
Application of clustering analysis and
sequence analysis on the performance

analysis of parallel applications

Author:
Juan González García

Advisor:
Prof. Jesús LabartaMancho

A THESIS SUBMITTED IN FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Doctor per la Universitat Politècnica de Catalunya
Departament d’Arquitectura de Computadors

Barcelona, 2013

Abstract

High Performance Computing and Supercomputing is the high end area of the computing
science that studies and develops the most powerful computers available. Current supercom-
puters are extremely complex so are the applications that run on them. To take advantage
of the huge amount of computing power available it is strictly necessary to maximize the
knowledge we have about how these applications behave and perform. This is the mission
of the (parallel) performance analysis.
In general, performance analysis toolkits oUer a very simplistic manipulations of the per-

formance data. First order statistics such as average or standard deviation are used to sum-
marize the values of a given performance metric, hiding in some cases interesting facts avail-
able on the raw performance data. For this reason, we require the Performance Analytics, i.e.
the application of Data Analytics techniques in the performance analysis area. This thesis
contributes with two new techniques to the Performance Analytics Veld.
First contribution is the application of the cluster analysis to detect the parallel applic-

ation computation structure. Cluster analysis is the unsupervised classiVcation of patterns
(observations, data items or feature vectors) into groups (clusters). In this thesis we use the
cluster analysis to group the CPU burst of a parallel application, the regions on each process
in-between communication calls or calls to the parallel runtime. The resulting clusters ob-
tained are the diUerent computational trends or phases that appear in the application. These
clusters are useful to understand the behaviour of computation part of the application and fo-
cus the analyses to those that present performance issues. We demonstrate that our approach
requires diUerent clustering algorithms previously used in the area.
Second contribution of the thesis is the application of multiple sequence alignment al-

gorithms to evaluate the computation structure detected. Multiple sequence alignment (MSA)
is technique commonly used in bioinformatics to determine the similarities across two or
more biological sequences: DNA or proteins. The Cluster Sequence Score we introduce
applies a Multiple Sequence Alignment (MSA) algorithm to evaluate the SPMDiness of an
application, i.e. how well its computation structure represents the Single Program Multiple
Data (SPMD) paradigm structure. We also use this score in the Aggregative Cluster Re-
Vnement, a new clustering algorithm we designed, able to detect the SPMD phases of an
application at Vne-grain, surpassing the cluster algorithms we used initially.
We demonstrate the usefulness of these techniques with three practical uses. The Vrst

one is an extrapolation methodology able to maximize the performance metrics that char-
acterize the application phases detected using a single application execution. The second
one is the use of the computation structure detected to speedup in a multi-level simulation
infrastructure. Finally, we analyse four production-class applications using the computation
characterization to study the impact of possible application improvements and portings of
the applications to diUerent hardware conVgurations.

i

Abstract

In summary, this thesis proposes the use of cluster analysis and sequence analysis to auto-
matically detect and characterize the diUerent computation trends of a parallel application.
These techniques provide the developer / analyst an useful insight of the application per-
formance and ease the understanding of the application’s behaviour. The contributions of
the thesis are not reduced to proposals and publications of the techniques themselves, but
also practical uses to demonstrate their usefulness in the analysis task. In addition, the
research carried out during these years has provided a production tool for analysing applic-
ations’ structure, part of BSC Tools suite.

ii

Agradecimientos

En primer lugar, me gustaría agradecer la oportunidad que me ha brindado mi director, Jesús
Labarta, para poder realizar esta tesis en un centro de investigación único como es el BSC.
Tampoco puedo olvidarme de mi co-directora moral, Judit, que aunque no pueda constar de
forma oVcial en todo el papeleo, ocupa sin duda un papel primordial en este trabajo. A los
dos, muchas gracias por vuestra paciencia, consejos y guía.
Seguimos con los Tools, CEPBA y BSC, ese equipazo ecléctico donde los haya: Germán,

Harald, Eloy, Pedro, Xavi(P). Han aguantado, sin rechistar, mis dudas, problemas, lloros,
impertinencias y demás desvaríos. Tampoco debería olvidarme de los ex-Tools, Xavi(A) y
Kevin. Pasar por este equipo es algo que se recuerda para siempre. Y también tenemos
miembros honorarios, como Javi, con nuestros jueves de cañas.
Fuera del entorno laboral, estos últimos años nada habría sido igual sin la banda: tPR.

Javi, Marcelo, Carral (y demás baterías) hemos hecho cosas muy guapas juntos. Gracias a
vosotros he podido encontrar un espacio para poder expresarme con algo que no sean cifras
y letras. Espero que sigamos adelante por mucho tiempo.
Tampoco puedo olvidarme de la gente de esgrima. Una aVción desconocida para mi a

la que me lancé en un mal momento, y ha resultado un descubrimiento mayúsculo. Por
el deporte y por los amigos: Carles (capitán!), Jordis, Àngel, y David. A este último el
agradecimiento es por partida doble, compañero de iniciación en el deporte y segundo co-
director moral de esta tesis. Grandes conversaciones hemos tenido en el corto camino que
une el Campus Nord con la Sala de Armas.
También debo citar aquí al ático de la calle Equador. He vivido en esa casa durante todo

el transcurso de esta tesis, por lo que guarda una relación estrecha con este trabajo. Curi-
osidades de la vida, me mudo a la vez que Vnalizo la tesis. Justamente mientras escribo estas
líneas me he enterado que ya ha sido vendido. Aquí debo acordarme de toda la gente que
ha pasado, que no ha sido poca: Carli, David, Juanjo, Ramón, Valentina, Marina (a la que
habría que dedicar un capítulo propio), Triinu, Anna, Laura, Lucia, Laia y David. Yo he sido
la constante, vosotros lo variable.
Antes de acabar me gustaría meter en un saco a todos aquellos amigos, que son tan amigos

que si nos los pones no se enfadan. Los de “la colla”. Los primos. Los Erasmus. Ellos quizá
no saben lo mucho que los quiero y que me importan. Si tuviera que agredecerselos uno a
uno, no acababa.
Y por último, tengo que agradecer sin mayor duda el soporte de mis padres, mi hermana

y su respectivo. Otra gran dosis de paciencia inVnita. Supongo que de eso va el juego, pero
ellos lo demuestran con creces. Suerte que la familia no se elige.
Esta tesis ha sido Vnanciada por una beca FPI del Ministerio de Educación, contrato BES-

2005-7919 (proyecto TIN2004-07739-C02-01), el proyecto de colaboración BSC/IBM MareIn-
cognito y el proyecto de colaboración UE/Rusia HOPSA.

iii

Contents

Abstract i

Agradecimientos iii

I. Introduction and Related Work 1

1. Introduction 3
1.1. Motivation . 3
1.2. Performance Analytics . 4

1.2.1. Cluster Analysis in the Parallel Performance Scenario 4
1.2.2. Sequence analysis in Parallel Performance Scenario 5

1.3. Contributions . 7
1.3.1. Technical Contributions . 7
1.3.2. Examples of applications of the techniques presented 8

1.4. Dissertation Organization . 8
1.5. Publications . 9

2. The Parallel Performance Analysis Field 11
2.1. Analysis Placement . 11
2.2. The Performance Data . 11

2.2.1. Data Acquisition . 12
2.2.2. Emitted Data . 13

2.3. Analysing the Performance Data . 14
2.3.1. Data Presentation . 15
2.3.2. Performance Analytics . 26

3. Introduction to Cluster Analysis and Multiple Sequence Alignment 31
3.1. Cluster Analysis . 31

3.1.1. Centroid-based clustering . 31
3.1.2. Connectivity based clustering . 34
3.1.3. Density-based clustering . 34

3.2. Sequence Analysis . 37
3.2.1. Dynamic programming . 37
3.2.2. Progressive methods . 37
3.2.3. Iterative methods . 39

v

Contents

II. New Performance Analytics Techniques 41

4. Computation Structure Detection using Cluster Analysis 43
4.1. Computation bursts and cluster analysis . 43
4.2. Data Preparation . 43

4.2.1. Pre-processing . 44
4.2.2. Dimensionality Reduction . 44

4.3. Clustering algorithm selection . 45
4.4. DBSCAN parameters . 46
4.5. Cluster analysis results . 50

4.5.1. Ease of the computation structure analysis 50
4.5.2. Applications syntactic structure and behaviour structure 54

4.6. Clusters quality evaluation . 57

5. Evaluation of the computation structure quality 59
5.1. Cluster Sequence Score Motivation . 59
5.2. Multiple Sequence Alignment (MSA) . 60
5.3. Cluster Sequence Score . 60
5.4. Validation . 62

6. Automatization of the Structure Detection 71
6.1. Limitation of the structure detection based on DBSCAN 71
6.2. The Aggregative Cluster ReVnement algorithm 72

6.2.1. Aggregative Cluster ReVnement foundations 72
6.2.2. Algorithm Description . 73

6.3. Aggregative Cluster ReVnement results . 78
6.3.1. SPMD structure detection . 78
6.3.2. Study of the reVnement tree . 83

III. Practical Uses 95

7. Performance Data Extrapolation 97
7.1. Performance Data Extraction Limits . 97
7.2. Extrapolation Methodology . 97

7.2.1. Performance hardware counters multiplex 98
7.2.2. Extrapolation Steps . 98

7.3. Validation . 100
7.3.1. Experiments data . 101
7.3.2. Weighted error . 101
7.3.3. Validation Results . 103
7.3.4. Multiplexing scheme selection . 103

7.4. A Use Case: construction of CPU breakdown models per cluster 109

vi

Contents

8. Information Reduction for Multi-level Simulation 111
8.1. Scenario . 111
8.2. Methodology . 113

8.2.1. The Information Reduction Process 113
8.2.2. Multi-level Simulation . 115

8.3. Validation . 117
8.3.1. Information Reduction Quality . 117
8.3.2. Multi-level Simulation Quality . 119

8.4. A Use Case: Performance Prediction . 125

9. Analysis of Message-Based Parallel Applications 129
9.1. Applications Analysed . 129

9.1.1. Data gathering . 130
9.2. Analyses description . 130

9.2.1. Structure characterization . 131
9.2.2. What-if analyses . 131

9.3. Analyses results . 133
9.3.1. PEPC . 135
9.3.2. WRF . 143
9.3.3. GADGET . 153
9.3.4. SU3_AHiggs . 161

Conclusions 167

10. Conclusions 169
10.1. Parallel applications computation structure detection based on cluster analysis 169
10.2. Evaluation of the computation structure quality 170
10.3. Automatization and reVnement of the structure detection 171
10.4. Structure detection in practice . 171

10.4.1. Accurate extrapolation of performance metrics 172
10.4.2. Information reduction in a multi-scale simulation 172
10.4.3. Parallel applications what-if studies 173

10.5. Open lines for future research . 173
10.5.1. Scalability of cluster analysis . 173
10.5.2. Fine-tune of the structure reVnement 174
10.5.3. Metrics space exploration . 174
10.5.4. In-depth analysis of the clusters structure 175
10.5.5. Detailed performance data extrapolation 175

vii

Contents

Appendices 177

A. The BSC Tools Parallel Performance Analysis Suite 179
A.1. Extrae . 179

A.1.1. Interposition mechanisms . 180
A.1.2. Sampling mechanisms . 181
A.1.3. Performance data gathered . 181

A.2. Paraver . 182
A.2.1. Analysis views . 183
A.2.2. Paraver object model . 186
A.2.3. Paraver Trace . 188

A.3. Dimemas . 191
A.3.1. Dimemas model . 192
A.3.2. Dimemas trace . 195
A.3.3. Dimemas conVguration Vle . 199

A.4. Trace manipulators and Translators . 203
A.4.1. Trace manipulators . 203
A.4.2. Trace translators . 204

A.5. Performance Analytics . 204
A.5.1. Spectral analysis . 205
A.5.2. Detailed performance evolution analysis 205
A.5.3. Performance tracking . 206

B. The ClusteringSuite Software Package 209
B.1. ClusteringSuite design . 209

B.1.1. Software engineering . 209
B.1.2. Libraries and tools . 211

B.2. ClusteringSuite tools usage . 212
B.3. Creating the clustering deVnition XML . 221

Bibliography 230

viii

List of Figures

1.1. Comparison of cluster analysis targets . 6

2.1. Example of Wat proVle produced by gprof. Extracted from the gprofmanual[1] 16
2.2. Example of call-graph proVle produced by gprof. Extracted from the gprof

manual[1] . 16
2.3. Annotated HPCTOOLKIT’s hpcviewermain interface. Image obtained from

HPCTOOLKIT manual[2] . 17
2.4. Example of scatter plot of Completed Instructions counter produced by HPCTOOLKIT’s

hpcviewer. Image obtained from HPCTOOLKIT manual[2] 18
2.5. TAU’s ParaProf thread hotspots proVle window 19
2.6. TAU’s ParaProf thread proVles comparison 20
2.7. Scalasca’s CUBE main interface . 21
2.8. Master time-line of VAMPIR trace analyzer 22
2.9. hpctraceviewer interface. Picture obtained from [3] 23
2.10. Paraver time-line window . 23
2.11. Vampir summary windows . 24
2.12. Paraver statistics windows . 25
2.13. Categorization of wait states deVned by the EXPERT system. Figure adapted

from [4], p.427. 27

3.1. K-means algorithm workWow . 32
3.2. Graphical example ofK-means algorithm using k = 3. After generating the

initial centroids in Step 1, points of the data set are assigned to the closest
one on Step 2 and centroids are recomputed on Step 3. Step 2 and 3 are
executed until the algorithm converges. 33

3.3. Graphical example dendrogram construction used in hierarchical clustering
and the possible partitions obtained from cuts a diUerent heights 35

3.4. Graphical example of a resulting cluster using DBSCAN density-based clus-
tering. Yellow points are border points, red points are core points. Blue point
is a noise point . 36

3.5. Matrix construction and trace-back in the Needleman-Wunsch pairwise align-
ment algorithm . 38

3.6. Flux diagram of CLUSTALmultiple sequence alignment algorithm. It repres-
ents the foundations of a progressive multiple sequence alignment algorithm
scheme. Figure adapted from [5], p.238. 40

ix

List of Figures

4.1. Computation regions and communication regions in a message-passing par-
allel application . 44

4.2. X-means and DBSCAN algorithms comparison. Boxes highlight clouds of
points with strong components, vertical and horizontal, where X-means has
divided the isolated group. 46

4.3. X-means and DBSCAN algorithms comparison. Clusters time-line distribution 47
4.4. Cluster analysis of NPB BT class A Benchmark using clustering algorithm

over Completed Instructions and IPC. Due to the use of a restrictive Eps
value the structure is detected at Vne grain 48

4.5. A second cluster analysis of NPB BT class A Benchmark using the cluster
algorithm over Completed Instructions and IPC. Using higher value of Eps
produces a coarser grain detection, showing a SPMD structure 49

4.6. Time-lines of diUerent performance hardware counter metrics of WRF NMM

application executed with 64 tasks . 51
4.7. Cluster analysis with DBSCAN algorithm using Complete Instructions, L1

Data Cache Misses and L2 Data Cache Misses of WRF application executed
executed with 64 MPI tasks . 53

4.8. Comparison of the clusters discovered on NPB BT class A Benchmark presen-
ted in Figure 4.5 and the main user functions of the application 55

4.9. Comparison of the clusters discovered on HydroC and the main user func-
tions of the application . 57

4.10. Detailed plot of the clusters that represent the bi-modal updateConservativeVars
of HydroC solver . 57

5.1. An example of alignment of the NAS BT Class A with 4 tasks. (a) shows the
cluster distributation in the time-line; (b) presents the proposed alignment
computed by Kalign2 and depicted by ClustalX. 61

5.2. Results of the experiment bt_a_16_0057. Time-line (a), and alignment (b)
correspond to two iteration detail of the whole application 64

5.3. Detected structure, sequences alignment and Cluster Sequence Score results
of bt_a_16_0150 experiment. The Vgures corresponds to two iterations of
the whole application . 65

5.4. Detected structure, sequences alignment and Cluster Sequence Score results
of wrf_16_0100 experiment. The Vgures correspond to two iterations of the
whole application . 66

5.5. Detected structure, sequences alignment and Cluster Sequence Score results
of wrf_16_0200 experiment. The Vgures correspond to two iterations of the
whole application . 67

5.6. Detected structure, sequences alignment and Cluster Sequence Score results
of wrf_16_0300 experiment. The Vgures correspond to two iterations of the
whole application . 68

5.7. Detected structure, sequences alignment and Cluster Sequence Score results
of ft_a_16_0090 experiment. The Vgures correspond to a single iteration of
the whole application . 69

x

List of Figures

5.8. Detected structure, sequences alignment and Cluster Sequence Score results
of lu_a_16_0090 experiment. The Vgures correspond to a single iteration of
the whole application . 70

6.1. Example of data set that require multiple Eps parameters. This data was
obtained from the Hydro solver executed with 128 tasks 71

6.2. Complete aggregative reVnement cluster analysis tree obtained from NPB
BT class A executed with 4 tasks. The empty nodes of the tree depict those
clusters that are discarded because of poor SPMDiness and thus need to be
merged. Filled nodes are those selected in the Vnal partition of the data. In
this case, due to the convergence, all selected nodes got 100% score. Each
layer represents one step in the reVnement loop. 76

6.3. Application time-lines expressing the clusters found at diUerent steps of the
Aggregative ReVnement corresponding to Figure 6.2. (a) is the initial clus-
tering, Step 1, where most of the main SPMD phases have already been
discovered. (b) Time-line of the Step 4, where Cluster 9 (light green) rep-
resents a SPMD phase not previously detected. (c) Time-line of the Step 6,
where Cluster 8 (orange) the one that represents a SPMD phase not correctly
detected before. (d) Time-line of the Vnal partition of the data, Step 7 in the
tree, where Cluster 11 represents the last SPMD phase found. Dots on the
top of the time-lines serve as guide to see the clusters mentioned. 77

6.4. sorted 4-dist graph obtained from the Socorro application. The red dots are
represent the distance to the 4th nearest neighbour for each point in the
dataset. The blue line is the line deVned by the points (0, max_k_dist) and
(number_of_points/2, 0). We use it to compute the diUerent Eps values . 78

6.5. Computation structure detection of Hydro solver, using DBSCAN cluster
algorithm with the parametersMinPoints = 10 and Eps = 0.0200 79

6.6. Computation structure detection of Hydro solver, using DBSCAN cluster
algorithm with the parametersMinPoints = 10 and Eps = 0.0425 80

6.7. Computation structure detection of Hydro solver, using Aggregative Cluster
ReVnement algorithm . 81

6.8. Detailed results of a DBSCAN cluster analysis of same phases present in
Figure 6.9 of WRF application. The parameters used wereMinPoints = 4
and Eps = 0.0470 . 82

6.9. Detailed results of a DBSCAN cluster analysis of WRF application. The para-
meters used wereMinPoints = 4 and Eps = 0.0896 83

6.10. Detailed results of the Cluster Aggregative ReVnement of the same phases
of WRF application presented in Figures 6.9 and 6.8 84

6.11. ReVnement tree depicting the formation pattern of Cluster 1 of VAC application 86
6.12. VAC Cluster 1 formation scatter plots. This plots correspond to the two

iterations of the reVnement tree of Figure 6.11. 86
6.13. Cluster 1 distribution time-line of iterations iterations presented in Figure 6.11.

The time-lines contain one repetition of the SPMD region detected 86
6.14. ReVnement tree depicting the formation pattern of Cluster 4 of VAC application 88

xi

List of Figures

6.15. VAC Cluster 4 formation scatter plots. These plots correspond to the the Vrst
iteration of the algorithm and iterations observed in the reVnement tree of
Figure 6.14, where the Aggregative Cluster Algorithm merged two or more
clusters. 89

6.16. Cluster 4 distribution time-line of iterations presented in Figure 6.15. The
time-lines contain one repetition of the SPMD region detected 90

6.17. ReVnement tree depicting the formation pattern of Cluster 5 of VAC application 92

6.18. VAC Cluster 4 formation scatter plots. These plots correspond to the the two
bottom levels of the reVnement tree of Figure 6.17. 93

6.19. Cluster 5 distribution time-line of partitions presented in Figure 6.18. The
time-lines contain one repetition of the SPMD region detected. 93

7.1. Example of a clustering of GAPgeofem application using the Aggregative
Cluster ReVnement with Instructions Completed and IPC. Upper left plot
depicts the metrics used by the clustering algorithm. The rest of plots show
the clusters found in terms of other pairs of metrics not used during the
cluster analysis . 99

7.2. PEPC extrapolation errors for CPI breakdownmodel counters using diUerent
multiplexing strategies. Left column represents the relative error compar-
ing the extrapolation and the actual value from non-multiplexed execution.
Right column represents these errors weighted in terms of the relevance of
each cluster with respect to the total cycles on the non-multiplexed run . . . 104

7.3. PEPC counters relevance with respect to Total Cycles counter 105

7.4. TERA_TF extrapolation errors of counters listed in Table 7.1 model counters
using diUerent multiplexing schemes. 106

7.5. GAPgeofem extrapolation errors of counters listed in Table 7.1 model coun-
ters using diUerent multiplexing schemes. 107

7.6. GAPgeofem extrapolation errors of counters listed in Table 7.1 model coun-
ters using diUerent multiplexing schemes. 108

7.7. General CPI breakdown models of all applications presented in the paper.
These models are a general view of the major categories, not using all 15
counters extrapolated to clarify its legibility. In all cases, they were com-
puted the time-space multiplexing extrapolation method 110

xii

List of Figures

8.1. Simulation methodology cycle for a whole supercomputing application. Start-
ing with a trace of a parallel application (step 1), we produce a sub-trace (or
trace cut) containing information of just two iterations (step 2). A cluster
analysis is applied to the information of the computation regions present on
this reduced trace, and a set of representatives per cluster is selected (step
3), adding cluster information to the trace cut (step 4). The set of represent-
atives is traced (step 5) and simulated using a low-level simulator to obtain
the ratios on other possible processor conVgurations (step 6). Finally, using
a full-system-scale simulator, we combine the communication information
present in step 3 and the cluster instructions per cycle (IPC) ratios (step 6) to
predict the total runtime of the whole application (step 7). 112

8.2. Input data and the two stages of the phase detection analysis: periodic re-
gion detection using the DWT and the iterative phase detection using the
autocorrelation . 114

8.3. Execution time prediction error for Versatile Advection Code (VAC) and
Weather Research Forecasting (WRF) parallel applications, for both self val-
idation (a) and cross validation (b) experiments. The Vgures show the error
when estimating the execution time of two iterations of the application or
the full application execution time with the measured real IPC and the IPC
provided by MPsim. 123

8.4. Performance predictions of VAC using diUerent cache sizes and network
bandwidths . 126

8.5. Performance predictions of WRF using diUerent cache sizes and network
bandwidths . 127

9.1. PEPC reVnement tree . 135
9.2. PEPC scatter plot of discovered clusters . 136
9.3. PEPC time-line distribution of clusters . 137
9.4. PEPC CPI breakdown model of the clusters found 137
9.5. Clusters distribution time-line of nominal simulation, duration balancing

simulation and the algorithmic improvement of PEPC application 139
9.6. Results of the simulation when using PEPC in a diUerent hardware 141
9.7. PEPC clusters time-lines using 16384 MB/s network bandwidth and general

purpose CPU 64 faster and accelerator 64 faster 142
9.8. WRF scatter plot of discovered clusters . 143
9.9. WRF time-line distribution of clusters . 144
9.10. WRF reVnement tree . 145
9.11. Clusters distribution time-line of nominal simulation, duration balancing

simulation and the algorithmic improvement of WRF application 148
9.12. Results of the simulation when using WRF in a diUerent hardware 150
9.13. WRF clusters time-lines using 16384 MB/s network bandwidth and general

purpose CPU 64 faster and accelarator 64 faster 151
9.14. GADGET scatter plot of discovered clusters 152
9.15. GADGET time-line distribution of clusters 153

xiii

List of Figures

9.16. GADGET reVnement tree . 154
9.17. Clusters distribution time-line of nominal simulation, duration balancing

simulation and the algorithmic improvement of GADGET application 156
9.18. Results of the simulation when using GADGET in a diUerent hardware . . . 158
9.19. GADGET clusters time-lines using 16384 MB/s network bandwidth and gen-

eral purpose CPU 64 faster and accelerator 64 faster 159
9.20. SU3_AHiggs scatter plot of discovered clusters 160
9.21. SU3_AHiggs time-line distribution of clusters 162
9.22. Clusters distribution time-line of nominal simulation and the algorithmic

improvement simulation of SU3_AHiggs application 163
9.23. Results of the simulation when using SU3_AHiggs in a diUerent hardware . 165
9.24. SU3_AHiggs clusters time-lines using 16384 MB/s network bandwidth and

general purpose CPU 64 faster and accelerator 64 faster 166

A.1. Scheme of the BSC Tools Parallel Performance Analysis Suite, depicting the
diUerent tools and their interaction . 179

A.2. Basic Paraver time-line view . 184
A.3. Detail of the Paraver Semantic Module showing the semantic functions re-

garding thread states . 184
A.4. Communication and Event sections of the Paraver Filtering Module 185
A.5. Paraver Histogram View . 186
A.6. Paraver process model . 187
A.7. Paraver and Dimemas resource model . 188
A.8. Paraver trace Vle structure . 188
A.9. Paraver trace header records deVnition . 190
A.10. Paraver state record speciVcation . 191
A.11. Paraver event record speciVcation . 191
A.12. Paraver communication record speciVcation 191
A.13. Dimemas communication diagrams . 193
A.14. Dimemas trace Vle structure . 195
A.15. First line of Dimemas trace header deVnition 196
A.16. Paraver communicator deVnition record structure 196
A.17. Dimemas CPU burst record deVnition . 197
A.18. Dimemas send operation record deVnition 198
A.19. Dimemas receive operation record deVnition 198
A.20. Dimemas collective operation record deVnition 199
A.21. Dimemas event recod deVnition . 199
A.22. Dimemas oUset record deVnition . 199
A.23. Dimemas system deVnition record structure 201
A.24. Dimemas node deVnition record structure 201
A.25. Dimemas mapping deVnition record structure 202
A.26. Dimemas modules deVnition record structure 202
A.27. Folding mechanisms scheme. Picture obtained from [6] 205
A.28. Application of the folding mechanism to multiple performance counters . . . 206

xiv

List of Figures

A.29. Sequence of plots showing the program structure at diUerent scenarios. Pic-
ture obtained from [7] . 207

B.1. UML class model of the libClustering library 210
B.2. UML class model of the libTraceClustering library 211
B.3. Bursts histogram produced by stats tool 214
B.4. Output plots produced by BurstClustering tool combining diUerent metrics 218
B.5. A Paraver time-line and proVle showing information related to a cluster ana-

lysis . 219
B.6. Example of a reVnement tree produced by BurstClustering tool 220
B.7. ClustalX sequence alignment window . 221
B.8. Clustering deVnition XML Vle structure . 222
B.9. Nodes to deVne the parameters extracted from a trace 223
B.10. plot_definition node of the clustering deVntion XML 224

xv

List of Tables

4.1. Clustering tool statistics for a set of applications used in the examples. The
values regarding the NPB BT benchmark correspond to the execution with
higher value of Eps . 50

4.2. Performance characterization of the 6 clusters that aggregate more than 90%
of the WRF application computing time of application analysis depicted in
Figure 4.7 . 52

4.3. Code linking of the 6 main clusters of WRF application 54
4.4. HydroC clusters/subroutines correspondence 56

5.1. Summary of the diUerent applications used in the experiments, as well as the
DBSCAN parameters used and the total number of clusters obtained 62

7.1. List of all hardware counters used in the experiments to verify the extrapol-
ation technique . 102

7.2. Average value of weighted errors using diUerent multiplexing schemes . . . 105

8.1. Reduction factors and quality evaluation of the diUerent parts of the Inform-
ation Reduction step of WRF application . 118

8.2. Reduction factors and quality evaluation of the diUerent parts of the Inform-
ation Reduction step of VAC application . 119

8.3. Baseline MPSim processor conVguration . 120
8.4. Baseline Dimemas cluster conVguration . 121
8.5. Real IPC vs. MPSim predicted IPC comparison in self validation experiment,

using two threads per core conVguration . 122
8.6. WRF cross validationMPSim Ratios, comparing the IPC running two-threads

per core (CMP) and a single thread per core (ST) and the diUerences with the
ratios in real conVguration . 124

8.7. VAC cross validation MPSim Ratios and the diUerences with real ratios. In
this case, we just express the ratios and not the IPC on single thread and
CMP conVgurations because of the higher number of representatives 124

9.1. List of all hardware counters used in the experiments 130
9.2. Baseline Dimemas cluster conVguration . 133
9.3. Cluster analysis results and factors of the speedup model deVned in [8] ob-

tained by the four applications analysed . 134
9.4. PEPC clusters characterization . 136
9.5. PEPC speedups of application improvement analyses 138

xvii

List of Tables

9.6. WRF clusters characterization . 146
9.7. WRF speedups of application improvement analyses 147
9.8. GADGET clusters characterization . 152
9.9. GADGET speedups of application improvement analyses 155
9.10. SU3_AHiggs clusters characterization . 160
9.11. SU3_AHiggs speed-ups according to potential cluster improvements 162

A.1. Dimemas simulator parameters . 192
A.2. Dimemas collective communicationsMODEL_[IN |OUT]_FACTOR pos-

sible values . 194
A.3. Dimemas collective communications options for SIZE_IN and SIZE_OUT 195
A.4. Possible values of global_op_id Veld in a collective communication record

of Dimemas . 200

B.1. Cluster algorithms included in the libClustering and their parameters . . 215
B.2. BurstClustering tool parameters . 216

xviii

Part I.

