
Structural Performance Comparison
of Parallel Software Applications

Dissertation

zur Erlangung des akademischen Grades
Doktor rerum naturalium

(Dr. rer. nat.)

vorgelegt an der
Technischen Universität Dresden

Fakultät Informatik

eingereicht von

Matthias Weber, M.Sc.
geboren am 8. April 1980 in Cottbus

Gutachter:
Prof. Dr. rer. nat. Wolfgang E. Nagel, Technische Universität Dresden
Prof. Dr. techn. habil. Dieter Kranzlmüller, Ludwig-Maximilians-Universität München

Tag der Einreichung: 30. August 2016
Tag der Verteidigung: 9. Dezember 2016

Acknowledgments

First and foremost, I want to thank Prof. Dr. Wolfgang E. Nagel for giving me the opportunity to work on
this subject and for his continuous support over the last years. Also, I would like to thank Prof. Dr. Dieter
Kranzlmüller for serving as the second reviewer.

Special thanks are due to Holger Brunst, Ronny Brendel, Kathryn Mohror, and Martin Schulz for their
valuable feedback, ideas, and encouragement. Their knowledge and tremendous support improved this
work a lot and helped me through the ups and downs of my dissertation work.

Furthermore, I am grateful to Tobias Hilbrich and Ronny Tschüter for their time and effort spent
reading my dissertation, and for providing valuable criticisms and suggestions that helped bringing this
dissertation into shape.

I also want to thank all of my colleagues and friends at the Center of Information Services and High
Performance Computing for a very nice and pleasant working atmosphere that simply made my life
better. It has always been fun to go to work over the last years.

Finally, very special thanks go to my beloved partner Claudia and to my mother Christina and brother
Bernd-Uwe for their unconditional long term support. If it weren’t for you, the road would have been
much more difficult.

iii

Abstract

With rising complexity of high performance computing systems and their parallel software, performance
analysis and optimization has become essential in the development of efficient applications. The compar-
ison of performance data is a key operation required in performance analysis. An analyst may conduct
different types of comparisons in order to understand the performance properties of an application. One
use case is comparing performance data from multiple measurements. Typical examples for such com-
parisons are before/after comparisons when applying optimizations or changing code versions. Besides
comparing performance between multiple runs, also comparing performance characteristics across the
parallel execution streams of an application is essential to detect performance problems. This is typ-
ically useful to detect imbalances, outliers, or changing runtime behavior during the execution of an
application. While such comparisons are straightforward for the aggregated data in performance pro-
files, only limited solutions exist for comparing event traces. Trace-based analysis, i.e., the collection
of fine-grained information on individual application events with timestamps and application context,
has proven to be a powerful technique. The detailed performance information included in event traces
make them very suitable for performance analysis. However, this level of detail also presents a challenge
because it implies a large and overwhelming amount of data. Currently, users need to perform manual
comparison of event traces, which is extremely challenging and time consuming because of the large
volume of detailed data and the need to correctly line up trace events.

To fill the gap of missing solutions for automatic comparison of event traces, this work proposes a
set of techniques that automatically align traces. The alignment allows their structural comparison and
the highlighting of differences between them. A set of novel metrics provide the user with an objective
measure of the differences between traces, both in terms of differences in the event stream and timing
differences across events.

An additional important aspect of trace-based analysis is the visualization of performance data in event
timelines. This has proven to be a powerful approach for the detection of various types of performance
problems. However, visualization of large numbers of event timelines quickly hits the limits of available
display resolution. Likewise, identifying performance problems is challenging in the large amount of vi-
sualized performance data. To alleviate these problems this work proposes two new approaches for event
timeline visualization. First, novel folding strategies for event timelines facilitate visual scalability and
provide powerful overviews of performance data at the same time. Second, this work presents an effec-
tive approach that automatically identifies and highlights several types of performance critical sections in
an application run. This approach identifies time dominant functions of an application and subsequently
uses them to analyze runtime imbalances throughout the application run. Intuitive visualizations present
the resulting runtime variations and guide the analyst to performance hot spots.

Evaluations with benchmarks and real-world applications assess all introduced techniques. The effec-
tiveness of the comparison approaches is demonstrated by showing automatically detected performance
issues and structural differences between different versions of applications and across parallel execu-
tion streams. Case studies showcase the capabilities of the event timeline visualization techniques by
demonstrating scalable performance data visualizations and detecting performance problems and code
inefficiencies in real-world applications.

v

Contents

Acknowledgments iii

Abstract v

1 Introduction 1
1.1 High Performance Computing . 1
1.2 Performance Analysis and Optimization . 3
1.3 Challenges for Performance Data Comparison . 5
1.4 Contributions . 7

1.4.1 Structural Comparison of Process Pairs . 7
1.4.2 Alignment-Based Comparison Metrics . 8
1.4.3 Structural Comparison of Multiple Processes 8
1.4.4 Visualization Techniques for Event Timelines 8

1.5 Organization of This Dissertation . 8

2 Background and Related Work 9
2.1 Measurement of Performance Data . 9
2.2 Performance Analysis Tools . 11
2.3 Analysis and Comparison Techniques . 14

2.3.1 Visual Event-Trace Comparison . 14
2.3.2 Measurement Management Support . 16
2.3.3 Similarity-Based Compression Techniques for Event-Traces 17
2.3.4 Automatic Analysis Techniques for Event-Traces 20

2.4 Limitations of Existing Techniques . 25

3 Methods for Structural Comparison of Process Pairs 29
3.1 Jitter in Timestamp Measurements . 29
3.2 Comparison of the Flat Function Call Structure . 30

3.2.1 Structural Differences between Pairs of Sequences 30
3.2.2 Sequence Alignment Algorithms . 30
3.2.3 Speedup of Special Alignment Cases . 40
3.2.4 Fast Alignment Heuristic . 41
3.2.5 Accuracy of Detection of Structural Differences 41

3.3 Accelerating the Alignment by Exploiting Hierarchy in Function Call Structures 42
3.3.1 Hierarchical Alignment Algorithm . 42
3.3.2 Scalability Considerations . 45

3.4 Differences between Flat and Hierarchical Comparisons 46
3.4.1 Alignment Errors Introduced by Hierarchical Approach 46
3.4.2 Comparison of Hierarchical and Flat Alignments 49

3.5 Evaluation . 52
3.5.1 Performance of Flat Alignment Algorithms . 53
3.5.2 Performance of the Hierarchical Alignment Algorithm 58
3.5.3 Accuracy of the Hierarchical Alignment Algorithm 61

vii

Contents

4 Alignment-Based Comparison Metrics for Processes 63
4.1 Similarity Metric . 63
4.2 Dissimilarity Timeline Metric . 64
4.3 Runtime Skew Timeline Metric . 65
4.4 Function Time Difference Table . 66
4.5 Case Studies . 66

4.5.1 NAS Parallel Benchmark BT . 67
4.5.2 AMG2006 . 68
4.5.3 ParaDiS . 70

5 Methods for Structural Comparison of Multiple Processes 73
5.1 Pre-Clustering Structurally Similar Processes . 73

5.1.1 Determining Similarity . 74
5.1.2 Grouping Structurally Similar Processes . 76

5.2 Alignment of Clustered Processes . 81
5.2.1 Multiple Sequence Alignment . 82
5.2.2 Hierarchical Alignment Algorithm for Multiple Processes 83

5.3 Performance Evaluation . 94
5.3.1 Performance of the Clustering Algorithms . 94
5.3.2 Performance of the Hierarchical Multiple Sequence Alignment Algorithm 97

6 Visualization Techniques for Event Timelines 101
6.1 Timeline Folding Methods . 101

6.1.1 Folding Operations . 102
6.1.2 Use Case Specific Folding . 103
6.1.3 Time Complexity and Scalability . 104
6.1.4 Case Studies . 104

6.2 Detection and Visualization of Runtime Imbalances . 109
6.2.1 Identification of Time Dominant Functions . 109
6.2.2 Analysis of Runtime Imbalances . 111
6.2.3 Visualization of Runtime Imbalances . 112
6.2.4 Case Studies . 112

7 Conclusions and Future Work 119

List of Figures 121

List of Tables 123

Bibliography 125

viii

1 Introduction

This work is centered in the field of High Performance Computing (HPC). Performance optimization of
parallel applications is critical in this field to efficiently use available HPC resources. The comparison
of performance data is an essential part of this optimization process. Especially the detailed structural
comparison of performance data is still very cumbersome and involves manual comparison and alignment
of related application sections. This work describes alignment-based solutions for automatic structural
comparison of performance data and thereby fills a gap of missing comparison functionalities.

After a short introduction to HPC and performance analysis, this chapter describes open challenges for
structural comparison of parallel applications, followed by a summary of the contributions of this work
and an overview of the subsequent chapters.

1.1 High Performance Computing

Computers are general purpose devices that can be programmed to execute selected arithmetical and logi-
cal operations. Early computers have been large machines filling entire rooms [42,119]. Those machines
were available to a limited group of people only, and performed specialized tasks. With rising capability
and gradual miniaturization computers have become omnipresent over the last decades. Today, comput-
ers are found in many devices surrounding us, such as mobile devices, home appliances, or cars. In the
majority of cases small embedded computers are used to carry out dedicated tasks. Also very common
are general purpose computers, found in laptops or workstations. Besides building small devices and gen-
eral purpose computers, humans always have been putting great effort into creating the most powerful
computers possible with currently available technology. Such machines, so-called supercomputers, still
fill entire rooms today. The computer itself along with the required supporting machinery for cooling,
power supply, etc. usually require a dedicated building. With the capability of executing large numbers
of operations as fast as possible, supercomputers are employed to solve complex and computationally
intensive problems. The field of high performance computing (HPC) refers to all activities related to
supercomputers, from the development of software to the design and construction of supercomputers. In
the last few decades, HPC has been a critical factor for achieving and preserving scientific and economic
competitiveness.

Main driver for HPC over the last 50 years has been an exponential increase in computational speed.
This growth, related with Moore’s Law [102], has been accompanied with a continuous increase of
memory and storage capacities. This enormous increase of available computing power has enabled
unprecedented advancements in science and engineering.

One example are simulations that try to model nature as accurately as possible. Over the years, sim-
ulations have become increasingly powerful and complex. Continuous improvements included higher
model resolution, longer simulation time, and incorporation of more sub-models. Figure 1.1 gives an
example showing the enhancements of climate simulations in the last decades.

Today, computational simulation is established as the third pillar of scientific methodology alongside
theory and experiment. Simulations of physical, biological, and chemical processes allow insight when
experiments are too expensive, dangerous, or infeasible. Famous examples of such simulations are the
computation of molecular interactions in stars or simulations of the earth’s climate covering time spans
of tens of thousands of years.

Besides improvements to existing applications, the growth of available computing power made new
application domains possible. Application fields such as computational genomics or bioinformatics had
been considered infeasible two decades ago. Nowadays, supercomputers are used to solve problems in

1

1 Introduction

Figure 1.1: History of horizontal resolution and complexity in climate models used for century scale
simulations. The image on the left depicts the increase of the horizontal resolution used in
climate models during the last decades. The image on the right lists the components of the
Earth system added to climate models during the last decades [80, 139].

various fields, including physical simulations, oil and gas reservoir exploration, molecular modeling, or
quantum mechanics. Moreover, scientists already anticipate steady improvements in compute capability
to generate scientific advancements.

To satisfy the need for more computing power, ever-more powerful machines have been developed.
As described by Moore’s Law the ever-shrinking cost of transistors combined with engineering advances
of the processor vendors resulted in an exponential performance improvement of microprocessors. First,
this performance improvement resulted directly in higher processing speeds of the microprocessors. On
the software side, this effect resulted in direct performance improvement by simply upgrading the hard-
ware. Then, in the beginning of the 21st century, physical limits inhibited further advancement of the
clock speeds. Since then, additional transistors (which are no longer exclusively used for performance
improvements of a single processor) have been used to build extra processors. This change resulted in an
ever-increasing amount of parallelism in supercomputers. Figure 1.2 shows an example of the increasing
parallelism using the last two supercomputers at the Lawrence Livermore National Laboratory (LLNL),
USA. In four and a half years the parallelism between both systems increased by a factor of 7.4. In ad-
dition to the rising parallelism, today’s supercomputers increasingly utilize hardware accelerators. The
system Tianhe-2 at the National Super Computer Center in Guangzhou, China—No. 1 on the TOP500
list from June 2013 to November 2015—is a hybrid system consisting of 32,000 Intel Xeon processors
and 48,000 Xeon Phi accelerators resulting in a total of 3,120,000 compute cores [131].

Increasing heterogeneity and parallelism result in rising complexity of HPC systems. Since almost all
computing power improvements of current supercomputers stem from increased parallelism, applications
need to exploit parallelism to achieve higher performance. However, the complexity of parallel programs
is much higher than the complexity of sequential programs. Due to the current trend of rising complexity
in both hardware and software, writing efficient parallel applications gets increasingly harder. Thus,
performance analysis is necessary to efficiently exploit HPC systems.

2

1.2 Performance Analysis and Optimization

IBM BlueGene/L – 212,992 cores
No. 1 on TOP500 list (November 2007)
Linpack Performance: 478.2 TFlop/s [131]

IBM BlueGene/Q – 1,572,864 cores
No. 1 on TOP500 list (June 2012)
Linpack Performance: 17,173.2 TFlop/s [131]

Figure 1.2: Comparison of the last two IBM BlueGene systems installed at Lawrence Livermore National
Laboratory (LLNL). Both systems reached No. 1 in the TOP500 list of the world’s fastest
supercomputers in November 2007 and June 2012, respectively. Compared to the four and
a half year older BlueGene/L system the current BlueGene/Q system provides substantially
increased parallelism and computing power [81].

1.2 Performance Analysis and Optimization

HPC systems provide a theoretical peak performance in terms of floating point rate. However, as the
name theoretical suggests, actual production codes achieve only a fraction of that performance in prac-
tice. Even highly optimized benchmark codes with considerable adaption for an individual system fall
short of achieving theoretical peak performance. The Linpack benchmark [30], widely used to measure
performance of HPC systems, primarily achieves only about 60%-85% of the theoretical peak perfor-
mance across top 10 systems [29, 131]. Real scientific applications usually achieve less sustained per-
formance. For instance, highly optimized applications, nominated for the Gordon Bell Prize—an award
presented yearly for outstanding achievements in HPC applications—achieve only 55%1 or 26%2 of the
theoretical peak performance. Yet, for the majority of scientific applications their fractions are even
below these numbers.

The performance optimization goal is to achieve as much of the theoretical peak performance as pos-
sible. However, this is no trivial task. The first viable part is to design and implement computationally
efficient code, e.g., by choosing the best performing algorithm for a given problem. The second viable
part to increase efficiency is to adapt the software to the particular hardware. Yet, modern computing
systems are very complex, due to the addition of numerous performance optimization techniques. Cur-
rent systems may include complex memory access behavior via multi-level caches, pipelined instruction
execution (including complex dependencies), branch prediction, speculative execution, and parallel exe-
cution features. All of these concepts provide considerable performance gains. However, failing to fully
utilize any one of these concepts will result in loss of a noticeable fraction of the theoretical peak per-
formance. Additionally, HPC machines are usually individual systems that require individual adaption
strategies. The top HPC systems are replaced every three to five years with new systems, that may exhibit
significant architectural differences. Thus, performance optimization of parallel software is a continuous
and challenging task.

HPC systems exhibit a high degree of parallelism. Applications need to exploit that parallelism to fully
utilize available resources. Therefore, the calculated problem is split up into sub-tasks (parallelization)

111 PFLOP/s Simulations of Cloud Cavitation Collapse on the IBM Blue Gene/Q system Sequoia [120].
2Radiative Signatures of the Relativistic Kelvin-Helmholtz Instability on the Cray XK7 system Titan [21].

3

1 Introduction

that are distributed across the available processing cores of the parallel machine. The speedup S then
describes the relative performance improvement. In theory, the ideal parallelization of an application
would result in a linear speedup, i.e., an application divided into ten parts computed in parallel on ten
compute cores should run ten times faster than its sequential version on one core. However, due to
synchronization and data dependencies, it might not be possible to parallelize all parts of an application.
For instance, a simulation may first need to load input data before it can start with parallel calculations,
or some calculations may require results of other calculations. In such cases, according to Amdahl’s
Law [5], the sequential fraction of the application limits the maximal possible speedup. An alternative
approach, suggested by Gustafson [50], to measure parallel performance improvement, is to increase
the problem size along with rising compute core counts. An application version computing a problem
twice the size than the initial version, on twice as many processors should still require the same runtime
as the initial version. However, applications rarely achieve ideal speedups. Usually, with rising process
counts and problem sizes, the relative performance improvement decreases. Consequently, the scalability
of an application describes in general how well it can exploit parallelism to reduce its runtime and
to compute larger problem sizes. Efficient parallelization of codes is no trivial task. The degree of
scalability for an application highly depends on the possibilities of partitioning the underling problem. In
the easiest case, the problem can be split up into many independent sub-tasks. In practice, HPC systems
often solve problems that can only be separated into sub-tasks that depend on each other. For instance
in climate simulations the simulated area is split up into small blocks. Each processor calculates the
climate in its block. For the calculation of its block each processor additionally needs the results from
the neighboring blocks. The dependence between sub-tasks introduces the need for communication.
This dependence also requires synchronization between sub-tasks. Ideally, the problem is split up into
completely equal sub-tasks. In practice, this is rarely possible. Using the example of a climate simulation:
Even if the block sizes are completely similar, the individual workload also depends on the simulated
weather conditions inside the block. As a result, some processes (calculating “faster” blocks) will need
to wait for the result of other processes (calculating “slower” blocks) before they can continue with their
computations. Consequently, communication and synchronization can severely limit scalability and thus
reduce application efficiency.

To evaluate how good an application is adapted to the available hardware and how efficient the par-
allelization is implemented, performance analysis is necessary. Yet, to assess the performance of an
application and to identify performance problems, it is not sufficient to merely measure the application’s
execution time. Application runtime alone reveals only few details about the complex execution behavior
of parallel applications. Performance problems can have multiple causes that may be related to sequential
and parallel behavior of arithmetic operations, memory accesses, I/O, communication, synchronization,
and load balancing. Users require detailed insight into the application runtime behavior to reasonably
evaluate the application’s performance. However, the complexity of many HPC applications renders a
manual analysis cumbersome at best. For instance some HPC applications, like Trinity [55, 136] (a tool
for de novo reconstruction of transcriptomes from RNA sequencing data), consist of a set of linked inde-
pendent software components. Each component represents an own application itself. Results are passed
from one component to the next. It is not unusual that components programmed in different programming
languages or using different parallelization paradigms are linked together. The components in Trinity are
programmed using C++, Java, or Python. The code connecting all components of Trinity is written in
Perl. To evaluate the performance of such applications, analysts first need to find a way to measure how
individual components contribute to the overall application runtime. Ideally, analysts need to assess more
parameters, like the effectiveness of the parallelization and the memory consumption of each component.
Then, after this initial analysis, promising components for performance analysis can be chosen. Only af-
ter this step starts the actual search for performance bottlenecks of individual components. Then, after
performance problems are detected and fixed, the optimized component’s performance and the complete
application’s performance need to be compared to the performance of the initial application version.
Manually conducting and analyzing these numerous measurements is challenging and time consuming.

4

1.3 Challenges for Performance Data Comparison

Performance data

Performance data

Perform changesAnalyze performance
impact of changes

Application run: n

Application run: n+1

Figure 1.3: Performance optimization is a repeating process.

Therefore analysts rely on performance analysis tools to support and alleviate their work. These tools
manage measurements throughout the application’s execution and visualize the recorded data in profile
and timeline charts. Profiles provide a statistical overview of performance critical parts of an application.
Timeline visualizations allow insight into dynamic runtime behavior. Analysis of this performance data
allows users to evaluate individual application executions and to find potential code sections for optimiza-
tions. Moreover, detailed performance data of an application run allows to detect complex performance
issues and to identify causes of insufficient performance. Typical HPC applications do not pose the prob-
lem of comprehensively analyzing multiple linked components. They usually consist of only a single
binary that is executed with a high degree of parallelism. When optimizing such applications, the user
needs to analyze the behavior of hundreds of thousands of processes [37, 150, 151]. Manually conduct-
ing and analyzing measurements for such applications is not feasible anymore. Analysts require tools to
manage and process large-scale measurements. In fact, it is challenging for performance analysis tools
also, to keep up with the scale of applications and still produce meaningful results [150]. The amount
of measurement data increases along with application scale. In order to support large scale applications,
analysis tools need to improve and adapt their underlying technology [78]. To provide meaningful vi-
sualizations of large data sets, tools cannot afford to simply visualize everything, but need to focus on
relevant information [91].

1.3 Challenges for Performance Data Comparison

Performance optimization is usually an iterative process. As depicted in Figure 1.3 users first start with an
initial measurement as a baseline for comparison. Then, they try to find and optimize inefficient parts of
an application and conduct a new measurement. A comparison of the two measurements shows the effect
of the optimization. Depending on the result of the comparison, the user may choose to change or add
new optimizations and conduct new performance measurements for further comparisons. Without such
comparisons, it is challenging to evaluate the performance impact of applied changes. Consequently,
comparison of performance data is a key operation in performance analysis. Scenarios for comparisons
include:

• Before/after comparisons when applying optimizations or changing code versions,

• Comparisons of runs on different platforms to study performance portability, and

• Contrasting the performance of different processes to study load balance or synchronization delays.

Performance data is usually stored in form of profiles or traces. Profiles aggregate data during col-
lection and provide an overview of the performance of an application. In principle, profiles consist of a
list of numbers. Each number describes the performance of a specific part of the application, typically
a function. This renders the comparison of profiles rather straightforward as related numbers can be
compared directly. Numerous tools already support the comparison of profiles [63, 124].

5

1 Introduction

Figure 1.4: Manual visual comparison of two processes. The two timelines contrast a run of the default
version (top) with an optimized version (bottom) of an application.

A trace is a sequential record of application behavior. Each application activity, e.g. entering or leaving
a function, or sending a message from one process to another, is stored as time-stamped events. Traces
allow in-depth insight into the performance behavior of an application. They are especially useful for
detecting root causes of performance problems with temporal components. However, the comparison
of traces is a challenging task due to the possibly large amount of complex performance data recorded.
Figure 1.4 gives an example for this situation. The figure shows two timelines. Each timeline visualizes
the trace data recorded on one process (the execution stream running on one compute core) of a parallel
application. The top timeline shows a run of the initial version of the application. The bottom timeline
shows a run of the optimized version of the application. Each timeline consists of multiple horizontal
bars labeled with numbers on the left side. The numbers show the call level of the respective horizontal
bar. The colors represent executed functions on the process. Red colors relate to MPI [103] functions (a
library providing functionality for communication and synchronization between processes), while green
colors relate to functions of the application code. When visually comparing both timelines, it is obvious
that the optimized version runs faster than the initial version. The bottom timeline is shorter than the
top timeline, thus the optimized version of the application finishes earlier. However, detailed structural
differences or performance differences throughout the application run are not immediately visible. To
see details, the analyst needs to manually compare both timelines. As the bottom timeline is shorter than
the top timeline, related application areas do not appear above each other. For a detailed comparison,
the analyst needs to manually align the timelines in order to compare related events. However, manual
comparison is extremely challenging due to the large number of events and the need to correctly line up
trace events. This renders this task cumbersome and error-prone. Analysts require automatic support for
event-wise trace comparison. This dissertation helps to improve this situation by providing automatic
alignment-based comparison methods for trace data.

A similar situation arises when comparing multiple processes of a parallel application. Figure 1.5
demonstrates such a comparison case. The figure shows 63 timelines, representing individual application
processes. The colors in the timelines represent different functions invoked on the processes. Visible are
eight iterations, separated by red vertical blocks. The application invokes MPI calls for communication
and synchronization in that area. Each process executes several different functions during its iterations,
as the colors between the red areas suggest. Judging if all processes execute the same sequence of
functions in their iterations is a tedious task when relying on manual analysis alone. Clearly visible

6

1.4 Contributions

Figure 1.5: Manual visual comparison of multiple processes of one application run.

is that the first process executes different functions than the other processes. But exactly quantifying
other differences between processes is time consuming and error-prone. An additional difficulty pose
time-shifts and different function durations between the processes, that cause related functions to appear
at different horizontal positions between processes. Correctly performing such an analysis manually for
larger process counts is almost impossible. To alleviate this task, this work introduces methods that allow
an automatic structural comparison of multiple processes.

1.4 Contributions

The comparison of the structure of processes currently needs to be performed manually. Users have to
align related events by hand and are required to compare large numbers of events. This work introduces
methods that alleviate this cumbersome task for users. Automatic analysis methods allow fast structural
comparisons of processes and build the basis for subsequent detailed performance comparisons between
processes. This work provides missing functionalities for the task of comparing performance data and
additionally introduces novel approaches for the visualization of event timelines. The following contri-
butions are made.

1.4.1 Structural Comparison of Process Pairs

This work introduces a method to compare the event streams of two processes [140]. Based on algo-
rithms from bioinformatics a fast hierarchical sequence alignment algorithm is developed. The novel
hierarchical algorithm exploits the function call structure of a process to speed up the required alignment
time. With this performance improvement, the alignment, and thus, structural comparison of processes
becomes feasible. The introduced hierarchical sequence alignment algorithm allows a detailed detection
of equal and differing areas between two processes.

7

1 Introduction

1.4.2 Alignment-Based Comparison Metrics

Based on the novel hierarchical alignment algorithm, new comparison metrics are introduced [144,145].
These metrics include a definition of the structural similarity between two event streams and provide fine-
grained insight into structural and temporal differences between two processes. A case study, applying
the alignment-based metrics for the comparison of different versions of several applications, demon-
strates their potential for the comparison of parallel applications. The metrics exposed differences that
otherwise would have been hard or even impossible to find.

1.4.3 Structural Comparison of Multiple Processes

A new scalable clustering approach enables grouping of large numbers of processes according to their
structure [141]. This novel grouping approach for processes has linear time complexity and results in a
low number of clusters for many application types. The method is designed as a pre-clustering step for
subsequent detailed analysis techniques.

A novel hierarchical multiple sequence alignment algorithm that is capable of aligning large num-
bers of processes is introduced. Using the pre-clustering result, the algorithm compares processes of
one cluster in detail and thereby identifies structural differences and similarities. Key components pro-
viding the algorithm speed are the hierarchical approach and a new heuristic that evaluates structural
similarity between processes. The algorithm computes a compact data structure, a so-called merged call
tree, that combines the structural information of all compared processes and provides rich potential for
performance analysis.

1.4.4 Visualization Techniques for Event Timelines

New visualization methods for the analysis and comparison of event timelines are introduced. By
applying different folding strategies for timelines, scalable visualizations that facilitate easy detection
of performance problems and provide condensed overviews of the performance behavior are demon-
strated [142].

Additionally, this work introduces an analysis approach based on performance variations [143]. The
approach automatically identifies and highlights performance critical sections. The visualization of per-
formance variations is applicable to guide analysts in the task of identifying performance bottlenecks.

1.5 Organization of This Dissertation

Chapter 2 explains the theoretical background of this work and describes related work. It identifies
missing functionalities for the comparison of performance data. Chapter 3 provides solutions for the
pairwise structural comparison of two processes. Event streams of two processes are compared using
alignment techniques. Chapter 4 introduces performance metrics based on the pairwise alignment tech-
niques described in Chapter 3. The effectiveness of introduced metrics for the comparison of processes is
demonstrated in a case study with two applications and one benchmark. Chapter 5 provides approaches
for the structural comparison of multiple processes. In a first step, processes are clustered based on their
structural information. Then, for detailed comparison, processes of a cluster are aligned using multiple
sequence alignment methods. Chapter 6 introduces novel techniques for the scalable visualization of
performance data and automatic highlighting of performance hot spots. Chapter 7 summarizes this work
and shows possible directions for further developments.

8

2 Background and Related Work

Performance analysis of software is getting increasingly important. This is especially true for the field
of high performance computing (HPC). Rising complexity of both hardware and software requires per-
formance analysis and optimization for the efficient exploitation of current high-end systems. Inefficient
applications may waste valuable resources or may only provide reduced capacity due to performance
bottlenecks. Consequently, considerable effort is put into performance analysis technology.

This chapter introduces fundamental concepts and tools for performance analysis. It discusses tech-
niques related to performance data comparison and puts a special focus on automatic analysis and com-
pression methods for trace data. It concludes with an analysis of discussed techniques in regard to trace
file comparison and lists missing functionality required for a comprehensive comparison of parallel ap-
plications.

2.1 Measurement of Performance Data

This section introduces fundamental techniques for the measurement of performance data and discusses
trade-offs associated with them.

The performance analysis of an application requires measurements at application runtime. For accu-
rate time measurement systems provide hardware support by high-resolution timers offering precision in
the microsecond or nanosecond range. Besides timers, most systems also provide additional hardware
performance counters. Such counters may count events like floating point operations, cache misses,
instructions, or branch mispredictions.

In order to use hardware counters for measurements, instructions need to be inserted into the applica-
tion’s control flow. This modification can be implemented in several ways.

The first major method to acquire performance data is called instrumentation. Instrumentation tech-
niques insert measurement instructions directly into the control flow of an application itself. That way
the instructions will be performed in the course of the application’s execution. Such inserted instructions
may measure time intervals using high-resolution timers or collect values from hardware counters. There
are three common techniques used to implement this method of performance data acquisition.

• Source code instrumentation adds measurement instructions to the source code of an applica-
tion. In this way measurement routines are compiled together with the original application code.
Usually, this is the first approach used by programmers to debug an application or to produce per-
formance measurements by manually adding instructions to print data or timings to the screen.
For the instrumentation of larger code projects, tools that automatically insert measurement in-
structions into the source code may be used.

The disadvantage of source code instrumentation is that included measurement instructions are
always executed. In order to dynamically enable and disable individual measurements, guard
statements need to be placed around measurement instructions. Consequently, even disabled mea-
surements will cause some perturbation during the application execution.

• Binary instrumentation adds measurement instructions directly into the application’s object code.
This saves recompilation of the application. During runtime instructions for measurement are ex-
ecuted along with application instructions. Typically, measurement instructions are inserted into
an application’s object code by the usage of so-called trampoline functions. A trampoline function
is an unconditional jump that transfers control to the measurement code that itself performs the
actual measurement and returns control back to the application.

9

2 Background and Related Work

Instrumentation:

Sampling:

t

Figure 2.1: Sampling and instrumentation. Both methods differ primarily in the way the measurements
are triggered. Colored timelines indicate a series of executed functions. Black arrows below
the timelines indicate measurements. In case of sampling, measurements are triggered at
periodic time intervals. In case of instrumentation, measurement instructions are embedded
into an application’s control flow and triggered at function begin and end points.

An advantage of binary instrumentation is that filtered/disabled measurement instructions can be
dynamically removed from the object code. Thus, filtered measurements do not induce overhead
as they are never executed.

• Link-level instrumentation uses the linker to insert measurement instructions into an applica-
tion’s control flow. If an application uses libraries, its calls to these libraries are resolved by the
linker. When using link-level instrumentation, a wrapper library that implements wrappers for
function calls of the target library is linked together with the application. Calls to the target library
will first resolve to measurement routines in the wrapper library and then pass on to the target
library.

For statically linked libraries re-linking of the application is necessary. With dynamically linked
libraries, it may be possible to load the wrapper library at the application launch, e.g., via the
LD_PRELOAD environment variable in Linux.

The second method of performance data acquisition is called sampling. Sampling issues measurement
instructions asynchronously. Measurement instructions are not embedded into an application’s control
flow but triggered at periodic time intervals. For this purpose most operating systems provide interrupt
handlers that interrupt an application’s execution at a regular time interval. At each interrupt samples
describing where an application spends its time or what resource it uses are taken. Sampling does not
require any re-compiling or re-linking and can be directly used with the unmodified application binary.

Besides the different implementation approaches, both methods differ primarily in the way the mea-
surements are triggered. Figure 2.1 depicts the difference between sampling and instrumentation. This
difference induces inherent advantages and disadvantages for each method. Instrumentation measures
all events as they occur in runtime, since measurement instructions are embedded directly into an appli-
cation’s control flow. An instrumented function is guaranteed to be observed each time it is executed.
This ensures a complete coverage. With sampling, as measurements are triggered at asynchronous time
points, there is no such guarantee.

In case of instrumentation the amount of measurement overhead depends on the specific application
and on how often instrumentation code is executed. The instrumentation of frequently called, short run-
ning functions can induce a high perturbation to an application. Typically, individual functions causing
a high measurement overhead need to be filtered. Depending on the method of instrumentation, even
filtered functions may cause measurement overhead. In case of sampling the measurement overhead is
controlled by the sampling rate. A fixed sampling rate allows to exactly estimate the overhead prior to
the measurement. The chosen sampling rate is a trade-off between overhead and sampling error. If the
sampling rate is too low, infrequent or short events can escape observation. If the sampling rate is too
high, an application can be perturbed severely.

10

2.2 Performance Analysis Tools

Timeline

Profile Data

t

Execution Time FractionsExecution Time per Function

t

Trace Data

Figure 2.2: Profile and trace data representations. A colored timeline at the bottom indicates a series
of executed functions. Trace data allows the complete reconstruction of an application’s
execution. A typical timeline generated from trace data, indicated at the bottom, displays
the complete execution. Profile data aggregates information and provides statistics about an
application’s execution. Indicated at the top, profile displays present function statistics of the
application run indicated at the bottom.

Recorded measurement data is typically stored employing a profile or a trace data format. Figure 2.2
depicts typical performance data representations generated from profile and trace data respectively. Pro-
files are an aggregated record of an application’s behavior. Due to the data aggregation this approach
is scalable. However, the data aggregation also limits the analysis potential of this technique. Perfor-
mance problems occurring dynamically might not be visible in profile performance data. Profiles are
typically used for an overview or a first analysis of an application’s performance characteristics. A trace
is a record of an application’s behavior as a series of events, such as function entry and exit, or message
passing. Each event consists of a time-stamp along with relevant data, e.g., function name, or bytes of
data transmitted. The detailed information included in traces make them very suitable for detection of
many performance problems on HPC systems, e.g., the causes of synchronization delays. However, the
level of detail also presents a challenge because it implies a large amount of data from a single run, even
exceeding hundreds of megabytes for a single process [97]. A common approach to cope with large trace
sizes is to use filtering mechanisms to exclude irrelevant information.

2.2 Performance Analysis Tools

Performance optimization is required to fully exploit available hardware and for the design of efficient
code. Often the first step in understanding an application’s performance behavior is to manually instru-
ment some parts of the application with available timer calls, like gettimeofday on Linux systems,
and print the results to the screen. The drawback is that this method only measures user selected code
sections and provides no overview of the complete application’s performance characteristics. This man-
ual approach is prone to miss important performance information. Also, manual instrumentation tends
to be cumbersome, especially with rising code complexity. When analyzing parallel software the man-
ual approach becomes even more involved and the results are harder to analyze. To assist the analyst
in this cumbersome task a large number of performance analysis tools have been developed. The tools
automate the measurement process, using one or a combination of the above described performance data

11

2 Background and Related Work

Figure 2.3: Example of a flat profile generated by gprof [33]. The table is ordered by the percentage
of the total execution time spent in individual functions. The profile provides additional
information about the time spent in respective functions and their number of invocations.

acquisition methods, and provide convenient representations of the performance data. Depending on the
employed measurement technology and the corresponding performance data representation these tools
divide into two major groups.

Profilers The best-known group of performance analysis tools consists of profilers. A large number
of profiling tools are available and basic profilers are often pre-installed on most operating systems. One
example of a common profiler is gprof [33, 47]. gprof is distributed along with Linux/Unix systems.
The key characteristic of a profiler is the aggregation of the measured performance data. This data
aggregation results in a profile, hence the name profiler, providing an overview of the performance
characteristics of the measurement run. Looking at a performance profile the developer can quickly
identify performance critical parts during an application’s run. For instance a profile may list the most
time consuming functions that thereby present good candidates for performance optimization. Typical
representations of a performance profile use bar or pie charts as well as tables, see Figures 2.2 and 2.3.

Figure 2.3 depicts an example of a flat performance profile represented in a table view. A flat profile
typically presents average times and frequencies of functions measured during an application run, ignor-
ing the caller-callee relationship of functions. In addition to flat profiles most tools, e.g., gprof [33, 47],
Intel VTune Amplifier [64] or AMD CodeXL [4], also support call-graph profiles. A call-graph profile
presents average times and frequencies of functions broken down by the call-graph based on the callee.

Profilers use sampling or instrumentation techniques to measure performance data. Like in case
of gprof, also hybrid approaches of sampling and instrumentation are employed. Depending on the
measurement system profilers may also be able to aggregate performance data from multiple execution
streams. This data aggregation provides a scalable method for performance data storage and presentation.
Consequently, a range of profilers focusing on the analysis of multiple processes has been developed in
the field of parallel computing. These parallel profiles also employ sampling as well as instrumenta-
tion techniques. Examples of parallel profilers using sampling are Allinea MAP [2], HPCView [90], or
HPCToolkit [1]. Profilers employing the instrumentation approach are, e.g., Cube [129], TAU [9, 61],
mpiP [135], or Paradyn [92]. Like shown by Open|SpeedShop [125], also combinations of both tech-
niques, sampling and instrumentation, are employed by parallel profilers.

Usual performance profiles present aggregated data of the complete application run. To achieve a
more detailed and differentiated view of the performance behavior, some tools employ a technique
called phase-based profiling. The phase-based technique splits the application execution into separate
phases. Figure 2.4 shows a phase-based profile generated by TAU [89]. In the depicted example three

12

2.2 Performance Analysis Tools

Figure 2.4: Phase-based profile showing individual profiles for x, y, and z solver phases. The top view
shows the three phases in a compound way. Functions occurring outside the phases are shown
separately. The bottom view shows detailed information for each individual phase. [89]

individual phases for the solver have been defined, i.e., y_solve_phase, z_solve_phase, and
x_solve_phase. For each phase performance data is aggregated individually. Hence, the applica-
tion is characterized by multiple profiles, each representing an individual phase. This approach allows a
distinct performance analysis of individual code sections.

Tracing Tools Tracing tools form the second group of performance analysis tools. These tools allow
the most detailed analysis of an application’s performance behavior. Contrary to the data aggregation
applied by profilers, tracing tools keep all recorded performance data. During the course of an applica-
tion’s execution its behavior is recorded as a stream of events. Additionally to event specific data, like
function name or bytes of data transmitted, each event also includes a time stamp indicating its time of
occurrence. Tracing tools use this record of events, the trace file, to visualize and analyze the applica-
tion’s behavior. Especially the preservation of all timing information allows the detailed reconstruction
of application executions. Moreover, the full timing information is required for the analysis of dynamic
performance behavior. For instance, dynamic load imbalances can severely limit performance of parallel
applications [13]. Consequently, for performance analysis traces are more powerful than profiles and
enable the detection of many performance problems critical to HPC applications.

