
TECHNISCHE UNIVERSITÄT DRESDEN
FAKULTÄT INFORMATIK

Dissertation

zur Erlangung des akademischen Grades
Doktoringenieur (Dr.-Ing.)

Concepts for In-memory Event Tracing
Runtime Event Reduction with Hierarchical Memory Buffers

Michael Wagner
geboren am 18. Mai 1984 in Bad Schlema

Gutachter: Prof. Dr. Wolfgang E. Nagel
Technische Universität Dresden

Prof. Dr. Felix Wolf
Technische Universität Darmstadt

Dresden, 1. März 2015

Abstract

This thesis contributes to the field of performance analysis in High Performance Computing with new

concepts for in-memory event tracing.

Event tracing records runtime events of an application and stores each with a precise time stamp and

further relevant metrics. The high resolution and detailed information allows an in-depth analysis of

the dynamic program behavior, interactions in parallel applications, and potential performance issues.

For long-running and large-scale parallel applications, event-based tracing faces three challenges, yet

unsolved: the number of resulting trace files limits scalability, the huge amounts of collected data over-

whelm file systems and analysis capabilities, and the measurement bias, in particular, due to intermediate

memory buffer flushes prevents a correct analysis.

This thesis proposes concepts for an in-memory event tracing workflow. These concepts include new

enhanced encoding techniques to increase memory efficiency and novel strategies for runtime event re-

duction to dynamically adapt trace size during runtime. An in-memory event tracing workflow based

on these concepts meets all three challenges: First, it not only overcomes the scalability limitations due

to the number of resulting trace files but eliminates the overhead of file system interaction altogether.

Second, the enhanced encoding techniques and event reduction lead to remarkable smaller trace sizes.

Finally, an in-memory event tracing workflow completely avoids intermediate memory buffer flushes,

which minimizes measurement bias and allows a meaningful performance analysis.

The concepts further include the Hierarchical Memory Buffer data structure, which incorporates a multi-

dimensional, hierarchical ordering of events by common metrics, such as time stamp, calling context,

event class, and function call duration. This hierarchical ordering allows a low-overhead event encoding,

event reduction and event filtering, as well as new hierarchy-aided analysis requests.

An experimental evaluation based on real-life applications and a detailed case study underline the capa-

bilities of the concepts presented in this thesis. The new enhanced encoding techniques reduce memory

allocation during runtime by a factor of 3.3 to 7.2, while at the same do not introduce any additional

overhead. Furthermore, the combined concepts including the enhanced encoding techniques, event re-

duction, and a new filter based on function duration within the Hierarchical Memory Buffer remarkably

reduce the resulting trace size up to three orders of magnitude and keep an entire measurement within a

single fixed-size memory buffer, while still providing a coarse but meaningful analysis of the application.

This thesis includes a discussion of the state-of-the-art and related work, a detailed presentation of the

enhanced encoding techniques, the event reduction strategies, the Hierarchical Memory Buffer data struc-

ture, and a extensive experimental evaluation of all concepts.

I

Contents

1 Introduction 1

2 State-of-the-art in Event-based Performance Analysis 5
2.1 Performance Analysis . 5

2.2 Performance Analysis Tools Overview . 8

2.3 Event-based Trace Analysis Tools . 10

2.3.1 The Vampir Toolset . 10

2.3.2 The Paraver Toolset . 16

2.3.3 The Scalasca Toolset . 18

2.3.4 The Tuning and Analysis Utilities (TAU) . 20

2.3.5 Score-P and the Open Trace Format 2 . 21

2.4 Challenges in Event-based Tracing and Related Work 24

2.4.1 Scalability . 24

2.4.2 Data Volumes . 25

2.4.3 Measurement Bias . 28

2.5 Open Challenges and In-memory Event Tracing . 30

2.6 Summary . 30

3 Concepts for In-memory Event Tracing 33
3.1 In-memory Event Tracing . 33

3.2 Selection and Filtering . 35

3.3 Enhanced Encoding Techniques . 36

3.3.1 Binary Event Representation . 37

3.3.2 Splitting of Timing Information and Event Data 38

3.3.3 Leading Zero Elimination . 39

3.3.4 Delta Encoding . 39

3.3.5 Event Distribution and Encoding Implications 40

3.3.6 Timer Resolution Reduction . 43

3.4 Event Reduction . 44

3.4.1 Reduction by Order of Occurrence . 45

3.4.2 Reduction by Event Class . 46

3.4.3 Reduction by Calling Depth . 47

3.4.4 Reduction by Duration . 50

3.4.5 Requirements for Event Reduction . 52

3.5 Summary . 53

II

4 The Hierarchical Memory Buffer 55
4.1 Memory Event Representation . 55

4.1.1 Flat Continuous Event Representation . 55

4.1.2 Flat Partitioned Event Representation . 56

4.1.3 Hierarchical Event Representation . 58

4.2 The Hierarchical Memory Buffer Data Structure . 60

4.3 Construction of the Hierarchical Memory Buffer . 61

4.4 Reduction Techniques with the Hierarchical Memory Buffer 65

4.4.1 Reduction by Order of Occurrence . 65

4.4.2 Reduction by Event Class . 66

4.4.3 Reduction by Calling Depth . 68

4.4.4 Reduction by Duration . 69

4.5 Analysis Techniques for the Hierarchical Memory Buffer 70

4.5.1 Linear Time Iterator . 70

4.5.2 Forward Traversal . 73

4.5.3 Statistical Summaries . 74

4.5.4 Timeline Visualisation . 75

4.5.5 Message Matching . 75

4.6 Message Matching on Incomplete Communication Data 76

4.6.1 Message Matching Approaches . 76

4.6.2 Identification of Missing Communication Events 78

4.6.3 Adapted Message Matching . 79

4.7 Adaption to Sampling . 80

4.8 Summary . 83

5 Evaluation and Case Study 85
5.1 Methodology and Target Applications . 85

5.2 Enhanced Encoding Techniques . 87

5.2.1 Runtime Memory Allocation . 87

5.2.2 Runtime Overhead . 92

5.3 The Hierarchical Memory Buffer . 94

5.3.1 Determine an Ideal Memory Bin Size . 94

5.3.2 Reduction of Hierarchy Partitions . 98

5.3.3 Reduction by Duration . 99

5.3.4 Analysis Techniques . 103

5.3.5 Message Matching on Incomplete Communication Data 104

5.4 Case Study: The Molecular Dynamics Package Gromacs 106

5.4.1 The Molecular Dynamics Package Gromacs . 106

5.4.2 The Bias Caused by Intermediate Buffer Flushes 107

5.4.3 In-memory Event Tracing for Long Application Runs 109

5.5 Summary . 114

6 Conclusion and Outlook 115

III

Bibliography 119

List of Figures 129

List of Tables 133

IV

1

1 Introduction

It is beneath the dignity of excellent men to waste their time in calculation when any peasant

could do the work just as accurately with the aid of a machine.

GOTTFRIED WILHELM LEIBNIZ

When Gottfried Wilhelm Leibniz presented the Stepped Reckoner, the first calculation machine, to the

Royal Society of London in 1673 he paved the way to today’s computers. While his and all following

calculation machines of the next two centuries did not use electronics but were the product of precise

engineering, he already constituted his machine supra hominem – superior to humans – since it out-

performed humans in speed, as well as accuracy, for large calculations. With the advent of electronic

computers, first based on electromechanical relays and later on vacuum tubes and transistors, the ca-

pabilities and performance of machine-aided computing began to grow rapidly. Nowadays, computing

devices are omnipresent and an integral part of many aspects of life. Particularly in science and research,

computer-aided simulation has become indispensable and is considered the third cornerstone of scientific

methodology besides theory and experiment.

Beyond everyday computing devices, High Performance Computing (HPC) systems provide enormous

computational resources to support large-scale simulations in leading-edge scientific research such as the

Human Brain project [MML+11], climate and weather prediction, or DNA and cancer research. Today,

High Performance Computing typically includes a large number of processing elements working jointly

on a computationally intensive problem. For the next milestone, exa-scale supercomputers capable of

O(1018) floating point operations per second, this approach is very likely to persist. For the foreseeable

future Moore’s law [Moo65] is expected to endure, however, limitations in clock frequency, instruction

level parallelism, and energy density drive the further increase in the number of processing elements.

In addition, supercomputing hardware is strongly influenced by economy-driven developments in the

off-the-shelf market, as shown, for instance, by the integration of accelerators from graphic cards. The

history of TOP500 [Top14] systems shows that not all system characteristics improve at the same speed as

computing power. Critical properties are main memory bandwidth and latency, the amount of memory

per core, I/O capabilities, as well as energy consumption [BBC+08]. Consequently, supercomputers

targeting the exa-scale barrier are likely to be specialized solutions with tremendous computational power

but also many constraints that have a considerable impact on efficient software development.

Parallel software that scales to the exa-scale level implies the identification, distribution, and synchro-

nization of millions of subproblems that can be computed autonomously. Any computationally intensive

problem requires the decomposition in subtasks, whose partial results must be accumulated efficiently to

the overall solution. Writing software for systems of this scale is demanding and involves hybrid and new

programming models, accelerated computing, and energy considerations. Hence, appropriate supporting

tools, such as debuggers and performance analyzers, are inevitable to develop applications that utilize

the enormous capabilities of current and future HPC systems.

2 1. INTRODUCTION

Performance analysis tools assist developers not only in identifying performance issues in their applica-

tions but also in understanding their behavior on complex and heterogeneous systems. Such tools gather

information about the behavior of an application during runtime by either recording runtime events or

by periodically sampling its current state. While sampling approaches rely on their sampling frequency

to gain information about an application, event-based monitoring tools record information if specific

predefined events occur, for instance, entering and leaving a function.

Information gathered from samples or events can be aggregated to summarized information about differ-

ent performance metrics (profiling) or stored individually by keeping the precise time stamp and further

specific metrics for each event (tracing). Profiling with its nature of summarization decreases the amount

of data that needs to be stored during runtime. However, profiles may lack critical information and hide

dynamically occurring effects. In contrast, event tracing records each event of a parallel application in

detail and allows an exact reconstruction of the application behavior. Thus, it enables capturing the dy-

namic interaction between thousands of concurrent processing elements and the identification of outliers

from the regular behavior. Such detail comes with the cost that event-based tracing frequently results in

huge data volumes even though single events are rather small. In fact, the large amount of collected data,

in particular, for massively parallel or long running applications is one of the most urgent challenges for

event-based monitoring tools.

In both dimensions event tracing is already pushing against the limits of today’s and, most likely, also

tomorrow’s systems. Since the collected data is usually stored in one file per processing element, the

number of resulting trace files is increasing with the number of recorded processing elements. While

HPC parallel file systems are highly optimized for data throughput, the simultaneous creation of hun-

dreds of thousands or even millions of event tracing files overwhelms any parallel file system and the

aggregated size of the resulting trace files quickly swallows up storage capacities. Next to that, the

recorded event data is typically buffered before it is written to the file system to reduce expensive file

system interactions. Whenever such an internal memory buffer is exhausted, the content is transferred to

the file system; usually in an unsynchronized fashion. Such uncoordinated intermediate memory buffer

flushes during a measurement introduce extensive bias and lead to a falsification of the recorded program

behavior. Much like system noise this effect is increasing with higher scales.

Another way to circumvent these constraints is an in-memory event tracing workflow that completely

omits file system interaction. Keeping recorded event data in main memory for the complete workflow

would not only bypass the limitations in the number of file handles, moreover, it would eliminate the

overhead of file creation, writing and reading altogether. In addition, an in-memory workflow would

exclude the bias caused by non-synchronous intermediate memory buffer flushes during a measurement

run. Furthermore, such a workflow allows entirely new features in event tracing, such as an event-based

online performance analysis workflow.

But there is one catch. Keeping event data in main memory for a complete measurement requires that

recorded data fits into a single memory buffer of an event tracing library. Unfortunately, measurement

runs may collect hundreds of megabytes up to gigabytes of data per processing element. To make things

worse, the part of the main memory left to store the data is rather small, since most applications utilize

main memory intensively. This thesis is dedicated to the challenge of fitting an entire measurement

of arbitrary length and scale into a single fixed-sized memory buffer for each processing element and,

therefore, setting the premise for an in-memory event tracing workflow.

3

Contribution of this Thesis
The contributions of this thesis are novel concepts to enable an in-memory event tracing workflow. These

concepts are divided in two central parts:

Enhanced encoding techniques and strategies for event reduction that dynamically adapt trace size during

runtime to the given memory allocation form the first central part of the contributions of this thesis.

The combination of both allows keeping the data of an entire measurement within a single fixed-sized

memory buffer and, therefore, enable an in-memory event tracing workflow. First, such an in-memory

tracing workflow not only bypasses the limitations of current parallel file systems but eliminates the

overhead of file system interaction altogether. Second, the enhanced encoding techniques and event

reduction result in remarkably smaller trace sizes. Furthermore, the in-memory workflow completely

avoids intermediate memory buffer flushes and, therefore, minimizes measurement bias, which allows a

feasible tracing of long running applications.

The Hierarchical Memory Buffer is the second central contribution of this thesis. The Hierarchical Mem-

ory Buffer is a new data structure that uses hierarchy information, such as calling depth or event class,

to presort events according to these hierarchy attributes. It allows performing the aforementioned event

reduction operations with minimal overhead. Furthermore, such a hierarchy-based event representation

allows new event filter operations, unfeasible with a traditional flat, continuous memory buffer layout.

Such a new filter method is a filtering based on the duration of code regions, which eliminates all short-

running functions while keeping outliers important for performance analysis. In addition, several typical

analysis requests can benefit from a hierarchy-aided traversal of recorded event data.

Organisation of this thesis
The next chapter, State-of-the-art in Event-based Performance Analysis, provides an overview of the

state-of-the-art in event-based performance analysis and performance analysis tools. Furthermore, tools

for event-based trace recording and analysis are discussed in more detail. On the basis of three current

challenges the chapter introduces related work and connects the contributions of this thesis.

The chapter on Concepts for In-memory Event Tracing specifies prerequisites for an in-memory event

tracing workflow and defines three key steps to keep an entire measurement within a single fixed-size

memory buffer. These three key steps are selection and filtering, enhanced encoding, and event reduction.

New methods for each step are presented.

The chapter The Hierarchical Memory Buffer introduces the Hierarchical Memory Buffer, a data structure

that allows to perform event reduction operations with minimal overhead. It examines algorithms for the

construction of this data structure, as well as the application of the event reduction strategies and typical

analysis techniques. Furthermore, the computational complexity of all algorithms is discussed.

The chapter Evaluation and Case Study presents an evaluation of the enhanced encoding techniques and

the Hierarchical Memory Buffer data structure including its capabilities to support the event reduction

strategies. In addition, a detailed case study demonstrates the benefits of the combined approach for a

real-life application.

The final chapter completes this thesis with a conclusion and an outlook to future research.

4 1. INTRODUCTION

5

2 State-of-the-art in Event-based Performance Analysis

This chapter provides an overview of the state-of-the-art in event-based performance analysis and per-

formance analysis tools. Furthermore, tools for event-based trace recording and analysis are discussed

in more detail. On the basis of three current challenges this chapter introduces related research and

connects the contributions of this thesis.

2.1 Performance Analysis

As High Performance Computing (HPC) systems are getting more and more powerful, they are getting

more and more complex, as well. Besides the already intricate processing core designs that require a

consideration of hierarchical memory accesses via multi-level caches, pipelined instruction execution,

branch prediction and execution, and built-in vector units; parallel systems that use thousands or even

millions of these compute cores demand additional consideration of parallel execution, network, sys-

tem topology, and hardware accelerators – to name only a few. On top of the complex hardware is

a complementary complex software stack that includes batch systems and application scheduling, re-

source distribution, and a variety of parallel paradigms such as message passing, threading, partial global

address space, and paradigms to use hardware accelerators, which, more and more often, promise to

be efficient only when combined correctly. Developing applications that utilize the enormous capabili-

ties of these complex systems requires a continuous process of optimization – even for well-established

software projects that have been in development for decades.

Identification

AnalysisOptimization

Execution

Correctness

Figure 2.1: Optimization cycle: starting with correctness checking, identifying inefficient program
phases, analyzing these program phases, optimizing the application, and execution.

6 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

The optimization process for parallel applications consists of five basic steps that are shown in Figure

2.1. The first step is debugging and correctness checking to ensure a correct program execution. The

second step is to get a coarse view on the application behavior and identify program phases that contain

irregular or inefficient behavior. These program phases can then be reviewed and analyzed in detail.

The gained information can be used to optimize either the algorithm itself or its adaption to the current

hardware and software stack and, finally, execute the revised application.

Within this optimization cycle, performance analysis covers the identification and analysis steps and

provides input for optimization. Appropriate performance analysis tools assist developers not only in

identifying performance inefficiencies but also in understanding the behavior of their applications on the

complex and heterogeneous HPC systems. Furthermore, they help to analyze the performance inefficien-

cies and provide insight into the exact course of events during the application runtime.

The variety of concepts and according tools can be categorized by their approach for capturing, recording,

and presentation of performance information [Jai91], as shown in Figure 2.2. Within the first stage,

data capturing, there are two different methods. Sampling approaches interrupt a running application at

arbitrary points (usually fixed intervals) and record the current state of execution. Whereas event-based

methods record the state changes in the program execution, so called events, e.g., entering or leaving a

code region. While the accuracy of sampling approaches relies on their frequency, event-based methods

record every predefined runtime event, which means, the accuracy can be defined a priori. Vice-versa,

sampling approaches can regulate the introduced measurement overhead and the memory allocation with

their sampling frequency, while the overhead and memory allocation of event-based methods correlates

with the frequency of the predefined runtime events.

Data Presentation

Data Recording

Data Capturing Runtime EventsSampling

TracingAggregation

Timelines
Automatic

Analysis ResultsProfiles

Figure 2.2: The three stages of performance analysis: data capturing, data recording, and data presenta-
tion. Arrows indicate possible transitions between the stages.

The generated data from both approaches can then be either aggregated to summaries about different

performance metrics or stored individually by keeping the precise time stamp and further specific metrics

for each sample or event, called tracing. Aggregation approaches (also called profiling approaches1)

immediately combine the data of new samples or events with previously recorded data. With its nature

of summarization this method decreases the amount of data that needs to be stored during runtime. In

contrast, tracing records each sample or event individually. It keeps every recorded state (sample) or state

change (event) intact, which allows an exact reconstruction of the program behavior – with an accuracy

1Since aggregated data from samples or events can only be presented in the form of profiles, the method of aggregating data
to summaries is often referred to as profiling, as well.

2.1. PERFORMANCE ANALYSIS 7

based on either the sampling frequency or the predefined events. Consequently, tracing data includes

aggregated data because aggregated summaries always can be computed from a trace.

The aggregated and traced data can be presented in three different ways: profiles, timelines, and au-

tomatically generated analysis results. Profiles display a summarization of one or more performance

metrics over the entire program runtime or separately for defined program phases. These summaries can

be represented as plain text, tables or charts. A typical example is the distribution of the overall program

runtime over the different code regions or the total number of invocations for each code region. Profiles

can be derived directly from aggregated data or computed from traces. Timelines display the initially

recorded program states or state changes along a time axis and, therefore, show the exact state of the

application at any give time. Since this approach requires the exact states or state changes it can only

be derived from tracing data. Next to profiles and timelines that represent the recorded data, there are

approaches that evaluate the recorded data and enrich the presentation of either profiles or timelines with

results of an automatic analysis. Automatic analyses usually focus on the detection of typical inefficient

patterns or the evaluation of specific performance metrics that might hint inefficient behavior.

While there are multiple possible combinations within these three stages, there are two well-established

paths: profiling, which usually refers to aggregated events presented as profiles, and event tracing, which

visualizes event traces in the form of timelines or leads to an automatic analysis. Both approaches differ

greatly in memory allocation and extractable information. Due to the summarization, the memory allo-

cation for profiling correlates only with the number of different performance metrics that are recorded,

whereas, the memory allocation of event tracing correlates with the number of runtime events. While

single events are rather small, event tracing frequently results in huge data volumes. In fact, the large

amount of collected data, in particular, for massively parallel or long running applications is one of the

most urgent challenges for event-based monitoring tools.

Despite this drawback, event tracing is an essential technique since the exact communication behavior

and many performance inefficiencies can only be identified with event tracing. Two prominent per-

formance issues are excessive wait time in communication operations and load imbalances [Boe14].

Excessive wait time in communication, so called wait states, are usually caused by two communication

partners that enter a communication operation not properly synchronized, i.e., either the sender or re-

ceiver enters to late. While profiling can only hint inefficient communication behavior in general based

on the total time spent in communication operations, event tracing can uncover each individual ineffi-

cient communication operation and its cause [Boe14]. The conglomeration of these wait states reveals

the critical path in the execution of an application, as well. Load imbalances can occur in different forms.

Figure 2.3 shows an example that helps to distinguish between the analysis capabilities of event tracing

and profiling for load imbalances. The left side depicts a timeline visualization of a load imbalance

with four synchronizations depicted by the vertical grey lines. On the right side, a profile visualization

shows the aggregated runtime for each process. The upper part represents a static load imbalance, i.e.,

the process that takes longer for the execution (red) is the same in each program phase. In contrast, the

bottom part represents a dynamic load imbalance where the processes that causes the delay is different

in each program phase. The timeline based on event tracing reveals both imbalance patterns, while the

profile based on aggregated data only reveals the static imbalance, i.e., in this case it is impossible to

detect the dynamic load imbalance. In addition, event tracing enables the detection of the critical path in

both cases, which is in this example the sequence of the red program phases in the timeline.

8 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

Pr
oc

es
se

s

Time

Pr
oc

es
se

s

Time

Processes

A
gg

re
ga

te
d

ru
nt

im
e

Processes

A
gg

re
ga

te
d

ru
nt

im
e

Figure 2.3: Analysis capabilities of tracing vs. profiling: static (top) and dynamic (bottom) load imbal-
ance presented as timelines (left) and profiles (right).

Research in performance analysis also hints towards a trend that the gap between both approaches is

shrinking. Profiling approaches, on the one hand, use techniques such as phase-based profiling [MSM05,

CBL07] or call-path/call-graph profiling [GKM82, SWW09] to gain more information than with flat

profiles over the entire runtime. On the other hand, event tracing approaches try to either reduce the

number of predefined runtime events, e.g., only record the communication behavior, or try to reduce the

number of stored events to cope with the tremendous data volumes.

2.2 Performance Analysis Tools Overview

After an introduction to the field of performance analysis, this section provides on overview about es-

tablished performance analysis tools and their approaches. Figure 2.4 shows a classification of these

performance analysis tools. Since, data aggregation usually leads to a profile presentation and tracing

data is usually visualized with timelines, the figure uses the terms profiling and tracing for an easier-

to-read presentation. While there are many more academic and commercial tools that focus on single

aspects of performance (e.g., only communication [VM01, NRM+09]), this classification includes tools

that use a general approach and analyze multiple performance relevant metrics.

Event-based Profiling Tools

Profiling tools based on events, also called instrumentation profiling tools, are gprof [GKM82], IPM

[FWS10], and Periscope [BPG10].

In this list, gprof is one of the oldest and probably most used tools, since it is included in many Unix

systems. It supports event-based call-graph profiling but also profiling based on sampling. Gprof results

in a basic text output that shows typical profile information such as time spent in code regions or their

number of invocations.

The Integrated Performance Monitoring (IPM) is a collaborative project between the National Energy

Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory and the San

2.2. PERFORMANCE ANALYSIS TOOLS OVERVIEW 9

GProf
IPM

Periscope

perf tools
pprof

Allinea MAP

Vampir
Scalasca

TAU
Paraver
Score-P
Paradyn

HPC Toolkit
Intel Vtune

Profiling Tracing

Event-based

Sampling

Figure 2.4: Classification of performance analysis tools.

Diego Supercomputer Center (SDSC). It focusses primarily on communication, computation, and I/O

and provides an output in the form of tables, charts and plots.

Periscope is an automatic performance analysis tool developed at Technische Universität München, Ger-

many. It consists of a front-end integrated in the Eclipse IDE2 and a hierarchy of communication and

analysis agents. Each of the analysis agents searches autonomously for defined patterns that indicate

inefficient behavior in a subset of the application processes. The results are fed back to the Eclipse IDE

and relate to the according source code parts.

Statistical Profiling Tools

Profiling tools that aggregate sampling data, also called statistical profiliers, are the Linux perf tools

[Wea14], pprof [GG14], Allinea Map [All14] and the aforementioned gprof [GKM82].

The Linux perf tools (previosly Performance Counters for Linux (PCL)) is part of the linux kernel since

version 2.6.31, which allows statistical profiling of the entire system, both, kernel and user space code.

The Google performance tools include a profiling tool based on sampling. With the also contained pprof

tool the gathered data can be translated to a plain text output or a graphic call graph annotated with timing

information [Ghe08].

Allinea’s MAP tool presents itself as the most elaborated of the statistical profilers. It implements adap-

tive sampling rates and provides a sophisticated graphical user interface. However, the tool is proprietary

and its approach is not scientifically evaluated.

2Eclipse Integrated Development Environment, www.eclipse.org

10 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

Sampling-based Tracing Tools

Tracing tools based on samples are the HPCToolkit [ABF+10] and Intel’s VTune [Rei05]. Furthermore,

there are event-based tracing tools that support sampling, too, e.g., Paraver and Score-P (see below).

The HPCToolkit, developed at Rice University, is a sampling-based tracing tool that supports three dif-

ferent visualization methods: code-centric (i.e., a call-path profile), thread-centric, and time-centric (i.e.,

a timeline) [MCA+14]. A unique feature of HPCToolkit is its ability to combine the recovered static

program structure with dynamic calling context information to attribute performance metrics to calling

contexts, procedures, loops, and inlined instances of procedures [TMCF09].

Intel’s VTune in its current version as Intel VTune Amplifier 2015 [Int14a] is a proprietary tool that

provides basic profiles and timelines.

Event-based Tracing Tools

The fourth category, event-based tracing tools, contains analysis tools such as Vampir [NAW+96], the

Scalasca toolset [GWW+10], the Tuning and Analysis Utilities (TAU) [SM06], the Paraver toolset

[SLGL10], and the Paradyn toolset [MCC+95]. Furthermore, there is the measurement infrastructure

Score-P [KRM+12], which serves as a unified monitoring system for the analysis tools Vampir, Scalasca,

and Tau. Because they are the primary target of the contributions presented in this thesis, these tools are

covered in more detail in the next section.

2.3 Event-based Trace Analysis Tools

This section narrows down the focus on well-established event-based performance analysis tools and

their general approaches. While there are many more academic and proprietary approaches [MCLD01],

for instance, Paradyn [MCC+95], the Intel Trace Analyzer [Int14b], OpenSpeedShop [SGM+08], and

Jumpshot [ZLGS99], this section focuses on tools that represent a distinguished class of features. Be-

cause other tools share similar approaches, they are not covered separately. Furthermore, this section

provides a basis for the discussion of the current challenges in event-based tracing presented in the next

section and allows to assess requirements for enhancements to the current approaches.

2.3.1 The Vampir Toolset

Vampir (Visualization and Analysis of MPI Resources) [KBD+08] is a well-proven and widely used

toolset for event-based performance analysis in the high performance computing community. It consists

of the Vampir trace visualizer [NAW+96, BN03, BWNH01] and the VampirTrace measurement envi-

ronment [MKJ+07, ZIH14]. The Vampir visualizer is available as a commercial product since 1996.

Its development started at the Center for Applied Mathematics of the Research Center Jülich, Germany

and is continued at the Center for Information Services and High Performance Computing (ZIH) of the

Technische Universität Dresden, Germany. Its counterpart, the VampirTrace measurement environment

is available as open source software since 2006. It supports all major parallel paradigms and accelerator

APIs simultaneously, e.g., message passing (MPI), threading (OpenMP, Pthreads), and accelerator APIs

(CUDA, OpenCL). Within the collaborative project SILC [SILC09] the unified measurement infrastruc-

ture Score-P was developed, which is replacing VampirTrace now (see Section 2.3.5).

2.3. EVENT-BASED TRACE ANALYSIS TOOLS 11

Today, the Vampir trace visualizer includes a scalable, distributed analysis architecture called Vam-

pirServer [BNM03, BMSB03]. The VampirServer architecture enables the scalable processing of both,

large amounts of trace data and large numbers of processing elements. This architecture consists of a

visualization client, a master process, and a number of distributed workers (see Figure 2.5). The client is

intended to run on a user’s local system and visualizes the display information received from the server.

The master process of the server handles the requests from the client and distributes partial requests to

the workers. The workers evaluate disjoint parts of the trace data, usually a subset of locations of the

monitored application, and send the results to the master. The master communicates these results in the

form of already composed display information to the client, hence, it requires only a moderate network

connection between client and server. Small, local traces can also be evaluate directly by the client.

Dresden, September 15th Comprehensive Performance Tracking with
Vampir 7.0

Slide 4

01 New Performance Browser
Vampir Components

Vampir

Trace

Vampir

Trace

Trace

File

(OTF)

Vampir 7.0

Trace

Bundle

VampirServer

CPU CPU

CPU CPUCPU CPU

CPUCPU

Multi-Core

Program

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

CPU CPU CPU CPU

Many-Core

Program

Figure 2.5: Vampir/VampirTrace architecture overview. VampirTrace (left) records events from the par-
allel application. The resulting trace file is processed either directly by the Vampir client or
by the VampirServer in the case of large parallel programs (taken from [BHJH10]).

As stated before, event-based tracing tools present the tracing data in the form of timelines along with

summarized profile information and automatically derived analysis results. The main visualization ap-

proaches of Vampir, exemplary for many similar tools, are detailed below.

Master Timeline Display

A master timeline visualization generates a visual representation of the application behavior over time

in the form of a space-time diagram. It represents the active code region over time for each location on

the horizontal axis and the selected locations on the vertical axis. Whereas each code region or group

of code regions is marked as a segment of a location bar with a specific color for the time it is active.

Communication and interaction between locations are represented by arrows and lines. For each element

of the master timeline detailed context information is available, when selected.

While the initial representation of the timeline displays the activity of all locations along the entire

application runtime, zooming is the method to gain more detailed information. Zooming and scrolling

can be executed in the horizontal and vertical dimension to change the shown time interval or subset of

locations, respectively. Figure 2.6 shows an example of a global timeline zoomed to a time interval of

0.5 seconds. It is based on a trace of the Weather Research and Forecast Model (WRF) [MDG+04].

12 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

Process Timeline Display
Process timelines are similar to global timelines but focus on a single location. The vertical dimension

is used to visualize the hierarchy and call dependencies of the code regions by arranging the segments

according to their calling depth (see Figure 2.7). Horizontal and vertical zooming and scrolling can be

applied in the same way as for global timelines. The process timelines can also be aided by available

performance metrics shown as graphs over time. For a detailed comparison of a subset of processing

elements multiple process timelines can by displayed simultaneously with aligned time intervals.

Summary Charts
The summary chart displays statistical information about code regions or groups of code regions such

as total or average inclusive or exclusive runtime or number of invocations. This information can be

gathered from a single location or groups of such and can be shown as pie charts or histograms (see

Figure 2.8). While this information is very similar to profiles, the summary charts can be computed for

arbitrary time intervals usually selected via a timeline display. Furthermore, all per processing element

summaries can be displayed side by side to compare the general behavior of the individual processing

elements.

Communication Matrix
The communication matrix shows information to analyze the communication behavior of a measured

application such as number of messages, volume, transfer time, and data rates as minimum, average,

and maximum values. The values are displayed as two-dimensional matrix with color-coded entries (see

Figure 2.9), which allows an easy identification of communication patterns.

Display Arrangement, Performance Radar, and Trace Comparison
All of the above mentioned displays and some more, e.g., for call trees, performance metrics, and location

clustering, can be arranged freely within one application window. Figure 2.10 shows an example based

on WRF with a clustered process summary chart (i.e., classes of locations with similar behavior are

represented only once), a global timeline, and a performance metric display showing the floating point

operations per second on the left side, and the function summary, function legend, and call tree on the

right side. All these displays are synchronized, thus, whenever the time interval is change within the

global timeline, all other displays are re-computed accordingly.

Next to a location local presentation of a performance metric, a color-coded presentation including all

locations allows a direct comparison of differences in the behavior of the processing elements regarding

a specific performance metric – the so called performance radar. Figure 2.11 shows the floating point op-

erations per second for all locations, which allows in this case an easy identification of compute intensive

application phases.

Furthermore, the custom display placement also supports a comparison of multiple traces, which, for

instance, is useful for comparing application runs with different parameters or the evolvement of an

application in different optimization stages. In addition, approaches for a structural comparison of traces

can be applied [WBB12, WMS+13].

2.3. EVENT-BASED TRACE ANALYSIS TOOLS 13

Figure 2.6: Vampir master timeline display showing 16 MPI processes of a WRF measurement zoomed
to a time interval of 0.5 seconds (taken from [GWT14]).

Figure 2.7: Vampir process timeline display showing the call hierarchy of the code regions for process 0
from the example in Figure 2.6 (taken from [GWT14]).

14 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

Figure 2.8: Vampir summary chart showing the accumulated exclusive runtime for different function
groups as pie chart and histogram (taken from [GWT14]).

Figure 2.9: Vampir communication matrix (taken from [GWT14]).

2.3. EVENT-BASED TRACE ANALYSIS TOOLS 15

Figure 2.10: Vampir custom display arrangement including a clustered process summary chart, a global
timeline, and a performance metric display on the left side, and a function summary, func-
tion legend, and call tree on the right side. (taken from [GWT14]).

Figure 2.11: Vampir performance radar showing the floating point operations per second, which allows
an easy identification of compute intensive phases (taken from [GWT14]).

16 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

2.3.2 The Paraver Toolset

The Paraver tool set consists of the Paraver visual performance analyzer [CEP01b] and the Extrae mea-

surement environment [BSC14]. In addition, the Dimemas tool [CEP14] allows trace-based replay to

simulate program behavior of a recorded application under alternative conditions such as different CPU

speed or different network characteristics. All three tools are developed at the Computer Science devision

at the Barcelona Supercomputing Center, Spain since 1991 (partly under different names).

The Extrae monitor supports the recording of all major parallel and accelerator paradigms simultaneously

much like VampirTrace. As a unique feature, Extrae records events generated by code instrumentation

and sampling probes together. This approach provides additional information between runtime events,

which can be useful for long or un-instrumented code regions [BSC14].

The Paraver toolset uses its own trace format, which supports only three basic event record types: states

that associate a value for a stream during a time interval, events that represent a punctual event on a

stream, and relations that relate two events on two different streams together [CEP01a]. The rather

abstract description of these record types originates in their so called semantic free design. Thus, all

specific events are mapped to one of these basic record types, e.g., code region enter/leave to states,

performance metrics to events, or a point-to-point communications to relations.

The Paraver trace visualizer uses a semantic module to generate a semantic value (numeric value) for each

object to be represented, which is a function of time that is computed from the records that correspond

to the object. These objects belong to either of two fixed hierarchies: programming model (workload,

application, task and thread) and resources (system, node and CPU) [CEP01a]. For both, the semantic

value is hierarchically computed according to the general object model structure. Paraver uses three

presentation modules: visualization (timelines), textual and statistics (profiles). Each of them handles one

of the three types of records [BSC10]. Figures 2.12 – 2.14 show examples of these three presentations.

Figure 2.12: Paraver timeline showing phases spent in MPI functions over time (taken from [BSC10]).

2.3. EVENT-BASED TRACE ANALYSIS TOOLS 17

Figure 2.13: Paraver’s textual view opens when clicking on a timeline (taken from [BSC10]).

Figure 2.14: Paraver statistics view showing a tabular view of time spent in MPI functions and a com-
munication matrix (taken from [BSC10]).

18 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

2.3.3 The Scalasca Toolset

The Scalasca toolset represents a different performance analysis approach than the aforementioned tools.

Unlike the performance visualization tools, it applies an automatic analysis to identify patterns of ineffi-

cient application behavior. The resulting performance report is presented in a hierarchical viewer called

CUBE. Scalasca is developed at the Forschungszentrum Jülich, Germany and the German Research

School for Simulation Sciences, Germany. Its predecessor Kojak [WM03] was additionally developed

at University of Tennessee in Knoxville, USA. While previous versions included a trace monitor, today,

Scalasca uses the unified measurement environment Score-P for trace generation.

