched colors are savddeirt ur eFet ch andsegMapFet ch,
respectively.

The core of the algorithm is a loop through the R, G, and B \sabfehe segmentation
map fetch.

First of all, at line 13, the color of the current part is reted from the CLUT. As pre-
viously explained, only the: coordinate of the CLUT needs to be incremented. Note that
| NV_CLUT_RES represents the reciprocal of the CLUT resolution, used tonabze the
computed coordinates between 0.0 and 1.0.

Then, at line 19, thel ut Fet chFour t h variable is used to save the fourth color in
the CLUT. Recall that its RGB components are stored in the @kl of the CLUT's three
texel set. This color is thus only known at the end of the laoe the three CLUT texels
have been read.

At line 21, the color contribution of the part currently pessed is added: the current
segmentation map channel is used to weightthet Fet chcolor contribution. The fourth
part’s color contribution, saved itl ut Fet chFourt h, is only added at line 33, once out
of the loop. Note that in a shader, the intensity of a textin@noel is no longer expressed
between 0 and 255, but normalized between 0.0 and 1.0. Thei® B components of the
resultingcol or Accumare also in this range.

To iterate over the segmentation map’s channels, a swigdfnthe segMapFet ch
variable is achieved at line 27. Similarly, to save the fowalor's components, the
col or Fet chFour t h variable is also swizzled at line 28.

Sometimes, it happens that the sum of contributions for @ @xes not reach precisely
1.0 (introduced in Sectiod.3.1). This is the case when, in a segmentation map, the sum
R+G+B+A does not equal 255 for a texel. It happens partibulaiten when designing
smooth transitions between two parts. In the above code,isdaken to treat this partic-
ularity. If the sum exceeds 255 (1.0 in the shader), it is $ingfamped (see line 36). If
however, the sum does not reach 255, the problem is trickiem a design point of view,
it means that a certain percentage of the texel belongs tartcapall. From a technical
point of view, let us take an example: imagine a transitio®ltéh a segmentation map. Its
R and G components both equal 100 (39%), the others equal Birfplicity, let us assume
the corresponding part colors in the CLUT are pure red andrgré&rom the shader code
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above, the final color icol or Accunis 39% of red and 39% of green which represents a
dark yellow:

1.0 0.0 0.39

100 100

ﬁred + gepdreen ~039 00 | +039 1.0 | = 0.0 (10.1)
0.0 0.0 0.39

This seems to be the correct calculation. However, with dpisroach, when trying to
achieve a gradient transitioning smoothly from red to grebka result provides shades of
yellow that are too dark. To compensate for this, we add whitel| or Accumto fill in the
missing contribution. In our example, 22% of white is addedulting in acol or Accumof
(0.61, 0.22, 0.61). In the code, at line 03, the variatiiet eCont ri buti onis setto 1.0
(or 100%), and at lines 23 and 32, the percentage of othes pegtsubstracted from it. The
final color is computed at line 35, where the white contribatis added t@ol or Accum

10.2.2 Multiple Materials

Now that the basic mechanism has been illustrated, we shantdobtain per-part illumi-
nation effects. Here, we illustrate the case of speculasahdre map reflection parameters.
Firstly, we need three more uniforms:

uni f orm vec?2 specul ar Parans[ 4 ];
uni f or m sanpl er 2D spher eMap;
uni form f1l oat reflectivityParanms[ 4 ];

To achieve specularity, from Phong’s equation, two valuesraquired: intensity and
exponent. Thusspecul ar Par ans is an array of four 2D vectors, one for each part of
the segmentation map. For reflection effects, the sphere(refipction texture) is sent in
spher eMap, and the reflectivity parameteriref | ecti vi t yPar ans. Once more, there
are four of them, one per part. Note that we only send one sphap, thus all parts of this
segmentation map potentially reflect the same environniEme. following code snippet is
similar to the previous one except for a few additional lireeaphasized with a star (*).

01 vec3 col or Accum = vec3( 0.0 );

02 vec3 cl ut Fet chFourth = vec3( 0.0 );

03 float whiteContribution = 1.0;

04x vec3 reflectionContribution = vec3( 0.0 );

05+« float specul arContribution;

06

07 const vec4 textureFetch =

08 texture2D( texture, gl_TexCoord[ O ].st );

09 const vec4 segMapFetch =

10 texture2D( segnentati onMap, gl _TexCoord[ O ].st );
11+ const vec3 sphereMapFetch =

12+ texture2D( sphereMap, gl _TexCoord[ 1 ].st );

13

14 /] Iterate through the RGB channels of the segnentation map.
15 for (int i =0; i <3; ++i )
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17 const vec4 clutFetch =

18 t ext ure2D(

19 clut,

20 vec2( clutCoord.x + INV_CLUT_RES*i, clutCoord.y )
21 )

22

23 clutFetchFourth.r = clutFetch. a;

24

25 col or Accum += segMapFetch.r * cl utFetch.rgb;
26

27% specul ar Contri bution +=

28* segvapFetch.r =

29+ specul arParanms[ i ].x *

30% pow( rODotE, specularParans[ i ].y );
31x reflectionContribution += segMapFetch.r =
32% reflectivity[ i ] * sphereMapFetch;
33

34 whi teContribution -= segvapFetch.r;

35

36 /'l Segmentation map and col or accum

37 /1 bonus texel swi zzling.

38 seghvapFet ch = segMapFet ch. gbar;

39 col or AccunBonus = col or AccunBonus. gbr;

40

41

42 /| Get col or accum bonus.
43 whi teContribution -= segvapFetch.r;
44x  specul arContri bution +=

45% seghvapFetch.r =

46% specul arParams[ 3 ].x *

47+ pow( rDotE, specularParans[ 3 1.y );

48+ reflectionContribution +=

49% seghvapFetch.r =

50% reflectivity[ 3] =

51x spher eMapFet ch;

52 col or Accum += segMapFetch.r * cl ut Fet chFourth.rgb;
53

54 gl _FragColor.rgbh =

55 textureFetch » ( max( col orAccum vec3( 1.0 ) )
56 + vec3( max( whiteContribution, 0.0 ) ) ;
57« gl _FragCol or.rgh +=

58+ reflectionContribution + vec3( specul arContribution );

Atline 09, the sphere map is addressed with the built-inimargl _TexCoor d[ 1] . st ,
previously computed in the vertex shader (see vertex shamtbs in the Appendix). The
fetched color is saved impher eMapFet ch.

Then, in the loop, at line 27, the variald@ecul ar Cont ri but i on is computed as
the weighted contribution of each part’s specularity. Thplied formula is the one com-
monly used in the Phong model.

Similarly for the reflection, at line 31, the variablef | ecti onCont ri buti on ac-
cumulates all the parts’ contributions as their reflegtivitultiplied by the fetched sphere
map color, weighted by the channel intensity in the segntiemtanap. At lines 44 and 48,
the fourth part’s contribution to specularity and reflentis accumulated. Note that it would
be impossible to integrate the fourth part’s contributiothie loop, since we are constrained
to three iterations corresponding to the CLUT's sets ofdlu@ors.

The presented code uses a loop, available only in ShaderINdaleHowever, by un-
rolling the loop, this technique can also be implemented lderoGPUs. Note that it is
exactly what a good compiler should do, even on Shader MaOGgl&ts.
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