In order to measure performance data tracing tools employ the methods described in the previous
section. Many tools use instrumentation, e.g., Vampir [18,106], Intel Trace Analyzer and Collector [63],
or Jumpshot [28, 149, 152]. Also sampling is applied by some tools, like for instance Paraver [112] or
HPCToolkit [1].

Tracing tools typically use timeline views to illustrate the behavior of parallel applications, see Fig-
ure 2.5. Timeline views depict the state of each process at any point in time along with the communication
between processes. Additionally to process states also performance metrics like values from hardware
performance counters may be visualized in timeline views.

Besides timelines tracing tools also compute profiles from event data. In contrast to profiling tools
where the profiles cover either the complete application run or defined application phases, the computa-
tion of profiles from trace data is more flexible. Due to the timing information included in each stored
event, profiles can be computed for arbitrary time intervals.

13

2 Background and Related Work

Figure 2.5: A timeline view showing a simple ring program executed with eight processes. Each process
is depicted as a separate timeline. One message, indicated by white arrows, is passed from
one process to the next until it arrives back at the initial sender process. [152]

In addition to performance data visualization some tools provide automatic analysis features. For in-
stance Jumpshot [152] provides detection of function invocations with irregular durations. The detection
is driven by the assumption that all invocations of a particular function should run for approximately
the same period of time. Using a normal distribution in combination with a high and low cutoff, Jump-
shot identifies function invocations with irregular durations. Other examples are Scalasca [38, 148] and
Periscope [11]. Both tools automatically detect wait states in parallel applications due to inefficient
communication behavior.

The trade-off for more detailed analysis capabilities is a larger volume of performance data. To cope
with the possibly large amount of performance data most tools apply filtering methods to exclude ir-
relevant data. Additionally to filtering, the Vampir tracing framework provides a parallel analysis en-
gine [17, 19], allowing to harness the power of a distributed system for the performance data analysis.

2.3 Analysis and Comparison Techniques

This section provides an overview of analysis techniques for event traces. Additionally, it introduces
comparison techniques for performance data. First, tools for visual trace comparison are presented.
Then tools for management and comparison of multiple measurement runs are discussed. Last, automatic
techniques for compression and analysis of event traces are covered.

2.3.1 Visual Event-Trace Comparison

A straightforward method to compare event traces is to manually perform visual inspection. Users can
open several instances of one tool, each showing an individual trace for comparison. Yet, this manual
comparison is likely to be extremely challenging and time consuming. Since related events may appear
in different places, it involves to correctly line up individual trace events. To alleviate this cumbersome
task some tools provide a visual comparison mode. This mode shows multiple traces next to each other
for easier comparison.

14

2.3 Analysis and Comparison Techniques

Figure 2.6: Three different traces displayed in the comparison view of Vampir. The traces are distin-
guishable by their background color: white, light blue, and light green. Each trace shows the
same application but measured on a different machine. Green and blue areas in the timelines
depict functions performing computations. The different lengths of the computing functions
indicate unequal performance of the measured machines. [134]

Vampir The comparison view provided by Vampir [19] arranges multiple traces side by side in one
central display. To facilitate detailed comparison of selected events, traces can be individually shifted in
time. This enables a manual alignment and compensates for varying start times of events, e.g., due to dif-
ferent initialization durations in the traces. Figure 2.6 depicts the comparison view showing three traces.
Each trace represents the same application but measured on a different machine. The figure displays
the traces after manual alignment. The compute iterations are aligned next to each other. The runtime
differences between the traces become obvious. Compared to the bottom trace, the computations (blue
areas in the figure) are considerably faster in the top two traces. Figure 2.6 also shows the limitations
of this approach. In case of high runtime differences it may be hard to display events side by side. As
shown in Figure 2.6 the iterations of the middle trace barely consume half of the timeline space while
the iterations of the bottom trace do not even fit on the available space.

An approach proposed by Knüpfer et al. [77] is based on C3G, an alternative data structure for trace
data. When using C3G the trace data is stored in a tree-like graph. Similar repeated events share the
same node in the graph. Hence the graph inherently identifies repetitive patterns. Knüpfer exploits this
advantage and visualizes repetitive patterns in one process. This method simplifies the detection and
visual analysis of patterns inside one trace. Consequently, this method assists in the visual comparison
of patterns between multiple traces as well.

Intel Trace Analyzer Similar to Vampir the Intel Trace Analyzer and Collector [63] also provides
support for visual trace comparison. The Intel Trace Analyzer limits the comparison to two traces at a
time. It offers two modes of operation. The first mode depicts each trace according to its real execution
time. The second mode visually stretches the shorter trace to the length of the longer trace. That way
both traces appear to have the same total execution time and related areas are shown approximately next
to each other. This type of visual display does not show the real trace timings anymore but may help in
the visual comparison process. Additionally to the visual timeline comparison, the Intel Trace Analyzer
also computes differences between the profile data of both traces.

15

2 Background and Related Work

Figure 2.7: Structural comparison of the resource hierarchies of two application executions. Events E1

and E2 describe the first and the second application run respectively. The bottom set indicates
similarities and differences in the structure between both runs. [69]

2.3.2 Measurement Management Support

Performance optimization of parallel applications usually involves multiple measurement runs. Typical
use cases are comparing results of different optimization strategies or studying application portability
when moving from one machine to another. Several solutions for managing and analyzing performance
data from multiple measurement runs exist.

Differential Profiling The comparison of profiles from two application executions is an essential
performance analysis step that users routinely perform. However, most profiling tools do not provide
direct support for this analysis task. Yet, the comparison of profiles is straightforward. Usually, first the
differences in function runtimes between two application runs are computed. Then the results are sorted
from largest to smallest difference. This allows users to quickly identify the key differences between
two application executions, typically by just looking at the top functions in the profile. Schulz and
de Supinski provide tool support for this approach in their work Practical Differential Profiling [124].
They introduce an extension of the commonly used profiler gprof [47]. Their tool eGprof facilitates
comparisons of two performance profiles inside gprof. The tool allows to “subtract” two performance
profiles and provides call-graph visualization of the differences.

16

2.3 Analysis and Comparison Techniques

Experiment Management Support More comprehensive functionality allowing the management
of multiple application executions provides the framework for multi-execution performance tuning pre-
sented by Karavanic [67, 69, 70]. Each execution of an application is considered as an experiment. The
framework defines a program space that gathers all information related to one application. The collected
information consists of details about all experiments (application runs) like the components of the code
executed, the execution environment, and the recorded performance profile data. An experiment man-
agement tool facilitates exploration of the program space. The tool allows analyzing differences between
multiple application executions. Displayed differences may regard changes in program source code and
the resources used at runtime as well as differences in the application’s performance. Figure 2.7 depicts
a structural comparison between two resource hierarchies. The collection of profile data spanning multi-
ple program executions additionally allows analyzing the performance evolution of one application. The
Paradyn performance tool [92] provides an automated search for performance bottlenecks. The incor-
poration of information from the program space into the Paradyn Performance Consultant [60] allowed
to guide the tool’s search strategy based on performance data gathered in previous executions. This re-
sulted in a more effective diagnosis of bottlenecks. Later work [68] added database technology for more
flexible collection and storage of performance data from multiple locations.

An algebra building upon the described framework for multi-execution performance tuning is pro-
posed by Song et al. [129]. It provides additional arithmetic operations to merge, subtract, and average
data. The algebra is used for cross-experiment performance analysis. It allows comparing, integrating,
and summarizing performance data from multiple sources. Sources of the performance data may build
multiple experiments of MPI and/or multithreaded applications as well as results obtained from sim-
ulations and analytical modeling. The algebra represents performance data in a platform-independent
fashion. The algebra output data is presented in the same way as the input data, allowing the use of the
same set of tools for visualization.

The PerfExplorer tool [61, 62] provides a framework for performance data mining. Measured perfor-
mance profile data is stored in a database and can be processed with data mining methods. Addition-
ally to clustering and correlation algorithms also comparative analyses are supported. Runtime, relative
speedup, and efficiency can be compared across different sets of profiles. PerfExplorer provides tool
support for parameter or scalability studies of an application.

Vertical Profiling A work presented by Hauswirth [52, 53] introduces a technique called Vertical
Profiling. The intention is to record and compare numerous metrics for one application. The metrics
cover the entire system including, e.g., hardware, operating system, libraries, and application. For each
metric a trace is collected. To control the measurement overhead only a limited number of metrics is
recorded during a single application run. Therefore, multiple consecutive measurement runs are taken
for the collection of all necessary metrics. The recorded traces are subdivided into successive interval
parts. For each interval an aggregated profile value is computed. For the comparison and analysis of
the metrics all traces are vertically arranged. Due to the inherent jitter in timing measurements the
traces need to be aligned prior to the comparison of related interval parts. The alignment is computed
using a dynamic time warping algorithm that requires a common metric in each measurement run. This
approach only works for traces measured with the same application configuration and in presence of a
suitable common metric for the alignment.

2.3.3 Similarity-Based Compression Techniques for Event-Traces

Traces store an application’s behavior as a series of events. Especially the preservation of all timing
information enables the detection of a wide range of crucial performance problems. However, this de-
tailed information also results in large data volumes. Performance measurements of parallel applications
may lead to unmanageably large trace files. Studies investigated the overhead of tracing on parallel
systems [94, 95, 97]. One critical cause of overhead is writing of trace data to disk. Periodic flushes
of trace data may cause severe perturbation in the target application. Additionally, the overhead for

17

2 Background and Related Work

Figure 2.8: Intra-process segment matching scheme. The top bar represents a portion of an example
trace with time values indicated above the trace. Segment markers are shown as light gray
rectangles. The three resulting segments are displayed below the trace (s0, s1, and s2). In
each segment the time stamps are adjusted relative to the segment start time. The bottom row
shows two examples of segment matching. In the left example all three segments are merged
together. In the right example the threshold is smaller allowing less variation. Hence, the
segment s1 is incompatible and only segments s0 and s2 are merged together. [101]

writing strongly depends on the file system speed and increases with rising numbers of processors. Con-
sequently, a range of approaches has been developed to compress the trace data at runtime and reduce
the data volume required for writing. The compression techniques may target wide traces (large number
of processes) and/or long traces (long runtime of the application). In order to achieve high compression
rates all techniques aim to exploit similarities. Compression techniques for long traces benefit best from
the iterative behavior of many HPC applications by exploiting repetitions in one process. Compression
techniques for wide traces are based on the Single Program Multiple Data (SPMD) paradigm and try to
exploit similarities across the processes of a parallel application.

Trace Profiling One solution addressing the reduction of overhead of writing traces is trace profil-
ing [96, 99–101]. Trace profiling is a hybrid between tracing and profiling. This measurement technique
collects summary information about event patterns that occur during program execution. The technique
reduces the trace data volume and writes an approximate trace of a complete application’s run. The trace
retains enough information to diagnose performance problems that traditionally require traces. The tool
Scalasca [148] has been used to evaluate the retention of correct performance behaviors, by comparing
automatically detected performance bottlenecks between the original trace and the reduced trace.

To accomplish the data reduction loops are used to partition an application into segments or patterns.
The segments build the basis for intra- and inter-process comparison. Segments with the same context
(equal patterns) are matched. If they have similar durations within a predefined threshold, only one
representative segment is saved. Figure 2.8 depicts the intra-process segment matching scheme. Intra-
process segment matching is done at runtime, reducing the data volume written to disk. For effective
segment matching a study evaluated several similarity metrics for compression [98]. The study indicated
that the average wavelet transform method provided the best trade-off between retention of performance
trends and file size reduction.

18

2.3 Analysis and Comparison Techniques

Figure 2.9: Compression scheme of Compressed Complete Call Graphs (C3G). The function main calls
function foo four times. In each invocation function foo calls function bar. The left
hand side depicts the uncompressed call graph. The right hand side depicts the compression
scheme. The four foo,bar function invocations are compressed to a single invocation,
sharing one sub-tree. Note the differing duration of the third foo,bar invocation. In this
case the difference lies within the deviation bounds and the third invocation is unified with
the other invocations. [76]

The second compression step is inter-process segment matching. Processes that have the same number
and order of segments are compared. If all segment pairs are similar within a predefined threshold, only
one process is kept. Additionally to comparing event measurements, also message-passing parameters
are checked. All parameters except source/target rank must be identical. The source/target rank must
either be the same rank or the same offset. The trace visualization also benefits from the inter-process
matching step. In case of multiple similar processes, only one representative process needs to be visual-
ized.

The trace profiling technique reduces the trace data volume by exploiting the repeated behavior in
applications. This compression technique targets long as well as wide traces. A factor of ten for trace
reduction has been reported.

Tree-Based Compression Techniques An alternative data structure for potentially lossy com-
pression of trace data is presented by Knüpfer [73, 74, 76]. Unlike the common linear storage approach
the described Compressed Complete Call Graph (C3G) stores traces in a tree-based data structure. Reg-
ular codes benefit from the tree structure. Repeating code sections can share nodes in the tree, resulting
in less memory requirement for storage. In order to preserve temporal information while also allowing
sharing of nodes, only durations of executed code sections are stored. Figure 2.9 depicts the compression
scheme using C3G. The achievable compression rate depends on two major factors. First, the efficiency
of the exploitation of the tree structure depends on the level of repetition in the code. Second, for suc-
cessful reduction of multiple similar code sections to one node, their individual durations need to stay
within specified deviation bounds. The size of the tolerated deviation is a trade-off between compression
rate and accuracy of the performance data. The described approach builds one C3G structure exclusively
for each application process. Consequently, this compression technique only targets long traces. Theo-
retically, the approach can be extended for compression of wide traces. It is possible to store multiple
processes together in one C3G structure. This way nodes and sub-trees could be shared across processes.
However, this concept has not been tested in practice.

19

2 Background and Related Work

The tool ScalaTrace provides compression of communication traces for parallel applications [104,109,
110, 118]. Only the communication patterns of an application are recorded. Specific section descriptors
allow a very efficient compression of loops. Communication end-points are encoded using relative dis-
tances, e.g., process i communicates with process i + 1. The combination of both techniques provides
a high lossless intra-node and inter-node compression rate. The first version captured only structural
information resulting in near constant trace sizes for applications with regular communication patterns.
The collected traces are useful for replay of the communication behavior but have limited value for
performance analysis due to the omission of all temporal information. To alleviate this disadvantage a
second version additionally stored approximate delta-timings between events using aggregated statistics
and path-specific histograms. This compression technique targets long as well as wide traces.

Clustering A compression method targeting wide traces including many processes is clustering. The
aim is to group similar behaving processes together. For each group one representative process is selected
and stored. All remaining processes only need to refer to their cluster representative. Therefore, the
compression factor depends on the number of clusters and the size of the representative processes for
each cluster.

Work on this approach is reported by Roth and Nickolayev et al. [108, 121]. Performance properties
of processes are summarized over a sliding window. Depending on the properties the processes are
grouped using a centroid-based clustering algorithm. To adapt the clustering to changing behavior all
processes are re-clustered adaptively or in fixed intervals. The approach has been evaluated with real-
time compression with up to 128 parallel processes.

Gamblin et al. [35,36] enhanced the method and showed sub-linear scaling for on-line clustering with
up to 131,072 processes. Performance data required for the clustering process is recorded only in selected
loops and packed using wavelet compression. To ensure short runtime only clusterings for small random
sub-groups of all processes are calculated. The clustering results for the sub-groups are calculated in
parallel. All results are distributed to all processes for evaluation. The best clustering result is applied to
all processes. The clustering process is repeated in fixed intervals. Data volume reductions of up to four
orders of magnitude have been reported.

2.3.4 Automatic Analysis Techniques for Event-Traces

Besides technical demands for processing of large trace volumes, the immense amount of data also makes
manual analysis difficult. Analysts may easily overlook important performance properties. On the other
hand, the comprehensive collection of performance data promises high analysis potential. Consequently,
a range of automatic analysis techniques for traces have been developed. The methods either try to help
the analyst by automatically categorizing the performance information or by searching for performance
problems directly.

Automatic Structure Detection and Analysis In the scope of the CEPBA-Tools Environment [79]
a range of new analysis methods for trace files have been developed.

Casas et al. [22, 23, 25–27] describe methods for automatic structure detection in traces of parallel
applications. The approach is based on signal analysis methods and works in three steps, illustrated in
Figure 2.10. First, they sample each process of a trace and take values according to a derived metric. The
derived metric should describe the application’s behavior as clearly as possible. Examples of derived
metrics are Sum of Duration of Computing Bursts or Number of Point to Point MPI Calls. The sampled
values are added up across all processes to construct a single suitable signal for the analysis. Areas
exhibiting disturbing effects like flushes of trace data to disk are detected and removed from the further
analysis steps. The signal is then analyzed using the discrete wavelet transform (DWT). The wavelet
transform identifies areas exhibiting high frequencies. These areas most likely represent the iterations
of the application, as code is repeatedly executed there. The initialization and finalization phase of

20

2.3 Analysis and Comparison Techniques

Figure 2.10: Iteration detection using wavelet and autocorrelation techniques. The top timeline shows the
recorded trace data. The second timeline shows the result of the discrete wavelet transform.
The red rectangle marks the iterations, an area exhibiting high frequencies. The third time-
line shows the result of the autocorrelation function applied to the iterations area. Marked
with the blue rectangle are two iterations. The bottom timeline shows the two iterations in
full detail. [27]

the application is removed in this analysis step. The third step takes the identified iteration phase and
analyzes this area using the autocorrelation function. As similar iterations are repeated consecutively, the
autocorrelation function efficiently identifies individual iteration occurrences. The results of this work
may be used to automatically select a few iterations that represent the application’s behavior as good as
possible. Afterwards, successive analyses can be focused primarily on these iterations [84]. Additional
work extended the described methods by an automatic analysis of the speedup of MPI applications [24].

An approach based on clustering algorithms is proposed by Gonzalez et al. [43]. The goal is to auto-
matically characterize the computation regions of an application. This allows to outline the computation
structure of an application’s execution, and hence, to contribute valuable information to the performance
analysis. The input for the clustering process builds so-called computation bursts. A burst is a region
between two communication or synchronization events. The performance properties of each burst are de-
scribed using hardware performance counters. For instance a combination of the Instruction Completed
and Instructions Per Cycle (IPC) counters may be used as metric to reflect the performance character-
istic of one burst. All bursts are clustered using the density-based cluster algorithm DBSCAN [32]. In

21

2 Background and Related Work

Figure 2.11: Detection of the computation structure. Two clusterings of one NPB BT benchmark [8] exe-
cution. The DBSCAN algorithm clusters computation regions characterized by the Instruc-
tion Completed and Instructions Per Cycle (IPC) counters. The charts on the left side show
the structure in finer detail (more dense clusters required by DBSCAN). The charts on the
right side show a coarser computation structure (wider clusters allowed by DBSCAN). [43]

contrast to partitioning cluster algorithms, density-based cluster algorithms are more suitable for this use
case as they allow clusters of arbitrary shape. Figure 2.11 depicts two clustering examples.

The detected computation structure (clusters) may be automatically evaluated using a multiple se-
quence alignment algorithm [44]. The described method evaluates the cluster quality based on the Single
Program Multiple Data (SPMD) paradigm. According to the paradigm all processes should execute the
same sequence of actions. Thus, a detected cluster should represent a vertical SPMD region. The mul-
tiple sequence alignment algorithm takes the sequence of detected bursts of each process as input and
aligns them all against each other. The resulting alignment should clearly show a SPMD pattern and
allows to determine the SPMDiness of the clustering.

To overcome drawbacks of regular density-based algorithms, an iterative refinement extension of DB-
SCAN has been implemented [46]. The aggregative cluster refinement algorithm allows detecting clus-
ters with different densities and partly automatizes the algorithm parameterization.

A reported use case of this technique is the extrapolation of performance data [45]. Additionally,
the analysis of performance trends using object tracking techniques is described [85]. Therefore multiple
application executions with changing conditions are clustered. Changing performance behavior, resulting
in moving clusters, is automatically detected and tracked.

Automatic Detection of Communication Patterns Preissl et al. propose a method to automat-
ically detect and exploit patterns in MPI communication traces [113–117]. The goal is to optimize the
communication behavior in MPI programs. First, the method finds (local) repeating communication
patterns on each process separately. Therefore suffix trees are used to extract arbitrary repeating com-
munication sequences. The maximal (longest) repeat is selected from all detected local repeats for each
process respectively. All maximal repeats are searched for specified seed events. Starting with the seed

22

2.3 Analysis and Comparison Techniques

Figure 2.12: A set of patterns of inefficient behavior. In all cases at least one process needs to wait due
to an inefficient communication pattern or a previous imbalance. [39]

events the local repeats are grown into global communication patterns spanning multiple processes. A
pattern-matching algorithm detects collective communication patterns from global patterns. The de-
tected collective communication patterns build the basis for automatic optimizations implemented by
static analysis and source code transformations. An example of applied optimizations is the transfor-
mation of point-to-point operations into native MPI collective operations. Also inefficient collective
communication can be replaced with better performing point-to-point or native collective operations.

Automatic Imbalance Detection and Analysis In parallel applications load imbalances cause
delays of processes. Such delays, even of single processes, may induce wait times across an entire appli-
cation. Depending on the severity, such wait times can seriously impact the scalability and performance
of an application. Performance problems induced by wait states can be formally characterized in terms
of execution patterns that represent inefficient behavior. Figure 2.12 illustrates four examples of patterns
of inefficient behavior.

The detailed performance information included in traces make them very suitable for detection of wait
states. The tool EXPERT [146, 147] automatically parses the trace data for characteristic patterns that
indicate performance inefficiencies. The automatic analysis covers the complete trace and quantifies the
impact of the detected wait states. The automatic approach saves analysis time and helps to detect all
important imbalances in the trace.

EXPERT automatically searches the trace data for occurrences of these predefined patterns. The de-
tected patterns are organized hierarchically, starting from general problems like large communication
overhead, to specific problems, like a receiver process waiting for a sender process to start the message
transfer. All detected problems are mapped using three interconnected dimensions: problem type, call-

23

2 Background and Related Work

Figure 2.13: The critical path profile. The serialized execution of function B is shown in timeline (a).
The serialization of B cannot be detected in a usual profile (b). However it is visible as
performance bottleneck in the critical path profile (c). [87]

tree position, and process. The analysis results are presented in a single integrated view using the CUBE
profiler. The usage of the CUBE output format also enables the comparison of detected performance
problems between different application executions. [129].

A new version of the tool, now named Scalasca, features a new scalable search algorithm [38,39,56].
In contrast to the former serial EXPERT implementation, Scalasca analyses the trace in parallel. The
key concept is a parallel replay technique. The application trace for every process is stored in a separate
file. The analysis is performed using the same number of processes as have been used for the original
application run. Each analysis process traverses the trace of one application process. During the analysis
Scalasca replays the target application’s communication behavior according to the information stored
in the trace data. In the replay Scalasca transfers required information for the diagnosis of inefficient
communication. For instance a late-sender pattern, depicted in Figure 2.12, is detected the following way:
An analysis process encounters a send operation of a message. It takes the time stamp of the original
send operation and sends it to the original receiver process. That way the original communication, a
message from sender to receiver process, is replayed. The only difference is the content of the message.
Scalasca sends not the original content, but the time stamp of the original send operation. Eventually, the
analysis process of the receiving process encounters the receive operation and receives the message. It
compares the received time stamp of the send operation with the time stamp of the receive operation. If
the sender time stamp is larger than the receiver time stamp, a late-sender pattern is detected. At the end
of the parallel replay, the detected performance problems are assembled from all processes and merged
into one global report.

The same replay approach may also be used in on-line analysis tools [40]. The tool Periscope detects
similar patterns like Scalasca. However, the analysis is not based on trace information but is performed
on-line during an application’s run. Periscope sends a replayed analysis message directly after each
original message. This provides the advantage that no trace data needs to be written. However, the
on-line analysis doubles the executed communication of the target application and may induce severe
perturbation.

24

2.4 Limitations of Existing Techniques

Recent developments extended Scalasca’s analysis capabilities by a root cause and a critical path
analysis [14,87]. Processes waiting for a delayed process exhibit the performance problems (wait states)
that Scalasca detects. Thus, the wait states are primary symptoms of load imbalance. The root cause
analysis [15] tries to determine the delays that cause wait states, i.e., identify processes and individual
function invocations responsible for imbalances. In order to detect the responsible delays the analysis
replays the traces in parallel both in forward and backward direction. Additionally, the cost of each delay
is also computed by addition of all induced wait times.

The critical path analysis identifies the path of execution that determines an application’s runtime [13].
Activities on the critical path determine the length of program execution. The optimization of activities
not on the critical path only increases wait states and does not improve the runtime of an application. The
knowledge of the critical path allows guiding performance optimization more efficiently. One option is
to generate a critical path profile, depicted in Figure 2.13. This profile is able to show inefficiencies
that otherwise may be hidden through data aggregation. Thus, it exposes crucial imbalances that may be
underestimated in usual profiles.

2.4 Limitations of Existing Techniques

The overview of related work reveals that some requirements for a comprehensive comparison of traces
are still not covered. Comparing traces implies the investigation of large and complex data volumes.
For such a tedious task automated tool support is essential for the analyst. To allow a more detailed
discussion of missing functionality, the full comparison process is separated into three major analysis
parts.

Visual Analysis The first natural step for users is to visually compare traces. The user manually
opens several traces with the tool of his choice and performs visual inspection of the differences. Due to
the complexity and large amount of trace data this task may be cumbersome and error-prone. Performing
such work, users can greatly benefit from tool support to guide and assist them in the comparison process.
Table 2.1 provides an overview of already available assistance.

Essential for a satisfactory comparison workflow is to provide a tool environment with integrated com-
parison capabilities. This improves the usability for the user and facilitates handling of large performance
data sets. Moreover, an integrated comparison environment allows to implement various comparison fea-
tures. Considering the large amount of events in traces it is essential to support users by automatically
highlighting and quantifying differences between traces. Otherwise the analyst might overlook important
changes.

From all reviewed tools, only Vampir and the Intel Trace Analyzer provide an integrated environ-
ment for visual trace comparison. The compression and analysis techniques are not designed to support
visual comparison of complete event streams. The measure management tools primarily focus on the
comparison of profiles. Only the Vertical Profiling tool compares event streams and demonstrates visu-
alizations for that purpose. However, this tool focuses on the collection and correlation of traces from
exclusively one application configuration. The requirement of certain preconditions for the comparison
process inhibits an easy adaption to the comparison of arbitrary traces.

No available tool supports detailed automatic highlighting and quantification of differences between
related events.

Structural Analysis Application runs can differ in the sequence of the executed code and in their
temporal behavior. The structure of a trace represents the sequence of executed functions as a series of
events. An analysis of similarities and changes in the structure is necessary to automatically highlight
and quantify differences. Between individual events precisely three different states are possible. Events
between traces may be similar; no changes occurred. They may be different; code executed had been
changed. Events may also occur only in one trace; code had been added or removed. Table 2.2 provides
an overview of structural comparison capabilities of the reviewed techniques.

25

2 Background and Related Work

Limitations of Existing Techniques
Visual Analysis

Support for visual Highlighting of differences

comparison of traces between traces

Visual Event-Trace Comparison
Vampir ✔ ✘

Intel Trace Analyzer ✔ ✘

Measurement Management Support
Differential Profiling ✘ ✘

Experiment Management Support ✘ ✘

Vertical Profiling – ✘

Similarity-Based Compression Techniques
Trace Profiling ✘ ✘

Tree-Based Compression ✘ ✘

Clustering ✘ ✘

Automatic Analysis Techniques
Structure Detection and Analysis ✘ ✘

Communication Pattern Detection ✘ ✘

Imbalance Detection and Analysis ✘ ✘

Table 2.1: Limitations of existing techniques - Visual analysis.

Tools for visual trace comparison provide no automatic analysis capabilities for structural differences.
Tools for measurement management primarily focus on the comparison of execution timings. The

Vertical Profiling approach assumes complete structural identity between traces. Alone the Experiment
Management Support tool detects structural differences. However, this tool compares self-generated
structural maps. A structural map represents the aggregated structure of a complete application’s run in
a hierarchical fashion. Hence, it supports the comparison of aggregated structures between application
runs. The detection of differentiated differences by comparing complete event streams is out of the scope
of this tool though.

All compression algorithms try to exploit similarity. The Trace Profiling and Tree-Based Compression
approaches are capable of identifying similar regions between traces. However, a further analysis of dif-
ferences is not required for this task. The described clustering approaches ignore structural information
completely and exclusively group process by temporal information.

The automatic event trace analysis techniques focus on the temporal behavior of application runs. They
principally try to detect predefined relevant patterns in the data. One approach analyses the structure of
an application’s run in terms of initialization, iterations, and finalization. It extracts information from an
event stream to automatically categorize the application’s execution into phases. A detailed event-wise
comparison of event streams is not feasible with this approach.

26

2.4 Limitations of Existing Techniques

Limitations of Existing Techniques
Structural Analysis

Detection of Detection of Detection of

equal areas changed areas new/removed areas

between traces between traces between traces

Visual Event-Trace Comparison
Vampir ✘ ✘ ✘

Intel Trace Analyzer ✘ ✘ ✘

Measurement Management Support
Differential Profiling ✘ ✘ ✘

Experiment Management Support – ✘ –
Vertical Profiling ✘ ✘ ✘

Similarity-Based Compression Techniques
Trace Profiling ✔ ✘ ✘

Tree-Based Compression ✔ ✘ ✘

Clustering ✘ ✘ ✘

Automatic Analysis Techniques
Structure Detection and Analysis ✘ ✘ ✘

Communication Pattern Detection ✘ ✘ ✘

Imbalance Detection and Analysis ✘ ✘ ✘

Table 2.2: Limitations of existing techniques - Structural analysis.

Temporal Analysis For performance optimization the analysis and comparison of temporal infor-
mation between application executions is particularly important. It identifies differences in application
performance and allows to detect performance bottlenecks. Likewise, the performance evaluation of
changes is usually based on comparison of temporal information. The preservation of all timing in-
formation in traces suggests the automatic search for characteristic patterns describing performance
bottlenecks. Additionally, the detailed information in traces allows event-wise comparison of runtime
differences. This comparison has the potential to expose dynamic runtime changes between application
executions. Table 2.3 provides an overview of temporal comparison capabilities of available techniques.

Tools for measurement management support as well as the Intel Trace Analyzer provide various fea-
tures for the comparison of profiles. Internally the compression techniques also work with comparison
of profile information, but do not expose this functionality to the user.

The automatic event trace analysis techniques primarily focus on the analysis of temporal behavior.
One approach automatically detects and analyses communication patterns in one trace. The tools for
Imbalance Detection and Analysis try to detect predefined patterns that exhibit performance bottlenecks.
These tools provide the functionality to compare profile information as well as detected patterns between
traces. Dynamic runtime differences captured in detected patterns are also presented to the user. The
Structure Detection and Analysis tools automatically categorize an application’s execution into phases
exhibiting characteristic behavior. They additionally provide automatic techniques for comparison and
tracking of detected phases across multiple executions.

27

2 Background and Related Work

Limitations of Existing Techniques
Temporal Analysis

Comparison Detection of Comparison of Analysis of

of profiles characteristic characteristic dynamic runtime

patterns patterns differences

in one trace between traces between traces

Visual Event-Trace Comparison
Vampir ✘ ✘ ✘ ✘

Intel Trace Analyzer ✔ ✘ ✘ ✘

Measurement Management
Support
Differential Profiling ✔ ✘ ✘ ✘

Experiment Management Support ✔ ✘ ✘ ✘

Vertical Profiling ✔ ✘ ✘ ✘

Similarity-Based Compression
Techniques
Trace Profiling – ✘ ✘ ✘

Tree-Based Compression – ✘ ✘ ✘

Clustering – ✘ ✘ ✘

Automatic Analysis Techniques
Structure Detection and Analysis ✘ ✔ ✔ ✘

Communication Pattern Detection ✘ ✔ ✘ ✘

Imbalance Detection and Analysis ✔ ✔ ✔ –

Table 2.3: Limitations of existing techniques - Temporal analysis.

Summary The described related work summarizes existing technology and points out missing func-
tionality for a comprehensive trace comparison. A range of solutions assist the analyst with automatic
comparison features for profiles. Also tool support for basic manual comparison of traces is already
available. Trace compression techniques detect similarities but focus on one trace. Automatic trace
analysis techniques focus on the detection and comparison of specific performance characteristics of ap-
plications. Yet, currently no tool is able to detect and visualize detailed structural differences between
full event streams. Also no tool covers the analysis and visualization of fine-grained, event-wise runtime
differences between application executions.

28

3 Methods for Structural Comparison of Process Pairs

This chapter describes the development of a method for pairwise comparison of processes1. Parallel
applications consist of multiple processes. Initially, this chapter only considers comparisons of pairs of
processes. Chapter 5 then extends this approach to multiple processes.

The introduced algorithm compares the function call structure of two processes. This approach lays
the foundation for subsequent performance comparison techniques described in Chapter 4.

3.1 Jitter in Timestamp Measurements

It is challenging to compare the event streams (traces) of two processes directly. Even if a user tries
to exactly reproduce an application run, i.e., running the identical code on the same machine using
identical input data, the event streams will differ. The reason is the inherent jitter in timing measurements,
caused by a range of effects on the target system, like timer inaccuracy, varying network/system load,
or OS noise. Thus, the timings of events are likely to always differ to some extend. For instance when
comparing two event streams recorded in two consecutive runs of the same application, the event streams
are likely to exhibit a mix of shifted and scaled timing effects. This complicates direct comparison.
Figure 3.1 shows possible timing differences that may appear between two event streams.

Scaled t

Shifted t

Mixed t

Figure 3.1: Timing differences between two event streams.

Differences between the processes represented by the two streams additionally increase the described
timing effects. For instance, if the two processes are executed on different processor types. This might
increase the scaled effect between the streams, as one process runs faster than the other. Furthermore,
if some parts of an application run slower or faster on one process, this may lead to shifted timings for

1In this work, for brevity the term process is used to refer to any possible processing element of a parallel application, which
may be an MPI process, a thread, a CUDA stream, or a different type of control flow.

29

3 Methods for Structural Comparison of Process Pairs

the remaining parts of the application. Usually, when comparing event streams of applications, the two
streams exhibit a combination, or mix, of both effects. Due to these timing effects there is no guarantee
that related events between two streams occur visually next to each other. This renders a direct visual
comparison of event streams cumbersome, at best. However, it is possible to cope with the timing
differences by considering only the structure of the event streams.

3.2 Comparison of the Flat Function Call Structure

An event stream of a process consists of a series of events. These events enable the reconstruction
of the application function structure of the process. For deterministic code, this structure is likely to
stay constant throughout multiple application runs. This allows to use application function structures as
anchors for a comparison. For easier comparison of application structures, flat sequences of executed
functions are constructed from application structures. Figure 3.2 shows the construction of function
sequences from the application structure. The flat sequence is generated by simply listing functions in
the same order as they are executed by the control flow of the application.

a

main
calc

B:

b
b

m c a c b c m b m

a

main
calc

A:
a

m c a c m a m

Figure 3.2: Construction of function sequences (bottom) from the application structure (top).

In order to compare different application runs, equal function calls require unique identifiers. A rea-
sonable criteria is to use the function name as a basis for such an identifier. That way, equally named
functions get the same identifier in both sequences, and are therefore comparable. During the sequence
construction process, timings of events are ignored. Only the order of events is important. If sequences
are identical, related events are on equal positions. Such case allows a direct comparison of timings
between related events. Figure 3.3 illustrates this process.

In many comparison cases, however, identical sequences cannot be expected. For instance changes to
application code can alter the function sequence. When comparing application runs using different input
data, after optimizations, or changes of libraries, their sequences are likely to be different. The following
section classifies structural differences when comparing non-identical function sequences.

3.2.1 Structural Differences between Pairs of Sequences

The sequence of events can differ between two application runs in a number of ways. Figure 3.4 provides
an overview of the possible types of structural differences between two function sequences.

Detecting these differences manually in event streams of real applications is cumbersome. The possi-
bly large size of application event streams requires an automatic comparison method. The next section
describes algorithms for automatic sequence comparison.

3.2.2 Sequence Alignment Algorithms

Sequence alignment is a method to measure the similarity of sequences and to describe how sequences
are related. It is used in various fields such as spell checking or speech recognition. Probably the best
known field using sequence alignment is bioinformatics. In this area it is used (amongst others) for DNA
sequence assembly, construction of evolutionary trees, or protein sequence alignment. The difficulty

30

3.2 Comparison of the Flat Function Call Structure

A:

m c a m a m

m c a c m a m

B:

A:

m c a c m a m

m c a c m a m

B:

c

Time:

Ti
m

e
D

iff

Figure 3.3: Direct comparison of event durations.

when comparing DNA and protein sequences is that genes mutate along the evolutionary process and
between species. This forbids search strategies for exact matches. Required are algorithms for inex-
act or appropriate string matching. Since this requirement also applies for the comparison of function
sequences, algorithms used in bioinformatics are applicable for the structural comparison of processes.

Sequence alignment is one method for approximate matching. It arranges two sequences in a way
that allows to identify similar and dissimilar parts between the sequences. During the alignment process,
characters of two sequences are matched to each other or may be matched to an empty character “-”,
called a gap. The alignment to a gap indicates an insertion or a deletion. The following example shows
alignments of the sequences m c a c m a m and m c a c b c m b m:

m c a c m a m - - m c a c - - m a m

| | | | | | | | | | |

m c a c b c m b m m c a c b c m b m

The shown alignments are two examples from a large number of possible alignments of these two se-
quences. This raises the question for a measure of the quality of an alignment. Levenshtein [82] presented
a metric for the evaluation of differences between two sequences. The Levenshtein distance, also referred
to as edit distance, counts the number of edit operations required to transform one sequence into another.
It applies a cost function assigning fixed costs to each type of operation. Levenshtein assigned a cost of
0 to a match and a cost of 1 to every single edit operation (insertion, deletion, or mismatch). Sometimes
a scoring function is used instead of a cost function. A scoring function is the inverse of a cost function.
A high score implies a good alignment, while a high cost implies a poor alignment.

Depending on the use case, different or more sophisticated cost schemes may be used. For instance
protein alignment substitution matrices, e.g., the BLOSUM [54] matrices, which define the cost of the
alignment of any two amino acids. In case of event stream alignment the following scoring function is
applied. Equal areas (matches) having the same sequence of function calls in both processes achieve a
score of 2. The performance characteristics of equal areas can be compared directly. Areas containing
different function calls at the same sequence position are labeled as different, evaluated with a negative
score of −1. For instance, if a call to function a in the first sequence is replaced by a call to function
b in the second sequence, these calls would be recognized as different. For performance analysis, the

31

3 Methods for Structural Comparison of Process Pairs

Insert t

Remove t

Change t

Move t

Swap t

Figure 3.4: Types of changes between two function sequences.

identification of these areas is important, as the application is executing different code. The third pos-
sibility is a missing section, called a gap, in one sequence, evaluated with a negative score of −1. This
happens if some functions are executed during the generation of only one of the event streams, e.g., if a
new code section is added to the application, or a process follows a different execution path. Gaps enable
the analyst to quickly identify code areas that are only present in one of the event streams.