The parallel trace analyzer Scout [SDT14a] performs the automatic analysis in Scalasca by searching for

predefined patterns of inefficient application behavior. Each identified pattern is given a severity rating

ranging from noncritical to critical to allow an easy identification of the most severe performance issues.

All predefined patterns are categorized in a hierarchy from general to specific. Typical patterns of ineffi-

cient behavior include idle threads or wait times in global or point-to-point communication. Figure 2.15

shows two prominent examples of wait times in point-to-point communication due to unsynchronized

messages: the so-called late sender and late receiver pattern. The severity of both patterns is derived

from the delay between matching calls, i.e., the longer a communication partner waits the higher the

severity. A complete list of performance properties can be found in [SDT14c].

Pr
oc

es
se

s

Time TimeTime

Send

Receive

Send Send

ReceiveReceive

Wait Wait

Pr
oc

es
se

s

Pr
oc

es
se

s

Figure 2.15: Patterns for point-to-point communication: synchronized (left), late sender (center), and late
receiver (right), which cause wait times for the sender and receiver, respectively.

The results of the automatic analysis are stored in a single XML file, which is the input for the CUBE

display [GSS+12]. It displays the information in three dimensions side by side: a metric dimension, a

program dimension, and a system dimension (see Figure 2.16). The metric dimension contains a set of

metrics, such as communication time or cache misses that represent the patterns found by Scout. The

program dimension shows an application call tree, which includes all call paths onto which metric values

can be mapped. The system dimension represents the parallel locations, which can be processes or

threads depending on the parallel programming model [SDT14b]. Alternatively, the system dimension

can display the performance properties within the system topology (see Figure 2.17).

Each dimension is organized in a hierarchy in the form of weighted trees where the severity rating of

each tree node is the aggregation of its sub-trees when collapsed and contains only its own severity

when expanded. The severity values are represented by numeric values (absolute or relative), as well

as a color-coding, which supports a quick visual perception of the most severe performance properties.

Furthermore, the three displayed dimensions are synchronized, so that selecting a sub-tree restricts the

other displays to the selected metric. Since the Scalasca approach automatically detects predefined per-

formance inefficiencies, it allows a convenient and low-key identification of typical performance issues.

2.3. EVENT-BASED TRACE ANALYSIS TOOLS 19

Figure 2.16: Cube display with its three dimensions: metric tree, call tree, and system tree with color-
coded severities (taken from [SDT14b]).

Figure 2.17: Cube display showing the performance metrics mapped to the three-dimensional system
topology (taken from [GWW+10]).

20 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

2.3.4 The Tuning and Analysis Utilities (TAU)

The Tuning and Analysis Utilities (TAU) provide tools for event-based and sample-based tracing, profil-

ing and profile analysis. For the analysis of event-based traces TAU relies on the aforementioned tools:

"We made an early decision in the TAU system to leverage existing trace analysis and visualization tools.

However, TAU implements it own trace measurement facility and produces trace files in TAU’s own

format." [SM06]. Consequently, TAU includes trace file converters to translate TAU traces into formats

used by theses tools. However, for large trace files such a conversion might imply a huge effort. Hence,

TAU also suggests using Score-P for tracing to generate OTF2 traces [TAU12b] (see Section 2.3.5).

The TAU tracing tools provide two distinct approaches to enhance functionality. The first is PDT

[LCM+00], that allows selective source code instrumentation. The second includes early approaches

for online performance analysis, one using parallel profiling analysis over MRNet [NMM+08] and the

other using file-based online trace analysis with VampirServer [BMSB03]. Furthermore, TAU supports

many advanced profiling features such as phase-based and call-graph profiling and its own visualization

tool ParaProf. Figures 2.18 and 2.19 show two example visualizations.

Figure 2.18: ParaProf showing aggregated exclusive runtime per location of each code region. The un-
stacked bars view (right) allows a comparison of individual code region across location
(taken from [TAU12a]).

Figure 2.19: ParaProf 3D visualization allows to show two metrics (by height and color) for all code
regions and locations (taken from [TAU12a]).

2.3. EVENT-BASED TRACE ANALYSIS TOOLS 21

2.3.5 Score-P and the Open Trace Format 2

The previous sections focussed on the analysis functionality of the different tools, which equals the third

stage of performance analysis: data representation. Each tool workflow includes its own measurement

tool that covers the first and second stage: data capturing and data recording. However, the differ-

ent measurement environments VampirTrace (Vampir), Extrae (Paraver), Scalasca, and TauTrace (TAU)

share very similar techniques for event generation and recording. This led to the idea of joint devel-

opment and evolution of a unified measurement infrastructure. Today, Score-P [KRM+12] is the joint

measurement infrastructure for the analysis tools Vampir, Scalasca, Periscope, and TAU. It comprises the

measurement functionality of these tools into a single infrastructure, which provides a maximum of con-

venience for users next to a reduction of redundant effort in tool development. The Score-P measurement

infrastructure allows profiling, event tracing, and online analysis. It contains the code instrumentation

functionality supporting various methods and performs the runtime data collection. Figure 2.20 shows

an overview of the Score-P architecture and its interfaces to the supported analysis tools.

Instrumentation Wrapper

Vampir
Scout Cube ParaProf PerfExplorer

Periscope

Event Traces (OTF2) Call-path Profiles (CUBE4, TAU) Online Interface

Process-level
Parallelism

(MPI, SHMEM)

Thread-level
Parallelism

(OpenMP, Pthreads)

Accelerator-based
Parallelism

(CUDA, OpenCL)

Source Code
Instrumentation

User
Instrumentation

Scalasca TAU

Score-P Measurement Infrastructure

Figure 2.20: Architecture of the Score-P instrumentation and measurement infrastructure and its inter-
faces to supported analysis tools.

Score-P captures all major paradigms through the following instrumentation techniques:

• Code regions via compiler instrumentation,
• MPI and SHMEM via library interposition,
• OpenMP source code instrumentation using Opari2 [LDTW14],
• Pthread instrumentation via GNU ld library wrapping,
• CUDA, OpenCL instrumentation,
• Selective source code instrumentation via the TAU instrumenter (PDT) [LCM+00],
• Binary instrumentation using Cobi [MLW11], and
• Manual user instrumentation.

While the online interface provides direct access via TCP/IP for online analysis tools such as Periscope,

the interface for the other analysis tools is realized by various file formats. For the profiling tools Cube,

ParaProf, and PerfExplorer Score-P uses their native formats Cube [SDT14b] and TAU [TAU12a]. Event

tracing data is stored within an OTF2 archive, which is covered next.

22 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

The Open Trace Format 2 (OTF2)
Event trace data formats of the different tools have many similarities just like the measurement tools

themselves [Knu08, EWG+12]. The similarities are also shown in the existence of various converters

between most formats [SM06]. Consequently, a unified event trace data format has been developed

along with the unified measurement infrastructure. The Open Trace Format 2 (OTF2) [EWG+12] is a

highly scalable, memory efficient event trace data format and support library. It is the new standard trace

format for Vampir, Scalasca, and TAU. OTF2 is the common successor for the Open Trace Format (OTF)

[KBB+06] used by Vampir/VampirTrace and the Epilog trace format [WM04] used by the Scalasca

toolset. It preserves the essential features and record types of both and introduces new features such

as support for multiple read/write substrates, in-place time stamp manipulation, and on-the-fly token

translation. In particular, it avoids copying during unification of parallel event streams.

Since the Open Trace Format 2 is the starting point for the contributions of this thesis, this section

presents it in detail as an example similar to many other event trace formats such as the Paraver Trace

Format [CEP01a], the TAU trace format [SM06], the Structured Trace Format of the Intel Trace Analyzer

[Int14b], as well as its two predecessors OTF and Epilog. In addition, OTF2’s integration in multiple

analysis tools allows a broad application of the contributions of this thesis (see Section 6).

The Open Trace Format 2 stores all runtime events in the form of trace records, which can be categorized

in event records and definition records.

Event Records
Event records mark runtime events and consist of three parts: first a record token that defines the type

of an event, second an exact time stamp telling when the runtime event occurred, and third, event spe-

cific attributes. They contain all information to entirely reconstruct or replay the application execution

behavior. The most common event records are [OTF14]:

• Entering and leaving a code region with an identifier of the code region,
• Sending and receiving an MPI messages storing sender, receiver, communicator, tag, and size,
• Collective MPI operations with the type of collective operation and the communicator,
• Begin and end of OpenMP parallel regions,
• Fork and join of thread teams, and
• Hardware performance metrics with type and value.

Definition Records
Within the event records all references are defined in the form of identifiers, e.g., for the code region

in an enter/leave record, or sender and receiver in point-to-point messages. This allows a much higher

memory efficiency in comparison to storing names, labels, and descriptions within each event record, in

particular, since many of these are referenced repeatedly. The translation of these identifiers is stored

within the definition records. The most common definition records are [OTF14]:

• Code regions containing their name, description, and source code location,
• MPI Communicators with their name and communication partners, and
• Hardware performance metrics with a name, description, and measuring unit.

2.3. EVENT-BASED TRACE ANALYSIS TOOLS 23

Furthermore, there are definition records that describe the global properties of a measurement like:

• System layout, e.g., a system tree,
• Locations that describe the recorded processing elements,
• The resolution of used time stamps, and
• Various types of groups, e.g., for locations and code regions.

A complete list and a detailed description of all event and definition records can be found in [OTF14].

Read and Write Interface
The Open Trace Format 2 includes a support library that provides interfaces for read and write access to

the trace data. The standard access to the trace data is in temporal order, i.e., all events must be written

with monotonic increasing time stamps. When reading the trace data, the event information is delivered

in the form of user-defined call back handlers in the same temporal order.

All events are separated in event streams that represent exactly one location, which results in one event

file per location when the data is stored on the file system. This renders the information on which location

an event occurred unnecessary within each single event stream and allows a more efficient storage than

mixed-stream formats such as its predecessor OTF. Furthermore, this approach supports an efficient

parallel reading of the individual event streams.

Next to the event files for each location, there is a local definition file for each event location that contains

mapping tables to convert local identifiers into identifiers within a global scope. Furthermore, there is a

global definition file that describes all identifiers within the global scope, i.e., the entire measurement,

and the so called anchor file, which serves as an entry point for the OTF2 archive. Figure 2.21 shows the

basic file layout of an OTF2 archive.

Anchor File
<ArchiveName>.otf2

Global Definition File
<ArchiveName>.def

Event Files
<ArchiveName>/<#>.evt

Local Definition Files
<ArchiveName>/<#>.def

Figure 2.21: Layout of an OTF2 archive containing an anchor file as entry point, one global and multiple
local definition files, and event files with records of runtime events.

24 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

2.4 Challenges in Event-based Tracing and Related Work

While the previous sections present a general overview on event-based performance analysis, this section

focuses on methods related to the concepts of this thesis. This section introduces three urgent challenges

in the field of event-based performance analysis and current approaches coping with these challenges.

These challenges are, first, scalability in the number of processing elements, second, the management of

the enormous data volumes, and, third, the reduction of measurement bias.

2.4.1 Scalability

To help users in the development of scalable software, performance analysis tools themselves must be

scalable to the same extend – or even one step ahead. Current HPC systems ranging up to 3 million

processing elements [Top14] require software and workflows with extreme levels of concurrency. Mon-

itoring applications at this scale and beyond results in tremendous amounts of event tracing data spread

across millions of files; one file for each recorded location. While high-end parallel file systems for such

machines are usually equipped to provide enough disk space and sufficient I/O bandwidth, the creation

of millions of parallel files is entirely infeasible with all existing parallel file systems [ISC+12]. Request-

ing more than a few thousand file creations per second affects all jobs and users on a machine. Exact

numbers vary on different machines and parallel file systems from 4,000 [ISC+12] to 10,000 [AEH+11]

maximum file creations per second.

The reason for this limitation is the handling of file system meta data. Common HPC parallel file sys-

tems such as GPFS [SH02] and Lustre [Sun08] focus on increasing data bandwidth, which is primarily

achieved by adding more disk drives and more disk controllers. However, large amounts of hardware

cannot improve meta data performance since the limiting factors are the number of simultaneous oper-

ations and their latency. For massively parallel I/O requests, in particular file creation, their latency has

the potential to become the major bottleneck [AEH+11]. In fact, for event tracing tools this meta data

wall is one of the most challenging limitations already occurring for systems with tens or hundreds of

thousands of cores – not even thinking about systems with several millions of cores arising within the

next years [BBC+08].

Two approaches that are dealing with the file system limitations and have been applied to event tracing

are SIONlib [FWP09] and the I/O Forwarding Scalability Layer (IOFSL) [ISC+12]. Both approaches

merge many logical files into a single or a few physical files. While SIONlib relies on the file system’s

capability to handle large sparse files to pre-allocate segments for the logical file handles within a single

file, the I/O Forwarding and Scalability layer, as the name suggests, provides an I/O forwarding layer to

offload I/O requests to dedicated I/O servers that can aggregate and merge requests before passing them

to the actual file system.

The IOFSL approach was applied to a full Cray XT5 system measurement with 200,448 cores using the

VampirTrace measurement environment [ISC+12]. SIONlib was used in combination with Scalasca to

measure 294,912 cores on a BlueGene/P and the aforementioned system [WGM+10].

However, both approaches are currently limited to a subset of systems and in their general applicability.

The IOFSL approach requires resources hosting the I/O forwarding servers, which would be best placed

on a system’s dedicated I/O nodes. But user access to these nodes is usually restricted or impossible.

Thus, the I/O forwarding servers can only be deployed on compute nodes reducing the total compute

2.4. CHALLENGES IN EVENT-BASED TRACING AND RELATED WORK 25

capability and limiting network and I/O bandwidth. In addition, starting additional server nodes with the

application must be supported by the corresponding batch system. SIONlib, on the other hand, requires

no server processes but causes unforeseeable synchronization in the parallel application execution, which

is critical for event tracing. Furthermore, it depends on MPI for internal coordination, which is infeasible

for monitoring non-MPI parallel applications.

Both approaches still cause noticeable overheads for file interaction and have only been demonstrated

for small benchmarks with minimal data volumes [ISC+12, WGM+10]. The file interaction overhead in

the aforementioned studies was reported with 71 seconds for IOFSL and ten minutes for SIONlib on the

BlueGene/P system, which is still very high compared to the small data volumes written. Nevertheless,

both approaches achieved a remarkable decrease compared to direct POSIX I/O with a factor of about

three for IOFSL and a decrease from 89 to ten minutes for SIONlib.

Both studies demonstrated a drastic improvement over direct file interaction, which pushed the barrier an

order of magnitude higher with justifiable overhead. Considering the overhead, the small demonstrated

benchmarks, and the aforementioned restrictions, the limitations of event tracing imposed by parallel file

systems are still not overcome and remain an unmet challenge.

2.4.2 Data Volumes

As stated before, event tracing can produce enormous amounts of data that need to be handled efficiently.

Moreover, trace analysis tools must provide methods to support the user in getting useful information out

of this overwhelming amount of data.

Data Volumes in Trace Recording
While the size of a single event record is typically only a few bytes, high event frequencies rapidly

generate tremendously huge data volumes. The reviewed applications and application kernels in this

thesis (see Section 5.1) show event rates of 50,000 to two million events per seconds per location, which

is underlined by other studies [ISC+12]. Given an average event size of 10 bytes this would result

in about 0.5 to 20 MiB per second and 300 MiB to 12 GiB for a measurement of 10 minutes. For

long-running applications, such as the reviewed Gromacs package [HKS08], a full production run can

produce up to 12 TiB per location (see Section 5.4). Of course, this data volumes must be multiplied with

the number of recorded locations, which leads to even higher data volumes for large-scale applications.

While these data volumes require extraordinary amounts of disk space, for event-based trace recording

the data volumes per location are of primary importance since main memory and I/O bandwidth are

usually proportional to an increase in core counts.

General Purpose Compression
To cope with large data volumes most tracing approaches use general purpose compression libraries such

as the well-establish zlib [DG96] based on the the Lempel-Ziv 77 compression algorithm [ZL77] that

provides a good trade-off between compression ratio and overhead [SL11]. While LZ77 compression,

as most compression algorithms, depends on the input data, event trace data is typically compressed by

a factor of about three to four [WKN12]. Due to the introduced overhead, general purpose compression

is not applied on data within the memory buffer but when storing data to the file system.

26 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

Encoding Optimizations

In contrast to post-mortem general purpose compression, encoding optimizations of the trace format

itself provide a trace size reduction within the memory buffer and the resulting trace file. However,

previous enhancements in the encoding reduce trace sizes much less than general purpose compression

algorithms [EWG+12]. Still, the discrepancy in size reduction between encoding and general purpose

compression hints to unexploited potential in current encoding approaches.

Statistical Clustering

Statistical clustering [NRR97] exploits similarity in parallel application behavior to group processes with

similar behavior in a way that all processes within the same group or cluster are more similar to each

other than to those in other groups. The data reduction is achieved by keeping only a single representative

for each cluster. Consequently, the compression factor for a single cluster equals the number of members.

In the case of multiple clusters the total compression depends on the number of members in each cluster

and their trace size. The Extrae trace monitor [BSC14] combines statistical clustering [LGS+10] with

spectral analysis based on wavelets [LCS+11] to detect iterative patterns within the application, as well.

Pattern Aggregation

Furthermore, there are approaches that use pattern aggregation to reduce trace sizes. These approaches

try to detect recurring patterns either within each event stream, e.g., iterations, or across different event

streams where, especially, SPMD (single program multiple data) applications contain redundant paral-

lel behavior. Compressed Complete Call Graphs (cCCG) [KN05a, KN05b, KN06] are rooted directed

acyclic graphs that combine regular patterns into common sub-trees. The cCCG data structure uses the

caller information and time deviations to group leave nodes, i.e., if two calls to the same function vary

less than a predefined threshold, they are grouped together. In the same way are all intermediate nodes

combined when their caller information matches, they have common sub-trees, and their duration devi-

ates less than the given threshold. Figure 2.22 demonstrates the compression in an Complete Call Graph

for a simple example. The proposed approach also presents techniques for optimized cache utilization

for the graph node and splitting methods to avoid wide graph nodes [KN06].

10 100 20

foo1

12 101 20

100 101

foo2

bar1 bar2

50 50 50130 133

main

[0,0] [0,0]

[0,0] [0,0]

10 100 20

foo1

12 101 20

100

foo2

bar

50 50 50130 133

main

[0,0] [0,0]

[0,0] [-1,0]

10 100 20

foo

100

bar

50 50 50130 133

main

[0,0] [-3,0]

[0,0]

Figure 2.22: Successive compression in a CCG. The first graph (left) shows an uncompressed CCG.
Since both calls to function bar are compatible they are replaced by a reference (middle).
Runtime deviations are propagated to the parent node as a deviation interval [-1, 0]. As both
calls to foo reference the same child node they are grouped together, as well (right) [KN06].

2.4. CHALLENGES IN EVENT-BASED TRACING AND RELATED WORK 27

In addition, a study by Mohror and Karavanic [MK09] evaluates different pattern-based methods for

trace compression against several criteria including size reduction and introduced error. The ScalaTrace

monitor [NRM+09] presents another pattern-based method explicitly for MPI traces, hence, it does not

contain any events for code regions.

Filtering and Selective Instrumentation

Another way to reduce the size of the resulting trace files are manually or automatically applied event

filters. A very common filter is the discarding of all function calls when a code region is entered more

often than a predefined limit [MKJ+07, GWW+10, KRM+12]. This usually eliminates an overcharge

of highly frequent calls to tiny functions, such as helper functions and get/set class methods. Optionally,

filters for those functions can be determined beforehand either by statistical source code analysis or a

profile run of an application [MLW11]. Selective instrumentation allows to exclude specific functions

from being instrumented at all [LCM+00, MLW11]. Furthermore, it is possible to manually define

which code regions are instrumented [MKJ+07, KRM+12]. The Paradyn monitor additionally allows

to dynamically instrument functions during runtime [BM11] based on their approach for direct binary

instrumentation [HMC94].

Data Volumes in Trace Analysis

Event-based trace analysis faces similar challenges with the growing data volumes. Since most tools ap-

ply scalable analysis techniques and use either the same amount of resources for analysis as the measured

application or an adequate subset [BNM03, GSS+12], the increasing data volumes caused by increas-

ing core counts are a smaller challenge for data processing than the large data volumes per location.

However, the increasing data volumes with increasing core counts impose a demanding challenge for the

presentation of analysis results. While automatic analysis approaches, such as an detection of root causes

of wait states [BGWA10] and determination of the critical path in the application execution [BSG+12],

try to pin-point to the most severe performance issues, visual analysis approaches have to circumvent

limitations in the screen resolutions as well as in the human perception of information.

The limitations in screen resolution, i.e., presenting more processing elements in a timeline visualization

than there are pixels, are passed with an intelligent selection algorithm [NAW+96] or by clustering

locations in groups with similar behavior [Bru08, LGS+10]. These approaches allow a reduction of

information presented to the user on a complete application representation but when the focus is reduced

to parts of the application the detail is kept.

The large data volumes per location are challenging in the data processing as well as the data represen-

tation. Since most analysis tools process the recorded events within their own data structures, a trace

size reduction achieved by any sort of compression does not reduce the amount of data that needs to be

processed and kept in the analysis data structures. On the contrary, the overhead for reading the data is

increased by applying an according decompression, except for those approaches that provide options for

optimized access to the compressed data structures such as cCCGs [KN06]. Only approaches that reduce

trace size by reducing the number of events per location with filters or selective instrumentation allow a

reduced effort in trace analysis.

28 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

2.4.3 Measurement Bias

To ensure the observed behavior is indeed the real behavior of an application, the measurement process

must be as less intrusive as possible – a challenge common to all experimental research.

Measurement Overhead

Measuring an application’s behavior always introduces overhead since a software monitor shares re-

sources with the application in one way or another. In event-based performance analysis every runtime

event is intercepted, the event is processed, and an event record is stored. For the most common events,

entering and leaving a code region, this includes, for instance, the identification of the code region by

its name and the code region’s context, determine the current time, and store an according event record.

During this procedure the application is interrupted in its original execution and, therefore, its behavior

is modified. Such measurement overhead can be reduced but never entirely eliminated.

The bias that is introduced by the measurement and how much the original application behavior is altered,

depends mainly on three factors: the frequency of events, the interval between two associated events,

and the deviation of the introduced overhead, especially, for parallel applications. First, the frequency

of runtime events determines the general overhead for a measurement. For very high event rates in the

range of millions per second the recorded application can be severely slowed down. Slow downs up to a

factor of hundreds have been reported [WDKN14]. While this might render a measurement impossible,

in particular, for long running applications and the application behavior is stretched by the slow down

factor, the general application behavior and global performance issues are still detectable. Second, fine

grained effects might be hidden, especially, when the interval between two associated events is small. For

instance, the original runtime of a function call is prolonged by the measurement overhead for processing

the according enter and leave. This leads to the effect that the recorded runtime of short-running functions

differs considerably from the original runtime. Nonetheless, the relative prolongation is decreasing with

an increasing function duration. The third factor, the deviation of the introduced overhead, can have

the most biasing effect, in particular, for parallel applications, which is discussed in more detail in the

following section.

Intermediate Memory Buffer Flushes

While the overhead for processing the events is usually less deviated by the measurement process, there

are two external reasons for significant deviations in the overhead. The first reason are interrupts by

the operating system usually referred to as OS noise or OS jitter. The tremendous effects on parallel

execution, especially, for large scale applications is demonstrated in [HSL10]. However, this issue af-

fects every part of the system including the measured application itself and is outside a measurement

environment’s control.

The second reason for significant deviations in the measurement overhead are intermediate memory

buffer flushes. To reduce and optimize I/O interaction the recorded runtime events are stored in an in-

ternal memory buffer either residing in the monitoring tools or a dedicated tracing library. Whenever

such a memory buffer is exhausted, the data is stored at the file system, which causes a severe prolonga-

tion of the measurement process of the last recorded event because it is stalled until the file interaction

completes. While the prolongation due to such a memory buffer flush can be recorded itself and, there-

2.4. CHALLENGES IN EVENT-BASED TRACING AND RELATED WORK 29

fore, considered in the analysis of a single event stream [KRM+12], the parallel behavior is completely

disturbed. Since each processing element records different events or at least events with different param-

eters, e.g., time stamps, such intermediate memory buffer flushes occur entirely uncoordninated. Figure

2.23 demonstrates how an unsynchronized intermediate memory buffer flush can either create or hide a

performance issue with the help of the late sender issue (see also Figure 2.15). The same effect can occur

for other types of communication patterns and load imbalances.
Pr
oc

es
se

s

TimeTime

Send

Receive

Send

Receive

Wait

Pr
oc

es
se

s

Pr
oc

es
se

s

Time

Flush

Pr
oc

es
se

s

Time

Send

Receive

Wait

Send

ReceiveFlush

Figure 2.23: Bias on parallel behavior due to intermediate memory buffer flushes. A typical performance
issue such as the late sender can be created (left) or hidden (right) when an intermediate
buffer flush occurs.

The internal memory buffers are usually rather small, e.g., 10 to 200 MiB [ISC+12], because most of the

main memory is left to the application. Hence, such unsynchronized intermediate memory buffer flushes

can occur at high frequencies. For instance, an event frequency of one million events per second with

a given event size of ten byte would cause a memory buffer of 100 MiB to flush every 10 seconds. For

larger memory buffers the frequency of memory buffer flushes would decrease, however, the duration

of the interrupt would increase. In any case, due to the aforementioned impact on the interaction of

processing elements, the entire measurement starting from the first initiated memory buffer flush must be

considered incorrect. This assumption is also supported by the case study in Section 5.4. Consequently,

for typical memory buffer sizes most of the recorded application behavior must be considered incorrect,

which renders a feasible recording of long running application impossible.

The only way to eliminate the bias of uncoordinated intermediate memory buffer flushes is by eliminating

the memory buffer flushes themselves. In this sense, only a drastic reduction of memory requirements

during runtime would avoid such bias and, therefore, allow the recording of long running applications.

However, most of the methods for trace size reduction presented above, in particular, all methods for huge

trace size reductions such as general purpose compression and cCCGs, introduce too much overhead

themselves to be applied during runtime. Therefore, this challenge must be considered as unsolved.

30 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

2.5 Open Challenges and In-memory Event Tracing

Currently, in event-based tracing all three challenges must still be considered unsolved: First, the num-

ber of resulting trace files limits scalability; primarily due to the meta data wall in parallel file systems

[AEH+11]. There exist two approaches (SIONlib [FWP09] and IOFSL [ISC+12]) that circumvent the

limits emerging at scales higher than a few thousand cores and allow tracing up to hundreds of thou-

sands of cores. However, both approaches are currently limited to a subset of systems and applications,

introduce still noticeable overheads and, moreover, it is not clear whether these approaches will also be

sufficient for exa-scale systems with tens or even hundreds of millions of cores.

The enormous data volumes created constitute the second challenge. All existing approaches target-

ing the huge data volumes including the application of general purpose compression [DG96], opti-

mized encoding [EWG+12], statistical clustering [NRR97, LGS+10, LCS+11], and pattern aggregation

[KN06, MK09, NRM+09], turn out to be either of too small effect or introduce remarkable overheads,

thus, they can be only applied for a post-mortem trace size reduction but not during runtime.

The third challenge is the introduced measurement bias, in particular, due to uncoordinated intermediate

memory buffer flushes. With their disruptive character, they can falsify the recorded program behavior

and either create or conceal critical performance issues. Consequently, the entire measurement start-

ing from the first initiated memory buffer flush must be considered incorrect, which renders a feasible

recording of long running application impossible.

These three unresolved challenges in event tracing provide the motivation and target of this thesis. It

proposes concepts for an in-memory event tracing workflow, that increases memory efficiency and dy-

namically adapts trace size during runtime to keep performance data of an entire measurement within

a single fixed-size memory buffer. Such an in-memory event tracing workflow meets all three previous

challenges: First, it not only overcomes the scalability limitations due to the number of resulting trace

files but eliminates the overhead of file system interaction all together. Second, the enhanced encod-

ing techniques and event reduction lead to remarkable smaller trace sizes. Finally, an in-memory event

tracing workflow completely avoids intermediate memory buffer flushes, which minimizes measurement

bias and allows a meaningful performance analysis.

2.6 Summary

With High Performance Computing systems getting more and more powerful but also more and more

complex the demands for developers of parallel applications have risen considerably. Developing appli-

cations that utilize the enormous capabilities of these complex systems requires a continuous process of

optimization – a task nearly unfeasible without the help of appropriate supporting tools.

Performance analysis tools assist developers not only in identifying performance issues in their applica-

tions but also in understanding their behavior on complex heterogeneous systems. Tools gather informa-

tion about the behavior of an application during runtime by either recording runtime events or by peri-

odically sampling the current state. While sampling approaches rely on their sampling frequency to gain

information about an application, event-based monitoring records information when specific runtime

events occur. Sampling or event-based generated information can be either aggregated to summarized

2.6. SUMMARY 31

information about different performance metrics (profiling) or stored individually by keeping the precise

time stamp and further specific metrics for each event (tracing). Profiling with its nature of summariza-

tion decreases the amount of data that needs to be stored during runtime. However, profiles may lack

critical information and hide dynamically occurring effects. In contrast, event tracing records each event

of a parallel application in detail. Thus, it allows capturing the dynamic interaction between thousands

of concurrent processing elements and enables the identification of outliers from regular behavior – with

the cost of huge generated data volumes.

For the analysis of event-based traces there exist two primary approaches. First, the visualization of the

recorded event data in the form of timelines, which display performance metrics such as the active code

region over time on the horizontal axis and the locations on the vertical axis. Such a visualization is

usually assisted by various other information such as summaries, a context menu, and a communication

matrix. Two prominent tools with this approach are Vampir and Paraver. The second approach is an

automatic analysis of the recorded traces based on the search for predefined performance issues such as

unsynchronized communication or load imbalances. Scalasca applies such an analysis and represents the

gathered information in the Cube display in a metric context, call tree context, and system context.

The fact that all major analysis tools have measurement tools with similar functionality led to the idea of

joint development and evolution of a unified measurement infrastructure. Today, Score-P serves as the

joint measurement infrastructure for the analysis tools Vampir, Scalasca, Persicope, and TAU. Score-P

comprises the measurement functionality of these tools into a single tool, which provides a maximum

of convenience for users next to a reduction of redundant effort in tool development. Furthermore, the

Open Trace Format 2, a unified event trace data format and support library was developed along with the

unified measurement infrastructure. The Open Trace Format 2 serves as the reference and target for the

contributions of this thesis, which allows a broad applicability of the enhancements.

In event-based tracing three challenges arise that must still be considered as unsolved. First, the increase

in core counts demands highly scalable tools and workflows for event-based tracing. In particular, the

number of resulting event trace files is already pushing against the limits of parallel files systems. While

there exist two approaches that circumvent the limits emerging at scales higher than a few thousand

cores and allow tracing up to hundreds of thousands of cores, both approaches are currently limited to

a subset of systems and applications, introduce still noticeable overheads and, moreover, it is not clear

whether these approaches will also be sufficient for exa-scale systems with tens or even hundreds of

millions of cores. The enormous data volumes created constitute the second challenge. All existing

approaches targeting the huge data volumes including the application of general purpose compression,

optimized encoding, statistical clustering, and pattern aggregation, turn out to be either of too small effect

or introduce remarkable overheads, thus, they can be only applied for a post-mortem trace size reduction

but not during runtime. The third challenge is the introduced measurement bias, in particular, due to

uncoordinated intermediate memory buffer flushes. With their disruptive character, they can falsify the

recorded program behavior and either create or conceal critical performance issues. Consequently, the

entire measurement starting from the first initiated memory buffer flush must be considered incorrect,

which renders a feasible recording of long running application impossible.

32 2. STATE-OF-THE-ART IN EVENT-BASED PERFORMANCE ANALYSIS

The following two chapters, the main part of this thesis, present concepts for an in-memory event tracing

workflow that provides approaches to meet all three challenges.

The next chapter introduces methods to keep an entire measurement within one fixed-sized memory

buffer and forms the first main part of the contribution of this thesis. Such an in-memory event tracing

workflow meets the first challenge, by not only overcoming the limitations of current parallel file systems

but eliminating the overhead of file system interaction all together. It uses a highly enhanced encoding

combined with low overhead event reduction strategies to dynamically adapt trace size during runtime

to the given memory allocation. This ultimately results in remarkably smaller trace sizes, which is the

second challenge. Furthermore, an in-memory event tracing workflow completely avoids intermediate

memory buffer flushes and, therefore, minimizes measurement bias, the third challenge, and allows the

tracing of long running applications.

After that, Chapter 4 introduces the Hierarchical Memory Buffer, which is the second part of the con-

tribution of this thesis. The Hierarchical Memory Buffer is a new data structure that uses hierarchy

information such as calling depth or event class to presort events according to these hierarchy attributes.

Hence, the Hierarchical Memory Buffer allows to perform the aforementioned event reduction operations

with minimal overhead. In addition, several typical analysis requests can benefit from a hierarchy-aided

traversal of recorded event data.

33

3 Concepts for In-memory Event Tracing

This chapter specifies prerequisites for an in-memory event tracing workflow and defines three key steps

to keep an entire measurement within a single fixed-size memory buffer. The three key steps filtering,

enhanced encoding techniques, and event reduction are discussed in detail.

3.1 In-memory Event Tracing

To clearly characterize the target and contribution of this thesis and to avoid misconceptions, this sec-

tion defines the term in-memory event tracing as it is used in the context of this thesis. Following the

classification of Section 2.1 event tracing is the process of recording runtime events and storing them

individually in a trace for the purpose of performance analysis. In this sense, event tracing covers data

capturing and data recording, which leads to a trace containing the recorded events. The applied data

representation (profile, timeline, or automatic analysis) is not covered in this process.

In-memory describes the location of the recorded event traces, which is a CPU’s main memory including

its registers and cache hierarchy. This implies that there is no interaction with the file system during the

event tracing process. In this context, the further processing after the end of an application measurement

is left undefined. The resulting event trace within memory can either be kept in main memory and directly

forwarded to an analysis component (see Chapter 6) or stored at the file system for future analysis. It is

important that there is no file system interaction during the measurement, which can critically affect the

measurement of the application behavior. Both parts combined can be expressed as follows:

In-memory event tracing describes a method in performance analysis where runtime events

are recorded and stored individually in a trace that remains in main memory for the entire

measurement workflow.

Consequently, the main challenge for an in-memory event tracing workflow is to keep events of an entire

measurement within a single fixed-sized memory buffer. Most event tracing approaches buffer recorded

events in main memory to reduce file system interaction. Once the memory buffer is exhausted, the

measurement is either aborted or event data is flushed to a file. An in-memory event tracing workflow,

however, must avoid both of the above. Therefore, an in-memory workflow must apply methods to

reduce the amount of data in the memory buffer by either reducing the number of events or the amount

of memory per event.

Additional constraints are that, first, these methods introduce minimal overhead to avoid additional mea-

surement perturbation, second, the measurement can contain an arbitrary but finite amount of events,

and, third, the memory buffer can be of arbitrary but fixed size. In other words, keeping an event trace

of arbitrary size within main memory cannot be achieved by increasing the size of the memory buffer

accordingly. Furthermore, the size of the memory buffer is usually small (about one to ten percent of

main memory) since most of main memory is left to the observed application to minimize measurement

34 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

bias. Otherwise, an application that runs out of memory due to a too large memory buffer would ren-

der the measurement useless. In addtion, in the context of this thesis it is agreed that each location of

a parallel application is recorded in its individual event trace (which combined represent the complete

parallel program), i.e., each location has its own memory buffer. Its obvious that it is possible to create

constraints for a measurement where the resulting event trace is completely useless, for instance, when

the memory buffer is too small to contain any events. Therefore, in the context of this thesis it is further

agreed that memory buffer sizes and other measurement parameters remain within typical boundaries.

At any rate, there is no universal method to realize an in-memory event tracing workflow. However,

this thesis will demonstrate that a combination of established, as well as new methods, allows to keep

a measurement of arbitrary size within a single fixed-sized memory buffer – the main criterion for in-

memory event tracing. The established and new methods can be categorized in three major steps within

an in-memory event tracing workflow: selection and filtering, encoding and compression, and event

reduction (see Figure 3.1).