Introduction and Related Work

1

1. Introduction

In this thesis we present novel techniques to characterize the performance of parallel ap-
plications. The work is mainly focused on those parallel applications that run on high

performance computing (HPC) systems. This chapter presents the motivation for the re-
search and also introduces the Performance Analytics Veld, where this thesis is included.
Finally, the chapter also contains a list of the contributions of the thesis as well as the book
organization.

1.1. Motivation

High Performance Computing and Supercomputing is the area of computing science that
studies and develops the most powerful computers available. For example, the current #1
supercomputer in the world, according to the Top500.org list is Titan, a Cray supercomputer
located at the Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States. It has
560,640 processing cores (the smallest hardware unit capable of running one parallel process
or thread) and its computation power is 17.590 PFlop/s. These Vgures are a good start to illus-
trate the challenges in this scenario. To achieve this computing at this scale, supercomputers
include a huge number of factors that aUect their performance: processors, mathematical
accelerators, more or less sophisticated interconnection networks, I/O systems.
In the same way, the applications that run on these kind of computers also have many

factors that aUect their performance. First, to take advantage of the huge amount of com-
pute power available, the applications must be parallel. Essentially, a parallel application
is an application where parts of its code can be executed at the same time, concurrently,
producing partial results that later combine solve a given problem. In practice, the design
and implementation of these parallel applications involve many elements that aUect the per-
formance: the sequential algorithms implemented, the distribution of the data it uses, the
communications patterns of the diUerent parallel parts, etc.
As a result, to achieve the maximum performance that a supercomputer oUers, the theor-

etical peak performance of the hardware, the developer of a parallel application must take
into account this huge number of factors to know and understand how its application be-
have on it. This is the mission of the parallel performance analysis. In an application-centric
approach, the performance analysis is a cyclic process consisting of observing the behaviour
of the application so as to hypothesize the possible problems that aUect its performance and
Vnally translate these hypotheses to improvements in the application re-starting the cycle to
validate them. Obviously, the less number of iterations of this cycle the less time wasted and
also the less money spent.
The observation of the behaviour relies on capturing a certain amount of performance

3

1. Introduction

data, that will be later analysed to deVne the hypotheses and validate or discard them. At
the scales deVned previously (hundreds of thousands cores, petaWops of computing power)
the performance data generation during an application execution is huge: up to millions of
performance events per second. Thus, it is necessary to increase the power and intelligence of
the performance tools available to deal with this such amount of performance data and then
reduce the analysis iterations. That represents the main motivation of this thesis: how max-
imize the knowledge of a parallel application performance when dealing with an enormous
amount of performance data produced and also how to translate this knowledge to a per-
formance tool that presents this information in an understandable way to the application
analyst or developer.

1.2. Performance Analytics

Data Analytics is the science of examining raw data with the purpose of drawing conclusions
about that information. Performance Analytics is Data Analytics applied to performance
analysis data. As presented in the next chapter, there are a relatively short list of works
included in the diUerent analysis toolkits under the umbrella of this term.
In general, current performance analysis toolkits oUer a simplistic manipulations of the

performance data. First-order statistics such as average or standard deviation are used to
summarize the values of a given performance metric, hiding in some cases interesting facts
available from the raw data. We consider that Performance Analytics techniques are neces-
sary so here we introduce the techniques we propose in this Veld.

1.2.1. Cluster Analysis in the Parallel Performance Scenario

When analysing a parallel application, the amount of performance data that is generated is
huge. Summarizing the information according to a given criteria is then a necessity. Ap-
plication proVling is the common technique to summarize the performance information. A
proVle is a simple accounting of Vrst order statistics over a set of metrics associated to an
application-level abstraction, for example the application subroutines. The major drawback
when using proVles is that the time-varying behaviour is hidden. For example, a given sub-
routine could have diUerent timings depending on duringo which phase of the application it
is called. A proVle will not make this distinction.
Considering the necessity to summarize the information in a more intelligent way that

proVles do, we found cluster analysis to be better suited. As deVned in [9], cluster analysis is
the “unsupervised classiVcation of patterns (observations, data items or feature vectors) into
groups (clusters)”. The fact that is a classiVcation and not an aggregation of the information
is a key factor to overcome the intrinsic problem of the proVles, so the diUerent trends in the
data are not hidden.
For example, a classic use of cluster analysis is to reduce the amount of information gen-

erated taken into advantage the repetitive patterns of parallel applications. In works such
as [10, 11, 12], the authors exploited the structure of the Single Program Multiple Data
(SPMD) paradigm that the vast majority parallel applications follow. In a SPMD applica-

4

1.2. Performance Analytics

tion it is expected that all processes/tasks involved perform the same sequences of compu-
tations/communications. In this context, cluster analysis is demonstrated to be eUective to
group those of processes/ tasks that behave similarly. Using a representative per cluster, the
authors easily reduce the amount of performance data.
Our novel approach in the application of cluster analysis has a diUerent target: determine

the computational structure of the application. Instead of grouping the processes/tasks that
behave similarly, we focus on the identiVcation of the phases observed in the computation
regions, i.e. those regions between communication primitives or calls to the parallel run-
time, of a given parallel application. With our approach, we do not just take advantage
of the SPMD pattern but also of the iterative applications design, for example in the wide
variety of numerical methods used to solve equation systems. As a result, we obtain an small
number of clusters characterize these repetitive structural computation phases, providing the
developer/analyst an useful insight of applications computation behaviour.
Figure 1.1 compares these two diUerent approaches. Picture 1.1a represents the diUerent

processes in a parallel application, where we have distinguished the computation (light grey)
and communication (dark grey). Picture 1.1b represents the results of the approaches presen-
ted in [10, 11, 12]: considering for example of the duration of the processes, they detect
two diUerent clusters that group two processes each. Picture 1.1c represents our approach,
where we group the diUerent computation parts that appear in the processes, obtaining three
diUerent clusters according to the duration of the computation regions.

1.2.2. Sequence analysis in Parallel Performance Scenario

In bioinformatics, sequence analysis [13] is the process of extracting useful information from
biological sequences, such as DNA chains or proteins. Multiple Sequence Alignment (MSA)
is a sequence analysis technique able to determine the similarities across two or more se-
quences to deVne functional, structural or evolutionary relationships across them. These
alignments are also used for non-biological sequences, such as those present in natural lan-
guage [14] or in geographical studies [15].
Using the brief description of a parallel application provided previously, we can make

this simple analogy: each activity (compute or communicate) that each process/task of the
application performs in parallel to solve the desired problem could be seen as a DNA base or
amino-acid element, so the sequence of activities would be the equivalent to a DNA chain
or a protein. Using a MSA algorithm will tell us how similar are the diUerent processes/tasks
in terms of the sequences they perform.
That is especially relevant when the application follows the SPMD paradigm, because it

is expected to have the same sequence of activities for all processes/tasks involved. Our
contribution to the Performance Analytics in this aspect is a quality score that measures the
SPMDiness, i.e., how well it follows the SPMD paradigm of the structure of a given parallel
application.
This quality score is linked with the computation structure characterization obtained using

the cluster analysis. For example, we can use the sequence of clusters of each process/task as
the input of a MSA algorithm that will evaluate if the computation phases detected represent
the desired SPMD structure.

5

1. Introduction

Task 1

Task 3

Task 4

Task 2

(a) Original sequence of computation/communication to analyse

Cluster 1 = {Task 1, Task 3} / Cluster 2 = {Task 2, Task 4}

Cluster 1

Cluster 2

(b) Cluster analysis to detect tasks/threads with similar behaviour

Cluster 1 Cluster 2 Cluster 3

Task 1

Task 2

Task 3

Task 4

(c) Cluster analysis to detect computation regions with similar behaviour

Figure 1.1.: Comparison of cluster analysis targets

6

1.3. Contributions

1.3. Contributions

As a summary of this chapter, we want to emphasize that this thesis introduces two new
techniques in the Performance Analytics Veld, with the target of improving the knowledge
of parallel application performance. More precisely, we present cluster analysis for detecting
the computational structure and the application of sequence analysis to evaluate the SPMD
structure.
The contributions of this thesis can be classiVed into two main categories. The Vrst one

corresponds to the technical contributions to create and validate the new techniques. The
second category corresponds to the concrete examples of applying the techniques to diUerent
areas of performance analysis.

1.3.1. Technical Contributions

Demonstration of the suitability of density-based cluster algorithms to detect
computation structure

We demonstrate the suitability of density-based cluster algorithms, speciVcally DBSCAN,
when characterizing the computation structure of parallel applications. We show that this
kind of algorithm surpasses the clustering algorithms based on K-Means when grouping
performance hardware counters (HWC) data, and work more eUectively than hierarchical
clustering algorithms because they do not require an user interaction.

Design and validation of a cluster quality score for SPMD computation patterns
detection

To fulVl the necessity of quantitative evaluate the computation structure a given application,
we introduced the Cluster Sequence Score. This score is calculate by means of a Multiple
Sequence Alignment (MSA) algorithm to evaluate the SPMDiness, i.e. how well the diUerent
sequences of actions in a parallel application follow the SPMD paradigm.

Design and validation of a new cluster algorithm to reVne the computation
structure detection

To improve the quality of the structure detection and focusing on producing a purely un-
supervised cluster algorithm, we propose the Aggregative Cluster ReVnement algorithm. It
is a combination of a density-based algorithm and a hierarchical algorithm that maximizes
the quality of a score. Using the Cluster Sequence Score, the Aggregative Cluster ReVne-
ment is able to detect SPMD computation regions in message-passing parallel applications at
diUerent levels of granularity, without user intervention.

7

1. Introduction

1.3.2. Examples of applications of the techniques presented

Design and validation of a performance data extrapolation methodology using
structure detection

In some cases, we need to execute an application several times to obtain diUerent metrics
that cannot be read simultaneously, for example when using processor hardware counters.
We present the design and validation of a performance data extrapolation methodology that
solves this problem by multiplexing the data acquisition along the (repetitive) application
phases, and then extrapolates the average values per phase of a wide number of performance
metrics.

Design and validation of a methodology to minimize the volume of the input data
in a multi-level simulator of parallel applications

Detailed simulations of large scale message-passing parallel applications are extremely time
consuming and resource intensive. We present the design and validation of a methodology
where the structure detection is combined with signal processing techniques capable of re-
ducing the volume of simulated data by hundreds to thousands orders of magnitude. This
reduction makes possible detailed software performance analysis and accurate predictions in
reasonable time.

Parallel applications what-if studies

Using the structure detection, we present a set of what-if studies of four production-class
parallel applications. To perform these studies, we use the structure detection combined
with an application level simulator. As a result, we show how what will be gained by im-
proving the applications, without the need to actually changing the code, and also what will
be the expected performance when porting the applications to diUerent hardware, without
requiring the real machines.

1.4. Dissertation Organization

The rest of this book is organized as follows. The Chapter 2 contains a discussion of the
previous work in the parallel performance Veld, including the major work in the Perform-
ance Analytics Veld. Chapter 3 is an introduction to cluster analysis algorithms and multiple
sequence alignment algorithms, important to understand the Performance Analytics tech-
niques developed. In Chapter 4, we demonstrate the suitability of density-based clustering
algorithms to eUectively determine the computation structure of message-passing parallel
applications. In Chapter 5, we present the Cluster Sequence Score, a score to evaluate the
SPMD structure of a parallel application. In Chapter 6, we present Aggregative Cluster Re-
Vnement, a density-based clustering algorithm that detects the computation structure at Vne
grain, without user interaction. In Chapter 7, we present a methodology to extrapolate per-
formance data using a structure detection to maximize the information extracted in a single

8

1.5. Publications

application run. In Chapter 8, we use the computation structure obtained combined with sig-
nal processing techniques to minimize the input data in a multi-level simulator. In Chapter
9, we present an analysis of four parallel applications by using the Aggregative Cluster Re-
Vnement. In Chapter 10, we discuss the contributions presented as a whole, describing the
research and development opportunities that it oUers to the community. In Appendix A,
we detail the BSC-Tools suite, the performance analysis toolkit used to developed and valid-
ate the work presented in previous chapters. Appendix B contains the software engineering
foundations of the CluteringSuite package, the software piece included in the BSC Tools
suite that contains the implementation of the ideas and methodologies presented.

1.5. Publications

[16] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic Detection of Parallel
Applications Computation Phases. In IPDPS ’09: Proceedings of the 23rd IEEE
International Parallel and Distributed Processing Symposium, Rome, Italy, May
2009

[17] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic Evaluation of the Compu-
tation Structure of Parallel Applications. In PDCAT ’09: Proceedings of the 10th
International Conference on Parallel and Distributed Computing, Applications and
Technologies, Hiroshima, Japan, December 2009

[18] J. Gonzalez, J. Gimenez, and J. Labarta. Performance Data Extrapolation in
Parallel Codes. In ICPADS ’10: Proceedings of the 16th International Conference
on Parallel and Distributed Systems, Shanghai, China, December 2010

[19] J. Gonzalez, J. Gimenez, M. Casas, M. Moreto, A. Ramirez, J. Labarta, and
M. Valero. SimulatingWhole Supercomputer Applications. IEEE Micro, 31:32–
45, 2011

[20] J. Gonzalez, K. Huck, J. Gimenez, and J. Labarta. Automatic ReVnement of
Parallel Applications Structure Detection. In LSPP ’12: Proceedings of the 2012
Workshop on Large-Scale Parallel Processing, Shanghai, China, May 2012

9

2. The Parallel Performance Analysis
Field

Parallel performance analysis is a process that starts by extracting the raw performance
data that will be later analysed to determine the potential problems of the application.

In this context, we want to distinguish three important aspects that compose the whole
process: when the analysis is done; the data used to characterize the performance; and
Vnally, the diUerent methods, techniques and applications to analyse this data to draw the
conclusions.

2.1. Analysis Placement

The analysis placement refers to when the analysis is going to take place. Here we distin-
guish between on-line analyses, where the measurements and hypothesis are done during the
application execution, and the post-mortem where the information is collected and stored to
be later analysed when application Vnishes. We do not want discuss the detailed implica-
tions of the analysis location in the performance analysis process because, in most cases, the
techniques or methods are applicable to both scenarios.

2.2. The Performance Data

To understand the behaviour of a parallel application on a given machine, we need to meas-
ure diUerent elements that reWect its performance. The most simple and recurrent element
measured is the application execution time. Undoubtedly, the execution time is a good in-
dicator of the application performance, and in most cases is the objective value to minimize.
In the performance analysis scenario, it is also common to use time, but a Vner grain,

for example measuring the time spent on each application subroutine. To perform these
measurements, we can make use of the timing mechanisms provided by the operating system
(OS), for example the programmable clock interrupts. In addition, this example points to a
second performance metric: the application code location. Location information is required
to relate the metrics to the application source code. This location can be a single position
where the measurement is taken, accessed via the Program Counter (PC) of the CPU, or the
call path, that includes the list of active subroutines in the application, accessed unwinding
the call stack, for example using libunwind [21].
Performance hardware counters (HWC) values are a unique metrics to understand the be-

haviour of the application in a given hardware. Hardware counters are available in almost

11

2. The Parallel Performance Analysis Field

all modern processors, and count micro-architectural events such as the total cycles elapsed
or the number of instructions executed. Hardware vendors provide the hardware and soft-
ware interface to access these counters, but the PAPI [22] library, a homogeneous application
programming interface to access the counters in most of the hardware, is the most common
way to read them. More recently, due to the need to better understand new hardware, we
can also Vnd performance hardware counters in other components beyond CPUs, such as
the InVniband network hardware [23] or the Nvidia CUDA GPUs [24]. In both cases, the
counters are also available via PAPI.
The metrics regarding the parallel programming model are varied, as well as the mechan-

isms to access them. For example, in the message-passing applications, the ones we analyse
in this thesis, it is normal to gather the number of messages sent or received, the size of these
messages, etc. In this case, if the application uses MPI, we have available the MPI proVling
interface (PMPI) [25] to intercept the MPI calls and extract these values. In some other cases,
access to the run-time of the programming models requires more sophisticated mechanisms,
as detailed in next section when talking about instrumentation.
Apart from this list, there are a variety of metrics to evaluate speciVc performance ele-

ments (I/O, power consumption, etc.). It is not the aim of this section to present every
performance metric available, but those commonly available in most performance toolkits.

2.2.1. Data Acquisition

We can distinguish two diUerent methods to obtain performance data: sampling the applic-
ation or instrumenting it.
Sampling consists of taking measures of the application status at regular intervals or when

a certain condition happens. In this way, the measurements are taken independently from the
application behaviour. Usually, for each sample, the information collected is the application
location plus a set of quantitative metrics, such as the performance counters. Using sampling,
the speciVc metrics of the programming model used are diXcult to access.
When using sampling, the precision of the samples is directly related to the intrusiveness

of the method: higher sample rates imply more precision but more overhead and perturba-
tion of the results.
Application instrumentation consists of adding additional instructions or probes to the

regular application code to capture those events and metrics that provide insight of the ap-
plication behaviour, essentially entry or exit to application subroutines or the programming
model run-time. As opposed to sampling, it is the application implementation that drives
the data acquisition. In this way, the location is implicit, but sometimes the full call path is
also recorded. As in sampling, other metrics such as the performance counters metrics are
recorded when an event is captured.
The mechanisms to instrument an application are many. Instrumentation can be done

manually by modifying the source code but also using more sophisticated methods: code
to code translation with instrumentation injection, such as the OPARI [26] translator for
OpenMP; rewriting application binaries as DynInst [27]; or dynamically modifying the ap-
plication at run-time, also oUered by DynInst and Intel’s PIN [28]. It is also possible to use

12

2.2. The Performance Data

the proVling interfaces of some libraries, such as PMPI, that provide access to those metrics
of the programming model not available when using sampling.

2.2.2. Emitted Data

Before starting the actual analyses, there is classical dichotomy describing how the inform-
ation is emitted and therefore stored: application proVles or event traces. The way the
information is stored partially determines the kind of analyses available.

Application ProVles

An application proVle is a summarization of a metric, or a set of metrics, that characterize
an application-level abstraction. A typical example of a Wat proVle is the number of calls and
the time spent in each application subroutine. In the process of summarization, the temporal
component information regarding when the data was collected is lost.

gprof [29] is the classic tool for proVling sequential codes. This tool relies on compiler
assisted instrumentation to deVne the bounds of the application subroutines and the POSIX
timers and signalling to take the samples. It generates partial call graph proVles, more de-
tailed proVles that express the caller-callee relationships across the application subroutines.
OpenSpeedshop [30] and the HPCTOOLKIT [31] extend gprof capabilities focusing on

parallel applications. Both are able to manage the information generated by all tasks/threads
involved in a parallel application, so as to present a single proVle. In addition, they provide
the ability to proVle not only application subroutines but also basic blocks of code, or even
single individual source code lines.

gprof, OpenSpeedshop and HPCTOOLKIT heavily rely on sampling mechanisms to per-
form the data acquisition. On the other hand, TAU [32] from the University of Oregon
provides a proVling toolkit based on instrumentation mechanisms to allow the user a Vne
control on what is going to by proVled, including MPI run-time accesses and performance
hardware counters. TAU also gathers phase proVles, partial proVles extracted at diUerent
states of the application execution. We can Vnd in [33] a study of these diUerent states or
phases, into the IPS-2 analysis toolkit. In the case of TAU, the states are deVned by the user
and can be understood as the logical steps in the application evolution, for example the dif-
ferent time-steps in a weather forecast simulation. The phase proVles provide an approach
to observe the time-varying behaviour of an application.
The Scalasca toolkit [34] also oUers the collection of regular proVles with metrics from

MPI, OpenMP and hardware counters using instrumentation. In this toolkit ecosystem we
also Vnd an interesting eUort gathering time-series call-path proVles [35], call-graph oriented
version of the previously mentioned phase proVles.

Event Traces

An event trace is the collection of all information gathered during the application execution,
consisting of a log or trace-Vle, of the actions that a parallel application performed. These
actions, emitted as time-stamped events, include the entry and exit to the subroutines or to

13

2. The Parallel Performance Analysis Field

the parallel libraries used, values of the hardware counters or the call-path that lead to the
point of interest. Tipically, the generation of event traces relies on instrumentation packages
to deVne the points of interest, but we can also Vnd sample traces. Event traces oUer a highly
detailed view of the performance, at the cost of high storage space requirements. They are
especially interesting to analyse the time-varying behaviour of the application, information
that is totally lost when using proVles.

In general, almost all parallel performance analysis toolkits oUer the extraction of event
traces as the base to the further analysis. For example the BSC Tools package, the toolkit
used in this thesis, is based on Paraver trace [36]. This trace is a structured text Vle whose
main characteristic is that it is semantic free: the events contained are essentially time-
stamped key/value pairs. A complementary (optional) Vle is the responsible for linking the
semantics to the tuples contained on the trace Vle. A detailed description of the Paraver trace
is available in Appendix A.

Recently, as a part of the Score-P initiative [37], the analysis toolkits Scalasca, Vampir
[38], Periscope and TAU decided to adopt the Open Trace Format version 2 (OTF2) [39],
the second generation of the Open Trace Format [40]. OTF2 is structured in a collection of
multiple binary Vles accessible via an API. The main concern in the design of this trace is
the scalability: the trace format deVnition includes a series of encoding techniques to reduce
its size [41], and the access API uses techniques to reduce the memory footprint.

As mentioned before, there are also some eUorts to produce sample traces. As opposed to
the regular traces whose events are associated to instrumentation points, sample traces con-
tain a series of time-stamped samples taken regularly during the execution. The information
in each sample mainly includes the call-path, to correlate to application source code, and
performance metrics, such as the hardware counters. We Vnd an early approach to the gen-
eration of sample traces inside the Sun Studio Performance Tools (now Oracle Studio) [42].
Recently, the HPCTOOLKIT and the BSC Tools also added sample traces on their toolkit
ecosystems, [3] and [6] respectively. It is interesting to highlight that the addition of samples
to the Paraver trace described in [6] did not imply any modiVcation of the trace format.

2.3. Analysing the Performance Data

In a post-mortem scenario, once the data has been collected, the analysis step consists of
exploring the information gathered, manually or assisted, to detect patterns or trends that
reWect anomalies or performance losses in the application behaviour and correlate them with
the possible causes.

At this point, we distinguish between two diUerent elements of the analysis itself. The
Vrst is how the information is presented to the analyst to make the analysis process under-
standable and manageable. The second is the collection of Performance Analytics techniques
available, i.e. the diUerent techniques developed to automate the processing of the raw data
so as to detect anomalies and correlations.

14

2.3. Analysing the Performance Data

2.3.1. Data Presentation

Data presentation is a key element of the analysis process. The way the information is
oUered to the analyst deVnes, to some extent, the possible observations and hypotheses they
could make about the performance achieved by the application. Undoubtedly, the way data
is emitted imposes a series of restrictions or opportunities on its presentation.
Again, due to the (potentially) huge volume of data generated, this step may include a

series of transformations or manipulations to present the information in a clear and concise
manner.

Presentation of ProVles

Application proVles are an explicit example of this data manipulation per se. The diUerent
measurements taken during the execution are accounted in Vrst order statistics such the
sum or the average at the selected application-level abstraction (subroutines, application
phases, etc.). Using proVles, the exploration for the unusual situations can be done easily.
For example sorting total time spent in the diUerent subroutines will point us where are the
hotspots. The weak point of proVles is that the aggregation hides the potential variability
across the instances accounted, but for a initial look of the performance, proVles are a good
choice.
In general, proVles are presented as human-readable plain text Vles. The text is indented to

categorize the elements accounted more easily and they are sorted with respect to one of the
metrics used to focus the analysis. In Figure 2.1 we can see a Wat proVle produced by gprof.
It contains the diUerent metrics calculated for each subroutine, right-most column, sorted by
the percentage of total application time spent each one represent, left-most column. The rest
of the metrics include the exclusive/inclusive times (time inside the subroutine excluding
or including the calls it makes) and number of calls. The call-graph proVle in Figure 2.2
contains similar metrics, but the right-most column presents the caller-callee relationship
using the indentation. These call-graph proVles generated by gprof can also be visualized in
a interactive GUI, using a tree representation, with the IBM’s XproVler [43].
In contrast to the simple plain-text document, we Vnd tools such as the hpcviewer [44], an

evolution of the HPCVIEW [45], which is the proVle visualization tool of the HPCTOOLKIT.
The hpcviewer is a GUI that oUers a clean presentation of the diUerent metrics gathered in
the HPCTOOLKIT proVles, with the ability to link the metrics with the source code, shown
in Figure 2.3, or present the metrics using charts for a better comprehension, shown in Figure
2.4.
ParaProf [46], the proVle analysis tool of the TAU package, oUers similar functionality to

the hpcviewer, in the areas of source code correlation and the generation of diUerent chart
types. In Figure 2.5, we can see an example of a bar-chart presentation of the most time
consuming application subroutines, including the MPI primitive calls. In addition, ParaProf
is also capable of comparing proVles obtained from diUerent executions of the same applic-
ation. For this purpose, TAU uses their PerfDMF [47], a framework to manage proVles from
diUerent executions using a database that eases the comparison of proVles. Figure 2.6 shows
a ParaProf window comparing the most time-consuming subroutines of three threads from

15

2. The Parallel Performance Analysis Field

Each sample counts as 0.01 seconds.
% cumulative self self total

time seconds seconds calls ms/call ms/call name
33.34 0.02 0.02 7208 0.00 0.00 open
16.67 0.03 0.01 244 0.04 0.12 offtime
16.67 0.04 0.01 8 1.25 1.25 memccpy
16.67 0.05 0.01 7 1.43 1.43 write
16.67 0.06 0.01 mcount
0.00 0.06 0.00 236 0.00 0.00 tzset
0.00 0.06 0.00 192 0.00 0.00 tolower
0.00 0.06 0.00 47 0.00 0.00 strlen
0.00 0.06 0.00 45 0.00 0.00 strchr
0.00 0.06 0.00 1 0.00 50.00 main
0.00 0.06 0.00 1 0.00 0.00 memcpy
0.00 0.06 0.00 1 0.00 10.11 print
0.00 0.06 0.00 1 0.00 0.00 profil
0.00 0.06 0.00 1 0.00 50.00 report

Figure 2.1.: Example of Wat proVle produced by gprof. Extracted from the gprof manual[1]

granularity: each sample hit covers 2 byte(s) for 20.00% of 0.05 seconds

index % time self children called name
<spontaneous>

[1] 100.0 0.00 0.05 start [1]
0.00 0.05 1/1 main [2]
0.00 0.00 1/2 on_exit [28]
0.00 0.00 1/1 exit [59]

0.00 0.05 1/1 start [1]

[2] 100.0 0.00 0.05 1 main [2]
0.00 0.05 1/1 report [3]

0.00 0.05 1/1 main [2]

[3] 100.0 0.00 0.05 1 report [3]
0.00 0.03 8/8 timelocal [6]
0.00 0.01 1/1 print [9]
0.00 0.01 9/9 fgets [12]
0.00 0.00 12/34 strncmp <cycle 1> [40]
0.00 0.00 8/8 lookup [20]
0.00 0.00 1/1 fopen [21]
0.00 0.00 8/8 chewtime [24]
0.00 0.00 8/16 skipspace [44]

[4] 59.8 0.01 0.02 8+472 <cycle 2 as a whole> [4]

0.01 0.02 244+260 offtime <cycle 2> [7]
0.00 0.00 236+1 tzset <cycle 2> [26]

Figure 2.2.: Example of call-graph proVle produced by gprof. Extracted from the gprof

manual[1]

16

2.3. Analysing the Performance Data

Figure 2.3.: Annotated HPCTOOLKIT’s hpcviewer main interface. Image obtained from
HPCTOOLKIT manual[2]

17

2. The Parallel Performance Analysis Field

Figure 2.4.: Example of scatter plot of Completed Instructions counter produced by
HPCTOOLKIT’s hpcviewer. Image obtained from HPCTOOLKIT manual[2]

18

2.3. Analysing the Performance Data

three diUerent executions of the same application with diUerent conVgurations.