Finding Optimal Alignments After defining an evaluation metric, the next task is to find the opti-
mal alignment, i.e., the alignment exhibiting the highest score/minimal cost. To solve this problem using
the brute-force approach is infeasible. The number of possible alignments for two sequences with the
length N can be approximated with the equation 22N/

√
2πN [31]. For two sequences of length 300

there are already about 10179 different alignments and sequences constructed from event traces could be
considerably larger.

The best known algorithm for solving this optimization problem and finding the optimal alignment
is dynamic programming [10, 49]. The dynamic programming algorithm separates the full pairwise
alignment problem into independently optimizable sub-problems. The algorithm starts with solving the
smallest sub-problems and then iteratively combines the found solutions to solve the next bigger sub-
problems. To prevent a compute intensive recalculation of already solved sub-problems, found solutions
are stored in a dynamic programming matrix.

32

3.2 Comparison of the Flat Function Call Structure

The Needleman–Wunsch algorithm [107] was the first application of the dynamic programming algo-
rithm for biological sequence comparison. The purpose of the algorithm is to search for similarities in
amino acid sequences of two proteins. A variation of the Needleman–Wunsch algorithm was published
by Smith and Waterman [128]. The Smith-Waterman algorithm is designed to compute the local align-
ment of two sequences. Typically used to search for places in a long sequence that exhibit high similarity
to a short (query) sequence.

This work adapts the Needleman–Wunsch algorithm for the comparison of application event streams.
To explain the algorithm with an example, the following two event sequences are compared:

Sequence A: m c a c m a m

Sequence B: m c a c b c m b m

The following notation is used: Sequence A is of length M and sequence B of length N . The ith event
in A is Ai and the jth event in B is Bj .

For the comparison of trace files the following scores are applied:

σi,j = 2 Match Score

σi,j = −1 Mismatch Score (3.1)

σgap = −1 Gap Score

σi,j = 2 is chosen if the event Ai is the same as Bj , otherwise, if Ai differs from Bj then σi,j = −1 is
used. In case that either Ai or Bj are aligned to a gap the gap penalty of σgap = −1 is applied.

Based on the scores, the algorithm defines the following recursive scoring scheme for a dynamic
programming matrix D:

Di,j = max

⎧⎪⎨⎪⎩
Di−1,j−1 + σi,j , Match/Mismatch
Di,j−1 + σgap, Gap in Sequence A

Di−1,j + σgap. Gap in Sequence B

(3.2)

The dynamic programming matrix D keeps track of already solved sub-problems.
The optimal alignment is found by computing the path with the highest score through the matrix D

from DM,N to D0,0. The matrix is initialized at the top left corner with D0,0 = 0. The entry D0,0 gives
the starting score of the alignment. By applying the recursive scoring scheme the matrix is filled from
the top left to the bottom right corner. Each matrix field is filled with the highest scoring option possible
based on the scoring scheme. Figure 3.5 illustrates the computation step for one matrix field. The bottom
right entry DM,N then holds the optimal score for the complete alignment of both sequences. Figure 3.6
shows the completely filled dynamic programming matrix for this example.

Aj

Di-1,j-1 Di-1,j

Di,j-1

Aj-1

Bi

Bi-1

Figure 3.5: Dynamic programming matrix calculation step.

33

3 Methods for Structural Comparison of Process Pairs

(Sequence A)

m
c
a
c
b
c
m
b
m

m c a c m a m

j

(Sequence B)

i

0 1 2 3 4 5 6 7 = N

0
1
2
3
4
5
6
7
8
9M =

1
2

0

5
4
3

7
6

7

6

8
7

-1
-2
-3
-4
-5
-6
-7
-8
-9

-1

1
0
-1
-2
-3
-4
-5
-6

-2
1

3
2
1
0
-1
-2
-3

-3
0
3

5
4
3

-4
-1
2
5

-5
-2
1
4
7
7
6

-6
-3
0
3
6
6
6

-7
-4
-1
2
5
5
56

7
8

8
7

9

0
2

4
6

Figure 3.6: Dynamic programming matrix for sequences A and B.

Furthermore, it is practical to remember what choice led to the optimal score for each field, as this
is useful for the construction of the alignment. In Figure 3.6 this is indicated with arrows between the
matrix fields. This information is used to backtrack through the matrix and thereby to find the optimal
sequence alignment. Starting point is the bottom right corner, which represents the optimal score. Then
the path is followed along the arrows to the top left corner. In case of multiple possible paths from one
field to the next, the field with the highest score is chosen. In the example shown in Figure 3.6, the
backtracking step is indicated by the red path, which represents the optimal alignment. If the path goes
diagonally both respective sequence functions are aligned to each other (Match/Mismatch). If the path
goes vertically, the respective function of sequence B is aligned to a gap area, if it goes horizontally, the
respective function in sequence A is aligned to a gap area. The alignment result for the example is shown
in Figure 3.7. The CMP bar in the figure marks equal, different, or gap areas.

A:

m c a c b c m b m

= = = _ _ = = ≠ =

m c a c m a m

B:

CMP:

Figure 3.7: Constructed optimal alignment of sequence A and B.

The basic dynamic programming algorithm has quadratic complexity with respect to the sequence
lengths, O(M ·N), regarding time and memory requirements.

Computing the Alignment with Linear Space Requirements Sequences constructed from
application event streams may have lengths of millions of elements. This is especially problematic
considering the quadratic memory complexity of the dynamic programming algorithm. A solution to
this problem is a modification of the Needleman–Wunsch algorithm proposed by Hirschberg [59] that
reduces the quadratic memory complexity, O(M ·N), to only linear memory complexity with respect to
the longest sequence, O(max(M,N)).

34

3.2 Comparison of the Flat Function Call Structure

This modification is based on the observations that the dynamic programming matrix is solved one
row at a time and that for the calculation of a row only the previous row of the matrix is required.
The idea of the algorithm is to avoid the need to save the entire matrix by skipping the backtracking
step. Instead, matrix fields lying on the optimal alignment path are computed directly using a divide and
conquer approach. Figure 3.8 illustrates the scheme of the algorithm.

Figure 3.8: Hirschberg algorithm scheme.

First, the matrix is separated in the middle. The top half of the matrix is solved using the basic dynamic
programming algorithm. The bottom half is solved backwards using a reverse version of the dynamic
programming algorithm. Figure 3.9 depicts this procedure for the example alignment. Computed rows
are only kept in memory as long as they are required for the computation of the next row.

m
c
a
c

b
c
m
b
m

m c a c m a m

-2 -1 0 1

-1

-1

-1

-4

-2
1

-3

-3
0

-4
-1

-5
-2

-6
-3

-7
-4

2

0
2

-6 -5 -4 -3 -2 -1 0-7

Figure 3.9: First step of the Hirschberg algorithm. The dynamic programming matrix is split horizontally.
The top half of the matrix is solved forward using the basic dynamic programming algorithm.
The bottom half is solved backwards using a reverse version of the dynamic programming
algorithm. For the computation of one row only the previous row needs to be saved.

After the computation of the two center rows around the separation line, the middle split point is
defined. This is the point yielding the highest value after addition of neighboring fields of the two center
lines. Figure 3.10 depicts the calculation of the first split point for the example alignment.

35

3 Methods for Structural Comparison of Process Pairs

m
c
a
c

b
c
m
b
m

m c a c m a m

-3
-4

-5
-4

0
-1

2
2

3
2

3
3

4
4

5 4
7

1
2

3
6

-2
-1

2
5

-2
-15

4

5
6

8
-2 2 6 9 9 5 4 0

Figure 3.10: Second step of the Hirschberg algorithm. Calculation of the vertical split line. Related pairs
of the two rows around the horizontal separation line are added together. The pair with the
highest score lies on the optimal path and defines the separation line. In this example the
pair c− c is aligned and the matrix is split accordingly.

The split point is used to partition the complete matrix into four smaller matrices. Only the top left
and the bottom right matrices need to be considered further. The other, top right and bottom left matrices
can be discarded, see Figure 3.11.

According to the recursive scheme, see Figure 3.8, the algorithm is started again in each relevant
matrix. This process is repeated until all fields on the optimal alignment path are calculated.

The improvement of the space complexity comes at the price of higher computational cost, compared
to the Needleman–Wunsch algorithm. Nevertheless, the Hirschberg algorithm still operates in quadratic
time complexity.

Improved Algorithm for Finding the Optimal Alignment Ukkonen [133] and Myers [105]
independently developed an improved version of the basic dynamic programming algorithm. The im-
proved algorithm, called O(ND) Algorithm by Myers, is used in the UNIX diff tool to compare text in
files [93]. For clarity, in this document, the improved algorithm is referred to as Ukkonen’s algorithm.

Ukkonen’s algorithm makes the following restrictions to the cost functions. The match cost needs to
be 0. All other costs need to be the same and small positive integers. Usually, the algorithm is run using
the Levenshtein [82] cost model, i.e., a match costs 0, all other changes cost 1. Compared to the scoring
scheme described above, the Levenshtein cost model yields the same alignment.

Ukkonen’s algorithm speeds up the basic dynamic programming algorithm by exploiting a couple
of observations from the dynamic programming matrix. First, not all entries of the matrix are needed
to compute an alignment. Second, when using Levenshtein costs, values on diagonals of the dynamic
programming matrix (running from the upper-left to the lower-right cells) are monotonically increasing.
Third, only endpoints of running matches are important. Figure 3.12 depicts the full dynamic program-
ming matrix for an example alignment using Levenshtein costs. The matrix diagonals are shown as
dashed lines. The end of running matches on diagonals are indicated by red boxes.

To reduce the number of computed matrix cells Ukkonen defines a cutoff rule. All alignments start
in the top left corner, diagonal 0, of the dynamic programming matrix. Eventually, they will end at the
bottom right corner, diagonal |M − N |, of the matrix. Since values in the matrix are monotonically

36

3.2 Comparison of the Flat Function Call Structure

m
c
a
c

b
c
m
b
m

m c a c m a m

Figure 3.11: Third step of the Hirschberg algorithm. The horizontal and vertical split lines are used to de-
fine the new matrices for the next step. The Hirschberg algorithm is now started recursively
with the top left and bottom right matrix.

increasing, it is possible to exclude matrix areas that cannot belong to the optimal alignment. Depending
on the edit distance DM,N the optimal alignment stays in a band from the top left to the bottom right cor-
ner. The smaller the edit distance, the narrower the possible band for the optimal alignment. Alignments
that leave the band can only reach the bottom right corner at a higher cost than DM,N .

Figure 3.13 depicts the cutoff scheme for M ≤ N . All alignments start and end in the band between
diagonal 0 and diagonal M − N . This area is enclosed by the dashed lines in Figure 3.13. Depending
on the edit distance DM,N the band enclosing the optimal alignment may be broadened at the sides
by additional diagonals. For a given edit distance DM,N the number of additional diagonals p can be
calculated with the equation p = ⌊12(DM,N/δ − |M −N |)⌋, where δ denotes the cost for changes.

The cutoff band for the example alignment of sequences A and B is illustrated in Figure 3.12. The edit
distance of the alignment is DM,N = 3. For this example no additional diagonals p = 0 are required.
Consequently, the optimal alignment is guaranteed to stay within the minimal band between diagonals
0 and 2. All alignments leaving the band will reach the bottom right corner DM,N at a higher cost than
DM,N = 3. Thus, matrix entries outside the band can be discarded, illustrated as transparent rectangles
in Figure 3.12.

Using the cutoff rule, a more efficient way to calculate an optimal alignment can be implemented. Of
course, in the beginning the edit distance of the optimal alignment is unknown. However, it is known
that the optimal alignment must reach the bottom right corner. Using that knowledge, Ukkonen’s algo-
rithm starts the alignment process at the top left corner with an edit distance of 1. Then it evaluates if an
alignment with an edit distance 1 reaches to the bottom right corner. If no alignment has been found, the
algorithm iteratively increases the edit distance until the bottom right corner is reached. The first align-
ment reaching the bottom right corner is an optimal alignment. Since the algorithm only computes matrix
fields eligible up to the edit distance of the optimal alignment, it saves the computation of unnecessary
fields.

In combination with the cutoff rule, Ukkonen’s algorithm uses additional properties of the dynamic
programming matrix to speed up the computation. In particular, the algorithm works on the diagonals of
the dynamic programming matrix. Since the values on a diagonal are monotonically increasing, only the
endpoints of running matches are important. If portions of two sequences are similar, the corresponding
values on the related diagonal will stay the same, see Figure 3.12. The exploitation of these portions of
running matches gives the algorithm its primary speedup.

37

3 Methods for Structural Comparison of Process Pairs

Sequence A

m

c

a

c

b

c

m

b

m

m c a c m a m

Sequence B

 234

 1

 0

-1

-2

-3

-4

-5

-6

-7

56789

5

4

6

3

4

5 4

3

1

2

3

4

5

6

7

8

9

1

1

2

3

4

5

6

7

8

2

1

1

2

3

4

5

6

7

3

2

1

1

2

3

4

3

2

1

5

4

3

2

6

5

4

3

2

7

6

5

4

3

32

0

3

0

0

0

0

11

2

2

3

1

2

2

3

4

3

2

3

Figure 3.12: Dynamic programming matrix using Levenshtein costs. Diagonals are indicated by dashed
lines. Ends of running matches on diagonals are indicated by red boxes. Unnecessary matrix
fields inside the cutoff area are depicted as semitransparent boxes.

The pseudo-code for Ukkonen’s algorithm is given in Algorithm 1. The key part of the algorithm is
the recursive function ukkonen that evaluates how far down a diagonal reaches for a given cost. The
optimal alignment will end at the bottom right corner of the dynamic programming matrix D. Thus, the
algorithm starts with the final diagonal, i.e. the diagonal that goes through the bottom right corner, and
has an edit cost of 0. Then it iteratively increases the edit cost until the final diagonal reaches down to
the corner, with editCost < |B|.

The computation of the distance of a diagonal is done by reducing the edit cost by one, editCost− 1,
and calculating the distances achieved by the same diagonal and the two neighboring diagonals. From
the three options the maximum distance is chosen and extended while a set of running matches exists
on the chosen diagonal. To store computed results efficiently, the algorithm operates on an alternative U
matrix, shown in Figure 3.14. The U matrix saves how far diagonals reach down, counted in positions

p M-N-p
0

D0,0

M-N

DM,N

Figure 3.13: Ukkonen cutoff scheme for M ≤ N . The optimal alignment is guaranteed to stay within
the band from p to M−N−p. Fields outside this area can be discarded in the computation.

38

3.2 Comparison of the Flat Function Call Structure

Algorithm 1: Ukkonen’s algorithm
Input: Sequences A and B.
Output: Edit cost editCost.

1 U [0, 0] // U matrix

2 Function editDistance(A, B)
3 editCost = 0

// Increase edit distance until diagonal reaches end of B
4 while ukkonen(|A| − |B|, editCost) < |B|
5 editCost++

6 return editCost

7 Function ukkonen(diagonal, cost)
// Starting condition

8 if |diagonal| == 0 and cost == −1
9 return −1

// Cutoff rule
10 if |diagonal| > cost
11 return −∞

// Entry already computed?
12 if alreadyComputed(U [diagonal, cost])
13 return U [diagonal, cost]

// Compute distance
14 distance = max(ukkonen(diagonal + 1, cost− 1),
15 ukkonen(diagonal, cost− 1)+1,
16 ukkonen(diagonal − 1, cost− 1)+1)

// Extend diagonal for a run of matches
17 while A[distance+ 1] == B[distance+ 1]
18 distance++

// Save and return distance for diagonal
19 U [diagonal, cost] = distance
20 return distance

of sequence B, for a given edit cost. The vertical axis denotes the diagonals, the horizontal axis denotes
the edit cost. The U matrix can also be translated into the dynamic programming matrix D. Rows in the
U matrix correspond to diagonals in the D matrix. Columns in the U matrix correspond to contours of
related costs in the D matrix. The U matrix for the example alignment is shown in Figure 3.14.

In terms of the D matrix, Ukkonen’s algorithm only computes matrix fields relevant for the optimal
alignment. Fields affected by the cutoff scheme are discarded. Additionally, the algorithm exploits
similarity in the form of running matches. Diagonals alongside running matches do not need to be
computed. Figure 3.15 depicts the calculated fields in the D matrix for the example alignment.

Ukkonen’s algorithm runs in O(nd) worst-case time complexity, where n is the accumulated length of
the sequences A and B, and d is the edit cost. The actual runtime of the algorithm is output dependent.
The speedup methods used in Ukkonen’s algorithm benefit most from the similarity between sequences.
A smaller edit cost d directly translates into a faster runtime of the algorithm. The memory complexity
of the algorithm is quadratic with respect to the edit distance O(d2). By combining Ukkonen’s algo-
rithm with Hirschberg’s divide and conquer approach the memory requirement can be reduced to linear
complexity O(d).

39

3 Methods for Structural Comparison of Process Pairs

Cost

D
iagonal

1 2 30

-1

0

1

2

3

4 5

5 6

7 9

Figure 3.14: The U matrix, used by Ukkonen’s algorithm, for the example alignment of sequences
mcacmam and mcacbcmbm.

Sequence A

m
c
a
c
b
c
m
b
m

m c a c m a m

Sequence B
0

3

0
0

0
0

1
2
2

3

2
1

Figure 3.15: Dynamic programming matrix showing the fields calculated by Ukkonen’s algorithm for the
example alignment. Red boxes depict the path of the optimal alignment.

3.2.3 Speedup of Special Alignment Cases

Dynamic programming algorithms always compute an alignment using the complete input sequences.
However, some special cases between sequences do not require the computation of an alignment. Thus,
a prior step detecting and handling special cases between two sequences may provide significant speedup.
Directly processing the following cases requires only linear complexity, except the check for a common
prefix or suffix, which can be computed in logarithmic complexity. Consequently, the handling of these
cases avoids their costly computation using algorithms with quadratic complexity.

The following checks of two sequences A and B may be performed prior to using sequence alignment
algorithms:

• Check if A equals B. If both sequences are similar, no alignment needs to be computed. Detection
of this case completely avoids the use of dynamic programming algorithms.

• Trim off common prefix and suffix. After the trimming only the remaining middle portion of A
and B needs to be aligned. If the middle portion is empty in one sequence, no alignment needs to
be computed. The empty positions can be directly labeled as gaps.

40

3.2 Comparison of the Flat Function Call Structure

• Check if one sequence (shorter one) is contained in the other (longer one). If one sequence fits
into the other, no alignment is required. The short sequence is directly aligned to the matching part
of the longer sequence. The remaining unmatched positions in the longer sequence are aligned to
gaps.

All described cases do not change the resulting optimal alignment, but significantly increase its com-
putation time.

3.2.4 Fast Alignment Heuristic

The quadratic time complexity of dynamic programming algorithms renders their usage for the alignment
of very long sequences infeasible. When all speedup techniques don’t reduce the sequence lengths to a
reasonable size that allows the computation of an alignment within a few seconds, a last resort measure
for the alignment is required. This section describes such an algorithm applicable to very long sequences.
The algorithm is a heuristic designed to quickly compute an alignment even of very long sequences.
However, the resulting alignment is not guaranteed to be mathematical optimal anymore.

a b

ca b a

B:

A: ca a b a a

c a a c a c a a

a

b

c

a

b

a

c

a a

b

a a

c

a a

c

a

c

a a

_= = =≠CMP:

a b

ca b a

B:

A: ca a b a a

c a a c a c a a

= = = == _

Figure 3.16: Fast alignment heuristic scheme.

Figure 3.16 depicts the algorithm scheme. The heuristic selects the most frequent function of both
sequences as anchors and directly aligns all occurrences. If one sequence has more occurrences of this
most frequent function than the other, the remaining unaligned occurrences stay simply appended at the
end of the sequence and are not used as anchors. The remaining functions between the anchors build
new sub-sequences for further alignment. If resulting sub-sequences should still be too long for dynamic
programming algorithms, the heuristic is recursively applied again.

3.2.5 Accuracy of Detection of Structural Differences

All above described algorithms, with exception of the fast alignment heuristic, compute a mathemati-
cal optimal alignment. However, there may be multiple optimal solutions for an alignment of two se-
quences. This introduces some ambiguity to an alignment. For instance when aligning the two sequences
a a b a a b a a and a a. Shown next are three alignments that represent optimal solutions to this
problem. The three alignments differ, but all are mathematically correct.

41

3 Methods for Structural Comparison of Process Pairs

a a b a a b a a a a b a a b a a a a b a a b a a

| | | | | |

a a - - - - - - - - - a a - - - a - - - - - - a

Usually a user expects to see only one certain solution. However, this solution directly depends on
the changes the user performed on the code. In this example, the user started with the longer sequence
a a b a a b a a and changed code until only the sequence a a remained. Depending on the actual
changes, only one solution appears as correct to the user. For instance, if the user removed all calls in
the code except the first two calls to a, the first alignment shown above would be the correct solution.
However, if the user edited the code in a different way, another alignment would be correct.

The introduced algorithms cannot solve this ambiguity, as the actual code changes are not detectable
in the available input data. Function sequences do not provide an additional relation other than the
function name. Without further knowledge, it is not possible to decide which two a-calls in the longer
sequence represent the two a-calls in the shorter sequence in the above example. Depending on the
implementation, all alignment algorithms select one optimal solution. Whether that chosen solution
reflects the user expectation cannot be evaluated with the available input data.

3.3 Accelerating the Alignment by Exploiting Hierarchy in
Function Call Structures

Although the dynamic programming approach for the comparison of flat sequences satisfies the func-
tional requirement, the quadratic time complexity means that the alignment of large traces cannot be
done in an acceptable amount of time. To align and compare long application runs, their function se-
quence lengths need to be reduced. A truncation of the sequences is not an option if the complete
application run should be considered. It is however possible to split up a sequence into several smaller
parts. If the length of the smaller parts is short enough, the alignment becomes feasible again. The fast
alignment heuristic, introduced in Section 3.2.4, has the potential of separating the complete application
sequence into smaller parts. Yet, this heuristic is designed as a last resort measure and not for intelli-
gently splitting complete application sequences. The challenge is to split up the complete sequence in
a reasonable way. In that regard, the function structure of application executions provides an advantage
over the flat sequences occurring in bioinformatics. Most applications do not consist of flat function call
sequences. Functions are rather called in a hierarchical fashion and their call structure can be represented
in a call tree. This call tree structure provides a powerful tool for splitting up the flat sequence. More-
over, the consideration of the already available call tree structure allows to design optimized algorithms
for program comparison, since it naturally represents the program structure. This section contributes
an algorithm that augments the dynamic programming method with a hierarchical comparison approach
based on the call tree structure of an application.

3.3.1 Hierarchical Alignment Algorithm

The proposed hierarchical approach uses the call tree structure to split a flat function call sequence into
multiple sub-sequences. Therefore, the hierarchical algorithm exploits the natural call structure by only
aligning direct sub-functions of related functions in the call tree. For that purpose the algorithm traverses
two call trees in parallel. While traversing the call tree, sub-sequences are built for sub-function calls
(child-nodes) of each function (parent node), as depicted in Figure 3.17. For the comparison only sub-
alignments of the sub-sequences are necessary, as shown in Figure 3.18. The complete alignment is then
constructed from the smaller sub-alignments. The result of the hierarchical alignment for the example
processes is depicted in Figure 3.17.

42

3.3 Accelerating the Alignment by Exploiting Hierarchy in Function Call Structures

a

main
calc

B:

b a

a

main
calc

A:

a

= = = _ = = ≠=CMP:

b
calc

b

calc

=
=

=_
=

= ≠=

CMP:

= = = = ===

c c

Figure 3.17: Hierarchical alignment scheme. The complete sequence is split up into multiple sub-
sequences according to the call tree structure. In multiple sub-alignment steps only related
sub-sequence pairs are aligned. Finally, the complete alignment is constructed from the
sub-alignment results.

A:

main

=

main

B:

CMP:

c

A:

calc calc

= =

calc calc

B:

CMP:

A:

a b

= =_

a b

B:

CMP:

A:

a

= ≠

a b

B:

CMP:

c

Figure 3.18: Individual alignment steps. Only sub-sequences built from direct child-nodes of the two
compared parent nodes are aligned. Individual alignments are significantly shorter than the
complete function call sequence.

43

3 Methods for Structural Comparison of Process Pairs

Algorithm 2: Hierarchical Alignment Algorithm.
Input: Processes A and B.
Output: Flat alignment of input processes.

1 alignedCallT ree = 0 // Call tree holding hierarchical alignment (HA)

2 Function computeHierarchicalAlignment(A, B)
// Get call trees from processes

3 callT reeA = getCallTree(A)
4 callT reeB = getCallTree(B)

// Start hierarchical alignment with root nodes
5 compareNodes(getRootNode(callT reeA), getRootNode(callT reeB))

// Traverse HA and construct flat alignment
6 alignment = constructFlatAlignment(alignedCallT ree)

// Return flat alignment
7 return alignment

8 Function compareNodes(nodeA, nodeB)
// Compare functions of input nodes

9 state = compareFunctions(nodeA, nodeB)
// Add new node with result state (Equal, Diff, Gap) to HA

10 addNewNode(alignedCallT ree, state)

// If both nodes have no child-nodes the comparison stops here
11 if false = hasChildNodes(nodeA) ∧ false = hasChildNodes(nodeB)
12 return // Both nodes are leaf nodes, done

// If one node is empty, add child-nodes of other node
13 if state = Gap
14 foreach childNode in selectNonGapNode(nodeA, nodeB)

// Add child-nodes of non-gap node to HA
15 compareNodes(childNode, 0)

16 return // done

// Compare child-nodes of input nodes

// Generate sequences from child-node calls of both nodes
17 subSequenceA = genChildNodeSequence(nodeA)
18 subSequenceB = genChildNodeSequence(nodeB)

// Compute sub-alignment of sequences
19 subAlignment = calculateAlignment(subSequenceA, subSequenceB)

// Iterate over sub-alignment
20 foreach childNodePair in subAlignment

// Get aligned child-nodes from sub-alignment
21 childNodeA, childNodeB = getChildNode(childNodePair)

// Continue HA with child-nodes
22 compareNodes(childNodeA, childNodeB)

23 return // done

44

3.3 Accelerating the Alignment by Exploiting Hierarchy in Function Call Structures

The pseudo-code given in Algorithm 2 describes the hierarchical alignment algorithm in detail. The
algorithm uses the call trees of the two input processes for the comparison. During the traversal of the
two call trees, the algorithm constructs an alignment call tree containing the alignment information. The
algorithm starts with the root nodes of the two call trees as their start nodes. Each comparison step first
compares the current parent nodes and adds the result to the alignment call tree. Then, it constructs
sub-sequences from the child-nodes of the parent nodes and aligns these sub-sequences. Subsequently, it
iterates over the sub-alignment and starts new comparison steps with aligned child-nodes. This way, the
algorithm traverses both input call trees. After complete traversal, the alignment call tree contains the
alignment information for both input call trees. This information is sufficient for the comparison of both
processes. Optionally, it is possible to construct a flat alignment from the alignment call tree.

3.3.2 Scalability Considerations

The hierarchical comparison approach shortens the event sequence length for individual comparisons
by leveraging the call tree structure. As the runtimes of the presented dynamic programming algorithms
increase quadratically with sequences lengths, a shortening of the sequence lengths will result in a notable
runtime reduction.

The steps required for computing a hierarchical alignment of two processes are the parallel traversal
of the call trees and the computation of all sub-alignments of the sub-sequences. The traversal of the
call trees can be computed in linear time complexity. The alignments of the sub-sequences are com-
puted using dynamic programming algorithms. Formally, the complexity for comparing two processes
is O(g + h · n2), with two input call trees containing g elements, requiring h sub-alignments with
sub-sequences of maximum length n. Since the quadratic component dominates, the worst-case time
complexity of the hierarchical alignment algorithm is still quadratic, O(n2).

Yet, before each sub-alignment step, the lengths of the sub-sequences are known beforehand. This
enables an estimation of the time required to compute an individual sub-alignment. If the expected
alignment time exceeds a set limit, the algorithm can select the fast-alignment-heuristic method for com-
puting the sub-alignment. This allows to control the impact of the quadratic component in the algorithm.
Thus, the expected time complexity for computing a hierarchical alignment of two processes is linear,
O(g). The benchmark depicted in Figure 3.19 supports this assumption, by measuring how varying sub-

Figure 3.19: Analysis of the influence of varying sub-sequence lengths on the performance of the hierar-
chical alignment algorithm.

45

3 Methods for Structural Comparison of Process Pairs

sequence lengths influence the algorithmic performance. The figure shows the time required to align
benchmark call trees with the HA algorithm. Sub-sequences are aligned using the Hirschberg algorithm.
The benchmark consists of three sets of call trees with rising element numbers. The size of the com-
pared call trees, up to 16 million elements, is given on the x-axis in Figure 3.19. Each call tree set uses
a fixed sub-sequence length to split up the complete sequence. For instance, in the case of the second
call tree set (red rectangles in Figure 3.19), the complete sequence length of the call tree is separated
into multiple sub-sequences of length 100. Figure 3.19 verifies a linear increase in runtime for all test
sets. The alignment time for call trees with sub-sequences of length of 1,000 is a bit higher than in the
case of sub-sequences with length 100, as the Hirschberg algorithm needs to align longer sub-sequences.
Nevertheless, the linear part still dominates the algorithm performance in all test cases. A more detailed
performance analysis of the HA algorithm using real-world applications is given in Section 3.5.2.

In this work all comparisons are computed in serial. Yet, the hierarchical alignment algorithm provides
potential for parallelization in several ways. A pairwise comparison of two processes does not depend on
other processes. Thus, comparing runs with large process counts is embarrassingly parallel. Additionally
to the parallel execution of the complete algorithm, also the algorithm itself can be parallelized. During
the traversal of the call tree, the algorithm follows multiple paths from the root node to leaf nodes. The
computation of different paths can be computed in parallel. Utilizing these options would improve the
alignment times presented in this work.

3.4 Differences between Flat and Hierarchical Comparisons

The hierarchical alignment heuristic improves alignment speed considerably, but comes at the price that
the alignment result might not be optimal anymore. This section explains the differences between flat
and hierarchical alignment results. Furthermore, it introduces a method to measure the error introduced
by the hierarchical approach.

3.4.1 Alignment Errors Introduced by Hierarchical Approach

The hierarchical alignment approach may compute a non-optimal alignment. The source of this error
is the task of splitting up the complete function sequence into sub-sequences. In this task the two call
trees of the compared processes are traversed in parallel. During the traversal only direct child nodes
of related parent nodes are aligned. The resulting final alignment of both processes is constructed from
numerous small individual sub-alignment steps. Consequently, each individual alignment step only con-
siders a small part of the complete sequence. While each individual sub-alignment is still optimal, the
construction process is not guaranteed to compose an optimal final alignment. This is in contrast to the
flat alignment algorithms that consider the complete sequence in one step.

The extent of errors the hierarchical approach introduces depends on how differences between pro-
cesses are distributed in the call tree. Since the hierarchical approach only considers one call level in each
comparison step, it cannot correctly recognize changes spanning multiple call levels. Figure 3.20 demon-
strates this situation using an example. In this example the two processes depicted in Figure 3.20(a) are
compared. The figure shows the call trees and flat function sequences, respectively. The differences be-
tween both processes occur in the middle call level. The first function call A in Process A is replaced by
function call B in Process B. Additionally, the second function call A in Process A is deleted in Process B.
Figure 3.20(b) shows the alignment of the flat function sequences using the Needleman–Wunsch (NW)
algorithm. The Needleman–Wunsch algorithm correctly detects both changes. The change of function
A to function B is detected with the three diff states. The deletion of the second function A is identified
with two gap states. The alignment at the bottom of Figure 3.20(b) represents an optimal alignment
of both processes. Figure 3.20(c) shows the result of the hierarchical alignment (HA) algorithm. The
HA algorithm detects the first change correctly. Since the algorithm aligns child nodes regardless of the
alignment state of the parent nodes, it detects the similar child nodes a and b correctly. However, the HA

46

3.4 Differences between Flat and Hierarchical Comparisons

Process A

Process B

m

am A A A A Ab m a m

am B B B ab m m

A
a

A
b a

B
a

a
m

b

(a) Call trees and flat function sequences of the two input processes. Changes occur
in the middle call level.

Process A

Process B

= = _= =≠ =NW Alignment _=≠≠

am A A A A Ab m a m

am B B B ab m m

(b) Optimal alignment of the flat function sequences calculated with the Needle-
man–Wunsch (NW) algorithm.

Process A

Process B

m
A

a
A

b a

B
a

m

= = =

b

HA Flat Visualization

=Hierarchical Alignment

_
≠

≠ _≠ ≠

a

≠

≠ ≠

==

==

(c) Non-optimal result of the hierarchical alignment (HA) algorithm. The deletion
of the second function A on Process B is detected wrong. Instead with a gap, the
function A on Process A is aligned with the function a of Process B.

Figure 3.20: Example showing a non-optimal result of the hierarchical alignment algorithm. The algo-
rithm cannot detect changes spanning multiple call levels.

47

3 Methods for Structural Comparison of Process Pairs

Process A

Process B

m

am A A A A Aa a m a

am A A A Aa a m

A
a

A
a a

m

a
A

b b b

A
a a a

A
b b b

AA m b b bA A A m

AA b b bA A m

(a) Call trees and flat function sequences of the two input processes. One invocation of function
A is added in the middle of Process A.

Process A

Process B

am A A A A Aa a m a

am A A A Aa a m

AA m b b bA A A m

AA b b bA A m

= = == = _ _ == == == = = ==NW Alignment _ _ = =

(b) Optimal alignment of the flat function sequences calculated with the Needleman–Wunsch
(NW) algorithm.

Process A

Process B

m
A

a
A

a a

m

a
A

b b b

A
a a a

A
b b b

= = =HA Flat Visualization

=Hierarchical Alignment

_

≠

==

==

_
_ _ _

=
=

=
_≠

_ _ _ _ _ _ ___= = = = == = = = =

(c) Non-optimal result of the hierarchical alignment (HA) algorithm. The algorithm does not detect the insertion of the
second function A on Process A and aligns the wrong invocations of function A.

Figure 3.21: Example showing a non-optimal result of the hierarchical alignment algorithm due to disre-
garded sub-levels (child nodes) of aligned nodes.

48

3.4 Differences between Flat and Hierarchical Comparisons

algorithm fails to detect the second change correctly. Since the second sub-alignment step only considers
child nodes of the function m, the HA algorithm aligns the function A of Process A with function a of
Process B. This results in a diff state for this comparison. The subsequent alignment step for these two
nodes can only align the function a of Process A to a gap in Process B. Due to this inaccurate detection
of the second change the resulting constructed final alignment, shown at the bottom of Figure 3.20(c), is
not optimal anymore.

A different source of non-optimal alignments stems from the fact that sub-levels are not considered
in individual alignment steps. Figure 3.21 provides an example. As depicted in Figure 3.21(a), this ex-
ample compares three calls to function A in Process A with two calls to function A in Process B. The
difference between both processes is the middle function call A that is deleted in Process B. The Needle-
man–Wunsch algorithm detects this change mathematically correctly, shown in Figure 3.21(b). The
algorithm cannot differentiate between the four calls from A to a in Process A. The used implementation
of the Needleman–Wunsch algorithm selects the first call from A to a as gap. This choice might not re-
flect the intuitive result expected by the analyst, but nevertheless represents an optimal solution. The HA
algorithm aligns all A function calls in the second sub-alignment step, as shown in Figure 3.21(c). Since
the algorithm disregards the sub-levels (child nodes) of aligned nodes, all A function calls are considered
as equivalent. In this case, the HA algorithm aligns the first two A function calls of each process. The
third function call to A in Process A is aligned to a gap. This choice results in a non-optimal alignment
as the second function call to A in Process B is not aligned to its counterpart in Process A anymore.
Compared with the optimal alignment shown in Figure 3.21(b), the constructed final alignment depicted
at the bottom in Figure 3.21(c) shows more gap states and one diff state.

Yet, besides the described examples, there is also the possibility that the HA algorithm computes an
optimal alignment. Depending on the distribution of changes in the call tree, the HA result error may
vary. Therefore, the next section describes a method to quantify the error introduced by the HA approach.

3.4.2 Comparison of Hierarchical and Flat Alignments

The hierarchical alignment algorithm is not guaranteed to compute optimal alignments. A way of mea-
suring the error introduced by this heuristic approach is to compare alignment scores. Therefore the
alignment for two processes is computed with a flat alignment algorithm and the HA algorithm, respec-
tively. Then, based on the following scoring scheme, the score of each alignment can be calculated by
adding up all states.

Match Score: 2

Mismatch Score: −1

Gap Score: −1

However, the score number derived directly from both alignments is unsuitable for comparison. De-
pending on the changes between the input processes, the scores even for similar alignment results may
differ. Figure 3.22 demonstrates how direct scores for flat and hierarchical alignments differ. The correct
alignment score for the example shown in Figure 3.22 is 13. Figure 3.22(b) demonstrates how this score
is derived from the Needleman–Wunsch alignment. The flat and the hierarchical algorithm produce opti-
mal alignments for this example. Consequently, both alignments should yield the same alignment score.
However, taking the score directly from the HA, shown in the middle of Figure 3.22(c), yields a too low
number. Taking the score from the flat sequence of the HA, shown in the bottom of Figure 3.22(c), yields
a too high number.

In order to provide a suitable measure for the comparison of alignments, the extraction of the score
from the HA requires adaption. First, to be comparable with the Needleman–Wunsch alignment result,
the flat sequence of the HA needs to be considered. The difference causing dissimilar scores between
the Needleman–Wunsch alignment result and the flat sequence of the HA result is the representation of
Gap states. If gaps occur below the top call level, each gap always results from two Gap states in the

49

3 Methods for Structural Comparison of Process Pairs

Process A

Process B

m

am A A A A Ab m a m

am A A A Am b m

A
a

A
b a

A
a

A
m

b

(a) Two input processes. Differences occur on the last call level.

+2 +2 -1+2 +2 -1 +2-1 +2 +2 +2Score = 13

am A A A A Ab m a m

am A A A Am b m

Process A

Process B

= = _= = ≠ =NW Alignment _ = = =

(b) Optimal alignment of the flat input sequences computed with the Needleman–Wunsch (NW) algo-
rithm. The alignment achieves a score of 13.

Process A

Process B

m
A

a
A

b a

A
a

m

= = =

b

HA Flat Visualization

=Hierarchical Alignment

_

A

≠

≠

=
=

==

=
_

=== =

+2 +2 +2

+2

-1

-1

-1

+2
+2

+2+2

+2
-1

+2+2+2 +2HA Flat Score

HA Score = 6

= 16

(c) Optimal alignment result computed with the hierarchical approach (HA). Taking the score from the
HA yields only a score of 6. Taking the score from the flat visualization of the HA yields a score of 16.