Memory Buffer

Reduced Trace Data

Complete Trace Data

Selected Trace Data

Compact Trace Data

Selection and Filtering

Encoding and Compression

Event Reduction

Figure 3.1: The three main steps to allow in-memory event tracing: selection and filtering, encoding and
compression, and event reduction.

The first step contains methods to either select events for monitoring before the measurement starts or

filter events during runtime and is discussed in Section 3.2. This step contains mainly existing and well-

established methods presented in Chapter 2 and, additionally, optimizations gained from the Hierarchical

Memory Buffer data structure. The second step is an efficient storage of event tracing data within the

memory buffer. This requires a compact encoding and low-overhead compression and is detailed in

Section 3.3. This step builds on existing encoding methods and presents new enhanced techniques to

remarkably increase memory efficiency. While these first two steps can significantly reduce memory al-

location, they fail the by far most important criterion for an in-memory workflow: they cannot guarantee

that the data of an arbitrary measurement fits into a single memory buffer of fixed size. Consequently, the

third and last step is entirely different. It is triggered whenever the memory buffer is exhausted; typically

this is the point where the memory buffer is either flushed to a file or the measurement is aborted. The

crucial point is making memory space available again by reducing the events already stored within the

memory buffer while in the same time introducing minimal overhead. This step covers a completely

novel approach and is discussed in detail in Section 3.4.

3.2. SELECTION AND FILTERING 35

3.2 Selection and Filtering

In order to realize an in-memory event tracing workflow, methods for selection and filtering form the

first step. Both can be applied during instrumentation or during runtime and can refer to single events,

classes of events, and program phases. Typical techniques include:

1. Selective phase instrumentation: Restrict instrumentation to specific program phases, e.g., a phase

that is of specific interest or where a previous analysis detected a performance issue.

2. Selective event instrumentation: Restrict instrumentation to specific events, e.g., exclude code

regions that are not of interest.

3. Manual selective instrumentation: Users explicitly define application phases or code regions that

will be recorded.

4. Static phase filtering: Phases of an application are statically filtered based on predefined criteria,

e.g., in iterative codes only every n-th iteration is recorded.

5. Dynamic phase filtering: Phases of an application are dynamically filtered based on the runtime

behavior of the application, e.g., in iterative codes only those iterations are recorded, that deviate

from average behavior.

6. Static event filtering: Events are filtered based on static predefined criteria, e.g., code regions are

filtered after they have been called a certain amount of times.

7. Dynamic event filtering: Events are dynamically filtered based on the runtime behavior of the

application, e.g., calls to code regions are filtered that are shorter than a minimum duration.

The first three techniques are applied before or during the instrumentation step of an application. Some

compilers, e.g., the GNU compiler, allow steering of the instrumentation via plugins. In addition, there

are tools that support selective instrumentation, such as PDT [LCM+00] and Cobi [MLW11]. The big

advantage of these first three techniques is, that all phases and events excluded from instrumentation

are not recorded at all, which not only reduces the amount of stored data but also the measurement

overhead. However, these techniques require specific knowledge or information about the application.

Such information can be provided by the user, by a previous analysis or can be automatically generated.

Two approaches to automatically generate filters for selective instrumentation are static code analysis

[MLW11] or the comparison of symbols in an instrumented and un-instrumented binary to find those

functions that would be inlined without compiler instrumentation1 [WDKN14]. The latter follows the

assumption that tiny functions, e.g., helper functions or get and set class methods, are usually heavily

called but contribute only little to the overall application behavior.

In contrast, the methods four to seven are applied during application runtime. Static and dynamic phase

filtering methods require the identification of iterative behavior in an application. Based on that, some

tools provide a so called rewind functionality [MKJ+07, KRM+12]. Thereby, the beginning of an itera-

tion is marked with a rewind point in the memory buffer. At the end of each iteration the memory buffer

can be rewound and all events beginning from the last rewind point are discarded [WDKN14]. This can

be done either statically to keep, for instance, every n-th iteration or dynamically based on predefined

criteria, e.g., keep only representatives of each class of iteration.

1Automatic compiler instrumentation typically disables the inlining of very short functions.

36 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

Filtering single events can be done immediately when recorded or delayed after they have already been

stored in the memory buffer. Removing events immediately supports only static filtering, in the sense,

that before the event occurs the filter condition is already set. For instance, when filtering functions after

they have been called a certain amount of times, the number of calls to a function is already known

before the function is entered again and, therefore, the decision whether the next enter and leave events

of that function are filtered is already made. Many tools support such filters in the form of user defined

filter rules that can exclude functions or function groups (e.g., all functions starting with a certain prefix)

entirely or after they have been called a certain amount of times [MKJ+07, GWW+10, KRM+12]. In

contrast, removing functions based on their duration requires the removal of events already stored in the

memory buffer because the duration is first known when the function is left, i.e., the time the leave event

is recorded. At this point, the corresponding enter event is already stored in the memory buffer. Such

dynamic filters are usually more complex and introduce to much overhead and, therefore, are not applied

in any existing tools.

At any rate, this thesis focuses on encoding (Step 2) and event reduction (Step 3) rather than selection and

filtering (Step 1), which is mainly covered in the related work chapter. The primary contribution of this

thesis, to the first step of selection and filtering, is allowing to filter events during runtime more efficiently.

In particular, the Hierarchical Memory Buffer allows to apply dynamic event filtering (Method 7) very

efficiently because of its hierarchy-aided layout. This way, new filter techniques can be incorporated that

have not been possible before because either the hierarchy information is not available or they introduce

too much overhead. Exemplarily, Section 3.4.4 presents a method for runtime filtering of function calls

based on their actual duration.

3.3 Enhanced Encoding Techniques

The second step in an in-memory event tracing workflow includes methods for efficient encoding and

compression. This step builds on existing methods in the Open Trace Format 2 [EWG+12], which is

similar to many other event trace formats, such as the Paraver Trace Format [CEP01a], the TAU trace

format [SM06], the Structured Trace Format of the Intel Trace Analyzer [Int14b], as well as its two

predecessors OTF and Epilog. Starting from OTF2, this section describes new encoding methods that

can noticeably increase memory efficiency of the event trace data format. As stated in Section 2.4.2

there is a huge gap between the memory efficiency of general purpose compression and event-centric

encoding, that these new encoding techniques target to minimize.

Naturally, the topic of efficient encoding of a data format is fairly technical and specific to each format.

However, this section discusses general concepts that can be transferred to other event trace formats

because most event trace formats share a basic design and have many similarities. In addition, the

integration of the Open Trace Format 2 in multiple analysis tools allows a broad application of the new

concepts of this thesis (see Chapter 6).

While there exist other approaches in storing event records (e.g., as aligned C data structures in Vam-

pirTrace [MKJ+07]), a binary encoding of event trace records has proofed to be most efficient in terms

of runtime overhead as well as memory overhead [EWG+12, WKN12]. A detailed comparison of the

different event trace formats in Section 5.2 supports this statement, as well.

3.3. ENHANCED ENCODING TECHNIQUES 37

3.3.1 Binary Event Representation

At first, this section describes the basic memory representation of an event record in a binary encoding.

An event record consists of three main parts: First, a record token that defines the type of an event, e.g.,

entering or leaving a code region, sending or receiving a message; second, an exact time stamp telling

when the event occurred; and third, event specific attributes, e.g., a region ID for a region enter record.

Figure 3.2 shows a generic event record with two attributes in the basic record design of the Open Trace

Format 2. This is similar to others such as the Epilog trace format, which contains only an additional

leading byte that stores the length of the record [WM04].

0A 0000 00 00 0B 71 9A F4 E5 00 EA 4D 00 00 00 00 CF 41 FC 2C

Token Time Stamp Attribute 1 Attribute 2

Figure 3.2: Basic memory representation of event records. First, a one-byte record token defines the type
of an event, followed by a time stamp of eight bytes telling when the event occurred; and
third, event specific attributes, one with four bytes and one with eight bytes.

The following exemplary event sequence demonstrates the basic memory representation of event records

in the binary encoding in more detail. The example is a call to the function MPI_Send to send a message

to another location in the message passing implementation MPI [MPI12]. This results in an enter event

for entering the function, a message event for the sending of the message, and a leave event for leaving

the function. In addition, an arbitrary performance metric, e.g., cache misses, is recorded with each entry

and exit of a function. The timing information for the message event is matched either to the enter or

leave event for the according function call.

Figure 3.3 represents the memory representation of such an event sequence in a binary encoding. All

event records are stored contiguously in the memory buffer but to ease reading they are placed below each

other in the figure. This event sequence and the generic event record in Figure 3.2 are used throughout

this section to illustrate the different encoding techniques.

0A 0000 00 00 0B 71 9A F4 E5 00 00 2C

00 00 00 00 CF 41 FC 4D30 00 00 00 0B 71 9A F4 E5

00 00 00 07 00 00 00 7F20 00 00 00 0B 71 9A F4 E5 00 00 00 C1 00 00 00 00 00 00 04 00

0B 0000 00 00 0B 71 9B 16 3E 00 00 2C

00 00 00 00 CF 47 90 AD30 00 00 00 0B 71 9B 16 3E

Token Region IDTime Stamp

00 00 00 5B

Token Time Stamp Metric ID Metric Value

Token Time Stamp Metric ID Metric Value

00 00 00 5B

Token

Token

Time Stamp

Time Stamp Region ID

Receiver Communicator Message Tag Message Size

Figure 3.3: Memory representation of an exemplary event sequence: Each event record starts with a
record token identifying the event type, followed by a time stamp and event specific attributes.

38 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

3.3.2 Splitting of Timing Information and Event Data

Usually, trace formats store events and their according timing information in a single event record like in

Figure 3.2. This is consequential to the general idea of event tracing because an event is only meaningful

with information about the time it occurred. However, the advantage of storing timing information and

event data separately is the elimination of redundant timing information for consecutive events with

identical time stamps. In that case, the timing information becomes a separate event record with its own

token (see Figure 3.4). This time stamp record sets the timing information for all following events and

is valid until the next time stamp record. The management of such separately stored timing information

can be handled transparently by the read and write library.

01 0000 00 00 0B 71 9A F4 E5 00 EA 4D 00 00 00 00 CF 41 FC 2C

Token Time Stamp Attribute 1 Attribute 2

0A

Token

Figure 3.4: Splitting of timing information and event data results in two separate records: First, a record
storing only the time stamp that is valid until the next time stamp record; and, second, a
record storing only the event attributes.

The advantage of this methods becomes clearly visible when applied to the example event sequence.

Figure 3.5 shows that instead of five time stamps only two time stamps are stored. This leads to a

reduction of 24 bytes for redundant timing information. The trade-off is an additional byte for the token

of the new time stamp record.

01 00 00 00 0B 71 9B 16 3E

01 00 00 00 0B 71 9A F4 E5

01 00 00 00 0B 71 9A F4 E5

01 0000 00 00 0B 71 9A F4 E5 00 00 2C

00 00 00 00 CF 41 FC 4D

00 00 00 07 00 00 00 7F 00 00 00 C1 00 00 00 00 00 00 04 00

01 0000 00 00 0B 71 9B 16 3E 00 00 2C

00 00 00 00 CF 47 90 AD

0A

0B

30

20

30

5B00 00 00

5B00 00 00

Eliminated redundant timestamp

Figure 3.5: Splitting of timing information and event data for the example: Instead of five time stamps
only two time stamps are stored; which leads to a reduction of 24 bytes for redundant timing
information.

3.3. ENHANCED ENCODING TECHNIQUES 39

3.3.3 Leading Zero Elimination

The memory reserved for each attribute of an event record is usually determined by the largest value the

element theoretically represents. In this way, a region ID is typically stored as a 32-bit integer while

a hardware performance counter is stored as a 64-bit integer. However, the majority of values is much

smaller than the hypothetical maximum but results in the same memory allocation. For integer values,

which are most of the values, this frequently results in a number of leading zero bytes for Big Endian

encoding. For Little Endian encoding the effect is the same; but with trailing zero bytes. The following

examples use Big Endian encoding to ease reading. At any rate, omitting these leading zero bytes can

reduce the resulting memory allocation for the vast majority of event records. To still be able to read

this not fix-length representation of the value, the number of remaining data bytes is stored in front of

the value. Figure 3.6 demonstrates this method for the generic event record. The splitting of timing

information and event data, as well as the leading zero elimination, have already been integrated in

current versions of the Open Trace Format 2 [EWG+12].

05

01 0000 00 00 0B 71 9A F4 E5 00 EA 4D 00 00 00 00 CF 41 FC 2C

Token Time Stamp Attribute 1 Attribute 2

0A

01 0B 71 9A F4 E5 EA 4D CF 41 FC 2C0A 02 04

Number of Remaining Data Bytes Number of Remaining Data Bytes

Token

Figure 3.6: Leading zero elimination: Omitting all leading zero bytes. The number of remaining data
bytes is stored in front of them.

3.3.4 Delta Encoding

In general, there are two different types of values that are stored: monotonic increasing values like time

stamps and arbitrary values like region IDs. Furthermore, some of the monotonic increasing values begin

with a very high offset such as time stamps and hardware performance counters. In this case, storing only

the difference (delta) to the previous value leads to much smaller values to store. In combination with

the described leading zero elimination this results in less memory allocation for the stored value. Figure

3.7 depicts this effect for the exemplary event sequence.

01 0B 71 9A F4 E5 2C

CF 41 FC 4D

07 7F C1 04 00

01 21 59 2C

05 94 60

0A

0B

30

20

30

5B

5B

05

02

01

01

01

01

01

04

03

01 01 02

01 0B 71 9A F4 E5 2C

CF 41 FC 4D

07 7F C1 04 00

01 0B 71 9B 16 3E 2C

CF 47 90 AD

0A

0B

30

20

30

5B

5B

05

05

01

01

01

01

01

04

04

01 01 02

Absolute Values Relative Values

Figure 3.7: Delta encoding for the exemplary event sequence: Since time stamps and hardware perfor-
mance counters are monotonic increasing only deltas are stored.

40 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

3.3.5 Event Distribution and Encoding Implications

The previous optimizations can be enhanced even more by encoding very small numbers directly into

the token byte. With the described leading zero elimination a token is always followed by a very small

number: The number of remaining data bytes for the first attribute. This number can be encoded into the

token byte by adding the number of remaining data bytes of the first attribute to the token (see Figure 3.8).

This eliminates the additional byte storing the number of remaining data bytes for each event record.

06

Token

0501 0B 71 9A F4 E5 EA 4D CF 41 FC 2C0A 02 04

0B 71 9A F4 E5 EA 4D CF 41 FC 2C040C

Attribute 1 Attribute 2Time StampToken

Token Including Number of Remaining Data Bytes

Figure 3.8: Merging of token and number of remaining data bytes of the first attribute.

However, the merge of token and number of remaining data bytes must be considered in the distribution

of the tokens since each token and, therefore, also the merged tokens, must uniquely identify the event

type. This leads to multiple tokens for each event type that depend on the size of the first attribute, e.g.,

five different tokens for a 32-bit integer and nine tokens for 64-bit integer; one for each possible number

of remaining data bytes. This includes an additional token indicating that the number of remaining data

bytes is zero in case the value itself is zero. Since the token byte can only represent 256 unique states, it

is obvious that this method cannot be applied to every event type. Therefore, it is important to identify

those events that are most common in event traces.

Encoding for Most Frequent Events

To determine the events that are most common a set of real-life applications and application kernels was

surveyed. The applications include a subset of the SPEC MPI 2007 benchmarks [MWL+07], the NAS

Parallel Benchmarks [BLBS92] in version 3.3, as well as the real-life applications Gromacs [HKS08],

COSMO-SPECS+FD4 [LGW+12], and Semtex [BS04]. They represent real-life applications or ex-

tracted kernels from various research fields using HPC systems. A detailed description of the individual

applications and kernels can be found in Section 5.1.

Figure 3.9 shows the distribution of all event classes by their number of occurrences in the traces of

the reviewed applications and kernels. It reveals that the dominant event records are time stamps, code

region enter and leave events, and metrics. Thereby, the number of metric events depends on the number

of different metrics and the frequency they are recorded. The SPEC MPI benchmarks include one metric

event on every region entry and exit. Hence, the number of metric events equals the number of region

enter/leave events. In the measurements of the NAS Parallel Benchmarks metrics are gathered with a

fixed frequency of 100 µs. Thus, the ratio of metric events depends on the application’s general event

frequency. To cover all three possible scenarios for the inclusion of metric events, the three real-life

applications do not contain any metrics. If multiple metrics are recorded the share increases accordingly

and they can easily become the dominant event class. The share of MPI point-to-point events is for all

3.3. ENHANCED ENCODING TECHNIQUES 41

applications either small or even insignificant. MPI collectives and all other events only have a negligible

share. Of course, this ratio is based on completely instrumented and recorded event traces and changes

accordingly when methods for selection and filtering as in Section 3.2 are applied.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu
bt cg ep ft is lu mg sp gromacs

cosmo-specs

semtex

N
um

be
r o

f O
cc

ur
re

nc
es

 (n
or

m
al

iz
ed

 to
 1

00
%

) Time Stamp
Enter/leave

Metric
Others

MPI P2P
MPI Collective

Figure 3.9: Distribution of event classes by number of occurrences for the SPEC MPI 2007 benchmarks
104-137, the NAS Parallel Benchmarks bt-sp, as well as the real-life applications Gromacs,
COSMO-SPECS+FD4, and Semtex.

From Figure 3.9 it can be inferred that the optimization described above is most useful for time stamp,

enter/leave, and metric events. In this respect, 20 additional tokens are required, which is feasible to

apply. Figure 3.10 shows this method for the example event sequence.

31

0B 71 9A F4 E5 2C

CF 41 FC 4D

07 7F C1 04 00

21 59 2C

05 94 60

5B

5B

01

04

03

01 01 02

03

31

06

21

11

16

01 0B 71 9A F4 E5 2C

CF 41 FC 4D

07 7F C1 04 00

01 21 59 2C

05 94 60

0A

0B

30

20

30

5B

5B

05

02

01

01

01

01

01

04

03

01 01 02

Token Including Number of Remaining Data Bytes

Figure 3.10: Merging of token and number of remaining data bytes of the first attribute.

Encoding of Enter and Leave Events
Still, a lot of tokens remain unused. For instance, the Open Trace Format 2 version 1.3 uses 63 different

tokens including internal steering tokens. Even with the additional 20 tokens almost three quarters of

the token space remains idle. Since enter and leave events are of the most common events and contain

only a single attribute whose value is usually small, they are perfect for extra optimization. A further

improvement upon the previous technique utilizes the remaining token space for the encoding of small

42 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

region IDs directly into the token byte of enter event records. This way, about 150 of the smallest region

IDs can be covered in the token ID. The region ID in leave records can be omitted entirely since they can

be obtained by keeping a function call stack when reading the trace, which can be handled transparently

by the read and write support library. Figure 3.11 illustrates the effect for the example event sequence.

31

0B 71 9A F4 E5

CF 41 FC 4D

07 7F C1 04 00

21 59

05 94 60

5B

5B

01

04

03

01 01 02

03

31

06

21

8C

16

31

0B 71 9A F4 E5 2C

CF 41 FC 4D

07 7F C1 04 00

21 59 2C

05 94 60

5B

5B

01

04

03

01 01 02

03

31

06

21

11

16

Token Including Region ID

Figure 3.11: Merging of token and region ID for enter events; the region ID for leave events is omitted.

The efficiency of this techniques depends on the distribution of the region IDs, since the potential of this

methods can only be utilized when the small region IDs are also the most frequently used region IDs;

otherwise, the effect is irrelevant. Figure 3.12 shows that most of the surveyed applications and kernels

only use a very small number of region IDs in total. Thus, the majority of region IDs can be encoded

directly into the token. This means, that for the surveyed applications the size of most enter events and

all leave events is reduced to one single byte. However, whether or not the small region IDs are actually

the most frequent region IDs, cannot be determined by the measurement represented in Figure 3.12. But

Section 5.2 evaluates the effect of this method in detail.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu
bt cg ep ft is lu mg sp gromacs

cosmo-specs

semtex

N
um

be
r o

f R
eg

io
n

ID
s

Figure 3.12: Number of different region IDs for the SPEC MPI 2007 benchmarks 104-137, the
NAS Parallel Benchmarks bt-sp, as well as the real-life applications Gromacs, COSMO-
SPECS+FD4, and Semtex.

3.3. ENHANCED ENCODING TECHNIQUES 43

3.3.6 Timer Resolution Reduction

The last techniques target to reduce of the size of another frequent event record, time stamps. Typically,

event tracing tools check for available timer sources and use the one with the highest resolution, e.g., a

CPU’s cycle counter, which is in the order of nanoseconds. However, events are recorded at a much lower

frequency. Figure 3.13 shows that for the reviewed applications and kernels the event frequency is in the

order microseconds, which is also supported by other studies [ISC+12]. In addition, the remaining error

after post-mortem synchronization of non-global timer sources is usually in the range of microseconds

[DKMN08]. Therefore, it is possible to reduce the stored timer resolution of high frequency timer sources

without perceivably degrading the accuracy of the timing information. An optimal reduction factor, in

the sense that it is the highest possible reduction before the program behavior is in any way modified, can

only be determined correctly after the measurement is completed. During the measurement a reduction

factor can only be obtained by heuristics, mainly based on the resolution of the timer source and usual

error rates. Thus, only a mild reduction can be applied to ensure a safety buffer. Furthermore, in a

technical view, the reduction should be applied as a bit shift rather than a division. In this respect, the

reduction factor is restricted to powers of two.

 250000

 500000

 750000

1000000

1250000

1500000

1750000

2000000

2250000

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu
bt cg ep ft is lu mg sp gromacs

cosmo-specs

semtex

N
um

be
r o

f E
ve

nt
s

pe
r S

ec
on

d

Figure 3.13: Average event rates of the reviewed applications and kernels.

In contrast to all other techniques the timer resolution reduction applies lossy encoding even though the

loss of accuracy is rather small with a mild reduction of the original timer resolution. Therefore, Sec-

tion 5.2 provides a quantification of the resulting error and compares loss-less (without timer resolution

reduction) and lossy encoding separately.

This section presents enhanced encoding techniques that allow a remarkable increase in memory effi-

ciency of the event tracing format without increasing runtime overhead of the tracing library. Section 5.2

evaluates these techniques in detail in terms of memory allocation and runtime overhead and compares

the enhanced encoding techniques to other event trace formats, as well as general purpose compression.

44 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

3.4 Event Reduction

The third and final step in an in-memory event tracing workflow provides methods for event reduction.

While the first two steps, selection and filtering plus encoding and compression, can achieve a remarkable

reduction of the stored data they lack the capability to reduce the data to a fixed size – the size of the

memory buffer. The methods of both steps have an upper bound of their reduction potential, i.e., if the

input data is large enough they cannot keep the memory buffer from overflowing. In other words, they

fail the by far most important criterion for an in-memory workflow: they cannot guarantee that event

data of an arbitrary measurement fits into a single memory buffer of fixed size. Without a guarantee to

keep the event data within a single memory buffer, however, an in-memory event tracing workflow is

impossible.

Consequently, event reduction follows a completely different approach than the methods of the first two

steps. In the first step, events or program phases are either deselected during instrumentation or filtered

during runtime while, in the second step, an enhanced encoding and compression allows an efficient

storage of the remaining events. In contrast, the third step, event reduction, is triggered only when the

memory buffer is exhausted; typically this is the point where the memory buffer is either flushed to a file

or the measurement is aborted. The crucial point is making memory space available again by reducing the

number of events already stored within the memory buffer while at the same time introducing minimal

overhead.

Each event reduction operation selects events by dynamic criteria and discards them from the memory

buffer. Such a selection follows similar heuristics as the selection and filter methods in the first step; the

main difference is that events matching a criterion are not filtered in any case but only when a reduction is

inevitable, i.e., the memory buffer is exhausted. In addition, the criteria for event reduction are not static

but adapt to previous event reduction operations. In other words, if all events matching a specific criterion

have already been reduced, the next criterion is chosen for event reduction. This allows an incremental

reduction of events. This effect will become more clear, when the individual reduction operations are

discussed in detail. Furthermore, all information for a reduction criterion must be computed directly

from a single or a few events to enable a fast determination whether or not an event is discarded without

requiring the complete context.

This section introduces four strategies for event reduction that meet these requirements: a reduction

by the order of occurrence of the events, by their event class, by the current calling depth, and by the

duration of a code region. It is obvious, that each of these four methods has individual advantages and

disadvantages. The main focus of the comparison of these methods is based on two criteria. First,

the quality of the remaining information. Since performance analysis has two major goals, to better

understand an application’s behavior and to identify potential performance issues, the comparison is

based on how good these goals can still be achieved with the reduced event set: Is it still possible to

understand the behavior of the application and is it still possible to detect occurring performance issues?

Second, the granularity of the individual event reduction operation. In this respect, granularity means the

amount of data that is discarded in a single event reduction operation. If the reduction steps are too large,

a lot of information might unnecessarily be discarded.

3.4. EVENT REDUCTION 45

3.4.1 Reduction by Order of Occurrence

The first strategy is to reduce events by their order of occurrence. This means that events are either

discarded or kept depending on the time they occurred. If the memory buffer is capable to store n events,

there are three different ways this method can be applied:

1. Store the first n events, i.e., recording is stopped once the memory buffer is exhausted.

2. Store the last n events. This method requires a cyclic buffer that starts overwriting events in the

front of the buffer whenever the end of the buffer is reached.

3. Store either the first or last n events within a specific application phase.

Since events are always in temporal order, these methods provide events for a certain time interval [t1, t2]

with tstart ≤ t1 ≤ t2 ≤ tend and tstart, tend are the starting and end point of the application or the

application phase (third method), respectively. If the measurement is short enough, i.e., there occur

less events than the buffer is able to record, the interval [t1, t2] equals [tstart, tend]. Otherwise, either

t2 < tend or tstart < t1 applies. How much smaller the interval [t1, t2] is in comparison to the complete

application interval depends on how much events need to be discarded in order to keep the remaining

events within a single memory buffer. If there is a total of m events for the complete measurement and

the memory buffer is capable of recording n events, than the recorded interval represents the fraction of
n
m of the entire application, given a fairly equal distribution of event sizes.

These methods provide the complete application behavior within the recorded interval [t1, t2]; either at

the beginning, at the end, or somewhere in the middle of an application, depending on which method

is chosen. Outside of this application interval, i.e., in the intervals [tstart, t1) and (t2, tend], there is

no information about the application’s behavior available because all according events are discarded.

Thus, a performance analysis based on these methods allows a good understanding about the recorded

interval of the application but cannot provide any information about the part that was discarded. The

same applies for the ability to detect performance issues. Performance analysis can detect performance

issues that occur within the recorded application interval but performance issues occurring outside of this

interval cannot be detected. In addition, an analysis might also miss performance issues on the border of

the recorded interval since there is only partial information available.

Therefore, the quality of the overall information about an application strongly depends on the structure

of the application and whether the right interval is selected for recording. Since it is not possible to

determine beforehand, where performance issues might occur – because this will be the result after a

performance analysis – in most cases this strategy may deliver poor results in terms of the information

that can be obtained about the application.

Nevertheless, the reduction by the order of occurrence has a very high granularity. Methods with a

fixed starting point enable an event-wise reduction because recording can be stopped at any event. A

cyclic memory buffer for methods with a fixed end point might overwrite multiple events since they have

different sizes in the memory buffer. Still, the granularity is in the order of a few events.

An event reduction by the order of occurrence is the most basic of the four event reduction strategies. In

particular, the first method with a fixed starting point is not too different from a measurement abortion

but with the difference that all recorded events are kept for analysis instead of being dismissed. However,

due to their very high granularity and their easy application these methods serve well as a fallback if all

other event reduction operations fail.

46 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

3.4.2 Reduction by Event Class

The single events that are recorded can be categorized into different classes of events, e.g., entering and

leaving a code region, point-to-point or collective communication, performance metrics like hardware

performance counters, or I/O operations. Naturally, not all of these different event classes are of same

importance when analyzing an application. For instance, for an analysis of the communication behavior,

obviously, communication events are very important while specific hardware performance counters, like

cache misses, are less important. For an analysis of single thread performance it is the other way around.

Hence, it is possible to order the different event classes and start event reduction with the least important

event class. Since an automated heuristic to order the event classes by importance can only provide very

vague guesses this order should be specified by the user depending on the focus of their analysis. If none

is given, an automatic order can be based on the typical distribution of memory requirements of each

event class and start reduction with the one that uses most of the memory. Figure 3.14 shows such a

distribution of event classes by size of memory allocation for the reviewed applications and kernels.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu
bt cg ep ft is lu mg sp gromacs

cosmo-specs

semtex

M
em

or
y

Al
lo

ca
tio

n
(n

or
m

al
iz

ed
 to

 1
00

%
)

Enter/leave
Metric

MPI P2P
MPI Collective

Others

Figure 3.14: Distribution of event classes by size of memory allocation.

In contrast to the first strategy that provides complete information within the recorded interval, this

approach provides information for the entire application interval. However, the information is restricted

to the events of those event classes that remain in the trace. For this strategy it is important that the

event classes are represented by disjunct subsets Ni of the set M containing all events occurring in an

application, with i = 1..j and j the number of different event classes. In addition, each event must

be an element of exactly one subset Ni. In other words, each event belongs to exactly one event class.

Again, if all events fit into the memory buffer the set of remaining events
⋃
i=1..j Ni equalsM ; otherwise⋃

i=1..kNi is a true subset of M , with k < j being the number of remaining event classes.

Hence, the remaining events allow a partial performance analysis. Analyzing the remaining events re-

sults in a good understanding of those aspects of the application that are represented by the remaining

event classes. For instance, if communication events are available a complete communication analysis

is possible. About application behavior deducible by events of discarded event classes, no knowledge

3.4. EVENT REDUCTION 47

can be obtained at all. The detection of performance problems shares the same restrictions. Performance

issues that can be recognized by the remaining event classes can be fully analyzed, whereas performance

issues deducible by reduced event classes cannot be detected. Furthermore, performance issues that can

only be derived by a combination of multiple event classes cannot be detected when one of these event

classes has been discarded. In this respect, the quality of the overall information about an application’s

behavior mainly depends on an appropriate order of event classes in terms of their importance.

The granularity of this reduction operation relies on the distribution of the different event classes by their

memory allocation. Unfortunately, the statistical survey of the reviewed applications and kernels shown

in Figure 3.14 reveals that there are only three dominating event classes: enter/leave events, performance

metrics, and point-to-point communication. All other events have only a marginal fraction of the total

memory allocation. This means that the granularity of the reduction steps is very low, which limits the

potential of this event reduction strategy. Nonetheless, this strategy can serve quite well to sort out events

of one or two of the main event classes if they are of less importance.

3.4.3 Reduction by Calling Depth

Next to an order by event class, events can also be ordered by their calling depth. The third event

reduction strategy uses this order and starts reduction with those events on the deepest call stack level

which implies that no further events on this or a deeper call stack level are recorded. This strategy is

based on the assumption that events on the deepest call stack level usually contribute less to the overall

understanding of the application behavior than those on higher levels. Still, these events may be the

source for a performance issue.

This strategy allows a partial performance analysis for the entire application interval similar to an event

reduction by event class. In this case, the individual call stack levels form the disjunct subsets Ni of the

set M containing all events occurring in an application, with i = 1..j and j the maximum calling depth.

In the same way, each event must be an element of exactly one subset Ni or, in other words, each event

can be assigned to exactly one call stack level. In addition, a meaningful analysis requires that all events

that form natural pairs, such as enter and leave of each function call, are assigned to the same call stack

level. If all events fit into the memory buffer the set of remaining events
⋃
i=1..j Ni equals M ; otherwise⋃

i=1..kNi is a true subset of M , with k < j the number of remaining call stack levels.

main foo bar

main foo bar

main foo bar

main foo bar

P1

P2

P3

P4

main foo

main foo

main foo

main foo

P1

P2

P3

P4

Figure 3.15: The correlation between cause and impact in a basic timeline visualization. The complete
even trace (left) shows a load imbalance caused by the function bar on process two. When
the call stack level that contains bar is discarded, its impact is still visible in foo.

Similar to the second strategy, the behavior and potential performance issues can only be fully recon-

structed with the events in the remaining call stack levels. However, while the first two strategies com-

pletely discard the information with the events that carry them, this strategy allows to obtain parts of the

information from higher call stack levels. In particular, when reducing the call stack level that contains

48 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

the events that mark a performance issue, the actual cause of the performance issue is lost. Yet, a per-

formance analysis might still allow to recognize the impact of this performance issue in the remaining

call stack levels. Figure 3.15 demonstrates this correlation between cause and impact for a simple load

imbalance in a basic timeline visualization. The complete event trace clearly shows a load imbalance

caused by the function bar on process two. When the event reduction by call stack level engages, the

deepest call stack level containing bar is reduced and the cause of the performance issue cannot be iden-

tified anymore. However, the impact of the performance issue and, therefore, the performance issue itself

is still detectable. Hence, the knowledge gained about an application’s behavior and the ability to detect

performance issue is reduced but not completely lost for individual aspects. Of course, the impact of the

performance issue becomes more and more blurred when further call stack levels are discarded. In the

example load imbalance, the performance issue is completely lost if the second deepest call stack level,

containing foo, is eliminated, as well.

The second criteria, the granularity of single reduction steps, of this strategy strongly depends on an

application’s structure with regard to its call stack level distribution. An ideal case is a deep and equally

distributed call stack, which allows a reduction in very fine grained steps. Figure 3.16 shows the call stack

distribution in an ideal example and for some selected applications and application kernels. In addition,

Figure 3.17 presents the call stack distribution for all SPEC MPI 2007 and NAS Parallel Benchmarks

applications.

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(a) Ideal case

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(b) Gromacs

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8 9 10

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(c) Cosmo-specs-fd4

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(d) Semtex

Figure 3.16: Callstack distribution for selected applications.

Figures 3.16 and 3.17 show that for many of the surveyed applications the distribution of events, accord-

ing to their call stack level, fits well for a reduction by calling depth (marked by a blue background).

However, Cosmo-specs-fd4 and most of the NAS Parallel Benchmarks have a very sharp drop in their

event distribution (marked by a red background). In this case, a single reduction step discards almost all

events recorded so far.

3.4. EVENT REDUCTION 49

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(a) 104.milc

0%

20%

40%

60%

80%

100%

 0 1 2 3 4

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(b) 107.leslie3d

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10 12

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(c) 115.fds4

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6 7 8

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(d) 121.pop2

0%

20%

40%

60%

80%

100%

 0 5 10 15 20 25 30

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(e) 122.tachyon

0%

20%

40%

60%

80%

100%

 0 2 4 6 8 10

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(f) 126.lammps

0%

20%

40%

60%

80%

100%

 0 20 40 60 80 100 120 140

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(g) 127.wrf2

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(h) 129.tera_tf

0%

20%

40%

60%

80%

100%

 0 5 10 15 20

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(i) 130.soccoro

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(j) 137.lu

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(k) bt

0%

20%

40%

60%

80%

100%

 0 1 2 3

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(l) cg

0%

20%

40%

60%

80%

100%

 0 1 2

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(m) ep

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(n) ft

0%

20%

40%

60%

80%

100%

 0 1 2 3

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(o) is

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(p) lu

0%

20%

40%

60%

80%

100%

 0 1 2 3 4 5 6

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(q) mg

0%

20%

40%

60%

80%

100%

 0 1 2 3 4

Ev
en

t D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Callstack Level

(r) sp

Figure 3.17: Callstack distribution for SPEC MPI 2007 and NAS Parallel Benchmarks applications.

50 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

3.4.4 Reduction by Duration

The fourth and last strategy uses the duration of code regions as criterion for event reduction. While the

previous event reduction strategy based on calling depth can deliver promising results for some of the

reviewed applications and kernels, for others the lack in granularity leads to too large reduction steps

and, therefore, a too large information loss in each step. Therefore, it is essential to further distinguish

the events for event reduction. More precisely, it is important to identify those events that contribute less

to the overall application behavior.

Having in mind that enter/leave events are the most dominant event class next to performance metrics if

they are recorded, the class of enter and leave events provides a good starting point for a further, more

detailed reduction strategy. For instance, recording every function call with the same detail is prone to

fail, especially, when tiny and often-used functions are monitored, e.g., small helper functions or get

and set class methods. An event reduction by duration addresses this impact of high-frequency function

calls and presents a method to minimize the amount of high-frequency function calls while still keeping

outliers that have an impact on an application’s behavior.