Figure 2.5.: TAU’s ParaProf thread hotspots proVle window

Finally, Scalasca’s CUBE [48] visualizer has an original way to visualize and interact with
proVles. The main display of this GUI is divided in three parts (see Figure 2.7). The left
part shows the diUerent metrics gathered; the central part is the code location; and the right
part shows the system location, i.e. the accounting of each metric in the physical hardware.
Thanks to the colouring, the user can see quickly the severity of a given metric, viz. low,
regular or high values. In the example shown, the metric selected was the time spent in
’Point-to-Point’ message-passing primitives (left column), which has a relatively low severity
(yellow). This metric appears in several subroutines in the call-path tree (central column)
with medium severity, having the selected one, hsmoc, a medium high value in the visible
range. Finally, the value of “Point-to-Point” time spent in the hsmoc subroutine is distributed
uniformly in all the system (right column), with relatively high severity.

Event Traces Presentation

As opposed to proVles, event traces have greater potential to detect elements at Vner granu-
larity, as they keep track of all the actions performed by the analysed application, including
the spatial and temporal distribution of them. On the other hand, traces require more eUort
both in the manipulation and the exploration to detect the anomalies and correlate them to
the root causes.
To aid the analyst, there are available several interactive GUIs such as Vampir [38], Paraver

or the hpctraceviewer. In terms of exploration, all these tools provide a unique visualiza-
tion, impossible to obtain when using proVles: the time-line. A time-line is a representation

19

2. The Parallel Performance Analysis Field

Figure 2.6.: TAU’s ParaProf thread proVles comparison

20

2.3. Analysing the Performance Data

Figure 2.7.: Scalasca’s CUBE main interface

21

2. The Parallel Performance Analysis Field

where the information available in the trace is organized in a bi-dimensional plot, applica-
tions abstractions such as tasks or threads versus time, and coloured according to a metric.
Figure 2.8 contains an example of the Vampir master time-line, presenting an OTF trace.

In this case, the Y axis represents the processes of a message-passing application, and the
colouring indicates the subroutine executed. We can also observe black lines that represent
the point-to-point messages passed between the diUerent processes. In the top left part of the
window we can see a general view of the whole trace, being the main-time line just a zoom
of the central part.

Figure 2.8.: Master time-line of VAMPIR trace analyzer

Figure 2.9 contains the equivalent window of the hpctraceviewer. In this case, since
sample trace it presents does not have information regarding the point-to-point communica-
tions, the time-line does not include communication lines. On the other hand, in the bottom
part of the window it present the depth of the call-path obtained on each sample of the trace.
Finally, in Figure 2.10 we can see an example of Paraver time-line. In this example, the

metric selected was the Instructions per Cycle (IPC), derived from the Completed Instruc-
tions and Total Cycles hardware counters present on the trace. The colouring is a gradient
from light green (low IPC) to dark blue (high IPC). Paraver traces also contain point-to-point
messages information, and these are depicted as yellow lines in the time-line.
Even though the time-line representation is useful to explore the time distribution of a raw

(or derived) metrics at diUerent levels of granularity using zooming, there are limitations to
this representation: Vrst, current screen resolutions limit the amount of data that can be

22

2.3. Analysing the Performance Data

Figure 2.9.: hpctraceviewer interface. Picture obtained from [3]

Figure 2.10.: Paraver time-line window

23

2. The Parallel Performance Analysis Field

presented; second, there is a biological limit to distinguish diUerences the colour hue. These
limitations imply that the representation requires a big eUort in processing the input data to
render how each pixel of the bitmap is Vlled. For example, a single pixel of the screen may
represent more than one object or a wide range of time, so an algorithm is required to decide
how depict this the actual value. For example, non-linear renderings of the data ranges are
used to clarify the representation of the diUerent values presented.

(a) Communication statistics summary

(b) Subroutine proVling summary

Figure 2.11.: Vampir summary windows

To overcome these constraints, the trace analysers, mainly Vampir and Paraver, also in-
clude a set of features to manipulate the information available in the event trace. In the case

24

2.3. Analysing the Performance Data

of Vampir, it oUers a battery of predeVned summaries that include the generation of com-
munications proVles, Figure 2.11a, and also Wat-proVles, Figure 2.11b. Paraver also includes
a proVling view, but extends the regular summarization with the ability to freely combine
diUerent metrics available, to detect the possible correlations across them. For example, in
Figure 2.12a, there is a window of a proVle showing the average IPC obtained by each ap-
plication subroutine (columns) for each application thread (rows). In Figure 2.12b, we can
see a complex histogram where the X axis represents ranges of values of the IPC, the Y axis
represents the diUerent threads of the application and the colouring expresses the number of
L2 data cache misses (using the green-to-blue gradient). Even these two tools diUer in the
features to combine performance metrics, both are able to compute a wide range of statistics,
similar to proVles: sums, averages, standard deviations, etc.

(a) ProVle Metrics window (showing average
IPC per subroutine per application thread)

(b) Metrics Combination Histogram (showing Main Memory Ac-
cesses per IPC range per application task)

Figure 2.12.: Paraver statistics windows

25

2. The Parallel Performance Analysis Field

2.3.2. Performance Analytics

As a summary of previous section we can conclude that application proVles provide a coarse-
grain knowledge of the application but do not require a big expertise when looking for pos-
sible hotspots. So, when going into detail, event traces are necessary, at the cost of requiring
big expertise to manipulate the available information in order to detect the performance
problems and correlate them to their causes. The goal of the Performance Analytics is to join
the best of both worlds. In other words, to be able to get the deep insight provided by event
traces without requiring the expertise to manipulate the huge amount information.
The Performance Analytics group the techniques that translate the expert knowledge into

algorithms or methodologies able to automatically extract the most valuable information
about applications performance. In general, these techniques rely on the search patterns or
trends that characterize the performance losses. The search can be done at diUerent granu-
larities and at diUerent levels of abstraction obtaining diUerent analysis results.

Expert Systems

A methodology widely exploited is the use of a rule-based inference system to detect well-
known problems of parallel applications, [49]. An example of rule can be: “IF the time
spent by a task waiting to send a message send is bigger than x because the partner task
have not executed the receive operation THEN late receiver problem detected”. Usually, the
rules include a severity value, indicating the importance of the detected problem into the
performance of the whole application.
As a part of the Scalasca toolkit, EXPERT [50, 4, 51] is a sequential post-mortem rule-based

system to identify the wait states in message-passing applications, using the categorization
depicted in Figure 2.13. In this work, the set of rules of known wait states, i.e. when the
application is wasting time without advancing in the resolution of the problem, is deVned
using the EARL script language and are applied to the performance metrics stored in OTF
traces. As a result, EXPERT generates proVles that can be visualised in CUBE. In the proVles,
EXPERT accounts the occurrences of each problem in the knowledge base on each of the
subroutines. Further research on EXPERT system include a parallel implementation [52]
and an extension of the rule base in [53] to track the root cause of the wait states detected,
i.e. those regions or points in the application that later provoke wait states when application
communicates.
KappaPI [54] and KappaPI 2 [55], are two versions of the same rule-based tool with the

diUerence that KappaPI includes the set of rules hard-coded, while KappaPI 2 brings the user
the possibility of writing his own rules, using the APART SpeciVcation Language (ASL) [56].
This language has been adopted in some of the rule-based due to to its power to easily ex-
press the performance problems. An interesting feature of both tools is the recommendation
system, that shows possible solutions to the detected problems.
The SCALEA toolkit [57] also provides similar features than Scalasca toolkit, with the

support of a multi-experiment environment based in a database storage as PerfDB. Ak-
sum [58, 59] makes use of the data extraction mechanisms provided by SCALEA to imple-
ment its own rule-based system. In this case, the rule set used has to be speciVed in JavaPSL,

26

2.3. Analysing the Performance Data

Total

Execution

MPI

Communication

Collective

Early Reduce

Late Broadcast

Wait at N x N

Point to Point

Late Receiver

Messages in Wrong Order

Late Sender

Messages in Wrong Order
IO

Synchronization

Wait at Barrier

OpenMP

Flush

Fork

Synchronization

Barrier

Explicit

Implicit

Wait at Barrier

Wait at Barrier

Idle Threads

Lock Competition

API

Critical

Figure 2.13.: Categorization of wait states deVned by the EXPERT system. Figure adapted
from [4], p.427.

27

2. The Parallel Performance Analysis Field

a Java version of the previously mentioned ASL.
While all works mentioned above do post-mortem analysis there are also two major works

of rule-based on-line analysis. The Vrst one is the Performance Consultant Module, part of
the Paradyn [60, 61]. Periscope [62, 63] is essentially a Paradyn clone, with the possibility of
deVne custom rules using ASL.

Pattern Recognition

Other interesting methods to add intelligence to the analysis rely on the fact that parallel
applications usually have a repetitive structure to detect patterns on application phases. For
example, Casas et. al. [64] apply signal processing techniques to Paraver traces to detect
coarse-grain iterations of the application algorithms. The resulting tool produces a summary
of the application deVned by the patterns found and also generates partial traces containing
only the repetitive patterns, orders of magnitude smaller than the original, that can be used
for later analysis at detail.
Freitag et. al. [65] present the Dynamic Periodicity Detector (DPD) an on-line analyser

of OpenMP parallel function patterns used in the BSC Tools performance data extraction
library, Extrae. It uses the stream of OpenMP parallel function identiVers to detect repetitive
sequences on the subroutine calls, to generates smaller Paraver traces where the repetitive
sequences had been compressed.
A third work project in pattern recognition can be found in [66]. In this case, the recog-

nition is done at visualization time in a Vampir module. This approach tries to solve the
problem of visualizing large amounts of data, showing the repetitive patterns on the trace as
“boxes” on a time-line view. The pattern detection is based on Compressed Complete Call
Graphs (cCCG) [67], an optimization of application call tree representation to save space.

Cluster Analysis

In this dissertation we make use of cluster analysis techniques. These techniques, whose tar-
get is to classify elements into groups, has also been exploited previously in the performance
analysis area, but with diUerent objectives.
Nickolayev et al. [10], based on [68], propose the application of K-means clustering al-

gorithm in an on-line analysis to determine the similarities among processors involved in
a parallel application execution. The authors use coarse-grain granularity metrics such as
processor idle or running times to describe the behaviour of each individual processor. The
work was developed as part of the Pablo Performance Environment, with the target of redu-
cing the event traces generated. Instead of Wushing the performance data of all processors,
the output trace just includes the metrics of a representative processor per cluster detected,
reducing the output data up to 4.5 times.
In [11], Ahn and Vetter develop a deep statistical analysis of event traces containing pro-

cessor performance hardware counters that characterize application subroutines. In this
work, hierarchical clustering and K-means clustering are used to determine the similarity
across the processes, MPI tasks and OpenMP threads, at the level of subroutines. The au-
thors demonstrate the utility of clustering to automatically distinguish master-slave patterns

28

2.3. Analysing the Performance Data

of the processes and also application algorithm structural patterns such as the organization
of the processes depending the problem decomposition. In addition, the authors use other
multivariate statistical methods, Principal Components Analysis (PCA) [69] and Factor Ana-
lysis [70], to highlight the high correlations between some of the performance counters.
These two techniques are useful to select those metrics that provide more information, redu-
cing the dimensionality of the collected data.
The framework PerfExplorer [12], developed as a part of the TAU toolkit, oUers similar

features to [11] with major emphasis on describing the detected clusters. In PerfExplorer,
K-means and hierarchical clustering, PCA and Factor Analysis are applied to proVling in-
formation stored in a PerfDMF database, that include a wide variety of metrics, from high
level idle or running times to low level processor hardware counters. As in [11], the cluster-
ing algorithms are used to Vnd the parallel processes, both MPI tasks and OpenMP threads,
that behave similarly. The major contribution of this work is the correlation of the groups
found with the proVling information available, that provides the analyst a clear understand-
ing of the behaviour of the clusters. In addition, PerfExplorer implements a rich GUI to
navigate through this information.
In [71], we Vnd a totally diUerent use of cluster. The goal of the work is also to reduce the

information, in this case the instructions needed to an accurate micro-architectural simula-
tion, but the characterization tries to Vnd similar application phases. The execution phases
are regions of 100 million instructions and the metrics use to characterize them are basic
block vectors, unidimensional vectors that account how many times each of basic blocks of
the application has been executed in the given region. The authors demonstrate both that
K-means is able to correctly distinguish the application phases and that simulating a set of
representatives, not just the centroid, provides high quality simulations.

29

3. Introduction to Cluster Analysis and
Multiple Sequence Alignment

In this chapter we present a brief introduction to cluster analysis and multiple sequence
alignment, required to fully understand the technical contributions of this thesis.

3.1. Cluster Analysis

Cluster analysis consists of assigning a set of objects into groups, the clusters. The objects
assigned to a same cluster are similar in terms of a distance or dissimilarity metric. In this
thesis, these objects are d-dimensional points where each dimension is a performance metric.
The distance measure used is the Euclidean Distance.
This clustering task can be implemented in diUerent ways obtaining a wide set of distinct

clustering algorithms. Surveys by P. Berkhin [72] and by Xu and Wunsch [73] review a
high number of these algorithm, but in this section we focus on algorithm families most
commonly used.

3.1.1. Centroid-based clustering

In the centroid-based clustering algorithms family, the resulting clusters are represented by
a central vector, that can be part of the data set (a medoid) or not (a centroid). The rest of the
objects in the data set are assigned to the nearest cluster centre.
K-means [74] algorithm is the classic example of centroid-based clustering algorithm.

Consists on dividing the whole set of data points in k clusters Cj . Each cluster is represented
by the mean value (or weighted average) cj , the centroid. The sum of discrepancies between
a point and its centroid is used as objective function in iterative optimization schema. The
usual distance to minimize is the Euclidean distance.
The algorithm requires the user to supply the desired number of clusters k, and the the

optimization schema is composed by three simple steps, as can be seen in Figure 3.1:

1. Compute the centroids. In the Vrst iteration, they can be computed randomly or by
several other methods. In further iterations, the centroids are the mean value of the
points assigned to each cluster.

2. Compute the distances of each point to all the centroids.

3. Group the points to the closest centroid, to minimize the discrepancies.

31

3. Introduction to Cluster Analysis and Multiple Sequence Alignment

Start

Number of
clusters k

Compute
centroids

Compute
distance points to

centroids

Group based
on minimum

distance

Any point
move group? End

YES

NO

Figure 3.1.: K-means algorithm workWow

When each iteration Vnished, the algorithm checks if there has been any change in the
points assigned to each cluster. If the clusters have not changed, the algorithm Vnishes.

Figure 3.2 illustrates this process. The Vrst plot 3.2b is the election of initial centroids,
the round shaped points. Plots 3.2b and 3.2c are the iterative nucleus of the algorithm,
where points are assigned to their nearest centroid and then the centroids are updated. The
algorithm converged when objects assigned to each cluster do not change in two consecutive
iterations, plot 3.2d.

The selection of k is one of the major drawbacks of K-means/medoids algorithms as is
not always possible to guess how many diUerent clusters are present in the data set. The
algorithmX-means [75] tackles this problem by applying the Bayesian Information Criteria
(BIC) that evaluates the quality of clusters in terms of how well they represent Gaussian
distributions. Basically, X-means iteratively executes K-means increasing the value of k,
verifying on each iteration if the resulting clusters increase the BIC score.

The equivalent algorithm but using actual elements in the dataset, the medoids, is called
K-medoids being Partition Around Medoids (PAM) [76] the reference implementation.

By far, centroid-based algorithms are the most widely used clustering algorithms. The
major advantage of these algorithms is the easy implementation and also its fast execution.
Unfortunately, these algorithms lack some important aspects: they are not robust against
outliers and they the assume an hyper-spherical structure of the data distribution.

32

3.1. Cluster Analysis

(a) Step 1: generation of initial
centroids

(b) Step 2: assign points to closest
centroid

(c) Step 3: recompute the centroids (d) End: Convergence state

Figure 3.2.: Graphical example of K-means algorithm using k = 3. After generating the
initial centroids in Step 1, points of the data set are assigned to the closest one on
Step 2 and centroids are recomputed on Step 3. Step 2 and 3 are executed until
the algorithm converges.

33

3. Introduction to Cluster Analysis and Multiple Sequence Alignment

3.1.2. Connectivity based clustering

The target of connectivity based clustering [77], also called hierarchical clustering, is the
construction of a hierarchy of individuals in a data set. This hierarchy is represented as a
dendrogram, a tree where the leaves are the individuals and the root represents the whole
data set. Intermediate nodes represent groups of two or more individuals whose height
with respect to the leaves expresses the value of a linkage metric required to conform such
a group. This linkage metric is based on a dissimilarity function and can be computed in
diUerent ways: single linkage uses the minimum value of the dissimilarity metric between
two points/groups; or average linkage, the average of the distance; full linkage uses the
maximum value of the dissimilarity metric.
Figure 3.3 contains an example of a small data set, plot 3.3a, and the resulting dendrogram

obtained with a single linkage of the Euclidean distance, plot 3.3b. Points B and C, and D and
E, have the same distance, so they merge at same height in the dendrogram. Next, the group
of D and E merges with F at slightly higher height. The rest of the dendrogram express a
merge of the group formed by B and C and the group formed D, E, F. Finally the whole data
set is merged at top level.
The strategy to build the dendrogram results in two types of hierarchical clustering: ag-

gregative, a bottom-up approach, merging the individuals/groups from leafs to root; or di-
visive, a top-down approach, separating the individuals/groups from the root to the leafs.
To obtain a data partition in a hierarchical clustering, it is required to perform a horizontal

cut at some height in dendrogram. In Figure 3.3 there is an example of two diUerent parti-
tions: plot 3.3c shows a partition obtained by cutting the dendrogram at the height marked
in 3.3d; analogously, plot 3.3e correspond to the clusters obtained by cutting at the heights
marked 3.3f. We can see that a cut close to the leaves produce a big number of clusters more
compact. On the other hand, a cut close to the root of the dendrogram produce less clusters
with more variability.
As opposite to centroid-based clustering, where the algorithms generate Gaussian clusters

around a centroid/medoid, connectivity based clustering does not assume the underlying
model of the data. In other words, the construction hierarchy of the individuals according
to the dissimilarity metric is orthogonal to how the individuals are distributed. On the other
hand, deciding which level of the dendrogram is expressing the most valuable division of the
data to perform the cut is a hard task. This problem worsens when dealing with large data
sets due to diXculty to depict and analyse the dendrogram.

3.1.3. Density-based clustering

Density-based clustering algorithms are partition algorithms, as K-means, but they share
some features with connectivity based clustering. The aim of density-based clustering is
group points which are linked by a particular connectivity property and their density is big
enough to be considered as a real cluster. These algorithms are widely used in the image
recognition area.
DBSCAN [78] is a classic example of density-based algorithm. The inputs of DBSCAN are

two parameters, the radius Epsilon (Eps) and minimum number of points (MinPoints). This

34

3.1. Cluster Analysis

B

A

C

D

E
F

(a) Input data

A B C D E F

(b) Resulting dendrogram

B

A

C

D

E
F

(c) Resulting Clusters

A B C D E F

(d) Dendrogram Cut

B

A

C

D

E
F

(e) Resulting Clusters

A B C D E F

(f) Deprogram Cut

Figure 3.3.: Graphical example dendrogram construction used in hierarchical clustering and
the possible partitions obtained from cuts a diUerent heights

35

3. Introduction to Cluster Analysis and Multiple Sequence Alignment

Figure 3.4.: Graphical example of a resulting cluster using DBSCAN density-based clustering.
Yellow points are border points, red points are core points. Blue point is a noise
point

algorithm is based in two basic deVnitions:

1. A point p is directly density-reachable from a point q if their distance is less or equal
to Eps, and the Eps-neighbourhood of q (neighbours in a distance less or equal than
Eps) is greater or equal toMinPoints. This relation is not symmetric.

2. Two points p and q are density reachable if there is a sequence p1, ..., pn, where p = p1
and q = pn where each pi+1 is directly density-reachable from pi.

3. Two points p and q are density connected if there is a point o such that both p and q
are density reachable from o.

The resulting clusters obtained are those subsets Ci of the data where all points are mu-
tually density connected. The points that do not fall in a cluster are considered noise. Note
that the deVnitions lead to two types of points inside a cluster: core points, inner points in a
cluster that serve to fulVl the density connectivity across all points in the cluster, and border
points, in the edges of the cluster, from where there are no directly density-reachable points
available. These deVnitions are clariVed with Figure 3.4: red points are the core points of
the cluster formed by red and yellow points; yellow points are border points; arrows repres-
ent the direct density reachability relation and coloured circumferences are the range of the
Eps-neighbourhood; blue point is a noise point that do not belong to the cluster.
As hierarchical clustering, density-based clustering algorithms do not do any considera-

tions about the data structure or model. In addition, there are robust against outliers and
noise. An important disadvantage is the lack of interpretability of the resulting clusters.

36

3.2. Sequence Analysis

3.2. Sequence Analysis

Sequence analysis is a set of processes and methodologies used in bioinformatics to under-
stand features, structure or evolutionary elements. of DNA, RNA or protein chains. One of
the most exploited and well-known techniques is the sequence alignment. The aim of the se-
quence analysis is to arrange two or more sequences in order to identify regions of similarity
across them. Furthermore, (multiple) sequence alignments are also used for non-biological
sequences, such as for those present in natural language or in Vnancial data.
To exploit the multiple sequence alignment (MSA) in the parallel performance analysis

scenario, we represent each task/thread involved in a parallel application as the sequence
of diUerent phases executed to solve a given problem. This parallelism has never been used
before in the parallel performance analysis literature. We demonstrate in chapter 5 its utility
in this scenario to determine the similarity of the work done across the diUerent parallel
processes or threads.
Here we brieWy introduce three families in of MSA. To those interested readers, see the

complete and up to date survey by Cedric Notredame [79].

3.2.1. Dynamic programming

The dynamic programming methods are based on the classical Needleman-Wunsch [80]
and Smith-Waterman [81] algorithms, originally designed to perform a pairwise alignment.
Needleman-Wunsch algorithm is used to detect global alignments, when initial sequences are
quite similar and have similar length. On the other hand, Smith-Waterman is used to detect
local alignments, when it is known that the two sequences have certain regions in common.
Both algorithms use dynamic programming [82] methodology to break the main alignment
problem into simpler sub-problems, obtaining optimal solutions. The algorithmic scheme in
these algorithms consists on building a m-by-n matrix A, where m and n are the lengths
of each input sequence, and each position ai,j is computed according a match/mismatch
score depending on the i and j elements of each sequence and also previous positions. Once
the matrix is constructed, a trace-back will deVne the resulting alignment. The way to Vll
and trace-back the matrix what distinguish them. Figure 3.5 illustrates an example of the
Needleman-Wunsch algorithm: using DNA sequences in 3.5a and the scoring deVned in 3.5b,
the algorithm produces the alignment 3.5c; in any case, the most interesting part of the pro-
cess is the matrix Vll 3.5d and the matrix trace-back 3.5e. The trace-back simply ’follows the
sequence’ of the matrix Vlling to obtain the alignment that produce the best score.
The translation of this basic algorithms to apply to multiple sequences consists of building

an n-dimensional matrix, with n being the number of sequences. This generalization of
the dynamic programming has been demonstrated to be an NP-complete problem, so these
algorithms become impractical due to their computational cost.

3.2.2. Progressive methods

The alternative to avoid the limitations of dynamic programming is using heuristics that
produce sub-optimal alignments, both global or local.

37

3. Introduction to Cluster Analysis and Multiple Sequence Alignment

S1 = G A T T A C A
S2 = A T T A C

(a) Input Sequences

gap_penalty = -6

score(a,b) =
1 if a=b
0 if a≠b

(b) Scoring

S1 = G A T T A C A
S2 = - A T T A C -

(c) Aligned Sequences

- A T T A C

- 0 -6 -12 -18 -24 -30

G -6 0 -6 -12 -18 -24

A -12 -5 0

T -18

T -24

A -30

C -36

A -42

A(i,j) = max
A(i-1,j) + gap_penalty
A(i, j-1) + gap_penalty
A(i-1,j-1) + score(S1i, S2j)

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 1 0

0 0 1 1 0 0

0 0 1 1 0 0

0 1 0 0 1 0

0 0 0 0 0 1

0 1 0 0 1 0

(d) Matrix Vll

- A T T A C

- 0 -6 -12 -18 -24 -30

G -6 0 -6 -12 -18 -24

A -12 -5 0 -6 -11 -17

T -18 -11 -4 1 -5 -11

T -24 -17 -10 -3 1 -5

A -30 -23 -16 -9 -2 1

C -36 -29 -22 -15 -8 -1

A -42 -35 -28 -21 -14 -7

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 1 0

0 0 1 1 0 0

0 0 1 1 0 0

0 1 0 0 1 0

0 0 0 0 0 1

0 1 0 0 1 0

Vertical movement = gap on Sequence2
Horizontal movement = gap on Sequence1
Diagonal movement = element on both sequences

(e) Matrix traceback

Figure 3.5.: Matrix construction and trace-back in the Needleman-Wunsch pairwise align-
ment algorithm

38

3.2. Sequence Analysis

The progressive heuristic technique consists of computing the alignment of two of the N
sequences, set this alignment as a Vxed entity and then combine it with one of the N − 2
remaining sequences, repeating the process until all the sequences are gathered into a single
alignment.
In general, the solutions that implement the progressive method diUer in the way to se-

lect the sequences, but is commonly accepted the principle of “the closer the earlier”. To
implement this principle, most of the algorithms build a guide tree based on the distances
calculated from pairwise alignments.
The most referenced progressive MSA is CLUSTAL [5] and its diUerent variants [83, 84, 85,

86], that include both global and local alignments. Figure 3.6 depicts the Wux diagram of the
original CLUSTAL algorithm that represents the general scheme of a progressive method.
In this case, the progressive selection of sequences is based on a hierarchical cluster ana-
lysis, using an Unweighted Pair Group Method with Arithmetic Mean (UPGMA) tree as a
dendrogram, where distance between pairs of clustersA andB is the average of all distances
between pairs of sequences x ∈ A and y ∈ B.
T-CoUee [87] is a plus novel approach, also a widely used in the bioinformatics com-

munity. Basically, it extends the generic CLUSTAL scheme depicted in Figure 3.6, adding
an initial step where diUerent MSA algorithms (including CLUSTAL) are used to generate
an initial alignment structure, the primary library. The sequences and scores in the primary
library are weighted and processed to generate an secondary structure, the extended library,
the serves as the basis to build the guide tree and Vnally perform the progressive analysis.
The combination of external algorithms leads T-CoUee to obtain excellent results, at the cost
of being one of the most expensive MSAs.
In this category we also have to mention, Kalign [88], and its diUerent variants [89, 90],

that thanks to the use of a diUerent methods to compute the scoring for the sequences pairs,
it has become the fastest MSA algorithm.

