5 research outputs found

    Concepts for In-memory Event Tracing: Runtime Event Reduction with Hierarchical Memory Buffers

    Get PDF
    This thesis contributes to the field of performance analysis in High Performance Computing with new concepts for in-memory event tracing. Event tracing records runtime events of an application and stores each with a precise time stamp and further relevant metrics. The high resolution and detailed information allows an in-depth analysis of the dynamic program behavior, interactions in parallel applications, and potential performance issues. For long-running and large-scale parallel applications, event-based tracing faces three challenges, yet unsolved: the number of resulting trace files limits scalability, the huge amounts of collected data overwhelm file systems and analysis capabilities, and the measurement bias, in particular, due to intermediate memory buffer flushes prevents a correct analysis. This thesis proposes concepts for an in-memory event tracing workflow. These concepts include new enhanced encoding techniques to increase memory efficiency and novel strategies for runtime event reduction to dynamically adapt trace size during runtime. An in-memory event tracing workflow based on these concepts meets all three challenges: First, it not only overcomes the scalability limitations due to the number of resulting trace files but eliminates the overhead of file system interaction altogether. Second, the enhanced encoding techniques and event reduction lead to remarkable smaller trace sizes. Finally, an in-memory event tracing workflow completely avoids intermediate memory buffer flushes, which minimizes measurement bias and allows a meaningful performance analysis. The concepts further include the Hierarchical Memory Buffer data structure, which incorporates a multi-dimensional, hierarchical ordering of events by common metrics, such as time stamp, calling context, event class, and function call duration. This hierarchical ordering allows a low-overhead event encoding, event reduction and event filtering, as well as new hierarchy-aided analysis requests. An experimental evaluation based on real-life applications and a detailed case study underline the capabilities of the concepts presented in this thesis. The new enhanced encoding techniques reduce memory allocation during runtime by a factor of 3.3 to 7.2, while at the same do not introduce any additional overhead. Furthermore, the combined concepts including the enhanced encoding techniques, event reduction, and a new filter based on function duration within the Hierarchical Memory Buffer remarkably reduce the resulting trace size up to three orders of magnitude and keep an entire measurement within a single fixed-size memory buffer, while still providing a coarse but meaningful analysis of the application. This thesis includes a discussion of the state-of-the-art and related work, a detailed presentation of the enhanced encoding techniques, the event reduction strategies, the Hierarchical Memory Buffer data structure, and a extensive experimental evaluation of all concepts

    Structural Performance Comparison of Parallel Software Applications

    Get PDF
    With rising complexity of high performance computing systems and their parallel software, performance analysis and optimization has become essential in the development of efficient applications. The comparison of performance data is a key operation required in performance analysis. An analyst may conduct different types of comparisons in order to understand the performance properties of an application. One use case is comparing performance data from multiple measurements. Typical examples for such comparisons are before/after comparisons when applying optimizations or changing code versions. Besides comparing performance between multiple runs, also comparing performance characteristics across the parallel execution streams of an application is essential to detect performance problems. This is typically useful to detect imbalances, outliers, or changing runtime behavior during the execution of an application. While such comparisons are straightforward for the aggregated data in performance profiles, only limited solutions exist for comparing event traces. Trace-based analysis, i.e., the collection of fine-grained information on individual application events with timestamps and application context, has proven to be a powerful technique. The detailed performance information included in event traces make them very suitable for performance analysis. However, this level of detail also presents a challenge because it implies a large and overwhelming amount of data. Currently, users need to perform manual comparison of event traces, which is extremely challenging and time consuming because of the large volume of detailed data and the need to correctly line up trace events. To fill the gap of missing solutions for automatic comparison of event traces, this work proposes a set of techniques that automatically align traces. The alignment allows their structural comparison and the highlighting of differences between them. A set of novel metrics provide the user with an objective measure of the differences between traces, both in terms of differences in the event stream and timing differences across events. An additional important aspect of trace-based analysis is the visualization of performance data in event timelines. This has proven to be a powerful approach for the detection of various types of performance problems. However, visualization of large numbers of event timelines quickly hits the limits of available display resolution. Likewise, identifying performance problems is challenging in the large amount of visualized performance data. To alleviate these problems this work proposes two new approaches for event timeline visualization. First, novel folding strategies for event timelines facilitate visual scalability and provide powerful overviews of performance data at the same time. Second, this work presents an effective approach that automatically identifies and highlights several types of performance critical sections in an application run. This approach identifies time dominant functions of an application and subsequently uses them to analyze runtime imbalances throughout the application run. Intuitive visualizations present the resulting runtime variations and guide the analyst to performance hot spots. Evaluations with benchmarks and real-world applications assess all introduced techniques. The effectiveness of the comparison approaches is demonstrated by showing automatically detected performance issues and structural differences between different versions of applications and across parallel execution streams. Case studies showcase the capabilities of the event timeline visualization techniques by demonstrating scalable performance data visualizations and detecting performance problems and code inefficiencies in real-world applications