Event-based monitoring records and stores runtime events to provide a detailed and profound analysis.

Whereas the following ways are the most prominent to define these events:

• Compiler instrumentation inserts compiler-dependent code snippets at the beginning and ending

of each code region that provide a monitoring tool information about the current code region,

• Source-to-source instrumentation transforms the original application and inserts code snippets at

points/regions of interest, e.g., for OpenMP regions and loops,

• Library instrumentation intercepts public functions of an external shared library by using a dlopen

interception mechanism,

• Binary instrumentation modifies the executable either at runtime or before program execution to

insert code snippets at function entries and exits, and

• Manual instrumentation.

Automated instrumentation techniques like compiler instrumentation are most convenient and easy-to-

use. Hence, many event-based monitoring tools use such automated techniques as the default to define

events [KRM+12, MKJ+07, GWW+10, SM06, BSC14]. One side effect is, that compiler instrumenta-

tion prevents the inlining2 of tiny and short-running functions such as small helper function or get and

set class methods. By itself, a suppressed inlining and recording of these functions provides tools an op-

portunity to record and analyze an application’s behavior very detailed. However, if such short-running

functions are heavily called they might overwhelm the capacity of the recording memory buffer while at

the same time contribute very little to the overall application behavior.

Figure 3.18 represents the results of an statistical survey with the reviewed applications and kernels that

evaluates the distribution of function calls depending on their duration. While the definite distribution

deviates slightly, depending on the number of locations and the problem size, the majority of applications

shows a clear trend. All applications, except ft from the NAS Parallel Benchmarks, use short-running

function calls at a very high frequency. Next to that, Figure 3.18 reveals a correlation between a short

duration of function calls and a high frequency of occurrence.
2Inline expansion or inlining is a compiler optimization that replaces a function call site with the body of the callee, which

usually results in improved time and space usage at runtime.

3.4. EVENT REDUCTION 51

0%

20%

40%

60%

80%

100%

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

D
is

tri
bu

tio
n

of
 R

eg
io

ns

Duration Intervals

(a) Gromacs

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

Duration Intervals

(b) Cosmo-specs-fd4

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

Duration Intervals

(c) Semtex

0%

20%

40%

60%

80%

100%

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

D
is

tri
bu

tio
n

of
 R

eg
io

ns

Duration Intervals

(d) bt

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

Duration Intervals

(e) cg

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

Duration Intervals

(f) ep

0%

20%

40%

60%

80%

100%

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

D
is

tri
bu

tio
n

of
 R

eg
io

ns

Duration Intervals

(g) ft

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

Duration Intervals

(h) is

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

Duration Intervals

(i) lu

0%

20%

40%

60%

80%

100%

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

D
is

tri
bu

tio
n

of
 R

eg
io

ns

Duration Intervals

(j) mg

0%

20%

40%

60%

80%

100%

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

D
is

tri
bu

tio
n

of
 R

eg
io

ns

Duration Intervals

(k) sp

Figure 3.18: Duration distribution for selected applications and kernels.

From the results of this survey it can be inferred that short-running high-frequency functions can be

eliminated by either tracking their number of occurrences or their duration. Some event tracing tools

already provide methods to filter functions depending on their number of occurrences, e.g., filter all calls

after a function is recorded n times [MKJ+07, KRM+12] (see Section 3.2). This approach is easy to

realize and in some cases suffices the requirement to eliminate most of the frequently called functions.

Still, this approach has some disadvantages. First and foremost, there is no heuristic to determine a

general number n of function calls after which all further calls are filtered. If it is too high, a lot of

unimportant function calls are recorded; if it is too low important function calls might get filtered, as

well. While high occurrence often coincides with a short duration, even main routines might get called

very often, especially, in long-running iterative applications. For instance, a production run of Gromacs

loops over up to one million iterations. In such a case, using a small n results in the complete filtering

of all function calls after a certain runtime. Second, the first n calls to an unimportant highly frequent

52 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

function are still stored. Especially, if there are multiple of these high-frequency functions, this might

already exhaust the recording memory buffer. For instance, [WDKN14] reports 1781 functions that

are not inlined in a fully instrumented application. While keeping the first n calls to a function might

provide the opportunity to identify that such a function is called very frequently, in an un-instrumented

application run such a function would be inlined anyway and, therefore, has a different impact on the

application behavior. Third and last, with the method of keeping a maximum of n calls to each function,

possible outliers of this function after n calls that actually have an impact on the application behavior are

not recorded and, thus, cannot be identified.

Identifying function calls depending on their actual duration does not rely on a correlation between short

duration and frequent occurrences of a specific function. In fact, this approach identifies function calls

whose duration is within a predefined interval. Hence, it effectively determines all short function calls

while still keeping outliers that have an impact on the application behavior. Consequently, this technique

overcomes all above mentioned disadvantages of existing filters based on the number off occurrences.

Having this in mind, the duration of code regions can be used to further distinguish events for event

reduction. This allows a more fine grained event reduction than with a reduction by calling depth. Since

code regions with a very short duration are usually leave nodes in the call tree, or in other words, they

occur rather deep in the call stack, applying an event reduction by duration prior to a reduction of the

calling depth allows to reduce the step size for the reduction by calling depth.

An alternative to using the duration of code regions for event reduction is to use the duration as runtime

filter rule. This way, instead of grouping function calls in intervals for reduction, all function calls shorter

than a predefined lower bound are filtered during recording. This method would than be categorized to

step one, filtering and selection, rather than step three, event reduction. While the duration of code

regions can be used for both, event reduction and filtering, this thesis suggests an implementation as

runtime filter. This approach follows the logic that short function calls usually contribute very little

to the overall program behavior and, in addition, would probably be inlined anyway without compiler

instrumentation. The advantage of a filter by duration is that it effectively filters all short-running function

calls while keeping the outliers that have an impact on the application behavior.

3.4.5 Requirements for Event Reduction

This section introduces four strategies for runtime event reduction. These techniques are engaged when-

ever the internal memory buffer is exhausted; usually this is the point where the memory buffer is either

flushed to a file or the measurement is aborted. The primary task of the event reduction is to transparently

make space available again by reducing the number of events already stored in the memory buffer. A

selection of strategies to efficiently select and reduce events in the memory buffer includes a reduction by

temporal order, a reduction based on the class of event, a gradual reduction based on the calling context,

and a gradual reduction based on the duration of code regions. With these strategies it can be ensured

that the collected event trace data can be efficiently reduced whenever the memory buffer is exhausted,

thus making new memory space available for further events and avoiding interaction with the file system

at any case, which is the key requirement for an in-memory event tracing workflow.

These strategies require an efficient elimination of events that are already stored in the memory buffer.

However, currently non of the presented event tracing tools and libraries [MKJ+07, SM06, KBB+06,

EWG+12, WM04] supports such an efficient elimination of events. All current approaches use a flat

3.5. SUMMARY 53

continuous memory buffer. Although such a flat continuous memory buffer allows the elimination of

events that are already stored, such an elimination would introduce an enormous overhead.

All four event reduction strategies first require the identification of those events that are about to be

discarded. For this purpose a specific property of each event needs to be evaluated, which is either

its time stamp, its event class, or its calling depth. This would oblige scanning the complete memory

buffer for these events. After that, all events located for elimination are discarded and the remaining

memory sections are marked as free. Since events occur at a high frequency and are typically only a

few bytes small, there are plenty of small free sections scattered across the memory buffer. To gain a

continuous free memory section at the end, the remaining non-free memory sections must be collapsed to

one memory section, resulting in numerous small memory moves. This approach is extremely expensive

and cannot be applied for event reduction during runtime. The next chapter presents an alternative to

such a traditional flat memory buffer: the Hierarchical Memory Buffer, which supports event reduction

operations with minimal overhead.

3.5 Summary

The nature of event tracing is to provide very detailed information by collecting and storing runtime

events, such as function entry and exit or sending and receiving a message. Corresponding event records

are stored within internal memory buffers. Although these event records themselves are rather small,

they are typically recorded at very high rates, which regularly results in huge generated data volumes

that overwhelm the memory buffer capabilities.

This chapter presents an approach to keep the event data for an entire measurement run within a single

fixed-sized memory buffer to enable an all in-memory event tracing workflow. This approach is based

on three major steps. The first step contains methods to either select events for monitoring before the

measurement starts or filter events during runtime, in particular, a novel technique to filter functions call

by their duration. The second step is an efficient storage of event tracing data within the memory buffer.

This requires a compact encoding and low-overhead compression. This step is built on top of existing

encoding methods and presents new enhanced techniques to drastically increase memory efficiency.

The third and last step, event reduction, is entirely different. While these first two steps can significantly

reduce memory allocation, they fail the critical criterion for an in-memory workflow: they cannot guar-

antee that the data of an arbitrary measurement fits into a single memory buffer of fixed size. Event

reduction is triggered whenever the memory buffer is exhausted and makes memory space available

again by reducing the events already stored within the memory buffer while in the same time introducing

minimal overhead. A selection of strategies to efficiently select and reduce events in the memory buffer

includes a reduction by temporal order, a reduction based on the event class, a reduction by calling depth,

and a reduction based on the duration of code regions.

These three steps allow an in-memory event tracing workflow that meets the previosly identified chal-

lenges in event tracing: file system limitations in the number of event files, the huge generated data

volumes, and the bias caused by intermediate memory buffer flushes (see Section 2.4).

The following chapter introduces the Hierarchical Memory Buffer, a data structure that allows an efficient

application of the discussed event reduction techniques. The enhanced encoding techniques, as well as

the event reduction methods combined with the Hierarchical Memory Buffer are evaluated in Chapter 5.

54 3. CONCEPTS FOR IN-MEMORY EVENT TRACING

55

4 The Hierarchical Memory Buffer

This chapter introduces the Hierarchical Memory Buffer, a data structure that allows to perform event

reduction operations with minimal overhead. It examines algorithms for the construction of this data

structure, as well as the application of the event reduction strategies and typical analysis techniques.

Furthermore, the computational complexity of all algorithms is discussed.

4.1 Memory Event Representation

The introduced event reduction strategies require an efficient identification and elimination of events that

are already stored in the memory buffer. However, currently non of the presented event tracing tools and

libraries supports such an efficient elimination of events. They all use a flat continuous memory buffer

that, although, allowing the elimination of events already stored in the memory buffer, introduces an

enormous overhead when engaged. This section is dedicated to more efficient alternatives.

4.1.1 Flat Continuous Event Representation

The majority of event tracing libraries and tools use internal memory representations with a single con-

tinuous memory buffer to store recorded events [SM06, MKJ+07, WM04, KBB+06, EWG+12]. Such

a memory buffer has a flat layout and stores events in the order of their occurrence, which is equal to a

temporal order. A single continuous memory buffer is an efficient data structure to store events during

measurement and the order of occurrence represents the natural order to read events from the buffer in a

subsequent analysis. However, a flat memory buffer is not capable to represent any hierarchical informa-

tion other than the order of occurrence. Such additional hierarchy information is, for instance, the call

stack or the class of an event to distinguish different metrics or parallel paradigms.

First of all, it is possible to apply the event reduction strategies from Section 3.4 on traditional flat

continuous memory buffers but these event reduction operations introduce remarkable overhead. A flat

continuous memory buffer stores the recorded events in the order they occurred until the memory buffer

is exhausted (see Figure 4.1(a)). When the memory buffer is exhausted the event reduction is triggered.

Since all events are scattered over the memory buffer, the entire memory buffer needs to be scanned to

find all events that match the criterion for reduction (see Figure 4.1(b)), e.g., all events of the deepest call

stack level for a reduction based on the calling depth (see Section 3.4.3). When all events matching the

reduction criteria are found, they are discarded and the according memory sections are marked as free

(see Figure 4.1(c)). Since events occur at a high frequency and are typically only a few bytes small, there

are plenty of small free sections scattered over the whole memory buffer. This leaves a highly fragmented

memory buffer that cannot be used for writing further events. Thus, all non-free memory sections need to

be moved to collapse the fragmented memory buffer to a single continuous memory segment that leaves

a continuous free memory section at the end to store further events (see Figure 4.1(d)).

56 4. THE HIERARCHICAL MEMORY BUFFER

Flat Continuous Memory Buffer

Trace Data

(a) Collecting events until the memory buffer is filled.

Flat Continuous Memory Buffer

Trace Data

(b) The memory buffer is filled and scanned for all events
that match the criteria for reduction.

Flat Continuous Memory Buffer

Trace Data

(c) The memory sections of these events are marked as free.

Flat Continuous Memory Buffer

Trace Data

(d) The remaining non-free memory is collapsed to one
memory section to provide a continuous free memory section
at the end for new events.

Figure 4.1: Event reduction with a flat continuous memory buffer.

Let n be the number of total events within the memory buffer before the event reduction and let m ≤ n

be the number of events that match the criterion for reduction. Then the computational complexity of a

reduction operation can be expressed as follows. First, the entire memory buffer must be scanned and

each event must be evaluated whether or not it matches the reduction criterion, which has a complexity

of O(n). Second, all events that match the reduction criterion are discarded and their reserved memory

sections are marked as free, which is in O(m). Third, all non-free memory sections need be collapsed.

Since source and destination of the memory move operation may overlap, this operation requires an addi-

tional copy to an intermediate buffer; otherwise the behavior of the memory transfer is undefined [C11].

Nonetheless, the complexity of the memory defragmentation is in O(m). Therefore, the computational

complexity of the entire reduction operation is inO(n+m+m) = O(n), with m ≤ n. Since a memory

buffer, depending on its size, can contain several million events such a reduction operation introduces a

remarkable overhead when using a traditional flat continuous memory representation.

4.1.2 Flat Partitioned Event Representation

To avoid a costly reduction operation it is necessary to sort all events prior to the event reduction opera-

tion. This means, all events need to be sorted by the different reduction criteria, e.g., time of occurrence,

calling depth, event class, and code region duration, while they are recorded. A translation to a continu-

ous flat memory buffer requires a partitioning of the memory buffer in multiple partitions; one for each

distinct value of the reduction criteria. For simplification the following section considers only one reduc-

tion criterion, e.g., the calling depth. Figure 4.2 demonstrates such a partitioning within a flat continuous

memory buffer. A partitioned memory buffer contains a header that keeps partitioning data, e.g., pointers

to the beginning and the current write position of each partition, and p partitions to store the actual event

trace data.

Flat Partitioned Memory Buffer

Header

Partition 1 Partition 2 Partition p

...

Figure 4.2: Flat partitioned event representation including a header and one partition for each value of
the event reduction criterion.

4.1. MEMORY EVENT REPRESENTATION 57

Since all events are presorted into their according partition, the identification of all events that match

a certain reduction criteria can be done without the need to read the entire memory buffer, thus, the

complexity of the identification is in O(1). Discarding all events in a certain partition q and marking

the memory as free is also in O(1). However, the freed partition needs to be divided in p − 1 sections

that are distributed to the remaining partitions in order to use the freed memory to store further events in

the remaining partitions. Therefore, all partitions need to be moved and the header needs to be updated.

Since source and destination of the memory move operation may overlap, this operation requires an

additional copy to an intermediate buffer, as well. The complexity of the memory reorganization is in

O(p), with p representing the number of partitions. Therefore, the complexity of the entire reduction

operation is in O(1 + 1 + p) = O(p). In worst case, e.g., recursive function calls with a recursion depth

r ≥ n (the maximum number of events in the buffer), the number of partitions p equals the number of

events n. In that case, the complexity is again in O(n).

In addition, this worst case example demonstrates a critical restriction of such a partition memory buffer:

when the number of partitions is not limited by an upper bound – which is usually the case – the partition

needs to be reorganized whenever an event matching a not already represented value of a reduction

criterion needs to be stored. Such a reorganization is the reverse operation to the reorganization within a

reduction operation and, thus, also in O(p).

Another disadvantage of this approach is the potential imbalance in the utilization of the partitions. With

the memory balanceM between different partitions is defined as:

Memory balanceM =
Average memory utilization

Maximum memory utilization
(4.1)

The memory utilization is a function U : N→ [0, 1] ∈ R that maps each partition to the fraction of bytes

used divided by the total number of bytes. Thus, the memory balance for a fixed number of partitions p

can be expressed as:

M =

1
p

p∑
i=1

U(i)

max
1≤i≤p

{U(i)}

The memory balance is especially important when one partition is exhausted and, therefore, a reduction

operation is triggered. In worst case, one partition is exhausted while all other partitions are still empty:

M =

1
p

p∑
i=1

U(i)

max
1≤i≤p

{U(i)}
=

1
p

(
(p− 1) · 0 + 1 · 1

)
1

=
1

p

In worst case the memory balance and, therefore, the memory efficiency is 1
p , i.e., a reduction operation

is triggered although there is only 1
p th of the total memory used.

A partitioned memory representation reduces the complexity for a single event reduction operation from

O(n) to O(p). However, the inflexible fixed partitioning of the buffer imposes additional overhead and

provides a lower memory efficiency, which leads to premature event reduction operations.

58 4. THE HIERARCHICAL MEMORY BUFFER

4.1.3 Hierarchical Event Representation

In contrast to the previous static flat memory representation this section introduces a hierarchical mem-

ory representation. The hierarchical memory representation is organized as a multi-dimensional array,

where each hierarchy dimension represents one possible hierarchical order with a flexible number of

different values within that hierarchical order, called hierarchy levels. In the context of event reduction,

for instance, one dimension can represent the calling depth and another the event class.

Instead of one huge memory chunk, the total memory allocation for the according memory buffer is

divided in plenty of small memory sections, called memory bins. These memory bins can be dynamically

distributed to any hierarchy level in each dimension. Whenever an event needs to be stored at a certain

hierarchy level and there is either no memory bin assigned or the current memory bin is exhausted, a free

memory bin is distributed to this hierarchy level; assuming there are further free memory bins left.

Hierarchical Memory Buffer

L1

L2

L3

Memory BinsHierarchical Memory Buffer

L1

L2

L3

Memory Bins

(a) Collecting events until the memory buffer is filled. When-
ever a memory bin is filled a free one is assigned

Hierarchical Memory Buffer

L1

L2

L3

Memory Bins

(b) Current memory bin on level L2 is filled and there are
no free memory bins left. All events of the lowest hierarchy
level (in this case level L3) are grouped together.

Hierarchical Memory Buffer

L1

L2

L3

Memory Bins

(c) All memory bins assigned to level L3 are revoked and all
events are automatically discarded.

Hierarchical Memory Buffer

L1

L2

L3

Memory Bins

(d) One of the free memory bins is assigned to level L2 to
store further events.

Figure 4.3: Event reduction with a hierarchical event representation.

Figure 4.3 demonstrates the event reduction with such a hierarchical event representation. Again, for

simplification this example considers at first only one reduction criterion, e.g., the calling depth. Thus,

the according memory buffer’s layout is an one-dimensional array. When the first event needs to be

stored, usually on call stack level L1, no memory bin has been assigned to this hierarchy level, so far.

Thus, the memory buffer checks if there is a free memory bin available, which is true in this case, and

one memory bin is assigned to the hierarchy level L1, so, the event can be stored. If an event needs to be

stored on a different hierarchy level, a free memory bin is assigned the same way. The same applies, when

on any hierarchy level the current memory bin is exhausted. After some time, this leads to a situation like

in Figure 4.3(a): Five memory bins are assigned to the hierarchy levels L1 - L3 and four free memory

bins are available. Hence, four additional memory bins can be assigned to the hierarchy levels. After

that, all memory bins are assigned and there are no free memory bins available anymore. This leads to

the situation in Figure 4.3(b): An event needs to be stored at the hierarchy level L2 but there are no free

memory bins available. At this point, the event reduction is triggered and all events of a certain hierarchy

4.1. MEMORY EVENT REPRESENTATION 59

level are discarded, for instance, all events of the deepest call stack level, in this case, level L3. Since all

events are already sorted by their call stack level the event reduction operation can be done with minimal

costs. The event reduction just revokes all memory bins assigned to the hierarchy level L3 and adds them

again to the pool of free memory bins. In addition, the hierarchy level L3 is marked as closed, so, all

future events on this hierarchy level are discarded right away. After that, the two revoked memory bins

are available again (see Figure 4.3(c)). Therefore, one of them can be assigned to the hierarchy level L2

and the event that triggered the event reduction can be stored (see Figure 4.3(d)).

Next to the layout as one-dimensional array as for the example above, the hierarchical event represen-

tation can be organized as a multi-dimensional array, as well. In that case, the event reduction can

be applied on a complete row or column within the multi-dimensional array. This way, a hierarchical

memory representation is able to support all event reduction techniques simultaneously.

Since all events are presorted into their according partitions, the complexity for the identification of all

events that match a certain reduction criterion is like for the partitioned memory representation in O(1).
The complexity to discard all events on a certain hierarchy level and marking the memory bins as free

depends on the number of memory bins b of that level and can be realized inO(b). Revoking all memory

bins and adding them again to the pool of available memory bins is in O(b), as well. Therefore, the

computational complexity of the entire reduction operation is also in O(b).
In contrast to the partitioned memory representation such a hierarchical event representation is capable

to contain an unlimited number of hierarchy levels. Though, for a practical implementation the number

of hierarchy levels is limited by the number of available memory bins, which depends on the size of total

memory allocation, the size of the memory bins, and the number of hierarchy dimensions:

Maximum hierarchy level =
Total memory allocation size

Size of memory bins× Hierarchy dimensions

Since the total memory allocation is partitioned into fixed-sized memory bins this approach is also prone

to memory imbalances like the partitioned memory representation. However, because there can be mul-

tiple memory bins assigned to each hierarchy level, instead of a single partition, the memory imbalance

can be drastically reduced.

For a fixed number of memory bins b and hierarchy partitions p = hierarchy levels × dimensions, with

b ≥ p the memory balance defined in Equation 4.1 can be adapted to the number of memory bins:

M =

1
b

b∑
i=1

U(i)

max
1≤i≤b

{U(i)}

Again, considering the memory balance at the point where one partition is exhausted and a reduction

operation is triggered, in worst case, i.e., all other partitions are still empty1, the memory balance is:

M =

1
b

b∑
i=1

U(i)

max
1≤i≤b

{U(i)}
=

1
b

(
(p− 1) · 0 + (b− p+ 1) · 1

)
1

≥ b− p
b

= 1− p

b
(4.2)

1Since the memory bins are only distributed if an event actually needs to be stored in a hierarchy partition, technically, empty
memory bins do not exist, i.e., at least one event is stored within each memory bin. Therefore, the actual memory efficiency
is slightly higher depending on the ratio of event size to memory bin size.

60 4. THE HIERARCHICAL MEMORY BUFFER

Hence, the memory balance and, therefore, the memory efficiency depends on the number of memory

bins. For instance, if there are ten times more memory bins than hierarchy partitions, the memory balance

is at least 0.9 and, if there are 100 times more memory bins, the memory balance is at least 0.99, i.e., at

the point where a reduction operation is triggered at least 90 % or 99 %, respectively, of the total memory

is utilized, which provides a major benefit over a fixed partitioned event representation.

Consequently, the memory efficiency of such a hierarchical memory representation mainly depends on

the number of available memory bins in proportion to the number of partitions. Since, the total memory

allocation is fixed, the number of memory bins results from the size of the memory bins with smaller

memory bins leading to a higher memory efficiency. Therefore, the size of the individual memory bins

is a crucial parameter of a hierarchical event representation and is evaluated in detail in Section 5.3.1.

4.2 The Hierarchical Memory Buffer Data Structure

A hierarchical memory representation as discussed above requires a data structure that allows access to

multiple hierarchy dimensions and an arbitrary number of hierarchy levels within each dimension. In

addition, for each hierarchy level the memory is distributed in the form of an arbitrary number of small

memory bins to optimize memory efficiency. A data structure that supports such a hierarchical event

representation must consider the typical access modes to store and read data, in particular, for the storage

of event tracing data with respect to the above discussed event reduction operations.

The event reduction operations discussed in Section 3.4 require a two-dimensional memory buffer layout:

one dimension representing the different event classes, e.g., code regions, communication, and the other

dimension representing the calling depth of each event. As mentioned before, the method to distinguish

events by the duration of the according code region provides another strategy for event reduction. In this

case, a third dimension representing different intervals of code region duration is required. However, as

stated in Section 3.4.4 this thesis suggests to use the duration of a code region as runtime filter because

short function calls generally contribute very little to the overall program behavior and, in addition, would

probably be inlined anyway without compiler instrumentation.

Since events from different event classes may occur at any given point within an application the data

structure for the first dimension requires efficient random access. The same applies for events in terms of

their call stack stack level. While events of code regions (enter, leave) always access the neighboring call

stack level, other events occur on arbitrary levels within their event class. Thus, the second dimension

representing the call stack levels requires efficient random access, as well.

To allow a hierarchical event representation with random access to each hierarchy dimension and each

hierarchy level, this section introduces a novel data structure called Hierarchical Memory Buffer. The

Hierarchical Memory Buffers uses sequence containers like arrays that can change in size, also known

as vectors, to represent each dimension. Vectors, like arrays, use continuous storage locations for their

entries, which provides random access with constant time complexity. In contrast to arrays, vectors can

change their size dynamically to handle an arbitrary number of elements. To grow in size the underlying

array needs to be reallocated and the elements moved, which is an expensive task in terms of processing

time. Hence, vectors in the Hierarchical Memory Buffer do not reallocate each time a new entry is added

but allocate additional memory for multiple entries in advance. Since there are only a few different event

classes and Figures 3.16 and 3.17 provide heuristics for the number of call stack levels, a reallocation can

4.3. CONSTRUCTION OF THE HIERARCHICAL MEMORY BUFFER 61

be avoided entirely for most applications. This way, all elements of the different hierarchy dimensions

and hierarchy levels, called hierarchy entries, can be accessed with constant time complexity in the

Hierarchical Memory Buffer.

Accessing the event data storage within each hierarchy entry in the form of memory bins is strictly

sequential for writing, as well as reading. Furthermore, the number of memory bins must be highly

dynamic to achieve an optimal memory balance. Therefore, the memory bins are arranged as single-

linked lists. Each hierarchy entry manages the list of memory bins and keeps direct access to the current

positions for writing and reading within the current memory bin. Figure 4.4 illustrates the Hierarchical

Memory Buffer data structure in a two-dimensional layout.

Level Dimension 2

Level
Dimension 1

Bin

Bin

Bin

Bin Bin

Level Dimension 2

Level Dimension 2

Level Dimension 2

Figure 4.4: Illustration of a two-dimensional Hierarchical Memory Buffer data structure. Each dimension
is realized as a vector sequence container while the memory bins for each hierarchy level is
arranged as single-linked list.

A such composed data structure allows sequential write and read access with constant time complexity

while allowing an unlimited number of hierarchy dimensions and hierarchy levels as well as a highly

dynamic distribution of memory bins for optimized memory utilization.

4.3 Construction of the Hierarchical Memory Buffer

The Hierarchical Memory Buffer is designed to represent runtime events of a single location. For par-

allel applications multiple Hierarchical Memory Buffers are used; one for each location. The following

section focusses on the construction of a single Hierarchical Memory Buffer. Since there are no correla-

tions between Hierarchical Memory Buffers of different locations, the construction as well as write/read

access can be performed entirely in parallel without any dependencies.

The construction of the Hierarchical Memory Buffer relies on two properties for all events:

1. Uniqueness: All hierarchy levels, e.g., event classes and call stack levels, are disjunct sets of

events, thus, each event can be distinctively assigned to exactly one hierarchy level.

2. Correct Nesting: All events that occur in pairs are properly nested, i.e., for each two pairs of events

(a, b) and (c, d) the order of the events is either a < c < d < b or c < a < b < d. This property is

also known as the stack property.

62 4. THE HIERARCHICAL MEMORY BUFFER

Furthermore, the construction of the Hierarchical Memory Buffer distinguishes between three types of

events: region enter events, region leave events, and non-region events. At the start of the construction

the Hierarchical Memory Buffer is empty, i.e., no memory bins are assigned, and the call stack pointer

equals zero. A write operation for every event alters the Hierarchical Memory Buffer, as described, by

the algorithms in Figure 4.5. Whereas the assignMemory function can be expressed by the algorithm in

Figure 4.6. Thereby, the two above properties ensure a correct construction of the Hierarchical Memory

Buffer. The uniqueness property allows a clear differentiation in region enter, region leave, and non-

region events. The correct nesting property guarantees that all events within one code region including

its enter and leave events are on the same hierarchy level within their according hierarchy dimension.

Function writeRegionEnterEvent

1 increment call stack pointer
2 assignMemory(event class, call stack pointer)
3 write event to current memory bin
4 update write pointer

Function writeRegionLeaveEvent

1 assignMemory(event class, call stack pointer)
2 write event to current memory bin
3 update write pointer
4 decrement call stack pointer

Function writeNonRegionEvent

1 assignMemory(event class, call stack pointer)
2 write event to current memory bin
3 update write pointer

Figure 4.5: Algorithms to alter the Hierarchical Memory Buffer for region enter, region leave, and non-
region events.

Function assignMemory(event class, call stack level)

1 if position (event class, call stack level) has no memory bin then
2 request new memory bin
3 set new memory bin as current memory bin and update write pointer
4 else
5 if current memory is filled then
6 request new memory bin
7 set new memory bin as current memory bin and update write pointer
8 end
9 end

Figure 4.6: Algorithm to assign memory bins.

Figure 4.7 demonstrates the construction process for the following event sequence: enter region a, enter

region b, leave region b, enter region b, leave region b, enter region b, send message, leave region b, and

leave region a.

4.3. CONSTRUCTION OF THE HIERARCHICAL MEMORY BUFFER 63

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

(a) At the start the data structure is a two-dimensional empty array with event classes in
the first dimension and call stack levels in the second dimension.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

E(a)

Call Stack Pointer

Write Pointer

E(a)

(b) Region a is entered. The call stack pointer is incremented to the first level. At position
(Regions,1) there is no memory bin available, thus, one memory bin is distributed, the
enter record is written, and the write pointer is updated.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

E(a)

Bin

E(b)

(c) Region b is entered. The call stack pointer is incremented to the second level. At po-
sition (Regions,2) there is no memory bin available, thus, one memory bin is distributed,
the enter record is written, and the write pointer is updated.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

E(a)

Bin

E(b) L(b)

(d) Region b is left. At position (Regions,2) there is a memory bin available, thus, the
leave record is written and the write pointer is updated. The call stack pointer is decre-
mented to the first level.

Figure 4.7: Construction of the Hierarchical Memory Buffer (Part I).

64 4. THE HIERARCHICAL MEMORY BUFFER

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

E(a)

Bin

E(b) L(b) E(b) L(b)

Bin

E(b)

(e) Region b is entered. The call stack pointer is incremented to the second level. At
position (Regions,2) there current memory bin is filled, thus, the next memory bin is
distributed, the enter record is written, and the write pointer is updated.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

E(a)

Bin

E(b) L(b) E(b) L(b)

Bin

E(b)

Bin

Send

(f) A message is sent. At position (MPI,2) there is no memory bin available, thus, one
memory bin is distributed, the send record is written, and the write pointer is updated.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

E(a) L(a)

Bin

E(b) L(b) E(b) L(b)

Bin

E(b) L(b)

Bin

Send

(g) After leaving region b and a the call stack pointer is at its initial position.

Figure 4.7: Construction of the Hierarchical Memory Buffer (Part II).

4.4. REDUCTION TECHNIQUES WITH THE HIERARCHICAL MEMORY BUFFER 65

4.4 Reduction Techniques with the Hierarchical Memory Buffer

The main purpose of the Hierarchical Memory Buffer is to enable the event reduction operations pre-

sented in Section 3.4 in an efficient way. This section discusses the different event reduction operations

on the Hierarchical Memory Buffer data structure. Without loss of generality, this section focuses on a

two-dimension layout of the hierarchical buffer with the different event classes in the first dimension and

the call stack levels in the second dimension (see Figure 4.7(a)). For the sake of comprehensibility, the

levels of the first dimension – the different event classes – are referred to as rows and the levels of the

second dimension – the call stack levels – are referred to as columns.

4.4.1 Reduction by Order of Occurrence

A reduction by the order of occurrence reduces events by the order of their occurrence. Basically, this

includes three different reduction strategies: a) Keep events from a starting point, b) keep events until an

end point , and c) keep the first or the last events within a specific application phase. Whereas a) and b)

are a special case of c) in which the specific application phase equals the entire application runtime (see

Section 3.4.1). Keeping the leading events can be easily realized by stopping the storage of all further

events once the memory buffer is exhausted. Keeping the trailing events requires a cyclic buffer layout

that starts overwriting events in the front of the buffer whenever the end of the buffer is reached. For all

formats that do not use a fixed size for all events, the overwriting can only be done for complete segments

of the buffer. In this case, the memory buffer is divided in s segments where each segment has a defined

starting point for the first event. When the memory buffer is exhausted, the first segment is cleared and

the next event is stored in the first segment at the starting position. When the first segment is filled, the

second segment is cleared and so on.

For the Hierarchical Memory Buffer each segment is represented by its own Hierarchical Memory Buffer

(Figure 4.8). Thus, when all the sub-buffers are exhausted, the first memory buffer is cleared, and the

next event is stored in this first sub-buffer and so on. All three strategies do not require the Hierarchical

Memory Buffer because for typical memory buffers the events are already ordered by their occurrence.

Hence, all three strategies can be realized similar to the Hierarchical Memory Buffer.

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Segment 1 Segment 2 ... Segment n

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics
...

Figure 4.8: Cyclic segmented buffer layout with Hierarchical Memory Sub-buffers.

The complexity of keeping leading events isO(1) since the storing of events can be just stopped. Keeping

trailing events requires to reset one sub-buffer whenever the previous sub-buffer is exhausted – starting

when all sub-buffers are filled for the first time. For such a reset of a sub-buffer all distributed memory

bins to all event classes and all call stack levels of this sub-buffer need to be revoked. This depends on

the function revokeMemoryBins (Figure 4.9) that iterates over all memory bins of a given event class

and call stack level and deallocates each memory bin. Let bs be the number of memory bins within the

sub-buffer s. Then the complexity of the reduction operation is O(bs).

66 4. THE HIERARCHICAL MEMORY BUFFER

Function revokeMemoryBins(eventClass, callStackLevel)
Data: Event class and call stack level where the memory bins are revoked.
Result: Hierarchical Memory Buffer where all memory bins are revoked for the given event

class and call stack level.
1 current = first memory bin for eventClass and callStackLevel
2 while current == NULL do
3 next = current.next
4 free current
5 current = next
6 end

Figure 4.9: Algorithm to revoke all memory bins for a given event class and call stack level.

4.4.2 Reduction by Event Class

The reduction by event class reduces all events of a single event class, e.g., all performance metrics or

all communication events (see Section 3.4.2). Since all events are presorted based on their event class,

the reduction operation equals a reduction of one row in the Hierarchical Memory Buffer. Figure 4.10

demonstrates the basic algorithm for the reduction of a single event class. It depends on the function

revokeMemoryBins that deallocates all memory bins of a given event class and call stack level. After

revoking all memory bins the event class is marked as closed, thus, no further events are stored for that

event class. Figure 4.11 depicts this event class reduction operation for a simple scenario.

Function reduceEventClass(eventClass)
Data: Event class to be reduced.
Result: Hierarchical Memory Buffer without the row eventClass.

1 foreach call stack level do
2 revokeMemoryBins(eventClass, call stack level)
3 end
4 Mark eventClass as closed

Figure 4.10: Algorithm to reduce an complete event class.

Hence, the complexity of the reduction operation is dependent on the number of call stack levels and

the number of memory bins per call stack level. Let bc,l be the number of memory bins assigned to the

element with the event class c and the call stack level l. Let further bc =
∑max

l=1 bc,l be the number of

memory bins assigned to the event class c. Then the complexity of the reduction operation is O(bc).

4.4. REDUCTION TECHNIQUES WITH THE HIERARCHICAL MEMORY BUFFER 67

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Bin

Bin

Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

(a) Starting point for the reduction operation is a request for a new memory bin for
region events on call stack level two (red arrow) that cannot be satisfied because there
are no free memory bins available.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Bin

Bin

Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

(b) All memory bins distributed to the event class "MPI" have been revoked.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Bin

Bin

Bin

Bin Bin

1 2 3 ...

(c) The event class "MPI" is marked as closed. All future communication events will
not be stored.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Bin

Bin

Bin

Bin Bin

1 2 3 ...