3.2.3. Iterative methods

This set of methods is similar to progressive methods. In general, the progressive approach is
also applied, but while progressive methods do not recompute the initial pairwise alignments
nor the guide tree, iterative methods revisit some of the stages to reconstruct or adapt previ-
ous decisions. For example, the MUSCLE algorithm [91, 92] three Vxed reVnement steps. In
the Vrst two steps it varies the score distance to evaluate a pairwise alignments, using less
accurate but fast distance measures. Next it generates a progressive alignment and Vnally in
a (iterative) third step it a Vnal alignment based on combinations of sub-tree prunes. Even
using a more complex scheme than a progressive method, MUSCLE obtains similar results
than CLUSTAL being faster and less memory consuming, but in any case, not being able to
beat Kalign.

39

3. Introduction to Cluster Analysis and Multiple Sequence Alignment

Stage 3

Stage 2

Stage 1

Calculate all pairwise
similarity scores

UPGMA cluster
analysis

Take 2 most similar (remaing)
sequences or clusters

2-way
alignment

Output a consensus and the
sequences with gaps inserted

More
Sequences?

YES NO

Input
Sequences

Final
alignment

Figure 3.6.: Flux diagram of CLUSTAL multiple sequence alignment algorithm. It represents
the foundations of a progressive multiple sequence alignment algorithm scheme.
Figure adapted from [5], p.238.

40

Part II.

New Performance Analytics Techniques

41

4. Computation Structure Detection
using Cluster Analysis

The Vrst of the contributions contained in this thesis is a technique to determine the com-
putation structure of parallel applications applying cluster analysis.

In this chapter we detail all the elements necessary to correctly characterize the com-
putation regions of a parallel applications. We also justify the suitability of the DBSCAN
clustering algorithm among others for this purpose.

4.1. Computation bursts and cluster analysis

In order to characterize parallel applications structure, the computation bursts are the min-
imum analysis abstraction used in our analyses. We deVne a computation burst, also named
CPU burst or simply burst, as the sequential region of the application between communic-
ations primitives or calls to a given parallel runtime. This deVnition is based on the dicho-
tomy that a parallel application can only be performing a parallel primitive or processing
data, i.e. computing. Figure 4.1 depicts a simple time-line of two processes of a message-
passing application, that perform some computation and the interchange information, the
communication phases.
Cluster analysis is used to group the diUerent behavioural trends CPU bursts exhibit along

the application execution. To do that we associate to each burst a feature vector of diUerent
performance data. In all the studies presented in this thesis, the processor performance
hardware counters represent the most interesting piece of information when analysing the
CPU bursts behaviour as they provide an unique insight of the CPU performance at very
Vne grain.
It is interesting to emphasize that while we use the cluster analysis to identify the dif-

ferent trends of the computation bursts, following the idea presented by Sherwood et. al.
in [71], previous works that used cluster analysis in the parallel performance analysis scen-
ario followed a diUerent approach. All of them [10, 11, 12], focused on identifying those
processes/tasks/threads that behave similarly.

4.2. Data Preparation

Before executing the clustering algorithm, the input data set is manipulated in diUerent ways
to reduce the volume processed by the cluster analysis and also increase the quality of the
results.

43

4. Computation Structure Detection using Cluster Analysis

Computation

Communication

Message

Data adcquisition

Figure 4.1.: Computation regions and communication regions in a message-passing parallel
application

First, we apply two pre-processing techniques to the data. Then we carefully select the
dimensions which will be used by the clustering algorithm to group the points.

4.2.1. Pre-processing

The Vrst pre-process of the data we apply is a Vlter. The Vltering stage simply consists of
discarding those bursts whose duration is negligible in the application execution. In this
way, a vast amount of irrelevant data is directly discarded when applying the clustering
algorithm. As can be seen in Table 4.1, the Vltering process is been able to discard up to 80%
of processed bursts maintaining the 99% of application time. Additionally, to Vne tune the
Vltering, we can deVne range Vlters to the metrics used by the cluster algorithm.
In second place, a normalization is applied to ensure that when using counters with diUer-

ent data ranges, none of them bias the clustering results. In fact, two diUerent normalizations
methods are used. First, logarithmic normalization is used when the dynamic range of the
performance metric is large. Reducing the dynamic range guarantees that the results of clus-
tering are not displaced to the higher values of a counter. Additionally, range normalization,
simply scaling the data to [0, 1] range (∀ai ∈ A, ai ← (ai−min(A))/(max(A)−min(A))),
ensures that all factors have a similar weight in the multi-dimensional clustering.

4.2.2. Dimensionality Reduction

A common problem when using clustering algorithms is related to the dimensionality of the
data. With the performance counters data we have up to 8 diUerent counters for each CPU
burst. Our proposal to address this problem is to reduce the dimensionality by selecting
counters or derived metrics with “physical” meaning to the analyst, as those proposed by
Joshi et. al. in [93]. In the studies developed, we found the following groups of counters
represent a useful way to determine the application structure:

• Completed Instructions combined with Instructions per Cycle (IPC). This combination
focuses the clustering on the “performance view” of the application.

44

4.3. Clustering algorithm selection

• Completed Instructions, Level 1 (L1) and Level 2 (L2) cache misses. This combination
reWects the impact of the architecture on the application structure, via the cache misses
counters.

These two combinations of counters result in two characterizations of the computation
bursts where we take into account the computational complexity and the performance ob-
served. In both cases, Completed Instructions is used to represent the computational com-
plexity, while the performance observed by these regions is represented by the IPC, in Vrst
combination, or the memory accesses behaviour (in terms of cache misses) in the second
combination.
In previous works such as the one by Ahn et. al. in [11] or the presented by Huck et.

al. in [12], Principal Components Analysis (PCA) is used to reduce the dimensionality of
the data by creating a new space with a lower number of dimensions, that are the principal
components of the original data. Each point is projected to this new space, and the clustering
algorithm is applied to the transformed set of points. This technique succeeds in reducing
the dimensionality, as an aid to the clustering algorithm. In our experiments, we tested this
technique obtaining similar results to our manual selection of attributes. To the contrary,
the resulting dimensions have no direct interpretation (they are combinations of the original
ones). As we consider the scatter plot with the cluster information is essential to validate the
results (as is explained in 4.6), we conclude that using PCA is not strictly necessary in this
scenario because it adds no signiVcant beneVts to the process.

4.3. Clustering algorithm selection

The initial cluster algorithm used was a K-means-like algorithm. As we explained in chapter 3,
K-means-like algorithms always suppose a Gaussian model of the data. However, the per-
formance hardware counters data is not distributed following this Gaussian model so the
results obtained were not satisfactory. Finally, we selected DBSCAN as representative of
density-based clustering as the due to its no assumption of underlying model. Even hier-
archical clustering also shares this property with density-based clustering, we discarded it
due to the diXculty to manipulate dendrograms with high number of points.
To demonstrate the aforementioned inability of K-means-like algorithms to correctly de-

tect clusters which are non Gaussian, in Figure 4.2 we show the result of applying X-means
and DBSCAN to the same application data, a section of CPMD [94], a molecular-dynamics ap-
plication that uses the Car-Parrinello method, executed with 128 tasks, and using L1 vs. L2
cache misses parameters. The scatter plots show some clouds of points that have a spherical
shape, but others can be elliptical with diUerent principal component directions. In this case,
X-means tends to partition the ellipses. The red box (on the central area) marks a region with
a strong vertical component where X-means, 4.2a, detected two clusters, but DBSCAN, 4.2b,
detected only one cluster. The blue box (on the lower-right area) shows another equivalent
region where X-means also detected two clusters and DBSCAN only one, in this case having
a strong horizontal component. In terms of the structure detection, the homogeneous shape
detection done by DBSCAN is better than the X-means cluster assignment.

45

4. Computation Structure Detection using Cluster Analysis

(a) X-Means Resulting Clusters (b) DBSCAN Resulting Clusters

Figure 4.2.: X-means and DBSCAN algorithms comparison. Boxes highlight clouds of points
with strong components, vertical and horizontal, where X-means has divided the
isolated group.

To demonstrate this aXrmation we have to take into account that almost all message-
passing parallel applications follow a Single Program, Multiple Data (SPMD) model. In this
model, the tasks involved to solve a problem execute the same program using diUerent parts
of the total data to process. According to this model, the structure we want to observe in
a time-line visualization corresponds to succession of phases, longer or shorter, where the
bursts of all tasks are assigned to the same cluster, i.e. the diUerent phases of the same
program.
Figure 4.3 contains the clusters time-line obtained by each algorithm. In this Figure, the X

axis of the time-lines is the time axis, the Y axis represents the tasks involved in the parallel
application execution, and the colour indicates the cluster identiVer assigned to each CPU
burst. Both time-lines of the Vgure contain three iterations of the application.
In the time-line obtained using X-Means clusters, Figure 4.3a, we can see a pattern that

repeats three times, the three iterations share the same structure. On each iteration we see
an initial SPMD phase dark green clearly detected while the second part of each iteration
does not present the regular SPMD structure we expected. On the other hand, the time-
line containing the clusters detected by DBSCAN, Figure 4.3b, does not show this irregular
pattern, and each iteration is detected cleanly as a repetition of two big clusters, light green
and yellow.

4.4. DBSCAN parameters

DBSCAN algorithm is very sensitive to its parameters, specially to Eps, the radius of the
search. Figure 4.4 and Figure 4.5 illustrate how changing the Eps parameter aUects to the
granularity of structure detected. In this case, the Vgures show two diUerent analysis using

46

4.4. DBSCAN parameters

(a) X-Means clusters time-line distribution

(b) DBSCAN clusters time-line distribution

Figure 4.3.: X-means and DBSCAN algorithms comparison. Clusters time-line distribution

the same input data, obtained from the NPB BT class A benchmark, class A, a block tri-
diagonal solver included in the well-known NAS Parallel Benchmarks [95], executed using
64 MPI tasks.
Figure 4.4 presents a cluster analysis using a restrictive (small) value of Eps (0.0014) and

MinPoints of 10. An small Eps value means that the radius of search of the algorithm is
shorter, and indeed restrictive, so the results will a big number of clusters, more compact
and dense, and more noise points, as can be seen in 4.4a. In terms of the structure detected,
the computation regions each cluster represents will be highly detailed, showing internal
behaviours that not always reWect clear stages in the application execution. As an example,
in the time-line 4.4b we can observe how the application structure is detected in Vne detail:
in this case a staggered computation pattern (similar to a pipeline) between diUerent tasks.
On the other hand, the cluster analysis of Figure 4.5 presents a diUerent approach. Using

a higher Eps value, 0.0400, and the same value for MinPoints we obtain a small number
of clusters, that aggregate more number of points each, 4.5a. In this case, the time-line
4.5b shows the detected application structure at a coarser granularity, and the typical SPMD
structure appears.

Parameter selection

The technique we apply for the parameter selection is also described by Ester et. al. in [78],
the same paper where DBSCAN is introduced. It consists of generating a histogram with the
sorted k-neighbour distance, being k the desired value ofMinPoints. Then this distance is

47

4. Computation Structure Detection using Cluster Analysis

(a) Discovered clusters using a restrictive Eps

(b) Distribution of clusters in the time-line

Figure 4.4.: Cluster analysis of NPB BT class A Benchmark using clustering algorithm over
Completed Instructions and IPC. Due to the use of a restrictive Eps value the
structure is detected at Vne grain

48

4.4. DBSCAN parameters

(a) Discovered clusters using a less restrictive Eps

(b) Distribution of clusters in the time-line

Figure 4.5.: A second cluster analysis of NPB BT class A Benchmark using the cluster al-
gorithm over Completed Instructions and IPC. Using higher value of Eps pro-
duces a coarser grain detection, showing a SPMD structure

49

4. Computation Structure Detection using Cluster Analysis

sorted (descending) and plotted. The histogram will show a descending curve. In [78], the
authors suggest that the optimum value of Eps is the distance where the curve makes its
Vrst inWexion (or “valley”). The points located on the left of this “valley” will be noise in the
resulting partition and the rest will be present on one cluster. In [78], the authors ensure that
choosing 4 as the default value of MinPoints produces the best results in 2-dimensional
clusterings. In our experiments higher values, usually 10, obtained a better characterization
of applications structure.

Duration Discarded Discarded Analysed Analysis Clusters
Application Filter (µs) bursts (%) time (%) bursts time (s) found1

CPMD 1000 34.03 7.28 53,454 3067.790 16 (2)

NPB BT 500 64.26 1.10 24,850 746.160 9 (3)

WRF 1000 88.70 0.44 13,917 30.237 23 (4)

Hydro 5000 61.79 5.96 3,438 1.830 13 (3)

1 In parenthesis, the number of clusters that cover more than 10% of application time

Table 4.1.: Clustering tool statistics for a set of applications used in the examples. The values
regarding the NPB BT benchmark correspond to the execution with higher value
of Eps

4.5. Cluster analysis results

Up to this point, we have seen the ability of cluster analysis to detect the structure of
message-passing parallel applications. In this section we highlight the usefulness of this
technique to ease the characterization of a message-passing parallel application and the abil-
ity to detect the behaviour structure in contrast to the classic syntactic structure proposed by
other techniques such as proVling.
In Table 4.1 we present some statistics about cluster analysis Vlters, execution times and

detected clusters of the diUerent applications used along this chapter.

4.5.1. Ease of the computation structure analysis

When analysing a parallel application, the analyst/developer has to deal with lots of diUerent
information. For example, in Figure 4.6 we present the time-lines of four performance ob-
tained for WRF application1 executed with 64 tasks. The metrics are Million of Instructions
per Second (MIPS), time-line 4.6a, Instructions per Cycle (IPC), time-line 4.6b and Level 1
(L1) and Level 2 (L2) data cache misses per 103 instructions, time-lines 4.6c and 4.6d respect-
ively. On each of these time-lines, the X axis is the time, the Y axis are the application tasks

1A description of this application is available in chapter 9

50

4.5. Cluster analysis results

(a) Millions of instructions per second (MIPS)

(b) Instructions per cycle (IPC)

(c) Level 1 Data Cache misses per 103 instructions

(d) Level 2 data cache misses per 103 instructions

Figure 4.6.: Time-lines of diUerent performance hardware counter metrics of WRF NMM ap-
plication executed with 64 tasks

and the colour is a gradient from green to blue expressing the magnitude of the given metric
(we do not indicate the ranges of each metric), being the orange zones the peak values.

Observing the time-lines, the analyst could certainly detect a structural pattern: a series
of two wide regular phases followed by and irregular region of small and imbalanced phases
(in dark blue on 4.6a and 4.6b and orange in 4.6d). This structural pattern repeats four times,
so the analyst could conclude that he or she is observing four iterations of the main loop
typically observed in the message-passing applications.

Using the cluster analysis we can draw diUerent conclusions. In this example we applied
DBSCAN to group the CPU bursts characterized with Completed Instructions, L1 and L2 data
cache misses. Figure 4.7 contains the results of this analysis. The scatter plot 4.7a represent
the clusters discovered projected to Completed Instructions and L1 data cache metrics. In this
plot we can observe three isolated clusters below 1×108 and a region on the top right with
three more clusters that present high number of instructions, but also more L1 data cache
misses. It is interesting to note the Cluster 2 and 3 seem to be overlapped, so the algorithm

51

4. Computation Structure Detection using Cluster Analysis

was able to distinguish them using the L2 data cache metric, not depicted on the plot.
However, the most interesting results of the cluster analysis can be observed in the clusters

time-line 4.7b. What we wrongly consider four iterations of the application main loop,
thanks to the cluster analysis is clearly depicted as two repetitions of two diUerent structures.
The Vrst one starts with Cluster 3 (red), followed by Cluster 1 (light green) and Vnished with
the succession of Clusters 6 (purple), 5 (pink) and 4 (dark green). The second structure starts
with Cluster 2 (yellow), share the pattern of the previous one, Clusters 1, 6, 5 and 4, Vnish-
ing with Clusters 8 (orange) and 7 (light brown). The application developers conVrm that
the simulation we run computed the status of one variable of the model just every other
iteration, so the structure detected by the cluster algorithm was correct.
Another interesting information we can extract from the clusters time-line are the re-

gions marked with a black box. In this region Cluster 10 (blue) was assigned to a subset of
tasks, meanwhile the majority of tasks at this point of time were assigned to Cluster 7 (light
brown). This situation indicates that we found an imbalance in the behaviour of this phase.
According to the scatter plot 4.7a, this distinction in two diUerent clusters was caused by the
higher number of L2 data cache misses occurred in Cluster 10.
In terms of analysis, it is interesting to remark that usually few clusters represent the most

time-consuming phases of the applications. As can be seen in Table 4.1, in our examples
the number of clusters that cover more than 10% of applications time moves between 2 and
4 (number in parenthesis in the “Clusters found” column). This is a useful property of the
structure detection proposed, as the analyst could focus on the analysis of these regions
because their performance will have a bigger impact in the global application performance.

Total Average L2 misses Memory
computing burst per 103 bandwidth

Cluster time (%) duration (ms) IPC MIPS instructions (MB/s)

1 36.23 219.56 0.536 1214.60 0.570 88.67

2 15.95 190.32 0.505 1145.04 1.262 184.96

3 13.83 165.07 0.487 1190.18 1.170 178.23

4 10.19 60.81 0.619 1402.93 1.076 193.30

Table 4.2.: Performance characterization of the 6 clusters that aggregate more than 90% of
the WRF application computing time of application analysis depicted in Figure 4.7

In the case of WRF, four clusters represent more than 10% of the total computation time.
So as to analyse the regions they represent, we computed a set of statistics for these clusters
using the hardware counters information available in the input data. This information is
contained in Table 4.2. Using this table the analyst can observe the performance of each
of the regions detected, and take decisions regarding which parts of the application should
be improved in Vrst term. For example, we can see that Clusters 2 and 3 (yellow and red
regions in time-line 4.7b), represent a major section of application computation time, 15.95%
and 13.83% respectively. In terms of performance, they have the lowest IPC of all regions

52

4.5. Cluster analysis results

(a) Discovered clusters projected to L1 Misses and Instruc-
tions Completed

(b) Time-line distribution of the discovered clusters

Figure 4.7.: Cluster analysis with DBSCAN algorithm using Complete Instructions, L1 Data
Cache Misses and L2 Data Cache Misses of WRF application executed executed
with 64 MPI tasks

53

4. Computation Structure Detection using Cluster Analysis

detected, 0.505 and 0.487. This small IPC Vgures could be caused by poor cache usage, as
they exhibit the higher L2 data cache misses per 103 instructions and also the higher memory
bandwidth. These observations present an useful starting point to the analyst/developer to
study what is causing this potential memory problems and improve the regions detected,
whose location in the actual source code is listed in Table 4.3.

Cluster Code Section

1 solve_nmm.f:[2037 - 2310]

2 solve_nmm.f:[1478 - 1782]
solve_nmm.f:[2030 - 1782]

3 solve_nmm.f:[1241 - 1345]

4 solve_nmm.f:[2771 - 2865]
solve_nmm.f:[2388 - 2489]

Table 4.3.: Code linking of the 6 main clusters of WRF application

4.5.2. Applications syntactic structure and behaviour structure

We deVne the application syntactic structure as the abstract structure of the application’s
source done during the application design and implementation. On the other hand, we deVne
the behaviour structure as the performance an application exhibited in an actual execution.
In this section, we study the relationship between both structures, comparing the subroutines
an application execute to the computation structure obtained by using cluster analysis.
The aim of this study is to demonstrate how this relationship is not always a bijection.

In the following examples we show how a given computation phase can represent a type
of computation that appears in diUerent routines of the application, and also how a given
subroutine could be detected as diUerent computation phases depending on its parameters.
The two examples reWect how the structure detection based on cluster analysis provides

an unique point of view of the applications behaviour structure. This technique surpasses
other approaches such as the classical proVles, where all of these variability we are able to
capture is hidden as they aggregate the performance information at the level of subroutines.

Subroutines with common behaviour

In this Vrst example we used the cluster analysis of the NPB BT benchmark presented in Fig-
ure 4.5. We used this structure detection to illustrate a good parameter selection of DBSCAN
algorithm, showing a clear SPMD structure.
Now, on Figure 4.8 we compare the main subroutines of this application, time-line 4.8a

with the SPMD phases detected, time-line 4.8b. In both time-lines we added vertical lines to
indicate the subroutines bounds.
Observing both time-lines, we can establish the following relationships: copy_faces sub-

routine corresponds to unequivocally to Cluster 4 (red); similarly Cluster 2 (yellow) always

54

4.5. Cluster analysis results

(a) Time-line of main user functions

(b) Time-line of discovered clusters using a high Eps value

Figure 4.8.: Comparison of the clusters discovered on NPB BT class A Benchmark presented
in Figure 4.5 and the main user functions of the application

corresponds to the initial part of the sub-routine x_solve; Cluster 3 (dark green) is the initial
part of y_solve and z_solve; and, Vnally Cluster 1 (light green) is a common section of all
solve subroutines.

The relationships listed demonstrate that although the syntactical structure of the applic-
ation distinguished three diUerent solvers, the actual behaviour of them its quite similar:
Cluster 2 and Cluster 1 phases in case of x_solve, and Cluster 3 and Cluster 1 phases in case
of y_solve and z_solve.

If we compare these observations to a regular proVle output what we will obtain a is just
the characterization of the three solve routines, independently. A further comparison could
led to aXrm that y_solve and z_solve behave similarly, but in no case would be able to
aXrm that all three have a big region where they behave similarly, unless we go through the
source code.

55

4. Computation Structure Detection using Cluster Analysis

Multi-modal subroutines

For this second example, we used Hydro [96] a solver of the compressible Euler equations
derived from the cosmology hydrodynamics code RAMSES [97]. We performed an small
execution using 24 tasks.
In Table 4.4 we present the correspondence between application subroutines and detected

clusters. As we can see, Clusters 1 to 9 correspond unequivocally to Vxed subroutines in the
application, that could suggest a bijection between syntactic structure and an the observed
behaviour. But the interesting point appears with subroutine updateConservativeVars.
This subroutine has been detected as two diUerent clusters, 10 and 11.

Cluster Subroutine

1 vtkfile

2 trace

3 qleftright

4 constoprim

5 riemann

6 slope

7 hydro_godunov

8 gatherConservativeVars

9 equation_of_state

10 updateConservativeVars

11 updateConservativeVars

Table 4.4.: HydroC clusters/subroutines correspondence

This detection could be understood as an imbalance of some of the tasks as the observed
in the previous example of WRF. We can check if this reasoning is correct by observing the
time-lines of Figure 4.9. The time-lines present two inner iterations of the Hydro solver. In
the subroutines time-line 4.9a we marked the occurrences of updateConservativeVars (soft
green yellow). In the clusters time-line 4.9b we marked the same regions occupied by this
subroutine. What we see is that in the Vrst iteration, this subroutine has been detected as
Cluster 11 (dark grey) while in the second iteration it has been detected as Cluster 10 (soft
green yellow). According to scatter plot detail presented in 4.10, this two clusters diUer in
around 1.4 million instructions.
Actually, this distinction reWects the actual behaviour of the solver: it works with a 2D

domain which is treated in vertical or horizontal directions on successive iterations. Most of
the inner subroutines present the same behaviour indiUerently to direction selected, but the
update of the conservative variables of the equations are sensitive to this change.
To sum up, the table and time-lines presented demonstrate that the behaviour structure we

produce by using the cluster analysis is capable of detect multi-modal subroutines, that cor-
respond to a Vxed syntactical structure. Comparing again with regular proVles, this situation

56

4.6. Clusters quality evaluation

(a) Time-line of main user functions

(b) Time-line of discovered clusters

Figure 4.9.: Comparison of the clusters discovered on HydroC and the main user functions
of the application

Figure 4.10.: Detailed plot of the clusters that represent the bi-modal
updateConservativeVars of HydroC solver

could have never been detected.

4.6. Clusters quality evaluation

In previous studies in this area, the output of the clustering algorithm applied is assumed
to be correct, and no other analysis of the clusters is done. The quality of the clustering is
assessed informally by checking that it displays some of the expected diUerences between
processes. An exception is found in [71]. where the authors use the Bayesian Information
Criterion (BIC), as is deVned in the X-means algorithm [75], to evaluate the compactness
of the clusters detected, using a measure which is closely related to the assumption of a
Gaussian model of the clusters.
Knowing that the density based cluster does not assume anymodel in the resulting clusters,

the quantitative evaluation of the results is a diXcult task. Our Vrst approach consists of use
the diUerent to manually check the desired SPMD described previously, the so called “expert

57

4. Computation Structure Detection using Cluster Analysis

criterion” [98] (also known as gold standard [99]). With the methodology provided we can
make use of three complementary methods to perform the “expert validation”:

1. Using the scatter plots to examine the cluster assigned to each point as a result of a
good clustering, the scatter plot would show that isolated groups of points are detected
as diUerent clusters.

2. If the application is purely SPMD, we would expect the application time-lines to show
that all processes execute the same cluster at the same time. In addition, we expect to
Vnd a repetitive pattern among clusters in the time-line, due to the common iterative
structure of parallel codes.

3. If the original trace includes code linkage (user added events or back-traced caller
events on MPI calls), a good clustering should show that every cluster region corres-
ponds to a Vxed sections of code. Have we have seen in the examples, these sections
of code could not be strictly subroutines but inner parts of them or subroutines with
multiple behaviours.

58

5. Evaluation of the computation
structure quality

We can make an analogy between the sequences of diUerent actions a parallel Single Pro-
gram Multiple Data (SPMD) application performs and biological sequences such as

DNA or proteins. Then, using a Multiple Sequence Alignment algorithm we can quantitat-
ively measure how the application follows the SPMD pattern. We call this the SPMDiness. In
this chapter we introduce the Cluster Sequence Score, an score that evaluates the SPMDiness
of a computation structure characterization obtained using a cluster analysis. This score is
also applicable to evaluate the SPMDiness of any other structural characterization.

5.1. Cluster Sequence Score Motivation

As explained in the previous chapter, the fact that density-based cluster does not assume any
model of the data, made us consider the “expert criterion” as a Vrst approach to evaluate the
quality of a structure detection using DBSCAN. In fact, there are some validity indexes to
assess the quality of density-based cluster algorithm results, as the ones presented in [100]
or [101] but, as can be seen in the experiments presented later in this chapter, those are not
able to correctly evaluate what we consider a good structure detection. Independently of
the cluster algorithm used, or even the methodology to diUerentiate the computation phases,
the results should group those computation bursts that detect conform SPMD phases at Vner
granularity. We call this a check for the SPMDiness of the resulting clusters. It is obvious to
say that this reasoning only makes sense when the application to analyse follows a SPMD
design, but in practice the vast majority of message-passing parallel applications follow it.

To check the SPMDiness the most useful output we consider is the application time-line,
where the clusters information is used to colour the CPU bursts. In this time-line one should
observe a succession of vertical regions assigned to the same cluster. In addition, one should
also check that the pattern of phases repeats in case the application performs diUerent itera-
tions. The score we propose, Cluster Sequence Score, is a translation of this expert validation
into an automatic process. Our main consideration in implementing this criterion is the fol-
lowing: if an application has an SPMD design, the sequence of actions in all tasks should
be the same. Consequently, the sequence of clusters detected should also be the same for all
tasks.