    Advanced Memory Data Structures for Scalable Event Trace Analysis

    Get PDF
    The thesis presents a contribution to the analysis and visualization of computational performance based on event traces with a particular focus on parallel programs and High Performance Computing (HPC). Event traces contain detailed information about specified incidents (events) during run-time of programs and allow minute investigation of dynamic program behavior, various performance metrics, and possible causes of performance flaws. Due to long running and highly parallel programs and very fine detail resolutions, event traces can accumulate huge amounts of data which become a challenge for interactive as well as automatic analysis and visualization tools. The thesis proposes a method of exploiting redundancy in the event traces in order to reduce the memory requirements and the computational complexity of event trace analysis. The sources of redundancy are repeated segments of the original program, either through iterative or recursive algorithms or through SPMD-style parallel programs, which produce equal or similar repeated event sequences. The data reduction technique is based on the novel Complete Call Graph (CCG) data structure which allows domain specific data compression for event traces in a combination of lossless and lossy methods. All deviations due to lossy data compression can be controlled by constant bounds. The compression of the CCG data structure is incorporated in the construction process, such that at no point substantial uncompressed parts have to be stored. Experiments with real-world example traces reveal the potential for very high data compression. The results range from factors of 3 to 15 for small scale compression with minimum deviation of the data to factors > 100 for large scale compression with moderate deviation. Based on the CCG data structure, new algorithms for the most common evaluation and analysis methods for event traces are presented, which require no explicit decompression. By avoiding repeated evaluation of formerly redundant event sequences, the computational effort of the new algorithms can be reduced in the same extent as memory consumption. The thesis includes a comprehensive discussion of the state-of-the-art and related work, a detailed presentation of the design of the CCG data structure, an elaborate description of algorithms for construction, compression, and analysis of CCGs, and an extensive experimental validation of all components.Diese Dissertation stellt einen neuartigen Ansatz für die Analyse und Visualisierung der Berechnungs-Performance vor, der auf dem Ereignis-Tracing basiert und insbesondere auf parallele Programme und das Hochleistungsrechnen (High Performance Computing, HPC) zugeschnitten ist. Ereignis-Traces (Ereignis-Spuren) enthalten detaillierte Informationen über spezifizierte Ereignisse während der Laufzeit eines Programms und erlauben eine sehr genaue Untersuchung des dynamischen Verhaltens, verschiedener Performance-Metriken und potentieller Performance-Probleme. Aufgrund lang laufender und hoch paralleler Anwendungen und dem hohen Detailgrad kann das Ereignis-Tracing sehr große Datenmengen produzieren. Diese stellen ihrerseits eine Herausforderung für interaktive und automatische Analyse- und Visualisierungswerkzeuge dar. Die vorliegende Arbeit präsentiert eine Methode, die Redundanzen in den Ereignis-Traces ausnutzt, um sowohl die Speicheranforderungen als auch die Laufzeitkomplexität der Trace-Analyse zu reduzieren. Die Ursachen für Redundanzen sind wiederholt ausgeführte Programmabschnitte, entweder durch iterative oder rekursive Algorithmen oder durch SPMD-Parallelisierung, die gleiche oder ähnliche Ereignis-Sequenzen erzeugen. Die Datenreduktion basiert auf der neuartigen Datenstruktur der "Vollständigen Aufruf-Graphen" (Complete Call Graph, CCG) und erlaubt eine Kombination von verlustfreier und verlustbehafteter Datenkompression. Dabei können konstante Grenzen für alle Abweichungen durch verlustbehaftete Kompression vorgegeben werden. Die Datenkompression ist in den Aufbau der Datenstruktur integriert, so dass keine umfangreichen unkomprimierten Teile vor der Kompression im Hauptspeicher gehalten werden müssen. Das enorme Kompressionsvermögen des neuen Ansatzes wird anhand einer Reihe von Beispielen aus realen Anwendungsszenarien nachgewiesen. Die dabei erzielten Resultate reichen von Kompressionsfaktoren von 3 bis 5 mit nur minimalen Abweichungen aufgrund der verlustbehafteten Kompression bis zu Faktoren > 100 für hochgradige Kompression. Basierend auf der CCG_Datenstruktur werden außerdem neue Auswertungs- und Analyseverfahren für Ereignis-Traces vorgestellt, die ohne explizite Dekompression auskommen. Damit kann die Laufzeitkomplexität der Analyse im selben Maß gesenkt werden wie der Hauptspeicherbedarf, indem komprimierte Ereignis-Sequenzen nicht mehrmals analysiert werden. Die vorliegende Dissertation enthält eine ausführliche Vorstellung des Stands der Technik und verwandter Arbeiten in diesem Bereich, eine detaillierte Herleitung der neu eingeführten Daten-strukturen, der Konstruktions-, Kompressions- und Analysealgorithmen sowie eine umfangreiche experimentelle Auswertung und Validierung aller Bestandteile