Figure 3.22: Scores for flat and hierarchical alignments may differ and are not directly comparable.

50

3.4 Differences between Flat and Hierarchical Comparisons

+2 +2 -1 +2-1+2Score = 6

Comparison State

Process A

Process B

a b

= = = =≠_

m

Hierarchical Alignment State

m b m

m m c ma

= = = =≠_

Figure 3.23: HA score correction. In case of differences on the top call level no correction is necessary.
Flat and hierarchical alignment scores are equal.

Needleman–Wunsch algorithm. This is due to the part of the code that calls a removed function (i.e.,
Gap). This part in the parent node of the Gap is also removed along with the removed function. In the
example in Figure 3.22(a) the first function A of Process A is executed in three parts. Process B executes
the same function in only two parts. The reason is that this function A does not call function b on Process
B. Consequently, the missing third part of function A on Process B needs to be represented by a Gap state.
This results in the following adaption requirement for the extraction scores from flat HA sequences. For
each Gap below the top call level, an additional Gap needs to be selected for the state occurring before
the Gap state. With this adaption the score extracted from the HA result equals the score extracted from
the NW alignment.

The following three examples demonstrate the extraction of comparable alignment scores.
No adaptations are necessary in the case of gaps and differences occurring on the top call level. The

scores extracted from the HA algorithm and the Needleman–Wunsch algorithm can be compared di-
rectly. Figure 3.23 illustrates this case with the comparison of the following two processes. Process
A: m a b m b m and Process B: m a m c m. The HA result achieves a score of 6. The Needle-
man–Wunsch alignment result for the same sequences is shown as follows:

m a b m b m

| | | - |

m a - m c m

Score: +2 +2 -1 +2 -1 +2 = 6

The flat algorithm also yields an alignment score of 6. For changes on the top call level, both alignment
results are directly comparable.

The situation is different when changes occur on intermediate call levels. As described above, cor-
rections for the Gap costs need to be applied for the HA result. Figure 3.24 demonstrates the re-
quired corrections with an example comparing Process A: m A a A b A m B c B m and Process
B: m C d C m. As illustrated in Figure 3.24 with a shaded field, the first comparison state also needs
to be counted as Gap. This field marks the calling code on the parent node of the large Gap series that
represents the missing function A on Process B. With applied correction the HA results in a score of −5.
The alignment result for this example calculated with the Neddleman-Wunsch algorithm is as follows:

m A a A b A m B c B m

| - - - |

- - - - - - m C d C m

Score: -1 -1 -1 -1 -1 -1 +2 -1 -1 -1 +2 = -5

51

3 Methods for Structural Comparison of Process Pairs

-1 -1-1 +2 -1 +2Score = -5-1 -1 -1 -1 -1

_

Comparison State

Process A

Process B

= ≠ =

Hierarchical
Alignment State

=

≠

_ _

_ _
≠

____ ≠≠

m
A B

cba

m
C
d

Figure 3.24: HA score correction for differences on the middle call level. Gap states require an additional
gap state on the above call level to mark the missing calling code. With applied correction,
the HA yields a score of −5 for the example.

Also the alignment from the Needleman–Wunsch algorithm yields a score of −5. When applying the
gap corrections, the scores of both alignment algorithms agree.

In case of changes on the bottom levels, or the leaf nodes, of the call tree, the correction procedure
works accordingly to changes on middle levels. Figure 3.25 shows an example comparison of Process
A: m A a A b A m A a A m with Process B: m A a A m A c A m. This example matches
the situation shown in the beginning in Figure 3.22. With applied corrections the HA algorithm now
results in an alignment with the score of 13. This is consistent with the result of the Needleman–Wunsch
algorithm as shown below.

m A a A b A m A a A m

| | | | | | - | |

m A a - - A m A c A m

Score: +2 +2 +2 -1 -1 +2 +2 +2 -1 +2 +2 = 13

The introduced corrections to the calculation of the HA alignment score result in a comparable align-
ment score. The described method provides a measure to quantify the error introduced by the HA algo-
rithm heuristic.

3.5 Evaluation

This section evaluates the performance and accuracy of the introduced alignment algorithms. It starts
with an analysis of dynamic programming algorithms using multiple flat alignment cases. Then, a case
study with real-world applications evaluates both the performance of the hierarchical approach in contrast
to flat alignments and the error between flat and hierarchical alignments.

The case study in this section uses the following two real-world applications. AMG2006 [34], a paral-
lel algebraic multigrid solver for linear systems arising from problems on unstructured grids. ParaDiS [7],
a simulation that models the dynamics of dislocation lines as they interact and move in response to the
forces imposed by external stress and inter-dislocation interactions.

52

3.5 Evaluation

+2 +2 +2 +2-1-1 +2+2 -1 +2 +2Score = 13

Comparison State

Process A

Process B

= = = =_ == ≠ = =_

Hierarchical
Alignment State =

=
=

=

_ ≠

m
A A

a b a

m
A A

ca

Figure 3.25: HA score correction for differences on the bottom call level. According to changes on the
middle call levels, gap states on bottom call levels need an additional gap on the above call
level. With applied correction the HA yields a score of 13 for the shown example.

All performance measurements have been conducted on an HPC system with the following setup. One
compute node is equipped with two Intel Xeon E5-2680 v3 processors. Each CPU provides 12 cores and
runs at 2.50 GHz with hyper-threading disabled. The available memory of a node ranges from 64 GB
to 256 GB. For the alignment benchmarks, one node has been reserved exclusively with only one core
running the benchmark actively. All reported results in this section are always the median of ten repeated
measurement runs.

3.5.1 Performance of Flat Alignment Algorithms

To evaluate the performance of the described dynamic programming algorithms, input sequences with
rising lengths are compared. In this evaluation, the following sequence lengths have been used: 100, 1 k,
10 k, 100 k, 1 M.

The alignment algorithms use a dynamic programming matrix to store computed results. Algorithms
with quadratic memory complexity, such as the Needleman–Wunsch algorithm, need to hold the com-
plete matrix in memory. Table 3.1 shows the memory consumption of such algorithms with respect to
the input sequence length. Both input sequences are assumed to have the same length.

Table 3.1: Memory requirement for the Needleman–Wunsch algorithm.
SEQUENCE LENGTH MEMORY REQUIREMENT

100 ~39 kB
1 k ~4 MB

10 k ~381 MB
100 k ~37 GB

1 M ~3725 GB
Following the results of Table 3.1, it is not possible to compute sequences longer than 100 k elements

with the available main memory of the test system. Algorithms with linear memory complexity, such
as the Hirschberg algorithm, are not restricted by that quadratic factor and are capable of computing
sequence lengths beyond 1 M elements.

53

3 Methods for Structural Comparison of Process Pairs

Since the performance of Ukkonen’s algorithm depends on the similarity of the input sequences, this
evaluation uses five different input sets. Each input set provides a fixed similarity, ranging from com-
pletely similar to completely dissimilar sequences. The individual input sets and the related benchmark
results are described in the following.

Equal In this test case both sequences are completely similar.

a a a a a a a a a a a a a a a a a a a a

| | | | | | | | | | | | | | | | | | | |

a a a a a a a a a a a a a a a a a a a a

Half-Equal In this test case one constant sequence is compared with an alternating sequence. Both
sequences share 50% similarity.

a a a a a a a a a a a a a a a a a a a a

| - | - | - | - | - | - | - | - | - | -

a b a b a b a b a b a b a b a b a b a b

Small Equal Blocks This test case sequences consist of repetitions of a small block of high similarity
followed by a large block of dissimilarity. In total both input sequences share 30% similarity.

a a a a a a a a a a a a a a a a a a a a

| | | - - - - - - - | | | - - - - - - -

a a a b b b b b b b a a a b b b b b b b

Large Equal Blocks This test case sequences consist of repetitions of a large block of high similarity
followed by a small block of dissimilarity. In total both input sequences share 70% similarity.

a a a a a a a a a a a a a a a a a a a a

| | | | | | | - - - | | | | | | | - - -

a a a a a a a b b b a a a a a a a b b b

Different In this test case both input sequences are completely different. They share no similarity.

a a a a a a a a a a a a a a a a a a a a

- - - - - - - - - - - - - - - - - - - -

b b b b b b b b b b b b b b b b b b b b

Tables 3.2, 3.3, 3.4, 3.5, and 3.6 summarize the benchmark results for all input sets and sequence
lengths.

The Needleman–Wunsch and Hirschberg algorithms are independent from the input data similarity.
Consequently, both algorithms show similar runtimes across all input data test sets. With rising se-
quence lengths, the Needleman–Wunsch and Hirschberg algorithm show the expected quadratic increase
in runtime. Figure 3.27 illustrates this behavior. The value range is plotted on a logarithmic scale in
Figure 3.27. Thus, the visible linear increase translates to quadratic rise on a linear scale.

Compared with the Needleman–Wunsch algorithm runtimes, the Hirschberg algorithm shows a con-
siderable higher runtime. This is caused by the numerous re-computations necessary to achieve linear
memory complexity.

54

3.5 Evaluation

Table 3.2: Alignment times for equal sequences.
SEQUENCE LENGTH

ALGORITHM 100 1,000 10,000 100,000 1,000,000
Needleman–Wunsch <1ms 4ms 562ms 54s 938ms Out of Memory
Hirschberg <1ms 29ms 2s 869ms 287s 932ms 8h 11min
Ukkonen <1ms <1ms <1ms 2ms 21ms

Table 3.3: Alignment times for half-equal sequences.
SEQUENCE LENGTH

ALGORITHM 100 1,000 10,000 100,000 1,000,000
Needleman–Wunsch <1ms 4ms 563ms 54s 946ms Out of Memory
Hirschberg <1ms 29ms 2s 897ms 289s 123ms 8h 8min
Ukkonen <1ms 3ms 149ms 12s 956ms 21min 11s

Table 3.4: Alignment times for small equal blocks sequences.
SEQUENCE LENGTH

ALGORITHM 100 1,000 10,000 100,000 1,000,000
Needleman–Wunsch <1ms 4ms 565ms 54s 833ms Out of Memory
Hirschberg <1ms 29ms 2s 880ms 289s 915ms 8h
Ukkonen <1ms 3ms 233ms 22s 980ms 40min 13s

Table 3.5: Alignment times for large equal blocks sequences.
SEQUENCE LENGTH

ALGORITHM 100 1,000 10,000 100,000 1,000,000
Needleman–Wunsch <1ms 4ms 563ms 54s 819ms Out of Memory
Hirschberg <1ms 29ms 2s 906ms 290s 982ms 8h 6min
Ukkonen <1ms 1ms 45ms 4s 378ms 7min 37s

Table 3.6: Alignment times for completely dissimilar sequences.
SEQUENCE LENGTH

ALGORITHM 100 1,000 10,000 100,000 1,000,000
Needleman–Wunsch <1ms 4ms 563ms 54s 811ms Out of Memory
Hirschberg <1ms 29ms 2s 870ms 290s 426ms 8h
Ukkonen <1ms 4ms 344ms 34s 273ms 60min 51s

55

3 Methods for Structural Comparison of Process Pairs

Ukkonen’s algorithm benefits from high similarity between input sequences. In the test case with
equal sequences, the algorithm only needs to compute the main diagonal. This results in only linear
increase of runtime with respect to sequence lengths. Even sequences with lengths of 1 M elements can
be aligned in a few milliseconds. With rising dissimilarity, Ukkonen’s algorithm computes the alignment
slower. The increase in runtime is the direct result of the dissimilarity between the input sequences.
The dissimilarity forces the algorithm to compute more cells in the dynamic programming matrix. Yet,
compared to the two other algorithms, Ukkonen’s algorithm still computes the result noticeably faster.
Even for completely dissimilar input sequences Ukkonen’s algorithm computes the alignment consider-
ably faster than the other two algorithms. The reason is that this implementation of Ukkonen’s algorithm
detects that both sequences are completely dissimilar. In this special case the algorithm can stop the
divide-and-conquer process and align both sequences completely on the main diagonal of the dynamic
programming matrix. Since the related sequence pairs (on the main diagonal) are not equal, the algo-
rithm cannot directly reach down the main diagonal but also needs to compute cells around the main
diagonal. However, the number of computed cells is still considerably lower than in the case of the other
two algorithms. The Needleman–Wunsch algorithm always computes the complete dynamic program-
ming matrix. The Hirschberg algorithm also computes the complete matrix with many cells computed
repeatedly. Table 3.7 compares the number of computed cells in the dynamic programming matrix for
an example alignment of two sequences of 10 characters in length. In the first case, both input sequences
are completely similar. In the second case, both input sequences are completely dissimilar.

Table 3.7: Number of computed dynamic programming matrix cells for an example alignment of two
character sequences of length 10.

ALGORITHM EQUAL INPUT SEQUENCES DISSIMILAR INPUT SEQUENCES

Needleman–Wunsch 121 121
Hirschberg 304 304
Ukkonen 11 61

Discussion of Benchmark Results The quadratic memory requirement of the Needleman–Wunsch
algorithm renders its use for the alignment of large sequences impossible due to the limited size of avail-
able main memory. Sequences with lengths of about 100k elements already need special HPC systems
for the alignment. Aligning sequences with more than 1M elements is impossible even on most HPC
systems. Sequences constructed from real-world applications easily contain more than 1M elements.
This forbids the use of the Needleman–Wunsch algorithm for the alignment of application sequences.

The Hirschberg and Ukkonen’s algorithm do not present that limitation. By applying a divide-and-
conquer strategy they require only linear memory complexity to compute an alignment. However, this
comes at the cost of recomputing erased values. Thus, especially the Hirschberg algorithm runs slower
than the Needleman–Wunsch algorithm. With runtimes of more than eight hours for sequences with 1M
elements, it is not feasible to use this algorithm for the alignment of real-world application sequences.

The Needleman–Wunsch and Hirschberg algorithm’s performance is independent from the similarity
of the input sequences. As shown in the five test cases, the alignment times of both algorithms stay
almost constant for input sequences with changing similarities. Ukkonen’s algorithm presents different
behavior. This algorithm performs faster for sequences with higher similarity. The measurements in five
test cases support this thesis. The higher the similarity of the input sequences, the shorter the runtime
of the algorithm. Figure 3.26 compares the alignment times of the Needleman–Wunsch algorithm and
Ukkonen’s algorithm across all test cases. Shown are the alignment times for sequences with 10,000
elements length.

In general all algorithms show a quadratic increase in runtime with rising sequence lengths. Fig-
ure 3.27 depicts the alignment times for all three algorithms on a logarithmic scale. Shown are the times
required to align completely different input sequences. The quadratic increase in runtime results in very
high alignment time for long input sequences.

56

3.5 Evaluation

Figure 3.26: Alignment times for changing input similarities.

For sequences sharing very high similarity, Ukkonen’s algorithm has the potential to align even large
sequences in an acceptable time. However, this assumption cannot be guaranteed for the comparison
of sequences constructed from real-world applications. Additionally, the length of such sequences may
easily exceed 1M elements. This might also result in unacceptable alignment times using Ukkonen’s
algorithm.

Figure 3.27: Alignment times for dissimilar input sequences.

Summary Dynamic programming algorithms allow a detailed detection of structural similarities and
differences between application processes. Yet, although the dynamic programming approach satisfies
the functionality requirement, the quadratic time complexity forbids an alignment of long sequences in
a reasonable time. A method to speed up the alignment is needed.

57

3 Methods for Structural Comparison of Process Pairs

3.5.2 Performance of the Hierarchical Alignment Algorithm

This section contrasts the performance of the dynamic programming algorithms with the performance of
the hierarchical approach for the comparison of real-world applications. Therefore, four test cases have
been created using the two applications AMG2006 [34] and ParaDiS [7].

To provide a measure for similarity, the input sequences have been aligned using the hierarchical
approach. Then, the percentage of equal areas in the alignment indicates the similarity between the input
sequences.

For each test case a table provides an overview of how the hierarchical approach splits up the input
sequences into sub-sequences. Each sub-alignment step is counted in the table and grouped by the length
of its input sub-sequences. In the case that the length of the two input sub-sequences differs, the longer
sequence is used as grouping criterion.

AMG2006 In this test case, sequences from two different versions of the application AMG2006 [34]
have been compared. The two input sequences are constructed from the first process of each application
version. The lengths of the two sequences are 51,205 and 35,618, respectively. Both sequences share a
similarity of 60% equal areas.

Table 3.8: Alignment times for AMG2006 processes.
ALGORITHM ALIGNMENT TIME

Needleman–Wunsch 9s 902ms
Hirschberg 55s 235ms
Ukkonen, with speedup techniques 687ms
Ukkonen, without speedup techniques 711ms
Hierarchical Alignment, with speedup techniques 35ms
Hierarchical Alignment, without speedup techniques 40ms

This first test case requires the alignment of relatively short sequences. This allows to conduct an
alignment with the Needleman–Wunsch algorithm. All runtimes of the three flat alignment algorithms
are in the range of the alignment times already measured in the previous benchmarks with artificial
input sequences. Both input sequences share high similarity that results in considerably faster runtime
of Ukkonen’s algorithm compared to Needleman–Wunsch and Hirschberg. Using speedup techniques
allows to achieve a small performance improvement for Ukkonen’s algorithm. The runtime decreases by
3.4% with enabled speedup techniques.

Using the hierarchical approach speeds up the alignment performance considerably. The hierarchi-
cal alignment only needs 5.6% of the time required by Ukkonen’s algorithm. The usage of speedup
techniques additionally decreases the runtime of the hierarchical alignment by 12.5%.

Table 3.9: Number of sub-alignments during the hierarchical alignment of AMG2006.
SUB-SEQUENCE LENGTH NUMBER OF ALIGNMENTS

0 - 100 4,682
101 - 1,000 7

1,001 - 5,000 1

As shown in Table 3.9, the hierarchical approach splits up the input sequences into sub-sequences with
primarily less than 100 elements length. Due to the short length of the input sequences, all algorithms
are capable to produce an alignment in less than one minute for this test case.

58

3.5 Evaluation

ParaDiS The second test case is a comparison of processes from two versions of the application
ParaDiS [7]. The lengths of the input sequences are 1,953,973 and 2,379,035, respectively. The sim-
ilarity between both sequences is about 40%. The first process of each application version is compared
in this test.

Table 3.10: Alignment times for ParaDiS processes.
ALGORITHM ALIGNMENT TIME

Needleman–Wunsch Out of Memory
Hirschberg >24h
Ukkonen, with speedup techniques 3h 13min
Ukkonen, without speedup techniques 3h 19min
Hierarchical Alignment, with speedup techniques 11s 291ms
Hierarchical Alignment, without speedup techniques 11s 571ms

The length of the input sequences forbids an alignment with the Needleman–Wunsch algorithm. The
Hirschberg algorithm requires more than 24 hours to compute an alignment. Even Ukkonen’s algorithm
with active speedup techniques runs for more than three hours to compute the alignment.

The hierarchical alignment algorithm needs only about 11 seconds for the alignment. This presents a
significant performance improvement over the flat dynamic programming algorithms. This is possible
by splitting up the input sequence into 268,692 sub-sequences, see Table 3.11.

Table 3.11: Number of sub-alignments during the hierarchical alignment of ParaDiS.
SUB-SEQUENCE LENGTH NUMBER OF ALIGNMENTS

0 - 100 267,622
101 - 1,000 822

1,001 - 5,000 132
5,001 - 10,000 116

All flat dynamic programming algorithms cannot compute the alignment in reasonable time. Only the
hierarchical approach is applicable for the comparison of such long application sequences.

ParaDiS with Increased Detail This test case uses the application ParaDiS [7] again. In contrast to
the previous test, the application processes have been measured with increased detail. The measurement
data of this test case includes more application activities, and thus, results in longer input sequences. The
two sequences have lengths of 22,486,844 and 20,387,720, respectively. In this test, the first process is
compared with the second process of the same application. Both input sequences share about 90% equal
areas after the hierarchical alignment.

Table 3.12: Alignment times for ParaDiS processes (increased detail version).
ALGORITHM ALIGNMENT TIME

Needleman–Wunsch Out of Memory
Hirschberg >24h
Ukkonen, with speedup techniques 2h 16min
Ukkonen, without speedup techniques 2h 20min
Hierarchical Alignment, with speedup techniques 22s 392ms
Hierarchical Alignment, without speedup techniques 24s 277ms

59

3 Methods for Structural Comparison of Process Pairs

Contrary to the previous case, Ukkonen’s algorithm performs faster for this comparison. This is due
to the considerably higher similarity of the input sequences. This allows a more efficient computation of
Ukkonen’s algorithm.

Table 3.13: Number of sub-alignments during the hierarchical alignment of ParaDiS (increased detail).
SUB-SEQUENCE LENGTH NUMBER OF ALIGNMENTS

0 - 100 4,973,475
101 - 1,000 926

1,001 - 5,000 70
5,001 - 10,000 164

>10,000 53

As shown in Table 3.13, the hierarchical approach mainly needs to align sequences with less than 100
elements length.

ParaDiS Compared with AMG2006 This test case demonstrates the comparison of completely
unrelated application processes. In this test the first process of ParaDiS [7] is compared with the first
process of AMG2006 [34]. The length of both input sequences are 1,953,973 and 35,618, respectively.
Both sequences share no similarity and show 0% similarity after the hierarchical alignment.

Table 3.14: Alignment times for the comparison of ParaDiS with AMG2006.
ALGORITHM ALIGNMENT TIME

Needleman–Wunsch Out of Memory
Hirschberg 34min 33s
Ukkonen, with speedup techniques 7min 10s
Ukkonen, without speedup techniques 7min 9s
Hierarchical Alignment, with speedup techniques 1s 147ms
Hierarchical Alignment, without speedup techniques 1s 145ms

Due to the input sequence length, applying the Needleman–Wunsch algorithm exceeds available main
memory of the test system. The hierarchical alignment needs about one second for the comparison of
both processes. This time is spent primarily for traversing the larger call tree of the first process.

Table 3.15: Number of sub-alignments during the hierarchical alignment of ParaDiS with AMG2006.
SUB-SEQUENCE LENGTH NUMBER OF ALIGNMENTS

0 - 100 1
101 - 1,000 1

Table 3.13 shows the number of sub-alignments computed during hierarchical alignment. Since both
call trees are unrelated, the algorithm can already stop computing alignments on top call levels.

Summary For the alignment of sequences constructed from real-world applications, only the hierar-
chical alignment algorithm provides acceptable runtimes. The hierarchical approach effectively separates
the input sequences into small sub-sequences. Although not occurring in the evaluated case studies, there
is still the possibility that long sub-sequences need to be aligned. This might be the case if functions are
called very often in a loop. In such case the fast-alignment-heuristic can be applied to that sub-sequence.
The heuristic allows a fast alignment time at the price of decreased accuracy. The use of the hierarchical
alignment algorithm satisfies the functional and temporal requirements for process comparison.

60

3.5 Evaluation

3.5.3 Accuracy of the Hierarchical Alignment Algorithm

In this case study the gap-correction-method, described in Section 3.4.2, is applied to evaluate the error
introduced when using the hierarchical alignment (HA) algorithm for comparing real-world applications.

Therefore, alignment results are taken from the four test cases of the previous section. For align-
ments computed with Ukkonen’s algorithm and the HA algorithm scores are calculated and compared to
quantify the HA result error.

AMG2006

Ukkonen’s algorithm alignment score: 97, 957

Hierarchical alignment algorithm alignment score: 87, 871

Error: 10.3%

For the comparison of processes of AMG2006 [34] the scores of the two algorithms differ by about
10%. This low error suggests that the alignment result of the HA algorithm is still applicable for process
comparison.

ParaDiS

Ukkonen’s algorithm alignment score: 909, 907

Hierarchical alignment algorithm alignment score: 800, 597

Error: 12%

In case of ParaDiS [7] the introduced error by the HA approach is similar to the error seen for
AMG2006. With about 12% error, the HA algorithm produces applicable results for the comparison
of ParaDiS processes.

ParaDiS with Increased Detail

Ukkonen’s algorithm alignment score: 77, 243, 841

Hierarchical alignment algorithm alignment score: 77, 192, 042

Error: 0.07%

In case of comparing ParaDiS [7] processes measured with increased detail, the HA introduces only
very few errors. With 0.07% difference the results of the two algorithms are almost equal.

ParaDiS Compared with AMG2006

Ukkonen’s algorithm alignment score: − 3, 913, 725

Hierarchical alignment algorithm alignment score: − 3, 978, 636

Error: 1.6%

Also when comparing completely different processes, like in the case of aligning processes of ParaDiS [7]
with processes of AMG2006 [34], the introduced error is very low. The HA approach result differs by
only 1.6% from the result computed by Ukkonen’s algorithm.

Summary For the comparison of processes, the HA heuristic provides a large performance improve-
ment over flat alignment algorithms. The introduced error by the heuristic is relatively small in all tested
comparison cases. This underlines the applicability of the HA approach for process comparison.

61

4 Alignment-Based Comparison Metrics for Processes

The previous chapter introduced a hierarchical alignment algorithm for the structural comparison of event
streams of processes. Yet, efficient alignment algorithms alone are not sufficient to help users understand
the differences between processes. In order to compare the performance of processes, their timing behav-
ior needs to be considered as well. Therefore, supporting the alignment approach, this section contributes
a set of novel alignment-based metrics that quantify the differences between processes, both in terms of
differences in the event stream and timing differences across events. Further, it introduces visualization
techniques that highlight and facilitate understanding of the sources of the differences. A case study
demonstrates the effectiveness of the introduced approach by showing automatically detected perfor-
mance and code differences across different versions of one benchmark and two real-world applications.

4.1 Similarity Metric

The Similarity Metric describes the similarity between two traces (event streams). This metric is based
on the alignment algorithms described in Chapter 3. The alignment algorithms work with the following
scoring scheme, which is now used to derive a metric stating the similarity of two traces:
Match Score: σequal = 2, Mismatch Score: σdiff = −1, Gap Score: σgap = −1.

Using the raw score, however, is problematic. In an alignment, each function pair, dependent on
its state—equal, different, or gap—represents the score defined in the scoring scheme. The sum of
all scores, Scoreactual, results in positive scores for equal areas and penalizes differences and gaps
with negative scores. Thus, the higher the total score, the higher the similarity between the processes.
However, the actual value of the total score also depends on the length of the compared sequences, M
and N . For example, in case of two different comparisons: one comparison of sequences with lengths
of hundreds of pairs and one with sequences of length of tens of pairs. Even if the longer sequences
contain some differences and the shorter sequences are completely equal, the comparison of the longer
sequences would achieve a higher score. This renders the total score impractical as a metric for the direct
comparison of the similarity of multiple process pairs.

In every comparison of two traces, there is a maximal and minimal total score that could be achieved.
The maximal score Scoremax, if both sequences are completely equal, would be as follows.

Scoremax = σequal ·max(M,N) (4.1)

Using penalties of −1 for gaps and differences, with every difference or gap in the comparison, the total
score decreases as an equal (positive) scoring pair is replaced by a difference/gap (negative) scoring pair.
This results in a theoretical minimum score Scoretheoretical_min that aligns both sequences with gaps.

Scoretheoretical_min = σgap · (M +N) (4.2)

However, this case would never occur in practice since the alignment algorithms try to maximize the
score. Even if two sequences are totally different, the algorithm would always align some parts of the
two sequences with differences instead of only using gaps, reducing the penalty from −2 for each two
gaps to −1 for a difference. Therefore, to compute a functional minimum score, gaps are only inserted for
missing events in the shorter trace. This results in a minimum score Scoremin that aligns both sequences
with differences and necessary gaps in case of unequal sequence length.

Scoremin = σdiff ·min(M,N) + σgap · |M −N | (4.3)

63

4 Alignment-Based Comparison Metrics for Processes

Figure 4.1: Dissimilarity timeline.

Using these minimum and maximum scores as a value range, it is possible to derive a similarity metric.
The first step is to compute how close the actual total score of an alignment is to its maximum,

Ratio =
Scoreactual
Scoremax

;Ratio = [−0.5, 1]. (4.4)

The above equation gives a ratio in a range between [−0.5, 1]. To define a more intuitive metric, the
value is scaled to a range between [0, 1]. Thus, the metric Similarity is defined as

Similarity =
Ratio+ 0.5

1.5
;Similarity = [0, 1]. (4.5)

Similarity presents a means to objectively evaluate and compare the similarity of processes. Similarity =
1 means the processes are completely equal whereas Similarity = 0 means they are completely differ-
ent.

4.2 Dissimilarity Timeline Metric

The goal for the Dissimilarity Timeline metric is to give an indication of how the similarity between
two traces changes over time. This metric is useful for identifying regions of the trace that exhibit high
dissimilarities for further inspection. Additionally, a visualization of the metric along with the traces can
help pinpointing periodic differences in the traces.

To compute the metric, a computed alignment is sampled over time. This process produces a series
of data values at equidistant time points indicating similarity for locations in the aligned traces. Once
the alignment and similarity data values are computed, a sliding window technique is applied to sum up
the score under the window. In the following case study a window width of 10% of the entire alignment
length produces good results for all experiments. This width balances temporal granularity with the
ability to capture context information around points with increased changes avoiding misleading “spikes
of differences.” To sum up the values under the window several strategies are possible. For instance, one
could sum up the total score of all pairs, or just add the score of all equal pairs. The latter would result
in a metric representing the similarity of the sequences at the window position. Since the general goal is
to compare relatively similar applications and to detect the dissimilarities, a slightly different approach
is used. For the metric the score of all difference and gap pairs under the window is added up, which
results in a metric representing the dissimilarity of the traces over time.

To make the Dissimilarity Timeline metric more useful and comparable between alignments, it is
normalized to a value range of [0, 1]. The maximum possible dissimilarity of 1 occurs in the case that all
pairs under the window are difference or gap areas. In the opposite case, all pairs under the window are
equal, the metric has the value 0.

64

4.3 Runtime Skew Timeline Metric

Aligned A:

Aligned B:

m c a

= = _CMP: =≠

m

m c b a m

=

c

a

A:

B:

m c a m

m c b a mc

a

t

Figure 4.2: Artificial timing introduced by the alignment.

Figure 4.1 shows a Dissimilarity Timeline visualization for an example alignment. Sampled measure-
ment points are depicted as red dots. The timeline visualization makes it easy to detect areas with high
dissimilarity. For example, there are four Gap A areas (blue) that result in high dissimilarity at the begin-
ning of the alignment shown at the top. However, the areas that are completely equal (all yellow) have
a dissimilarity of 0. The dissimilarities are easy to pick out of this example alignment. In contrast, as
demonstrated in Section 4.5, it is very challenging to pick out the dissimilarities of real application traces
and alignments without the aid of the Dissimilarity Timeline metric.

4.3 Runtime Skew Timeline Metric

An important aspect of performance analysis is an understanding of the behavior of applications with
respect to time. Event traces are especially useful for this purpose, because they retain the time-stamp of
each event occurrence. However, it is tedious for users to gain this understanding manually. It involves
attempting to line up iterations from traces and visually determine the timing differences between them.
If the behavior of the application changes over time, then this process is even more complicated. The goal
of the Runtime Skew Timeline metric is to aid the user in this process. The insight gained from this metric
is valuable for analyzing performance differences across traces, including the benefit (or lack thereof) of
changes to source code for performance improvements and for evaluating the effect of compiler options
for performance optimization.

It is important to note that the alignment of processes introduces artificial virtual timings into the
visualization of the traces. In other words, functions that appear to line up according to time in the vi-
sualization did not necessarily occur at the same time relative to the beginning of the execution. These
artificial virtual timings arise because the alignment algorithm does not account for event timings, and
only considers function names. For instance, the introduction of gap areas changes the apparent run-
time of events. Also, aligning short running functions with long running functions alters the displayed
runtime. In such cases, successive function calls are shifted back in time by the difference between the
durations of the aligned functions. See Figure 4.2 for an example. Hence, looking at an arbitrary pair of
functions does not allow one to draw conclusions about the real runtime behavior of the processes. This
is another reason for developing the Runtime Skew Timeline metric, so that the user can understand the
relative timing behavior across the aligned traces.

Figure 4.3 depicts a visualization of the Runtime Skew Timeline metric for a simple example alignment.
In the alignment both processes are equal except for four functions only executed in process B. These
are shown as gap areas in blue in the figure. These four extra functions delay process B by 20 ms

65

4 Alignment-Based Comparison Metrics for Processes

Figure 4.3: Runtime skew timeline.

per function. Since function events contain individual time stamps, it is possible to directly compare
the invocation times of aligned function calls. The difference between these invocation times gives
the runtime skew between both processes at the time of the function calls. For the simple example
in Figure 4.3, the results are straightforward. The value for the metric increases with time, because
process B is delayed by additional 20 ms in each iteration. However, in more complicated situations the
timeline shows its real strengths and enables an easy detection of faster running code areas, possibly on
both processes, or gradual or abrupt speed changes.

4.4 Function Time Difference Table

In addition to the Runtime Skew Timeline metric, the Function Time Difference table gives relative timing
information. The time differences for all aligned invocations of each function in the traces are summed
to generate the table. The result shows how much overall time was gained or lost within each function.
Generally speaking, there is no guarantee that a particular function will exclusively either gain or lose
time over the execution. It is likely that a particular function will show varying behavior over time,
sometimes faster and sometimes slower compared to the aligned function in the other trace. This table
clearly presents this information. For each function, it shows the number of times that it was faster (No.
+) or slower (No. −) in the trace of process A than in process B. It also shows the overall time gained
(∆+) or lost (∆−) for each function. An example of the Function Time Difference table is given in
Table 4.2.

4.5 Case Studies

This section demonstrates the effectiveness of the introduced metrics by applying them in a series of case
studies, covering BT from the NAS Parallel Benchmarks (NPB) and two real-world applications, AMG,
a widely used Algebraic Multigrid solver, and ParaDiS, a dislocation dynamics code simulating crack
propagation in materials.

Experiments have been conducted on two systems. The first is Sierra, a Linux cluster with 1944 dual-
processor, Intel Xeon 5660 compute nodes. Each node has 24 GB RAM and a total of 12 cores each
running at 2.8 GHz. The second system is Hera, a Linux cluster with 864 quad-processor, AMD Quad-
Core Opteron nodes. The 13,824 cores run at 2.3 GHz and each node has 32 GB RAM. Intel compilers
version 12.1 and MVAPICH2 as MPI library have been used on both systems.

The trace analysis and comparison prototype tool is built on top of the OTF trace library [75]. The
library is used to capture the initial traces and then compare two respective OTF traces by applying
alignment methods. The resulting differential trace is again written in OTF format using the OTF library
and visualized using the trace visualizer Vampir [19]. The visualization of compared traces in Vampir
required additional functionality that provides users with a visualization of the similarities, differences,

66

4.5 Case Studies

Figure 4.4: Comparison of two 16 process BT runs built with different compiler optimization levels
(O0 vs. O3).

and gaps across traces, as well as visualizations of the timing differences. Therefore, a hierarchical
display of the trace differences based on the call tree has been implemented. This hierarchical display
facilitates understanding of trace differences, because it simplifies the identification of the root of those
differences. For example, if additional function calls are made in one trace and not the other, it is
easy to locate the enclosing function to further investigate the changes. Additionally, the visualization
differentiates the origin of gaps by introducing two gap states (GAP A and GAP B), which indicate if a
gap occurs in trace A or B.

4.5.1 NAS Parallel Benchmark BT

The first case study is a comparison using BT from the NAS Parallel Benchmarks, version NPB-3.3.1-
MPI [8]. The benchmark was run with 16 processes using Class W inputs. The first run was built with
deactivated compiler optimization, i.e., using O0, while the second was built using the optimization level
O3. The tests were conducted on the Linux cluster Hera.

Figure 4.4 shows the results of the comparison. The first two timelines show rank 0 of the O0 and
the O3 runs, respectively. The numbers on the left side indicate the call level, i.e., sub-functions are
drawn one level below the calling function, e.g., MAIN__ (level 1) calls setup_mpi_ (level 2). The
third timeline indicates the alignment result and shows that both processes are completely equal, which
means the change in compiler optimization did not change the structure of the code. 1

Although not shown, the similarity between the ranks is also reflected by the Similarity Metric. This
metric value is 1 for all 16 comparisons. Hence, both runs are completely equal with respect to their
function structure. The Dissimilarity Timeline would show the same result.

1In this case inlining may have been deactivated due to the attached tracing monitor for the measurement. This is due to the
compiler’s behavior when applying instrumentation for the tracing library and cannot be influenced by the user.

67

4 Alignment-Based Comparison Metrics for Processes

Because different compiler options were used, the runtime behavior is different for the runs. As
expected, the optimized code (O3) is faster. Since artificial virtual timings are introduced for trace
alignment, it is not directly visible that one run is faster than the other from looking at the aligned
traces. Thus, the user can gain understanding of the performance differences in the aligned traces by
looking at the values for the Runtime Skew metric, shown in the last two timelines in Figure 4.4. The
top timeline gives the Runtime Skew for the comparison of rank 0 for both executions and the bottom
timeline gives the Runtime Skew for all rank-wise comparisons in a color-coded bar. Here, the blue/cold
colors indicate low skew, while red/warm colors indicate higher skew. Initially, during the execution of
MPI_Init, both code versions run with the same speed. The reason is that MPI_Init is a library call,
and thus, is not affected by the compiler optimization level during the build phase of the application.
After MPI_Init, the Runtime Skew metric shows that the optimized code version runs consistently
faster and finishes about 2 seconds earlier than the non-optimized version. This behavior is the same
across all processes.

4.5.2 AMG2006

AMG2006 [34] is a parallel algebraic multigrid solver for linear systems arising from problems on un-
structured grids. In this case study the default version of AMG is compared with an optimized version
that performs less coarsening. This results in more overall work, but avoids a lot of expensive communi-
cation that would have been necessary at the coarsest levels. Both compared versions solved a Laplace
problem using 64 processes on 4 nodes. The measurements were conducted on the Linux cluster Hera.

Figure 4.5 shows the unaligned traces for rank 0 from the executions of both versions of AMG. The
optimized version runs faster and finishes about 1.25 seconds earlier than the original version. However,
it is difficult to see the reasons for the performance differences from looking at the unaligned traces. With
the help of the alignment analysis techniques, this task becomes straightforward. Figure 4.6 shows the
comparison of the traces using the improved alignment visualization. The top and the middle timeline
show the aligned traces for rank 0 for both versions. The bottom timeline shows the alignment state
between both traces. The optimized version saves considerable work in the initialization, identified by
the blue gap area at 7.0 – 7.6 seconds in the beginning of the application run. Also, the optimized version
saves work in each computation step, indicated by the repeating blue gap areas at 9.0 – 12.7 seconds
starting at the middle of the application run.