Bin

(d) After the reduction operation the revoked memory bins are available for distribu-
tion again. One of them is distributed to the region event class on call stack level two
to satisfy the initial write request.

Figure 4.11: Reduction by event class on the Hierarchical Memory Buffer.

68 4. THE HIERARCHICAL MEMORY BUFFER

4.4.3 Reduction by Calling Depth

The event reduction by calling depth reduces all events of the deepest call stack level (see Section 3.4.3).

Since all events are presorted based on their call stack level, the reduction operation equals a reduction

of one column in the Hierarchical Memory Buffer. Figure 4.12 demonstrates the basic algorithm for the

reduction of the deepest call stack level.

Function reduceHighestCallStackLevel()
Result: Hierarchical Memory Buffer without the column of the highest call stack level.

1 callStackLevel = deepest non-empty call stack level
2 foreach event class do
3 revokeMemoryBins(event class, callStackLevel)
4 end
5 Mark all call stack level ≥ callStackLevel as closed

Figure 4.12: Algorithm to reduce deepest call stack level.

Again, the event reduction relies on the revokeMemoryBins function to deallocate all assigned memory

bins of the deepest call stack level. At the end, all call stack levels deeper than or equal to the currently

deepest call stack level are marked as closed, i.e., no further events are stored for this or a deeper call

stack level. Figure 4.13 depicts this event reduction operation for another scenario.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Bin

Bin

Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

(a) Starting point for the reduction operation is a request for a new memory bin for
region events on call stack level two (red arrow) that cannot be satisfied because
there are no free memory bins available.

Bin

Call Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics

Bin

Bin

Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

(b) All memory bins distributed to the highest call stack level have been revoked.

Figure 4.13: Reduction by calling depth on the Hierarchical Memory Buffer (Part I).

4.4. REDUCTION TECHNIQUES WITH THE HIERARCHICAL MEMORY BUFFER 69

X

X

XCall Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics
Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

(c) All call stack level greater than or equal to three are marked as closed. All
future events on these call stack level will not be stored.

X

X

XCall Stack Level

Call Stack Level

Call Stack Level

Event Class

Regions

MPI

Metrics
Bin

Bin

Bin

Bin Bin

Bin

1 2 3 ...

Bin

(d) After the reduction operation the revoked memory bins are available for distri-
bution again. One of them is distributed to the position of the initial write request.

Figure 4.13: Reduction by calling depth on the Hierarchical Memory Buffer (Part II).

Marking all call stack levels greater than or equal to the current highest call stack level as closed can be

realized independently from the number of call stack levels, by setting the value for a low pass filter for

the call stack levels to the currently deepest call stack level minus one. Therefore, the reduction operation

is again only dependent on the complexity of the revokeMemoryBins function, which relies on the number

of event classes and the number of memory bins per event class. Again, let bc,l be the number of memory

bins assigned to the element with the event class c and the call stack level l. Let further bl =
∑max

c=1 bc,l

be the number of memory bins assigned to the call stack level l. Then the complexity of the reduction

operation is O(bl).

4.4.4 Reduction by Duration

An event reduction by the duration distinguishes events by the duration of the according code region.

In this case, a third dimension representing different intervals of code region durations is required. An

algorithm for an event reduction of duration intervals can be defined similar to the previous algorithms.

Instead of one column or row, a reduction operation would reduce a horizontal or vertical plane in a

three-dimensional cube. All previous methods must be extended to three dimensions accordingly, which

does not change the computational complexity because the event reduction operation only depends on

the number of revoked memory bins. The number of revoked memory bins, however, increases with the

number of different duration intervals.

At any rate, as stated in Section 3.4.4, this thesis suggests to use the duration of a code region as runtime

filter because short function calls generally contribute very little to the overall program behavior and,

in addition, are inlined anyway without compiler instrumentation. For such a runtime filter, the start

and end time of each code region is evaluated and depending on the duration the code region is either

70 4. THE HIERARCHICAL MEMORY BUFFER

stored or discarded. Within the Hierarchical Memory Buffer all enter-leave pairs are grouped together,

i.e., each enter event is directly followed by the according leave event. To determine the duration of a

function call such an approach only requires to store the time and position before the last enter event

of each call stack level. In the code region leave event’s write routine the duration can be evaluated by

comparing the time stamp of the leave event with the stored time stamp of the enter event. If a code

region’s duration is too short, the write position is simply reset to the stored position before the last

enter event. Otherwise, the leave event is written as before. Figure 4.14 shows the modifications to the

write enter and write leave operations presented in Figure 4.5. The algorithm for writing non-region

events needs no alterations. This approach effectively filters all short-running functions while keeping

the outliers that have an impact on the application behavior.

Function writeRegionEnterEvent

1 Increment call stack pointer
2 AssignMemory(event class, call stack pointer)
3 Store current write position and time of enter
4 Write event to current memory bin
5 Update write pointer

Function writeRegionLeaveEvent

1 AssignMemory(event class, call stack pointer)
2 if time leave – time of last enter ≤ ε then
3 Reset write pointer to position before enter
4 else
5 Write event to current memory bin
6 Update write pointer
7 end
8 Decrement call stack pointer

Figure 4.14: Algorithms to alter the Hierarchical Memory Buffer for region enter and region leave events
with modifications to skip regions shorter than a minimum duration ε (red).

4.5 Analysis Techniques for the Hierarchical Memory Buffer

Next to construction and event reduction, methods to read and analyze the stored events form the third

part of essential operations with the Hierarchical Memory Buffer. This section introduces the basic

methods for linear time traversal and time stamp search; and advanced methods for statistical summaries,

timeline visualization, and message matching.

4.5.1 Linear Time Iterator

A linear iterator is any object with the ability to navigate through the elements of a container object.

In addition, any operation applied to an iterator does not modify the container object that is referenced.

In the context of event tracing, the container object is the memory buffer holding the stored events.

Most analysis methods, including all methods presented in this section, require only the basic operators

4.5. ANALYSIS TECHNIQUES FOR THE HIERARCHICAL MEMORY BUFFER 71

increment and dereference. Thus a forward iterator is sufficient for all presented analyses. At the end of

this section, the operators required to form a random access iterator, are discussed, as well.

The dereference operator for the Hierarchical Memory Buffer is, similar to most other event tracing

libraries, implemented in the form of a callback function [WM04, KBB+06, EWG+12]. For every event

type there is a user-defined callback that provides all parameters stored with the current event. The

increment operator for binary event data is usually implemented as a read of the current event to get its

size and the move of the memory pointer to the position of the next event. Typically, both operators are

combined to an atomic read event operation; which is a dereference followed by an increment.

For continuous memory buffers the increment operation is realized as described above because event

data for each location is ordered by the occurrence. However, the Hierarchical Memory Buffer orders

events not only by their order of occurrence but also by their hierarchy dimension and hierarchy level,

i.e., their event class and calling depth. While all events of a single hierarchy partition (a single hierarchy

level within a single hierarchy dimension) are ordered by their occurrence, there is no global order by

occurrence in the Hierarchical Memory Buffer.

While the original order of events is lost, each event carries a time stamp, which can be used to restore the

original order. Let ≺ be the binary comparator for the order of two events, that describes the happened

before relation of two events, i.e., a ≺ b means that event a happened before event b. Furthermore, let ti
be the time stamp of event i. This implies that:

a ≺ b⇐⇒ ta < tb

Most event tracing libraries store the events in the order they occur. Some event tracing libraries strictly

enforce this order within the event stream [KBB+06, EWG+12]. With C describing the order of two

events within an event stream, the previous statement can be extended to:

a ≺ b⇐⇒ aC b⇐⇒ ta < tb

A single runtime event, however, may result in multiple event records with the same time stamp, e.g.,

entering a message send function results in an enter event for the code region, an message send event,

and potential metric events. In that case, there is no happened before relation for these events and for

each two events a and b that happened together, aC b and bCa are both valid orders in the event stream.

Many monitoring environments consistently use a fixed order to store two events that happened together.

As a result, an event stream may contain events with the same time stamp and, therefore, it is not possible

to restore the original order in the event stream based on time stamps. But, since both aC b and bCa are

valid orders for events with the same time stamp, it is not necessary to restore the original order C in the

event stream for events that happened together. Or in other words, an order by time stamp < represents

a valid order in respective to the original happened before relation ≺, regardless whether this order is the

same order C in the original event stream or not. Therefore, the order by time stamp restores the original

order of runtime events.

To enable an increment based on the temporal order, the Hierarchical Memory Buffer uses the time stamp

order and< as compare operator. The order is realized with an event queue that is implemented as binary

minimum heap. The event queue is initialized with the first event of every non-empty hierarchy partition

as shown in the algorithm in Figure 4.15.

72 4. THE HIERARCHICAL MEMORY BUFFER

Function initEventQueue
Result: Event queue with minimum heap property containing the first event of each

non-empty hierarchy dimension and level
1 foreach hierarchy dimension do
2 foreach hierarchy level do
3 try to read first event from hierarchical buffer at current hierarchy dimension and level
4 if success then
5 add event to event queue
6 end
7 end
8 end
9 heapify event queue

Figure 4.15: Algorithm to initialize the event queue.

With the minimum heap property2 the first element in the event queue is always the event with the

smallest time stamp. The atomic read event operation for the Hierarchical Memory Buffer dereferences

the first element in the event queue and replaces it with the next event from the same hierarchy partition.

If there is no next event the root element is removed. In either case the event queue re-establishes the

minimum heap property. Figure 4.16 illustrates the basic algorithm for the read event operation.

Function readEvent(eventQueue)
Data: Event queue with minimum heap property that is not empty
Result: Event queue with minimum heap property with root replaced by next event

1 event = eventQueue.first
2 try to read next event from Hierarchical Memory Buffer at same hierarchy dimension and level
3 if success then
4 eventQueue.first = next event
5 else
6 eventQueue.first = eventQueue.last
7 remove eventQueue.last
8 end
9 shift down(eventQueue.first)

10 trigger callback for event

Figure 4.16: Algorithm to read next event.

As stated above, the forward iterator is sufficient for the majority of analysis methods, still it can be

extended to a random access iterator. Next to the dereference and increment operators, a random access

iterator needs to support the decrement, offset and direct access operators.

Getting the start position of a previous event directly is not possible due to a different number and size of

parameters for each event and the additional encoding optimizations. Decrementing the iterator requires

a position table containing the positions of all previous events, which can be obtained by reading all

events from the beginning and storing their positions. While the creation of the position table is quite

expensive, it is only necessary to create the table once. The offset operator can be realized by repeating

2The value of each node is greater than or equal to the value of its parent, with the minimum-value element at the root.

4.5. ANALYSIS TECHNIQUES FOR THE HIERARCHICAL MEMORY BUFFER 73

the operations increment and decrement. The direct access operator can be realized by applying the

offset operator to the first event. The complexity of the basic operators for the time iterator are shown in

Table 4.1 with n as the number of events and p as the number of hierarchy partitions.

Operator Flat continuous buffer Hierarchical Memory Buffer

dereference *iter O(1) O(1)
increment iter++ O(1) O(log p)
decrement iter-- O(n) O(n log p)
offset iter + ω O(ω) O(ω log p)

offset iter - ω O(n) O(n log p)
direct access iter[ω] O(ω) O(ω log p)

Table 4.1: Complexity of basic operators for the time iterator.

Table 4.1 shows that the Hierarchical Memory Buffer adds a factor of log p to each operater, except for the

dereferencing, caused by the shift down operation in the read event algorithm (see Figure 4.16). While

the complexity of the shift down operation is in O(p), the actual number of shift down steps depends on

the access pattern to the different hierarchy partitions. In all reviewed applications and kernels the access

to the vast majority of events is restricted to neighboring partitions, which results in only a single shift

down step. Section 5.3.4 shows that for all reviewed applications and kernels the cost for the shift down

operations is nearly constant and, therefore, the additional factor log p is not applicable.

4.5.2 Forward Traversal

The forward traversal of event data is the most basic, as well as the most used, event data evaluation

method. It reads every event of a single location and provides their values. Therefore, more complex

analysis methods typically are build on top of a linear forward traversal.

The forward traversal by time for each location can be realized by repeating the read event operation

until the end of the event data. For the Hierarchical Memory Buffer the resulting time complexity for n

events and p hierarchy partitions is O(p + n log p); which includes the complexity for the initialization

of the event queue O(p) and n times the read event operation.

Another basic evaluation methods, the time stamp search operation to find the first event whose time

stamp is greater than or equal to a given time stamp, can by derived from the forward traversal by

repeating the skip event operation, which is a read event operation without triggering the callback. Thus,

its complexity is analogue to the forward traversal O(p+ n log p).

In addition to a traversal over all events, the hierarchy information can be used to traverse only events

that match a given hierarchy criterion, e.g., only communication events. Those events are a subset of

all events within each location and, therefore, the number of events matching a hierarchy criterion nh
is less than or equal to the number of all events. For the Hierarchical Memory Buffer all events that

match a given hierarchy criterion are within the hierarchy partitions that match the criterion. Hence,

a hierarchical forward traversal can be realized with the read event operation from Figure 4.16 and a

modification for the initialization of the event queue (Figure 4.17). By restricting the forward traversal

to events of a subset of hierarchy partitions the complexity can be reduced to O(ph + nh log ph).

74 4. THE HIERARCHICAL MEMORY BUFFER

Function initEventQueueHierarchy(hierarchyCriterion)
Data: Hierarchy criterion that defines the hierarchy partitions.
Result: Event queue with minimum heap property containing the first event of each

non-empty hierarchy dimension and level that match the hierarchy criterion
1 foreach hierarchy dimension ∈ hierarchyCriterion do
2 foreach hierarchy level ∈ hierarchyCriterion do
3 try to read first event from hierarchical buffer at current hierarchy dimension and level
4 if success then
5 add event to event queue
6 end
7 end
8 end
9 heapify event queue

Figure 4.17: Algorithm to initialize event queue with additional hierarchy criterion.

4.5.3 Statistical Summaries

Statistical summaries provide aggregated information for certain application properties for a given time

interval and a given set of locations. Typical summaries include the execution time or the number of in-

vocations of a code region, communication count or volume, and the alteration of hardware performance

counters. Statistical summaries provide a coarse overview of an application’s behavior. They can be

used, for instance, to identify code regions that consume the most time or static load imbalances between

locations.

Statistical summaries require the processing of all events that contribute to the summary for the given

time interval and set of locations. Without loss of generality, in the following the time interval covers

the entire run time and the set of locations is restricted to a single location. Nonetheless, all summaries

can be computed in parallel for each location. The events that contribute to the summary Ns are a subset

of all events N and their number ns = |Ns| is less or equal the total number of events n = |N |. For

instance, to aggregate communication information like message count or bytes transferred, only message

events need to be processes. In this case, ns is much smaller than n (see also Figure 3.9). In continuous

memory buffers these events are intermingled with all other events, which requires the processing of all

events and is in O(n).

Within the Hierarchical Memory Buffer the additional hierarchy information can be used to process only

those events in that hierarchy partitions that enclose all events that contribute to the summary. In that

case, the forward traversal restricted to a subset of hierarchy partitions can be used. For all summary

queries it is Ns ⊆ Nh ⊆ N , with Ns the set of events that contribute to the summary query, Nh the set

of events in that hierarchy partitions that enclose all events that contribute to the summary query, and N

the set of all events. With n = |N |, nh = |Nh|, and ns = |Ns| it is ns ≤ nh ≤ n. In the majority of use

cases is Nh a genuine subset of N . Therefore, the complexity for a summary query is actually reduced

to O(ph + nh log ph) .

4.5. ANALYSIS TECHNIQUES FOR THE HIERARCHICAL MEMORY BUFFER 75

4.5.4 Timeline Visualisation

A timeline visualization generates a visual representation of the application behavior over time. One of

the most common representations, such as in Vampir [NAW+96], represents the active code region over

time for each location on the horizontal axis and the selected locations on the vertical axis. Whereas each

code region or group of code regions is marked with a rectangle of specific color for the time its active

(see also Section 2.3).

For such a time visualization, the position of each colored rectangle, representing the active code region,

must be computed. For that, the event set of each location within the current view interval needs to

be processed to translate each event to its pixel position relative to the time interval. Typically, a time

visualization initially shows the entire time scope and all locations, which requires to process all events

of each location. The computational effort for the Hierarchical Memory Buffer is one complete forward

traversal of each event stream whose complexity is O(p+ n log p).

However, an event stream can easily contain billions of events, while a typical display only captures

1000 to 2000 pixels in the horizontal direction. Thus, for a single information represented in each pixel

millions of events are processes, which leads to an unnecessary delay of the timeline visualization. To

minimize the number of processed events the forward traversal can be restricted to code region events

of the lowest calling depths. For the code region events each hierarchy level contains a subset of the

complete set of region events: Eir ⊆ Er ⊆ E, with Er the set of region events and Eir the set of region

events of calling depth i. Since each region event has exactly one calling depth (uniqueness property)

the set of region events is Er =
⋃̇
Eir and the number of region events nr = |Nr| =

∑
i n

i
r.

Thus, a timeline processing can start with the first call stack level and than iteratively add the next

calling depth until there are enough events to represent the active code region for each pixel. For a fixed

number of horizontal pixels ω and a variable over-determination of events per pixel σ the iterative forward

traversal on increasing call stack level is finished after α call stack levels if nα =
∑α

i=1 n
i
r ≥ ωσ. With

this approach the complexity for the timeline visualization can be reduced to O(pα + nα log pα).

4.5.5 Message Matching

A correct communication analysis for parallel applications using the message passing paradigm requires

an accurate restoration of the communication from the recorded communication events. The basic oper-

ations of the Message Passing Interface (MPI), the de-facto standard for the message passing paradigm,

are the point-to-point communication operations send and receive. Typically, the send and receive events

are recorded separately on different locations and, therefore, the according send and receive events must

be properly matched. Furthermore, all events that belong to a collective communication operation must

be matched as well. Section 4.6 describes the methods for message matching in more detail, in particular,

it describes an approach to handle incomplete communication traces, which might be the result of the

event reduction strategies.

For the communication analysis and the message matching, especially, all MPI communication events

need to be processed. Within the Hierarchical Memory Buffer those events are separated from other

events. Hence, the forward traversal can be restricted to the subset of communication events Ec ⊆ E. In

the majority of cases, Ec is a genuine subset of E and nc = |Ec| � n = |E|. Thus, the complexity for

the forward traversal can be reduced to O(pc + nc log pc).

76 4. THE HIERARCHICAL MEMORY BUFFER

Other Analysis Techniques
Next to the event trace evaluation methods presented above, there are approaches for automatic event

trace analysis, for instance, in Scalasca [GWW+10]. In contrast to manual analysis based on an aggre-

gated or visual representation of the application behavior, automatic analysis techniques search for pat-

terns of typical performance problems such as load imbalances or wait states caused by unsynchronized

communication (see also Section 2.3). Although, automatic analysis approaches differ from statistical

summaries and timeline visualizations, they are built on a partial or total traversal of the event streams

or require derived methods like statistical summaries and message matching. Similar to the presented

evaluation methods, automatic analysis queries can benefit from a reduced set of events to evaluate based

on additional hierarchy information.

In general, the basic evaluation operation, the forward traversal of an complete event stream, is dependent

on the total number of events n in the stream, the total number of hierarchy partitions p, and the number

of active (non-empty) partitions. The complexity of the forward traversal is O(p+ n log pa). Whenever

analysis queries require only a subset of events Es ⊂ E, the additional hierarchy information within

the Hierarchical Memory Buffer can be used to restrict the forward traversal to the events within those

hierarchy partitions, so that the set of events within those hierarchy partitions Eh is a superset to Es and

it is Es ⊆ Eh ⊂ E. In this case, the forward traversal is dependent on the number of events in those

partitions nh = |Eh| and the number of according hierarchy partitions ph. As a result the complexity

of the analysis query is reduced to O(ph + nh log ph,a). Section 5.3 shows a detailed evaluation and

comparison of the Hierarchical Memory Buffer.

4.6 Message Matching on Incomplete Communication Data

A correct communication analysis requires the correct matching of the send and receive call of each

message and in the same way a correct matching of all participating calls to a collective operation. Such

a matching can be done either by a replay of the communication based on the recorded MPI events

[GWW+10] or by using the order of the according events [NAW+96]. Both approaches rely on the

implicitly given order of message events. Consequently, if one send or receive event is missing the

correct matching of send and receive events and, therefore, the communication analysis fails. However,

a correct communication analysis is essential to understand complex application behavior and identify

performance issuess originating in communication. In addition, all performance metrics derived from

MPI events like latency or bandwidth rely on a correct matching, as well.

This section presents a way to circumvent the unsatisfying restriction that event-based monitoring risks

the entire communication analysis by dropping only a single message event. A unique sequential mes-

sage identifier makes message event distinguishable from others during runtime. With such an identifier

it is possible to determine which message events are missing and, therefore, it is possible to correctly

match the remaining message events.

4.6.1 Message Matching Approaches

The Message Passing Interface (MPI) [MPI12] provides a set of routines to exchange data and infor-

mation between different processes. The basic operations of MPI are the point-to-point communica-

tion operations send and receive. Both operations are provided in blocking and non-blocking variants.

4.6. MESSAGE MATCHING ON INCOMPLETE COMMUNICATION DATA 77

Whereas the calls to the blocking operations return when the send or receive operations are finished and

the non-blocking operations return as soon as the send or receive operations are issued. In the latter case,

test and wait routines are used to check whether a message is actually finished. In both cases, a finished

operation does not necessarily mean that the message was completely transferred but that the own side of

the communication is finished, i.e., the message was either completely copied to an MPI send buffer or

was sent via the network on the side of the sender. Built on top of these basic operations there are various

collective operations that include all processes of a given communicator, e.g., a broad cast, scatter and

gather operations for vectors, or a barrier to synchronize all processes. In this context, a communicator

is a group of processes, e.g., MPI_COMM_WORLD containing all processes of an application. Within

such a communicator each process has an unique identifier called rank. For all these operations users

have to provide information about the message itself (a buffer containing the message and the number

and data type of elements in the buffer), a communication partner, a message tag, and the communicator

(see Listing 4.1).

Listing 4.1: MPI send and receive operations.

MPI_Send(buf, count, datatype, dest, tag, comm);

MPI_Recv(buf, count, datatype, source, tag, comm, status);

Each send and receive call contains a so called message envelope that consists of the triple communi-

cation partner, message tag, and communicator. This message envelope is used to distinguish different

messages and selectively receive them. Unless communication partner, message tag and communicator

match, the communication cannot be satisfied [MPI12]. In addition to the envelope, MPI uses another

important criteria to identify corresponding send and receive calls. MPI guarantees that messages are

non-overtaking [MPI12]. Thus, whenever multiple messages use an identical message envelope they are

received in the same order they were sent.

Any message matching strategy used for a communication analysis depends on the same properties to

match send and receive calls: the message envelope and the order of the messages. Figure 4.18 shows the

message matching for a exemplary situation: process P1 sends three messages with the same message

envelope to process P2. The message matching relies on the given order of the communication events to

match send and receive events, i.e., the first send event is matched with the first receive event, the second

send event with the second receive event, and the same applies for the third send and receive event.

P1 Send

ReceiveP2

Send

Receive

Send

Receive

Figure 4.18: A communication pattern of three successive MPI send calls on process P1 and the ac-
cording receive calls on process P2; all using the same message envelope (communication
partner, message tag, communicator). The according send and receive calls are matched
based on their order of occurrence.

78 4. THE HIERARCHICAL MEMORY BUFFER

Consequently, if an MPI send or receive event is not contained in the event trace, due to filtering or

event reduction, the matching of these and all successive send and receive events with the same message

envelope fails or is incorrect. Figure 4.19 shows the same exemplary event sequence where the second

receive event is not recorded. As a result, the message matching delivers a wrong matching: The second

send event is matched with the originally third receive event and the third send event cannot be matched.

While the unmatched send event can be at least detected, the mismatched second send event might remain

unrevealed. In particular, if the third send event had not been recorded as well, the message matching

would not discover any error in the matching and proclaim the message matching as successful and

correct. In the given example, even if the message matching discovers the missing receive event, it is not

possible to identify which receive event is missing. Therefore, the complete matching of all events with

this message envelope must be considered incorrect.

P1

P2
not recorded

?

Send

Receive

Send Send

Receive Receive

Figure 4.19: The second receive call on process P2 is not recorded. As a result, the original order of the
events is modified and the message matching of this event sequence fails.

4.6.2 Identification of Missing Communication Events

To enable a correct message matching even on incomplete MPI event data, each message needs to be

distinguishable from other messages. Therefore, whenever multiple messages use the same message

envelope (partner, tag, communicator) an unique identifier as fourth parameter, replacing the indirectly

given order, is necessary to explicitly identify each message. Obviously, such an identifier must be stored

with both, the send event as well as the according receive event.

Piggybacking techniques on top of MPI can transport such an identifier from the sender to the receiver

with every message that is send. Three piggybacking techniques are studied in [SBS08]. The first ap-

proach uses additional messages, i.e., send a second message after each actual message. This approach

is problematic for performance monitoring of the communication itself because of the latency and band-

width overhead. In addition, this approach fails for wildcard3 receives. The other two approaches create

new MPI data types by copying the original message and additional information in a separate buffer.

Both approaches introduce very high overhead, as well. While piggybacking is useful for analyses that

are not critical in terms of time, e.g., error detection, piggybacking cannot be applied for performance

monitoring as long as MPI does not provide a low overhead piggybacking mechanism itself [WDKN13].

The Sequential Message Identifier
Therefore, this thesis introduces a sequential message identifier σ that generates the same unique identi-

fier for the sender and receiver of a message without the need to transfer additional data via MPI. Such

an sequential message identifier enumerates all messages of each message envelope separately. During
3MPI allows the use of wildcards in receive calls: MPI_ANY_SOURCE to accept a message from an arbitrary sender and

MPI_ANY_TAG to receive a message with an arbitrary message tag.

4.6. MESSAGE MATCHING ON INCOMPLETE COMMUNICATION DATA 79

runtime, this approach identifies the message envelope for each message, increments the sequential mes-

sage identifier, and stores its current value with the according send and receive events. For each message

envelope an internal management data structure keeps an entry that stores the message envelope and the

sequential message identifier. One prerequisite of this approach is that every MPI point-to-point message

call is instrumented and captured, so the internal sequential message identifier can be incremented. This

can be achieved by wrapping the MPI library via the PMPI interface, which is the default for most mon-

itoring tools. In this way, every send and receive event is tagged with an unique identifier per message

envelope that is the same for the according send and receive of each message. Listing 4.2 shows the ex-

tension to the existing send event record in OTF2 [EWG+12] to store the sequential message identifier;

in the same way the receive record and the non-blocking variants can be adapted.

Listing 4.2: OTF2 MPI send event record with a 4-byte sequential message identifier.

typedef struct OTF2_MpiSend

{

uint64_t time;

uint32_t receiver;

uint32_t communicator;

uint32_t msg_tag;

uint64_t msg_length;

uint32_t sequence_id; /* sequential message identifier */

};

4.6.3 Adapted Message Matching

A message matching technique needs to incorporate this sequential message identifier, as well. Instead of

the message envelope alone, the quadruple of communication partner, message tag, communicator, and

sequential message identifier σ guides the decision whether a matching is correct or not. The matching is

correct if and only if the corresponding send and receive events use the same message envelope and have

the same sequential message identifier. Messages where only one event of the message is stored need to

be ignored for matching. These message can be easily detected during the message matching: Whenever

there is a gap in the sequential message identifier intermediate messages are missing. In particular, if

there is a message with the sequential message identifier σ = n and for the next message with the same

message envelope the sequential message identifier σ = n+m with m ≥ 1, it can be concluded that the

messages with the identifier n+1, ..., n+m− 1 are not recorded. If the according send or receive event

has been recorded it can be ignored for the further message matching.

Figure 4.20 illustrates the enumeration of the send and receive events with the sequential message iden-

tifier for the previous example. Each send and receive event is tagged with the according sequential

message identifier. The message matching incorporates the new sequential message identifier. Since the

receive call with the sequential message identifier σ = 1 on process P2 is missing, a matching to the

corresponding send call with σ = 1 on process P1 is not possible. Therefore, the send event with σ = 1

is ignored in message matching process.

80 4. THE HIERARCHICAL MEMORY BUFFER

P1

P2
not recorded

ignore send

Send

Receive

σ = 0

σ = 0

Send

Receive

σ = 2

σ = 2

Send
σ = 1

Receive
σ = 1

Figure 4.20: Communication pattern of three successive messages from process P1 to process P2 where
the second receive call is not recorded. With the new sequential message identifier σ the
missing receive event is detected and the send and receive events can be matched correctly.

There are two scenarios that require a separate treatment, which are shortly covered in the next paragraph.

First, receive calls that use wildcards like MPI_ANY_SOURCE or MPI_ANY_TAG do not include the

communication partner or message tag, respectively. However, the status parameter of each receive call

keeps the actual sender and tag of the message that was receive with that call. Since, the receive event

is stored after the actual receive of a message, the status parameter can be used to retrieve the correct

message envelope and, thus, apply the correct sequential message identifier. The second case is the use

of MPI_Cancel, which tries to cancel a pending non-blocking send or receive operation. In that case, an

offset between the sequential message identifier of send and receive events occurs. This offset must be

considered in the message matching algorithm.

Next to the basic point-to-point operations, MPI provides collective operations built on top of the basic

operations. The Open Trace Format 2 already provides a so called matching ID for collective operations,

which uniquely identifies each collective operation. This matching ID can be used in a similar way as

the sequential message identifier to detect missing collective operations or, more importantly, missing

partners of a collective operation.

In summary, with the introduced sequential message identifier that makes MPI events distinguishable

from others during runtime, it is possible to identify missing MPI events and match the remaining MPI

events correctly. With this approach and an adapted message matching technique that incorporates the

sequential message identifier it is possible to apply event reduction without sacrificing a detailed com-

munication analysis. Section 5.3.5 reviews the feasibility and introduced overhead of this approach.

4.7 Adaption to Sampling

This section adds a short excursion for a further use of the Hierarchical Memory Buffer in the context of

sample-based tracing. While this thesis focusses on event tracing, periodic sampling is another method

to generate trace data (see Section 2.1). Instead of runtime events, sampling approaches record the cur-

rent state of an application, usually, with a fixed frequency. The current state of an application that is

recorded is typically the current calling context and adequate performance metrics. Recording the state

of an application with a fixed frequency provides the inherent benefit that the recorded data rate can be

approximated and regulated with the sampling frequency. However, finding an optimal sampling fre-

quency is a virtually impossible task: Using a too low sampling frequency maps the application behavior

very coarse. Using a too high sampling frequency results in huge data volumes. In addition, new ap-

4.7. ADAPTION TO SAMPLING 81

proaches not only refer to time intervals to record a sample but to intervals of hardware performance

counters [Wea14], e.g., with every n-th cache miss or floating point operation. For those approaches it

is even more difficult to find useful sampling intervals because their progress is not predictable like a

frequency based on time intervals.

An hierarchical memory representation of the recorded samples supports a reduction of already recorded

samples similar to events. Such a runtime reduction of samples allows to start recording with a very

high sampling frequency. Whenever the recording memory buffer is exhausted every n-th sample is

discarded and the sampling frequency adopted accordingly. Such an approach releases the user to find an

appropriate sampling frequency on its own by automatically adapting the sampling frequency to utilize

the recording memory buffer. Even more effective is such an approach for not time-based and, therefore,

not predictable sampling intervals based on hardware performance counters.

Since, samples contain similar hierarchical informations like events, e.g., the calling context, this hier-

archy information can be used to store samples similar to events in the different hierarchy levels, e.g.,

according to their call stack level. In contrast to event-based trace data, hierarchical ordering in terms of

time is a much more relevant hierarchy dimension. Since samples are triggered by the sampling interval

rather than application context, each sample by itself represents a randomly chosen application state. In

particular, for any two individual samples it is impossible to identify which one of these better represents

the actual state of an application. In addition, each sample on its own contains the complete state of an

application it represents; while most events are only meaningful in combination with further events, e.g.,

a code region is only represented with the according enter and leave event. Thus, selecting samples for

reduction by a fixed ratio based on the order of occurrence, e.g., discarding every n-th entry is a very

powerful method for samples, whereas this method does not make any sense for events.

As stated before, to apply a reduction method efficiently, the entries in the Hierarchical Memory Buffer

need to be sorted accordingly. Although a sample by itself does not contain sufficient hierarchy infor-

mation to presort samples for a reduction based on the ratio, the order of occurrence can be used to

distribute the samples to different hierarchy levels to enable an efficient reduction. The distribution func-

tion λ : N → N that maps each sample to a hierarchy level based on the order of occurrence n can be

expressed as:

λ(n) = max
{
p ∈ N

∣∣ n ≡ 0mod 2p
}

(4.3)

This way each level λ contains every 2λ+1th sample. Figure 4.21 illustrates this mapping for the first

few samples. The lowest hierarchy level λ0 contains every 2nd sample, the second lowest hierarchy level

holds every 4th sample, and so on, up to the highest hierarchy level λmax = blnnc, which consists of

only one sample. Since each level λ contains every 2λ+1th sample, the interval of levels [λ,∞) contains

every 2λth sample. Therefore, the lowest hierarchy level λ0 contains one half of the samples and the

levels [λ1, λmax] contain the other half of the samples.

In the reduction operation all samples on the lowest hierarchy level are discarded and the according

memory bins are released. In addition, from that point the sampling frequency is divided in half. Due

to the distribution based on powers of two, after the reduction operation the lowest hierarchy level λ1
contains one half of the remaining samples and the levels [λ2, λmax] contain the other half of the samples.

This way, the reduction operation can be applied iteratively whenever the memory buffer is exhausted;

each time discarding every 2nd sample.

82 4. THE HIERARCHICAL MEMORY BUFFER

λ = 0

λ = 1

λ = 2

λ = 3

λ = 4

1

2

3 5

4

7

6

8

9

10

11 13

12

15

14

17

18

19

20

16

1 21 23

22

Figure 4.21: Distribution of samples based on powers of two.

However, the maximum notation of the distribution function λ in Equation 4.3 may be very compute

intensive, especially, for large numbers of samples. Since any natural number n can be uniquely decom-

posed in two-potencies in the form of

n =
∑
p ∈ N

αp2
p, with αp ∈ {0, 1}

the distribution function λ of Equation 4.3 can also be expressed as:

λ(n) = min

{
p ∈ N

∣∣∣ n =
∑
p ∈ N

αp2
p ∧ αp = 1

}
(4.4)

This minimum notation provides a more efficient way to compute λ because the representation as two-

potencies equals the binary representation of integer values. For instance,

15010 = 1 · 27 + 0 · 26 + 0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20

= 100101102

Therefore, the statement in Equation 4.4 is equal to the number of trailing zeros in a binary representation

of n, which can be calculated with minimal costs.

With this distribution function based in combination with the Hierarchical Memory Buffer it is possible

to automatically adapt the sampling frequency during runtime to utilize the recording memory buffer

without risking a buffer overflow or a too coarse sampling frequency.

4.8. SUMMARY 83

4.8 Summary

From the event reduction strategies introduced in Section 3.4 arises a need for an efficient identification

and elimination of events that are already stored in the memory buffer. While all existing approaches,

using a flat and continuous memory buffer, allow an application of the event reduction strategies, the

enormous introduced overhead renders the benefits of an in-memory event tracing workflow futile. In a

flat continuous memory event representation all events are stored in the order of their occurrence. Since

all events with different hierarchy criteria such as event class and calling depth are intermingled, an event

reduction operation must scan the entire memory buffer to identify those events that match the reduction

criterion and mark their occupied memory segment as free. In addition, all remaining memory segments

need to be collapsed to provide a free continuous memory segment at the end of the memory buffer to

store further events. This results in a computation complexity ofO(n) for n events stored in the memory

buffer.

In contrast, the new Hierarchical Memory Buffer data structure enables a hierarchical event representa-

tion. Such an hierarchical event representation uses additional hierarchy information, like the event class

and calling depth, to store events in a multi-dimensional array, where each array entry, called hierar-

chy partition, keeps its own small memory buffer and represents exactly one event class and one calling

depth. Instead of one huge memory chunk, the total memory allocation of the memory buffer is divided

in many small memory sections, called memory bins, that are dynamically distributed to any entry in

the multi-dimensional memory buffer array. This allows a high memory balance between all hierar-

chy partitions and utilizes the provided memory allocation. In such a hierarchical event representation,

all events are presorted according to their event class and calling depth. This way, in the Hierarchical

Memory Buffer an event reduction operation includes only the revoking of all memory bins that have

been distributed to those hierarchy partitions that match the criterion for event reduction. Therefore, the

computational complexity for an event reduction operation is reduced to O(b) for b memory bins in the

according hierarchy partitions.