    Application of clustering analysis and sequence analysis on the performance analysis of parallel applications

    Get PDF
    High Performance Computing and Supercomputing is the high end area of the computing science that studies and develops the most powerful computers available. Current supercomputers are extremely complex so are the applications that run on them. To take advantage of the huge amount of computing power available it is strictly necessary to maximize the knowledge we have about how these applications behave and perform. This is the mission of the (parallel) performance analysis. In general, performance analysis toolkits oUer a very simplistic manipulations of the performance data. First order statistics such as average or standard deviation are used to summarize the values of a given performance metric, hiding in some cases interesting facts available on the raw performance data. For this reason, we require the Performance Analytics, i.e. the application of Data Analytics techniques in the performance analysis area. This thesis contributes with two new techniques to the Performance Analytics Veld. First contribution is the application of the cluster analysis to detect the parallel application computation structure. Cluster analysis is the unsupervised classiVcation of patterns (observations, data items or feature vectors) into groups (clusters). In this thesis we use the cluster analysis to group the CPU burst of a parallel application, the regions on each process in-between communication calls or calls to the parallel runtime. The resulting clusters obtained are the diUerent computational trends or phases that appear in the application. These clusters are useful to understand the behaviour of computation part of the application and focus the analyses to those that present performance issues. We demonstrate that our approach requires diUerent clustering algorithms previously used in the area. Second contribution of the thesis is the application of multiple sequence alignment algorithms to evaluate the computation structure detected. Multiple sequence alignment (MSA) is technique commonly used in bioinformatics to determine the similarities across two or more biological sequences: DNA or roteins. The Cluster Sequence Score we introduce applies a Multiple Sequence Alignment (MSA) algorithm to evaluate the SPMDiness of an application, i.e. how well its computation structure represents the Single Program Multiple Data (SPMD) paradigm structure. We also use this score in the Aggregative Cluster Re-Vnement, a new clustering algorithm we designed, able to detect the SPMD phases of an application at Vne-grain, surpassing the cluster algorithms we used initially. We demonstrate the usefulness of these techniques with three practical uses. The Vrst one is an extrapolation methodology able to maximize the performance metrics that characterize the application phases detected using a single application execution. The second one is the use of the computation structure detected to speedup in a multi-level simulation infrastructure. Finally, we analyse four production-class applications using the computation characterization to study the impact of possible application improvements and portings of the applications to diUerent hardware conVgurations. In summary, this thesis proposes the use of cluster analysis and sequence analysis to automatically detect and characterize the diUerent computation trends of a parallel application. These techniques provide the developer / analyst an useful insight of the application performance and ease the understanding of the application’s behaviour. The contributions of the thesis are not reduced to proposals and publications of the techniques themselves, but also practical uses to demonstrate their usefulness in the analysis task. In addition, the research carried out during these years has provided a production tool for analysing applications’ structure, part of BSC Tools suite
    corecore