These dissimilarities are the same for all 64 processes as shown by the Dissimilarity Timeline visual-
ized as a set of color-coded bars in the top of Figure 4.7. Below the Dissimilarity Timeline visualization
is the alignment state timeline from Figure 4.6 for easier comparison. Blue/cold colors mean processes
are equal, while red/warm colors indicate differences. The differences agree with the alignment of the
comparison of rank 0: the red area indicates the big gap in the initialization and the green areas from
the middle to the end of the trace indicate the smaller gaps occurring at each compute iteration. The dif-
ferences are almost the same throughout all processes, except for a few outliers indicated by horizontal
green lines. The slightly higher dissimilarity in these processes is also highlighted using the Similarity
metric (not shown). Most process pairs achieved similarity values between 0.60 – 0.63, while the few
outliers only achieved similarity values between 0.46 – 0.49.

While the above metrics clearly show the structural differences and the overall change in performance,
more detailed timing comparisons require the Runtime Skew Timeline metric, shown in the bottom two
timelines in Figure 4.7. The upper graph depicts the runtime skew for the comparison of rank 0
from each trace and the color-coded timeline depicts the runtime skew for all 64 process comparisons.
The optimized version achieves a large speed gain in the initialization by avoiding unnecessary work.
However, in the later stages of the initialization (after the blue gap), it performs slower than the original
version. Yet, the speed gain in the beginning outweighs this slow down. During the iterations of the
main body of the code, the optimized version performs faster again. In this case the speed gains are not
consistent from iteration to iteration. The gains level off in the middle of the execution and rise again
at the end. Additionally, the color-coded Runtime Skew Timeline shows that this behavior is consistent

68

4.5 Case Studies

Figure 4.5: Unaligned rank 0 processes of the default and optimized AMG version.

Figure 4.6: Aligned rank 0 processes of the default and optimized AMG version.

69

4 Alignment-Based Comparison Metrics for Processes

Figure 4.7: Similarity and runtime skew analysis between the default and optimized AMG version.

across all processes, but shows that performance on one node (second block of lines from the top) is
slightly shifted. These observations would be very difficult to make without the support of the introduced
metrics and visualizations.

4.5.3 ParaDiS

The Parallel Dislocation Simulator (ParaDiS) [7] models the dynamics of dislocation lines as they interact
and move in response to the forces imposed by external stress and inter-dislocation interactions. The
dislocations are divided into bounded regions called domains. Each process computes on one domain,
with an adaptive load balancer periodically redistributing dislocations between domains.

This case study compares two versions of ParaDiS: v2.2.3 vs. v2.3.5.1. The release dates of the ver-
sions are about two years apart. Hence, version 2.3.5.1 includes bug fixes, improvements and corrections
to the computations, as well as advanced load balancing. Both compared versions solved the same exam-
ple problem, located in the code package: “tests/fmm_8cpu.ctrl”, using 8 processors. The measurements
were conducted on the Linux cluster Sierra.

70

4.5 Case Studies

Figure 4.8: Comparison of two iterations of ParaDiS versions 2.2.3 and 2.3.5.1.

Figure 4.8 shows a detailed comparison of two representative iterations of both versions. In the begin-
ning of the iterations, the executed function structure is the same. However, at the end of the iterations,
blue gap areas in the bottom timeline indicate new functions. These functions can be seen in the direct
comparison of the aligned timelines of both code versions (top and middle timelines in the figure). These
new function calls are the result of added and extended functionality in version 2.3.5.1. As shown in
the Runtime Skew Timeline at the bottom of Figure 4.8, this change comes at the cost of higher runtime.
The runtime difference for the complete comparison is depicted in Figure 4.9. As in the case of BT, the
runtime behavior is consistent across the whole execution. Version 2.3.5.1 runs consistently slower than
the older version 2.2.3.

Added functionality is not the only cause of differences. The bottom timeline in Figure 4.9 shows that
dissimilarity varies across the application. This variation is caused by the changes to the load balancer
in version 2.3.5.1. In ParaDiS the executed function structure depends on the workload. The higher the
load the more functions are executed in one iteration. Figure 4.9 also shows that process pairs for ranks
1 and 6 are more similar than the other compared processes. This is reflected in the Similarity metric
as well, see Table 4.1 The comparisons of rank 1 and rank 6 achieve higher values than the other
processes.

Table 4.2 shows the top of the Function Time Difference table for the comparison of rank 0 from
both ParaDiS versions. The function MkTaylor shows the most inconsistent behavior in terms of time
consumption. This function, due to added functionality, runs slower in the new version for 114,230 invo-
cations. The overhead time caused by this function adds up to 71.586ms. Yet, this function is not always
slower. In 49,817 cases the execution of the new MkTaylor function was faster than its counterpart in
the old version. The faster execution leads to a speed gain of 41.542ms. In normal profiles these times
would have been evened out resulting in a single and potentially misleading reading of 30.044ms time
lost in MkTaylor in the new version. While this particular result for MkTaylor most likely is caused
by load distribution differences from the new load balancer, it is valuable performance information that
can be obtained using the introduced alignment analysis techniques for trace comparisons.

71

4 Alignment-Based Comparison Metrics for Processes

Figure 4.9: Similarity and runtime skew analysis between ParaDiS versions 2.2.3 and 2.3.5.1.

Table 4.1: Similarity between ParaDiS processes.
PROCESS PAIR SIMILARITY METRIC

rank 0 - rank 0 0.450597
rank 1 - rank 1 0.561114
rank 2 - rank 2 0.471564
rank 3 - rank 3 0.485480
rank 4 - rank 4 0.475750
rank 5 - rank 5 0.456011
rank 6 - rank 6 0.546265
rank 7 - rank 7 0.436554

Table 4.2: Function time difference table for the rank0/rank0 comparison of ParaDiS.

FUNCTION NAME NO. + ∆ + NO. - ∆ -

MkTaylor 49817 41ms 542µs 114230 71ms 586µs

ComputeForces 315896 21ms 938µs 46280 4ms 92µs

MPI_Waitall 1035 5ms 274µs 1178 3ms 517µs

LocalSegForces 76952 3ms 191µs 63599 8ms 446µs

dmsym3 31685 3ms 29µs 51451 2ms 636µs

FMSetTaylorExpa... 121361 71ms 545µs 49217 1ms 898µs

GetNeighborNode 92813 2ms 568µs 35606 1ms 814µs

HandleCollisions 24886 1ms 792µs 26497 2ms 13µs

MPI_Isend 3420 1ms 966µs 3514 1ms 744µs

GetNodeFromTag 66112 1ms 644µs 32924 1ms 484µs

SegSegForce 770 1ms 319µs 93282 20ms 88µs

72

5 Methods for Structural Comparison of Multiple
Processes

This chapter discusses techniques for the comparison of multiple processes. The analysis of multiple pro-
cesses poses the challenge of analyzing large data volumes [58]. To cope with such large data sets, this
chapter introduces a two step approach. First, a scalable method clusters structurally similar processes.
Then, subsequent multiple sequence alignment methods perform a detailed comparison of grouped pro-
cesses. The introduced alignment-based approach compares similar processes in detail and identifies
their structural differences. The results of both structural comparison steps are valuable information that
enables subsequent performance analysis methods.

5.1 Pre-Clustering Structurally Similar Processes

Clustering techniques divide data into groups (clusters). To facilitate user understanding, the identified
groups should capture the natural structure of the data. This section describes a scalable clustering algo-
rithm that reliably identifies groups of structurally similar processes from a large number of processes.
The resulting groups can be used for information reduction and selection of processes for subsequent
comparison analyses. For instance, hybrid applications that may use MPI processes, threads, and ac-
celerators at the same time, pose the problem of comparing the performance of processes with different
execution structure. Ignoring the structure and performing purely time-based analyses over all processes
can complicate the identification of performance problems. As performance information of all processes
is evaluated together, some processes may cover critical performance problems in others. For instance
the mix of MPI processes with accelerator streams might result in hard to analyze performance data, due
to their unrelated execution structure. Using structural pre-clustering allows to analyze distinct groups
of processes independently. Reducing large numbers of processes to a few meaningful groups alleviates
analysis effort for the user and provides a condensed overview of an application’s execution.

A good criterion for structural comparison of processes is information on the invocation of functions,
disregarding timing. This information is available in almost any type of performance profile. Information
on function invocation can be represented in call trees. These trees represent merged call stacks of all
functions that a process invokes. Differences between the call trees of two processes provide a measure
of similarity. Comparing call trees, however, is computationally expensive and small differences close to
the root of a call tree yield low similarity, even if large parts of the trees are equal.

Thus, this work uses a simplification of the information contained in a call tree, the so-called function
pairs, made up out of the caller/callee relation in the call tree. The function pairs are a set of pairs,
where for each pair the first function calls the second one. The number of function pairs is independent
of application runtime or the process count and is limited to the squared number of existing functions.
For many applications, the number of function pairs is less than 1,000, which makes them a powerful
approach for comparison. Based on the function pairs, this work introduces a similarity measure for
comparing processes.

Scalable structural process clustering not only requires a similarity measure based on function pairs,
but also requires a scheme that is efficient even for large process counts. Since a pair-wise comparison of
all processes is highly inefficient, this work introduces a fast hash-based clustering approach to store and
compute groups of similar processes. This approach removes the need for pair-wise process comparison.

73

5 Methods for Structural Comparison of Multiple Processes

proc 1

main

fopeninit fclose

fopen fclose

proc 2

main

init

fopen fclose

Figure 5.1: Call trees of two example processes.

5.1.1 Determining Similarity

All clustering methods require a similarity or distance metric as a basis for building clusters. This
section outlines such definitions of similarity for the purpose of process clustering. It begins with general
definitions followed by the development of a similarity measure for the structure of processes.

Structural Similarity of Processes

The structural information for a process is determined by examining the functions that the process in-
vokes during its execution. This information allows to group processes according to their structure.
To extract the structural information and perform the grouping, the following definitions are used. Let
P denote the set of all processes and let individual processes be labeled P, P1, P2, P3, Addition-
ally, for illustrative purposes, names like process 1 and thread 3 refer to individual processes in
P . Let F denote the set of the functions that any process invokes. Individual functions are labeled as
F, F1, F2, F3, . . . or for illustrative purposes with names like main and fopen. 2A refers to the power
set of a set A, which is the set of all subsets of A.

The mapping funcs : P → 2F assigns each process the set of functions that it invokes during an ex-
ecution. Formally: funcs(P) := {F ∈ F | F is called at least once by P}. Processes that invoke many
common functions are considered as structurally similar. Using the Jaccard index [66], the structural
similarity of two processes is expressed as the number of functions that they have in common, divided
by the number of functions that either process calls:

funcsim(P1, P2) :=
| funcs(P1) ∩ funcs(P2) |
| funcs(P1) ∪ funcs(P2) |

(5.1)

If both sets are empty, i.e., neither process calls a function, the result is defined to be 1. Consequently,
funcsim maps a pair of processes to a real number between 0 and 1. 1 expresses total similarity and
0 expresses complete dissimilarity. Therefore, funcsim presents a measure for the structural similarity
between two processes. Information on function invocation can be represented in call trees. As an
example, Figure 5.1 illustrates call trees of two processes. In the example, the sets of invoked functions
are identical, i.e.:

funcs(proc 1) = funcs(proc 2)

= {main, init, fopen, fclose}

Consequently, similarity according to funcsim is 1 for the example shown in Figure 5.1.

Structural Similarity Measure

Given the high degree of difference between the two call trees in Figure 5.1, a similarity measure, like
funcsim (Equation 5.1), that indicates exact similarity between them is undesirable. Improvement options
for the similarity measure include consideration of supplied arguments, global state, and possibly even
external influences, such as incoming messages. Incorporating these factors is hard due to the sheer

74

5.1 Pre-Clustering Structurally Similar Processes

size of this influential state space. A suitable way to refine the measure is to use pairs of functions
that represent the caller-callee relation. Therefore, the function funcs is extended with the function
pairs : P → 2F×F . Formally: pairs(P) := {(F1, F2) ∈ F × F | F1 calls F2 on P}. The key
advantages of considering the caller-callee relationship are that it retains structural information in the
form of functions and their context in the form of the relation. As this refinement still relies on a set-
based representation, it allows to directly retrieve a similarity measure based on caller-callee pairs:

pairsim(P1, P2) :=
| pairs(P1) ∩ pairs(P2) |
| pairs(P1) ∪ pairs(P2) |

(5.2)

In the following, F1 → F2 is used to denote a caller-callee pair (F1, F2). Functions that are a source
in the call stack, such as main, have no caller. Such functions use a virtual root function called ϵ to
include these source functions in pairs, i.e., ϵ → main ∈ pairs(proc 1).

Continuing the example in Figure 5.1, the function pair sets pairs of the two processes exactly contain
the directed edges of their corresponding call trees, i.e.:

pairs(proc 1) = {ϵ → main, main → init,

main → fopen, main → fclose,

init → fopen, init → fclose}
pairs(proc 2) = {ϵ → main, main → init,

init → fopen, init → fclose}

Based on the results of pairs it is possible to directly compute the similarity between processes 1 and 2,
which is pairsim(proc 1,proc 2) = 4

6 . Processes that have a similarity of 1 form groups of similar
processes.

The design of this metric bases on the expectation that: first, a single execution will exhibit a reason-
ably low number of function pairs; and second, that the number of function pairs remains about constant
when application scale increases. This expectation results from the fact that a wide range of HPC appli-
cations rely on a single executable that is executed by multiple threads, processes, or GPGPU devices.
Consequently, the variation in the structural behavior observed within a single execution or between mul-
tiple executions is limited by the statically compiled executable. Existing approaches [3, 6] for parallel
call stacks support this expectation.

Building the Similarity Matrix

Common clustering approaches require a similarity matrix holding the distances between objects. The
structural similarity metric pairsim (Equation 5.2) represents such a distance measure for processes. This
metric states the similarity or distance between processes. To calculate all distances of a similarity matrix
for n processes, 0.5 n (n− 1) pairwise comparisons are needed [57]. The resulting similarity matrix M
is a symmetric matrix. The entries on the main diagonal are filled with 1, as each process is completely
similar to itself. The upper triangle can be mirrored into the lower triangle since the calculation of the
similarity is a commutative operation: Sn,m = Sm,n, with n and m being the two subscript indices for a
matrix S.

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

Proc 1 Proc 2 Proc 3 Proc 4 · · · Proc n
Proc 1 1 S1,2 S1,3 S1,4 · · · S1,n

Proc 2 S1,2 1 S2,3 S2,4 · · · S2,n

Proc 3 S1,3 S2,3 1 S3,4 · · · S3,n

Proc 4 S1,4 S2,4 S3,4 1 · · · S4,n
...

...
...

...
...

. . .
...

Proc n S1,n S2,n S3,n S4,n · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(5.3)

75

5 Methods for Structural Comparison of Multiple Processes

Each row in the matrix represents the data point for the respective process. This data set is suitable
as input for a number of common clustering algorithms. The matrix spans an n-dimensional space for n
processes.

5.1.2 Grouping Structurally Similar Processes

This section first discusses two common clustering algorithms and then introduces a new approach for
partitional clustering. In partitional clustering the data set is divided into non-overlapping subsets (clus-
ters). Each data point is assigned to exactly one subset. Finally, this section introduces a method of
arranging the clustered process groups hierarchically with respect to their structural similarity.

Common Clustering Algorithms

The following describes two widely used clustering methods. Their advantages and disadvantages for
the clustering of processes are discussed.

K-Means, K-Medoids K-Means [51,86,88] and K-Medoids [71,72] are the most prominent partition
algorithms. They partition the data set into a number of Voronoi cells. The number of the cells (clusters)
k needs to be known a priori. To guide the choice of k the silhouette coefficient [123] allows to measure
cluster quality and compare different clusterings for various numbers of k.

Algorithm 3 shows the pseudo-code of the K-Medoids algorithm. In contrast to the K-Means algo-
rithm, K-Medoids chooses data points as centers and works with an arbitrary matrix of distances between
data points. It is more robust to noise and outliers as K-Means, because it minimizes a sum of pairwise
dissimilarities instead of a sum of squared Euclidean distances.

Both algorithms have a tendency to produce clusters of the same size, which might not be appropriate
for all data sets. Additionally, the positions of the initial start clusters influence the clustering result. The
requirement of defining the number of clusters a priori impedes the search for the natural layout of the
underlying data set. To find the best number of clusters, the analyst needs to perform and compare a
possibly large number of different clusterings.

DBSCAN The density-based spatial clustering of applications with noise (DBSCAN) [32] algorithm
partitions the data based on the density between the data points. High-density areas build clusters of arbi-
trary shape. Consequently, the algorithm automatically determines the number of clusters. Additionally,
DBSCAN provides a notion of noise. Data points in low-density areas are classified as noise and omitted
from the clustering. Different densities in one data set cannot be handled well by DBSCAN. Algorithm 4
gives the pseudo-code of the DBSCAN algorithm.

The algorithm has the advantage of automatically identifying the natural number of clusters. However,
it has difficulties capturing clusters with different densities. For the algorithm, the user needs to define
the maximum distance between points eps. Depending on the data set and situation, small changes of
this distance can result in completely different clustering results.

It is possible to use both algorithms for the clustering of processes. In fact, K-Means/K-Medoids as well
as DBSCAN already have been used for similar purposes [36, 43]. However, the results of both algo-
rithms are very sensitive to the chosen input parameters. This makes it hard to acceptably quantify the
quality of a clustering result for subsequent comparison steps. Also, both algorithms require a similarity
matrix. Like shown in Section 5.1.1 the calculation of a similarity matrix for large numbers of processes
quickly hits computational limits. Especially if the employed similarity measure is a computationally ex-
pensive operation. To alleviate these disadvantages, the next section introduces an alternative hash-based
clustering method.

76

5.1 Pre-Clustering Structurally Similar Processes

Algorithm 3: K-Medoids clustering algorithm
Input: Number of clusters k, set of processes D.
Output: A set of k clusters C.

1 foreach Ci ∈ C
2 Initialize cluster medoid µCi with an unused process from D.

3 repeat
4 Classify the remaining |D| − k processes. Each process p ∈ D is put in the cluster

containing the most similar cluster medoid.
5 foreach Ci ∈ C
6 Recompute cluster medoid µCi .

7 until there is no change in medoids
8 return C = C0, C1, . . . , Ck−1

Algorithm 4: DBSCAN clustering algorithm
Input: Set of processes D, maximum dissimilarity between processes eps, minimum number of

processes in one cluster minPs.
Output: Process clusters C.

1 Function DBSCAN(D, eps, minPs)
2 C = 0
3 foreach unvisited process P in D
4 mark P as visited
5 neighborPs = regionQuery(P, eps)
6 if sizeof(neighborPs) < minPs-1
7 mark P as NOISE

8 else
9 C = next cluster

10 expandCluster(P, neighborPs, C, eps, minPs)

11 return C

12 Function expandCluster(P, neighborPs, C, eps, minPs)
13 add P to cluster C
14 foreach point P’ in neighborPs
15 if P’ is not visited
16 mark P ′ as visited
17 neighborPs′ = regionQuery(P’, eps)
18 if sizeof(neighborPs’) >= minPs-1
19 neighborPs = neighborPs joined with neighborPs′

20 if P’ is not yet member of any cluster
21 add P ′ to cluster C

22 Function regionQuery(P, eps)
23 return all processes within P ′s eps-neighborhood

77

5 Methods for Structural Comparison of Multiple Processes

main

proc 1

a

b

main

proc 2

a

b

b

c

main

proc 3

c

d

main

proc 4

a

b

b

c

Figure 5.2: Call trees of four example processes.

Fast Hash-Based Clustering

Efficient clustering of processes requires a method that does not need the computation of a similarity
matrix. Meaningful clustering results that do not depend on input parameters also present easier to
evaluate results.

This approach works with a cryptographic hash function to scalably compute natural clusters of struc-
turally similar processes. A cryptographic hash function computes a fixed size bit string (hash) from an
arbitrary sized input. The same input data produces equal output hashes, whereas even small changes in
the input data cause substantial changes in the output hash. The design of cryptographic hash functions
renders the search for two different input data sets that produce the same output hash infeasible. Such
a case, a so-called hash collision, is theoretically possible, but should never occur in practice. Addi-
tionally, an important design criterion of cryptographic hash functions is the capability to compute the
output hash as fast as possible. These properties allow a fast and memory efficient grouping of processes.
The cryptographic hash function employed in this work is SHA-3 [12], the newest member of the Secure
Hash Algorithm (SHA) family. The chosen version is SHA3-512.

The goal of the hash-based clustering method is, that the hash function produces equal hashes for
structurally similar processes. The output hash of the hash function is then used as key in a map structure
that holds all processes. As similar processes share the same key, the map automatically groups similar
processes.

Algorithm 5 lists the pseudo-code of the hash-based clustering algorithm. The following example
demonstrates the algorithm by clustering the processes shown in Figure 5.2.

The similarity definition introduced in Section 5.1.1 describes the structural similarity of processes. In
order for the hash approach to work, it needs to be guaranteed, that similar processes produce the same
hash input. This is achieved in three steps:

Extraction of Structural Data Applying the definition pairs, introduced in Section 5.1.1, the
example processes contain the following structural information:

pairs(proc 1) = {ϵ → main, main → a, a → b}
pairs(proc 2) = {ϵ → main, main → a, a → b, main → b, b → c}
pairs(proc 3) = {ϵ → main, main → c, c → d}
pairs(proc 4) = {ϵ → main, main → b, main → a, a → b, b → c}

78

5.1 Pre-Clustering Structurally Similar Processes

Algorithm 5: Hash clustering algorithm
Input: Set of processes D.
Output: Process clusters C.

1 C = 0
2 foreach process P in D
3 extract structural data Pstruct from P
4 get sorted structural data Pstruct−sorted from Pstruct

5 get serialized structural data Pstruct−string from Pstruct−sorted

6 compute hash Phash from Pstruct−string

7 insert Phash and P into C
8 if C already contains Phash

9 append P to list of processes already associated with key Phash

10 else
11 add key Phash to C and associate P with it

12 return C

Sorting of Structural Data The extracted function pairs are sorted, using an algorithm with
O(n log(n)) complexity, to ensure the same input data for similar processes. The hash-based clus-
tering method arranges all pairs in alphabetical order. The sorted structural information of the example
processes looks as follows:

sorted-pairs(proc 1) = {a → b, main → a, ϵ → main}
sorted-pairs(proc 2) = {a → b, b → c, main → a, main → b, ϵ → main}
sorted-pairs(proc 3) = {c → d, main → c, ϵ → main}
sorted-pairs(proc 4) = {a → b, b → c, main → a, main → b, ϵ → main}

Serialization of Structural Data The cryptographic hash function requires one input stream.
Therefore it is necessary to serialize the sorted function pairs into one input string. For this purpose, the
algorithm iterates over the list of sorted function pairs and prints this information to a text string. To
mark the caller-callee relationship, the algorithm inserts the symbol “→”. This symbol must not occur
in the structural information of the example processes. The input strings for the example processes are
shown below:

string proc 1 : “a → b main → a ϵ → main”

string proc 2 : “a → b b → c main → a main → b ϵ → main”

string proc 3 : “c → d main → c ϵ → main”

string proc 4 : “a → b b → c main → a main → b ϵ → main”

The serialized data stream presents a suitable input for the cryptographic hash function. Equal input
streams result in the same hash value. Indicated below is the generation of hash values for the example
processes.1

hash(string proc 1) = 1ca6371c

hash(string proc 2) = a6207684

hash(string proc 3) = 98bc7d73

hash(string proc 4) = a6207684

1The shown hash values have only illustrative purposes and are not real computed values from the SHA-3 algorithm.

79

5 Methods for Structural Comparison of Multiple Processes

Figure 5.3: Incidence relation table (left) and resulting concept lattice (right) for four example processes.

The computed hash value builds the basis for the final clustering step. Similar processes are clustered
automatically by using the hash value as key for a map structure. Processes are stored in the map
according to their hash key. Table 5.1 illustrates this step for the example processes. proc 2 and
proc 4 are clustered together due to their equal hash value. proc 1 and proc 3 stay in own clusters
as they are structurally different.

Table 5.1: Hash map with the clustering result for the example processes.
HASH KEY PROCESSES

1ca6371c proc 1
a6207684 proc 2, proc 4
98bc7d73 proc 3

Advantages of this approach are the very fast computation of the hash function and that processes can
be added sequentially to the clustering map. The algorithm requires no direct comparison of structural
information between processes. This prevents the computation of a similarity matrix and drastically
reduces memory requirements. The approach groups equal processes, according to the similarity defi-
nition in Section 5.1.1. This produces easily understandable clustering results. The computed clusters
contain highly structural similar processes. The grouping result is suitable as starting point for the suc-
cessive analysis methods introduced in Section 5.2.2. How to extract relations between found clusters
and arrange them in a hierarchical fashion is described in the next section.

Hierarchical Arrangement of Process Clusters

This section briefly explains the structural clustering approach introduced in the paper Structural Clus-
tering: A New Approach to Support Performance Analysis at Scale [141]. More detailed descriptions
along with a performance evaluation and an applicability study of the method can be found in the paper.

Section 5.1.1 introduces set-based structural similarity definitions that allow to use concept lattices in
order to store and hierarchically arrange process clusters. A concept lattice is based on a formal context,
which is a triple (O,A, I), where O is a set of objects, A a set of attributes, and I ⊆ O×A an incidence
relation. The incidence relation associates each object with a set of attributes. For process clustering, the
processes represent the set of objects and the function pairs represent the attributes. A formal context
defines a concept lattice by specifying clusters, and a partial order on them. A concept lattice can
be represented as a directed acyclic graph where clusters are nodes and the order on them determines
the edges. A concept lattice has the property that each object (process) and attribute (function pair) is
contained in the concept lattice exactly once. Consequently, the nodes of the lattice provide a process
clustering, since the above property guarantees that each process belongs to exactly one cluster.

Figure 5.3 illustrates this formalism using an example. The incidence relation can also be described as
a table (left side in Figure 5.3). In the example, every process has the function pair ϵ → F1, i.e., processes
share F1 as their main function. Processes P1 and P3 have the additional pair F1 → F2, i.e., for these
processes F1 calls F2. Finally, P2, P3 and P4 also have the pair F1 → F3, i.e., for these processes F1

calls F3. The right side of Figure 5.3 illustrates the resulting concept lattice. It reads as:

80

5.2 Alignment of Clustered Processes

Figure 5.4: Concept lattice for an execution of the BT kernel with 16 MPI processes (red) and 15
OpenMP threads (blue) per process.

• Process sets subsume those that are reachable following edges downwards;
• Function sets subsume those that are reachable following edges upwards;
• The top node indicates that all processes share the function pair ϵ → F1;
• The bottom node signifies that only P3 has all function pairs, and in particular that it includes all

function pairs that P1, P2 and P4 exhibit;
• P1 is different from P2 and P4; and
• P2 and P4 have the same function pairs.

Figure 5.4 shows the concept lattice for an execution of the real-world application BT [8] with 16
MPI processes, which use 15 OpenMP threads each. Every node contains a set of processes and a set
of function pairs. Since the names of individual processes or their function pairs are most accessible
to developers of the target application, only the number of processes or function pairs belonging to a
node are specified, e.g., procs (15) for a set of 15 processes. Even with 256 overall processes—MPI
processes and OpenMP threads—-the concept lattice for this example remains small. All processes
share 56 common function pairs. OpenMP threads (right) exhibit different structural behavior than MPI
processes (left). All MPI processes have the same function pairs, except for process 0, which invokes
one additional pair.

The result of using the concept lattice is a classification of all processes into groups with structurally
identical behavior, along with a relation between these groups. In practice, this method generates a
low number of groups for many application types and therefore provides a compact representation for
structural information that can be computed scalably for large-scale executions.

Concluding, both the hash-based and concept lattice approach compute the same clustering result.
Additionally to the clustering, the concept lattice approach adds a hierarchical order to the grouping
results.

5.2 Alignment of Clustered Processes

Processes grouped in a cluster can still exhibit structural differences. The reason is that the underly-
ing data used to compute the similarity metric—the call tree representing all call relations occurring
during a process’s execution—only contains an aggregated representation of the structural information.
Consequently, the detailed execution of function calls during runtime can still differ between grouped
processes. In order to compare the actually executed function call structures between processes, multiple
sequence alignment (MSA) methods are employed. Like shown in the previous two chapters, alignment
methods are capable of identifying detailed structural differences between processes. MSA methods per-
form such comparisons between multiple processes. The following sections introduce this comparison
approach. The MSA methods are applied as an additional analysis step on top of the clustering analyses
described in the previous section.

81

5 Methods for Structural Comparison of Multiple Processes

Compute similarity matrix based on
pairwise alignment scores

Build guide tree

Take two similar sequences
according to guide tree

Input sequences

Pairwise alignment

Add new aligned sequence
to multiple alignment and

propagate new GAPS

Done

All
sequences
aligned?

Yes

No

Figure 5.5: The progressive alignment scheme.

5.2.1 Multiple Sequence Alignment

Multiple sequence alignment (MSA) methods are capable of aligning more than two sequences. In com-
putational biology MSA is used to align RNA, DNA, or protein sequences with the purpose of analyzing
evolutionary relationships. With help of MSA constructed phylogenetic trees indicate how sequences
(or the species they represent) are related and show their common ancestors. For the comparison of
parallel applications, MSA methods are interesting because they allow a detailed comparison of multiple
processes in one step. By aligning a group of processes, MSA identifies equal areas that are shared by
all compared processes and detects exact positions of differences. This information allows to aggregate
the performance data of many processes into one representative processes with augmented performance
information of all processes.

The naïve approach for solving the MSA problem works in principle identical to the dynamic pro-
gramming approach for pairwise alignment. The difference is that each additionally aligned sequence
adds a new dimension to the dynamic programming matrix. Instead of a two-dimensional matrix in case
of a pairwise alignment, the MSA builds a k-dimensional matrix for k sequences. Thus, the search space
increases exponentially with increasing k and is additionally dependent on the sequence lengths. The
computational complexity to solve an MSA naïvely is O(nk), where n is the sequence length (assuming
that all sequences have the same length) and k is the number of sequences. Finding the optimal solution
for the MSA problem is proven to be NP-complete [138].

82

5.2 Alignment of Clustered Processes

As both the time needed to compute all matrix entries as well as the memory required to store the
matrix exceed the capabilities of available computing hardware, heuristic solutions to the MSA problem
have been proposed. A widely used heuristic is the progressive alignment approach, employed by the
Clustal family [57, 132]. Compared to other MSA heuristics, like iterative or probabilistic methods, the
progressive method is the fastest but also least correct approach. The source of higher inaccuracy in
progressive methods is that initial errors are never corrected and are propagated throughout the complete
multiple alignment. Yet, as the number of aligned sequences can get very large for the comparison of
parallel processes, the performance of the MSA method is the major selection criterion.

The workflow of a progressive alignment is depicted in Figure 5.5. In principle, the algorithm takes a
pairwise alignment and then successively adds new sequences to this alignment result. This work refers
to the MSA result, the alignments of the input sequences, as multiple sequence alignment block. First,
the MSA block holds only the alignments of the initial two sequences. Then, the algorithm progressively
adds new alignments to the MSA block. When the alignments of all sequences are added, the MSA block
represents the final MSA result. Adding new sequences is done by performing a pairwise alignment with
one sequence taken from the MSA block and one new sequence. This step aligns the new sequence to the
MSA block. During a pairwise alignment step, one change can occur that has influence on the complete
MSA block. If new Gaps are inserted in the sequence taken from the MSA block, this Gap needs to be
inserted into all sequences of the MSA block. This situation, informally speaking described with “once a
Gap, always a Gap”, is the major source of error propagation during the progressive alignment. To keep
the error propagation as low as possible, it is important that the most similar sequences are compared first.
Therefore, progressive alignment algorithms first construct a so-called guide tree that orders sequences
according to their similarity. To determine the similarity between sequences, MSA methods build a
similarity matrix using pairwise alignment scores as distance metric. During the progressive alignment
scheme the guide tree selects the most similar (remaining) sequences for the alignment. This procedure
ensures that similar sequences are aligned first. The progressive alignment is finished after all sequences
are added to the MSA block.

5.2.2 Hierarchical Alignment Algorithm for Multiple Processes

This section introduces an MSA approach for the alignment of multiple process sequences or traces. The
goal of the resulting alignment is the detailed analysis of structural similarities and differences between
the aligned processes. The employed MSA method works by progressively adding sequences to an
MSA block. Each addition of a process’s sequence requires one pairwise alignment step. As shown in
Chapter 3, the times required for aligning complete process sequences might render the MSA approach
infeasible. Therefore, the progressive MSA approach is placed on top of a hierarchical scheme, similar
to the hierarchical approach described in Section 3.3.1.

Progressive Alignment of Multiple Process Sequences

This section demonstrates the construction of an MSA block that contains the alignment of multiple
sequences. The key idea of building the complete MSA block is to progressively add new sequences by
using pairwise alignment methods. During this process, introduced Gap states need to be distributed to
all sequences already aligned in the MSA block.

Figure 5.6 demonstrates the progressive multiple sequence alignment process. The illustrated example
uses four sequences, shown in Figure 5.6(a). The goal of the MSA is to align all four example sequences.
As shown in Figure 5.6(b), the MSA process requires three pairwise alignment steps. The first step
aligns Sequence A with Sequence B. With that alignment both sequences build the initial MSA
block. Then Sequence C is taken and aligned to one sequence of the MSA block, in this example
to Sequence B. The resulting MSA block contains all three sequences. To complete the MSA block,
Sequence D needs to be added by an alignment with one sequence from the block. In this example
Sequence D is aligned with Sequence C. During this alignment step, a new Gap state is introduced

83

5 Methods for Structural Comparison of Multiple Processes

Sequence A

c

b

Sequence B

Sequence D

Sequence C c

c

b

c

b

b

b

c

Input Sequences

(a) The four input sequences used in this
MSA example.

Sequence A

Sequence B

Pairwise Alignment 1:

Sequence A

cSequence B b

_

b

c_

MSA Block

Empty MSA Block

cb

_

b

c_

Sequence B c

Sequence C

bb

c_ b

Sequence A

Sequence B cb

_

b

c_

Sequence C c_ b

Sequence C c_ b

Sequence D c

_

b cb

Sequence A

Sequence B cb

_

b

c_

Sequence C c_ b

Sequence D cb cb

_

_

_

Pairwise Alignment 2:

Pairwise Alignment 3:

Alignment Steps

(b) Three individual pairwise alignment steps are required for progressively adding all input
sequences to the multiple sequence alignment block. The MSA block at the bottom represents
the final result of the multiple sequence alignment.

Figure 5.6: This example demonstrates the computation of a multiple sequence alignment (MSA) using
four input sequences.

84

5.2 Alignment of Clustered Processes

MSA result when adding
sequences in the order

A-B, B-C, C-D:

Sequence A

Sequence B cb

_

b

c_

Sequence C c_ b

Sequence D cb cb

_

_

_ Sequence A

Sequence B cb

_

b

c_

Sequence C c_ b

Sequence D cb cb

_

_

_

MSA result when adding
sequences in the order

A-B, B-D, D-C:

Figure 5.7: Results of an MSA can differ depending on the order in that sequences are added to the MSA
block. This figure contrasts two possible results for the sequences given in Figure 5.6(a).

into a sequence from the MSA block (first Gap in Sequence C). This Gap needs to be distributed to
all sequences currently in the MSA block. The result of this step is shown at the bottom of Figure 5.6(b).
This bottom MSA block also represents the final MSA result, as no additional sequences need to be
added.

The result of the MSA depends on the order in that sequences are added to the MSA block. Also the
individual process within the MSA block that is selected for the pairwise alignment with a new sequence
has an influence on the final MSA result. In the above example, sequences are added using the following
pairwise comparisons, Sequences: A-B, B-C, and C-D. However, it is possible to arrive at a different
result by adding sequences in the order: A-B, B-D, and D-C. Figure 5.7 contrasts the resulting MSA
blocks for both options.

The two results in Figure 5.7 differ by the alignment of the first character b in Sequence B.
The result shown on the right side in the figure represents the better MSA of the sequences given in
Figure 5.6(a). The key to achieve high quality MSA results is to always align the most similar se-
quences in the pairwise alignment steps. In the initial version of the example, demonstrated in Fig-
ure 5.6(b), Sequence D has been aligned with Sequence C. In the alternative version leading to the
result shown on the right side in Figure 5.7, Sequence D has been aligned with Sequence B. As
Sequence B is more similar to Sequence D than Sequence C to Sequence D, the alternative
version yields the better MSA result.

In order to facilitate high quality MSA results, a guide tree determining the right order of pairwise
comparisons is necessary for the alignment process. The next section describes the computation of this
tree.

Fast Guide Tree Construction

The so-called guide tree determines the order in that sequences are added to the MSA block. It selects the
sequence pairs for the consecutive alignment steps. MSA algorithms applied in computational biology
use UPGMA [57] or Neighbor-Joining [132] methods to construct the guide tree. Naïve implementations
of both methods run with O(n3) time complexity.

The most time spent during the complete MSA calculation is required for the computation of the
pairwise similarities used to construct the guide tree [57]. Therefore, the construction method of the
guide tree requires an adaption to be suitable for the progressive alignment of process sequences. Using
pairwise alignments to compute the distance between processes is an expensive operation by itself. This
combined with the number of required comparisons quickly renders the computation of a similarity
matrix infeasible. As described in Section 5.1.1, even a similarity matrix holding only 1,024 processes
already requires 523,776 comparisons. Assuming for example an alignment time of 11,291 ms for one
comparison, like measured in Section 3.5.2 for the application ParaDiS, would result in more than 68
days of computation time to fill the similarity matrix.

85

5 Methods for Structural Comparison of Multiple Processes

Algorithm 6: Max2FreqHashing algorithm
Input: Two sequences A and B.
Output: Similarity score Simscore.

1 Simscore = 0
2 select the two most frequent characters A1, A2 from A
3 select the two most frequent characters B1, B2 from B
4 count character A1 occurrences in A
5 count character A2 occurrences in A
6 count character B1 occurrences in B
7 count character B2 occurrences in B
8 from A1, A2, B1, B2 select the characters C that occur in A and B; C := {A1, A2} ∩ {B1, B2}
9 foreach x in C

10 take character x occurrences and add value to Simscore

11 return Simscore

To compute the similarity between two process sequences quickly, a more efficient method than align-
ment is required. This work uses the MaxKFreqHashing method proposed by Seker [126] to approximate
the similarity between two sequences. To compute the similarity, this approach first counts the occur-
rences of the K most frequent characters in each sequence. The following examples show the result of
this function counting the most two, K = 2, characters (Max2FreqHashing):

research : 2 “r” and 2 “e”

sequence : 3 “e” and 1 “s”

Then, to retrieve a similarity score, the counts of the characters occurring in both sequences are summed
up. For the example above, the similarity between research and sequence is 5. The character “e”
occurs 5 times in both sequences, “r” and “s” are only occurring in one sequence and do not contribute
to the similarity score.