59

5. Evaluation of the computation structure quality

5.2. Multiple Sequence Alignment (MSA)

The reasoning regarding the similarity of the clusters in the sequence of each task/thread
directly points to a clear analogy of our criterion and the DNA and protein alignments,
a highly developed area in bioinformatics. The parallelism with our data is simple: each
task/thread is represented as a DNA sequence or a protein where DNA bases or amino-acids,
respectively, are the cluster assigned to each computation bursts of the task/thread. Using a
MSA algorithm to align the sequences that represent each task/thread we can easily evaluate
the desired SPMDiness of each cluster.

Following the guidelines of MSA selection presented in [102] we selected Kalign2 [89]
from the list of diUerent MSA packages detailed in chapter 3. Due to the availability of the
source code of Kalign2 we performed the modiVcations so as to extend this tool to work with
an arbitrary alphabet. This is a very limiting element because almost all MSA packages only
allow using DNA or protein alphabets, which limit the possible alignments to 27 diUerent
elements, the clusters in our case.

In addition, we also modiVed the algorithm core to dynamically generate the score matrix,
used to prioritize which clusters of the sequence should be aligned together. This manually
tuned matrix is a variation of the identity matrix, where those clusters with a higher per-
centage duration have a higher alignment score. In this way, Kalign2 always tries to align
the most important clusters Vrst. This tune guarantees serves to improve the aligment res-
ults, by using those clusters that represent more computation time as reference points in the
alignment process.

An important fact is that after applying the MSA in the output alignment all sequences
have the same length. This property is required to deVne the sequence score described in next
section, as it iteratively evaluates each position of all sequences to quantify the SPMDiness.

Figure 5.1 shows an example of an alignment obtained using Kalign2 using the sequences
that represent a trace of NPB BT class A with four tasks. In 5.1a the time-line with the
cluster information is presented. Next, in 5.1b we present the alignment obtained using
Kalign2, using the ClustalX [86] application. Note that in 5.1b there are asterisks on top of
each position of the sequences. These are marks introduced by ClustalX to indicate that all
sequences in the given position have the same element of the alphabet.

5.3. Cluster Sequence Score

Once the sequence that represent each task/thread of the parallel application have been
aligned, the actual Cluster Sequence Score is computed. The score has two parts: the per-
centage of total alignment for each cluster, the score per cluster; and the global score, the
weighted combination of the scores per cluster, using the cluster aggregate duration. To
compute the score per cluster we create a matrix Sm×n using the aligned sequences. m is the
number of tasks and n the length of the aligned sequences. Each cell si,j represent the cluster
identiVer assigned to computation burst of task/thread i in the position j of the sequence.

60

5.3. Cluster Sequence Score

(a) Time-line

(b) Kalign2 alignment

Figure 5.1.: An example of alignment of the NAS BT Class A with 4 tasks. (a) shows the
cluster distributation in the time-line; (b) presents the proposed alignment com-
puted by Kalign2 and depicted by ClustalX.

Then the score per of each cluster Cx ∈ C , Score(Cx), is deVned in the following equations:

Score(Cx) =
Alignment(Cx)

Appearances(Cx)
(5.1)

Alignment(Cx) =
∑
i=1..n

∑
j=1..mHitCx(si,j)

n
(5.2)

HitCx(si,j) =

{
1 if x = si,j

0 otherwise
(5.3)

Appearances(Cx) =
∑
j=1..n

SingleAppearanceCx(j) (5.4)

SingleAppearanceCx(j) =

{
1 ∃i; 1 ≤ i ≤ m;x = si,j

0 otherwise
(5.5)

Conceptually, the score per cluster can be understood as “for each position in the sequence
where the cluster Cx appears, measured as the Appearances(Cx), which percentage of the
tasks are executing this cluster, computed by Alignment(Cx)”. The score is expressed in-
distinctly in percentages or in range 0 to 1, being 100% or 1 a perfect score which means that
every time a cluster appears in a sequence position, it appears in all tasks/threads.

GlobalScore(C), the global score fore the whole set of the resulting cluster set RC is

61

5. Evaluation of the computation structure quality

deVned as:

GlobalScore(C) =
∑
Cx∈C

Score(Cx)× PercentageDuration(Cx) (5.6)

In this case, the global score is a weighted average of the scores per cluster using the
percentage duration of each cluster as a weight. It is a single percentage value which shows
the quality of the total structure detected. A larger percentage signiVes a higher quality.
This formulation is implemented in an algorithm which evaluates each matrix column

sequentially to compute the score of each cluster. Using the output of the cluster duration
from the structure detection tool, the global score is computed.

Experiment Application Eps MinPoints Total Clusters

bt_a_16_0057 BT Class A 0.0057 10 43

bt_a_16_0150 BT Class A 0.0150 10 17

ft_a_16_0090 FT Class A 0.0090 4 16

lu_a_16_0175 LU Class A 0.0175 4 7

wrf_16_0100 WRF 0.0100 10 21

wrf_16_0200 WRF 0.0200 10 16

wrf_16_0300 WRF 0.0300 10 13

Table 5.1.: Summary of the diUerent applications used in the experiments, as well as the
DBSCAN parameters used and the total number of clusters obtained

5.4. Validation

The validation of the Cluster Sequence Score consists on manually checking that it correctly
evaluates diUerent results in terms of SPMDiness. We used 3 diUerent NAS Parallel Bench-
marks: BT, FT and LU, all of them using Class A inputs. We also analysed the results of
a simulation of WRF. In all cases, the applications were executed using 16 tasks. We chose
not to scale the test to a high number so as to present more understandable time-line and
alignment Vgures.
As we mentioned in the motivation of this chapter, the Cluster Sequence Score is intended

only to evaluate structure detections of SPMD applications. All the applications we use here
follow this pattern. In fact, this is an a priori knowledge that we must have regarding the
application design, to guarantee the applicability of the score. This check can be easily guar-
anteed by consulting the application developers, but as we pointed before, the vast majority
of message-passing parallel applications are SPMD.
Table 5.1 summarizes the diUerent experiments, the parameters of DBSCAN used and the

total number of clusters obtained for each case. Figures from 5.2 to 5.8 contain the cluster

62

5.4. Validation

time-lines, the aligned sequences, and also the Cluster Sequence Score plus the CDbw value
of each experiment.
The CDbw value is the value of the validity index for clustering algorithms presented by

Halkidi et. al. in [101]. This index evaluates the quality of a given partition of the data
based on distance metrics and the density distribution of the data. To do so, each cluster is
modelled by a set of r representative points, instead of a centroid. It deVnes three diUerent
values for the set of clusters C detected:

• Compactness(C): the average value of the number of individuals of each cluster
Ci ∈ C that are within one standard deviation from its closest representative.

• Cohesion(C): the value of the compactness of each cluster in the clusters set, weighted
by the density variations observed around the cluster representatives.

• Sep(C) (Separation): the average distance of between the clusters detected, weighted
to the maximum density observed between them. This inter-cluster density is propor-
tional to the number of the element in the data set within one standard deviation from
the mid-point of the closest representatives in diUerent clusters.

Finally, the CDbw index of a set of clusters C is deVned as:

CDbw(C) = Cohesion(C)× Sep(C)× Compactness(C) (5.7)

We use this validity because is one of the few approaches that takes into account the
density distribution of the clusters, a basic characteristic in out data sets. We want to note
that due its deVnition higher values of the index represent better results.
The diUerent DBSCAN parameters used on BT and WRF serve as example to show the

ability of the global score to capture the SPMDiness of structure detection. The best way to
determine if the results are correct is to visually compare the time-lines, sequences and scores
in Figures 5.2 and Figure 5.3 to evaluate the BT benchmark. Identically, same evaluation
could be done for WRF, using the Figures 5.4, 5.5 and 5.6.

NPB BT

In the Vrst experiment of BT, bt_a_16_0057, presented in Figure 5.2, we used a Eps value
(0.0057), obtained using the technique proposed by DBSCAN authors in [78]. As we ex-
plained in previous chapter, this technique does not provide good choices of Eps parameter
to our purposes, as it usually suggests too restrictive values. It is easy to see that the structure
detected in the time-line, 5.2a, does not show any SPMD structure, nor the aligned sequences,
5.2b. Even having Cluster 1 (the green region) well aligned, the rest of the structure is not
clear, and one can see the high number of gaps (− symbol) that the MSA introduced. In
terms of the score, 5.2c, this is translated into a good score for Cluster 1 (also for Cluster 2),
but a poor global score of 0.341.
In contrast, the experiment bt_a_16_0150, presented in Figure 5.3, shows the results using

a higher value of Eps (0.0150). As we commented in previous chapter, higher values of Eps
detect better the SPMD structure. In this experiment, one can easily see the diUerent steps

63

5. Evaluation of the computation structure quality

inside the iteration of this code, 5.3a, as well as the high precision of the alignment, 5.3b.
The Cluster Sequence Score correctly evaluates this situation giving a perfect score (1.000)
for Vrst 4 clusters and a global score of 0.969.
Comparing the CDbw scores obtained by the two experiments we demonstrate the af-

Vrmation that this validity index does not apply in our context. It obtained higher value
for the poorest structure detection, 41.063 for bt_a_16_0057 experiment and 36.236 for
bt_a_16_0150 experiment, the opposite of our purpose.

(a) Time-line of resulting clusters

(b) Aligned sequences

Score per Cluster (% Duration) Global

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Score CDbw

1.000 (13.66%) 0.414 (8.39%) 1.000 (7.25%) 0.311 (5.91%) 0.341 41.063

(c) Cluster Sequence Score and CDbw

Figure 5.2.: Results of the experiment bt_a_16_0057. Time-line (a), and alignment (b) cor-
respond to two iteration detail of the whole application

64

5.4. Validation

(a) Time-line of resulting clusters

(b) Aligned sequences

Score per Cluster (% Duration) Global

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Score CDbw

1.000 (15.56%) 1.000 (15.45%) 1.000 (12.56%) 1.000 (11.34%) 0.969 36.236

(c) Cluster Sequence Score and CDbw

Figure 5.3.: Detected structure, sequences alignment and Cluster Sequence Score results of
bt_a_16_0150 experiment. The Vgures corresponds to two iterations of the
whole application

65

5. Evaluation of the computation structure quality

WRF

The same discussion is applicable for the experiments using WRF. In this case, we used three
diUerent values ofEps. The Vrst one was the suggested by the DBSCAN parameter selection
technique, 0.0100, and whose results are depicted in Figure 5.4. The second experiment used
an Eps double of the Vrst value, 0.0200, collected in Figure 5.5. The last one Eps was three
times the original value, 0.0300, presented in Figure 5.6.
Looking and comparing the time-lines and alignment plots, we can observe that the SPMD

structure result clear using higher Eps values than the suggested by the original technique.
The structure is not as clear as the best one obtained with the BT benchmark, as we did not
exhaustively search for the best Eps value. The Cluster Sequence Scores obtained, 0.661,
0.736 and 0.887 respectively, capture the increase of the SPMDiness observed informally. In
this case the CDbw again produced the opposite results we expected.

(a) Time-line of resulting clusters

(b) Aligned sequences

Score per Cluster (% Duration) Global

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Score CDbw

1.000 (14.31%) 0.800 (11.17%) 0.462 (11.04%) 0.703 (9.93%) 0.661 52.769

(c) Cluster Sequence Score and CDbw

Figure 5.4.: Detected structure, sequences alignment and Cluster Sequence Score results of
wrf_16_0100 experiment. The Vgures correspond to two iterations of the whole
application

66

5.4. Validation

(a) Time-line of resulting clusters

(b) Aligned sequences

Score per Cluster (% Duration) Global

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Score CDbw

0.788 (17.64%) 1.000 (13.42%) 0.800 (10.48%) 0.703 (9.31%) 0.736 22.154

(c) Cluster Sequence Score and CDbw

Figure 5.5.: Detected structure, sequences alignment and Cluster Sequence Score results of
wrf_16_0200 experiment. The Vgures correspond to two iterations of the whole
application

67

5. Evaluation of the computation structure quality

(a) Time-line of resulting clusters

(b) Aligned sequences

Score per Cluster (% Duration) Global

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Score CDbw

1.000 (22.50%) 1.000 (13.49%) 0.988 (13.01%) 0.703 (9.36%) 0.887 16.120

(c) Cluster Sequence Score and CDbw

Figure 5.6.: Detected structure, sequences alignment and Cluster Sequence Score results of
wrf_16_0300 experiment. The Vgures correspond to two iterations of the whole
application

68

5.4. Validation

NPB FT and LU

The two other NAS Benchmarks tested, FT and LU, resulted in good structure detection using
the initial parameter approximation as shown in Figure 5.7 and Figure 5.8, respectively. In
both cases, we get a global score higher than 0.9, as can be seen in Tables 5.7c and 5.8c.
This was caused by the total application time of the four main clusters summing to 71% and
95%, respectively. Being well aligned, the global score (and, obviously, the scores per cluster)
results in excellent values.
As these experiments just used a single Eps, we do not compute the CDbw index.

(a) Time-line of resulting clusters

(b) Aligned sequences

Score per Cluster (% Duration) Global

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Score

0.999 (47.08%) 1.000 (14.58%) 0.972 (5.61%) 0.996 (5.03%) 0.963

(c) Cluster Sequence Score

Figure 5.7.: Detected structure, sequences alignment and Cluster Sequence Score results of
ft_a_16_0090 experiment. The Vgures correspond to a single iteration of the
whole application

69

5. Evaluation of the computation structure quality

(a) Time-line of resulting clusters

(b) Aligned sequences

Score per Cluster (% Duration) Global

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Score

0.977 (36.85%) 0.997 (28.01%) 0.995 (22.08%) 0.994 (9.03%) 0.988

(c) Cluster Sequence Score

Figure 5.8.: Detected structure, sequences alignment and Cluster Sequence Score results of
lu_a_16_0090 experiment. The Vgures correspond to a single iteration of the
whole application

70

6. Automatization of the Structure
Detection

In this chapter we present the Aggregative Cluster ReVnement, a new cluster algorithm that
automatizes the Vne-grain structure detection of SPMD parallel applications. It overcomes

the limitations of DBSCAN and also avoids the user to face the, sometimes hard, problem of
selecting the DBSCAN parameters.

6.1. Limitation of the structure detection based on
DBSCAN

Two major problems can be associated to the DBSCAN algorithm. The Vrst one is the sens-
itivity to the parametrization. As we shown in chapter 4, a given combination of Eps and
MinPoints could lead to structure detections that do not show any SPMD pattern. Even
DBSCAN authors proposed a technique to tune the parameters, our experience points that
the user require a series of trial-and-error analyses to detect the precise values.

Figure 6.1.: Example of data set that require multiple Eps parameters. This data was ob-
tained from the Hydro solver executed with 128 tasks

The second problem is the inability of DBSCAN to correctly detect clusters when the
density varies across the data space. This problem is directly related to the use of a single
Eps value. In Figure 6.1 we present a practical example. The black box in this Figure marks
a region of the data set where compact clouds of points appear. To correctly detect these

71

6. Automatization of the Structure Detection

clouds as diUerent clusters we require using a small Eps value. On the other hand, the
region inside the blue box contains a group of points that exhibit more variability. To detect
this second region as a single cluster we require a higher Eps. The fact that DBSCAN just
can use one Eps implies that if we use a small value, the algorithm will detect correctly
the clouds present inside the black box, but the cloud inside the blue box will be detected
as multiple clusters and also noise points. On the other hand, if we used a high Eps value,
the cloud inside the blue box will be detected as a single cluster, but the clouds of points
inside the black box will be merged together in a single or two clusters (we call this an
over-aggregation of clusters).

6.2. The Aggregative Cluster ReVnement algorithm

With these two problems in mind, we present the Aggregative Cluster ReVnement algorithm.
This is a hierarchical algorithm based on merging the density components that conform a
Vnal cluster. It has been inspired by previous cluster algorithms and presents two major
properties:

1. Is able to detect clusters that present diUerent densities in the data space.

2. Minimizes the number of input parameters needed to correctly detect the desired
clusters.

6.2.1. Aggregative Cluster ReVnement foundations

As explained in chapter 3, one of the most basic algorithms used in cluster analysis is the
hierarchical clustering [77].
An implicit parallelism exists between hierarchical algorithms and DBSCAN. Using a

given data set and using a Vxed value of MinPoints, each Eps value we use can be un-
derstood as a cut at diUerent heights of the dendrogram. In this way, if we use a lower
(restrictive) Eps value, the “cut” will be close to leaves in the dendrogram, keeping isolated
points that will be classiVed as noise. On the other hand, using a less restrictive Eps will
produce a “cut” close to the root of the dendrogram, where big clusters group large number
of individuals with more variability across them.
The second fundamental part of the Aggregative Cluster ReVnement algorithm is the

scheme to detect the clusters. In this case, it is inspired by X-Means. X-Means guesses
the number of clusters k using K-means algorithm by iteratively increasing the value of k.
On each iteration it runs the K-means algorithm, and evaluates the resulting clusters using
the Bayesian Information Criterion, to decide if a new iteration is required.
The Aggregative Cluster ReVnement is an iterative algorithm that builds a pseudo-dendrogram,

also named reVnement tree, similarly to the aggregative hierarchical cluster algorithms. On
this reVnement tree the leaf nodes represent clusters obtained using DBSCAN with an ini-
tial low Eps value. The intermediate nodes represent clusters obtained using progressively
larger Eps values. In these intermediate nodes, DBSCAN is only applied to the individuals
that belong to those clusters that do not pass the a cluster quality criterion in the previous

72

6.2. The Aggregative Cluster ReVnement algorithm

level. In this way, the Aggregative Cluster ReVnement algorithm uses the scheme deVned
by X-Means. Those nodes that pass the criterion do not take part in further levels and are
reported as an actual cluster by our new algorithm.
As the target of our studies is to detect the SPMD structure of parallel applications, we use

the Cluster Sequence Score as the criterion to evaluate the clusters quality.

6.2.2. Algorithm Description

The Aggregative Cluster ReVnement pseudo-code is listed in Algorithm 1. The inputs of
the algorithm are the data set composed by the counters associated to each CPU burst,
CPUBurstsSet; the number of diUerent Eps we want to use, N ; and the number of tasks
present in the application we want to analyse, ApplicationTasks. The outputs of the al-
gorithm are a partition of the data, FinalPartition, with the cluster identiVers assigned to
each burst in the input set, the Cluster Sequence Score of the last partition, FinalScores,
and the pseudo-dendrogram of the hierarchical reVnement, RefinementTree. Addition-
ally, the user can also retrieve the intermediate partitions and scores, stored in Partitions
and Scores lists.
The algorithm starts setting MinPoints as a quarter of the total tasks the application

has. This value is selected because we consider that the minimum acceptable SPMD region
should cover, at least, 25% of the total tasks. Next, using the data set the N diUerent Eps
are generated in ComputeEpsilons, sorted increasingly and stored in the EpsList list. This
generation chooses N values using a technique described later.
On each iteration, the clusters which pass the criterion are discarded, and just the burst

that belong to clusters with poor score take part in further DBSCAN executions with higher
Eps values (theCPUBurstsSubset). This bound is performed in GenerateCandidatePoints.
To our purposes, we consider that a cluster passes the criterion if it gets an cluster score of
100%, using the Cluster Sequence Score deVned in the previous chapter.
The algorithm converges if all clusters pass the criterion before exploring all N diUer-

ent Eps values. If that does not happen in N iterations, in ProcessLastPartition we
merge those clusters that do not have perfect score but occur simultaneously according to
the aligned sequences used by the Cluster Sequence Score.
The outputs the algorithm produces are the FinalPartition of the data, that contains the

cluster identiVer assigned to each input point and a the RefinementTree. In this tree, each
level contains the clusters generated on a given iteration of the algorithm. Each clusters of an
intermediate level is connected to those clusters of immediately previous level that merged
to generate it as a result of increasing the Eps value, or to the noise cluster node if it has
absorbed points previously classiVed as noise. It is interesting to note that the Vnal clusters
produced by the Aggregative Cluster ReVnement are those nodes not connected to clusters
at further levels. Actually, the reVnement tree is a collection of trees, where each of the
clusters present on the Vnal partition of the data corresponds to the diUerent tree roots in
this collection.
Additionally to these two outputs, the algorithm can also save each intermediate partition

of the data, named Partitioni in the algorithm pseudo-code, to complement the information
of the reVnement tree to study of the hierarchical formation of the clusters.

73

6. Automatization of the Structure Detection

As a conclusion of this description, we want to remark that the properties of the Aggregat-
ive Cluster ReVnement listed at the beginning of this section are accomplish due to following
facts:

1. The user just has to provide the data set and the maximum number of reVnement
iterations N he or she wants to execute.

2. As it uses multiple Eps values it is able to detect clusters that present diUerent densit-
ies.

Input: CPUBurstSet = points representing the CPU Bursts of the application
Input: N = number of maximum reVnement steps
Input: ApplicationTasks = number of application tasks
Output: FinalPartition = resulting data partition obtained
Output: FinalScores = Cluster Sequence Scores obtained by the last partition
Output: ReVnementTree = pseudo-dendrogram of the reVnement process

MinPoints = ApplicationTasks/4;

ComputeEpsilons (CPUBurstSet, EpsSet, N);

CPUBurstSubset = CPUBurstSet;
i = 1;
while CPUBurstSubset 6= ∅ and i ≤ N do

RunDBSCAN (CPUBurstSubset, MinPoints, EpsSet_i, Partitions_i);
ComputeScores (CPUBurstSet, Partitions_i, Scores_i);
UpdateTree (CPUBurstSet, Partitions_i, Scores_i, ReVnementTree);
GenerateCandidatePoints (CPUBurstSet, Scores_i, CPUBurstSubset);
i = i + 1;

end

ProcessLastPartition(CPUBurstSet, Partitions_i, Scores_i, PartitionsPostProcessed,
ScoresPostProcessed);

UpdateTree (CPUBurstsSet, PartitionsPostProcessed, ScoresPostProcessed,
ReVnementTree);

FinalPartition = PartitionsPostProcessed;
FinalScores = ScoresPostProcessed;

Algorithm 1: Aggregative Cluster ReVnement

Algorithm example results

In Figures 6.2 and 6.3 we present example to illustrate how the algorithm works. The re-
Vnement tree 6.2 is depicted top-down (Vrst iteration on the top of the Vgure), the Vll nodes
represent the clusters of the Vnal partition. Each node is decorated with the cluster name
and the score per cluster obtained at this iteration.

74

6.2. The Aggregative Cluster ReVnement algorithm

In this example, we used N = 10 but the algorithm converged in 7 iterations as can be
seen in the reVnement tree in Figure 6.2. DiUerent time-lines in Figure 6.3 correspond to the
intermediate partitions obtained on those iterations where the algorithm detected clusters
that will be part of the Vnal partition (marked with a black dot), i.e. clusters that passed
the score. The time-line 6.3d corresponds to the computation structure detected by the Vnal
partition the algorithm produced.
It is important to note that the information of the intermediate partitions the algorithm

provides is an useful piece of information to understand the application structure at Vne-
grain. In section 6.3 we illustrate how these intermediate partitions plus the reVnement tree
can be useful to detect detect the performance variability that can appear in a given SPMD
region.

Epsilon selection

As we mentioned before, the selection of the diUerent Eps plays a crucial role in this meth-
odology, as the separation or aggregation of clusters directly depend on this parameter.
In the original paper where DBSCAN is described [78], the authors propose an interesting

technique to choose a goodEps candidate for a given data set. The technique starts selecting
the value of the MinPoints parameter. Then computes the distance of each individual of
the data set to its k neighbour, being k the selected value of MinPoints. These distances
are sorted decreasingly and presented in a graph. In Figure 6.4 sorted k-dist graph is shown
as the red curve. Finally, the way to choose the ideal Eps proposed in [78] is to manually
select it around the right-most “valley” of these series.
We explained in chapter 4 that when we applied this technique to the CPU burst hardware

counters data, the resulting Eps selected tended to be small, producing high number of
clusters and structure detections that do not follow the SPMD pattern. For this reason, we
deVne the following technique to select the N diUerent Eps values required, where we use
the sorted k-dist graph to detect a lower bound of the Eps values to generate.

1. First, being n the number of points in the data set, we deVne the line that contain the
points (0,max_k_dist), the Vrst point in the sorted k-dist graph, and (n/2, 0), the
middle point in the x range. This line is depicted in blue in Figure 6.4.

2. For each value of the x in interval 0 to n/2, we compute the diUerence between its
sorted k-dist and its projection in line deVned.

3. We select as the lower bound of Eps, EpsN the value of the sorted k-dist whose
is distance to the deVned line is the maximum. As the sorted k-dist is a monotone
decreasing curve, this maximum diUerence to the deVned line represents a “valley”
near to the described in [78].

4. The N − 1 remaining Eps values are selected dividing the range between x = 1 (the
point with the second maximum sorted k-distance) and x projection of the selected
Epsmin by N − 1 times.

75

6. Automatization of the Structure Detection

S
T

E
P

 1
 E

p
s =

 0
.0

0
1

8
5

6
9

6

S
T

E
P

 2
 E

p
s =

 0
.0

0
2

0
4

3
4

S
T

E
P

 3
 E

p
s =

 0
.0

0
2

3
0

2
2

2

S
T

E
P

 4
 E

p
s =

 0
.0

0
3

2
0

6
7

S
T

E
P

 5
 E

p
s =

 0
.0

0
3

2
8

4
3

S
T

E
P

 6
 E

p
s =

 0
.0

0
3

9
5

9
0

2

S
T

E
P

 7
 E

p
s =

 0
.0

0
4

6
9

8
9

5

N
o
ise

 S

co
re

 =
 3

1
.2

5
%

N
o
ise

 S

co
re

 =
 3

1
.2

5
%

C
lu

ste
r 1

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 2

 S
co

re
 =

 1
0

0
%

C
lu

ste
r 3

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 4

 S
co

re
 =

 1
0

0
%

C
lu

ste
r 5

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 6

 S
co

re
 =

 1
0

0
%

C
lu

ste
r 7

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 8

 S
co

re
 =

 7
5

%

C
lu

ste
r 8

 S

co
re

 =
 7

5
%

C
lu

ste
r 9

 S

co
re

 =
 5

0
%

C
lu

ste
r 9

 S

co
re

 =
 8

7
.5

%

C
lu

ste
r 1

0

 S
co

re
 =

 3
7

.5
%

C
lu

ste
r 1

1

 S
co

re
 =

 3
7

.5
%

C
lu

ste
r 1

1

 S
co

re
 =

 3
7

.5
%

C
lu

ste
r 1

2

 S
co

re
 =

 3
7

.5
%

C
lu

ste
r 1

2

 S
co

re
 =

 3
7

.5
%

N
o
ise

 S

co
re

 =
 2

5
%

C
lu

ste
r 1

3

 S
co

re
 =

 5
0

%
C

lu
ste

r 9

 S
co

re
 =

 8
7

.5
%

C
lu

ste
r 8

 S

co
re

 =
 7

5
%

C
lu

ste
r 1

1

 S
co

re
 =

 7
5

%

N
o
ise

 S

co
re

 =
 2

5
%

C
lu

ste
r 9

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 1
1

 S

co
re

 =
 8

7
.5

%
C

lu
ste

r 8

 S
co

re
 =

 7
5

%
C

lu
ste

r 1
3

 S

co
re

 =
 5

0
%

N
o
ise

 S

co
re

 =
 2

5
%

C
lu

ste
r 8

 S

co
re

 =
 7

5
%

C
lu

ste
r 1

1

 S
co

re
 =

 8
7

.5
%

C
lu

ste
r 1

3

 S
co

re
 =

 5
0

%

N
o
ise

 S

co
re

 =
 2

5
%

C
lu

ste
r 8

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 1
1

 S

co
re

 =
 8

7
.5

%

C
lu

ste
r 1

1

 S
co

re
 =

 1
0

0
%

Figure
6.2.:C

om
plete

aggregative
reVnem

ent
cluster

analysis
tree

obtained
from

N
PB

B
T
class

A
executed

w
ith

4
tasks.

The
em

pty
nodes

of
the

tree
depict

those
clusters

that
are

discarded
because

of
poor

SPM
D
iness

and
thus

need
to

be
m
erged.