The Hierarchical Memory Buffer itself consists of two vectors representing the two hierarchy dimensions

event class and calling depth. Within the vectors each entry represents one hierarchy partition and the

according memory bins are managed as single linked lists that include a pointer to the current write and

read position. This allows linear write access in constant time complexity and a complete forward traver-

sal of the memory buffer in O(n log p) for n events and p non-empty hierarchy partitions. Furthermore,

the additional hierarchy information supports a partial forward traversal of the memory that is restricted

to a subset of events and hierarchy partitions. Such a partial traversal benefits all analysis methods that

are restricted to a subset of events, for instance, the communication analysis or are step-wise composition

of a timeline visualization that only processes a subset of call stack levels depending on the zoom level.

The Hierarchical Memory Buffer forms the second main contribution of this thesis. It allows to perform

the aforementioned event reduction operations with minimal overhead and supports new event selection

and filter operations unfeasible with a traditional flat continuos memory buffer layout. In addition, sev-

eral typical analysis requests can benefit from a hierarchy-aided traversal of recorded event data. Its

performance and constraints are evaluated in detail on the basis of real-life applications and application

kernels in Section 5.3.

84 4. THE HIERARCHICAL MEMORY BUFFER

85

5 Evaluation and Case Study

This chapter presents an evaluation of the enhanced encoding techniques and the Hierarchical Memory

Buffer data structure including its capabilities to support the event reduction strategies. In addition, a

detailed case study demonstrates the benefits of the combined approach for a real-life application.

5.1 Methodology and Target Applications

A library that supports current and future performance analysis tools faces the same key challenges as

discussed in Section 2.4. Therefore, this Chapter evaluates the presented optimizations from Chapter 3

and 4 based on their contribution to meet these key challenges: How they overcome current scalability

bottlenecks, how they cope with the enormous created data volumes, and how they minimize the bias on

the recorded application.

The evaluation utilizes theoretical models whenever possible to determine best, worst and average case

behavior. In addition, the evaluation relies on empirical data obtained from synthetical benchmarks

and real-life applications and application kernels to either support the theoretical models or provide

results for situations that cannot be sufficiently modeled. The applications include a subset of the SPEC

MPI 2007 benchmarks [MWL+07], the NAS Parallel Benchmarks [BLBS92] in version 3.3, and the

real-life applications Gromacs [HKS08], COSMO-SPECS+FD4 [LGW+12], and Semtex [BS04]. The

application kernels from the benchmarks and the real-life applications represent a variety of different

research fields, different communication behaviors, event composition, and different length.

Since, a number of recorded application parameters varies with each recorded run, e.g., time stamps,

all measurements that include real-life applications and kernels are based on the data of existing event

traces. This allows a fair comparison of the different approaches that eliminates variations in application

behavior and system performance. For the SPEC MPI 2007 benchmarks1 all event traces were generated

using the problem size "train" and ran on an SGI Altix 4700 system. The NAS Parallel Benchmark2

traces use the problem size "C", except for BT, which uses problem size "B", and were recorded on an

Intel Xeon cluster. Gromacs is a package to perform molecular dynamics for biochemical molecules like

proteins, lipids and nucleic acids that have a lot of complicated bonded interactions3. The recorded trace

includes 50 iteration blocks and was recorded on an Cray XC system. COSMO-SPECS+FD4 is a model

system for detailed cloud simulations that consists of a regional atmospheric model (COSMO), a detailed

cloud microphysics model (SPECS), and a scalable load balancing and coupling framework (FD4). The

recorded trace includes 2 simulation iterations and was recorded on an Intel Xeon cluster. Semtex is

a set of spectral element simulation codes, most prominently a code for direct numerical simulation of

incompressible flow. The trace was recorded on an SGI Altix 4700 system.

1http://www.spec.org/mpi2007/
2http://www.nas.nasa.gov/publications/npb.html
3http://www.gromacs.org

86 5. EVALUATION AND CASE STUDY

Table 5.1 gives an overview of all evaluated applications and kernels including their usual application

area, the per location trace sizes4, the runtime, the total number of events and the machines clock rate.

Application Area Trace Size∗ Runtime Events∗ Clock Rate

104.milc Quantum Chromodynamics 1.4 GiB 231 s 178M 1.6 GHz
107.leslie3d Computational Fluid Dynamics 198 MiB 57 s 2.6M 1.6 GHz
115.fds4 Computational Fluid Dynamics 85 MiB 27 s 11M 1.6 GHz
121.pop2 Ocean Modeling 245 MiB 92 s 31M 1.6 GHz
122.tachyon Parallel Ray Tracing 5.3 GiB 1620 s 665M 1.6 GHz
126.lammps Molecular Dynamics Simulation 36 MiB 16 s 4.9M 1.6 GHz
127.wrf2 Weather Prediction 694 MiB 361 s 87M 1.6 GHz
129.tera_tf 3D Eulerian Hydrodynamics 453 MiB 154 s 60M 1.6 GHz
130.socorro Molecular Dynamics 2.1 GiB 1808 s 259M 1.6 GHz
137.lu Computational Fluid Dynamics 17 MiB 16 s 2.2M 1.6 GHz
BT Block Tri-diagonal Solver 4.0 GiB 288 s 231M 2.8 GHz
CG Conjugate Gradient 406 MiB 35 s 24M 2.8 GHz
EP Embarrassingly Parallel 2.3 MiB 6.1 s 0.1M 2.8 GHz
FT Discrete 3D Fast Fourier Transform 23 MiB 18 s 1.4M 2.8 GHz
IS Integer Sort 1.1 GiB 30 s 67M 2.8 GHz
LU Lower-Upper Gauss-Seidel Solver 134 MiB 53 s 7.9M 2.8 GHz
MG Multi-Grid 5.1 MiB 6.6 s 0.3M 2.8 GHz
SP Scalar Penta-diagonal Solver 142 MiB 100 s 8.7M 2.8 GHz
Gromacs Molecular Dynamics Simulation 2.5 GiB 310 s 112M 1.0 GHz
Cosmo-Specs Atmospheric Modeling 2.3 GiB 87 s 134M 2.8 GHz
Semtex Computational Fluid Dynamics 17 GiB 2308 s 1024M 1.6 GHz

∗ Average value per location.

Table 5.1: Overview of evaluated applications and benchmarks.

The following section focusses on the evaluation of the enhanced encoding techniques presented in Sec-

tion 3.3. After that, Section 5.3 reviews the Hierarchical Memory Buffer data structure introduced in

Chapter 4 and its capabilities to support the event reduction strategies. Finally, Section 5.4 presents a

detailed case study of the benefits of the combined approach for the Gromacs application.

4Trace sizes in uncompressed Open Trace Format [KBB+06].

5.2. ENHANCED ENCODING TECHNIQUES 87

5.2 Enhanced Encoding Techniques

The enhanced encoding techniques presented in Section 3.3 target the per location internal memory

representation in the Open Trace Format 2 [EWG+12]. Thus, these techniques have no impact on OTF2’s

scalability but affect the consumed memory and the runtime overhead. At first, the following section

focuses on the memory allocation during runtime. After that, Section 5.2.2 discusses the introduced

runtime overhead.

5.2.1 Runtime Memory Allocation

The primary goal of the enhanced encoding techniques is to drastically increase memory efficiency,

which leads to less allocated memory during runtime and, more importantly, less bias on the recorded

application behavior due to fewer memory buffer flushes. Next to that, the overall trace size of a mea-

surement is reduced. Since, the effect of each enhanced encoding technique is highly correlated to the

actual parameters of each single event and to the outcome of the other encoding steps, it is virtually im-

possible to exactly model the increase of memory efficiency for each encoding technique, individually.

Nonetheless, the following enumeration lists beneficial and hurtful criteria as well as a simplified model

for each encoding step:

• Splitting of timing information and event data: The effect of this encoding step is directly

correlated to the average event size and the number of duplicate time stamps, which can be omitted.

Thus, the trace size without encoding is
∑

all events(τ + ε + 1), with an average time stamp size

τ , an average event size ε and one additional byte for the identifying token. The trace size with the

splitting of timing information and event data is
∑

all events(τall+ε+2)−
∑

(τduplicate+1), which

adds an additional token byte for the time stamp event and is reduced by the size of all duplicate

time stamps. Thus, in worst case, there are no duplicate time stamps with leads to an increased

trace size of n bytes, with n the number of events. A good case, would provide multiple events

with the same time stamp. For instance, if h hardware performance counters are stored with each

region entry and exit the resulting trace size5 is approx.
∑

all events(
1
hτ + ε+ 2).

• Leading zero elimination: The result of the leading zero elimination depends on the average

values of all parameters. High values lead to less reduction than smaller values. More precisely,

not the value itself determines the reduction but its number of used bits within the integer encoding.

• Delta encoding decreases the values that need to be stored, which leads to a better utilization of

the leading zero elimination. Therefore, parameters with small deltas and starting with a very high

offset, e.g., time stamps or some hardware performance counters, benefit the most.

• Encoding within the token benefits the most frequent events such as time stamps, region en-

try/exit, and metric events. Since, all other events have only a marginal share, the average event

size is reduced by approx. two bytes – one byte each for the according time stamp and the event

itself – and the total trace size is reduced to
∑

all events(τ + ε− 1).

• Timer resolution reduction: In contrast to the previous encoding techniques, a reduction of the

timer resolution leads to a loss in detail. The effect of this encoding step mainly depends on the

amount of timer resolution reduction.

5The number of events other than region entry and exit is ignored due to their negligibly small share (see also Figure 3.9).

88 5. EVALUATION AND CASE STUDY

The Effects of Each Encoding Technique

Figure 5.1 shows the effects of each encoding step for the reviews real-life applications and kernels.

Since most encoding steps build upon other steps, from left to right, each encoding step includes all

previous encoding steps. In addition, Table 5.2 lists the minimum, average, and maximum reduction of

memory allocation for each encoding technique relative to the previous encoding step. The results from

the SPEC MPI 2007 application kernels include one metric event (floating point operations hardware

performance counter) for each region enter and leave event; all others do not include any metric events.

Therefore, splitting timing information and event data decreases memory allocation for the SPEC MPI

2007 application kernels while for all others the memory allocation is slightly increased.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu
bt cg ep ft is lu mg sp gromacs

cosmo-specs

semtex

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
 to

 N
o

En
co

di
ng

) No Encoding
Splitting Time/Event

Leading Zero Elim.
Delta Encoding

Encoding within Token
Timer Res. Redux

Figure 5.1: Memory allocation for different encoding techniques.

Minimum Average Maximum

Splitting of timing information and event data
one metric 23.1 % 23.3 % 23.3 %
no metrics -7.6 % -7.4 % -6.0 %

Leading zero elimination 14.3 % 41.5 % 52.3 %
Delta Encoding 22.2 % 34.9 % 50.0 %
Encoding within the token 17.2 % 30.2 % 39.9 %
Timer resolution reduction 14.4 % 23.7 % 39.9 %

Table 5.2: Reduction of memory allocation for each encoding technique relative to the previous step.

From Figure 5.1 it can be inferred that, first, splitting timing information and event data is only effective

when metric records are recorded frequently, e.g., with every region enter and exit. Second, the leading

zero elimination combined with delta encoding drastically reduces the memory allocation. In particular,

the results for Gromacs show a noticeable weaker decrease for the leading zero elimination (due to high

starting offsets). But combined with delta encoding the memory allocation is in the same range as the

other applications. Third, the encoding of values within the token, especially for the region enter and exit

events, results in a weaker effect for the three real-life applications since there is a considerably higher

count of different regions (see also Figure 3.12). Fourth, the reduction of the timer resolution can further

5.2. ENHANCED ENCODING TECHNIQUES 89

decrease the memory allocation. However, this encoding step introduces a loss in accuracy that depends

on the magnitude of the resolution coarsening. The results in Figure 5.1 use a timer resolution of 10 µs.

Finding a good trade-off between memory allocation and accuracy is evaluated next. At any rate, the

encoding techniques proof to be effective and reduce the memory allocation during runtime to a fraction

of 13 - 30 % for the reviewed applications and kernels.

Timer Resolution Reduction

The timer resolution reduction can provide a further decrease of runtime memory allocation at the cost

of loosing fine detailed timing information. To determine a timer resolution that serves both, a small

memory allocation and a justified bias, it is important to analyze the accuracy of a single high resolution

time stamp. Given that the total overhead of the measurement environment on the observed application

of 5 % is considered acceptable implies that an average error of each time stamp in the range of 5 %

is likewise acceptable. Figure 3.13 shows that the average event frequency is below one event per mi-

crosecond. Based on this average event frequency an acceptable error of 5 % means an average error of

50 nanoseconds per event.

Figure 5.2 demonstrates the effect of different reduced timer resolutions for the applications and kernels

with the highest original timer resolution. It depicts allocated memory in light blue and the average

error per event in dark blue (in logarithmic scale). In addition, the blue dotted line represents the 50

nanoseconds error range. For all applications in each case the average error is about half of the timer

resolution, which is trivial since it is basically just the round-off error. Thus, for a timer resolution of

10 MHz, i.e., rounding down to hundreds of nanoseconds, the error is about 50 nanoseconds. In addition,

Figure 5.2 shows that a 10 MHz timer resolution is also a sweet-spot in terms of memory allocation

because in most cases the sharpest drop is from 20 MHz to 10 MHz.

Consequently, if a timer resolution reduction is applied to further decrease runtime memory allocation,

a reduction to a timer resolution of 10 MHz provides the best trade-off between memory allocation and

accuracy.

90 5. EVALUATION AND CASE STUDY

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(a) Cosmo-specs-fd4

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(b) bt

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(c) cg

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(d) ep

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(e) ft

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(f) is

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(g) lu

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(h) mg

0.1ns

1ns

10ns

0.1us

1us

10us

2.8GHz

2GHz
1GHz

500Mhz

200MHz

100MHz

50MHz

20MHz

10MHz

5MHz
2MHz

1MHz
500KHz

200KHz

100KHz

0%

20%

40%

60%

80%

100%

Av
er

ag
e

er
ro

r

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
)

Avg. Error Trace size

(i) sp

Figure 5.2: Average time error per event and allocated trace size for different reduced timer resolutions.

5.2. ENHANCED ENCODING TECHNIQUES 91

Comparison With Other Event Tracing Formats

The following measurements compare the prototype, called OTFX, which is based on OTF2 [EWG+12]

and includes all presented enhanced encoding techniques, with other well-established trace formats and

libraries. However, comparing different trace formats is a non-trivial task. In most cases, the trace

libraries are closely integrated in the according event tracing tools, which generate their own individual

overhead. Most importantly, the different tracing tools and trace data formats do not store exactly the

same information. They focus on different application behavior characteristics, different levels of detail,

and provide a different amount of functionality. Therefore, it is necessary to decouple the trace data

libraries from the tracing tools to eliminate all effects that originated in the tracing tools and not the data

formats. By using the data of existing application traces, as described above, it is ensured that all formats

store exactly the same information, which is crucial when comparing the encoding techniques.

With this in mind, the comparison considers only those trace data formats that store comparable data.

The first is the EPILOG trace format [WM04] used by the SCALASCA tool set [GWW+10], which uses

binary encoding. The second is the Open Trace Format (OTF) [KBB+06] employed by the Vampir tool

set [NAW+96] using ASCII encoding. Since the according VampirTrace measurement infrastructure

uses its own internal memory buffering based on aligned C data structures, this is also taken into account

for the comparison. In fact, the OTF data format is only used to store data to the file system. Nonetheless,

it provides an efficient encoding that is reviewed, as well. The third format is the Open Trace Format

2 [EWG+12] used by the Score-P measurement infrastructure [KRM+12], which is based on binary

encoding and already applies the splitting of timing information and partly the leading zero elimination

developed in this thesis. These data formats also describe the starting point of the encoding techniques

presented in this thesis, except for OTF2 that already includes some first optimizations presented here.

The trace data formats are compared to the OTFX prototype excluding the timer resolution reduction to

keep the information exactly the same. In this comparison the enhanced encoding techniques deployed in

the OTFX prototype show a remarkable decrease in memory allocation. OTFX consumes about 91 % less

memory than VampirTrace, about 79 % less memory than OTF, about 71 % less memory than EPILOG,

and about 70 % less memory than OTF2 (see Figure 5.3).

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu
bt cg ep ft is lu mg sp gromacs

cosmo-specs

semtex

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
 to

 V
am

pi
rT

ra
ce

) VampirTrace OTF Epilog OTF2 OTFX

Figure 5.3: Memory allocation for different event trace data formats.

92 5. EVALUATION AND CASE STUDY

Comparison With General Purpose Compression

To classify the capabilities of the encoding enhancements, they are also compared to the Open Trace For-

mat 2 with the compression from zlib [DG96], which is a well-established compression library based on

the Lempel-Ziv 77 compression algorithm [ZL77] and provides a good trade-off between compression

ratio and overhead [SL11]. Figure 5.4 shows the memory allocation for OTF, OTF2 with and without

zlib compression, and OTFX with and without timer resolution reduction (trr). The enhanced encoding

techniques achieve a slightly lower decrease in memory allocation than zlib (74 %) without timer resolu-

tion reduction (70 %) and a slightly higher decrease in memory allocation with timer resolution reduction

(77 %, all relative to OTF2). Thus, the enhanced encoding techniques realize an equal memory efficiency

as general purpose compression of the LZ77 family.

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu
bt cg ep ft is lu mg sp gromacs

cosmo-specs

semtex

M
em

or
y

al
lo

ca
tio

n
(n

or
m

al
iz

ed
 to

 O
TF

)

OTF OTF2 OTF2+zlib OTFX OTFX+trr

Figure 5.4: Memory allocation in detail for OTF, OTF2 including zlib compression, and OTFX with and
without timer resolution reduction (trr).

5.2.2 Runtime Overhead

Next to memory efficiency, the introduced runtime overhead is equally important for a successful mea-

surement of an application. Adding too much overhead will drastically reduce the accuracy of a mea-

surement and bias the recorded application behavior. This means, an event trace format as part of an

event tracing tool has to introduce as less overhead as possible. Therefore, improvements in memory

efficiency must be judged by their overhead, as well.

Figure 5.5 shows the runtime overhead of OTF, OTF2, OTF2 with zlib compression, and OTFX including

the timer resolution reduction. To exclude file system overhead, the measurements only include the

storage within the memory during runtime. Hence, some applications are not included in the figure

because their collected data exceeds all memory capabilities.

Two important results can be drawn from Figure 5.5. First, the enhanced encoding techniques do not

introduce additional overhead. The overhead is in the same range as OTF2 without the enhanced encod-

ing. Second, while Figure 5.4 might encourage to use a general purpose compression library to increase

memory efficiency, this will drastically raise the runtime overhead. Even more, overhead introduced by

a compression library is usually not equally distributed over all events. In most cases, a certain amount

5.2. ENHANCED ENCODING TECHNIQUES 93

of data is collected and then compressed within one step to achieve a high compression ratio. In this

measurements, compressing every 1 MiB creates an overhead of 26 - 29 ms each. Therefore, using a

compression library for higher memory efficiency is unfavorable. The results of Epilog and VampirTrace

are not included but have already been covered in [EWG+12]: The overhead of Epilog is comparable to

OTF2. The overhead of VampirTrace’s internal memory buffering is about 2.5 times lower than OTF2

since all event attributes are aligned in memory, however, at the price of significantly increased memory

requirements due to the padding.

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

104.milc

107.leslie3d

115.fds4

121.pop2

122.tachyon

126.lammps

127.wrf2

129.tera_tf

130.socorro

137.lu
bt cg ep ft is lu mg sp gromacs

cosmo-specs

semtex

R
un

tim
e

ov
er

he
ad

 (n
or

m
al

iz
ed

 to
 O

TF
)

OTF OTF2 OTF2+zlib OTFX

234 252 235 269 239 266 287
235 234 218 242 213 223 221

Figure 5.5: Runtime overhead of OTF, OTF2 with and without zlib compression, and OTFX.

The measurements demonstrate that the enhanced encoding techniques discussed in Section 3.3 remark-

ably reduce the memory allocation for event trace data during runtime without increasing the overhead

of the tracing library. The results of this section are summarized in Table 5.3, which shows the runtime

overhead and the runtime memory allocation in comparison to OTF. The OTFX prototype that includes

all presented encoding techniques consumes about 80 % less memory without and about 83 % less mem-

ory with timer resolution reduction compared to OTF. With this, OTFX achieves the memory efficiency

of well-established compression libraries without introducing their respective overhead, which is about

five times higher than with OTFX.

Trace Format
Runtime Overhead Memory Allocation

Minimum Average Maximum Minimum Average Maximum

OTF 100.0 % 100.0 %
OTF2 49.9 % 51.2 % 55.2 % 56.5 % 75.6 % 85.1 %
OTF2 with zlib 212.7 % 240.7 % 286.9 % 16.1 % 19.5 % 24.4 %
OTFX 48.7 % 50.3 % 52.3 % 17.3 % 22.4 % 28.8 %
OTFX with trr 48.6 % 49.9 % 51.8 % 13.4 % 17.0 % 23.5 %

Table 5.3: Runtime overhead and memory allocation of OTF, OTF2, OTF2 with zlib, and OTFX. All
values are normalized to OTF’s overhead or memory allocation, respectively.

94 5. EVALUATION AND CASE STUDY

5.3 The Hierarchical Memory Buffer

This section evaluates the Hierarchical Memory Buffer data structure introduced in Chapter 4 and its

capabilities to support the event reduction strategies. While current approaches rely on a flat continuous

memory segment, the new Hierarchical Memory Buffer uses a hierarchical ordering and many small

memory segments that are distributed on demand. Similar to the enhanced encoding techniques, the

altered memory layout influences the per location internal memory representation. Hence, it only affects

the consumed memory and the runtime overhead but not the event tracing library’s scalability.

The dominant parameter influencing both criteria is the size of the dynamically distributed memory

segments, called memory bins. The following section aims to find a suitable size for these memory bins.

After that, Section 5.3.2 evaluates the efficiency of the new data structure for event reduction.

5.3.1 Determine an Ideal Memory Bin Size

Choosing a feasible size for the memory bins is crucial. On the one hand, memory efficiency decreases

with bigger memory bins because the memory bins may often not be fully utilized. For instance, writ-

ing only a few events to each call stack level will result in a much bigger total memory allocation for

bigger memory bins than for small ones since each way there is one memory bin allocated for each hi-

erarchy partition6. Moreover, in the multi-dimensional layout of the Hierarchical Memory Buffer a lot

of memory bins are necessary to distribute at least one memory bin to each non-empty hierarchy parti-

tion. Otherwise, reduction is triggered way to early because the Hierarchical Memory Buffer runs out of

memory bins; not because their memory is exhausted. Therefore, it is desirable to keep the size of the

memory bins as small as possible. On the other hand, with smaller memory bins, the overhead introduced

by managing the memory bins is expected to increase, since there are more memory bins to allocate and

operate. But, from a technical point of view, there is another disadvantage of smaller memory bins. Since

events cannot be split over multiple memory bins, there is a small gap at the end of each memory bin that

cannot be utilized when an event does not fit completely in the remaining space. For smaller memory

bins, in relation, this gap decreases the usable memory more drastically.

Consequentely, the number of events E that can be stored within the Hierarchical Memory Buffer depends

on the total memory allocation for the buffer Sbuffer, the average size of an event Sevent, and the balance

B of the event distribution (see Equation 4.2 on page 59):

E =
Sbuffer
Sevent

· B

Using the definition in Equation 4.2 the worst case for the balance can be expressed with the number of

hierarchy partitions p in relation to the number of memory bins b as B = 1− p−1
b ; in a best case scenario

the balance equals 1. Since the number of memory bins b results from the quotient of the total memory

allocation for the buffer Sbuffer and the size of the memory bins Sbin, the number of events is:

Ebest =
Sbuffer
Sevent

Eworst =
Sbuffer
Sevent

·
(
1− (p− 1) · Sbin

Sbuffer

)
6A hierarchy partition represents an element in the multi-dimensional memory buffer layout where, for instance, one dimen-

sion represents the call stack level and another dimension the event class.

5.3. THE HIERARCHICAL MEMORY BUFFER 95

However, this equation does not consider the gap at the end of each memory bin. The effectively usable

buffer size Seff due to this gap depends on the size and, therefore, the number of memory bins b and the

size of the gap Sgap:

Seff = b ·
(
Sbin − Sgap

)
=
Sbuffer
Sbin

·
(
Sbin − Sgap

)
By using the effectively usable buffer size the number of events that can be stored within the Hierarchical

Memory Buffer can be expressed as:

Ebest =
Sbuffer
Sbin ·

(
Sbin − Sgap

)
Sevent

Eworst =
Sbuffer
Sbin ·

(
Sbin − Sgap

)
Sevent

·
(
1− (p− 1) · Sbin

Sbuffer

) (5.1)

Figure 5.6 shows the estimated number of events based on Equation 5.1 modeled with the parameters

Sbuffer ∈ {10MiB, 32MiB, 100MiB}, Sevent = 3, and Sgap = 32 for different memory bin sizes Sbin
and each a best case distribution and a worst case distribution for 20 and 80 hierarchy partitions. The

increasing effect of the gap with decreasing memory bin size can be seen on the left end of each clustered

histogram, where the number of events drops to about 50 %. The right end of each clustered histogram

demonstrates the increasing effect of the event distribution balance with increasing memory bin size.

For the best case scenario, that means a perfectly balanced distribution, the number of events hits its

maximum at the size of one mebibyte because the effect of the gap is almost extinct. However, for the

worst case scenarios the number of events drops drastically for high memory bin sizes. For a buffer size of

10 MiB there is no measuring point at 1 MiB because at this size only 10 partitions can be provided. For

the same reason, the values for the worst case distribution with 80 partitions are incomplete. For larger

memory buffer sizes the effect of the event distribution decreases because with an increasing memory

buffer size the number of memory bins, which is most important for the event balance, increases as well.

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

64 1k 16k 128k 1M 64 1k 16k 128k 1M 64 1k 16k 128k 1M

N
um

be
r o

f e
ve

nt
s

(n
or

m
al

iz
ed

)

Worst case distribution, 80 partitions
Worst case distribution, 20 partitions
Best case distribution

Buffer size: 10 MiB Buffer size: 32 MiB Buffer size: 100 MiB

Figure 5.6: Number of events fitting within the memory buffer modeled for different memory bin sizes
on the horizontal axis, different buffer sizes and different event distribution assumtions.

Next to the modeled behavior, the number of events that can be stored within the Hierarchical Memory

Buffer was reviewed for the 21 applications and kernels. Figure 5.7 shows the minimum, maximum, and

average number of events that could be stored within a 32 MiB memory buffer depending on the size of

the memory bins (vertical axis). The number of events that could be stored varied strongly between the

96 5. EVALUATION AND CASE STUDY

applications, depending on the mixture of events, e.g., small events like region enter/exit to larger events

like communication, and the size of the parameters of the events. Still, the two trends from the model

are clearly visible again. For very small memory bin sizes the number of events decreases due to the

increasing effect of the gap at the end of each memory bin. The relative decrease is more or less the same

for all applications: the number of events at a memory bin size of 64 Bytes was between 51 % and 61 %

of the maximum number of events for each application. Matters are quite different for larger memory

bins sizes, where the event distribution mainly determines the utilization of the buffer. The strongest

decline was recorded for 127.wrf2, where the number of events dropped to 120,000 events or 1 % of the

maximum. The is benchmark showed the weakest decline to 88 % of its maximum. These results are

consistent with the event distribution that can be inferred from Figure 3.17. While is’s maximum calling

depth is only four, 127.wrf2 has a maximum calling depth of 159 with most of its events clustered to a

few of these call stack levels. In the majority of cases the maximum number of events was achieved with

a memory bin size of four or eight kibibytes.

2M

4M

6M

8M

10M

12M

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

N
um

be
r o

f e
ve

nt
s

Minimum
Average
Maximum

Figure 5.7: Maximum, minimum, and average number of events that could be stored within a 32 MiB
memory buffer for different memory bin sizes.

10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

N
um

be
r o

f e
ve

nt
s

(n
or

m
al

iz
ed

 to
 m

ax
im

um
)

10 MiB memory buffer
32 MiB memory buffer
100 MiB memory buffer

Figure 5.8: Average number of events that could be stored within a 10, 32, and 100 MiB memory buffer
for different memory bin sizes, relative to each buffer sizes maximum.

5.3. THE HIERARCHICAL MEMORY BUFFER 97

Like in the modeled behavior, the effect of event distribution varies with the total size of the memory

buffer. Figure 5.8 shows the average number of events that could be stored within a 10, 32, and 100 MiB

memory buffer for different memory bin sizes. For a 10 MiB memory buffer there is a much sharper drop

towards a memory bin size of 1 MiB than for the 100 MiB memory buffer. Also similar to the modeled

behavior, the maximum number of events for most applications is achieved for a memory bin size of four

and 16 kibibytes for a 10 MiB and 100 MiB memory buffer, respectively. Still, for 127.wrf2 the number

of events that could be stored in a 100 MiB memory buffer with a memory bin size of 1 MiB is only

390,000, which is about 1 % of its maximum.

From the model and the figures it can be inferred that a feasible memory bin size in terms of memory

utilization depends on the event distribution and the total memory buffer size. For each of the reviewed

applications a memory bin size between 1 KiB and 16 KiB provides the best results.

Next to memory efficiency, the introduced overhead is decisive when choosing a feasible memory bin

size. To measure the overhead of the OTFX prototype the time to fill a 32 MiB buffer was recorded and

normalized to the time to write 1 million events. Again, the benchmark reviews the 21 applications and

kernels. Figure 5.9 depicts the minimum, maximum, and average time to write 1 million events.

10ms
20ms
30ms
40ms
50ms
60ms
70ms
80ms
90ms

100ms

64 128 256 512 1k 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M

Ti
m

e
pe

r 1
 m

illi
on

 e
ve

nt
s

 Minimum
 Average
 Maximum

Figure 5.9: Maximum, minimum, and average runtime overhead for different memory bin sizes.

While the overhead depends on the mixture of events, e.g., smaller events can be stored faster than

larger events, and varies between different applications, they all show practically the same behavior: the

overhead is virtually constant for almost all memory bin sizes. Nevertheless, there is gradual rise in the

overhead towards minimum and maximum memory bin size. For larger memory bins the overhead alike

memory efficiency depends on the event distribution. In case of a disadvantageous event distribution

memory efficiency decreases, which results in an increase of allocated memory per event and, therefore,

an increase in time allocation time per event. This effect can be seen in the increase for the maximum

overhead, while minimum and average overhead virtually stay the same. For smaller memory bins the

overhead increases more steeply because here two effect accumulate. There is again a lower memory

efficiency and, in addition, the overhead for allocation and management of the memory bins increases

since the number of memory bins is inversely proportional to their size.

Nonetheless, this study shows that memory bin size scarcely influences the runtime overhead. For most

of the reviewed applications a memory bin size of 128 Byte to 1 MiB delivers reasonable overhead.

98 5. EVALUATION AND CASE STUDY

5.3.2 Reduction of Hierarchy Partitions

These first measurements reviewed the performance of the Hierarchical Memory Buffer for traditional

storing of events. However, the primary purpose of the Hierarchical Memory Buffer is to support differ-

ent event reduction operations. Thereby, the goal is to efficiently reduce the number of events already

stored in the memory buffer by removing hierarchy partitions from the memory buffer.

The following benchmark is designed to evaluate the overhead in case of an actual event reduction. It

is implemented as a synthetic benchmark to be able to manage and exactly steer the grade of reduction.

The synthetic benchmark writes 100 MiB of data, which is about 40 million enter and leave events,

equally across 100 call stack levels. The writing pattern stores the first mebibyte of data to the deepest

call stack level (i.e., 100), the second mebibyte on the second deepest call stack level (i.e., 99), and so

on. By adjusting the total size of the Hierarchical Memory Buffer the grade of the reduction can be

controlled. When writing 100 MiB of data to a buffer with a size of 100 MiB no reduction is triggered.

For a buffer size of 99 MiB one hierarchy partition is discarded. Likewise, for a buffer size of 10 MiB

the hierarchy partitions are stepwise reduced until only ten partitions remain. This way, each reduction

operation reduces exactly 1 % of the stored events by removing one hierarchy partition, which contains

1 % of the distributed memory bins.

Figure 5.10 shows the time spent in the reduction operations within this benchmark for different memory

bin sizes. The horizontal axis represents the size of the memory buffer in percent, i.e., the smaller the

buffer size the higher the reduction. The time spent in the reduction operation and, thus, the overhead

of the reduction increases linearly with the grade of reduction. The highest overhead is recorded for a

memory buffer size of 64 bytes, which is 0.24 seconds or about 25 % for a reduction to ten percent of

the original number of hierarchy partitions. For medium and large memory bin sizes, i.e., 512 bytes and

above, the introduced overhead is at maximum between 1.2 and 4.6 percent.

While this benchmark uses the call stack based reduction strategy, it represent all types of reduction op-

erations because all reduction operations are simply based on the removal of one or multiple hierarchy

partitions. Therefore, from the results it can be concluded that a reduction operation generates overhead

in the range of 1.4 to 5.1 % times the percentage of the revoked memory bins for a memory bin size

greater than or equal to 512 bytes. Or in other words, the overhead is about 100 to 400 microseconds per

mebibyte of revoked memory bins. For example, for an reduction of the event class ’performance met-

rics’ containing one hardware performance counter value per enter/leave event, the number of memory

bins that are revoked is about half of the total number (see also Figure 3.14) This means the overhead is

in the range of 0.7 to 2.6 % of the total library time, in average 0.006 to 0.022 % of the total runtime of

the reviewed applications and kernels, or 5 to 20 milliseconds for a 100 megabyte memory buffer. This

underlines the statement from Section 3.4 that single event reduction steps should not be too large to

avoid unnecessary information loss and bias.

In general, memory bin sizes of 1 KiB to 16 KiB provide best results in terms of memory efficiency,

as well as writing and reduction overhead. With such sizes the Hierarchical Memory Buffer consists

of enough memory bins to utilize the given memory well even for disadvantageous event distributions

and provides enough memory bins to support applications with many hierarchy partitions. The event

reduction operation with 100 to 400 microseconds per mebibyte of according memory bins creates a

minor but noticeable interruption of the application. Still, this overhead is negligible small in comparison

to interacting with a file system.

5.3. THE HIERARCHICAL MEMORY BUFFER 99

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 64B

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 128B

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 256B

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 512B

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 1kB

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 2kB

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 4kB

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 8kB

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 16kB

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 32kB

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 64kB

 0
 0.05

 0.1
 0.15

 0.2
 0.25

100%
90%

80%
70%

60%
50%

40%
30%

20%
10%

Overhead, 128kB

Figure 5.10: Overhead of event reduction operations (in seconds) for different memory bins sizes and
different buffer sizes, i.e., grades of reduction.

5.3.3 Reduction by Duration

Next to reduction operations that reduce the number of hierarchy partitions, Section 3.4.4 introduces the

reduction of code regions based on their duration. While the duration could also be used as a separate hi-

erarchy dimension, in the OTFX prototype it is implemented as runtime filter and, therefore, all function

calls shorter than the minimum duration are not stored, which drastically reduces the number of stored

highly frequent function calls during runtime but keeps outliers that have an impact on the application

behavior. This reduces the pressure on other reduction operations and the general overhead of storing

heavily used functions. Thus, this technique could rather be classified as filter or selection technique

but due its dependency on hierarchical data management it is so closely coupled with the Hierarchical

Memory Buffer data structure that it is evaluated in this context.

Runtime Overhead
A first benchmark focuses on the runtime overhead that is introduced by tracking function duration and

removing function calls shorter than a minimum duration. This synthetic benchmark writes 10 million

events by looping over a pattern of ten nested function calls, i.e., ten enter events followed by ten leave

events. All events are written with a fixed time interval of ten time units resulting in fixed durations for

the nested function calls: ten units for the innermost function, 30 units for the second function, and up

100 5. EVALUATION AND CASE STUDY

to 190 units for the outer function. This pattern allows a step-wise reduction of recorded event trace data

by increasing the minimum duration for function calls to be stored. The ten times nested function calls

provide the possibility to reduce the amount of recorded data from 100 % (no function calls are filtered,

minimum duration ≤ 10) to 0 % (all function calls are filtered, minimum duration > 190).