Algorithm 6 lists the Max2FreqHashing approach. This algorithms requires O(n log(n)) time com-
plexity, as the algorithm needs to iterate over the sequences and to sort the results. Consequently, using
the Max2FreqHashing algorithm in place of dynamic programming methods significantly accelerates
the computation of the similarity matrix. Max2FreqHashing algorithm calculates, especially for long
process sequences, an approximation of their structural similarity in acceptable time.

The following example illustrates the complete process from computing the similarity matrix to de-
termining the series of sequence pairings used to build the MSA. This approach retrieves the series of
pairings directly from the similarity matrix, rather than additionally constructing a guide tree structure.
The computed series of pairings represents the same information that is included in a guide tree. In prin-
ciple it is possible to construct a guide tree for visualization. This however, would serve only illustrative
purposes. Consequently, in the following the term guide tree refers only to the series of sequence align-
ments computed during the MSA block construction, without indicating an actual tree structure. This
example aligns the input sequences depicted in Figure 5.8.

Using the Max2FreqHashing algorithm to approximate the similarity between the input sequences
results in the following similarity matrix:

M =

⎛⎜⎜⎝
Sequence 1 Sequence 2 Sequence 3 Sequence 4

Sequence 2 18
Sequence 3 0 0
Sequence 4 0 0 4
Sequence 5 6 5 4 4

⎞⎟⎟⎠

86

5.2 Alignment of Clustered Processes

Sequence 1

a

c

Sequence 2

Sequence 4

Sequence 3 d e

a

e

a

c

d

a

cSequence 5 bed

bba bb

bab aba ab b

Figure 5.8: Input sequences for the guide tree construction example.

Sequences that share high similarity are added to the MSA first. Therefore, the comparisons stored in
the similarity matrix are sorted according to their similarity value. Table 5.2 shows the sorted pair-
wise comparisons with the highest similarity values. The order in that sequences are added to the
MSA is defined by following comparisons from top to bottom in Table 5.2. First, Sequence 1 and

Table 5.2: Table with ordered results from the similarity matrix.
SIMILARITY SCORE SEQUENCES TO COMPARE

18 Sequence 1 - Sequence 2
6 Sequence 1 - Sequence 5
5 Sequence 2 - Sequence 5
4 Sequence 3 - Sequence 4
4 Sequence 5 - Sequence 3
4 Sequence 5 - Sequence 4

Sequence 2 are aligned and build the initial sequences of the MSA block. Next, Sequence 1 and
Sequence 5 are aligned. This adds Sequence 5 to the MSA block. The next comparison in Ta-
ble 5.2 is Sequence 2 with Sequence 5. Since both sequences are already contained in the MSA
block, this comparison is unnecessary. The next comparison is Sequence 3 with Sequence 4. This
comparison needs to be postponed, as one sequence is required to be contained in the MSA block. The
next comparison according to Table 5.2 is Sequence 5 with Sequence 3. This alignment adds
Sequence 3 to the MSA. Now, since Sequence 3 has been added to the MSA block, the align-
ment of Sequence 3 and Sequence 4 can be computed. This step adds the last missing sequence,
Sequence 4, to the MSA block. Consequently, for this example, the guide tree reflects the following
series of alignments: Sequence 1-2, Sequence 1-5, Sequence 5-3, and Sequence 3-4.
Adding sequences in the described order produces the MSA result shown in Figure 5.9.

Sequence 1

a

c

Sequence 2

Sequence 4

Sequence 3 d e

a

e

a

c

d

a

cSequence 5 bed

bba bb

bab aba ab b

_ _

_ _

_

_

_ _ _ _

_ _ _ _ _ _

_ _ _ _ _ _

Figure 5.9: MSA result achieved by adding sequences using a guide tree approach.

Using the Max2FreqHashing algorithm to compute the similarity between sequences lowers the time
required for the computation of the similarity matrix. Nevertheless, the large number of processes in
parallel applications can render the computation of a similarity matrix infeasible for a sequential im-
plementation. In such cases, a faster heuristic not requiring the computation of all pairwise similarities

87

5 Methods for Structural Comparison of Multiple Processes

between processes is necessary. The following describes such a method. The heuristic is based on the
MaxKFreqHashing algorithm and counts the three most frequent characters, K = 3, Max3FreqHashing.
First, all sequences are searched to find the three most frequent characters (top characters) occurring in
the input data. Then, sequences are ranked according to their number of top characters. The sequence
containing the most occurrences of top characters acts as the “main sequence”. All remaining sequences
are aligned to the main sequence in the order of their top character occurrences.

Using the example sequences given in Figure 5.8, Table 5.3 lists the number of occurrences of indi-
vidual characters.

Table 5.3: Number of occurrences of characters in the sequences given in Figure 5.8.
OCCURRENCES CHARACTER

10 b
9 a
3 c
3 d
3 e

Following Table 5.3, the resulting three top characters for this example are: b, a, and c. Table 5.4
shows the example sequences ranked according to their number of top characters.

Table 5.4: Sequences of Figure 5.8 ranked according to the number of their top characters.
OCCURRENCES OF TOP CHARACTERS SEQUENCE

10 Sequence 1
8 Sequence 2
2 Sequence 5
1 Sequence 3
1 Sequence 4

The sequence containing the highest number of top characters is Sequence 1. Thus, this sequence
acts as the main sequence for this example. Applying the ranking in Table 5.4, sequences are added
to the MSA using the following comparisons: Sequence 1-2, Sequence 1-5, Sequence 1-3,
and Sequence 1-4. Figure 5.10 presents the resulting MSA when adding sequences in the described
order.

Sequence 1

a

c

Sequence 2

Sequence 4

Sequence 3 d e

a

e

a

c

d

a

cSequence 5 bed

bba bb

bab aba ab b

_ _

_ _

_

_

_ _ _ _

_ _ _ _ _ _

_ _ _ _ _ _

Figure 5.10: MSA result achieved by simply adding sequences using pairwise alignments with
Sequence 1.

Comparing the results shown in Figure 5.9 and Figure 5.10, it is visible that the first result represents
the higher quality MSA. The result shown Figure 5.9 aligns the calls to the functions d and e correctly.
This highlights the importance of using a guide tree approach for the MSA result quality. In the second
result, shown in Figure 5.10, the employed heuristic added all sequences by pairwise comparisons with
Sequence 1. This heuristic might reduce MSA result quality. However, it also enables MSA for large
numbers of processes, that would not have been comparable otherwise.

88

5.2 Alignment of Clustered Processes

Algorithm 7: Hierarchical MSA Algorithm.
Input: A group of processes P .
Output: Merged call tree mergedCallT ree of all input processes.

1 mergedCallTree = 0

2 Function computeMergedCallTree(P)
// Get call trees from processes

3 callT rees = getCallTree(P)
// Start hierarchical MSA with root nodes

4 compareNodes(getRootNodes(callT rees))
// Return merged call tree

5 return mergedCallTree

6 Function compareNodes(nodes)
// Compare functions of input nodes

7 state = compareFunctions(nodes)
// Add new node with result state to merged call tree

8 addNewNode(mergedCallT ree, state)

// If all nodes have no child-nodes the comparison stops here
9 if false = haveChildNodes(nodes)

10 return // All nodes are leaf nodes, done

// Compare child-nodes of input nodes

// Generate sequences from child-node calls of input nodes
11 subSequences = genChildNodeSequences(nodes)

// Compute multiple sequence alignment of sequences
12 subAlignment = calculateMultipleSequenceAlignment(subSequences)

// Iterate over sub-alignment
13 foreach alignedchildNodes in subAlignment

// Continue hierarchical MSA with aligned child-nodes
14 compareNodes(alignedchildNodes)

15 return // done

Hierarchical Scheme

Progressive pairwise alignment steps are necessary to build a multiple sequence alignment. Thus, simi-
larly to the situation described in Section 3.3, large sequence lengths may inhibit the computation of an
MSA in an acceptable time. As shown in Section 3.5, flat alignments of function sequences from real-
world applications may easily require computation times in the range of hours. Therefore, an adaption
of the MSA method is necessary to ensure fast computation of multiple sequence alignments of appli-
cation processes. The key to speed up the computation is to split up complete process sequences into
shorter segments. Analogous to the pairwise hierarchical alignment algorithm, the hierarchy of processes
can be exploited to accelerate multiple sequence alignments. By augmenting the MSA approach with a
hierarchical scheme, individual pairwise alignments are executed with significantly shorter sequences.

The pseudo-code given in Algorithm 7 describes the hierarchical MSA alignment algorithm in detail.
The call trees of the input processes are traversed in parallel. During the traversal one merged call
tree that contains the alignment information of the input processes is generated. Each traversal step
first compares the states of the current nodes and generates the respective merged node in the resulting
merged call tree. Then it aligns all child-nodes of the current nodes using MSA. The MSA result aligns

89

5 Methods for Structural Comparison of Multiple Processes

m

proc 1

a

b

b

d

c

a

m

proc 2

a

b

b

e

c

a

m

proc 3

a

c

b

d

c

b

Figure 5.11: Input processes for the hierarchical MSA scheme example.

proc 1/2/3

m

a b c

a b c d/e

c

Figure 5.12: The merged call tree for the example processes, computed by the hierarchical MSA
algorithm.

related child-nodes, and thus, defines the node groups for subsequent traversal steps. The construction
of the resulting merged call tree is finished when the complete input call trees are traversed.

In order to demonstrate the hierarchical MSA scheme with an example, Figure 5.11 provides three
input call trees. Figure 5.13 illustrates the individual comparison steps of the hierarchical MSA algorithm
for the three example processes. The hierarchical MSA algorithm starts with the root nodes of the input
call trees. The first step compares all child-nodes of the root nodes, resulting in the merged call tree
shown in step two. The second step aligns the child-nodes of the three nodes for function m. This detects
a gap in the first two processes and results in the merged call tree shown in step three. The algorithm
continues the traversal of the call trees following the alignment result shown in step three. First, step
three, compares the child-nodes of the aligned a nodes. This step detects three gap states and results in
the merged call tree shown in step four. As all nodes of step four are leaf-nodes, no deeper traversal is
necessary. Thus, the algorithm continues traversal following the results shown in step three. Step four
compares the child-nodes of the aligned b nodes. This comparison merges two different states—d and
e—into one node. Step five compares the child-nodes of the merged node created in step four. This
comparison detects a gap in process three and results in the call tree shown in step six. As all remaining
nodes (node c in step three and step six) are leaf nodes, the traversal of the input call trees is complete.
The resulting merged call tree for this example is shown in Figure 5.12. Colors in the figure indicate
the alignment state of individual nodes. Green nodes are equal across all input processes. Blue nodes
represent a gap, indicating at least one missing process. Red nodes indicate different functions merged
together. For this example, the merged call tree in Figure 5.12 identifies four equal nodes. Four nodes
exhibit a gap state, indicating that at least one process is missing. One node is marked as different as it
contains two different functions.

90

5.2 Alignment of Clustered Processes

proc 1

proc 2 m

m

Merged Process-Tree

cba

a

_

b

Multiple Sequence Alignments

proc 1/2/3

proc 1/2/3

m

proc 3 m

proc 1

proc 2

proc 3

a

_

b

proc 1/2/3

m

a b c

cb

a

_

b

proc 1

proc 2

proc 3

a

_

b

_proc 1/2/3

m

a b c

a b c

e

d

proc 1

proc 2

proc 3

d

proc 1/2/3

m

a b c

a b c d/e

c

proc 1

proc 2

proc 3

c

_proc 1/2/3

m

a b c

a b c d/e

c

Step

1

2

3

4

5

6

Figure 5.13: Hierarchical MSA algorithm scheme for the example call trees shown in Figure 5.11. Red
rectangles indicate the nodes used for the individual MSA steps. After step six no further
MSA are necessary as all remaining nodes are leaf nodes.

91

5 Methods for Structural Comparison of Multiple Processes

Figure 5.14: Portion of the merged call tree of 64 AMG2006 processes. The colored parts in the center
show the recursive execution of a sort function. Starting from call-level 11, more and more
processes stop execution of their sorting (indicated by colors changing from red to blue).

The hierarchical MSA algorithm has the capability to compare the processes of a parallel application.
The resulting merged call tree reveals detailed structural differences and similarities between the input
processes. The following two examples showcase merged call trees for two real-world application runs.
The colors in Figures 5.14 and 5.15 indicate the alignment state and the number of processes contributing
to individual nodes. White nodes depict equal structure. All merged processes execute the same function
in such nodes. Colored nodes depict differences in the structure between processes, while the individual
node color indicates the number of merged processes for this node. Red—warm—colors indicate a high
number of processes that contribute to the individual node. Blue—cold—colors indicate a low number
of processes that contribute to the individual node.

Figure 5.14 shows a portion of the merged call tree generated from a 64 process run of the application
AMG2006 [34]. The figure depicts a part of the initialization. The center of Figure 5.14 shows the
recursive execution of a sort function. First, visible at call-level 10 in Figure 5.14, all processes execute
the sort function hypre_qsort2i. Then, beginning at call-level 11, more and more processes have
finished their sorting and stop calling the sort function. Finally, at call-levels 19–22, only a few remaining
processes perform sorting steps. For the parallel execution of the sort function, Figure 5.14 shows the
structural differences between all application processes in one merged call tree.

Figure 5.15 shows the merged call tree for an eight process run of the application ParaDiS [7]. The
figure shows a few computation steps during the execution of the application. The colored parts of the
merged call tree highlight parts of the application that are not executed by all processes. Blue areas
are executed by one process only. What process actually runs during blue areas changes throughout the
execution and is dependent on the individual workload of the processes. This is not directly visible in
Figure 5.15, as the chosen visualization approach only encodes the number of processes and does not
indicate individual processes.

Concluding, the merged call tree combines the structural information of multiple processes in one
graph, while highlighting similarities and differences at the same time. As the merged call tree contains a
large amount of information, more than the demonstrated visualizations are possible. This data structure
provides the potential to design new powerful use case specific visualization approaches.

92

5.2 Alignment of Clustered Processes

Figure 5.15: Portion of the merged call tree of 8 ParaDiS processes showing a few computation steps.
Colored nodes indicate areas that are not executed by all application processes. Especially
blue parts are only executed by one process.

Scalability Considerations

This chapter introduces an approach for the structural comparison of multiple parallel processes. The
approach consists of several steps.

The first part groups structurally similar processes. This is done by a hash-based clustering algorithm.
The first step of this algorithm, the extraction of the structural data, requires a complete traversal of
all call trees of the application processes. Most steps of the algorithm (extraction and serialization of
the structural data, computation of the hash value, and insertion of the hash value in the cluster list)
require at most linear time, O(n), with respect to the number of entries n in the largest process call
tree n = max(n1, ..., np), with the number of processes p. The sorting of the structural data requires
O(m log(m)) time complexity, with respect to the number of entries m in the structural data list. Since
this list consists of the different functions or function pairs occurring in a call tree, the number of entries
in this list is usually much smaller than the number of entries in the call tree, m << n. The overall
worst-case time complexity of the hash-based clustering is O(n log(n)). The expected time complexity
for the clustering of processes is O(n).

Then, the hierarchical MSA algorithm compares the clustered processes. Therefore the algorithm
traverses the process call trees in parallel. This traversal requires linear time complexity, O(n).

During the traversal MSA are computed for child-node sequences. The computation of an MSA
consists of two parts. The first part computes the guide tree. This computation is based on the MaxKFre-
qHashing algorithm, that runs with O(n log(n)) time complexity, with respect to the sequence lengths n.
There are two options to compute the guide tree. The first option uses the Max2FreqHashing algorithm
to compute a similarity matrix. The worst-case time complexity of this approach is quadratic, O(p2),
with respect to the number of processes p. The second option is to use the Max3FreqHashing algorithm
to compute a sorted table. This approach runs in O(p log(p)) worst-case time complexity.

Using the guide tree, progressive pairwise alignments are computed. Each alignment requires quadratic
worst-case time complexity, O(n2), with respect to the sequence lengths n.

The overall worst-case time complexity of the hierarchical MSA algorithm is quadratic, O(n2). How-
ever, similarly to the solution described in Section 3.3.2, a fast-alignment-heuristic method can be used to
limit impact of the quadratic component in the algorithm. In such case, the construction of the guide tree,
requiring O(n log(n)) time complexity, dominates the algorithm. Thus, the expected time complexity
for the hierarchical MSA algorithm is O(k log(k)), with k = max(n, p).

93

5 Methods for Structural Comparison of Multiple Processes

5.3 Performance Evaluation

This section evaluates the performance of both the introduced clustering algorithms and the hierarchical
multiple sequence alignment algorithm. The case study in this section consists of the following real-
world applications:

• ParaDiS [7], “Parallel Dislocation Simulator”, models the dynamics of dislocation lines as they
interact and move in response to the forces imposed by external stress and inter-dislocation inter-
actions.

• PEPC [41], “Pretty Efficient Parallel Coulomb Solver”, an N-body simulation using an octree as
internal representation. It simulates the interaction between a laser and charged particles.

• FD4 [83], “Four-Dimensional Distributed Dynamic Data structures”, adds dynamic load balancing
to the COSMO-SPECS and WRF weather forecast models. The measured application run has been
a benchmark that evaluated FD4’s scalability.

• PIConGPU [20, 21], “Particle-In-Cell on Graphics Processing Units”, an implementation of a
fully relativistic Particle-In-Cell (PIC) algorithm, which is widely used in computational plasma
physics.

All performance measurements have been conducted on an HPC system with the following setup. One
compute node is equipped with two Intel Xeon E5-2680 v3 processors. Each processor provides 12 cores
and runs at 2.50 GHz with hyper-threading disabled. The available memory of a node ranges from 64
GB to 256 GB. To measure the benchmark runtime one node has been reserved exclusively with only
one core running the benchmark actively. All reported results in this section are always the median of
ten repeated measurement runs.

5.3.1 Performance of the Clustering Algorithms

This chapter introduces three algorithms applicable as pre-clustering step for grouping of structurally
similar processes. Two algorithms, K-Medoids and DBSCAN, are well known and widely used. The
novel fast hash-based clustering algorithm introduced in this work presents an additional alternative
approach. Goal of the hash-based approach is to prevent the computation of a similarity matrix and to
provide an algorithm that is capable of quickly clustering large numbers of processes.

The hash-based approach does not require a similarity matrix. This advantage is important when
comparing large numbers of processes, as the memory requirement for a similarity matrix becomes
quickly prohibitive. Table 5.5 shows the required memory for a similarity matrix with rising numbers
of processes. Starting already with hundreds of thousands of processes, the similarity matrix cannot be
stored on common desktop computers anymore. When approaching millions of processes, the storage of
the similarity matrix becomes unreasonable even on powerful HPC machines.

The application ParaDiS is used to evaluate the scalability of all three approaches. For this purpose
ParaDiS has been run with increasing process numbers. Compared to many other applications, the struc-
tural clustering of ParaDiS is relatively expensive. This is due to the varying function call structure
between ParaDiS processes. The function call structure of a process depends on its individual workload.
This results in a lot of structurally different process groups, what increases clustering effort. Conse-
quently, this benchmark represents an involved clustering case.

For K-Medoids the number of clusters has been set to the number of groups previously computed by
the hash-based clustering approach. DBSCAN has been configured to find clusters with at least two
members and with a minimum of 70% structural similarity between processes. The clustering results of
both algorithms strongly depend on the chosen algorithm parameters. Therefore, result quality has not
been evaluated in this benchmark. Moreover, suitable clustering algorithm parameters may depend on
the individual application run and cannot be generally defined for the clustering of processes.

94

5.3 Performance Evaluation

Table 5.5: Memory requirement for the similarity matrix computed by K-Medoids and DBSCAN.
NUMBER OF PROCESSES MEMORY REQUIREMENT

128 ~32 kB
1,024 ~2 MB

16,384 ~512 MB
32,768 ~2 GB

131,072 ~32 GB
262,144 ~128 GB
524,288 ~512 GB

1,048,576 ~2 TB

Table 5.6: Clustering times for ParaDiS.
CLUSTERING APPROACH

NO. OF PROC. SIZE HASH CLUSTERING SIM. MATRIX K-MEDOIDS DBSCAN
8 138 MB 1ms 7 Groups 6ms <1ms <1ms

16 164 MB 2ms 15 Groups 20ms <1ms 1ms
32 216 MB 4ms 27 Groups 62ms <1ms 1ms
64 334 MB 6ms 42 Groups 281ms 2ms 3ms

128 612 MB 9ms 74 Groups 1s 223ms 13ms 18ms
256 1.1 GB 24ms 93 Groups 4s 409ms 81ms 118ms
512 3.4 GB 40ms 99 Groups 18s 441ms 1s 55ms 947ms

1,024 4.6 GB 80ms 187 Groups 1min 31s 8s 272ms 17s 652ms
2,048 7.1 GB 164ms 216 Groups 6min 55s 1min 24s 2min 49s
4,096 14 GB 340ms 207 Groups 33min 14s 9min 55s 25min 38s

Table 5.6 lists the results of this measurement. The sizes given in Table 5.6 and Table 5.7 represent the
compressed OTF trace file size. As both K-Medoids and DBSCAN require the same similarity matrix,
its computation is listed separately in the table. The complete time required to compute a DBSCAN or
K-Medoids clustering is the sum of the times required to compute the similarity matrix and the respective
clustering algorithm. The timing measurements in Table 5.6 represent only the pure algorithm times and
exclude times required to load the measurement data into main memory.

Figure 5.16 depicts the hash-based clustering times for ParaDiS. The graph confirms the expected
linear increase in runtime. The clustering time increases along with rising process numbers. Additionally,
it depends on the size of the measurement data and group count. The number of groups influences the
runtime, as new results need to be inserted into the list of clusters. The measurement size is important as
the extracted structural data needs to be sorted and serialized before the computation of the hash value.

Figure 5.17 shows a quadratic increase in runtime for the K-Medoids algorithm. K-Medoids and
DBSCAN exhibit about the same runtime, as for both algorithms the computation of the similarity matrix
dominates the clustering time. Computing the similarity matrix for process numbers larger than 4,096
requires already more than half an hour. This renders the computation of structural clusterings using
K-Means or DBSCAN unacceptable. For larger process numbers, even without the time required to
compute the similarity matrix, both algorithms require substantially more computation time than the
hash-based clustering approach.

To evaluate the clustering performance for higher process numbers, Table 5.7 shows an application
study with three real-world applications. The computation of a similarity matrix requires more than one
day in all three cases. Thus, it is impractical to obtain DBSCAN or K-Medoid clustering results for
applications with this degree of parallelism. Especially since the clustering is intended as pre-clustering
step before subsequent analysis techniques. The hash-based clustering of all three applications results
in a small number of groups. This approach is capable of grouping application runs with more than

95

5 Methods for Structural Comparison of Multiple Processes

Figure 5.16: Scalability analysis of the hash-based clustering algorithm.

Figure 5.17: Scalability analysis of the K-Medoids algorithm. The displayed time represents the full
algorithm time, i.e., similarity matrix + K-Medoids times shown in Table 5.6.

96

5.3 Performance Evaluation

Table 5.7: Clustering time study with three real-world applications.
CLUSTERING APPROACH

APPLICATION SIZE NO. OF PROC. HASH CLUSTERING SIMILARITY MATRIX

pepc 4.4 GB 16,384 268ms 7 Groups >24h
PIConGPU 97 GB 18,432 1s 209ms 12 Groups >24h

fd4 2.6 GB 65,536 555ms 14 Groups >24h

65,000 processes in about half a second. The clustering of the application PIConGPU requires the most
computation time in Table 5.7, due to the size of the measurement data. The sorting of the structural data
of the processes increases the algorithm runtime in this case. Nevertheless, this approach can compute
the clustering result for PIConGPU in about one second.

The benchmark results demonstrate that the hash-based clustering is an efficient and viable approach
for structural pre-clustering of applications. The approach is capable of quickly computing clustering
results even for highly parallel applications.

5.3.2 Performance of the Hierarchical Multiple Sequence Alignment Algorithm

The first step in evaluating the multiple sequence alignment (MSA) algorithm’s performance is to com-
pare the two guide tree construction approaches. The more accurate approach requires the computation
of a similarity matrix. The faster heuristic uses an ordered table without the need for exhaustive pairwise
process comparisons. The measurement shown in Table 5.8 compares the guide tree construction times
using the application ParaDiS. It presents the scalability of both approaches by measuring construction
times for rising process numbers.

Table 5.8: Comparison of the two guide tree construction approaches. Tree generation times are mea-
sured for rising process numbers of the application ParaDiS.

NUMBER OF LONGEST

PROCESSES SIZE SEQU. LENGTH SIMILARITY HEURISTIC SIMILARITY MATRIX

8 138 MB 2,951,567 367ms 1s 649ms
16 164 MB 1,888,072 425ms 4s 277ms
32 216 MB 1,726,667 545ms 10s 636ms
64 334 MB 1,435,297 778ms 30s 148ms

128 612 MB 1,052,519 1s 451ms 1min 53s
256 1.1 GB 824,239 2s 267ms 5min 54s
512 3.4 GB 1,512,833 8s 822ms 44min 30s

1,024 4.6 GB 1,032,019 11s 359ms 1h 54min
2,048 7.1 GB 969,580 16s 999ms 5h 48min
4,096 14 GB 1,063,002 33s 569ms 21h 2min

The function sequence length of a ParaDiS process depends on its individual workload. Depending on
the number of processes, the resulting distribution of work between available processes results in vary-
ing process sequence lengths. The measurements listed in Table 5.8 always compare complete process
sequences. This makes the benchmark more compute intensive than in the case of computing the guide
tree as part of the hierarchical MSA algorithm. The hierarchical approach separates complete process
sequences into many smaller segments. This significantly accelerates the computation of the guide tree.
However, in order to evaluate and compare the performance of both approaches it is reasonable to assess
building times for full process sequences.

The left part of Table 5.8 provides the number of processes, the size of the measurement data set, and
the length of the longest process sequence in the data set. The right part states the construction times for
both approaches.

97

5 Methods for Structural Comparison of Multiple Processes

Figure 5.18: Scalability analysis of the heuristic guide tree construction approach.

Figure 5.18 shows the construction times for the faster guide tree approach computing an ordered table.
This heuristic iteratively adds new processes to a table and sorts all entries according to the similarity
score. The graph in Figure 5.18 shows a linear increase in the construction times for this approach. The
value for 512 processes stands a bit out of the linear trend. This is due to the long sequence length for
this number of processes. Nevertheless, the construction of the guide tree takes only about half a minute
for 4,096 processes with long sequences lengths. This measurement suggests that this method is capable
of efficiently constructing guide trees even for higher numbers of processes.

Figure 5.19 presents the calculation times for the similarity matrix based guide tree construction
method. The graph shows the characteristic quadratic increase in runtime with rising process num-
bers. The construction time for 512 processes already takes more than 45 minutes. Using this method
for constructing a guide tree is only reasonable with up to about 250 processes.

Concluding, efficiently computing a guide tree for high numbers of processes is infeasible when a
similarity matrix is required. To benefit from the higher accuracy, the similarity matrix approach is
applicable with up to 250 processes. For higher numbers of processes, the heuristic based on an ordered
table allows fast constructions times. Consequently, the MSA algorithm uses a combination of both
methods to construct the guide tree. It employs the similarity matrix based approach with up to 250
processes and uses the faster heuristic for higher process numbers.

The second part of this evaluation measures the MSA algorithm’s performance using three real-world
applications. For this evaluation the complete algorithm is divided into four stages. Table 5.9 presents
the measurement results by separately listing the runtimes for the four individual stages of the algorithm.
In the first stage, the algorithm detects and groups all completely similar input sequences. An MSA is
only necessary between the remaining sequences that exhibit structural differences. In the second stage,
the algorithm computes the guide tree that defines the order of alignments for the remaining sequences.
The third stage computes the multiple sequence alignment between all remaining sequences according to
the guide tree. Finally, the fourth stage takes the MSA information and constructs the resulting merged
call trees.

98

5.3 Performance Evaluation

Figure 5.19: Scalability analysis of the similarity matrix based guide tree construction approach.

Table 5.9: Multiple alignment time study with three real-world applications.
GROUP BUILD MULT. BUILD

NO. OF EQUAL GUIDE SEQU. MERGED

APPLICATION SIZE PROC. PROC. TREE ALIGN. GRAPH TOTAL

ParaDiS 14 GB 4,096 2min 59s 36s 141ms 51s 22ms 6min 2s 10min 28s
pepc 4.4 GB 16,384 26s 884ms 2s 163ms 3min 6s 1min 18s 4min 53s

fd4 2.6 GB 65,536 1s 517ms 2ms 2ms 3s 36ms 4s 557ms

Computing the MSA and building the merged call trees for the application pepc takes about five min-
utes. In contrast, the same process takes only about five seconds for the application fd4. The reasons
for the higher runtime in case of pepc are the larger amount of measurement data along with the higher
number of differences between processes. Many fd4 processes are completely similar. Thus, the MSA
algorithm needs to compute less guide trees and MSA alignments than in the case of pepc. Consequently,
pepc also results in more complex merged call trees. Similarly, the situation for ParaDiS. This applica-
tion produces large amounts of measurement data with many structurally different processes. Compared
to the other applications, the pre-clustering step computes a high number of process groups for ParaDiS.
Since the MSA algorithm builds an individual merged call tree for each group, the time required to
construct these merged call trees dominates the total algorithm runtime. Moreover, most processes in-
cluded in a group are structurally similar. This is visible from the higher runtime required to group equal
processes compared to the runtime required to compute guide trees and MSA alignments.

In summary, the measurements show that the MSA algorithm is applicable even for applications with
large process numbers. The algorithm is capable of merging detailed call tree information of tens of
thousands of processes in only a few minutes. The merged call tree information is valuable for subsequent
performance analyses and scalable visualizations of performance data.

99

6 Visualization Techniques for Event Timelines

The complexity of both high performance computing systems and their parallel software requires per-
formance analysis tools to fully understand application performance behavior. Timeline visualization of
event streams has proven to be a powerful approach for the detection of various types of performance
problems [65]. It allows to leverage the powerful human visual perception. Clever visualization tech-
niques can facilitate quick understanding of large data volumes. However, visualization of large numbers
of process streams quickly hits the limits of available screen resolution. It is also not trivial to design
beneficial visualizations [16]. Care needs to be taken during decisions like what part of the information
to visualize and what visualization technique to apply [91].

This chapter makes two contributions to advance visualization techniques for event streams. The first
section proposes folding strategies for event timelines that consider common questions during perfor-
mance analysis. The introduced methods facilitate visual scalability and provide powerful overviews of
performance data at the same time. Furthermore, the folding strategies improve GPU stream visualiza-
tion and allow easy evaluation of the GPU device utilization. The second section presents an approach
that analyzes runtime imbalances throughout an application run to automatically identify performance
critical sections. Intuitive visualizations present the resulting runtime imbalances to the analyst and
provide visual guidance to performance hot spots.

6.1 Timeline Folding Methods

This section introduces folding methods for event timelines. By folding multiple event timelines into one
result timeline, scalability and usability of timeline visualizations can be greatly improved. Therefore,
the required computation as well as possible folding and selection operations for visualizing a timeline
are described. First, the basic operations that a timeline visualization involves are described. Second,
the basic visualization is extended for folding capabilities. Based on these proposed operations and
techniques, potential folding selections for different use cases are introduced in detail. Finally, this
section analyzes the time complexity of the introduced techniques.

In the context of trace data, a timeline visualization is a rectangular display that visualizes streams as
horizontal lines, which in turn consist of application states that are represented with a color. A stream
usually represents a logical processing element such as a process, thread, or graphics processing unit
(GPU) stream. Trace viewers such as Vampir [19] then interpret functions or other application events as
states of the streams. Additionally, at a given point in time, applications may not execute any activity on
the processing element that a stream represents. In such case a so-called no-state is inserted as application
state.

The upper half of Figure 6.1 illustrates tracing data for a single stream as rectangles on a dotted line.
The stream could represent an MPI [103] process and the states a and b could represent functions that the
process issues. The tracing data represents these states with enter and leave events [137], i.e., the first
event in the stream is an enter event for a, followed by an enter event for b, followed by a leave event for b,
and so forth. Additionally, the example event data contains time regions with no active application state
(no-state) in the visualization. A timeline visualization must represent this event data with the pixels that
are available in its rectangular display. For simplicity it is now assumed that at least one pixel in height
is available for each stream. For each stream and each pixel that the width of the display provides, the
visualization must associate a state from the event data. The lower half of Figure 6.1 illustrates this task
for three available pixels. Each pixel represents an equidistant time range that depends on its position
and the time interval for the visualization, i.e., in the example, pixel 0 represents the time interval [t0, t1).

101

6 Visualization Techniques for Event Timelines

Stream of event data:

a
b b

aEnter bEnterbLeave

Timeline visualization:

aLeave

Function call structure:

bEnter bLeave

a a

t0 t1 t2 t3

Pixel 0 Pixel 1 Pixel 2

Figure 6.1: Illustration of the state selection for pixels in a timeline chart.

As the figure illustrates, multiple application events can occur within such a time range. Thus, based on
the events in the time range of a pixel, a selection operation must associate a state with each pixel.

An obvious approach for this selection is an analysis of the amount of time that is spent in each state.
Let F be the set of all application states with no-state ∈ F , i.e., the example uses F = {a, b, no-state}.
By scanning through all events that occur within the time interval of a pixel p, an analysis can create
a mapping tp : F → R that assigns a real number for each state to represent how much time is spent
for this activity. The visualization could then choose the activity s ∈ F as the state for pixel p where
s satisfies that for all s′ ∈ F holds tp(s

′) ≤ tp(s). This approach would yield the chosen activities in
the lower half of Figure 6.1, since state a is the most active activity for pixel 0, state a most active for
pixel 1, and no-state is most active for pixel 2.

However, choosing pixel states by the most active state within a pixel comes at a high overhead.
For k events in the time range of a pixel, computing tp requires O(k) time. In practice, for a timeline
visualization of the complete time range of an application’s trace, this requires that the visualization
analyzes the complete trace. Consequently, this approach is impractical for performance visualization
tools such as Vampir.

To overcome this, a more sampling-like approach is often used: To select a state for a pixel with a
time interval [t, t′), the visualization queries for the first event e with a timestamp te ≤ t. If e is an enter
event then its state is still active at time t. Thus, the state for the pixel is the state associated with e.
If e is a leave event, then the state of its parent in the call stack is still active at time t. Thus, the state
for the pixel is the state associated with the parent event e′ of e. If no parent event exists, no-state is
used instead. In the example, for pixel 0 the first event to the left of t0 is an enter event for a, thus the
sampling chooses a as the state for the pixel. For pixel 1, the first event left of t1 is a leave event for b,
since a is the parent event of b, the state for the pixel is also a. Finally, for pixel 2, a leave event for a
is the event left from t2, since this event has no parent, the state for pixel 2 is no-state. For k events in
a stream, efficient data structures [17, 137] can support these queries with O(log k) time. Consequently,
visualization techniques in performance tools use a variation of this sampling approach.

6.1.1 Folding Operations

The proposed folding techniques target a visualization of aggregated streams. Figure 6.2 illustrates
a folding of three streams (top) into a single aggregated stream (bottom). Consequently, the folded
timeline visualization must both provide a state for each stream of event data, as for a regular timeline
visualization, and must then combine the states for each stream into a single result state. Figure 6.2
illustrates this situation. For pixel 0 the sampled timeline visualization provides the sequence (a, a, b) of
states for the three event streams. Generalizing this notion, for a sequence seq = (s0, s1, . . . , sn) (with
s0, s1, . . . , sn ∈ F) a selection operation select must select a result state for the folding. The following
uses count(s ∈ F , seq) to retrieve the occurrence count of s in the sequence seq. With respect to use
case specific folding the following four operations are proposed:

102

6.1 Timeline Folding Methods

Event streams:

a b

Timeline visualization: a

t0 t1 t2 t3

a
a b ba a

a b ba a

b

Pixel 0 Pixel 1 Pixel 2

Figure 6.2: Illustration of the folding operation selectmax for three event streams.

selectmax(seq) := si where for all k ∈ {0, . . . , n} : count(sk, seq) ≤ count(si, seq) (6.1)

selectmin(seq) := si where for all k ∈ {0, . . . , n} : count(sk, seq) ≥ count(si, seq) (6.2)

selectdiff(seq) :=

{
no-state if for all k ∈ {0, . . . , n} : s0 = sk

selectmin otherwise, for all k ∈ {0, . . . , n} : sk ̸= no-state
(6.3)

selectidle(seq) :=

{
no-state if for all k ∈ {0, . . . , n} : sk = no-state
selectmax otherwise, for all k ∈ {0, . . . , n} : sk ̸= no-state

(6.4)

The first operation selectmax is a self-suggesting operation that selects the most frequent state from the
sequence. The illustration in Figure 6.2 matches this operation. For pixel 0, it uses state a since this state
occurs twice in the input sequence for the selection operation. For pixel 1, both b, a, and no-state are
valid selections, since each occurs once in the input sequence (a, b, no-state). To resolve such situations
a total order < on F is applied to select the smallest state according to F , e.g., b in the example. Finally,
for pixel 2, the operation selects no-state from the sequence (no-state, no-state, no-state).

6.1.2 Use Case Specific Folding

As the list of introduced selection operations already suggests, some selection operations particularly
target specific use cases.

Dominating Behavior The operation selectmax represents dominant behavior across all folded streams
and provides a visualization that captures this behavior. This operation provides a general overview of
an application’s execution and is suitable as default folding operation.

Outlier Detection A common task in performance optimization is the identification of outliers that
exhibit different behavior than other threads or processes of a parallel program. Such outlier behavior
usually causes wait time of other threads/processes at a subsequent synchronization primitive. Conse-
quently, a common task is the removal of such outlier behavior. In such a situation the operation selectmin

immediately highlights outlier behavior across a set of processes or threads. A comparison of the folding
result of this operation to the result of selectmax then highlights where outliers exist, as well as which
state is dominant for other streams.

The selection operation selectdiff simplifies this comparison further. It replaces states in which all
streams exhibit the same state by using no-state as their result. This extension indicates regions in
time where streams behave equally and highlights regions where behavior diverges. For these differing
regions, the operation selects the outlier behavior.

103

6 Visualization Techniques for Event Timelines

Accelerator Utilization Utilization statistics are a common starting point to evaluate the effective-
ness of hybrid applications that utilize GPUs or other accelerators. Since modern accelerators have mul-
tiple hardware device streams that can concurrently execute kernels (functions executed on the device),
idle times of accelerators exist if no active kernel executes. Timeline folding can effectively support this
analysis. The operation selectidle serves this purpose and highlights whether any kernel executes on an
accelerator device. The operation behaves like selectmax, except that it only returns no-state when all
input streams are idle. Thus, the operation correctly considers the idle state for accelerator devices.

6.1.3 Time Complexity and Scalability

For k input streams, the four proposed folding operations require a time complexity of O(k). Conse-
quently, visualizing a folded stream is as expensive as visualizing its input streams without folding. At
the same time, the folding allows the visualization of more streams overall, thus increasing the scalability
that the timeline visualization provides.