Filled
nodes

are
those

selected
in

the
Vnalpartition

of
the

data.
In

this
case,due

to
the

convergence,allselected
nodes

got100%
score.Each

layer
represents

one
step

in
the

reVnem
entloop.

76

6.2. The Aggregative Cluster ReVnement algorithm

(a
)I
ni
tia

lC
lu
st
er
s

(b
)C

lu
st
er
s
af
te
r
St
ep

4

(c
)C

lu
st
er
s
af
te
r
St
ep

6
(d
)F

in
al
C
lu
st
er
s

Fi
gu
re

6.
3.
:A

pp
lic
at
io
n
tim

e-
lin

es
ex
pr
es
si
ng

th
e
cl
us
te
rs

fo
un

d
at

di
Ue
re
nt

st
ep
s
of

th
e
A
gg
re
ga
tiv

e
R
eV
ne
m
en
t
co
rr
es
po
nd

in
g
to

Fi
gu
re

6.
2.

(a
)
is
th
e
in
iti
al

cl
us
te
ri
ng

,S
te
p
1,

w
he
re

m
os
t
of

th
e
m
ai
n
SP
M
D

ph
as
es

ha
ve

al
re
ad
y
be
en

di
sc
ov
er
ed
.
(b
)

Ti
m
e-
lin

e
of

th
e
St
ep

4,
w
he
re

C
lu
st
er

9
(li
gh
t
gr
ee
n)

re
pr
es
en
ts
a
SP
M
D
ph

as
e
no

t
pr
ev
io
us
ly

de
te
ct
ed
.
(c
)
Ti
m
e-
lin

e
of

th
e
St
ep

6,
w
he
re

C
lu
st
er

8
(o
ra
ng
e)
th
e
on

e
th
at

re
pr
es
en
ts
a
SP
M
D
ph

as
e
no

t
co
rr
ec
tly

de
te
ct
ed

be
fo
re
.
(d
)
Ti
m
e-
lin

e
of

th
e
Vn

al
pa
rt
iti
on

of
th
e
da
ta
,S
te
p
7
in

th
e
tr
ee
,w

he
re

C
lu
st
er

11
re
pr
es
en
ts
th
e
la
st
SP
M
D
ph

as
e
fo
un

d.
D
ot
s
on

th
e
to
p

of
th
e
tim

e-
lin

es
se
rv
e
as

gu
id
e
to

se
e
th
e
cl
us
te
rs
m
en
tio

ne
d.

77

6. Automatization of the Structure Detection

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 100 200 300 400 500 600

4
-d

is
t

Points

 0.01

 0.02

 0.03

 0.04

Eps
1

Eps
2

Eps
3

Eps
4

Eps
5

Eps
6

Eps
7

Eps
8

Eps
9

Eps
10

Figure 6.4.: sorted 4-dist graph obtained from the Socorro application. The red dots are
represent the distance to the 4th nearest neighbour for each point in the data-
set. The blue line is the line deVned by the points (0, max_k_dist) and
(number_of_points/2, 0). We use it to compute the diUerent Eps values

In Figure 6.4, the black box indicates the range where we select the diUerent Eps values.
This range is is shown in the inner plot where the point corresponding to Eps10 is the point
lower bound computed using the distances to the blue line, and the rest of Epsi values
correspond to the selected range. It is important to note that we never use as Eps the sorted
k-dist corresponding to the Vrst point, the maximum value, because it tends to provoke an
over-aggregation when merging the clusters.

6.3. Aggregative Cluster ReVnement results

In this section we demonstrate the utility of the Aggregative Cluster ReVnement algorithm
in two aspects. First, and most important, its ability to capture the desired SPMD struc-
ture of parallel applications even when the data present diUerent densities, surpassing the
structure detection DBSCAN provides. Second, the information of about the the hierarchical
formation of the clusters detected using the reVnement tree and the intermediate partitions
it produces.

6.3.1. SPMD structure detection

We present the computation structure detected in two production class applications by using
the Aggregative Cluster ReVnement algorithm. These examples illustrate the ability of the
Aggregative Cluster ReVnement to capture the desired SPMD structure of these applications
even when they show diUerent densities in the data space of the performance metrics used. In
addition, we compare the detected structure of each application to the structures obtained by
using DBSCANwith diUerentEps values. These comparisons reWect how the new algorithm
we propose is able to overcome the DBSCAN limitations observed.
We want to remark that to obtain the computation structures using the Aggregative

78

6.3. Aggregative Cluster ReVnement results

(a) Scatter-plot of discovered clusters

(b) Clusters time-line distribution

Figure 6.5.: Computation structure detection of Hydro solver, using DBSCAN cluster al-
gorithm with the parametersMinPoints = 10 and Eps = 0.0200

Cluster ReVnement, we just provide a single parameter N , the number of reVnement steps.
This parameter was always set to 10. As opposite, when using DBSCANwe need to Vne-tune
the Eps parameter by running several times the algorithm, so as to detect the computation
regions that clearly reWect the SPMD structure.

Hydro Solver

The application selected for the Vrst example is the Hydro Solver. In this example we use the
same data set we presented in Figure 6.1 to illustrate the problem of DBSCAN when having
a dataset with multiple densities problem.
In Figure 6.5 we present the results obtained applying DBSCAN with the parameters

MinPoints = 10 and Eps = 0.0200. We can see in the plot 6.5a that the four clouds inside
the black box have been detected as four diUerent clusters. On the other hand, the cloud
inside the blue box contains two Clusters, 8 (orange) and 9 (light blue), and high number
of noise points (brown points). Observing the computation structure these clusters provide
(time-line 6.5b) we detect that the clusters contained in the blue box reWect pure SPMD re-
gions at the end of the time-line while the clusters inside the blue box clusters appear in the
initial section of the time-line not reWecting the actual SPMD behaviour.

79

6. Automatization of the Structure Detection

(a) Scatter-plot of discovered clusters

(b) Clusters time-line distribution

Figure 6.6.: Computation structure detection of Hydro solver, using DBSCAN cluster al-
gorithm with the parametersMinPoints = 10 and Eps = 0.0425

To capture the variability of the cloud inside the blue box we need to increase the Eps
to 0.0425. The results of using this Eps are contained in Figure 6.6. We see in the scatter
plot 6.5a that this cloud is detected as single Cluster 6 (purple). Unfortunately, the higher
value Eps provokes an over-aggregation of the clouds in the black box. In this plot Clusters
3 and 4 of the previous analysis now are merged in Cluster 1. Looking at the time-line 6.6b,
we conVrm these observations: in the initial section of the time-line we can see the SPMD
region represented by the Cluster 9 (purple), while the four SPMD regions detected in the
previous example, now are depicted as just three regions.
Applying the Aggregative Cluster ReVnement to this performance data, we obtain the

results depicted in Figure 6.7. We can see in the plot 6.7a how the algorithm detected as
four diUerent clusters the clouds present in the black box and a as single cluster the cloud
inside the blue box. With the time-line 6.7b we can conVrm that all SPMD regions have been
clearly distinguish, surpassing the results obtained with DBSCAN.

Weather Research Forecast (WRF)

For this second example, we used the Weather Research Forecast (WRF) application, a
weather simulator. More information about this application is detailed in chapter 9. We

80

6.3. Aggregative Cluster ReVnement results

(a) Scatter-plot of discovered clusters

(b) Clusters time-line distribution

Figure 6.7.: Computation structure detection of Hydro solver, using Aggregative Cluster Re-
Vnement algorithm

81

6. Automatization of the Structure Detection

(a) Scatter-plot detail

(b) Time-line zoom

Figure 6.8.: Detailed results of a DBSCAN cluster analysis of same phases present in Fig-
ure 6.9 of WRF application. The parameters used were MinPoints = 4 and
Eps = 0.0470

used a small execution of 16 tasks.
In the diUerent the scatter plots used to illustrate this example, we only present the re-

gions of the dataset where DBSCAN cannot detect correctly the diUerent clouds while the
Aggregative Cluster ReVnement can. In the application time-lines we only show a detail of
the whole execution where these clusters appear, using the grey colour to mark those CPU
bursts not interesting in the study.
Figure 6.8 contain the results obtained using DBSCANwithEps = 0.0470 andMinPoints =

4. The scatter plot 6.8a present three diUerent clusters. Cluster 3 (red) appears at bottom, and
merges diUerent clouds within the same range of instructions. Cluster 4 (green) and Cluster
6 (purple) also appear in the same range of instructions, but have not been merged. Looking
at the time-line 6.8b, we see that Cluster 3 detects a clear SPMD phase. Clusters 4 and 6 are
two parts of the same phase, hiding SPMD pattern.
In a conVguration of DBSCAN we use the parameter Eps = 0.0896, so as to merge these

two clusters, 4 and 6, that represent the same SPMD phase. Figure 6.9 presents the results of
this experiment. As can be seen in plot 6.9a, instead of the desired merges, DBSCAN merged
Clusters 3 and 4 of the previous experiment into Cluster 1 (light green), while Cluster 6 of
previous experiment, now is detected as Cluster 2 (yellow). The time-line 6.9b reWects that

82

6.3. Aggregative Cluster ReVnement results

(a) Scatter-plot detail

(b) Time-line zoom

Figure 6.9.: Detailed results of a DBSCAN cluster analysis of WRF application. The paramet-
ers used wereMinPoints = 4 and Eps = 0.0896

the two diUerent SPMD phases detected in previous experiment now are just detected as a
single one, Cluster 1, and Cluster 2 groups the tasks that disturb the SPMD pattern.
Using the Aggregative Cluster ReVnement algorithm, we obtain the results present in

Figure 6.10. The scatter plot 6.10a shows that the algorithm detected three clusters: 9 (pale
orange), 22 (turquoise) and 31 (dark green) 1. We can see that this algorithm was able to
merge the the clusters where DBSCAN failed. But it is more remarkable that it was also
capable to separate in two diUerent clusters the individuals in the bottom cloud. Checking
the time-line 6.10b we can see that the three clusters represent three diUerent SPMD phases.
This detection could have never been possible using DBSCAN. As we have seen using a

smallEps value, DBSCAN separated in diUerent clusters sub-SPMD structures. On the other
hand, using a higher Eps, DBSCAN merged clusters that represent the SPMD regions, but
was still unable to merge a cluster that not reWects the SPMD pattern.

6.3.2. Study of the reVnement tree

Even the Aggregative Cluster ReVnement algorithm was design to overcome the DBSCAN
limitations, the reVnement tree it produces oUers us an interesting information hint to un-

1We did not change the cluster numbering, for this reason we present these high cluster identiVers

83

6. Automatization of the Structure Detection

(a) Scatter-plot detail

(b) Time-line zoom

Figure 6.10.: Detailed results of the Cluster Aggregative ReVnement of the same phases of
WRF application presented in Figures 6.9 and 6.8

84

6.3. Aggregative Cluster ReVnement results

derstand how the diUerent clusters it generates are formed. In this section we study the three
diUerent cluster formations we observed the most in our experiments with the algorithm.
For the present example we applied the Aggregative Cluster ReVnement, usingN = 10 to

the CPU bursts data extracted from an execution of the Versatile Advection Code (VAC) [103]
using 128 tasks. VAC is a hydrodynamic and magneto-hydrodynamic simulation software
used in astrophysics.
We illustrate each formation pattern by observing the structure of one of the clusters

present in the Vnal partition. For each cluster we present the following information:

• The section of the reVnement tree that contains the formation of the cluster we want
to study. In other word, the sub-tree of the reVnement tree where the given cluster is
the root. In the examples we usually refer to this sub-tree simply as tree.

• The scatter plots of intermediate partitions of the algorithm showing of the diUerent
sub-clusters the cluster studied contains. These intermediate partitions are selected by
observing the clusters’ relationships expressed in the reVnement tree at the diUerent
levels.

• The time-lines of the clusters distribution corresponding to the intermediate partitions
previously selected.

Comparing this three diUerent outputs, we can stablish a relationship between the forma-
tion pattern of the given cluster and the internals of the SPMD phase it represents.

Formation pattern 1: clusters reVned from noise

This cluster formation pattern is the most observed in the diUerent analyses we performed.
It consists of a cluster that appears in the initial iterations of the algorithm and absorbs
individuals previously classiVed as iterations proceed.
In Figure 6.11 we can observe the tree corresponding to the formation of Cluster 1 of VAC.

It is an small tree, as it only presents two iterations of the algorithm. In Vrst iteration, Cluster
1 got an score of 99.3%. It required an small increase of the Eps so as to be perfectly detected
in the second iteration.
If we check the plots of these two iterations, Figure 6.12, we can observe that using the

small Eps generated by the Aggregative Cluster ReVnement, plot 6.12a, the algorithm de-
tected almost the whole cloud as Cluster 1, except for a small region at top right, which was
detected as noise. At second iteration, using a slightly higher Eps, these few individuals
previously detected as noise now where absorbed this cluster, as can be seen in plot 6.12b.
Figure 6.13 contain the time-lines of the SPMD region detected by Cluster 1 at this two

iteration, showing one repetition of this phase. We can observe that in the Vrst iteration,
time-line 6.13a, the SPMD regions was detected nearly perfect, and just two of the tasks
where detected as noise. In other repetitions of this SPMD phase we observed similar situ-
ations. In time-line 6.13b, we observe that the SPMD region is perfectly detected.
With respect to the SPMD structure detected, this formation pattern indicates that the

SPMD region presented a strong core behaviour, i.e. high number of CPU bursts close to-
gether detected in the initial iteration, while some burst it contains present some variability

85

6. Automatization of the Structure Detection

It. 1 Eps = 0.0125708

It. 2 Eps = 0.0133184

NOISE: 7.83854%

1: 100% Noise: 7.63561%

1: 99.2969%

Figure 6.11.: ReVnement tree depicting the formation pattern of Cluster 1 of VAC application

(a) First iteration (b) Iteration 2

Figure 6.12.: VAC Cluster 1 formation scatter plots. This plots correspond to the two itera-
tions of the reVnement tree of Figure 6.11.

(a) First iteration (b) Iteration 2

Figure 6.13.: Cluster 1 distribution time-line of iterations iterations presented in Figure 6.11.
The time-lines contain one repetition of the SPMD region detected

with respect to this core. The number of bursts that present this variability is not high enough
or close enough to consider them as clusters.

86

6.3. Aggregative Cluster ReVnement results

Formation pattern 2: clusters merges

This is the most interesting formation of clusters when using the Cluster Aggregative Re-
Vnement, corresponding to those clusters that appear as a merge of two or more cluster at
previous levels. The merge of clusters reWects that the resulting computation region shows
some dispersion along the bursts it contains. This dispersion is captured in the internal
sub-clusters with less variability.
In Figure 6.14 we can observe the tree corresponding to the formation of Cluster 4 of

VAC. This tree contains ten iterations the algorithm executed, as the formation of the cluster
required the highest Eps value to be completely merged, to obtain a perfect cluster score.
In the tree we can see that in the Vrst iteration, when using the lowest value of Eps, the
individuals detected as Cluster 4 were separated in up to 6 clusters (4, 6, 7, 8, 9 and 10)
and also noise points. Next, at further iterations/diUerent levels of tree, this initial clusters
merged so as to obtain the deVnitive one. For example, in level 4, Clusters 8 (light orange)
and 9 (electric blue) merged. Is it interesting to note that the cluster numbering is generated
at Vrst iteration according to the amount of computation time each cluster aggregates, as in
previous chapters, lower numbers indicates more aggregated computation time. In further
levels, the clusters resulting from merges take the number of the parent with lower number.
Figure 6.15 presents the scatter plots of intermediate partitions of the data obtained at

Vrst level, initial Eps, and those iterations where the cluster algorithm merged two or more
clusters, detected by observing the reVnement tree. This plots show how the initial 6 clusters
mentioned, plot 6.15b, starts merging depending on their distance and density, as the al-
gorithm increases theEps, reWecting the hierarchical formation we mentioned in point 6.2.1.
Finally, Figure 6.16 we can see the clusters obtained from the partitions presented in the

previous plots conform internal sections of a SPMD region. For example, in the Vrst iteration,
time-line 6.16a, it is clear that this sections correspond to ranges of consecutive tasks that
present some variability on its duration inside the Vnal SPMD phase represented by Cluster
4.
In contrast to the previous formation pattern, in this case, the number of CPU bursts that

present the variability is high enough to be detected independently, pointing that they could
be taken into account for further analysis. For example, the SPMD region represented by
Cluster 4 has a temporal imbalance, as can be seen in the time-lines of Figure 6.16. Thanks
to the plots of Figure 6.15, the imbalance of each of the groups can be quantiVed in terms of
instructions and IPC. This is a valuable information to perform a deeper analysis to explain
what are the causes of the imbalance observed and how can be solved.

87

6. Automatization of the Structure Detection

It. 1
 E

p
s =

 0
.0

1
2

5
7

0
8

It. 2
 E

p
s =

 0
.0

1
3

3
1

8
4

It. 3
 E

p
s =

 0
.0

1
4

3
1

1
1

It. 4
 E

p
s =

 0
.0

1
5

2
9

3
6

It. 5
 E

p
s =

 0
.0

1
6

7
1

4
1

It. 6
 E

p
s =

 0
.0

1
8

5
4

7
1

It. 7
 E

p
s =

 0
.0

2
0

3
9

3
9

It. 8
 E

p
s =

 0
.0

2
3

1
4

6
8

It. 9
 E

p
s =

 0
.0

2
5

3
7

6
2

It. 1
0

 E
p
s =

 0
.0

3
0

3
4

3
1

N
O
IS
E

N
O
IS
E

4
: 3

1
.2

5
%

4
: 3

1
.2

5
%

6
: 1

4
.9

2
1

9
%

6
: 1

4
.9

2
1

9
%

7
: 1

4
.0

6
2

5
%

7
: 1

4
.0

6
2

5
%

8
: 1

4
.0

6
2

5
%

8
: 1

4
.0

6
2

5
%

9
: 1

4
.0

6
2

5
%

9
: 1

4
.0

6
2

5
%

1
0

: 1
0

.1
5

6
2

%

1
0

: 1
0

.1
5

6
2

%

N
O
IS
E

6
: 1

5
.0

7
8

1
%

4
: 3

1
.2

5
%

7
: 1

4
.0

6
2

5
%

8
: 1

4
.0

6
2

5
%

9
: 1

4
.0

6
2

5
%

N
O
IS
E

4
: 3

1
.4

8
4

4
%

6
: 1

5
.9

3
7

5
%

7
: 1

4
.0

6
2

5
%

8
: 2

8
.1

2
5

%

1
0

: 1
0

.1
5

6
2

%

1
0

: 1
0

.1
5

6
2

%

N
O
IS
E

4
: 4

7
.6

5
6

2
%

8
: 2

8
.1

2
5

%
7

: 1
4

.0
6

2
5

%
1
0

: 1
0

.1
5

6
2

%

N
O
IS
E

4
: 4

7
.6

5
6

2
%

8
: 2

8
.1

2
5

%
7

: 1
4

.0
6

2
5

%
1
0

: 1
0

.1
5

6
2

%

N
O
IS
E

4
: 6

1
.7

1
8

8
%

8
: 2

8
.1

2
5

%
1
0

: 1
0

.1
5

6
2

%

N
O
IS
E

4
: 6

1
.7

1
8

8
%

8
: 2

8
.1

2
5

%
1
0

: 1
0

.1
5

6
2

%

N
O
IS
E

4
: 8

9
.8

4
3

8
%

1
0

: 1
0

.1
5

6
2

%

N
O
IS
E

4
: 1

0
0

%

Figure
6.14.:R

eVnem
enttree

depicting
the

form
ation

pattern
ofC

luster
4
ofVA

C
application

88

6.3. Aggregative Cluster ReVnement results

(a) First iteration (b) Iteration 4

(c) Iteration 5 (d) Iteration 7

(e) Iteration 9 (f) Iteration 10

Figure 6.15.: VAC Cluster 4 formation scatter plots. These plots correspond to the the Vrst
iteration of the algorithm and iterations observed in the reVnement tree of Fig-
ure 6.14, where the Aggregative Cluster Algorithmmerged two or more clusters.

89

6. Automatization of the Structure Detection

(a) First iteration (b) Iteration 4

(c) Iteration 5 (d) Iteration 7

(e) Iteration 9 (f) Iteration 10

Figure 6.16.: Cluster 4 distribution time-line of iterations presented in Figure 6.15. The time-
lines contain one repetition of the SPMD region detected

90

6.3. Aggregative Cluster ReVnement results

Formation pattern 3: sequence based merge of clusters

The third formation pattern is an special case of the cluster merge. It illustrates case illus-
trate the eUect of the sequence based merge of clusters that acts as a post-process of the
algorithm, the routine named ProcessLastPartition in the Algorithm pseudo-code. This
process merges those clusters that are not close enough in the data space, but represent sub-
structures into a single SPMD phase.
The sequence based merge uses the aligned sequences of clusters produced by the use of

the Cluster Sequence Score criterion in the last step of the algorithm. Traversing the these
sequences, it detects the clusters that appear simultaneously along the execution. Those
groups of clusters that always appear simultaneously are merged, independently from its
geometrical description.
An example of this formation pattern is illustrated by the reVnement tree of Figure 6.17.

We see in this tree that Cluster 5 appears in the Vnal level by the merge of two diUerent
clusters of level tenth, 5 and 11, where the highest Eps was used.
We can also observe in the reVnement tree that in previous level, the deVnitive Cluster 5 is

also decomposed in a series of sub-cluster, but for this example we want two focus of the last
two levels of the tree. The scatter plots of the partitions corresponding to these two levels are
depicted in Figure 6.18. Scatter plot 6.18a shows that the algorithm did not merge Clusters 5
and 11 using the highest Eps due to the empty band, with null density, that separates both
clouds. Thanks to the sequence based merge, we obtain the partition corresponding to the
plot 6.18b where these two regions are merged.
Finally, Figure 6.19 shows that the two clusters that where separated by the empty band

correspond to two groups of tasks, time-line 6.19a. These two groups present a diUerence in
terms of duration, but are in fact two inner parts of the same SPMD phase, see time-line 6.19b.
In terms of analysis, this formation pattern diUers from the previous in the strong vari-

ability across the metrics to apply the cluster analysis. So the sub-SPMD structures they
represent present a higher imbalabce.

91

6. Automatization of the Structure Detection

It. 1
 E

p
s =

 0
.0

1
2

5
7

0
8

It. 2
 E

p
s =

 0
.0

1
3

3
1

8
4

It. 3
 E

p
s =

 0
.0

1
4

3
1

1
1

It. 4
 E

p
s =

 0
.0

1
5

2
9

3
6

It. 5
 E

p
s =

 0
.0

1
6

7
1

4
1

It. 6
 E

p
s =

 0
.0

1
8

5
4

7
1

It. 7
 E

p
s =

 0
.0

2
0

3
9

3
9

It. 8
 E

p
s =

 0
.0

2
3

1
4

6
8

It. 9
 E

p
s =

 0
.0

2
5

3
7

6
2

It. 1
0

 E
p
s =

 0
.0

3
0

3
4

3
1

S
E

Q
U

E
N

C
E

 M
E

R
G

E

N
O
IS
E

: 7
.8

3
8

5
4

%

N
O
IS
E

: 7
.6

3
5

6
1

%
5

: 6
8

.5
1

5
6

%
1
6

: 7
.0

3
1

2
5

%
1
8

: 4
.0

2
3

4
4

%

5
: 6

8
.3

5
9

4
%

1
1

: 2
0

%

1
1

: 2
0

%

1
6

: 6
.6

7
0

6
7

%
1
8

: 3
.5

9
3

7
5

%

N
O
IS
E

: 7
.0

4
5

9
9

%
5

: 6
8

.6
7

1
9

%
1
6

: 4
.8

0
4

6
9

%
1
1

: 2
0

%
2
1

: 6
.6

7
0

6
7

%

N
O
IS
E

: 5
.8

7
6

3
6

%
5

: 6
9

.3
3

5
9

%
1
1

: 2
0

.0
7

8
1

%
1
6

: 9
.4

9
2

1
9

%
2
3

: 2
.9

6
8

7
5

%

N
O
IS
E

: 5
.8

3
9

8
4

%
5

: 6
9

.8
0

4
7

%
1
6

: 9
.6

4
8

4
4

%
2
3

: 3
.1

2
5

%
1
1

: 2
0

.0
7

8
1

%

N
O
IS
E

: 5
.3

5
1

5
6

%
5

: 7
0

.0
3

9
1

%
1
6

: 9
.8

0
4

6
9

%
2
3

: 4
.0

6
2

5
%

1
1

: 2
0

%

N
O
IS
E

: 4
.5

1
1

7
2

%
5

: 7
3

.3
5

9
4

%
1
6

: 9
.8

4
3

7
5

%
1
1

: 2
0

%

N
O
IS
E

: 3
.1

6
5

0
6

%
5

: 7
3

.6
7

1
9

%
1
1

: 2
0

.8
5

9
4

%

N
O
IS
E

: 2
.0

1
2

3
1

%
5

: 7
3

.9
8

4
4

%
1
1

: 2
2

.7
3

4
4

%

N
O
IS
E

: 1
.3

2
5

7
6

%
1
1

: 2
3

.7
1

0
9

%
5

: 7
3

.9
8

4
4

%

5
: 9

7
.6

9
5

3
%

Figure
6.17.:R

eVnem
enttree

depicting
the

form
ation

pattern
ofC

luster
5
ofVA

C
application

92

6.3. Aggregative Cluster ReVnement results

5.00⋅107

5.50⋅107

6.00⋅107

6.50⋅107

7.00⋅107

7.50⋅107

8.00⋅107

8.50⋅107

9.00⋅107

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

In
st

ru
ct

io
n
s

C
o
m

p
le

te
d

IPC

(a) Last iteration (10)

5.00⋅107

5.50⋅107

6.00⋅107

6.50⋅107

7.00⋅107

7.50⋅107

8.00⋅107

8.50⋅107

9.00⋅107

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55

In
st

ru
ct

io
n
s

C
o
m

p
le

te
d

IPC

(b) Sequence based merge

Figure 6.18.: VAC Cluster 4 formation scatter plots. These plots correspond to the the two
bottom levels of the reVnement tree of Figure 6.17.

(a) Last iteration (10) (b) Sequence based marge

Figure 6.19.: Cluster 5 distribution time-line of partitions presented in Figure 6.18. The time-
lines contain one repetition of the SPMD region detected.

93

Part III.

Practical Uses

95

7. Performance Data Extrapolation

In some cases, when analysing an application the availability of the performance data is
limited. The case of performance hardware counters is paradigmatic: as they are part of

the hardware resources usually its availability is restricted by design so as not to occupy or
interfere with regular purpose of the hardware element they account.
In this chapter we present a methodology to maximize the performance information ob-

tained from a single run of a parallel application. It relies in the structural detection per-
formed by the cluster analysis so as to extrapolate the average value of a performance hard-
ware counters set, larger than the oUered by the processor.

7.1. Performance Data Extraction Limits

It is obvious to say that more performance issues can be detected as more information is
made available. For example, if we want to know the memory behaviour of our application,
we will require information regarding memory accesses or cache hits and misses, meanwhile
if we target on how the computational part of application behaves, data regarding to Vxed
point and Woating point operations will be essential.
Hence performance hardware counters have become an invaluable aid to performance

analysis. However, as pointed by Sprunt in [104], there are always limitations on the total
amount of counters that can be read at the same time and the combinations of counters
available. For example, current processors range the available registers used to performance
accounting from 4 to 8, and the way to access them are in preVxed groups of counters, deVned
at processor design.

7.2. Extrapolation Methodology

The performance data extrapolation process consists of determining the average value of
a large set of hardware counter groups for each structural region of the application. The
deVnitions of the structural regions can be done by multiple methods, but in the scenario of
this thesis we use the SPMD phases obtained by using cluster analysis. It is an extrapolation
because the number of groups computed is larger than the number of registers available in
the processor that can be read simultaneously. In addition, the resulting set can contain two
mutually exclusive counters, coming from combinations Vxed by the processor design.