Figure 5.11 shows the results of this benchmark with different side effect compensation methods (see be-

low). To compare the introduced overhead, a measurement of the OTFX prototype without the described

modifications provides a baseline. A measurement of OTF2 serves as another reference. Both results are

shown on the left in Figure 5.11.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

OTF2 OTFX 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0%

Ti
m

e
in

 s
ec

on
ds

(a) add leave, memory total (b) skip leave, memory total (c) skip leave, memory real

Figure 5.11: Runtime overhead code region reduction from 100 % (no function calls are filtered, mini-
mum duration ≤ 10) to 0 % (all function calls are filtered, minimum duration > 190).

The runtime of the OTFX prototype with enabled code region reduction is represented by Measurement

(c) in Figure 5.11. The runtime is linearly decreasing with an increasing minimum duration and, thus, a

decreasing amount of stored event trace data. While this is the actual runtime of the OTFX prototype,

obviously, the decreasing runtime is not caused by adding additional management to the Hierarchical

Memory Buffer. There are two side effects that are introduced with the code region reduction method.

First, the code region reduction leads to less stored event data, which results in less memory allocation

for the Hierarchical Memory Buffer. Hence, the included time for memory allocation is reduced. Sec-

ond, if a code region is not stored, the according enter event is first stored and later discarded but the

leave event is not written at all. This leads to less write operations to the Hierarchical Memory Buffer

with an increasing minimum duration. To provide a fair and correct comparison of the overhead of the

OTFX prototype, there are two additional measurements that eliminate both effects. Measurement (a)

in Figure 5.11 shows the runtime of the OTFX prototype with two modifications to eliminate both side

effects by allocating the same amount of memory and always writing the leave event before an poten-

tial elimination. The runtime of Measurement (a) is constant (deviation < 1 %) regardless of the grade

of function elimination and introduces an overhead of about 4 % compared to OTFX without the code

region elimination. Measurement (b) keeps the constant memory allocation but like the original code

region reduction implementation skips the writing of the leave event if the according function call is

eliminated. Like in Measurement (c) the runtime in Measurement (b) is decreasing with an increasing

minimum duration but with a slower decline.

While Measurement (a) proves that the OTFX prototype with code region reduction introduces no more

than a constant overhead of about 4 %, Measurement (c) shows the real runtime of this approach, which is

decreasing when more function calls are filtered since less events are stored and less memory is allocated.

5.3. THE HIERARCHICAL MEMORY BUFFER 101

Trace Size Reduction

Next to the introduced overhead, the capabilities to reduce the resulting event trace size during runtime

are of highest interest. For that, eleven of the target applications and kernels are selected. The application

kernels of the SPEC MPI 2007 benchmark suite are not included because the application traces did not

contain any short running code regions due to the mature and optimized nature of the suite. Nonethe-

less, the remaining eleven applications and kernels, including the three real-life applications, provide a

sufficient review to demonstrate the effects of the code region reduction.

For this evaluation a short-running code region is defined as a code region with a duration of less than

1µs. With a minimum duration of 1µs, all short-running code regions are eliminated while all important

routines, including all communication routines, remain in the event trace. Table 5.4 demonstrates the

capabilities of the code region reduction for the target applications and kernels. It shows the event trace

sizes per location without and with duration filtering and the ratio to which the traces sizes are reduced.

Application
Trace Size Trace Size

Ratio
Complete (min. duration 1µs)

BT 4 GB 4.3 MB 0.1 %
CG 406 MB 11.9 MB 2.9 %
EP 2.3 MB 0.2 MB 7.3 %
FT 23 MB 22.7 MB 99.4 %
IS 1.1 GB 2.0 MB 0.2 %
LU 134 MB 24.8 MB 18.3 %
MG 5.1 MB 0.9 MB 17.2 %
SP 142 MB 3.6 MB 2.6 %
Gromacs 2.5 GB 45.4 MB 1.7 %
Cosmo-Specs 2.3 GB 94.4 MB 4.0 %
Semtex 17 GB 9.3 GB 54.6 %

Table 5.4: Average event trace sizes per process with and without code region reduction.

For all applications and kernels that heavily use short-running code regions (see also Figure 3.18) the

resulting trace sizes during runtime can be remarkably reduced. In particular, for Gromacs, is, and bt the

trace sizes are reduced to 1.7 %, 0.2 %, and 0.1 %, respectively. Since ft includes almost no short-running

functions, trace size is only hardly reduced. Table 5.4 also shows that for the reviewed applications and

kernels, the reason that applications generate large trace sizes is usually the heavily use of short-running

functions (Gromacs, bt, is). For all these applications the code region reduction provides an effective

way to eliminate the short-running function calls and remarkably reduce the resulting event trace size.

Trace Analysis

To demonstrate the analysis on the reduced event traces, Figure 5.12 includes two screenshots of a visual

analysis with Vampir [NAW+96]. While the upper screenshot shows the entire measurement, the bottom

screenshot is zoomed in to a phase of about 3.8 ms. The fully recorded measurement can be seen on the

upper half of each screenshot (white background); the measurement with code region reduction on the

lower half (blue background). The timeline view with the events over time on the horizontal axis and

102 5. EVALUATION AND CASE STUDY

the locations on the vertical axis is shown on the left side. The function summary on the right depicts

the total number of invocations for each code region. Both screenshots demonstrate that code region

reduction does not alter the general application behavior; except for the missing short-running function

calls. The function summary shows that the total number of function calls is reduced from about 4

billion to 68 million. The second screenshot additionally visualizes the process timeline of process zero

in detail; with the calling depth on the vertical axis. The process timeline demonstrates that all short-

running function calls on calling depth 10 and 11 are effectively eliminated while the outliers are kept;

which is the key advantage over filtering based on the number of invocations.

Figure 5.12: Event trace visualization with Vampir without and with code region reduction. Top: entire
measurement; bottom: zoomed to an application phase of about 3.8 ms.

5.3. THE HIERARCHICAL MEMORY BUFFER 103

5.3.4 Analysis Techniques

As discussed in Section 4.5 all common analysis techniques for the Hierarchical Memory Buffer like

timeline visualization, statistical summaries, or message matching rely on a basic forward traversal,

i.e., reading all events. The complexity of such a basic forward traversal is O(p + n log p) with n

being the number of events and p the number of non-empty hierarchy partitions. In addition, the basic

forward traversal can be restricted to a subset of hierarchy partitions, for example, to those partitions that

contain communication events for a communication analysis. In this case, the complexity is reduced to

O(ph + nh log ph) with ph the number of according hierarchy partitions and nh the number of events

within these hierarchy partitions (see Section 4.5). At any rate, the complexity for a basic forward

traversal is O(p + n log p) instead of O(n) for a flat continuous memory buffer since all events stored

in the different hierarchy partitions must be merged in a way that they are handed to the user ordered by

their time stamp. However, such a complexity can only be achieved by using a heap data structure (or

similar) for an efficient merging of events. Therefore, reading performance for the Hierarchical Memory

Buffer mainly depends on the number of non-empty hierarchy partitions.

Figure 5.13 sets the results of a stress test in comparison to the reading performance for the target ap-

plications and kernels. The stress test is designed to simulate worst case behavior. It equally distributes

n = 1 million events on the given number of hierarchy partitions, in this case call stack levels, by looping

over the simple pattern of p enter events followed by p leave events, with p being the maximum number

of hierarchy partitions. In comparison the target applications and kernels are evaluated by reading the

first million enter/leave events.

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200

Ti
m

e
in

 s
ec

on
ds

Maximum call stack depth

Results from stress test
Results from applications

12
2.t

ac
hy

on

12
7.w

rf2

 0

 0.05

 0.1

 0.15

 0 5 10 15 20 25 30

Ti
m

e
in

 s
ec

on
ds

Maximum call stack depth

11
5.f

ds
4

12
1.p

op
2

12
6.l

am
mps

 13
0.s

oc
orr

o

bt,
 lu

 is mg
sp

se
mtex

Results from stress test
Results from applications

10
4.m

ilc

10
7.l

es
lie3

D

12
9.t

era
_tf

13
7.l

u,
ft

cgep gro
mac

s

co
sm

o-s
pe

cs

Figure 5.13: Time to read events depending on the maximum calling depth for a stress test and for the
real-life applications and kernels. Top: Scaled to maximum calling depth of 200. Bottom:
Zoomed to a maximum calling depth of 30.

104 5. EVALUATION AND CASE STUDY

The stress test shows that in worst-case the merging can be done in logarithmic time complexity as

indicated by the complexity of the forward traversalO(p+n log p). However, the evaluated applications

and kernels reflect a different behavior than the stress test. Most events are recorded on only one or a

few call stack levels, which leads to a much lower cost for the shift down operation on the heap data

structure, namely O(pf), instead of O(p), with pf < p being the number of the few hierarchy partitions

most events are stored in. Therefore, the reading performance for the target applications and kernels

depends not only on the total number of hierarchy partitions but on the distribution of events among

these hierarchy partitions, as well. The target applications and kernels show drastically higher reading

performance than the stress test caused by a nearly constant time complexity for the shift down operation.

5.3.5 Message Matching on Incomplete Communication Data

To allow a correct message matching and, thus, a correct communication analysis on incomplete commu-

nication data, Section 4.6 introduced the sequential message identifier. First and foremost, it is important

to investigate if this approach can actually be used to reduce the amount of communication data with

event reduction. In particular, only if message envelopes are used multiple times, communication data

can be reduced. Otherwise, if each message envelope is used only once, the amount of stored data would

be doubled: the data for each communication event is stored in the memory buffer and also in parts in the

internal management data structure (message envelope and sequential message identifier). In that case,

even if all message events in the trace are deleted, the data is still kept in the internal management data

structure. Thus, the key indicator for the overall feasibility and the memory saving potential is the num-

ber of messages per message channel. It can be assumed, naturally, that message envelopes are hardly

ever reused, since the idea of the message envelope, especially the message tag, is to contain distinguish-

ing information. However, it can also be considered that for instance iterative application reuse message

envelopes frequently by using the same message tags in each iteration.

To determine the range of the number of messages per message envelope a statistical survey evaluates

different applications: the molecular dynamics package Gromacs [HKS08] and the NAS Parallel Bench-

marks [BLBS92]. The NAS Parallel Benchmarks are evaluated at a scale of 4096 processes and the

problem size E because it can be assumed that the number of messages per message envelope decreases

with an increasing number of locations, . In comparison, Gromacs was surveyed at different scales to

show the effects of an increasing number of participating locations.

Table 5.5 shows the number of messages per message envelope for the survey applications and in com-

parison the total number of messages per location. The applications EP and FT of the NAS Parallel

Benchmarks are not included since they only use collective communication operations. The application

IS is also not included because it does not support problem size E; on other problem sizes it uses exactly

one point-to-point communication per location. Due to the enormous generated trace data, the Gromacs

application was surveyed for 10.000 iterations while production runs can run for up to one million itera-

tions. Thus, it can be assumed that the number of messages per message envelope for an production run

is about 100 times higher than depicted here. Gromacs shows the expected trend of a decreasing number

of message channels for an increasing number of locations. From Table 5.5 it can be inferred that all

surveyed applications reuse the message envelopes in a sufficient way. Therefore, the survey rejects the

previous assumption that message envelopes are hardly reused. In fact, message envelopes are regularly

reused, which makes the described approach feasible.

5.3. THE HIERARCHICAL MEMORY BUFFER 105

Application
Messages per Envelope Messages per Location

Minimum Average Maximum Minimum Average Maximum

Gromacs P = 384 1 14171 64933 509492 641395 818009
Gromacs P = 768 20 7016 50038 418765 444361 464050
Gromacs P = 1056 10 3827 50028 460740 517933 550266
NPB BT P = 4096 251 251 252 192780 192780 192780
NPB CG P = 4096 2626 7214 7979 101000 101000 101000
NPB LU P = 4096 306722 306723 306724 1226892 2415440 2453780
NPB MG P = 4096 51 894 1279 15042 15532 20550
NPB SP P = 4096 502 16033 31563 384780 384780 384780

Table 5.5: Number of messages per message envelope and per location.

At runtime, for each message envelope an internal management data structure keeps an 16 byte entry

(based on OTF2): 4 bytes each for the communication partner, message tag, communicator and sequen-

tial message identifier (see also Listing 4.2). The data structure can be organized as associative array that

grants access in logarithmic time complexity. The number of entries in the management data structure

depends on the number of different message envelopes, which correlates with the number of communica-

tion partners within a given communicator and is bounded by the number of processes p, the number of

different message tags t, and the number of different communicators c. Hence, the memory requirement

in the management data structure is in O(p× t× c) and the access time in O(log(p× t× c)).

Application
Message Envelopes per Location

Minimum Average Maximum

Gromacs P = 384 22 45.3 130
Gromacs P = 768 17 63.3 153
Gromacs P = 1056 18 135.3 369
NPB BT P = 4096 768 768.0 768
NPB CG P = 4096 14 14.0 14
NPB LU P = 4096 4 7.9 8
NPB MG P = 4096 12 17.4 48
NPB SP P = 4096 24 24.0 24

Table 5.6: Number of different message envelopes per location.

Therefore, the memory allocation, as well as the access time, benefit from a small number of message

envelopes, while a large number of different message envelopes may overwhelm the management data

structure in terms of memory allocation and overhead. Table 5.6 contains the number of different mes-

sage envelopes per location. For all surveyed applications the number of message envelopes is very

small and far below a theoretical maximum p × t × c. Although there might exist applications with

very excessive communication patterns, in most applications processes communicate mainly with their

neighboring processes, with only a few large messages instead of many small messages, and within very

few different communicators. Hence, the values for p, t, and c are each small, keeping the number of

106 5. EVALUATION AND CASE STUDY

message envelopes small, too. From Table 5.6 it can be concluded that memory allocation as well as

access time for the internal management data structure are small.

Finally, Table 5.7 shows the memory overhead in more detail. First, it can be seen that the memory

used for the internal management data structure (column Message ID) is negligible for all surveyed

applications. Second, the additional event trace data – caused by the additional parameter keeping the

sequential message identifier – directly depends on the total number of MPI point-to-point messages

(see also Table 5.5). The memory overhead of about 2.6 to 10.2 % is justifiable, in particular, since the

share of MPI point-to-point events within the complete event trace data is typically in the single-digit

percentage range or less (see also Figure 3.14).

Application
Additional memory requirements

Message ID Trace Data Ratio

Gromacs P = 384 0.7 KiB 1871 KiB 8.3 %
Gromacs P = 768 1.0 KiB 1294 KiB 9.0 %
Gromacs P = 1056 2.2 KiB 1505 KiB 9.3 %
NPB BT P = 4096 12.3 KiB 377 KiB 2.6 %
NPB CG P = 4096 0.2 KiB 292 KiB 5.5 %
NPB LU P = 4096 0.1 KiB 8929 KiB 10.2 %
NPB MG P = 4096 0.3 KiB 42 KiB 5.0 %
NPB SP P = 4096 0.4 KiB 1121 KiB 4.2 %

Table 5.7: Additional memory requirements per location.

5.4 Case Study: The Molecular Dynamics Package Gromacs

This section evaluates the contributions of this thesis on the basis of the molecular dynamics package

Gromacs [HKS08]. It demonstrates how the contributions, in particular, can improve the event-based

performance analysis of long-running applications that exceed the capabilities of traditional event tracing

approaches for both, the introduced bias, as well as the resulting event trace sizes. The first part of this

section focuses on the impact of intermediate buffer flushes on the recorded application behavior. The

second part evaluates how the contributions of this thesis can be applied to drastically increase memory

efficiency, on the one hand; and on the other hand, use event reduction techniques to reduce the number

of stored events during runtime and, therefore, avoid intermediate buffer flushes.

5.4.1 The Molecular Dynamics Package Gromacs

Gromacs is a versatile package to perform molecular dynamics, i.e., simulate the Newtonian equations

of motion for systems with hundreds to millions of particles. It is primarily designed for biochemi-

cal molecules like proteins, lipids and nucleic acids that have a lot of complicated bonded interactions.

Because Gromacs is extremely fast at calculating non-bonded interactions that usually dominate simula-

tions, many groups are also using it for research on non-biological systems such as polymers. It is one

of the fastest and most popular software packages available for molecular dynamics. Since its origins in

5.4. CASE STUDY: THE MOLECULAR DYNAMICS PACKAGE GROMACS 107

1991 the package grow to about 1.8 million lines of code with an estimated effort of over 6000 person

months [GRO14]. Within the EU project CRESTA [CRE14] development is supported by an in-depth

performance analysis with Score-P and Vampir to optimize performance for exa-scale HPC systems.

However, tracing an application run of Gromacs produces enormous amounts of event data. An exem-

plary simulation of 50 iterations with 144 processes already results in an average trace size of about

703 MiB per location using Score-P and OTF2. Running the sample simulation with 10.000 iterations

would lead to an estimated average trace size of about 125 GiB per process7. It is obvious that actual

production runs that use up to one million iterations could not be recorded with the full detail provided

by traditional event tracing approaches. While the resulting trace size is an urgent challenge to solve,

the bias caused by intermediate buffer flushes can render a measurement run completely useless and,

therefore, may prevent a successful performance analysis.

5.4.2 The Bias Caused by Intermediate Buffer Flushes

As stated above, the recording of 50 iterations already results in an average trace size of about 703 MiB.

Thereby, the event data is unequally distributed over the resulting 144 event trace files. Gromacs uses,

next to a domain composition, also a function decomposition that splits the locations in two groups with

a ratio that depends on the number of active locations. In this case the ratio is 3:1, i.e., three out of

four locations compute the particle-particle interaction (PP) while one other computes the Particle Mesh

Ewald method (PME). As a result, the trace sizes for the different locations are divided in two groups,

too. The trace sizes of the first group range from 641 MiB to 1.4 GiB and the trace size of the second

group ranges from 33 to 38 MiB.

Whenever an internal memory buffer is exhausted, its data is flushed to a file. This causes a noticeable

interruption of the according locations since it is stalled until the file interaction completes. Due to the

deviations in Gromacs, all locations flush their memory buffer at a different time. Figure 5.14 shows

the distribution of buffer flushes during runtime for different memory buffer sizes. With an increasing

memory buffer size, the number of buffer flushes decreases but their duration increases. While for

the 50 MiB memory buffer there occur a total of 1985 buffer flushes with an average interrupt of 0.13

seconds, for the 1 GiB buffer there appear 34 buffer flushes with an average interrupt of 8.4 seconds.

Regardless of the memory buffer size the pattern of the memory buffer flushes is highly irregular. When-

ever those memory buffer flush occur during or near an inter-process dependency, such as a communi-

cation operation, the interrupt causes a modification of the original application behavior. Figure 5.15

demonstrates this effect for a memory buffer size of 1 GiB since the effect is most easily visible there.

Within the application there are several global communication operations. Up to the first buffer flush

of process 25 at about 140 seconds these communication operations (red) require only little application

time as can be seen by the share of red within white, which contains everything else within the appli-

cation. However, during the first buffer flush all other processes wait for process 25 to finish its buffer

flush and engage in the global communication operation. After that, each buffer flush causes the same

behavior, which can be seen by the red blocks on each process that have approximately the same length

as the buffer flush of one of the processes. Comparing the application behavior before and after the first

buffer flush clearly demonstrates the effect of uncoordinated intermediate memory buffer flushes on the

recorded application behavior.
7Values are estimated with the scorep-score tool based on a profile run [KRM+12].

108 5. EVALUATION AND CASE STUDY

(a) 50 MB memory buffer (b) 100 MB memory buffer

(c) 500 MB memory buffer (d) 1 GB memory buffer

Figure 5.14: Vampir screenshot displaying the distribution of buffer flushes (violet).

Figure 5.15: Vampir screenshot displaying the distribution of buffer flushes (violet) for a 1 GB buffer and
the resulting MPI wait times (red).

5.4. CASE STUDY: THE MOLECULAR DYNAMICS PACKAGE GROMACS 109

Figure 5.16 supports this conclusion from another point of view. It displays the runtime of Gromacs

for different memory buffer sizes. The blue share of each bar depicts the runtime of Gromacs excluding

memory buffer flushes and their influence. The light violet share equals the time actually spent in memory

buffer flushes while the dark violet share represents the time spent waiting for other locations to finish

their buffer flushes. Figure 5.16 shows that, first, the sum of time spent in memory buffer flushes is

fairly constant regardless of the buffer size. Second, the overhead caused by locations waiting for other

processes to finish their memory buffer flushes is slightly increasing with an increasing memory buffer

size (255 to 285 seconds). Third and most important, the overhead caused by memory buffer flushes is

about 64 times higher than the time actually spent in buffer flushes and is about 55 % of the total runtime.

100s

200s

300s

400s

500s

50MiB 100MiB 200MiB 500MiB 1GiB 2GiB

R
un

tim
e

Buffer Size

Runtime excl. buffer flushes
Time spent in buffer flushes
Overhead caused by buffer flushes

Figure 5.16: Overhead caused by uncoordinated intermediate buffer flushes.

Both, Figure 5.15 and 5.16 demonstrate the disruptive effect of uncoordinated memory buffer flushes. In

particular, Figure 5.15 highlights that all of the recorded behavior beyond the first initiated buffer flush

must be considered incorrect. For typical buffer sizes of 50 or 100 MiB this means that 99 % or 97 %,

respectively, of the entire application runtime must be considered incorrect. Therefore, the contributions

of this thesis to avoid intermediate buffer flushes provide a major improvement to accurately record the

behavior of long running applications.

5.4.3 In-memory Event Tracing for Long Application Runs

Tracing long application runs always requires adaptions to the recording procedure; otherwise the result-

ing data volumes bias the recorded application behavior, overstrain file system capacities and massively

slow down or even preclude subsequent analysis steps. This section evaluates to which extend the con-

tributions of this thesis can help not only to reduce the trace data size but to keep data within a single

fixed-size memory buffer to enable in-memory event tracing even for long-running applications.

As stated above, a trace-based analysis of the molecular dynamics package Gromacs is limited to only a

few of the up to 1 million iterations for real-life production runs. Recording only the first 50 iterations

already results in an average of about 700 MiB of data per location with a maximum amount of 1.4 GiB

per location. In the following, a memory buffer size of 100 MiB is taken as basis for the measurements

and estimations. Thus, given a memory buffer of a 100 MiB, a measurement using OTF2 could only

record the first three iterations until the first memory buffer is exhausted and, therefore, must be flushed

to the file system. By using OTFX, the prototype that includes the enhanced encoding techniques and

the Hierarchical Memory Buffer, the trace size is reduced to 400 MiB for the largest trace file. Still, this

would only allow the recording of the first 12 iterations within a 100 MiB memory buffer.

110 5. EVALUATION AND CASE STUDY

To further reduced the trace size, the event reduction strategies must be enabled. Figure 5.17 shows

that there is an enormous potential for the elimination of short-running function calls and a sufficient

distribution of events across the different call stack levels. While the call stack level reduction is usually

triggered automatically whenever the memory buffer is exhausted, for this study it is controlled manually

to reduce the stored calling depth to 7 and 6, which leads to a storage of about 40 % and 4 %, respectively.

0%

20%

40%

60%

80%

100%

0-100ns

100-200ns

200-500ns

500ns-1us

1-2us
2-5us

5-10us

10-20us

20-50us

50-100us

100-200us

200-500us

500us-1ms

>1ms

D
is

tri
bu

tio
n

of
 C

od
e

R
eg

io
ns

Duration Intervals

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R
eg

io
n

D
is

tri
bu

tio
n

(a
cc

um
ul

at
ed

)

Calling Depth

Figure 5.17: Distribution of code regions by time (left) and calling depth (right).

Table 5.8 presents the trace size reduction and the resulting estimated iterations that could be recorded

within a 100 MiB memory buffer. With enabled code region reduction that filters all function calls with

a duration shorter than 1µs the trace size is remarkably reduced to about 1.9 % of its original size.

By adding the calling depth reduction the trace size could be further reduced to 1.4 % and 0.1 % for a

reduction to a calling depth of 7 and 6, respectively.

Maximum data size Percentage Iterations

OTF2 1433 MiB 100 % 3
OTFX 398 MiB 27.8 % 12
Code region reduction 27.7 MiB 1.9 % 180
Reduction to calling depth 7 19.4 MiB 1.4 % 257
Reduction to calling depth 6 0.94 MiB 0.1 % 5321

Table 5.8: Trace sizes for different reduction strategies.

While the number of recordable iterations is remarkably increased from three iterations to over 5000

with enabled code region and calling depth reduction, it is still far from the target of 1 million iterations.

Although this already demonstrates the potential of the enhanced encoding techniques and the event

reduction strategies, standing by themselves it is not enough to support long-running applications. A

possibility to decrease the initial number of recorded events is a selection of only a few iterations; either

statically, e.g., record every 200th iteration or dynamically, e.g., record only representatives of iteration

classes as discusses in Section 3.2. An alternative is to exclude all code regions that would usually by

inlined by the compiler from being recorded at all. With the latter approach another measurement was

recorded with 10,000 iterations, which results in a trace size of 667 MiB at maximum.

Table 5.9 shows again the trace size reduction and the resulting estimated iterations that could be recorded

within a 100 MiB memory buffer. With enabled code region reduction the trace size is still remarkably

reduced to 3.2 % of its original size in spite of the fact that all inline functions are already excluded.

5.4. CASE STUDY: THE MOLECULAR DYNAMICS PACKAGE GROMACS 111

Adding calling depth reduction decreases the trace size further to 2.1 % and 1.2 % for a reduction to

a calling depth of 7 and 6, respectively. This allows the recording of about 120 thousand iterations,

which is still one order of magnitude below the target goal. By also enabling the event class reduction

that discards events from all event classes other than enter/leave events and an additional reduction to a

maximum calling depth of 5, the trace size could be reduced to 0.1 %. This way, it becomes possible to

reach the target and record over 1 million iterations.

Maximum data size Percentage Iterations

OTF2 667 MB 100 % 1500
OTFX 196 MB 29.4 % 5104
Code region reduction 21.2 MB 3.2 % 47,169
Reduction to calling depth 7 14.2 MB 2.1 % 70,422
Reduction to calling depth 6 8.25 MB 1.2 % 121,212
+ reduction of event classes 2.48 MB 0.4 % 403,225
Reduction to calling depth 5 0.97 MB 0.1 % 1,030,927

Table 5.9: Trace sizes for different reduction strategies with function inlining.

However, this tremendous trace size reduction of almost three orders of magnitude comes with a reduc-

tion of events stored within the trace (53 million to 214 thousand). This immediately raises the question

about the usefulness of the remaining events or the usability of the event reduction in general. It is ob-

vious, that the reduced trace cannot deliver the same level of detail as a complete trace; a reduced trace

is far more coarse. But can the remaining coarse trace still contribute to the two main targets of per-

formance analysis: better understand the application behavior and identify performance issues? Figures

5.18 and 5.19 present a screenshot of a visual performance analysis of Gromacs in the 10,000 iteration

version without and with reduction to calling depth five. The first figure shows an overview of the en-

tire application and the second includes a small section of approximately three iterations. Both show

a timeline view of the first twelve processes with the application behavior over time on the horizontal

axis and the processes on the vertical axis (top, left), a detailed call stack of process zero (bottom, left)

and a function summary listing the inclusive function time (right). The figures visualize the prominent

functions on calling depth five do_force and gmx_pme_do in yellow8 and blue, respectively, the rest of

the application functions in green and MPI communication in red.

What can be seen first hand in Figure 5.18 are three things: First, the remaining events of the reduced

version equal exactly the complete version, which is highlighted by the timeline view, as well as the

function summary. Second, any analysis option related to MPI communication is impossible, due to the

reduction of all event classes except enter/leave. Third, all functions with a calling depth higher than five

are not contained in the reduced trace resulting in a considerably lower detail, which can be seen in the

timeline view, as well as the process timeline of process zero.

Figure 5.19 unveils the lack of detail within each iteration, in particular, the missing communication.

However, the reduced trace clearly identifies the overall program behavior. It illustrates the function

decomposition within each group of four processes and the iterative blocks of the application. These two

characteristics are even highlighted more clearly because of the reduced number of function calls.

8For better visibility most nested functions of do_force (except MPI communication) are marked yellow, too.

112 5. EVALUATION AND CASE STUDY

Due to the maturity of Gromacs it does not contain any obvious performance issues. Nonetheless, per-

formance issues such as load imbalances that would manifest within the five remaining call stack levels

would still be visible. Inefficient communication patters, however, would not be visible.

Figure 5.18: Event trace visualization with Vampir without (top, white background) and with reduction
to calling depth five (bottom, blue background).

Figure 5.19: Event trace visualization with Vampir without (top, white background) and with reduction
to calling depth five (bottom, blue background) zoomed to approximately three iterations.

5.4. CASE STUDY: THE MOLECULAR DYNAMICS PACKAGE GROMACS 113

Applying an automatic analysis with Scalasca delivers similar results. Figures 5.20 and 5.21 depict a

screenshot of Cube with the results of an automatic analysis of Gromacs in the 10,000 iteration version

without and with reduction. While, again, all functions with a calling depth higher than five and all

communication events are missing in the reduced trace, the remaining events of the reduced version equal

exactly the unreduced version. The dominating functions in both groups of the function decomposition

do_force and gmx_pme_do are highlighted, as well as their runtime distribution in the system tree view.

Figure 5.20: Automatic analysis results of Scalasca in Cube without reduction.

Figure 5.21: Automatic analysis results of Scalasca in Cube with reduction to calling depth five.

114 5. EVALUATION AND CASE STUDY

This case study demonstrates, first, that uncoordinated intermediate memory buffer flushes can lead to a

drastic bias on the application leading to potential incorrect behavior after the first memory buffer flush

occurs. For long-running applications this bias renders most of the recorded application useless. Second,

the combined concepts including the enhanced encoding techniques, event reduction, and a new filter

based on function duration within the Hierarchical Memory Buffer remarkably reduce the resulting trace

up to three orders of magnitude and keep an entire measurement within a single fixed-size memory buffer,

while still providing a coarse but meaningful analysis of the application. Hence, they provide an essential

improvement to the event-based performance analysis, in particular, for long-running applications.

5.5 Summary

This chapter presents an evaluation of the enhanced encoding techniques and the Hierarchical Mem-

ory Buffer data structure. The first part of this chapter focuses on the enhanced encoding techniques and

shows the effects of each individual encoding technique as well as a comparison to other well-established

event trace formats. These encoding enhancements proof to be effective and reduce memory allocation

during runtime by a factor of 3.3 to 7.2 for the evaluated applications and application kernels while in

the same do not introduce any additional overhead on the tracing library. In fact, the overhead is slightly

reduced since less memory must be allocated. With these results the enhanced encoding techniques

outperform the memory efficiency of well-established general purpose compression libraries, which in-

troduce a five times higher overhead. In comparison to other event trace formats, the OTFX prototype

that contains all presented encoding techniques consumes about 91 % less memory than VampirTrace,

about 79 % less memory than OTF, about 71 % less memory than Epilog and about 70 % less memory

than OTF2. Therefore, the enhanced encoding techniques provide a remarkable improvement to existing

event trace formats.

The second part studies the Hierarchical Memory Buffer data structure, which uses a hierarchical layout

and a highly dynamic distribution of memory bins instead of a single flat continuous memory segment

like other event trace libraries. This novel design is specifically tailored to efficiently support event

reduction during runtime. For this purpose a size of 1 to 16 KiB for the individual memory bins provides

best results in terms of memory efficiency, as well as writing and event reduction overhead. With these

sizes the Hierarchical Memory Buffer consists of enough memory bins to utilize the given memory well

even for disadvantageous event distributions and provides enough memory bins to support applications

with many hierarchy partitions.

A study of the real-life application Gromacs uncoveres the drastic bias introduced by uncoordinated

intermediate buffer flushes and evaluates the capabilities of the event reduction techniques to avoid buffer

flushes by gradually reducing the amount of events stored in the Hierarchical Memory Buffer. The study

demonstrates that the enhanced encoding techniques combined with the event reduction presented in

this thesis can remarkably reduce the resulting trace size up to three orders of magnitude, while still

providing a coarse but meaningful analysis of the application. The combination of the new filtering by

code region duration, the enhanced encoding techniques, and event reduction allows an in-memory event

tracing workflow even for large real-life applications, such as Gromacs. Hence, they provide an essential

improvement to event-based performance analysis, in particular, for long-running applications.

115

6 Conclusion and Outlook

This chapter summarizes the contributions of the thesis and draws a conclusion. Furthermore, an outlook

on future work and the extension of the in-memory workflow to an entire online event tracing workflow

complete this thesis.

Summary and Conclusion
This thesis emphasizes the benefits of an in-memory workflow for event-based performance monitoring

and presented strategies to realize such a workflow.

After an introduction into the field of performance analysis and an overview of well-established perfor-

mance analysis tools and their approaches, the motivation for this thesis is formulated by three essential

challenges, yet unsolved in event-based performance analysis. First, the limits of parallel file systems in

the number of resulting trace files, second, the enormous data volumes generated by event tracing, and,

third, the measurement bias introduced by uncoordinated intermediate memory buffer flushes.

The first central part of this thesis presents three key steps to enable an in-memory event tracing work-

flow: selection and filtering, encoding and compression, and event reduction. It introduces new enhanced

encoding techniques and the novel approach of event reduction that dynamically adapts trace size during

runtime to the given memory allocation. The combination of both allows to keep the data of an entire

measurement within a single fixed-size memory buffer, which is the premise for an in-memory event

tracing workflow. Such an in-memory event tracing workflow meets all three motivating challenges by

not only overcoming the limitations of current parallel file systems but eliminating the overhead of file

system interaction altogether. In addition, the new enhanced encoding techniques and the novel event

reduction result in remarkably smaller trace sizes. In particular, the runtime event reduction is capa-

ble to keep the data within a memory buffer of any given size. Furthermore, the in-memory workflow

completely avoids intermediate memory buffer flushes and, therefore, minimizes measurement bias and

allows event tracing of long running applications, unfeasible with previous approaches.

The second central part introduces the Hierarchical Memory Buffer, a new event data representation that

uses a hierarchical layout and a highly dynamic distribution of memory bins instead of a single flat con-

tinuous memory segment like current event tracing libraries. It allows to perform the aforementioned

event reduction operations with minimal overhead. Furthermore, such a hierarchy-based event repre-

sentation supports new event selection and filter operations unfeasible with a traditional flat continuos

memory buffer layout. Such a new filter method is a filtering based on the duration of code regions, which

effectively eliminates all short-running functions while keeping outliers important for performance anal-

ysis. In addition, several common analysis requests, such as summaries or communication analysis, can

benefit from a hierarchy-aided traversal of recorded event data.

The subsequent evaluation demonstrates the effectiveness, as well as the efficiency of the enhanced

encoding techniques, the event reduction operations and the Hierarchical Memory Buffer data structure

in a prototype implementation called OTFX.

116 6. CONCLUSION AND OUTLOOK

The new enhanced encoding techniques prove to be effective and reduce memory allocation during run-

time by a factor of 3.3 to 7.2 for the evaluated real-life applications and application kernels, while at

the same time do not introduce any additional overhead on the tracing library. In fact, the overhead is

slightly reduced since less memory must be allocated. With these results the enhanced encoding tech-

niques outperform the memory efficiency of any existing event trace format and even well-established

general purpose compression libraries, which introduce a five times higher overhead.

On the basis of theoretical models, best, worst and average case behavior are determined for the memory

balancing of the Hierarchical Memory Buffer, as well as its support for the new event reduction strategies.

In addition, its main parameter, the size of the internal memory bins, is evaluated and found to be best

in a range of 1 - 16 KiB, which allows a good trade-off between memory efficiency and overhead. The

results of the theoretical models are confirmed with empirical data from a set of real-life applications and

application kernels. For the reviewed applications the Hierarchical Memory Buffer supports any event

reduction operation with any grade of reduction with a maximum overhead of 5.1 % of the total library

time, which equals a maximum of 0.05 % of the total measurement runtime.

Furthermore, a detailed case study of the molecular dynamics package Gromacs demonstrates that the

new enhanced encoding techniques combined with the event reduction strategies and the filtering based

on function duration can remarkably reduce the resulting trace size up to three orders of magnitude. This

allows to keep an entire measurement within a single fix-sized memory buffer, while still providing a

coarse but meaningful analysis of the application.