Additionally, by distributing the analysis for the folding, all four proposed operations can be calculated
hierarchically. Analysis processes, e.g., as in the parallel analysis of VampirServer [17], can process a
subset of the streams that form a folding operation’s input. Each analysis process computes a vector of
the states that occur across its streams and associates a count with each state to denote how often the state
occurs in the streams. For k streams this yields a vector of l occurring states. According to experience
for application state analysis [6], l ≪ k is expected even for large k, i.e., that streams often exhibit
similar states. When multiple analysis processes provide their state-count vectors for a single folding,
their vectors can be combined by adding occurrence counts for matching states. This operation is hier-
archical, i.e., it maps to a master-slave architecture as in VampirServer as well as to Tree Based Overlay
Networks [122] (TBON). A hierarchical processing for selectmin(seq) and selectdiff(seq) can additionally
use intermediate state-count vectors of size 1 and 2 respectively, without loss of information. These
vectors would only include the state with the minimal occurrence count and in the case of selectdiff(seq)
an additional element to store whether all states are equal or not.

6.1.4 Case Studies

This section showcases the introduced folding functionality and the resulting analysis capabilities in
detail with two applications.

PIConGPU

The first application analysis provides an example for the use case Accelerator Utilization. The ana-
lyzed application PIConGPU [20] computes a fully relativistic Particle-In-Cell (PIC) algorithm, which is
widely used in computational plasma physics. Additional to MPI-based parallelism on the compute node
level, PIConGPU utilizes graphics processing units (GPUs) to compute large-scale plasma simulations.
To interface with the GPUs, PIConGPU uses the CUDA programming interface.

Figure 6.3 depicts the starting point of the analysis. It shows a complete run of PIConGPU. The
timelines in the figure depict individual processes with respective labels on the left side. The application
has been executed on four MPI processes controlling one CUDA device (GPU) each. Each CUDA device
provides a set of streams to efficiently handle potentially concurrent activities. The colors in Figure 6.3
represent different functions. CUDA kernels appear in blue, CUDA runtime functions in purple, MPI
functions in red, and application functions in green. Communication between processes is indicated
by black lines. In the beginning of the simulation, shown in the left half of Figure 6.3, PIConGPU
runs initialization code. In the right half of Figure 6.3, PIConGPU performs the computations of the
simulation. The execution of CUDA kernels is depicted in blue. At the far right in Figure 6.3, the
simulation computations are done and finalization code is executed.

104

6.1 Timeline Folding Methods

Figure 6.3: Vampir timeline showing a run of the PIConGPU CUDA application.

Using common timeline visualization techniques, as shown in Figure 6.3, the identification of idle
times on the GPU, as well as an evaluation of the GPU device utilization, is very challenging. For each
CUDA device in Figure 6.3, kernels are scheduled across seven device streams. Only when no kernel
is active on all of the seven streams, the respective CUDA device is idle. However, the scheduling of
kernels across all available device streams produces visual clutter in the timeline visualization. This
phenomenon is visible in the blue areas in Figure 6.3. It significantly increases the required effort to
identify inefficiencies and idle times in CUDA application executions. To alleviate the analysis effort
the new folding functionality is applied. Using the selectidle operation, all streams of a CUDA device
are folded into a new timeline. For the corresponding time interval of each visualized pixel of the
new timeline, this operation identifies the most prominent activity (highest time share) across all device
streams. Idle time (no-state) is only selected when no CUDA device stream computes any kernel. That
way, the new timeline always shows the most important activities and visualizes idle times only when
all device streams are unused. This reduces the required screen space for displaying CUDA activities
and inhibits visual clutter. The scattered idle areas (shown in white in Figure 6.3) are reduced, since all
concurrent activities on the device are aggregated into one timeline. Thus, idle areas are only visualized
when the whole device is unused. Figure 6.4 shows the folded timelines for the CUDA devices of the
PIConGPU run. For ease of presentation, the visualization of communication is disabled in the figure.
Additionally, in the folded timelines, areas exhibiting GPU idle times are colored in yellow. Figure 6.4(a)
and Figure 6.4(b) contrast the plain vs. folded visualization.

While the plain visualization results in visual clutter, the folded visualization clearly reveals the com-
putational structure of the application. Individual iterations become visually detectable. The folding
techniques additionally reduce the amount of visualized timelines. Hence, the introduced techniques
reduce visual complexity to facilitate easy analysis.

105

6 Visualization Techniques for Event Timelines

(a) All device streams are visualized independently leading to visual clutter.

(b) All respective device streams are folded resulting in an easily visible computational structure.

Figure 6.4: Timeline grouping applied to four CUDA devices running PIConGPU.

106

6.1 Timeline Folding Methods

(a) Zoom to two iterations. Device idle times are clearly visible as yellow areas. The uneven yellow areas at the end of each
iteration indicate load imbalances between devices.

(b) The additionally visualized communication (black lines) shows that device idle times correlate with communication phases
between host processes and CUDA devices.

Figure 6.5: Visualization of iterations in PIConGPU using folded CUDA streams.

Figure 6.6: Statistic showing the CUDA device utilization.

Besides valuable overviews of an application’s behavior, timeline folding techniques enable advanced
analysis capabilities. Figure 6.5 shows an in-depth analyses of the computational structure of PIConGPU.
Device idle times are easily visible as yellow areas and correlate to communication phases between host
processes and their CUDA devices.

Based on the folded timelines, it is possible to provide additional summary information. Figure 6.6
gives an example. The figure depicts the folded timelines of all four GPU devices on the left. The right
side depicts summary information according to the timelines. This summary represents the GPU device
utilization. During the compute iterations the GPU device exhibits a utilization of 75%. The introduced
folding techniques facilitate the computation of this information. Without folded timelines, complete
device idle times cannot be differentiated from individual stream idle times. An evaluation of the GPU
device utilization is essential for efficient optimization workflows.

COSMO-SPECS

The second application analysis provides an example for the use case Outlier Detection. This case
study analyzes the execution of a weather forecast code [48]. The code couples two models, COSMO
and SPECS, for more accurate simulation of cloud and precipitation processes. COSMO is the regional
weather forecast model originally developed at the German Weather Service (DWD). SPECS is a detailed
cloud microphysics model developed at the Leibniz Institute for Tropospheric Research (IfT). SPECS
computes detailed interactions between aerosols, clouds, and precipitation.

107

6 Visualization Techniques for Event Timelines

(a) Visualization of the full application execution. The colored portions indicate areas in that processes execute different
functions. The frequency of such areas increases over time.

(b) Visualization of the first iteration. Red areas indicate the exchange of simulated values between processes. The workload
is still balanced and computations are executed in the white areas.

(c) Visualization of the last iteration. Large purple areas are visible. In that areas most processes are waiting and only a few
processes are computing.

Figure 6.7: Visualization of the folded timelines of a COSMO-SPECS weather forecast code run.

COSMO employs a 2D (horizontal) decomposition into M ×N processor domains and runs without
dynamic load balancing. SPECS uses the same data structures and decomposition as the COSMO model
and only replaces its cloud microphysics. Compared to COSMO, the SPECS calculations are signifi-
cantly more compute intensive. During the execution, SPECS introduces large load imbalances, since its
computational cost heavily depends on the presence of cloud particles in the grid cell. Thus, the layout
of clouds in the application domain determines the local work.

Figure 6.7 demonstrates the selectdiff folding operation applied to a COSMO-SPECS code run on
100 processes. First, Figure 6.7(a) shows the complete application run. The timeline depicts COSMO
activities in green, SPECS activities in purple, and MPI functions in red. The folded timeline visualizes
areas that exhibit dissimilar executions across the processes. Such areas are interesting as they indicate
potential imbalances. In case of load imbalance, some processes are waiting in barrier calls, while others
are still executing computations. White areas in the folded timeline, however, indicate similar work
across all processes. As visible in Figure 6.7(a), the load imbalances increase throughout the application
execution. The first iteration, shown in Figure 6.7(b), takes less than 3 seconds. The workload is still
balanced and no waiting takes place. A different situation is shown in the last iteration, see Figure 6.7(c).
This iteration takes more than 5 seconds. Visible in Figure 6.7(c) are large purple areas. In these areas,
only the minority of processes execute computations.

Detailed information is visible at the bottom of Figure 6.7(c). There, for a selected portion of the
folded timeline (marked by the black rectangle in Figure 6.7(c)), in-depth summary information is given.
The summary lists all executed functions in the selected time range, as well as the fraction of time that
each function executes within the range. As shown in the bottom of Figure 6.7(c), only 3% of the time
is spent in actual calculations. While almost all runtime (97%) is spent for MPI communication or
synchronization. These values indicate that almost all processes wait for one or two processes to finish
their calculations.

Like shown in this example, the introduced folding techniques allow an easy evaluation of the runtime
behavior of an application execution. The techniques intuitively visualize the load imbalance of the
application in only one timeline.

108

6.2 Detection and Visualization of Runtime Imbalances

foo
bar

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;
}

t
0 1 2 3 4 5 6

Inclusive time of foo: t = 6.

Exclusive time of foo: t = 4.

Figure 6.8: Inclusive vs. exclusive time of a function invocation.

6.2 Detection and Visualization of Runtime Imbalances

The identification of performance bottlenecks in parallel applications is a challenging task, as data sets
from parallel performance measurements are often large and overwhelming. This section presents an
effective and lightweight approach to facilitate visual analysis of performance data. The approach au-
tomatically identifies and highlights runtime imbalances in an application run. For parallel applications
that must strive to achieve good load balance, this metric efficiently highlights a wide range of load
balancing problems.

The approach applies to traces of a parallel application. Profiles do not suffice, since information on
runtime variations of application functions is required. Additionally, the analysis visualization targets
timeline visualizations that also apply to traces only.

To analyze runtime imbalances the following three steps are performed:

1. Identification of time dominant functions that are used to partition the complete run into small
segments1,

2. Computation of runtime imbalances between these function invocations (segments), and

3. An intuitive visualization to present the overall result.

Three analysis case studies demonstrate the effectiveness of the approach by locating performance
bottlenecks in the application runs.

Since the runtime imbalance analysis directly identifies the location of the performance problem, it
enables focused subsequent analysis to find the underlying root-cause of the problem. Effectively, the
introduced method supports the performance analyst in helping him to focus on performance problems
faster.

6.2.1 Identification of Time Dominant Functions

Identifying reoccurring parts of an application is beneficial to detect runtime imbalances during the
application run. Reoccurring parts allow to separate an overall execution into multiple segments. Then,
the runtimes between segments can be compared to detect imbalances. The first step of the analysis
is a selection of suitable segments to highlight runtime imbalances. Since parallel applications usually
execute functions repeatedly, as they are being called in loops, such a function is a suitable choice for the
segments. To decide which particular function to select as segments, their inclusive times are considered.

When measuring a function’s invocation, there are two options to report the function’s duration: inclu-
sive and exclusive time. Figure 6.8 depicts the difference between inclusive and exclusive time. Inclusive
time represents the complete duration of a function’s invocation, from initially entering to finally leaving

1As invocations of the time dominant function are used as segments, the inclusive time of the dominant function invocation
equals the respective segment duration.

109

6 Visualization Techniques for Event Timelines

t
70 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 186

bb

b

a
Process 0:

a
main

b bc
c

a
c

i

a a
main

b bc
c

a
c

i

a a
main

b bc
c

a
c

i

Process 1:

Process 2:

Figure 6.9: For the runtime imbalance analysis one time dominant function is selected. The selected
function needs to have a possibly high inclusive time and an invocation count higher than the
number of processes. In this example function a fulfills these criteria.

the function call. This time also includes the time spent in sub-functions. The inclusive time for function
foo in Figure 6.8 starts with entering foo (t = 0) and stops when foo is left (t = 6). The inclusive
time includes the sub-call to function bar and is 6 in the example. The exclusive time, on the contrary,
represents only the amount of time spent directly inside the respective function’s invocation, excluding
sub-functions. The exclusive time of function foo in Figure 6.8 starts with entering foo at t = 0,
excludes the sub-call of function bar (t = 2 to t = 4), and ends with leaving of foo at t = 6, i.e., it is
4 in the example.

Considering the inclusive time to detect dominant functions is reasonable, since it includes the overall
performance impact of a function. Figure 6.9 illustrates an example that uses three processes and the
functions main, i, a, b, as well as c. A time dominant function should have a considerable impact
on the total application runtime. For that the aggregated inclusive time of each function is considered.
Selecting the function with the highest aggregated inclusive time, however, is not a good choice for a
dominant function. In the example, this would be the function main (54 time steps). Such top call-level
functions may be suitable to compare the runtime between processes, but they are not suited to analyze
variations over the runtime. Additionally, they provide no segmentation of the overall runtime. Thus,
just maximum aggregated inclusive time is not a good selection criterion alone.

As a consequence, the selected time dominant function should exhibit a high aggregated inclusive
time, but also feature a higher number of invocations. In the example of Figure 6.9, the function with
the highest inclusive time share is main. The function main is called three times on the three processes
in total. Thus, top call-level functions like main have exactly as many invocations as there are parallel
processing elements. Thus, a time dominant function f is defined as follows:

• For p processing elements, f is invoked at least 2p times and there exists no other function that
satisfies this condition and has higher aggregated inclusive time.

In the example, the function with the second highest inclusive time share is a (36 time steps). Function
a is called nine times on three processes, i.e., it satisfies the invocation count restriction. Hence, a is the
time dominant function for the example.

While this selection criterion is heuristic, the subsequent use cases demonstrate that it provides func-
tions that represent iterative application behavior well in practice. Comparing the runtime of such func-
tions, and thus, analyzing the durations of iterations provides a solid foundation to detect a wide range
of performance hot spots.

110

6.2 Detection and Visualization of Runtime Imbalances

t
70 1 2 3 4 5 8 9 10 11 12 13 14 15 16 17 186

2

a
Process 0:

a
main

a a
main

a
main

Process 1:

Process 2:

a

a

calc MPI

a

a

Process 0: 6

6

6

Process 1:

Process 2:

Process 0:

Process 1:

Process 2:

3

3

3

5

5

5

MPI

MPI

calc

calc

MPI

MPI

MPIcalc

calc

calc MPI

MPI

MPIcalc

calc

calc

11

3

5

2

1

2 4

3

Figure 6.10: Calculation of performance variations. First, the calculation of segment durations (inclu-
sive time of function a in this example) is shown in the middle. Then, the subtraction of
synchronization time from the segment durations to compute the synchronization oblivious
segment time (SOS-time) is shown at the bottom.

6.2.2 Analysis of Runtime Imbalances

Using the selected time dominant function allows to compare the runtimes of its individual invocations.
This comparison highlights shifts in runtime behavior over time and identifies runtime imbalances. For
instance, if an application runs gradually slower, the inclusive time of a good dominant function will
usually increase as well over time. Also, outlier-iterations with exceptionally long runtime will impact
the inclusive time of a dominant function.

The comparison of inclusive times of dominant functions alone has a shortcoming: In many applica-
tions, synchronization calls are also included in iterative function behavior. Figure 6.10 illustrates this
behavior with the communication function named MPI. As previously highlighted, the introduced heuris-
tic selects a as the dominant function for this example. The direct comparison of the inclusive times of
a’s invocations yields the results shown in the middle of Figure 6.10. The iterations in the middle (dura-
tion of 3) are twice as fast as the first iteration (duration of 6). This analysis already detects performance
variation across iterations. However, if some iterations show a differing behavior from others, there are
often only a few processing elements that cause this behavior. With the direct comparison of dominant
function durations, it is not possible to identify the processes that cause the differences. The reason is
often, that synchronization between processes is included in the iteration code. For instance, considering
the example in Figure 6.10. In each iteration all processes first run a calculation (function calc) and
then call an MPI [103] synchronization operation, e.g., MPI_Barrier (indicated as function MPI).
Process 2 in Figure 6.10 completes its calculations faster than Process 0. As a consequence, the MPI
synchronization call in Process 2 runs longer, as this process is waiting for Process 0 to finish. The
difference of the calculation part between the processes remains hidden, since the synchronization wait
time is included in the inclusive time for the dominant function. Therefore, the calculation method re-
quires an adjustment to cover performance variations between segments. Instead of directly using each

111

6 Visualization Techniques for Event Timelines

segment’s duration, subtraction of any synchronization time from its inclusive time is necessary. The
synchronization time can be easily detected if the application uses common parallelization libraries like
MPI [103], OpenMP [111], or similar. In such case, each segment is checked for synchronization op-
erations, e.g., MPI_Wait, MPI_Reduce, or omp barrier, and their runtime is subtracted from the
inclusive time of the dominant functions. This adapted segment time is referred to as synchronization
oblivious segment time (SOS-time) and serves as measure for runtime imbalances. Figure 6.10 (bottom)
depicts this process for the example. The SOS-times correctly reflect the performance differences be-
tween the processes. For instance, for the first iteration in Figure 6.10 the SOS-time of Process 2 shows
1 compared to a SOS-time of 5 for Process 0, i.e., it highlights the computational load imbalance in the
first iteration.

6.2.3 Visualization of Runtime Imbalances

The last step of the introduced approach is the visualization of the SOS-times. Therefore, the analysis
methods have been implemented in the Vampir performance analysis framework [18]. To achieve an
intuitive visualization, commonly used timeline views of Vampir are overlaid using the SOS-times as
values for a new metric counter. For the visualization metric values are encoded with a color-coded
scale. Blue—cold—colors indicate short durations, whereas red—warm—colors indicate long durations.
Figures 6.11(b), 6.12(b), 6.12(c), and 6.13(b) in the subsequent case studies present examples of this
visualization.

6.2.4 Case Studies

This section demonstrates the applicability of the introduced approach with three use cases. The analysis
methods have been implemented as part of the Vampir [18] analysis and visualization toolkit. In the fol-
lowing, trace files with known performance problems have been analyzed to demonstrate the capabilities
of the runtime imbalance analysis.

Load-Imbalance - COSMO-SPECS

The first case study is an analysis of the execution of a weather forecast code [48]. The code couples
two models, COSMO and SPECS, for a more accurate simulation of cloud and precipitation processes.
COSMO is the regional weather forecast model originally developed at the German Weather Service
(DWD). SPECS is a detailed cloud microphysics model developed at the Leibniz Institute for Tropo-
spheric Research (IfT). SPECS computes detailed interactions between aerosols, clouds, and precipita-
tion.

Figure 6.11(a) shows the Vampir timeline visualization of the overall application run. The execution
under study uses 100 MPI processes that Vampir individually represents with horizontal bars. The colors
then identify the currently active functions across the overall execution time. Red identifies MPI ac-
tivities, purple SPECS activities, green COSMO activities, and yellow highlights the coupling between
the two models. Compared to COSMO, the SPECS calculations are significantly more compute inten-
sive. Therefore, purple areas—SPECS code—dominate the application run. The execution of COSMO
code—green areas—is barely visible in Figure 6.11(a). This behavior is caused by the computational
demand of the underlying physics. However, Figure 6.11(a) also shows another trend. Throughout the
execution, the fraction of MPI—red areas—increases. Up to a point where MPI activities are dominating
towards the end of the run. The described heuristic selects a time dominant function whose occurrences
represent individual iterations. Comparing the plain inclusive time of this function (segment durations)
shows gradually increased durations towards the end of the application run.

112

6.2 Detection and Visualization of Runtime Imbalances

(a) Timeline visualization of COSMO-SPECS running on 100 processes, showing increasing MPI durations (red areas)
over time.

(b) Runtime variation analysis result. Several processes (middle) exhibit higher runtimes (SOS-time) in their dominant
function.

Figure 6.11: Analysis of the COSMO-SPECS weather forecast code. (a) shows the timeline visualiza-
tion. (b) shows the analysis results.

113

6 Visualization Techniques for Event Timelines

To find the cause of the degrading performance, the SOS-time is applied. Figure 6.11(b) presents this
metric and highlights that only a few processes (Process 44, 45, 54, 55, 64, 65) exhibit increases in this
metric. Particularly Process 54 needs more time than any other process for its calculations.

The reason for this behavior is a static decomposition of the computational grid. COSMO employs
a two dimensional (horizontal) decomposition into M × N domains and applies no dynamic load bal-
ancing. SPECS uses the same data structures and decomposition as the COSMO model, but instead
computes cloud microphysics. During the execution, SPECS introduces large load imbalances, since its
computational cost heavily depends on the presence and size distribution of various cloud particle types
in the grid cell [83]. Thus, the layout of clouds in the application domain determines the local work.
In other words, while Process 54 still performs cloud microphysics calculations, the other processes
idle while waiting for it to finish. A solution to this performance problem is to introduce dynamic load
balancing for the SPECS model.

The introduced analysis and visualization method correctly represents the performance situation of
the application. By following the high—red—values the analyst is pointed directly to the cause of the
performance bottleneck.

Process Interruption - COSMO-SPECS+FD4

This case study analyzes an extended version of the previous weather forecast code [48]. In this version
the developer has added a dynamic load balancing mechanism, called FD4 [83], to the SPECS model.
As described in the first case study, the high computational demand of the SPECS code, combined with
its high dependence on local workload—presence of cloud particles in the domain—demand a dynamic
load balancing for efficient computation.

The application run under study uses 200 MPI processes. The initial analysis—not shown—detected
that only a few iterations behaved differently and exhibited larger durations than other iterations. The
goal of this study is to detect the reason for these slow iterations. Therefore, the analyst used a second
measurement run to only record slow iterations. For normal iterations the analyst discarded the tracing
data. Figure 6.12(a) shows the timeline visualization of one slow iteration. Again, different colors repre-
sent different activity types. Red relates to MPI code, blue indicates areas where performance data was
dropped, while orange and white areas relate to SPECS activities. The black lines indicate MPI messages
sent from one process to another. The runtimes of COSMO and FD4 are so short compared to SPECS
that these areas are not directly visible in Figure 6.12(a). Looking at the behavior in Figure 6.12(a)
shows that one SPECS timestep near the end of this iteration takes significantly longer than the others.
Especially, increased MPI wait time—more red areas—and higher message transfer times—longer black
lines—indicate this behavior. However, the reason causing the slower timestep in this iteration is not
immediately visible.

Using the runtime imbalance analysis allows to guide the analyst to the cause of this performance
problem. Figure 6.12(b) shows the result of the analysis. The red line in the figure highlights a high
SOS-time for Process 20. Thus, the performance problem is caused by longer computation time of
Process 20. To find the exact place of the performance problem, a refinement of the analysis granularity
is possible by adapting the dominant function. Choosing a function with a smaller inclusive time results
in a more fine-grained segmentation. This option is beneficial to track the origin of a performance
problem. Figure 6.12(c) shows the result of the finer segmentation. This figure clearly shows a single
function call—red line—that runs significantly longer than all other invocations—blue lines—of this
function. A closer inspection of Process 20 shows that this single function call exhibits a low number
of total assigned CPU cycles (measured with the PAPI counter PAPI_TOT_CYC [130]). Therefore,
Process 20 has been interrupted exactly during the execution of this function’s invocation. The cause for
the interruption is assumed to be an influence from the operating system.

The runtime variation analysis directly points the analyst to the performance bottleneck. Without an
extended search, the subsequent analysis can be focused directly on the hot spot and quickly reveal the
cause of the performance problem.

114

6.2 Detection and Visualization of Runtime Imbalances

(a) Timeline visualization of COSMO-SPECS+FD4 running on 200 processes.

(b) Coarser runtime variation analysis result (SOS-time). Especially Process 20
exhibits a high duration in its dominant function.

(c) Finer runtime variation analysis result (SOS-time). Using smaller segments
sizes allows direct identification of the one function invocation that causes the
performance degradation.

Figure 6.12: Analysis of a COSMO-SPECS+FD4 application run. Displayed is just one iteration. (a)
shows the timeline visualization. (b) (coarser segments) and (c) (finer segments) show the
variation analysis results using SOS-time.

115

6 Visualization Techniques for Event Timelines

Floating Point Exceptions - WRF

This case study analyzes an application run of the Weather Research and Forecasting model (WRF), with
a standard benchmark case (12km CONUS) [127]. The application under study uses 64 MPI processes.
Figure 6.13(a) presents Vampir’s basic timeline visualization. Red areas relate to MPI activities. Blue
areas relate to computations of the dynamical core of WRF. These parts of the application compute for
instance density, temperature, pressure, and winds in the atmosphere. Brown areas relate to the physical
parameterization calculations of WRF. For instance clouds, rain, and radiation are computed in these
parts.

In the early parts of the run (left of Figure 6.13(a)) the application executes model initialization and
I/O activities that take about 11 seconds. Afterwards, the actual iterations begin. Basic Vampir statistics
for the iterations highlight a 25% fraction of MPI activities, which highlights a noticeable parallelization
overhead. The timeline view in Figure 6.13(a) does not present an immediate cause for this overhead.

Figure 6.13(b) visualizes the SOS-time of the dominant function of the application run. The seg-
ments located in the lower right part in the figure highlight increased durations. Particularly Process 39
exhibits higher durations than the other processes. A closer inspection supports this immediate result:
Process 39 computes slower and causes the other processes to wait. Based on hints that floating point
intensive functions compute slower, the analyst found that a high number of floating point exceptions
slows down Process 39. For validation Figure 6.13(c) shows the color-coded values of the counter
FR_FPU_EXCEPTIONS_SSE_MICROTRAPS. As shown in the figure, Process 39 exhibits an excep-
tional high number—red areas—of floating point exceptions. Moreover, comparing Figure 6.13(b) and
Figure 6.13(c) shows that the results of the counter FR_FPU_EXCEPTIONS_SSE_MICROTRAPS per-
fectly match the runtime imbalance analysis.

This shows that the introduced approach correctly depicts the application performance behavior. By
following the runtime imbalance metric visualization, the analyst is guided closely to the performance
issue. If necessary, focused subsequent analyses then reveal the root cause of the performance problem.

116

6.2 Detection and Visualization of Runtime Imbalances

(a) Timeline visualization of WRF running on 64 processes.

(b) Runtime variation analysis. Especially Process 39 exhibits high SOS-times
in its segments.

(c) Values of the counter FR_FPU_EXCEPTIONS_SSE_MICROTRAPS. Pro-
cess 39 shows a high number of floating point exceptions.

Figure 6.13: Analysis of a WRF application run. (a) shows the timeline visualization. (b) shows the
variation analysis results and (c) shows values the floating point exceptions counter.

117

7 Conclusions and Future Work

This dissertation presents novel analysis techniques for structural and temporal comparison of parallel
processes. In the context of this work, the term process relates to any type of processing element of a par-
allel application, such as an MPI process, a thread, or a CUDA stream. Measurement systems that record
parallel application runs, at very high detail, save their measurement data in the form of application event
streams. The detailed event-wise comparison of such streams currently requires manual inspection by
the analyst, which is cumbersome and error-prone. This work presents methods that facilitate this com-
parison and provide powerful and intuitive analysis capabilities for the purposes of parallel performance
analysis.

The first contribution of this work consists of methods for the pairwise comparison of processes.
The methods are based on sequence alignment algorithms used in bioinformatics and allow structural
comparison of event streams on the level of individual events. The key contribution is a hierarchical
scheme for sequence alignment algorithms which enables a comparison of complete application event
streams. Without the hierarchical scheme, the computational demand of such comparisons easily exceeds
the capabilities of available computing hardware.

The second contribution of this work introduces analysis metrics that effectively exploit the advantages
of the new structural comparison approach. These alignment-based metrics present intuitive overviews
as well as detailed comparisons of performance characteristics between application processes. This
type of analysis is suitable for comparing two application runs. Use cases include analyzing the impact
of optimizations or studying the performance effects of different hardware. As such comparisons are
common tasks when optimizing and analyzing parallel applications performance, both contributions fill
a crucial gap in available performance analysis tools by adding efficient comparative analysis capabilities.

The third contribution is an approach for structural comparison of multiple event streams. First, a
fast and scalable hash-based pre-clustering step identifies structurally similar processes. The contributed
clustering algorithm groups large numbers of processes efficiently into a small number of clusters. Then,
multiple sequence alignment methods analyze the event streams in a cluster for detailed structural simi-
larities and differences. This work introduces several adaptions that enable multiple sequence alignment
methods for the comparison of large numbers of event streams. Most notably, this work contributes a
heuristic scheme accelerating the computation of the required guide-tree and a hierarchical scheme that
augments the multiple sequence alignment algorithm. The presented comparison approach computes a
so-called merged call tree, that combines the structural information of all compared event streams. The
merged call tree provides a compact data structure with rich potential for performance analysis and vi-
sualization of parallel applications. Especially the merging of structural similarities and differences into
one call tree allows a fast comparison of differences between large numbers of processes. Without the
merged call tree, this task had been more challenging as related differences needed to be identified in all
processes individually.

The fourth contribution of this work addresses visual scalability of performance data displays. It intro-
duces folding strategies for event timeline visualizations, which add powerful methods for visual aggre-
gation of event streams that help achieving visual scalability and support easy detection of performance
issues, such as imbalances or accelerator usage inefficiencies. An additional technique automatically
identifies and highlights several types of performance critical sections in an application run. This tech-
nique analyzes runtime imbalances throughout the application run and presents the resulting runtime
variations in an intuitive visualization that guides the analyst to performance hot spots.

119

7 Conclusions and Future Work

In summary, structural comparison of process event streams is a viable approach for analysis and
comparison of parallel applications. The presented contributions add analysis techniques for large-scale
application runs and advance scalable event visualization. The techniques have been applied to real-
world applications and this work showed how they facilitate the identification of differences between
code versions. Novel alignment-based metrics exposed differences that otherwise would have been hard
or even impossible to find. Moreover, the developed techniques of this work help achieving scalable
and useful trace visualizations for parallel applications. Therefore, this work contributes methods that
provide users with a new level of detailed insight into the performance of their codes and will be of
substantial help in optimizing them. Prototype implementations demonstrate the applicability of the
presented methods. The introduced timeline folding techniques already reached production state and are
included in the Vampir performance analysis tool set.

Future work includes refinement and additional enhancements to improve the developed comparison
methods. The first step should exploit the potential for parallelization in all introduced alignment al-
gorithms. Pairwise event stream comparisons do not depend on other event streams; thus, comparing
runs with large process counts is embarrassingly parallel. Parallelization could considerably accelerate
the computation time of the presented comparison approaches and help driving them towards produc-
tion state. The next step should address the comparison information contained in the merged call tree
data structure. It provides potential for the design of automatic analysis methods and use case specific
visualizations. The merged call tree can serve as a comparison basis for automatically identifying out-
lier processes or evaluating the performance impact of detected differences. Finally, using the merged
call tree analysis results, specific visualizations that emphasize either common performance behavior
or highlight performance critical differences between processes will further improve tool support for
performance analysis and comparison of parallel applications.

120

List of Figures

1.1 History of horizontal resolution and complexity in climate models 2
1.2 IBM BlueGene systems installed at LLNL . 3
1.3 Performance optimization process . 5
1.4 Manual visual comparison of two processes . 6
1.5 Manual visual comparison of multiple processes . 7

2.1 Sampling and instrumentation . 10
2.2 Profile and trace data representations . 11
2.3 Flat gprof profile . 12
2.4 Phase-based profile . 13
2.5 Jumpshot timeline . 14
2.6 Comparison view of Vampir . 15
2.7 Structural comparison of two resource hierarchies . 16
2.8 Intra-process segment matching scheme . 18
2.9 C3G compression scheme . 19
2.10 Iteration detection using wavelet and autocorrelation techniques 21
2.11 Detection of the computation structure . 22
2.12 Patterns of inefficient behavior . 23
2.13 Critical path profile . 24

3.1 Timing differences between event streams . 29
3.2 Construction of function sequences . 30
3.3 Direct comparison of event durations . 31
3.4 Types of changes between two function sequences . 32
3.5 Dynamic programming matrix calculation step . 33
3.6 Dynamic programming matrix . 34
3.7 Optimal alignment of two sequences . 34
3.8 Hirschberg algorithm scheme . 35
3.9 Hirschberg algorithm - horizontal split . 35
3.10 Hirschberg algorithm - vertical split . 36
3.11 Hirschberg algorithm - new sub-matrices . 37
3.12 Dynamic programming matrix using Levenshtein costs 38
3.13 Ukkonen cutoff scheme . 38
3.14 The U matrix used by Ukkonen’s algorithm . 40
3.15 Dynamic programming matrix showing the fields calculated by Ukkonen’s algorithm . . 40
3.16 Fast-Alignment-Heuristic . 41
3.17 Hierarchical alignment scheme . 43
3.18 Hierarchical alignment steps . 43
3.19 Analysis sub-sequence length influence on the HA algorithm performance 45
3.20 Non-optimal hierarchical alignment example 1 . 47
3.21 Non-optimal hierarchical alignment example 2 . 48
3.22 Difference between direct scores for flat and hierarchical alignments 50
3.23 HA score correction for changes on the top call level 51
3.24 HA score correction for changes on the middle call level 52
3.25 HA score correction for changes on the bottom call level 53

121

List of Figures

3.26 Alignment times for different input similarities . 57
3.27 Alignment times for dissimilar input sequences . 57

4.1 Dissimilarity timeline . 64
4.2 Artificial timing introduced by the alignment . 65
4.3 Runtime skew timeline . 66
4.4 Comparison of two BT runs built with different compiler optimization levels 67
4.5 Unaligned rank 0 processes of the default and optimized AMG version 69
4.6 Aligned rank 0 processes of the default and optimized AMG version 69
4.7 Similarity and runtime skew analysis between the default and optimized AMG version . 70
4.8 Comparison of two iterations of ParaDiS versions 2.2.3 and 2.3.5.1 71
4.9 Similarity and runtime skew analysis between ParaDiS versions 2.2.3 and 2.3.5.1 72

5.1 Call trees of two example processes . 74
5.2 Call trees of four example processes . 78
5.3 Incidence relation table and concept lattice for four example processes 80
5.4 Concept lattice for an execution of the BT kernel . 81
5.5 The progressive alignment scheme . 82
5.6 Multiple sequence alignment example . 84
5.7 MSA result comparison for two different options of adding processes 85
5.8 Input sequences for the guide tree construction example 87
5.9 MSA result achieved by adding sequences using a guide tree approach 87
5.10 MSA result achieved by adding sequences without a guide tree approach 88
5.11 Input processes for the hierarchical MSA scheme example 90
5.12 Merged call tree computed by the hierarchical MSA algorithm 90
5.13 Hierarchical MSA algorithm scheme . 91
5.14 Merged call tree for AMG2006 processes . 92
5.15 Merged call tree for ParaDiS processes . 93
5.16 Scalability analysis of the hash-based clustering algorithm 96
5.17 Scalability analysis of the K-Medoids algorithm . 96
5.18 Scalability analysis of the heuristic guide tree construction approach 98
5.19 Scalability analysis of the similarity matrix based guide tree construction approach . . . 99

6.1 Illustration of the state selection for pixels in a timeline chart 102
6.2 Illustration of the folding operation selectmax for three event streams 103
6.3 Vampir timeline showing a run of the PIConGPU CUDA application 105
6.4 Timeline grouping applied to four CUDA devices running PIConGPU 106
6.5 Visualization of iterations in PIConGPU using folded CUDA streams 107
6.6 Statistic showing the CUDA device utilization . 107
6.7 Visualization of the folded timelines of a COSMO-SPECS weather forecast code run . . 108
6.8 Inclusive vs. exclusive time of a function invocation . 109
6.9 Selection scheme for time dominant functions . 110
6.10 Calculation of performance variations . 111
6.11 Analysis of a COSMO-SPECS application run . 113
6.12 Analysis of a COSMO-SPECS+FD4 application run 115
6.13 Analysis of a WRF application run . 117

122

List of Tables

2.1 Limitations of existing techniques - Visual analysis . 26
2.2 Limitations of existing techniques - Structural analysis 27
2.3 Limitations of existing techniques - Temporal analysis 28

3.1 Memory requirement for the Needleman–Wunsch algorithm 53
3.2 Alignment times for equal sequences . 55
3.3 Alignment times for half-equal sequences . 55
3.4 Alignment times for small equal blocks sequences . 55
3.5 Alignment times for large equal blocks sequences . 55
3.6 Alignment times for completely dissimilar sequences 55
3.7 Number of computed dynamic programming matrix cells for an example 56
3.8 Alignment times for AMG2006 processes . 58
3.9 Number of sub-alignments during the hierarchical alignment of AMG2006 58
3.10 Alignment times for ParaDiS processes . 59
3.11 Number of sub-alignments during the hierarchical alignment of ParaDiS 59
3.12 Alignment times for ParaDiS processes (increased detail version) 59
3.13 Number of sub-alignments during the hierarchical alignment of ParaDiS (increased detail) 60
3.14 Alignment times for the comparison of ParaDiS with AMG2006 60
3.15 Number of sub-alignments during the hierarchical alignment of ParaDiS with AMG2006 60

4.1 Similarity between ParaDiS processes . 72
4.2 Function time difference table for the rank0/rank0 comparison of ParaDiS 72

5.1 Hash map with the clustering result for an example . 80
5.2 Guide tree table with ordered results . 87
5.3 Number of occurrences of characters in the sequences given in Figure 5.8 88
5.4 Sequences of Figure 5.8 ranked according to the number of their top characters 88
5.5 Memory requirement for the similarity matrix computed by K-Medoids and DBSCAN . 95
5.6 Clustering times for ParaDiS . 95
5.7 Clustering time study with three real-world applications 97
5.8 Comparison of the generation times for the two guide tree construction approaches . . . 97
5.9 Multiple alignment time study with three real-world applications 99

123

Bibliography

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey, and N. R. Tallent.
HPCToolkit: Tools for Performance Analysis of Optimized Parallel Programs. Concurrency and
Computation: Practice and Experience, 22(6):685–701, 2010.

[2] Allinea MAP 6.0. http://www.allinea.com/products/map/, 2016.

[3] Allinea DDT and MAP User Guide — Viewing Stacks in Parallel. https://www.allinea.
com/user-guide/forge/userguide.html, October 2015.

[4] AMD CodeXL Tool Suite 1.2. http://developer.amd.com/tools-and-sdks/
heterogeneous-computing/codexl/, 2013.

[5] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale Computing
Capabilities. In Proceedings of American Federation of Information Processing Societies (AFIPS),
Spring Joint Computer Conference, AFIPS ’67, pages 483–485, 1967.

[6] Dorian C. Arnold, Dong H. Ahn, Bronis R. de Supinski, Gregory L. Lee, Barton P. Miller, and
Martin Schulz. Stack Trace Analysis for Large Scale Debugging. In Proceedings of the 2010 IEEE
21th International Parallel and Distributed Processing Symposium, IPDPS ’07, Los Alamitos,
CA, USA, 2007. IEEE Computer Society.

[7] Athanasios Arsenlis, Wei Cai, Meijie Tang, Moono Rhee, Tomas Oppelstrup, Gregg Hommes,
Tom G. Pierce, and Vasily V. Bulatov. Enabling Strain Hardening Simulations with Dislocation
Dynamics. Modelling and Simulation in Materials Science and Engineering, 15(6):553, 2007.