97

7. Performance Data Extrapolation

7.2.1. Performance hardware counters multiplex

The basic idea of this method is to multiplex of the hardware counters groups read during
the application execution to account them in the diUerent structural regions deVned.
This approach has been widely used in the literature such as by the works by May [105] or

the hpmcount tool [106] by IBM. In these two works, the results are a linear projection of the
multiplexed counters values for the whole (sequential) application execution. Further works
such as [107, 108], proposed diUerent projection techniques so as to capture the time-varying
behaviour of the counters. The granularity of projected values in these two works was
deVned by the sampling frequency used to read the counters. This fact provoked relatively
high errors in some extrapolations.
Our methodology diUers from [105] and [106] as it characterize much more Vner regions

of the application, the SPMD regions. On the other hand, our target is totally diUerent to the
works presented in [107] and [108], as we do not study the time-varying behaviour of the
counters, but the behaviour of the diUerent SPMD phases in terms of these metrics.
In addition, we can take advantage of the fact that we analyse parallel applications, in

order to tune how we multiplex the data acquisition. In this way, we propose three diUerent
multiplexing strategies of the hardware counter groups: Vrst, space multiplexing that consists
of assigning a diUerent hardware counters group to each task of the parallel application;
second, time multiplexing, where all tasks read the same group of counters at the same time,
but the group changes with a user deVned frequency; and third, time-space multiplexing, a
combination of both.

7.2.2. Extrapolation Steps

In brief the extrapolation methodology acts in three steps: a data acquisition where diUerent
counters groups are multiplexed; a process to deVne the diUerent structural regions, the
cluster analysis in our case; and Vnally a projection of the values to describe each region.

Data Extraction

First decision before executing the application and extracting the data is which groups of
counters do we need. Even more important than the selection, is to ensure that all groups
have a common subset of counters so as to guarantee that the cluster analysis could be
computed for all points extracted. This fact depends on the processor design, but all major
processor vendors today include Completed Instructions and Cycles as Vxed values in all
possible combinations of counters in the available sets.
In order to have measures of all groups for all application phases or regions, then we

multiplex the read of all groups during the application execution. We already mentioned
that we can make use of three diUerent multiplexing schemes: time multiplexing, space
multiplexing and time-space multiplexing.

98

7.2. Extrapolation Methodology

(a) Instructions vs. IPC (b) Main memory accesses vs. L2 data cache acessess

(c) Stores vs. Loads (d) Integer instructions vs. Floating point instruc-
tions

Figure 7.1.: Example of a clustering of GAPgeofem application using the Aggregative Cluster
ReVnement with Instructions Completed and IPC. Upper left plot depicts the met-
rics used by the clustering algorithm. The rest of plots show the clusters found in
terms of other pairs of metrics not used during the cluster analysis

Cluster Analysis

Having read the desired data, then we apply the Aggregative Cluster ReVnement to the com-
mon metrics that appear in all groups. As demonstrated, Completed Instructions and IPC
produce a good computation characterization, but the most interesting fact is the represent-
ativity of these counters. In other words, the clusters found using these two metrics detect
groups present when using other metrics. In Figure 7.1 we can see the results of the Ag-
gregative Cluster ReVnement to GAPgeofem application using the mentioned combination
of metrics, plot 7.1a. Rest of the plots depict show the groups found using other metrics com-
biations to represent the CPU bursts. Except for the combination of Main Memory Lines and
L2 Lines, plot 7.1b, where Cluster 3 (in red) got divided, the clusters found using Completed
Instructions and IPC represent isolated groups in the diUerent metrics.
After applying the cluster analysis, we obtain is a set of clusters that represent diUerent

99

7. Performance Data Extrapolation

SPMD regions of the application. On each cluster there must be points that include inform-
ation from the diUerent counters groups multiplexed.
To guarantee this, the only requirement would be that a suXciently large run is made

such that several acquisitions with diUerent hardware counter sets are made for the relevant
computation bursts when using time multiplexing. In SPMD codes the space multiplexing
approach can avoid running the application for a long time, but it is most advisable to use the
combination of both. Space multiplexing is able to capture the variances of the intra-nodes,
and time multiplexing focuses on the variances across nodes, hence the combination of both
results in a better way to guarantee that these variances are considered when extrapolating
the counters values.

Data Projection

Finally, once we have the points divided into clusters, the Vnal step consists of computing
the average of all counters. That is just a weighted average of each counter for each cluster.
In this way, each point contributes its non common counters to the characterization to such
cluster.
Obviously, for a given cluster, the average of some of the metrics will be computed using

less individuals than others. For example, the average value of Completed Instructions and
Total Cycles will be computed using all individuals on each, as these counters appear in all
groups, not the case for thosethose counters that appear in few groups. While it will be
reasonable to study the potential error these metrics computed with less individuals suUer,
the measurements we present in section 7.3 suggest the errors observed are related to those
metrics that account events that occur few times.

7.3. Validation

The perform the validation of the extrapolation methodology presented, we followed these
steps:

1. First, we deVned a set of hardware counters that are present in diUerent counters
groups.

2. We ran each application analysed three times, using the three diUerent multiplexing
of the counters groups required to gather the data.

3. We applied the extrapolation methodology to data obtained using the three diUerent
multiplexing schemes. At this point, we have three diUerent projected or extrapolated
values for each counter and cluster detected.

4. Next, we run the application as many times as counters groups we require, gathering
the information of a single group on each execution, without using multiplexing.

5. We applied a cluster analysis to each non-multiplexed execution and computed the
actual values of each metric and cluster.

100

7.3. Validation

6. Finally, for each metric and cluster, we compared the three extrapolated values ob-
tained applying the extrapolation methodology to actual values.

To perform this comparison, it strictly required that all clusters represent the same regions
across all executions of the application we use to validate the technique. To assess this
requirement we compared manually the plots and application time-lines on each application
run.
To quantify the diUerence between actual and extrapolated values on each case, we use a

weighted error metric described below.

7.3.1. Experiments data

All the experiments presented here were carried on in an IBM JS21 cluster, using PowerPC
970MP processors. Table 7.1 contains the list of all counters we used as well as the description
of them provided by PAPI command papi_native_avail and the group deVned by the
vendor where each cluster is available. We select these counters because they can be used
later to build a CPI breakdown model described in [109, 110]. As a result, we obtained a set
of 6 diUerent counters groups. In this way, we need to run each application up to 9 times
to perform the comparisons: three using the diUerent multiplexing schemes and 6 more to
obtain the required counters groups without multiplexing them.
We used four applications to perform the validation of the extrapolation technique. First

one, PEPC (described in chapter 9) was executed using 32 tasks. The rest of applications were
selected from the SPECMPI2007 benchmark suite: TERA_TF, a 3D eulerian hydrodynamics
application; GAPgeofem, a Vnite-element for thermal conduction; and ZEUS-MP/2, an as-
trophysical Wuid dynamics simulator. These three applications were executed using 16 tasks.
In all cases, we analysed the group clusters that aggregate more than 90% of the application

total computation time.

7.3.2. Weighted error

We observed an interesting fact that occurred while performing the validation experiments:
using the classical relative error metric, those clusters that accounted events that appear
in very few occasions produced the highest error values. For example, the counter that
measures the processor cycles stall due to an instruction cache miss, a uncommon situation
in the applications we analysed, produced high relative errors the between actual and the
projected values. That was caused by the small absolute Vgures these counters reach, where
an small variation of the projected value produced a big relative error.
So as to avoid this misleading information the relative error metric could provide, we

propose a weighted error metric to validate the extrapolation technique. This error measures
the diUerences between the actual and extrapolated value of a counter in a given cluster,
taking into account the counter relevance in such cluster.
We deVne the relevance of a counter in a cluster as its relative value with respect to actual

value of total cycles counter or completed instructions counter in such cluster. Using total
cycles or completed instructions depends of the semantics of the counter itself: for example,

101

7. Performance Data Extrapolation

Counter Name Description Groups

1 PM_CYC Processor cycles All

2 PM_GRP_CMPL A group completed. Microcoded in-
structions that span multiple groups
will generate this event once per
group

1

3 PM_GCT_EMPTY_CYC The Global Completion Table is
completely empty

1, 2

4 PM_GCT_EMPTY_IC_MISS GCT empty due to I cache miss 2

5 PM_GCT_EMPTY_BR_MPRED GCT empty due to branch mispre-
dict

2

6 PM_CMPLU_STALL_LSU Completion stall caused by LSU in-
struction

3

7 PM_CMPLU_STALL_REJECT Completion stall caused by reject 4

8 PM_CMPLU_STALL_ERAT_MISS Completion stall caused by ERAT
miss

3

9 PM_CMPLU_STALL_DCACHE_MISS Completion stall caused by D cache
miss

4

10 PM_CMPLU_STALL_FXU Completion stall caused by FXU in-
struction

5

11 PM_CMPLU_STALL_DIV Completion stall caused by DIV in-
struction

5

12 PM_CMPLU_STALL_FPU Completion stall caused by FPU in-
struction

6

13 PM_CMPLU_STALL_FDIV Completion stall caused by FDIV or
FQRT instruction

6

14 PM_CMPLU_STALL_OTHER Completion stall caused by other
reason

4

15 PM_INST_CMPL Number of Eligible Instructions that
completed

All

Table 7.1.: List of all hardware counters used in the experiments to verify the extrapolation
technique

102

7.3. Validation

the relevance of the counters that measure processor stall cycles caused by a given reason is
computed using total cycles, while the relevance of the counters that measure the diUerent
types of instructions executed is computed using the completed instructions.
As a summary, the weighted error we deVne focus the evaluation of those counter that

obtain higher values, according to its relevance. We consider these counters more interesting
from the analyst point of view. For this reason, we use the weighted error metric more
appropriate to quantify the errors in the projection methodology.
In the experiments, with the exception of completed instructions, PM_INST_CMPL, all the

hardware counters we used (Table 7.1) relate to processor cycles stalled caused by diUerent
hardware elements. In this way, the counter relevance was computed by using the total
cycles counter value. In the case of completed instructions, we set its relevance to 100%
(relevance over itself). Obviously, total cycles also has a relevance of 100%.

7.3.3. Validation Results

In the Vrst experiments of the results we illustrate the issues described when using the re-
lative error metric. In Figure 7.2 we present the relative errors, the charts on left column,
and weighted errors, charts on right column, for each metric and cluster using the three ex-
trapolation schemes for PEPC application. In these plots, the X axis represent the diUerent
counters listed in table 7.1, while the Y axis is the respective error. In Figure 7.3 we present
the relevance of each counter and cluster with respect to cycles.
If we look at the charts containing the relative errors, 7.2a, 7.2c and 7.2e, we can see that

results for the vast majority of counters are low. Contrarily, few of them obtained high errors.
For example, the processor cycle stalls due to integer divisions (11) obtained a relative error
of 45% in Cluster 4 when using the space multiplexing scheme (chart 7.2a and the processor
cycle stalls due to Woating point divisions (13) had a relative error of -42% in the same cluster
when using the time multiplexing scheme (chart 7.2c).
Now, if we observe the relevance of these counters for the mentioned cluster in Figure 7.3,

what we can detect that their value is nearly 0%. In this way, the relative error does not reWect
an actual issue with the extrapolated value, as their relevance is negligible. This observation
is applicable to the rest performance counters available that present high relative errors.
Using the weighted error metric, depicted in charts 7.2b, 7.2d and 7.2f we totally avoid the

biased evaluation the relative error provides. The charts show that the performance extra-
polation methodology is able to correctly extrapolate the diUerent values, as the weighted
error is bounded between ±6%
In Figures 7.4, 7.5 and 7.6 present the charts of the weighted errors using the diUerent

multiplexing schemes with the applications TERA_TF, GAPgeofem and ZEUS-MP2 respect-
ively. As can be seen in these charts, the weighted errors are always bound between ±5%,
conVrming the accuracy of the extrapolation technique we present.

7.3.4. Multiplexing scheme selection

In the previous section we have not evaluated the quality of the diUerent multiplexing
schemes used. Here we discuss which approach is results the most interesting in terms

103

7. Performance Data Extrapolation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-60%

-40%

-20%

0%

20%

40%

60%

R
el

a
ti

ve
 E

rr
o

r

(a) Space Multiplexing Relative Errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-6%

-4%

-2%

0%

2%

4%

6%

W
ei

g
h

te
d

 E
rr

o
r

(b) Space Multiplexing Weighted Errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-60%

-40%

-20%

0%

20%

40%

60%

R
el

a
ti

ve
 E

rr
o

r

(c) Time Multiplexing Relative Errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-6%

-4%

-2%

0%

2%

4%

6%

W
ei

g
h

te
d

 E
rr

o
r

(d) Time Multiplexing Weighted Errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-60%

-40%

-20%

0%

20%

40%

60%

R
el

a
ti

ve
 E

rr
o

r

(e) Time-Space Multiplexing Relative Errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-6%

-4%

-2%

0%

2%

4%

6%

W
ei

g
h

te
d

 E
rr

o
r

(f) Time-Space Multiplexing Weighted Errors

Figure 7.2.: PEPC extrapolation errors for CPI breakdown model counters using diUerent
multiplexing strategies. Left column represents the relative error comparing
the extrapolation and the actual value from non-multiplexed execution. Right
column represents these errors weighted in terms of the relevance of each cluster
with respect to the total cycles on the non-multiplexed run

104

7.3. Validation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0%

20%

40%

60%

80%

100%

Cluster 1 Cluster 2 Cluster 3 Cluster 4

C
o

u
n

te
r

R
e
le

va
n

ce
Figure 7.3.: PEPC counters relevance with respect to Total Cycles counter

PEPC TERA_TF GAPgeofem ZEUS-MP2

Space multiplexing 0.14% 0.12% 0.32% 0.06%

Time multiplexing 0.35% 0.02% -0.09% 0.01%

Time-space multiplexing -0.11% 0.01% 0.19% 0.07%

Table 7.2.: Average value of weighted errors using diUerent multiplexing schemes

of the errors they produce.
If we look at the diUerent plots of weighted errors presented, it is diXcult to observe

high variations between the errors produced by the diUerent schemes metrics. To ease its
comparison, we present the average value of the weighted errors for each counter and cluster
in Table 7.2 obtained by using the diUerent schemes.
In this table, we observe that the schemes that produced the lowest errors where time

multiplexing and time-space multiplexing, both in two cases. This points that the variations
of the counters values are more likely to appear across the diUerent temporal periodicities
of the structural phases of the application than across the processors involved. Even the
numbers present in Table 7.2 are not very conclusive, we suggest using the time-space multi-
plexing scheme. This multiplexing scheme is able to capture the counters variability in both
dimensions.

105

7. Performance Data Extrapolation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5%

Cluster 1
Cluster 2

W
ei

g
h

te
d

 E
rr

o
r

(a) Space multiplexing weighted errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5%

Cluster 1
Cluster 2

W
ei

g
h

te
d

 E
rr

o
r

(b) Time multiplexing weighted errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5%

Cluster 1
Cluster 2

W
ei

g
h

te
d

 E
rr

o
r

(c) Time-space multiplexing weighted errors

Figure 7.4.: TERA_TF extrapolation errors of counters listed in Table 7.1 model counters us-
ing diUerent multiplexing schemes.

106

7.3. Validation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5%

Cluster 1
Cluster 2
Cluster 3
Cluster 4

W
ei

g
h

te
d

 E
rr

o
r

(a) Space multiplexing weighted errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5%

Cluster 1
Cluster 2
Cluster 3
Cluster 4

W
ei

g
h

te
d

 E
rr

o
r

(b) Time multiplexing weighted errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5%

Cluster 1
Cluster 2
Cluster 3
Cluster 4

W
ei

g
h

te
d

 E
rr

o
r

(c) Time-space multiplexing weighted errors

Figure 7.5.: GAPgeofem extrapolation errors of counters listed in Table 7.1 model counters
using diUerent multiplexing schemes.

107

7. Performance Data Extrapolation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5% Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9
Cluster 10

W
e
ig

h
te

d
 E

rr
o

r

(a) Space multiplexing weighted errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5% Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9
Cluster 10

W
e
ig

h
te

d
 E

rr
o

r

(b) Time multiplexing weighted errors

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
-5%

-3%

0%

3%

5% Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9
Cluster 10

W
e
ig

h
te

d
 E

rr
o

r

(c) Time-space multiplexing weighted errors

Figure 7.6.: GAPgeofem extrapolation errors of counters listed in Table 7.1 model counters
using diUerent multiplexing schemes.

108

7.4. A Use Case: construction of CPU breakdown models per cluster

7.4. A Use Case: construction of CPU breakdown models
per cluster

In Figure 7.7 we show an analysis model, left charts, and statistics characterization, right
chart, of the major cluster of TERA_TF and GAPgeofem. The information contained on
these charts has been extracted from a single run of each application.
The analysis model is a simpliVcation of the CPI breakdown mentioned previously, using

just Vve of the 15 counters extracted to improve its legibility. It shows the major stall causes
for each cluster. In brief, ‘Group Complete Cycles’ refers to those cycles when the processor
actually Vnishes instructions, ‘GCT Empty Cycles’ explains the stalled cycles due to re-order
buUer issues, for example branch miss-predictions, ‘LSU (Load-Store Unit) Stall Cycles’ are
those cycles stalled by memory issues, ‘FXU Stall Cycles’ and ‘FPU Stall Cycles’ are the
cycles stalled waiting to integer and Woating point computations respectively and, Vnally,
‘Other Stalls’ refers to stalls caused by situations not captured by the hardware counters.
The plots on the right column are a brief statistical description of some interesting com-

putational characteristics, as the percentage of the peak IPC (considering 4 as the maximum
IPC possible in a PowerPC 970), diUerent instructions mix (percentage of total instructions
that corresponds to memory ‘Memory Mix’, Woating point ‘FPU Mix’ and integer instruc-
tions ‘FXU Mix’), and also some numbers related to total duration, instructions per burst,
and number of bursts per cluster.
A good approach to understand the Vgure is comparing both plots of each application.

For example, in TERA_TF, both regions detected perform in the same way, having a IPC
around the 22% of the peak (metric A on sub-Vgure 7.7b), which is actually a good value for
this processor. In both cases, most of the stalls are caused by Woating point operations (CPI
breakdown 7.7a), but FPU Mix (metric D on chart 7.7b) is just around 16%. What is more, we
can see that Memory Mix (metric D on chart 7.7b) presents the highest values, around 20%.
These facts make that both clusters could be improved by trying to solve the dependencies
of Woating point data computations, and the access to the data structures that contain them.
Finally, we can also see that the only diUerence between both regions is that the Cluster 1
has less instructions per burst, but it appears four times more often than Cluster 2 (metrics
G and H on chart 7.7b)
Regarding GAPgeofem, we observe that Cluster 1 dominates the computing part, up to

50% of total time (metric F on chart 7.7d), having an IPC around 30% of the theoretical
peak. It is interesting to note that the frequency of this cluster is nearly 100 times bigger
than the rest of the clusters (metric G on chart 7.7d). In any case, this is a good situation,
because this cluster groups big computation bursts, which obtained the best performance
in the applications tested. So, in this case, developer/analyst should tackle the problems of
Cluster 2, because the rest of clusters represent a small amount of total time (metric G on
chart 7.7d). Cluster 2 is mainly dominated by memory stalls (LSU stalls on chart 7.7c). The
main recommendation here should be to analyse the memory access patterns of this cluster.

109

7. Performance Data Extrapolation

Cluster 1 Cluster 2
0%

20%

40%

60%

80%

100%

(a) TERA_TF CPI breakdown model

A B C D E F G H
0%

20%

40%

60%

80%

100%

Cluster 1
Cluster 2

(b) TERA_TF general computation statistics

Cluster 1 Cluster 2 Cluster 3 Cluster 4
0%

20%

40%

60%

80%

100%

Group
Complete
Cycles

GCT Empty
Cycles

LSU Stall
Cycles

FXU Stall
Cycles

FPU Stall
Cycles

Other Stalls

(c) GAPgeofem CPI breakdown model

A B C D E F G H
0%

20%

40%

60%

80%

100%

Cluster 1
Cluster 2
Cluster 3
Cluster 4

A. % peak IPC B. % Instr. Completed
C. Memory Mix D. FPU Mix
E. FXU Mix F. % Total Duration
G. % Inst.per Burst H. % Total Bursts

(d) GAPgeofem general computation statistics

Figure 7.7.: General CPI breakdown models of all applications presented in the paper. These
models are a general view of the major categories, not using all 15 counters ex-
trapolated to clarify its legibility. In all cases, they were computed the time-space
multiplexing extrapolation method

110

8. Information Reduction for
Multi-level Simulation

An important use of the structure detection based on clustering is to summarize the per-
formance information generated be a parallel application. In this chapter we present

methodology that uses this feature in a multi-level framework to simulate supercomputing
applications. A combination of a coarse-grain characterization of the application phases us-
ing a spectral analysis plus the Vne-grain characterization oUered by cluster analysis is able
to minimize the total amount of information used by a simulator, with no compromise of the
simulation quality.

8.1. Scenario

Researchers have widely used simulation tools to verify, analyse, and improve computer
systems. Simulation is used at diUerent levels of detail, depending on the particular target
system to study. The trade-oU between simulation speed and accuracy is always present in
these studies. In this area, no other current simulation infrastructure allows the simulation
of large-scale computing systems such as supercomputers at the same level of detail that our
methodology provides, without compromising the total simulation time.
Functional simulators emulate the target system’s behaviour, including the operating sys-

tem and the diUerent system devices (such as memory, network interfaces, and disks). These
simulators let designers verify system correctness and develop software before the system
has been built, but they can’t estimate the real system performance with the simulators.
Some examples are SimOS [111], QEMU [112], and SimNow [113].
Micro-architecture simulators model in detail the processor’s architecture and can estim-

ate the performance of an application with diUerent processor conVgurations. However,
these kinds of simulators normally don’t model the interaction between the architecture and
the operating system and other system devices, and they tend to be expensive in terms of
time. Researchers have used three major approaches to tackle this problem. The Vrst ap-
proach is using statistical sampling to reduce the volume of instructions to simulate, as SIM-
Point [114] and SMARTS [115] do. The second approach is working on the parallelization
of the simulator itself, such as in Proteus [116] or the more recent Graphite [117]. The third
approach is using FPGAs to implement the simulator itself (such as in RAMP Blue [118]),
reducing the simulation times but also limiting the Wexibility of the micro-architecture to
simulate.
Full system simulators, such as Simics [119] and COTSon [120], include the features of

functional and micro-architecture simulators at the cost of simulation time. COTSon can

111

8. Information Reduction for Multi-level Simulation

model a cluster supercomputer from the micro-architecture up to the operating system, but
it’s clearly oriented to hardware design, whereas our approach focuses on performance ana-
lysis of parallel applications.
Other authors have proposed simulation methodologies to evaluate the performance of

large-scale parallel applications [121, 122, 123]. Carrington et al. use the same network
simulator that we do, but the micro-architecture simulation is based on signatures of all
computation regions [121]. León et al. present a parallel network simulator combined with a
regular micro-architecture simulator [122]. They obtain good simulation speed-ups, but the
simulator parallelization adds new problems such as the high variability in the accuracy of
the results across diUerent runs. Neither approach uses any information reduction process
to reduce the simulation time, resulting in time-consuming simulations. Finally, Zheng et
al. focus on selecting the computation regions that drive the application execution [123],
as we also do. However, they require the intervention of an expert (that is, the application
developer) to describe the most important computation bursts, while in our project, that part
is automated.

Multi-level simulation

Information reduction

Full application
trace (1)

Phase
detection

Cluster
Analysis

Cluster
representatives (3)

Representatives
instruction traces

(5)

1/2 iterations
trace cut (2)

+ Clusters info.
(4)

Micro
architecture
simulator

Clusters
IPC ratios (6)

High-level
simulator

Full application
run-time

prediction (7)

Execution on real HW
+ MPI interposition library

Execution on
real HW

+ low-level
tracing

mechanism

Figure 8.1.: Simulation methodology cycle for a whole supercomputing application. Starting
with a trace of a parallel application (step 1), we produce a sub-trace (or trace
cut) containing information of just two iterations (step 2). A cluster analysis is
applied to the information of the computation regions present on this reduced
trace, and a set of representatives per cluster is selected (step 3), adding cluster
information to the trace cut (step 4). The set of representatives is traced (step 5)
and simulated using a low-level simulator to obtain the ratios on other possible
processor conVgurations (step 6). Finally, using a full-system-scale simulator,
we combine the communication information present in step 3 and the cluster
instructions per cycle (IPC) ratios (step 6) to predict the total runtime of the
whole application (step 7).

112

8.2. Methodology

8.2. Methodology

As a whole, the basic idea of the methodology we propose consists of combining two simu-
lators to predict the behaviour of message-passing parallel applications. We use a high-level
simulator to predict the network behaviour of the application and a micro-architecture sim-
ulator to predict the behaviour of the application computation regions. This combination of
simulators is to the approach presented in [121].
The main contribution of the methodology we propose is the the characterization the com-

putation regions. We dramatically reduce the required time to produce the full-application
prediction by simulating only the most representative CPU bursts of each computation re-
gion detected in the micro-architecture simulator, the most time consuming simulator we
use. We call this the information reduction process.
The top of Figure 8.1 depicts this information reduction process. It is decomposed into a

phase detection analysis, which can distinguish the iterations present in the parallel applic-
ations we work with, and the cluster analysis presented in previous chapters, which groups
detects the CPU bursts of an iteration that compose the diUerent computation phases. Finally,
a representative set of CPU bursts per each phase are selected.
Then, the selected CPU bursts are simulated at the micro-architecture level to obtain their

performance in the target machine to study. This information is provided to a high-level
application simulator that predicts the whole parallel application’s execution time. This
combination of two simulators with diUerent abstraction levels composes the multilevel sim-
ulation process, depicted at the bottom of Figure 8.1.
The combination of the information reduction process with the multi-level simulation

process permits software performance analysis beyond what current performance counters
would allow. Furthermore, it lets us predict the performance of an application running on
a future system for which no performance data can be used as a reference machine. All
these performance analyses can be done while maintaining high accuracy in performance
predictions and without needing exhaustive simulations.

8.2.1. The Information Reduction Process

As a whole, the information reduction process focuses on selecting the minimum number
of CPU bursts that represent the diUerent computation phases present in the application.
To start this process, we run the whole application we want to analyse to obtain a Paraver
application-level trace (Figure 8.1, step 1).

Phase Detection

The underlying idea of phase detection is that we can beneVt from the iterative nature of
high-performance computing (HPC) applications. In almost all HPC applications we Vnd
a periodic region composed by sets of computations and communications that follow an
iterative pattern, the application’s main loop. In this way, we can reduce the data to analyse
and simulate by selecting a representative segment of the whole application run that contains
few iterations of this main loop.

113

8. Information Reduction for Multi-level Simulation

(a) Phase detection analysis input data time-line

(b) Signal derived from input data. Red box marks the periodic region detected
by the DWT

(c) Zoom detail of the blue box of previous Vgure. Pink box marks an iterative
phase detected using the autocorrelation function

Figure 8.2.: Input data and the two stages of the phase detection analysis: periodic region
detection using the DWT and the iterative phase detection using the autocorrel-
ation

The phase detection is based on signals: we express an application’s behaviour in terms
of time-varying functions generated from diUerent performance metrics present in the trace.
Once we have obtained the signal, we apply to it the discrete wavelet transform (DWT). The
DWT is able to capture the values of the input signal’s frequencies and also the physical
location where those frequencies occur. This property let us Vnd the location of the periodic
region HPC applications contain, as these regions have a strong high-frequency behaviour
within the signal’s domain. In addition, the DWT gives an approximate value of the main
frequencies in each periodic execution phase.

Using an autocorrelation function with these main frequencies, we automatically detect
the the iterative pattern present in such periodic region detected. Assuming each periodic
region detected by the DWT has an iterative pattern of T seconds and since there are no
signiVcant diUerences between the repetitions of the pattern, it is possible to select several
such regions, notably simplifying the subsequent analysis in terms of the amount of data
that must be analysed.