The enhanced encoding techniques and new event reduction strategies based on the Hierarchical Memory

Buffer provide an essential improvement to event-based performance analysis by remarkably reducing

the trace size during runtime while introducing minimal overhead. In addition, they allow a dynamic trace

size reduction during runtime to any given memory allocation, which enables a complete in-memory

event tracing workflow that meets three urgent challenges in event-based performance analysis.

Future Work

The presented enhanced encoding techniques, strategies for event reduction and the Hierarchical Memory

Buffer are components of the prototype implementation OTFX, which is designed as an in-memory

extension to the Open Trace Format 2. The goal is making this current prototype available to the tools

that use OTF2. Because of its particular purpose, OTFX is intended as an addition to OTF2; not to

replace it. Thus, to make the prototype available to tool developers, it is adapted with the full OTF2

user interface, so it can be engaged by simply linking the tool against OTFX instead of OTF2. This way,

all data is recorded with the OTFX prototype during runtime but can be stored in a regular OTF2 trace

archive, allowing any analysis tool that supports OTF2 to read it. In addition, to make OTFX attractive for

established tools, the current research prototype must be developed into a stable, portable, and product

quality implementation, as well.

A further step in this approach is a direct handover of the OTFX memory buffers to an analysis tool.

For that, existing coupling techniques restricted to profiling data can be reviewed for their applicability

for event tracing. These coupling techniques are an agent hierarchy based on TCP communication in

Periscope [BPG10] and MALP [BPJ13] that uses the capabilities of MPI [MPI12] to connect monitoring

components on multiple MPI applications to an MPI parallel analysis.

117

In addition, there are system specific approaches providing memory that is persistent across multiple

batch jobs. The IBM Blue Gene system allows to allocate such persistent memory pages via an envi-

ronment variable [IBM13]. Another trend are local non-volatile memory (NVRAM) and burst buffers

[LCC+12] in the form of local solid state disks (SSD), as planned for Summit, the next leading edge

HPC system at Oak Ridge National Laboratory [ORNL14]. Both, can be investigated for handing over

OTFX memory buffers between measurement and analysis.

Furthermore, the Hierarchical Memory Buffer allows to apply additional strategies for event reduction

or selective monitoring techniques that require hierarchical information. For this purpose the OTFX

prototype supports a rapid integration of additional strategies but currently requires manual adaptions to

the core implementation. For future development a designated plugin interface that allows transparent

access to the hierarchical information would provide an easier way to test and deploy new strategies.

Future Research
The subsequent step in future research is the extension of the in-memory workflow enabled by the con-

tribution of this thesis to an entire online event trace analysis workflow.

On future HPC systems targeting the exa-scale barrier monitoring and analysis need to become a fully

integrated online process. On the one hand, this development is driven by the impact of decreasing

memory-per-core ratio, limited I/O capabilities, and increasing core numbers of exa-scale systems on

performance monitoring. On the other hand, an online event-based performance analysis workflow al-

lows new use cases, most of which already extend tool applicability on current systems. Such use cases

include the inspection of an application over a long period of time, stops on predefined conditions, al-

tering the performance metrics to be recorded, and providing instant analysis options at any given point

during the measurement.

Within an online event tracing workflow entirely omitting the file system, its tasks in a traditional event

tracing workflow must be covered: coupling of measurement with analysis and the storage space for

large data volumes. The first, a direct coupling of measurement and analysis other than with files in a

post-mortem approach, requires a communication system to forward event information from application

threads to the locations that host event trace data, that allows data exchanges for actual event analysis,

and for communication with a user interface. Such a communication system must utilize scalable and

hierarchical layers and must well map the data output of the measurement and input to the analysis

to minimize data movement and conversion. The latter, storing large event traces in main memory, is

covered by the contributions of this thesis to enable an in-memory event tracing workflow, which is an

essential step towards an entire online event trace analysis workflow.

118 6. CONCLUSION AND OUTLOOK

119

Bibliography

[ABF+10] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N.R.

Tallent: HPCTOOLKIT: Tools for Performance Analysis of Optimized Parallel Programs.

In Concurrency and Computation: Practice & Experience – Scalable Tools for High-End

Computing 22(6), pages 685–701, 2010.

[AEH+11] Sadaf R. Alam, Hussein N. El-Harake, Kristopher Howard, Neil Stringfellow, and Fabio

Verzelloni: Parallel I/O and the metadata wall. In Proceedings of the sixth workshop on

Parallel Data Storage (PDSW ’11), pages 13–18, 2011.

[All14] Allinea: Allinea MAP.

http://www.allinea.com/products/map (last visited 07 Nov 2014).

[BBC+08] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Den- neau, P. Franzon,

W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas, M. Richards, A. Scarpelli,

S. Scott, A. Snavely, T. Sterling, R. S. Williams, K. Yelick, K. Bergman, S. Borkar, D.

Campbell, W. Carlson, W. Dally, M. Denneau, P. Franzon, W. Harrod, J. Hiller, S. Keckler,

D. Klein, P. Kogge, R. S. Williams, and K. Yelick: ExaScale Computing Study: Technology

Challenges in Achieving Exascale Systems. 2008.

[BGWA10] D. Böhme, M. Geimer, F. Wolf, L. Arnold: Identifying the root causes of wait states in

large-scale parallel applications. In Proceedings of the 39th International Conference on

Parallel Processing (ICPP), pages 90–100, 2010.

[BHJH10] Holger Brunst, Daniel Hackenberg, Guido Juckeland, and Heide Rohling: Comprehensive

Performance Tracking with Vampir 7. In Tools for High Performance Computing 2009,

pages 17–29, 2010.

[BLBS92] David H. Bailey, Leonardo Dagum, Eric Barszcz, and Horst D. Simon: NAS Parallel

Benchmark Results. In IEEE Parallel and Distributed Technology, 1992.

[BM07] A. R. Bernat and B. P. Miller: Incremental Call-path Profiling. In Concurrency and Com-

putation: Practice and Experience 19(11), pages 1533–1547, 2007.

[BM11] Andrew R. Bernat and Barton P. Miller: Anywhere, Any Time Binary Instrumentation.

ACM SIGPLAN-SIGSOFT workshop on Program Analysis for Software Tools and Engi-

neering (PASTE), 2011.

[BMSB03] Holger Brunst, Allen D. Malony, Sameer S. Shende, and Robert Bell: Online Remote

Trace Analysis of Parallel Applications on High Performance Clusters. In High Perfor-

mance Computing, LNCS 2858, pages 440–449, 2003.

120 Bibliography

[BNM03] Holger Brunst, Wolgang E. Nagel, and Allen D. Malony A Distributed Performance Anal-

ysis Architecture for Clusters. In Proceedings of IEEE International Conference on Cluster

Computing, pages 73–81, 2003.

[BN03] H. Brunst and W. E. Nagel: Scalable Performance Analysis of Parallel Systems: Concepts

and Experiences. In Parallel Computing: Software, Algorithms, Architectures Applica-

tions, pages 737–744, 2003.

[Boe14] David Böhme: Characterizing Load and Communication Imbalance in Parallel Applica-

tions. (Ph.D. thesis) In IAS Series 23, ISBN 978-3-89336-940-9, 2014.

[BPG10] S. Benedict, V. Petkov, and M. Gerndt: PERISCOPE: An Online-Based Distributed Perfor-

mance Analysis Tool. In Tools for High Performance Computing 2009, pages 1–16, 2010.

[BPJ13] J.-B. Besnard, M. Pérache, and W. Jalby: Event Streaming for Online Performance Mea-

surements Reduction. In Proceedings of the 42nd International Conference on Parallel Pro-

cessing, 2013.

[Bru08] Holger Brunst: Integrative Concepts for Scalable Distributed Performance Analysis and

Visualization of Parallel Programs., 2008.

[BS04] H.M. Blackburn, S.J. Sherwin: Formulation of a Galerkin Spectral Element Fourier

Method for Three-dimensional Incompressible Flows in Cylindrical Geometries. In Journal

of Computational Physics 197(2), pages 759–778, 2004.

[BSG+12] D. Böhme, B.R. de Supinski, M.Geimer, M.Schulz, F.Wolf: Scalable Critical-Path Based

Performance Analysis. In Proceedings of the 26th IEEE International Parallel & Distributed

Processing Symposium (IPDPS), pages 1330–1340, 2012.

[BSC10] Barcelona Supercomputing Center: Paraver Internals and Details.

http://www.bsc.es/computer-sciences/performance-tools/documentation

(last visited 13 Nov 2014)

[BSC14] Barcelona Supercomputing Center: Extrae User Guide Manual for Version 2.5.1.

http://www.bsc.es/computer-sciences/performance-tools/documentation

(last visited 13 Nov 2014)

[BWNH01] H. Brunst, M. Winkler, W. E. Nagel and H.-C. Hoppe: Performance Optimization for Large

Scale Computing: The Scalable VAMPIR Approach. In International Conference on Com-

putational Science (ICCS), pages 751–760, 2001.

[C11] Standard C Library Documentation. In ISO/IEC 9899:2011, 2011.

[CBL07] M. Casas, R. M. Badia, and J. Labarta: Automatic phase detection of MPI application.

In Proceedings of the Conference on Parallel Computing (ParCo), Advances in Parallel

Computing 15, IOS Press, pages 129–136, 2007.

Bibliography 121

[CEP01a] CEPBA (European Center for Parallelism of Barcelona): Paraver Version 3.0 Tracefile

Description.

http://www.bsc.es/computer-sciences/performance-tools/documentation

(last visited 13 Nov 2014)

[CEP01b] CEPBA (European Center for Parallelism of Barcelona): Paraver Version 3.1 Reference

Manual.

http://www.bsc.es/computer-sciences/performance-tools/documentation

(last visited 13 Nov 2014)

[CEP14] CEPBA (European Center for Parallelism of Barcelona): Introduction to Dimemas.

http://www.bsc.es/computer-sciences/performance-tools/documentation

(last visited 13 Nov 2014)

[CRE14] CRESTA: Collaborative Research into Exascale Systemware, Tools and Applications.

http://cresta-project.eu (last visited 29 July 2014)

[DG96] Peter Deutsch and Jean-Loup Gailly: ZLIB Compressed Data Format Specification Version

3.3. 1996.

[DKMN08] Jens Doleschal, Andreas Knüpfer, Matthias S. Müller, and Wolfgang E. Nagel: Internal

Timer Synchronization for Parallel Event Tracing. In Proceedings of the 15th European

PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Machine and

Message Passing Interface, pages 202–209, 2008.

[EWG+12] Dominic Eschweiler, Michael Wagner, Markus Geimer, Andreas Knüpfer, Wolfgang E.

Nagel, and Felix Wolf. Open Trace Format 2: The Next Generation of Scalable Trace

Formats and Support Libraries. In Applications, Tools and Techniques on the Road to

Exascale Computing, Advances in Parallel Computing 22, pages 481–490, 2012.

[FWP09] W. Frings, F. Wolf, and V. Petkov: Scalable Massively Parallel I/O to Task-Local Files. In

Proceedings of the Conference on High Performance Computing Networking, Storage and

Analysis, SC’09, ACM, pages 17:1—17:11, 2009.

[FWS10] K. Fuerlinger, N.J. Wright, and D. Skinner: Effective Performance Measurement at Petas-

cale Using IPM. In Proceedings of The Sixteenth IEEE International Conference on Paral-

lel and Distributed Systems, 2010.

[Gei13] Markus Geimer: The Scalasca Performance Analysis Toolset. Presentation at SEA Con-

ference’13, Boulder, USA, http://sea.ucar.edu/sites/default/files/Geimer_Scalasca.pdf (last

visited 25 Nov 2014)

[Ghe08] Sanjay Ghemawat: Documentation for the CPU profiler. Within the gperftools 2.2.90 pack-

age (last modified 2008).

http://google-perftools.googlecode.com (last download 07 Nov 2014)

[GG14] Google Google Performance Tools.

http://google-perftools.googlecode.com (last visited 07 Nov 2014)

122 Bibliography

[GKM82] S.L. Graham, P.B. Kessler, and M.K. Mckusick: Gprof: A Call Graph Execution Profiler.

In Proceedings of the 1982 SIGPLAN symposium on compiler construction, pages 120–

126, ACM 1982.

[GRO14] GROMACS Website.

http://www.gromacs.org (last visited 29 July 2014)

[GSS+12] Markus Geimer, Pavel Saviankou, Alexandre Strube, Zoltán Szebenyi, Felix Wolf, and

Brian J. N. Wylie: Further Improving the Scalability of the Scalasca Toolset. In Proceed-

ings of PARA 2010: State of the Art in Scientific and Parallel Computing, Part II: Min-

isymposium Scalable tools for High Performance Computing, pages 463–474, 2012.

[GWT14] GWT-TUD GmbH: Vampir 8 User Manual.

http://www.vampir.eu/tutorial/manual (last visited 12 Nov 2014)

[GWW+10] Markus Geimer, Felix Wolf, Brian J.N. Wylie, Erika Ábrahám, Daniel Becker, and Bernd

Mohr: The Scalasca Performance Toolset Architecture. In Concurrency and Computation:

Practice and Experience 22(6) pages 702–719, 2010.

[HKS08] Berk Hess, Carsten Kutzner, David van der Spoel, and Erik Lindahl: GROMACS 4: Algo-

rithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. In Journal

of Chemical Theory and Computation 4(3), pages 435–447, 2008.

[HMC94] J. K. Hollingsworth, B. P. Miller and J. Cargille: Dynamic Program Instrumentation for

Scalable Performance Tools. In Proceedings of Scalable High Performance Computing

Conference, 1994.

[HSL10] T. Hoefler, T. Schneider, and A. Lumsdaine: Characterizing the Influence of System Noise

on Large-Scale Applications by Simulation. In Proceedings of the 2010 ACM/IEEE Inter-

national Conference for High Performance Computing, Networking, Storage and Analysis,

pages 1–11, 2010.

[IBM13] IBM, International Technical Support Organization: IBM System Blue Gene Solution: Blue

Gene/Q Application Development. In IBM Redbooks,

http://www.ibm.com/redbooks (last visited 11 Dec 2014)

[Int14a] Intel Corporation: Intel VTune Amplifier 2015.

http://software.intel.com/en-us/intel-vtune-amplifier-xe (last visited 10 Nov 2014).

[Int14b] Intel Corporation: Intel R© Trace Analyzer Reference Manual.

http://software.intel.com/en-us/intel-software-technical-documentation

(last visited 11 Nov 2014)

[ISC+12] T. Ilsche, J. Schuchart, J. Cope, D. Kimpe, T. Jones, A. Knüpfer, K. Iskra, R. Ross, W.

E. Nagel, and S. Poole: Enabling Event Tracing at Leadership-Class Scale through I/O

Forwarding Middleware. In Proceedings of the 21th International Symposium on High

Performance Distributed Computing, HPDC’12, ACM, pages 49—60, 2012.

Bibliography 123

[Jai91] Raj Jain: The Art of Computer Systems Performance Analysis: Techniques for Experimen-

tal Design, Measurement, Simulation, and Modeling. Wiley-Interscience, New York, 1991.

[KBB+06] A. Knüpfer, R. Brendel, H. Brunst, H. Mix and W. E. Nagel: Introducing the Open Trace

Format (OTF). In 6th International Conference for Computational Science (ICCS), pages

526–533, 2006.

[KBD+08] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber, Holger

Mickler, Matthias S. Müller, and Wolfgang E. Nagel: The Vampir Performance Analysis

Tool Set. In Tools for High Performance Computing, pages 139–155, Springer, 2008.

[KN05a] Andreas Knüpfer and Wolfgang E. Nagel: Construction and Compression of Complete Call

Graphs for Post-Mortem Program Trace Analysis. In Proceedings of the 2005 International

Conference on Parallel Processing, pages 165–172, 2005.

[KN05b] Andreas Knüpfer and Wolfgang Nagel: New Algorithms for Performance Trace Analysis

Based on Compressed Complete Call Graphs. In Proceedings of the International Confer-

ence on Computational Science (ICCS), pages 7–36, 2005.

[KN06] Andreas Knüpfer and Wolfgang E. Nagel: Compressible Memory Data Structures for

Event-Based Trace Analysis. In Future Generation Computer Systems 22(3), pages 359–

368, 2006.

[Knu08] Andreas Knüpfer: Advanced Memory Data Structures for Scalable Event Trace Analysis.

(Ph.D. thesis), 2008.

[KRM+12] Andreas Knüpfer, Christian Rössel, Dieter an Mey, Scott Biersdorff, Kai Diethelm, Do-

minic Eschweiler, Markus Geimer, Michael Gerndt, Daniel Lorenz, Allen Malony, Wolf-

gang E. Nagel, Yury Oleynik, Peter Philippen, Pavel Saviankou, Dirk Schmidl, Sameer

Shende, Ronny Tschüter, Michael Wagner, Bert Wesarg, and Felix Wolf: Score-P: A Joint

Performance Measurement Run-Time Infrastructure for Periscope, Scalasca, TAU, and

Vampir. In Tools for High Performance Computing 2011, pages 79–91, Springer, 2012.

[LCC+12] Ning Liu, Jason Cope, Philip Carns, Christopher Carothers, Robert Ross, Gary Grider,

Adam Crume, and Carlos Maltzahn: On the role of burst buffers in leadership-class storage

systems. In Proceedings of the 2012 IEEE Conference on Massive Data Storage, 2012.

[LCM+00] K. A. Lindlan, J. Cuny, A. D. Malony, S. Shende, B. Mohr, R. Rivenburgh, C. Rasmussen:

A Tool Framework for Static and Dynamic Analysis of Object-Oriented Software with Tem-

plates. In Proceedings of SC2000: High Performance Networking and Computing Confer-

ence, 2000.

[LCS+11] G. Llort, M. Casas, H. Servat; K. Huck, J. Gimenez, J. Labarta: Trace Spectral Analysis

toward Dynamic Levels of Detail. In 17th International Conference on Parallel and Dis-

tributed Systems (ICPADS), pages 332–339, 2011.

124 Bibliography

[LDTW14] Daniel Lorenz, Robert Dietrich, Ronny Tschüter, and Felix Wolf: A Comparison between

OPARI2 and the OpenMP Tools Interface in the Context of Score-P. In Proceedings of the

10th International Workshop on OpenMP (IWOMP), pages 161–172, 2014.

[LGS+10] G. Llort, J. González, H. Servat, J. Giménez, and J. Labarta: On-line Detection of Large-

scale Parallel Application’s Structure. In 24th IEEE International Parallel and Distributed

Processing Symposium (IPDPS), 2010.

[LGW+12] Matthias Lieber, Verena Grützun, Ralf Wolke, Matthias S. Müller, and Wolfgang E. Nagel:

Highly Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-

SPECS+FD4. In Applied Parallel and Scientific Computing, LNCS 7133, pages 131–141,

Springer, 2012.

[MCA+14] John Mellor-Crummey, Laksono Adhianto, Mike Fagan, Mark Krentel, and Nathan Tallent:

HPCToolkit User’s Manual.

http://hpctoolkit.org/manual/HPCToolkit-users-manual.pdf (last visited 10 Nov 2014)

[MCC+95] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth, R.

Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall: The Para-

dyn Parallel Performance Measurement Tool. In IEEE Computer 28(11), Special issue on

performance evaluation tools for parallel and distributed computer systems, pages 37–46,

1995.

[MCLD01] S. Moore, D. Cronk, K. London, and J. Dongarra: Review of Performance Analysis Tools

for MPI Parallel Programs. In Recent Advances in Parallel Virtual Machine and Message

Passing Interface, 8th European PVM/MPI Users’ Group Meeting, LNCS 2131, pages

241–248, 2001.

[MDG+04] J. Michalakes, J. Dudhia, D. Gill, T.B. Henderson, J. Klemp, W. Skamarock, and W. Wang:

The Weather Research and Forecast Model: Software Architecture and Performance. In

11th ECMWF Workshop on the Use of High Performance Computing in Meteorology,

2004.

[MK09] K. Mohror and K. L. Karavanic: Evaluating Similarity-based Trace Reduction Techniques

for Scalable Performance Analysis. In Proceedings of the Conference on High Performance

Computing Networking, Storage and Analysis, SC ’09, pages 55:1—55:12, 2009.

[MKJ+07] Matthias S. Müller, Andreas Knüpfer, Matthias Jurenz, Matthias Lieber, Holger Brunst,

Hartmut Mix, and Wolfgang E. Nagel: Developing Scalable Applications with Vampir,

VampirServer and VampirTrace. In Advances in Parallel Computing 15: Parallel Comput-

ing: Architectures, Algorithms and Applications, pages 637–644, 2007.

[MLW11] J. Mußler, D. Lorenz, and F. Wolf: Reducing the Overhead of Direct Application Instru-

mentation Using Prior Static Analysis. In Proceedings of the 17th Euro-Par Conference,

LNCS 6852, pages 65–76, 2011.

Bibliography 125

[MML+11] Henry Markram, Karlheinz Meier,Thomas Lippert, Sten Grillner, Richard Frackowiak,

Stanislas Dehaene, Alois Knoll, Haim Sompolinsky, Kris Verstreken, Javier DeFelipe, Seth

Grant, Jean-Pierre Changeux, and Alois Saria: Introducing the Human Brain Project. In

Procedia Computer Science 7, pages 39–42, 2011.

[Moo65] Gordon E. Moore: Cramming More Components onto Integrated Circuits. In Electronics

38(8), pages 114–117, 1965.

[MPI12] Message Passing Interface Forum: MPI: A Message-Passing Interface Standard, Version

3.0. 2012.

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf (last visited 18 Nov 2014)

[MSM05] A. D. Malony, S. S. Shende, and A. Morris: Phase-Based Parallel Performance Profiling.

In Proceedings of the ParCo’05 conference, Parallel Computing: Current and Future Issues

of High-End Computing, 2005.

[MWL+07] Matthias S. Müller, Matthijs van Waveren, Ron Lieberman, Brian Whitney, Hideki Saito,

Kalyan Kumaran, John Baron, William C. Brantley, Chris Parrott, Tom Elken, Huiyu Feng,

Carl Ponder: SPEC MPI2007 – An Application Benchmark Suite for Parallel Systems Us-

ing MPI. In Concurrency and Computation: Practice and Experience 22(2), pages 191–205,

2010.

[NAW+96] W. E. Nagel, A. Arnold, M. Weber, H.-C. Hoppe, and K. Solchenbach: VAMPIR: Visual-

ization and Analysis of MPI Resources. In Supercomputer 1, pages 69–80, 1996.

[NMM+08] Aroon Nataraj, Allen D. Malony, Alan Morris, Dorian C. Arnold, and Barton P. Miller: A

Framework for Scalable, Parallel Performance Monitoring using TAU and MRNet. Inter-

national Workshop on Scalable Tools for High-End Computing (STHEC 2008), 2008.

[NRM+09] M. Noeth, P. Ratn, F. Mueller, M. Schulz, and B.R. de Supinski: ScalaTrace: Scalable

Compression and Replay of Communication Traces for High-performance Computing. In

Journal of Parallel and Distributed Computing 69(8), pages 696–710, 2009

[NRR97] O. Y. Nickolayev, P. C. Roth, D. A. Reed: Real-Time Statistical Clustering for Event Trace

Reduction. In the International Journal of Supercomputer Applications and High Perfor-

mance Computing 11(2), pages 144–159, 1997.

[ORNL14] Scott Jones: Oak Ridge to Acquire Next Generation Supercomputer.

https://www.olcf.ornl.gov/2014/11/14/oak-ridge-to-acquire-next-generation-

supercomputer (last visited 11 Dec 2014)

[OTF14] Open Trace Format 2 User Manual. 2014.

[Rei05] J. Reinders: VTune Performance Analyzer Essentials. Intel Press, 2005.

[SBS08] M. Schulz, G. Bronevetsky, and B. R. Supinski: On the Performance of Transparent MPI

Piggyback Messages. In Proceedings of the 15th European PVM/MPI Users’ Group Meet-

ing on Recent Advances in Parallel Virtual Machine and Message Passing Interface, pages

194–201, 2008.

126 Bibliography

[SDT14a] Scalasca Development Team Scalasca 2.1 | User Guide.

http://www.scalasca.org/software/scalasca-2.x/ (last visited 13 Nov 2014)

[SDT14b] Scalasca Development Team CUBE 4.2.3 – User Guide.

http://www.scalasca.org/software/cube-4.x/ (last visited 13 Nov 2014)

[SDT14c] Scalasca Development Team Scalasca 2.1 Performance Properties.

http://www.scalasca.org/software/scalasca-2.x/ (last visited 13 Nov 2014)

[SGM+08] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya, and

Scott Cranford: Open | SpeedShop: An Open Source Infrastructure for Parallel Perfor-

mance Analysis. In Scientific Programming 16(2), pages 105–121, 2008.

[SH02] F. Schmuck and R. Haskin: GPFS: A Shared-Disk File System for Large Computing Clus-

ters. In Proceedings of the First USENIX Conference on File and Storage Technologies,

pages 231—244, 2002.

[SILC09] SILC Project. http://www.vi-hps.org/projects/silc/ (last visited 12 Nov 2014)

[SM06] Sameer Shende and Allen D. Malony: The TAU Parallel Performance System. In Interna-

tional Journal of High Performance Computing Applications 20(2), pages 287–331, 2006.

[SLGL10] H. Servat, G. Llort, J. Giménez, J. Labarta: Detailed Performance Analysis Using Coarse

Grain Sampling. In Euro-Par 2009 - Parallel Processing Workshops, pages 185–198, 2010.

[SL11] Senthil Shanmugasundaram and Robert Lourdusamy: A Comparative Study of Text Com-

pression Algorithms. International Journal of Wisdom Based Computing 1(3), pages 68–

76, 2011.

[Sun08] Sun Microsystems, Inc.: Lustre File System – High-Performance Storage Architecture and

Scalable Cluster File System. 2008.

[SWW09] Zoltán Szebenyi, Felix Wolf, and Brian J.N. Wylie: Space-Efficient Time-Series Call-Path

Profiling of Parallel Applications. Proceedings of the ACM/IEEE Conference on Super-

computing (SC09), ACM, 2009.

[TAU12a] TAU User Guides. 2012.

http://www.cs.uoregon.edu/research/tau/docs.php (last visited 14 Nov 2014)

[TAU12b] TAU Reference Guide. 2012.

http://www.cs.uoregon.edu/research/tau/docs.php (last visited 14 Nov 2014)

[TMCF09] N. R. Tallent, J. Mellor-Crummey, and M. W. Fagan: Binary Analysis for Measurement and

Attribution of Program Performance. In PLDI ’09: Proceedings of the 2009 ACM SIG-

PLAN Conference on Programming Language Design and Implementation, pages 441–

452, 2009.

[Top14] Top500: Top 500 Supercomputer Sites – November 2014 list. http://www.top500.org/ (last

visited 25 Nov 2014)

Bibliography 127

[VM01] J.S. Vetter and M.O. McCracken: Statistical Scalability Analysis of Communication Op-

erations in Distributed Applications. In Proceeding of ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming (PPOPP), 2001.

[WBB12] Matthias Weber, Ronny Brendel, and Holger Brunst: Trace File Comparison with a Hi-

erarchical Sequence Alignment Algorithm. In Proceedings of the 2012 IEEE 10th Interna-

tional Symposium on Parallel and Distributed Processing with Applications, pages 247–

254, 2012.

[WDKN13] Michael Wagner, Jens Doleschal, Andreas Knüpfer, and Wolfgang E. Nagel: Runtime

Message Uniquification for Accurate Communication Analysis on Incomplete MPI Event

Traces. In Proceedings of the 20th European MPI Users’ Group Meeting (EuroMPI ’13),

pages 123–128, ACM 2013.

[WDKN14] Michael Wagner, Jens Doleschal, Andreas Knüpfer, and Wolfgang E. Nagel: Selective Run-

time Monitoring: Non-intrusive Elimination of High-frequency Functions. In Proceedings

of the International Conference on High Performance Computing & Simulation (HPCS),

pages 295–302, 2014.

[Wea14] M. Weaver: Linux perf_event Features and Overhead. In Proceedings of the 2013 FastPath

Workshop, 2013.

[WGM+10] Brian J. N. Wylie, Markus Geimer, Bernd Mohr, David Böhme, Zoltán Szebenyi, and Felix

Wolf: Large-scale Performance Analysis of Sweep3D with the Scalasca Toolset. In Parallel

Processing Letters, 20(4), pages 397—414, 2010.

[WHB14] Michael Wagner, Tobias Hilbrich, and Holger Brunst: Online Performance Analysis: An

Event-based Workflow Design Towards Exascale. In Proceedings of HPCC 2014, 2014.

[WKN12] Michael Wagner, Andreas Knüpfer, and Wolfgang E. Nagel: Enhanced Encoding Tech-

niques for the Open Trace Format 2. In Procedia Computer Science 9, pages 1979–1987,

2012.

[WKN13] Michael Wagner, Andreas Knüpfer, and Wolfgang E. Nagel: Hierarchical Memory Buffer-

ing Techniques for an In-Memory Event Tracing Extension to the Open Trace Format 2. In

Proceedings of the 42nd International Conference on Parallel Processing, pages 970–976,

2013.

[WM03] Felix Wolf and Bernd Mohr: KOJAK – A Tool Set for Automatic Performance Analysis

of Parallel Applications. In Proceedings of European Conference on Parallel Computing

(Euro-Par), LNCS 2790, pages 1301–1304, 2003.

[WM04] Felix Wolf and Bernd Mohr: EPILOG Binary Trace-Data Format. Technical Report FZJ-

ZAM-IB-2004-06, 2004.

[WMS+13] Matthias Weber, Kathryn Mohror, Martin Schulz, Bronis R. de Supinski, Holger Brunst,

and Wolfgang E. Nagel: Alignment-Based Metrics for Trace Comparison. In Euro-Par 2013

Parallel Processing, pages 29–40, 2013.

128 Bibliography

[WN13] Michael Wagner and Wolfgang E. Nagel: Strategies for Real-Time Event Reduction. In

Euro-Par 2012: Parallel Processing Workshops, LNCS 7640, pages 429–438, Springer

2013.

[ZIH14] Center for Information Services and High Performance Computing (ZIH): VampirTrace

5.14.4 User Manual. http://www.tu-dresden.de/zih/vampirtrace (last visited 12 Nov 2014)

[ZL77] Jacob Ziv and Abraham Lempel: A Universal Algorithm for Sequential Data Compression.

In IEEE Transactions on Information Theory 23(3), pages 337–343, 1977.

[ZLGS99] Omer Zaki, Ewing Lusk, William Gropp, Deborah Swider: Toward Scalable Performance

Visualization with Jumpshot. In International Journal of High Performance Computing Ap-

plications 13(3), pages 277–288, 1999.

List of Figures 129

List of Figures

2.1 Optimization cycle . 5

2.2 The three stages of performance analysis . 6

2.3 Static and dynamic load imbalance with timelines and profiles 8

2.4 Classification of performance analysis tools. 9

2.5 Vampir/VampirSever architecture . 11

2.6 Vampir global timeline . 13

2.7 Vampir process timeline . 13

2.8 Vampir function summary . 14

2.9 Vampir communication matrix . 14

2.10 Vampir custom display arrangement . 15

2.11 Vampir performance radar . 15

2.12 Paraver timeline view . 16

2.13 Paraver textual view . 17

2.14 Paraver statistics view . 17

2.15 Late sender/receiver pattern . 18

2.16 Cube display . 19

2.17 Cube display with system topology . 19

2.18 Paraprof function summary . 20

2.19 Paraprof 3D visualization . 20

2.20 Score-P tool architecture . 21

2.21 OTF2 archive layout . 23

2.22 Successive Compression in a CCG . 26

2.23 Bias on parallel behavior due to intermediate memory buffer flushes 29

3.1 Three steps for in-memory event tracing . 34

3.2 Basic memory representation of event records . 37

3.3 Memory representation of an exemplary event sequence 37

3.4 Splitting of timing information and event data for a generic event record 38

3.5 Splitting of timing information and event data for the exemplary sequence 38

3.6 Leading zero elimination for a generic event record . 39

3.7 Delta encoding for the exemplary event sequence . 39

3.8 Merging of token and number of remaining data bytes of the first attribute 40

3.9 Distribution of event classes by number of occurrences 41

3.10 Merging of token and number of remaining data bytes of the first attribute 41

3.11 Merging of token and region ID for enter events . 42

3.12 Number of different region IDs . 42

130 List of Figures

3.13 Average event rates of the reviewed applications and kernels. 43

3.14 Distribution of event classes by size of memory allocation 46

3.15 Correlation between cause and impact in a basic timeline visualization 47

3.16 Callstack distribution for selected applications . 48

3.17 Callstack distribution for all SPEC MPI 2007 and NAS Parallel Benchmarks applications 49

3.18 Duration distribution for selected applications and kernels 51

4.1 Event reduction with a flat continuous memory buffer 56

4.2 Flat partitioned event representation . 56

4.3 Event reduction with a hierarchical event representation 58

4.4 Illustration of a two-dimensional Hierarchical Memory Buffer data structure 61

4.5 Algorithms to alter the Hierarchical Memory Buffer . 62

4.6 Algorithm to assign memory bins . 62

4.7 Construction of the Hierarchical Memory Buffer (Part I) 63

4.7 Construction of the Hierarchical Memory Buffer (Part II) 64

4.8 Cyclic segmented buffer layout with Hierarchical Memory Sub-buffers 65

4.9 Algorithm to revoke all memory bins for a given event class and call stack level 66

4.10 Algorithm to reduce an complete event class . 66

4.11 Reduction by event class on the Hierarchical Memory Buffer 67

4.12 Algorithm to reduce deepest call stack level . 68

4.13 Reduction by calling depth on the Hierarchical Memory Buffer (Part I) 68

4.13 Reduction by calling depth on the Hierarchical Memory Buffer (Part II) 69

4.14 Algorithms to alter the Hierarchical Memory Buffer and skip short code regions 70

4.15 Algorithm to initialize the event queue . 72

4.16 Algorithm to read next event . 72

4.17 Algorithm to initialize event queue with additional hierarchy criterion 74

4.18 A communication pattern of three successive MPI send/receive calls 77

4.19 A communication pattern with missing MPI events . 78

4.20 A communication pattern with missing MPI events and new message matching 80

4.21 Distribution of samples based on powers of two . 82

5.1 Memory allocation for different encoding techniques 88

5.2 Average time error for different timer resolutions . 90

5.3 Memory allocation for different trace data formats . 91

5.4 Memory allocation for different trace data formats in detail 92

5.5 Runtime overhead for different trace data formats . 93

5.6 Number of events for different memory bin sizes (modeled) 95

5.7 Number of events for different memory bin sizes (32 MiB buffer) 96

5.8 Number of events for different memory bin sizes (different buffer sizes) 96

5.9 Runtime overhead for different memory bin sizes . 97

5.10 Runtime overhead for different memory bin sizes and buffer sizes 99

5.11 Runtime overhead for code region reduction . 100

5.12 Event trace visualization of code region reduction . 102

List of Figures 131

5.13 Time to read events depending on the maximum calling depth 103

5.14 Vampir screenshot displaying the distribution of buffer flushes 108

5.15 Vampir screenshot displaying the distribution of buffer flushes and MPI wait times . . . 108

5.16 Overhead caused by intermediate buffer flushes . 109

5.17 Distribution of code regions by time and calling depth 110

5.18 Event trace visualization of reduction to calling depth five 112

5.19 Event trace visualization of reduction to calling depth five (zoomed) 112

5.20 Automatic analysis results of Scalasca in Cube without reduction 113

5.21 Automatic analysis results of Scalasca in Cube with reduction 113

132 List of Figures

List of Tables 133

List of Tables

4.1 Complexity of basic operators for the time iterator . 73

5.1 Overview of evaluated applications and benchmarks . 86

5.2 Reduction of memory allocation for each encoding technique 88

5.3 Runtime overhead and memory allocation of OTF, OTF2, OTF2 with zlib, and OTFX . . 93

5.4 Average event trace sizes per process with and without code region reduction 101

5.5 Number of messages per message envelope and per location 105

5.6 Number of different message envelopes per location . 105

5.7 Additional memory requirements per location . 106

5.8 Trace sizes for different reduction strategies . 110

5.9 Trace sizes for different reduction strategies with function inlining 111

134 List of Tables