[8] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks - Summary and Preliminary Results. In Proceedings
of the 1991 ACM/IEEE Conference on Supercomputing, Supercomputing ’91, pages 158–165,
New York, NY, USA, 1991. ACM.

[9] Robert Bell, AllenD. Malony, and Sameer Shende. ParaProf: A Portable, Extensible, and Scalable
Tool for Parallel Performance Profile Analysis. In Euro-Par 2003 Parallel Processing, volume
2790 of Lecture Notes in Computer Science, pages 17–26. Springer Berlin Heidelberg, 2003.

[10] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.

[11] Shajulin Benedict, Ventsislav Petkov, and Michael Gerndt. PERISCOPE: An Online-Based Dis-
tributed Performance Analysis Tool. In Tools for High Performance Computing 2009, pages 1–16.
Springer Berlin Heidelberg, 2010.

[12] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The KECCAK reference. http://
keccak.noekeon.org/Keccak-reference-3.0.pdf, January 2011.

[13] David Böhme, Bronis R. de Supinski, Markus Geimer, Martin Schulz, and Felix Wolf. Scalable
Critical-Path Based Performance Analysis. In Proceedings of the 26th IEEE International Par-
allel & Distributed Processing Symposium (IPDPS), Shanghai, China, pages 1330–1340. IEEE
Computer Society, May 2012.

125

http://www.allinea.com/products/map/
https://www.allinea.com/user-guide/forge/userguide.html
https://www.allinea.com/user-guide/forge/userguide.html
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/
http://developer.amd.com/tools-and-sdks/heterogeneous-computing/codexl/
http://keccak.noekeon.org/Keccak-reference-3.0.pdf
http://keccak.noekeon.org/Keccak-reference-3.0.pdf

Bibliography

[14] David Böhme, Markus Geimer, and Felix Wolf. Characterizing Load and Communication Imbal-
ance in Large-Scale Parallel Applications. In Proceedings of the 26th IEEE International Parallel
& Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), Shanghai, China,
pages 2538–2541. IEEE Computer Society, May 2012.

[15] David Böhme, Markus Geimer, Felix Wolf, and Lukas Arnold. Identifying the Root Causes of
Wait States in Large-Scale Parallel Applications. In Proceedings of the 2010 39th International
Conference on Parallel Processing, ICPP ’10, pages 90–100, Washington, DC, USA, 2010. IEEE
Computer Society.

[16] Ronny Brendel, Michael Heyde, Holger Brunst, Tobias Hilbrich, and Matthias Weber. Edge
Bundling for Visualizing Communication Behavior. SUBMITTED TO: 3nd Workshop on Visual
Performance Analysis (VPA), held in conjunction with SC16, 2016.

[17] Holger Brunst. Integrative Concepts for Scalable Distributed Performance Analysis and Visual-
ization of Parallel Programs. Ph.D. Dissertation, Technische Universität Dresden, 2008.

[18] Holger Brunst and Matthias Weber. Custom Hot Spot Analysis of HPC Software with the Vampir
Performance Tool Suite. In Proceedings of the 6th International Parallel Tools Workshop, pages
95–114. Springer Berlin Heidelberg, September 2012.

[19] Holger Brunst, Manuela Winkler, Wolfgang E. Nagel, and Hans-Christian Hoppe. Performance
Optimization for Large Scale Computing: The Scalable VAMPIR Approach. In Computational
Science - ICCS 2001, volume 2074 of Lecture Notes in Computer Science, pages 751–760.
Springer Berlin Heidelberg, 2001.

[20] H. Burau, R. Widera, W. Hönig, G. Juckeland, A. Debus, T. Kluge, U. Schramm, T.E. Cowan,
R. Sauerbrey, and M. Bussmann. PIConGPU: A Fully Relativistic Particle-in-Cell Code for a
GPU Cluster. Plasma Science, IEEE Transactions on, 38(10):2831–2839, October 2010.

[21] M. Bussmann, H. Burau, T. E. Cowan, A. Debus, A. Huebl, G. Juckeland, T. Kluge, W. E. Nagel,
R. Pausch, F. Schmitt, U. Schramm, J. Schuchart, and R. Widera. Radiative Signatures of the
Relativistic Kelvin-Helmholtz Instability. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis, SC ’13, pages 5:1–5:12, New York,
NY, USA, 2013. ACM.

[22] Marc Casas, Rosa M. Badia, and Jesús Labarta. Automatic Phase Detection of MPI Applications.
In Proceedings of the 14th Conference on Parallel Computing (ParCo 2007), September 2007.

[23] Marc Casas, Rosa M. Badia, and Jesús Labarta. Automatic Structure Extraction from MPI Ap-
plications Tracefiles. In Proceedings of the 13th international Euro-Par conference on Parallel
Processing, Euro-Par’07, pages 3–12, 2007.

[24] Marc Casas, Rosa M. Badia, and Jesús Labarta. Automatic Analysis of Speedup of MPI Applica-
tions. In Proceedings of the 22nd annual international Conference on Supercomputing, ICS ’08,
pages 349–358, 2008.

[25] Marc Casas, Rosa M. Badia, and Jesús Labarta. Automatic Phase Detection and Structure Extrac-
tion of MPI Applications. International Journal of High Performance Computing Applications,
24(3):335–360, August 2010.

[26] Marc Casas, Harald Servat, Rosa M. Badia, and Jesús Labarta. Extracting the Optimal Sampling
Frequency of Applications Using Spectral Analysis. Concurrency and Computation: Practice and
Experience, 24(3):237–259, March 2011.

126

Bibliography

[27] Marc Casas Guix. Spectral Analysis of Executions of Computer Programs and its Applications on
Performance Analysis. Ph.D. Dissertation, Universitat Politècnica de Catalunya, 2010.

[28] Anthony Chan, William Gropp, and Ewing Lusk. An Efficient Format for Nearly Constant-Time
Access to Arbitrary Time Intervals in Large Trace Files. Scientific Programming, 16(2-3):155–
165, 2008.

[29] DARPA. ExaScale Computing Study: Technology Challenges in Achieving Exascale Systems
(TR-2008-13). http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf, 2008.

[30] Jack J. Dongarra, Piotr Luszczek, and Antoine Petitet. The LINPACK Benchmark: Past, Present,
and Future. Concurrency and Computation: Practice and Experience, 15(9):803–820, 2003.

[31] Sean R Eddy. What is dynamic programming? Nature Biotechnology, 22(7):909–910, July 2004.

[32] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise. In KDD’96, pages 226–231, 1996.

[33] J. Fenlason and R. Stallman. GNU gprof: The GNU Profiler. Free Software Foundation, 1988.
http://sourceware.org/binutils/docs/gprof/.

[34] Hormozd Gahvari, Allison H. Baker, Martin Schulz, Ulrike Meier Yang, Kirk E. Jordan, and
William Gropp. Modeling the Performance of an Algebraic Multigrid Cycle on HPC Platforms.
In Proceedings of the International Conference on Supercomputing, ICS ’11, pages 172–181,
2011.

[35] Todd Gamblin. Scalable Performance Measurement and Analysis. Ph.D. Dissertation, University
of North Carolina at Chapel Hill, 2009.

[36] Todd Gamblin, Bronis R. de Supinski, Martin Schulz, Rob Fowler, and Daniel A. Reed. Clustering
Performance Data Efficiently at Massive Scales. In Proceedings of the 24th ACM International
Conference on Supercomputing, ICS ’10, pages 243–252, New York, NY, USA, 2010. ACM.

[37] Fabian Gasper, Klaus Görgen, Prabhakar Shrestha, Mauro Sulis, Jehan Rihani, Markus Geimer,
and Stefan Kollet. Implementation and Scaling of the Fully Coupled Terrestrial Systems Modeling
Platform (TerrSysMP v1.0) in a Massively Parallel Supercomputing Environment – A Case Study
on JUQUEEN (IBM Blue Gene/Q). Geoscientific Model Development, 7(5):2531–2543, October
2014.

[38] Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. Scalable Parallel Trace-based
Performance Analysis. In Proceedings of the 13th European PVM/MPI User’s Group Con-
ference on Recent Advances in Parallel Virtual Machine and Message Passing Interface, Eu-
roPVM/MPI’06, pages 303–312, Berlin, Heidelberg, 2006. Springer-Verlag.

[39] Markus Geimer, Felix Wolf, Brian J. N. Wylie, and Bernd Mohr. A Scalable Tool Architecture for
Diagnosing Wait States in Massively Parallel Applications. Parallel Computing, 35(7):375–388,
July 2009.

[40] M. Gerndt and M. Ott. Automatic Performance Analysis with Periscope. Concurrency and Com-
putation: Practice and Experience, 22(6):736–748, April 2010.

[41] P. Gibbon, F. N. Beg, E. L. Clark, R. G. Evans, and M. Zepf. Tree-code simulations of proton
acceleration from laser-irradiated wire targets. Physics of Plasmas, 11(8):4032–4040, 2004.

[42] H. H. Goldstine and A. Goldstine. The Electronic Numerical Integrator and Computer (ENIAC).
Mathematical Tables and Other Aids to Computation, 2(15), July 1946.

127

http://www.cse.nd.edu/Reports/2008/TR-2008-13.pdf
http://sourceware.org/binutils/docs/gprof/

Bibliography

[43] J. González, J. Giménez, and J. Labarta. Automatic Detection of Parallel Applications Compu-
tation Phases. In Parallel and Distributed Processing. 23rd IEEE International Symposium on,
IPDPS ’09, pages 1–11, May 2009.

[44] J. González, J. Giménez, and J. Labarta. Automatic Evaluation of the Computation Structure
of Parallel Applications. In Parallel and Distributed Computing, Applications and Technologies.
Proceedings of the 10th International Conference on, PDCAT ’09, pages 138–145, December
2009.

[45] Juan González, Judit Giménez, and Jesús Labarta. Performance Analytics: Understanding Par-
allel Applications Using Cluster and Sequence Analysis. In Proceedings of the 7th International
Parallel Tools Workshop. Springer Berlin Heidelberg, September 2013.

[46] Juan González, Kevin Huck, Judit Giménez, and Jesús Labarta. Automatic Refinement of Parallel
Applications Structure Detection. In LSPP ’12: Proceedings of the 2012 Workshop on Large-Scale
Parallel Processing, May 2012.

[47] Susan L. Graham, Peter B. Kessler, and Marshall K. Mckusick. gprof: A Call Graph Execution
Profiler. SIGPLAN Not., 17(6):120–126, June 1982.

[48] V. Grützun, O. Knoth, and M. Simmel. Simulation of the influence of aerosol particle characteris-
tics on clouds and precipitation with LM-SPECS: Model description and first results. Atmospheric
Research, 90(2–4):233–242, 2008.

[49] Dan Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

[50] John L. Gustafson. Reevaluating Amdahl’s Law. Commun. ACM, 31(5):532–533, May 1988.

[51] J. A. Hartigan and M. A. Wong. Algorithm AS 136: A K-Means Clustering Algorithm. Journal
of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108, 1979.

[52] Matthias Hauswirth. Understanding Program Performance Using Temporal Vertical Profiles.
Ph.D. Dissertation, University of Colorado at Boulder, Boulder, CO, USA, 2005.

[53] Matthias Hauswirth, Amer Diwan, Peter F. Sweeney, and Michael C. Mozer. Automating Vertical
Profiling. SIGPLAN Not., 40(10):281–296, October 2005.

[54] S. Henikoff and J. G. Henikoff. Amino Acid Substitution Matrices from Protein Blocks. Proceed-
ings of the National Academy of Sciences of the United States of America (PNAS), 89(22):10915–
10919, November 1992.

[55] Robert Henschel, Matthias Lieber, Le-Shin Wu, Phillip M. Nista, Brian J. Haas, and Richard D.
LeDuc. Trinity RNA-Seq Assembler Performance Optimization. In Proceedings of the 1st Confer-
ence of the Extreme Science and Engineering Discovery Environment: Bridging from the eXtreme
to the Campus and Beyond, XSEDE ’12, pages 45:1–45:8, New York, NY, USA, 2012. ACM.

[56] Marc-André Hermanns, Manfred Miklosch, David Böhme, and Felix Wolf. Understanding the
Formation of Wait States in Applications with One-sided Communication. In Proceedings of the
20th European MPI Users’ Group Meeting, EuroMPI ’13, pages 73–78, New York, NY, USA,
2013. ACM.

[57] Desmond G. Higgins and Paul M. Sharp. CLUSTAL: a package for performing multiple sequence
alignment on a microcomputer. Gene, 73:237–244, 1988.

128

Bibliography

[58] Marcus Hilbrich, Matthias Weber, and Ronny Tschüter. Automatic Analysis of Large Data Sets:
A Walk-Through on Methods from Different Perspectives. In Cloud Computing and Big Data
(CloudCom-Asia), 2013 International Conference on, pages 373–380, December 2013.

[59] D. S. Hirschberg. A Linear Space Algorithm for Computing Maximal Common Subsequences.
Communications of the ACM, 18(6):341–343, June 1975.

[60] Jeffrey K. Hollingsworth and Barton P. Miller. Dynamic Control of Performance Monitoring on
Large Scale Parallel Systems. In Proceedings of the 7th International Conference on Supercom-
puting, ICS ’93, pages 185–194, New York, NY, USA, 1993. ACM.

[61] K.A. Huck and A.D. Malony. PerfExplorer: A Performance Data Mining Framework For Large-
Scale Parallel Computing. In Supercomputing, 2005. Proceedings of the ACM/IEEE SC 2005
Conference, pages 41–41, 2005.

[62] Kevin A. Huck, Allen D. Malony, Sameer Shende, and Alan Morris. Scalable, Automated Perfor-
mance Analysis with TAU and PerfExplorer. In Proceedings of the 14th Conference on Parallel
Computing (ParCo 2007), pages 629–636, 2007.

[63] Intel Trace Analyzer and Collector. http://software.intel.com/en-us/articles/
intel-trace-analyzer/, 2013.

[64] Intel VTune Amplifier 2013. http://software.intel.com/en-us/vtuneampxe_
2013_ug_lin, 2013. Document number: 326734-011.

[65] Katherine E. Isaacs, Alfredo Giménez, Ilir Jusufi, Todd Gamblin, Abhinav Bhatele, Martin Schulz,
Bernd Hamann, and Peer-Timo Bremer. State of the Art of Performance Visualization. In EuroVis
- STARs. The Eurographics Association, 2014.

[66] Paul Jaccard. Étude comparative de la distribution florale dans une portion des Alpes et du Jura.
Bulletin de la Société Vaudoise des Sciences Naturelles, 37:547–579, 1901.

[67] Karen L. Karavanic. Experiment Management Support for Parallel Performance Tuning. Ph.D.
Dissertation, University of Wisconsin – Madison, 1999.

[68] Karen L. Karavanic, John May, Kathryn Mohror, Brian Miller, Kevin Huck, Rashawn Knapp,
and Brian Pugh. Integrating Database Technology with Comparison-based Parallel Performance
Diagnosis: The PerfTrack Performance Experiment Management Tool. In Proceedings of the
2005 ACM/IEEE Conference on Supercomputing, SC ’05, Washington, DC, USA, 2005. IEEE
Computer Society.

[69] Karen L. Karavanic and Barton P. Miller. Experiment Management Support for Performance
Tuning. In Proceedings of the 1997 ACM/IEEE Conference on Supercomputing (CDROM), Su-
percomputing ’97, pages 1–10, New York, NY, USA, 1997. ACM.

[70] Karen L. Karavanic and Barton P. Miller. A Framework for Multi-Execution Performance Tuning.
In On-line monitoring systems and computer tool interoperability, pages 61–89. Nova Science
Publishers, Inc., Commack, NY, USA, 2003.

[71] L. Kaufman and P. Rousseeuw. Clustering by Means of Medoids. Reports of the Faculty of
Mathematics and Informatics. Delft University of Technology. Fac., Univ., 1987.

[72] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.
Wiley Series in Probability and Statistics. Wiley, 2005.

129

http://software.intel.com/en-us/articles/intel-trace-analyzer/
http://software.intel.com/en-us/articles/intel-trace-analyzer/
http://software.intel.com/en-us/vtuneampxe_2013_ug_lin
http://software.intel.com/en-us/vtuneampxe_2013_ug_lin

Bibliography

[73] Andreas Knüpfer. Construction and Compression of Complete Call Graphs for Post-Mortem Pro-
gram Trace Analysis. In Proceedings of the 2005 International Conference on Parallel Processing,
ICPP ’05, pages 165–172, Washington, DC, USA, 2005. IEEE Computer Society.

[74] Andreas Knüpfer. Advanced Memory Data Structures for Scalable Event Trace Analysis. Ph.D.
Dissertation, Technische Universität Dresden, 2009.

[75] Andreas Knüpfer, Ronny Brendel, Holger Brunst, Hartmut Mix, and Wolfgang E. Nagel. In-
troducing the Open Trace Format (OTF). In Proceedings of the 6th international conference on
Computational Science - Volume Part II, ICCS’06, pages 526–533, Berlin, Heidelberg, 2006.
Springer-Verlag.

[76] Andreas Knüpfer and Wolfgang E. Nagel. Compressible Memory Data Structures for Event-based
Trace Analysis. Future Generation Computer Systems, 22(3):359–368, February 2006.

[77] Andreas Knüpfer, Bernhard Voigt, Wolfgang E. Nagel, and Hartmut Mix. Visualization of Repet-
itive Patterns in Event Traces. In Proceedings of the 8th International Conference on Applied
Parallel Computing: State of the Art in Scientific Computing, PARA’06, pages 430–439, Berlin,
Heidelberg, 2007. Springer-Verlag.

[78] J. Labarta, J. Giménez, E. Martínez, P. Gonzáles, H. Servat, G. Llort, and X. Aguilar. Scalability
of Visualization and Tracing Tools. In Parallel Computing: Current & Future Issues of High-End
Computing, Proceedings of the International Conference ParCo 2005, volume 33 of NIC series,
pages 869–876, Jülich, 2006. John von Neumann Institute for Computing.

[79] Jesús Labarta. New Analysis Techniques in the CEPBA-Tools Environment. In Tools for High
Performance Computing 2009, pages 125–143. Springer Berlin Heidelberg, 2010.

[80] Peter H. Lauritzen. Supercomputing and Climate Modeling. Summer School: An Introduction
to Climate Modeling (May 28), University of Stockholm, Sweden, 2012. http://www.cgd.
ucar.edu/cms/pel/publications.html.

[81] Lawrence Livermore National Laboratory (LLNL). https://www.llnl.gov, 2013.

[82] Vladimir I. Levenshtein. Binary Codes Capable of Correcting Deletions, Insertions, and Reversals.
Soviet Physics Doklady, 10(8):707–710, 1966.

[83] Matthias Lieber, Verena Grützun, Ralf Wolke, Matthias S. Müller, and Wolfgang E. Nagel. Highly
Scalable Dynamic Load Balancing in the Atmospheric Modeling System COSMO-SPECS+FD4.
In Applied Parallel and Scientific Computing - 10th International Conference, PARA 2010, volume
7133 of LNCS, pages 131–141, 2012.

[84] Germán Llort, Marc Casas, Harald Servat, Kevin Huck, Judit Giménez, and Jesús Labarta. Trace
Spectral Analysis toward Dynamic Levels of Detail. In Proceedings of the 2011 IEEE 17th Inter-
national Conference on Parallel and Distributed Systems, ICPADS ’11, pages 332–339, 2011.

[85] Germán Llort, Harald Servat, Juan González, Judit Giménez, and Jesús Labarta. On the Usefulness
of Object Tracking Techniques in Performance Analysis. In Proceedings of SC13: International
Conference for High Performance Computing, Networking, Storage and Analysis, SC ’13, pages
29:1–29:11, New York, NY, USA, 2013. ACM.

[86] Stuart P. Lloyd. Least Squares Quantization in PCM. IEEE Transactions on Information Theory,
28(2):129–137, 1982.

130

http://www.cgd.ucar.edu/cms/pel/publications.html
http://www.cgd.ucar.edu/cms/pel/publications.html
https://www.llnl.gov

Bibliography

[87] Daniel Lorenz, David Böhme, Bernd Mohr, Alexandre Strube, and Zoltán Szebenyi. Extending
Scalasca’s Analysis Features. In Tools for High Performance Computing 2012, pages 115–126.
Springer Berlin Heidelberg, 2013.

[88] J. B. MacQueen. Some Methods for Classification and Analysis of MultiVariate Observations.
In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, vol-
ume 1, pages 281–297. University of California Press, 1967.

[89] Allen D. Malony, Sameer Shende, and Alan Morris. Phase-Based Parallel Performance Profiling.
In Parallel Computing: Current & Future Issues of High-End Computing, Proceedings of the
International Conference ParCo 2005, volume 33, pages 203–210. Central Institute for Applied
Mathematics, Jülich, Germany, 2005.

[90] John Mellor-Crummey, Robert J. Fowler, Gabriel Marin, and Nathan Tallent. HPCView: A Tool
for Top-down Analysis of Node Performance. The Journal of Supercomputing, 23(1):81–104,
August 2002.

[91] Barton P. Miller. What to Draw? When to Draw?: An Essay on Parallel Program Visualization. J.
Parallel Distrib. Comput., 18(2):265–269, June 1993.

[92] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth, R. Bruce
Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The Paradyn Parallel
Performance Measurement Tool. IEEE Computer, 28(11):37–46, November 1995.

[93] Webb Miller and Eugene W. Myers. A File Comparison Program. Software: Practice and Expe-
rience, 15(11):1025–1040, 1985.

[94] Kathryn Mohror and Karen L. Karavanic. An Investigation of Tracing Overheads on High End
Systems. Technical Report TR-06-06, Portland State University, Department of Computer Sci-
ence, December 2006.

[95] Kathryn Mohror and Karen L. Karavanic. A Study of Tracing Overhead on a High-Performance
Linux Cluster. In Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice
of parallel programming, PPoPP ’07, pages 158–159, 2007.

[96] Kathryn Mohror and Karen L. Karavanic. Scalable Event-based Performance Measurement in
High-End Environments. SIGMETRICS Perform. Eval. Rev., 35(3):64–65, December 2007.

[97] Kathryn Mohror and Karen L. Karavanic. Towards Scalable Event Tracing for High End Sys-
tems. In Proceedings of the Third international conference on High Performance Computing and
Communications, HPCC’07, pages 695–706, Berlin, Heidelberg, 2007. Springer-Verlag.

[98] Kathryn Mohror and Karen L. Karavanic. Evaluating Similarity-based Trace Reduction Tech-
niques for Scalable Performance Analysis. In Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, SC ’09, pages 55:1–55:12, 2009.

[99] Kathryn Mohror and Karen L. Karavanic. Trace Profiling: Scalable Event Tracing on High-End
Parallel Systems. Parallel Computing, 38(4–5):194–225, 2012.

[100] Kathryn Mohror, Karen L. Karavanic, and Allan Snavely. Scalable Event Trace Visualization.
In Proceedings of the 2009 international conference on Parallel processing, Euro-Par’09, pages
228–237, Berlin, Heidelberg, 2010. Springer-Verlag.

[101] Kathryn M. Mohror. Scalable Event Tracing on High-End Parallel Systems. Ph.D. Dissertation,
Portland State University, Department of Computer Science, 2009.

131

Bibliography

[102] Gordon E. Moore. Cramming More Components onto Integrated Circuits. Electronics Magazine,
38(8):114–117, April 1965.

[103] MPI: A Message-Passing Interface Standard, Version 3.0. http://www.mpi-forum.org/docs/mpi-
3.0/mpi30-report.pdf, 2012.

[104] Frank Mueller, Xing Wu, Martin Schulz, Bronis R. de Supinski, and Todd Gamblin. ScalaTrace:
Tracing, Analysis and Modeling of HPC Codes at Scale. In Proceedings of the 10th international
conference on Applied Parallel and Scientific Computing - Volume 2, PARA’10, pages 410–418,
Berlin, Heidelberg, 2012. Springer-Verlag.

[105] Eugene W. Myers. An O(ND) Difference Algorithm and Its Variations. Algorithmica, 1(2):251–
266, 1986.

[106] W. E. Nagel, A. Arnold, M. Weber, H.-Ch. Hoppe, and K. Solchenbach. VAMPIR: Visualization
and Analysis of MPI Resources. Supercomputer, 12:69–80, 1996.

[107] Saul B. Needleman and Christian D. Wunsch. A General Method Applicable to the Search
for Similarities in the Amino Acid Sequence of Two Proteins. Journal of Molecular Biology,
48(3):443–453, 1970.

[108] Oleg Y. Nickolayev, Philip C. Roth, Daniel, and Daniel A. Reed. Real-Time Statistical Clustering
For Event Trace Reduction. In International Journal of Supercomputer Applications and High
Performance Computing, pages 144–159, 1997.

[109] Michael Noeth, Frank Mueller, Martin Schulz, and Bronis R. de Supinski. Scalable Compres-
sion and Replay of Communication Traces in Massively Parallel Environments. In Parallel and
Distributed Processing. IEEE International Symposium on, IPDPS ’07, pages 1–11, March 2007.

[110] Michael Noeth, Prasun Ratn, Frank Mueller, Martin Schulz, and Bronis R. de Supinski. Scala-
Trace: Scalable Compression and Replay of Communication Traces for High-performance Com-
puting. Journal of Parallel and Distributed Computing, 69(8):696–710, August 2009.

[111] OpenMP. http://openmp.org/wp/openmp-specifications, November 2015.

[112] Vincent Pillet, Jesús Labarta, Toni Cortes, and Sergi Girona. PARAVER: A Tool to Visualize
and Analyze Parallel Code. In Proceedings of WoTUG-18: Transputer and occam Developments,
pages 17–31, March 1995.

[113] Robert Preissl. Exploitation of Dynamic Communication Patterns through Static Analysis. Ph.D.
Dissertation, Johannes Kepler University of Linz, Austria, Institute of Graphics and Parallel Pro-
cessing (GUP), 2009.

[114] Robert Preissl, Bronis R. de Supinski, Martin Schulz, Daniel J. Quinlan, Dieter Kranzlmüller, and
Thomas Panas. Exploitation of Dynamic Communication Patterns through Static Analysis. In
Proceedings of the 39th International Conference on Parallel Processing, ICPP ’10, pages 51–60.
IEEE Computer Society, September 2010.

[115] Robert Preissl, Thomas Köckerbauer, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supinski,
and Daniel J. Quinlan. Detecting Patterns in MPI Communication Traces. In Proceedings of the
37th International Conference on Parallel Processing, ICPP ’08, pages 230–237. IEEE Computer
Society, 2008.

[116] Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. de Supinski, and Daniel J. Quinlan.
Transforming MPI Source Code based on Communication Patterns. Future Generation Computer
Systems, 26(1):147–154, January 2010.

132

http://openmp.org/wp/openmp-specifications

Bibliography

[117] Robert Preissl, Martin Schulz, Dieter Kranzlmüller, Bronis R. Supinski, and Daniel J. Quinlan.
Using MPI Communication Patterns to Guide Source Code Transformations. In Proceedings of
the 8th international Conference on Computational Science, Part III, ICCS ’08, pages 253–260,
Berlin, Heidelberg, 2008. Springer-Verlag.

[118] Prasun Ratn, Frank Mueller, Bronis R. de Supinski, and Martin Schulz. Preserving time in large-
scale communication traces. In Proceedings of the 22nd Annual International Conference on
Supercomputing, ICS ’08, pages 46–55, New York, NY, USA, 2008. ACM.

[119] Raúl Rojas. Konrad Zuse’s Legacy: The Architecture of the Z1 and Z3. Annals of the History of
Computing, IEEE, 19(2):5–16, April-June 1997.

[120] Diego Rossinelli, Babak Hejazialhosseini, Panagiotis Hadjidoukas, Costas Bekas, Alessandro Cu-
rioni, Adam Bertsch, Scott Futral, Steffen J. Schmidt, Nikolaus A. Adams, and Petros Koumout-
sakos. 11 PFLOP/s Simulations of Cloud Cavitation Collapse. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, SC ’13, pages
3:1–3:13, New York, NY, USA, 2013. ACM.

[121] Philip C. Roth. ETRUSCA: Event Trace Reduction Using Statistical Data Clustering Analysis.
Master’s thesis, Department of Computer Science, University of Illinois at Urbana-Champaign,
December 1995.

[122] Philip C. Roth, Dorian C. Arnold, and Barton P. Miller. MRNet: A Software-Based Multi-
cast/Reduction Network for Scalable Tools. In Proceedings of the 2003 ACM/IEEE Conference
on Supercomputing, SC ’03, New York, NY, USA, 2003. ACM.

[123] Peter J. Rousseeuw. Silhouettes: A Graphical Aid to the Interpretation and Validation of Cluster
Analysis. Journal of Computational and Applied Mathematics, 20(0):53–65, 1987.

[124] Martin Schulz and Bronis R. de Supinski. Practical Differential Profiling. In Proceedings of
the 13th international Euro-Par conference on Parallel Processing, Euro-Par’07, pages 97–106,
Berlin, Heidelberg, 2007. Springer-Verlag.

[125] Martin Schulz, Jim Galarowicz, Don Maghrak, William Hachfeld, David Montoya, and Scott
Cranford. Open|SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis.
Scientific Programming, 16(2-3):105–121, April 2008.

[126] Sadi Evren Seker, Oguz Altun, Ugur Ayan, and Cihan Mert. A Novel String Distance Function
Based on Most Frequent K Characters. International Journal of Machine Learning and Computing
(IJMLC), 4:177–183, 2014.

[127] Gilad Shainer, Tong Liu, John Michalakes, Jacob Liberman, Jeff Layton, Onur Celebioglu, Scot A
Schultz, Joshua Mora, and David Cownie. Weather Research and Forecast (WRF) Model Perfor-
mance and Profiling Analysis on Advanced Multi-core HPC Clusters. In 10th LCI International
Conference on High-Performance Clustered Computing, 2009.

[128] T. F. Smith and M. S. Waterman. Identification of Common Molecular Subsequences. Journal of
Molecular Biology, 147(1):195–197, March 1981.

[129] Fengguang Song, Felix Wolf, Nikhil Bhatia, Jack Dongarra, and Shirley Moore. An Algebra for
Cross-Experiment Performance Analysis. In Proceedings of the 2004 International Conference
on Parallel Processing, ICPP ’04, pages 63–72, Washington, DC, USA, 2004. IEEE Computer
Society.

133

Bibliography

[130] Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. Collecting Performance Data
with PAPI-C. In Tools for High Performance Computing 2009, pages 157–173. Springer Berlin
Heidelberg, 2010.

[131] The TOP500 List of the World’s Fastest Supercomputers. http://www.top500.org, 2016.

[132] Julie D. Thompson, Desmond G. Higgins, and Toby J. Gibson. CLUSTAL W: improving the sen-
sitivity of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Research, 22(22):4673–4680, 1994.

[133] Esko Ukkonen. Algorithms for approximate string matching. Information Control, 64(1-3):100–
118, March 1985.

[134] Vampir 8 Manual. http://www.vampir.eu/tutorial/manual, 2016.

[135] Jeffrey Vetter and Chris Chambreau. mpiP: Lightweight, Scalable MPI Profiling. http://
mpip.sourceforge.net, 2011.

[136] Michael Wagner, Ben Fulton, and Robert Henschel. Performance Optimization for the Trinity
RNA-Seq Assembler. In Proceedings of the 9th International Parallel Tools Workshop. Springer
Berlin Heidelberg, 2015.

[137] Michael Wagner, Andreas Knüpfer, and Wolfgang E. Nagel. Hierarchical Memory Buffering
Techniques for an In-Memory Event Tracing Extension to the Open Trace Format 2. In Parallel
Processing (ICPP), 2013 42nd International Conference on, pages 970–976, 2013.

[138] Lusheng Wang and Tao Jiang. On the Complexity of Multiple Sequence Alignment. Journal of
Computational Biology, 1(4):337–348, 1994.

[139] Warren M. Washington, Lawrence Buja, and Anthony Craig. The Computational Future for Cli-
mate and Earth System Models: On the Path to Petaflop and Beyond. Philosophical Transactions
of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1890):833–846,
March 2009.

[140] Matthias Weber, Ronny Brendel, and Holger Brunst. Trace File Comparison with a Hierarchical
Sequence Alignment Algorithm. In Proceedings of the 2012 IEEE 10th International Symposium
on Parallel and Distributed Processing with Applications, ISPA ’12, pages 247–254, Washington,
DC, USA, July 2012. IEEE Computer Society.

[141] Matthias Weber, Ronny Brendel, Tobias Hilbrich, Kathryn Mohror, Martin Schulz, and Holger
Brunst. Structural Clustering: A New Approach to Support Performance Analysis at Scale. In Pro-
ceedings of the 30th IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 484–493. IEEE Computer Society, May 2016.

[142] Matthias Weber, Ronald Geisler, Holger Brunst, and Wolfgang E. Nagel. Folding Methods for
Event Timelines in Performance Analysis. In Proceedings of the 29th IEEE International Parallel
and Distributed Processing Symposium Workshops (IPDPSW), pages 205–214. IEEE Computer
Society, May 2015.

[143] Matthias Weber, Ronald Geisler, Tobias Hilbrich, Matthias Lieber, Ronny Brendel, Ronny
Tschüter, Holger Brunst, and Wolfgang E. Nagel. Detection and Visualization of Performance
Variations to Guide Identification of Application Bottlenecks. In Proceedings of the 45th Interna-
tional Conference on Parallel Processing Workshops (ICPPW). IEEE Computer Society, 2016.

134

http://www.top500.org
http://www.vampir.eu/tutorial/manual
http://mpip.sourceforge.net
http://mpip.sourceforge.net

Bibliography

[144] Matthias Weber, Kathryn Mohror, Martin Schulz, Bronis R. de Supinski, Holger Brunst, and Wolf-
gang E. Nagel. Alignment-Based Metrics for Trace Comparison. In Proceedings of the 19th Inter-
national Conference on Parallel Processing, Euro-Par’13, pages 29–40. Springer-Verlag, Berlin,
Heidelberg, 2013.

[145] Matthias Weber, Kathryn Mohror, Martin Schulz, Bronis R. de Supinski, Holger Brunst, and Wolf-
gang E. Nagel. Structural Comparison of Parallel Applications. Research poster, Supercomputing
2013, Denver, CO, November 2013.

[146] F. Wolf and B. Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Applications.
In Parallel, Distributed and Network-Based Processing, 2003. Proceedings. Eleventh Euromicro
Conference on, pages 13–22, 2003.

[147] Felix Wolf. Automatic Performance Analysis on Parallel Computers with SMP Nodes. Ph.D.
Dissertation, RWTH Aachen, Forschungszentrum Jülich, 2003.

[148] Felix Wolf, Brian J. N. Wylie, Erika Ábrahám, Daniel Becker, Wolfgang Frings, Karl Fürlinger,
Markus Geimer, Marc-André Hermanns, Bernd Mohr, Shirley Moore, Matthias Pfeifer, and Zoltán
Szebenyi. Usage of the SCALASCA Toolset for Scalable Performance Analysis of Large-Scale
Parallel Applications. In Proceedings of the 2nd Parallel Tools Workshop, Stuttgart, Germany,
pages 157–167. Springer, July 2008.

[149] C. Eric Wu, Anthony Bolmarcich, Marc Snir, David Wootton, Farid Parpia, Anthony Chan, Ewing
Lusk, and William Gropp. From Trace Generation to Visualization: A Performance Framework
for Distributed Parallel Systems. In Proceedings of the 2000 ACM/IEEE Conference on Super-
computing (CDROM), Supercomputing ’00. IEEE Computer Society, 2000.

[150] Brian J. N. Wylie and Markus Geimer. Large-scale Performance Analysis of PFLOTRAN with
Scalasca. In Proceedings of the 53rd Cray User Group meeting, Fairbanks, AK, USA. Cray User
Group Inc., May 2011.

[151] Brian J. N. Wylie, Markus Geimer, and Felix Wolf. Performance Measurement and Analysis of
Large-scale Parallel Applications on Leadership Computing Systems. Scientific Programming,
16(2-3):167–181, April 2008.

[152] Omer Zaki, Ewing Lusk, William Gropp, and Deborah Swider. Toward Scalable Performance Vi-
sualization with Jumpshot. International Journal of High Performance Computing Applications,
13(3):277–288, August 1999.

135

	Acknowledgments
	Abstract
	Introduction
	High Performance Computing
	Performance Analysis and Optimization
	Challenges for Performance Data Comparison
	Contributions
	Structural Comparison of Process Pairs
	Alignment-Based Comparison Metrics
	Structural Comparison of Multiple Processes
	Visualization Techniques for Event Timelines

	Organization of This Dissertation

	Background and Related Work
	Measurement of Performance Data
	Performance Analysis Tools
	Analysis and Comparison Techniques
	Visual Event-Trace Comparison
	Measurement Management Support
	Similarity-Based Compression Techniques for Event-Traces
	Automatic Analysis Techniques for Event-Traces

	Limitations of Existing Techniques

	Methods for Structural Comparison of Process Pairs
	Jitter in Timestamp Measurements
	Comparison of the Flat Function Call Structure
	Structural Differences between Pairs of Sequences
	Sequence Alignment Algorithms
	Speedup of Special Alignment Cases
	Fast Alignment Heuristic
	Accuracy of Detection of Structural Differences

	Accelerating the Alignment by Exploiting Hierarchy in Function Call Structures
	Hierarchical Alignment Algorithm
	Scalability Considerations

	Differences between Flat and Hierarchical Comparisons
	Alignment Errors Introduced by Hierarchical Approach
	Comparison of Hierarchical and Flat Alignments

	Evaluation
	Performance of Flat Alignment Algorithms
	Performance of the Hierarchical Alignment Algorithm
	Accuracy of the Hierarchical Alignment Algorithm

	Alignment-Based Comparison Metrics for Processes
	Similarity Metric
	Dissimilarity Timeline Metric
	Runtime Skew Timeline Metric
	Function Time Difference Table
	Case Studies
	NAS Parallel Benchmark BT
	AMG2006
	ParaDiS

	Methods for Structural Comparison of Multiple Processes
	Pre-Clustering Structurally Similar Processes
	Determining Similarity
	Grouping Structurally Similar Processes

	Alignment of Clustered Processes
	Multiple Sequence Alignment
	Hierarchical Alignment Algorithm for Multiple Processes

	Performance Evaluation
	Performance of the Clustering Algorithms
	Performance of the Hierarchical Multiple Sequence Alignment Algorithm

	Visualization Techniques for Event Timelines
	Timeline Folding Methods
	Folding Operations
	Use Case Specific Folding
	Time Complexity and Scalability
	Case Studies

	Detection and Visualization of Runtime Imbalances
	Identification of Time Dominant Functions
	Analysis of Runtime Imbalances
	Visualization of Runtime Imbalances
	Case Studies

	Conclusions and Future Work
	List of Figures
	List of Tables
	Bibliography