In Figure 8.2 we illustrate the two steps of the phase detection process using the NPB BT
benchmark with 4 tasks. Time-line 8.2a presents the input data used by the DWT. In this

114

8.2. Methodology

time-line, X axis represent the time and Y axis represents the tasks involved in the parallel
execution. The colour expresses the duration of the CPU bursts, in a gradient from green
to blue, where black and orange represent those burst with duration below and above the
gradient intervals. Using this input data, we derive the signal 8.2b, which is used by the
DWT to detect the periodic region of the application, marked with a red box in this picture.
Finally, the signal presented in 8.2c corresponds a zoom of the region marked with a blue
box in signal 8.2b, where the pink box marks the iterative phase pattern detected by the
autocorrelation function.
At the end of this step we generate a sub-trace (or trace cut), which is a portion of the

original trace, containing information of n iterative phases of the periodic region. Typically,
using just one or two iterations of the main loop (Figure 8.1 , step 2) is enough to keep the
structure of the application clearly. In addition, this analysis also gives us the cut factor, so as
to approximate the application’s total runtime by multiplying it per the sub-trace duration.
We use this cut factor in the Vnal step of our methodology. (For further information on phase
detection, see previous work by [64])

Cluster Analysis and Representatives Selection

After selecting one or two iterations of the application, we must characterize the diUerent
CPU bursts present in these iterations. In this step of the information reduction process,
we identify the inner computation structure of each iteration by using the cluster analysis
techniques presented in previous chapters. This information is added to the trace cut, as a
pair of events, wrapping each computation burst (Figure 8.1, step 4).
After the CPU bursts characterization, we select a reduced number of representatives

from those regions detected (the clusters) that represent a signiVcant percentage of the ap-
plication’s execution time. Only these cluster representatives will be simulated at the micro-
architecture level. We consider the minimum number of clusters that cover more than 80
percent of the total execution time of the application —usually less than six clusters.
Selecting the cluster representatives implies two decisions: Vrst, select a small subset

of tasks (from 1 to 5) where representatives will be taken, and second, select the CPU
bursts themselves to be traced. Our experiments show that there is no signiVcant diUer-
ence between the selection schemes, so we chose the representatives at random.
This selection results in a reduced set of CPU bursts (no more than 10 in our validation

experiments) that precisely represent the diUerent computation behaviours in the application
trace. Furthermore, we also provide the exact location of these CPU bursts in the application
execution (Figure 8.1, step 3) in order to obtain the instructions trace needed to start the
second part of the methodology, the multi-level simulation process.

8.2.2. Multi-level Simulation

The parallel application’s simulation process comprises two steps with diUerent levels of
detail. Once the cluster representatives have been selected, we proceed with the micro-
architectural simulation (Figure 8.1, step 4). These simulations let us predict the behaviour
of all the computation regions in the target machine we plan to evaluate. These results are

115

8. Information Reduction for Multi-level Simulation

provided to the application-level simulator (Figure 8.1, step 5), which estimates the whole
application’s execution time (Figure 8.1, step 6) using the cut factor obtained before (Figure
8.1, step 2).

Micro-architecture simulation level

To obtain a micro-architecture trace at the instruction level, we must rerun the application
with a low-level tracing mechanism. This trace describes in detail the source and target
operands of each instruction, the instruction code, and the addresses of the memory accesses.
To obtain this trace, we use valgrind. To identify where the diUerent cluster representatives
begin and end, we count the number of message-passing interface (MPI) calls performed
before the selected CPU burst begins.
We use MPsim, a cycle-accurate simulator in which each simulated core comprises at

least eight pipeline stages, although we can modify the pipeline depth by adding decode or
execution stages. To reduce computational costs, MPsim provides a trace-driven front end.
However, it also supports simulating the impact of executing wrong-path instructions (when
a branch miss predictions occurs), as it has a separate basic block dictionary containing the
information of all static instructions of the trace.
The MPsim memory subsystem is accurately modelled, having a complete cache hierarchy

with up to three levels of caches and main memory. The simulator also models bus conWicts
to access shared levels of cache and main memory. All caches are multi-banked and multi-
ported, oUering a range of conVgurations to the user. MPsim optimistically assumes that
main memory is perfect and, thus, all memory accesses will hit.

Application Simulation level

Using the application trace cut produced after phase detection with the clusters information
(Figure 8.1, step 4) and the performance predictions per cluster (Figure 8.1, step 6), we can
rebuild the entire application’s performance in the target machine to study.
To perform this high-level simulation, we used the Dimemas simulator. Dimemas recon-

structs the time behaviour of a parallel application on a machine modelled by performance
parameters. In Appendix A we present detailed information of Dimemas model.
CPU ratios. Dimemas oUers a way to tune computation regions simulation by applying a

CPU ratio, a divisive factor to the duration of the bursts that will run in a given processor.
Using the CPU ratio we can modify the CPU time request to simulate diUerent CPUs. In
this methodology, we apply diUerent ratios to the clusters found using the timings produced
by the micro-architectural simulation, we can accurately predict the timings of the applica-
tion’s computation parts. Because we select only those clusters that cover 80 percent of the
computation time, we have the ratio for just a subset of all CPU bursts. To consider those
CPU bursts that don’t belong to the main clusters, we apply to them the weighted average of
the ratios we actually computed. This decision is based in the consideration that even these
burst do not represent a signiVcant time of the application computation phases the predicted
time could be aUected by keeping their original durations.

116

8.3. Validation

Full application runtime projection. Once we’ve simulated the iterations present on the
trace cut using the CPU ratios, we have the runtime prediction for this segment of the trace.
To obtain the full application runtime, we multiply this runtime by the cut factor we obtained
during phase detection.

8.3. Validation

The main purpose of experimental validation is to quantify which errors are introduced in
each step of the methodology. Because it’s divided into two processes, we distinguish two
types of potential errors:

• representativity errors, or evaluations of the quality of the representatives obtained
in the information reduction process, with respect to the information present on the
original trace; and

• simulation errors, or the errors introduced by the two diUerent simulators.

Finally, we must also consider the errors resulting from applying the whole methodology
along with the reduction in simulation time from applying our simulation methodology.
We conducted the validation experiment using two applications: the Versatile Advection

Code (VAC) and the Weather Research Forecasting (WRF) model. In both cases, the applic-
ations executed with 128 tasks on the MareNostrum supercomputer. In the case of WRF,
initialization and Vnalization phases covered a signiVcant part of the application’s execution
time. This behaviour was detected with our simulation methodology, which suggests that we
should focus only on the application’s computation phase. In contrast, VAC shows a more
balanced behaviour, and we included initialization and Vnalization phases in the reported
performance results.

8.3.1. Information Reduction Quality

To report the error that the information reduction process introduced, we analysed the error
introduced by each decision taken in this part of the methodology. Because simulation time
is mainly dominated by the micro-architecture simulation time, and this simulation time
is proportional to the number of instructions to simulate, we will use the number of total
instructions to simulate in order to estimate simulation time. Alternatively, we also use
the number of CPU bursts as an indicator of our selected representatives’ quality. Finally,
we use the average IPC of the computation phases to measure the error introduced by the
information reduction process. Even if IPC isn’t the most adequate metric to measure parallel
applications’ performance, it adequately represents computation phases, which in our case
are free of communications.
Tables 8.1 and 8.2 summarizes the results from the information reduction process of WRF

and VAC applications respectively. The complete trace of WRF, Table 8.1, comprises a total
of 8.29 × 1012 instructions and 4.1 million CPU bursts, with an average IPC of 0.551. Sim-
ulating 1012 instructions is unreasonable in current micro-architecture simulators, because

117

8. Information Reduction for Multi-level Simulation

they normally simulate 105 instructions per second, which implies nearly 1010 simulated
instructions per day. The situation is similar with VAC, Table 8.2, because the total number
of instructions to simulate is 3.46 × 1013. In this case, the number of CPU bursts is half a
million, which indicates that the computation phases are longer than in the case of WRF.
The average IPC of its computation phases is 0.274.

All Trace Two-iteration Cut Clusters Representatives

No. of Bursts 4137194 51008 1274 10

Reduction Factor – 81.1 3247 413719

No. of Instructions 8.29×1012 1.00×1011 8.98×1010 7.30×108

Reduction Factor – 82.4 92.3 11345

IPC 0.551 0.549 0.555 0.554

Error – 0.37% 0.60% 0.40%

Table 8.1.: Reduction factors and quality evaluation of the diUerent parts of the Information
Reduction step of WRF application

After applying the periodic phase detection mechanism, we identify the periodic beha-
viour of WRF and extract two out of 160 iterations. This new trace comprises 51,000 bursts
(an 82× reduction factor) and a total of 1011 instructions to simulate. Even if we have an
82× reduction factor in the number of instructions to simulate, the average IPC of these
CPU bursts is 0.549, which represents a 0.37 percent error. In the case of VAC, we extrac-
ted two out of the 100 iterations of the detected periodic behaviour. This new trace has a
50× reduction factor in CPU bursts and instructions to simulate, whereas the average IPC
is 0.276, which represents a 0.91 percent error. The low error obtained in both applications is
coherent with the iterative nature of HPC applications.
Next, the cluster analysis gathers the diUerent CPU bursts of the trace into diUerent

clusters. This characterization process Vrst Vlters a signiVcant amount of CPU bursts (identi-
Ved as noise) and then selects the clusters that cover most of the trace’s execution time. In the
case of WRF, we Vnd Vve clusters, covering 88 percent of the total execution cycles. These
clusters represent 1,274 CPU bursts (a 3, 200× reduction factor) with a total of 8.98 × 1010

instructions to simulate (a 92× reduction factor). The reduction in CPU bursts is around
one order of magnitude larger than the reduction in instructions to simulate. This fact in-
dicates that the cluster analysis eUectively Vlters the CPU bursts that aren’t representative
in terms of execution time and IPC. Despite the large reduction in instructions to simulate,
the average IPC of these Vve clusters is 0.555, which represents a 0.60 percent error. We
obtained similar conclusions in the case of VAC, where only two clusters cover 81 percent of
execution time, with a 700× and 70× reduction in CPU bursts and instructions to simulate,
respectively, with an average IPC of 0.260, which represents a 5.08 percent error.
Finally, we must select a set of representatives from the identiVed clusters of CPU bursts.

In the case of WRF, we select two representatives per cluster at random. Consequently, the

118

8.3. Validation

All Trace Two-iteration Cut Clusters Representatives.

No. of Bursts 523616 10495 746 8

Reduction Factor – 49.9 702 65452

No. of Instructions 3.46×1013 6.80×1011 4.78×1011 6.20×109

Reduction Factor – 50.7 72.5 5587

IPC 0.274 0.276 0.260 0.253

Error – 0.91% 5.08% 7.57%

Table 8.2.: Reduction factors and quality evaluation of the diUerent parts of the Information
Reduction step of VAC application

number of selected CPU bursts is 10, and the number of instructions to simulate is 7.3× 108

(a 11, 300× reduction factor). The average IPC of these CPU bursts is 0.554, which represents
only a 0.40 percent error with respect to the original trace. Because the number of identiVed
clusters in VAC is lower, we select four representatives per cluster. Here, the total number of
CPU bursts is eight, whereas the number of instructions to simulate is 6.2× 109 (a 5, 587×
reduction factor). The average IPC of these CPU bursts is 0.253, which represents a 7.57
percent error with respect to the original trace.
To summarize, the combination these three techniques in the information reduction pro-

cess leads to a dramatic reduction in the input data to simulate, between four and Vve or-
ders of magnitude less instructions, with a small error in the global application’s IPC. This
huge reduction and high accuracy is due to the natural repetitive behaviour of HPC applic-
ations and the intelligence of the successive techniques used in this information reduction
process. Considering the instruction simulation rates introduced previously (1010 instruc-
tions per day), a parallel application that would require several years of simulation time can
be simulated in a few hours, obtaining at the same time a detailed analysis at the micro-
architecture and application levels.

8.3.2. Multi-level Simulation Quality

Next, we evaluate the error introduced by the two simulators involved to simulate a whole
supercomputer application. We Vrst focus on self validation of the methodology, or predict-
ing the execution time of the application in the same system in which it had been executed.
We then focus on cross validation of the methodology, or predicting the execution time of
the parallel applications on a diUerent system conVguration.

Self Validation

As we described earlier, we use MPsim, an in-house micro-architecture simulator with a
detailed pipeline and cache hierarchy. MPsim has been developed to perform research in

119

8. Information Reduction for Multi-level Simulation

Features SpeciVcation

Architecture 2 cores, 2-way SMT, superscalar architecture

Fetch/Issue/Retire width 8/5/5 instructions per cycle

Fixed-point and load/store issue queue 36 entries

Floating point issue queue 20 entries

Branch instructions issue queue 12 entries

CR-logical instructions issue queue 10 entries

Vector instructions issue queue 36 entries

Reorder buUer 100 entries

Branch predictor 16K-entry gshare1

L1 instruction cache 64KB, direct mapped, 128B line, 1 cycle hit

L1 data cache 32KB, 2-way, 128B line, 2 cycle hit, LRU

L2 uniVed cache 1MB, 8-way, 128B line, 15 cycle latency, LRU

Memory latency 250 cycles

Peak memory bandwidth 2 GBps per GHz

1 Two-level adaptive predictor with globally shared history buUer and pattern his-
tory. Commonly used in most current processors.

Table 8.3.: Baseline MPSim processor conVguration

the processor’s micro-architecture. Thus, this simulator’s target architectures are future ar-
chitectures that will appear in the market in about 10 years. For this reason, the accuracy
when modelling a particular existing micro-architecture isn’t as important as the relative
diUerences when projecting the performance of future architectures.

To predict the performance of the chosen HPC parallel applications running in a real ma-
chine, we carefully chose the simulator parameters to model a PowerPC 970-like processor.
Table 8.3 summarizes this machine’s main characteristics.

Table 8.5 shows the IPC values obtained with MPsim and those measured on our real
supercomputer. In the case of WRF, the IPC predictions obtained with MPsim are always
within 40 percent and, on average, 25.16 percent diUerent from the real IPC. In the case of
VAC, the error per cluster remains within 40 percent, whereas the average error increases to
33.1 percent. We observe that the performance of CPU bursts over 100 million instructions is
normally overestimated, whereas the performance of shorter CPU bursts is underestimated.
For short traces, recovering the state of the cache hierarchy implies a signiVcant portion of
simulation time. On the real machine, part of this data is already on the cache hierarchy,
which reduces the execution time of these computation phases. We’ve measured that it takes
more than 5 million cycles. In contrast, this initialization time is less signiVcant for longer
traces. In this case, the overestimation is due to some structures optimistically modelled in
MPsim: memory is assumed to be perfect (we assume that we will not access the disk). Also,
some implementation details of the PowerPC 970 processor aren’t public, and we’ve followed

120

8.3. Validation

Feature SpeciVcation

Number of nodes 2560

Processors per node 4

Input links per node 1

Output links per node 1

Number of buses ∞1

Memory bandwidth per node 600 MB/s

Memory latency 4µs

Network bandwidth 250 MB/s

Network latency 8µs

1 Contention is only deVned by input and
output links

Table 8.4.: Baseline Dimemas cluster conVguration

a best-eUort approach.
Reducing the average IPC error of MPsim is outside the scope of this work. More accur-

ate simulators exist, but they’re normally industrial simulators developed by the company
selling the processor. These simulators are more detailed (and slow), but show IPC estima-
tions within a 1 percent error. Because selecting the micro-architecture simulator is ortho-
gonal to the presented simulation methodology, we report the error in execution time when
using the IPC obtained with MPsim or the real IPC that would be obtained with an industrial
simulator.
Finally, we simulate the original trace with Dimemas using the micro-architecture simu-

lator’s feedback. Table 8.4 shows the reference parameters used in the diUerent experiments.
This conVguration models the MareNostrum supercomputer, composed of clusters of IBM
JS21 server blades. Each node has two PowerPC 970MP processors (four cores total) and 8
Gbyte of RAM memory. The nodes are connected using a Myrinet network. In this table,
memory and network latency refer to the time added by the simulator to each communica-
tion, in terms of library initialization, not the actual latency of these units.
Figure 8.3a shows the error in the total execution time of two iterations of the parallel

application predicted with Dimemas, as well as of the whole application error after apply-
ing the cut factor. Using the IPC provided by MPsim, we obtain 7.67 percent error in the
execution time prediction of two iterations of WRF. This error is reduced to 6.25 percent
when predicting the execution time of the whole application. Using the IPC values meas-
ured on the real machine (or a highly accurate industrial simulator), the error is reduced to
just 0.3 percent for two iterations and 1.62 percent for the whole application. This error is
computable to the error introduced by Dimemas. In the case of VAC, the error increases to
16.2 percent (two iterations) and 21.7 percent (full application) with MPsim values, and 0.54
percent (two iterations) and 7.2 percent (full application) with the real IPC values. Thanks
to the combination of communication and computation phases, the initial error of MPsim in

121

8. Information Reduction for Multi-level Simulation

WRF VAC

Cluster Real MPSim Real MPSim
Number IPC IPC Error (%) IPC IPC Error (%)

1 0.529 0.703 32.77 0.289 0.380 31.71

2 0.497 0.466 -6.39 0.251 0.340 35.38

3 0.618 0.429 -30.72 – – –

4 0.755 0.468 -38.04 – – –

5 0.811 0.522 -35.60 – – –

Weighted Average Error (%) 25.16 Weighted Average Error (%) 33.12

Table 8.5.: Real IPC vs. MPSim predicted IPC comparison in self validation experiment, using
two threads per core conVguration

IPC predictions is nearly divided by 3 in the Vnal prediction of execution time.

Cross Validation

We can use our simulation methodology to predict the performance of a parallel application
when running on a diUerent system conVguration. More speciVcally, we can predict the
parallel application’s execution time when running one task per node (single-thread conVg-
uration) instead of four tasks per node (CMP conVguration). Nodes in our supercomputer
infrastructure comprise two dual-core processors with a shared Level 2 (L2) cache. Further-
more, the two chips share the 8 GB of memory. We’ve run the application using four tasks
per node conVguration and predicted the performance when using one task per node conVg-
uration. To cross validate the results, we reran the application using one task per node and
compared its runtime with the prediction.
First, we used MPsim to simulate a dual-core PowerPC 970-like machine, as described in

Table 8.3, with just one representative of each cluster running. Then we ran two representat-
ives of the same cluster in the same processor conVguration. The performance improvement
per representative is used as the required CPU ratio to the feedback Dimemas simulator. Fi-
nally, Dimemas simulations are done with the cluster parameters of the new conVguration
(we have just one processor per node instead of four as in Table 8.4).
Figure 8.3b shows the average error results we obtained. Without using the CPU ratios

derived from MPsim, we obtain 8.6 percent and 76.7 percent errors in the execution time
of two iterations of WRF and VAC, respectively. When predicting the whole application’s
execution time, the error is reduced to 2.78 percent and 51.9 percent for WRF and VAC,
respectively. The diUerence in the error is due to the fact that VAC performance is much
more aUected than WRF when moving from a conVguration with one task per node to four
tasks per node. When using the CPU ratios from MPsim, we reduce the error to 4.94 percent
and 56.5 percent for two iterations of WRF and VAC, respectively. In the case of WRF, the
measured CPU ratios for the Vve representative clusters are between 1.05 and 1.21, as Table

122

8.3. Validation

WRF.128 VAC.128
0%

5%

10%

15%

20%

25%

One Iteration One Iteration + MPSim Ratios

Full Application Full Application + MPSim Ratios

(a) Self Validation Errors

WRF.128 VAC.128
0%

20%

40%

60%

80%

100%

One Iteration One Iteration + MPSim Ratios

Full Application Full Application + MPSim Ratios

(b) Cross Validation Errors

Figure 8.3.: Execution time prediction error for Versatile Advection Code (VAC) and Weather
Research Forecasting (WRF) parallel applications, for both self validation (a) and
cross validation (b) experiments. The Vgures show the error when estimating
the execution time of two iterations of the application or the full application
execution time with the measured real IPC and the IPC provided by MPsim.

123

8. Information Reduction for Multi-level Simulation

Task 07 Task 09

IPC IPC IPC IPC Representatives Real Error
Cluster CMP ST Ratio CMP ST Ratio average ratio Ratio (%)

1 0.705 0.717 1.017 0.700 0.712 1.017 1.017 1.047 -2.90

2 0.494 0.505 1.022 0.437 0.445 1.018 1.020 1.083 -5.82

3 0.428 0.479 1.119 0.429 0.481 1.121 1.120 1.275 -12.18

4 0.466 0.512 1.099 0.469 0.517 1.102 1.101 1.251 -12.04

5 0.518 0.647 1.249 0.526 0.655 1.245 1.247 1.169 6.68

Weighted average error (%) -4.62

Table 8.6.: WRF cross validation MPSim Ratios, comparing the IPC running two-threads per
core (CMP) and a single thread per core (ST) and the diUerences with the ratios in
real conVguration

Task 51 Task 79 Task 85 Task 104 Representatives Real Error
Cluster Ratio Ratio Ratio Ratio average ratio Ratio (%)

1 1.048 1.049 1.053 1.049 1.050 1.756 -40.22

2 1.042 1.042 1.042 1.039 1.041 1.937 -46.28

Weighted average error (%) -42.54

Table 8.7.: VAC cross validation MPSim Ratios and the diUerences with real ratios. In this
case, we just express the ratios and not the IPC on single thread and CMP conVg-
urations because of the higher number of representatives

8.6 shows. The predicted ratios are between 1.02 and 1.25, with an average error of 4.62. As a
result, the Vnal error in the whole application’s execution time prediction is just 6.04 percent.

In the case of VAC, the measured CPU ratios for the two representative clusters are 1.75
and 1.92 (see Table 8.7). The predicted ratios are 1.04 and 1.05, with an average error of 58.3
percent in the CPU ratios. This high error is due to the optimistic model of RAM memory
implemented in MPsim. As we mentioned earlier, memory is assumed to be perfect, with
no misses. VAC is suUering between nine and 11 L2 misses per kilo instruction, whereas
WRF suUers only between one and two L2 misses per kilo instruction. Apart from that, VAC
suUers much more TLB misses than WRF (a 2.5× increase). As a result, the Vnal error in
execution time prediction of the whole application is 34.5 percent. Even if this accuracy is
acceptable for our experiments, a more detailed model of the memory hierarchy is required
in the micro-architecture simulator to obtain a more accurate prediction.

124

8.4. A Use Case: Performance Prediction

8.4. A Use Case: Performance Prediction

This last experiment aimed to illustrate our simulation methodology’s potential. In particu-
lar, we studied in detail the evolution of the behaviour of the applications as the size of the L2
cache and network bandwidth increased. This kind of performance analysis is not feasible if
we must simulate the whole application at the micro-architecture level, because simulating
just one conVguration with a given L2 size would require several years of simulation time.
Instead, we obtained our results with less than 1 day of simulation.
Figure 8.4a shows results extracted from the VAC application in terms of IPC. In this case,

we’ve divided the computing time into two clusters. From the perspective of the L2 cache
size, we can see the same behaviour in these two clusters—that is, a remarkable increase of
the application’s IPC if the L2 cache is larger than 2 MB. The most important conclusion we
can extract from this is that we can improve this application’s performance by executing it
on a supercomputing infrastructure whose processors have an L3 cache level that can reduce
the cycles dedicated to access principal memory due to L2 misses. In Figure 8.5a, we depict
the same results for the WRF application. In this case, we can see a strong improvement of
the performance in all the clusters until 1 MB of the L2 cache size is reached. This behaviour
is due to the small size of the input data. Thus, WRF will have enough with a small L2 cache
to reach its maximum performance.
Figures 8.4b and 8.5b show the execution times obtained with Dimemas after the cluster

IPC ratios. This approach lets us study the impact of architectural parameters (in this case,
L2 cache size) and network parameters (in this case, bandwidth) simultaneously. According
to our results, the impact of the network is negligible in the case of VAC and WRF. For these
applications, the dominant performance factor is IPC, which signiVcantly changes with the
L2 cache size.

125

8. Information Reduction for Multi-level Simulation

64KB
128KB

256KB

512KB

1M
B
2M
B
4M
B
8M
B
16M

B

32M
B

64M
B

128M
B

256M
B

512M
B

0

0,2

0,4

0,6

0,8

Cluster 1 Cluster 2

Cache Size

IP
C

(a) IPC prediction using diUerent cache sizes

64KB
128KB

256KB

512KB

1M
B
2M
B
4M
B
8M
B
16M

B

32M
B

64M
B

128M
B

256M
B

512M
B

300

350

400

450

500

250Mb/s 500Mb/s 125Mb/s

Cache Size

T
im
e
(s
ec
o
n
d
s)

(b) Execution time prediction using diUerent cache sizes and network
bandwidths

Figure 8.4.: Performance predictions of VAC using diUerent cache sizes and network band-
widths

126

8.4. A Use Case: Performance Prediction

64KB
128KB

256KB

512KB

1M
B
2M
B
4M
B
8M
B
16M

B

32M
B

64M
B

128M
B

256M
B

512M
B

0

0,2

0,4

0,6

0,8

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Cache Size

IP
C

(a) IPC prediction using diUerent cache sizes

64KB
128KB

256KB

512KB

1M
B
2M
B
4M
B
8M
B
16M

B

32M
B

64M
B

128M
B

256M
B

512M
B

30

40

50

60

70

250Mb/s 500Mb/s 125Mb/s

Cache Size

T
im
e
(s
ec
o
n
d
s)

(b) Execution time prediction using diUerent cache sizes and network
bandwidths

Figure 8.5.: Performance predictions of WRF using diUerent cache sizes and network band-
widths

127

9. Analysis of Message-Based Parallel
Applications

In this chapter we demonstrate the usefulness of the structure detection technique using
it to analyse four diUerent state-of-the-art applications. We Vrst characterize the phases

detected and then we provide diUerent what-if analyses to measure the potential application
gain when improving these phases and also how the application will behave in new hard-
ware conVgurations. These what-if analyses can only be performed by using the structure
detection.

9.1. Applications Analysed

We selected four applications to perform the analyses. These applications are commonly
used in HPC facilities in diUerent research areas.

• PEPC [124]. PEPC is a parallel tree-code for rapid computation of long-range (1/r)
Coulomb forces for large ensembles of charged particles. The heart of the code is
a Barnes-Hut style algorithm employing multi-pole expansions to accelerate the po-
tential and force sums, leading to a computational eUort O(N logN) instead of the
O(N2) which would be incurred by direct summation. Parallelism is achieved via a
‘Hashed Oct Tree’ scheme, which uses a space-Vlling curve to map the particle co-
ordinates onto processors. The kernel (tree routines and force computation) is separ-
ated from the application ‘front-end’ so that the code can be easily adapted to both
electrostatic and gravitational problems.

• WRF [125]. The Weather Research and Forecasting (WRF) Model is a mesoscale nu-
merical weather prediction system designed to serve both operational forecasting and
atmospheric research needs. It features multiple dynamical cores, a 3-dimensional
variational data assimilation system, and a software architecture allowing for compu-
tational parallelism and system extensibility. WRF is suitable for a broad spectrum of
applications across scales ranging from meters to thousands of kilometres.

• GADGET [126]. A code for cosmological simulations of structure formation, is a freely
available code for cosmological N-body/SPH simulations on supercomputers. It com-
putes gravitational forces with a hierarchical tree algorithm (optionally in combination
with a particle-mesh scheme for long-range gravitational forces) and represents Wuids
by means of smoothed particle hydrodynamics (SPH). The code can be used for stud-
ies of isolated systems, or for simulations that include the cosmological expansion of
space, both with or without periodic boundary conditions.

129

9. Analysis of Message-Based Parallel Applications

• SU3_AHiggs [127]. SU3_AHiggs is a lattice quantum chromodynamics (QCD) code
intended for computing the conditions of the Early Universe. Instead of the "full QCD",
the code applies an eUective Veld theory, which is valid at high temperatures. In the
eUective theory, the lattice is 3D. For this reason, SU3_AHiggs stresses diUerent parts
of the architecture than the conventional QCD applications using 4D lattices.

9.1.1. Data gathering

All applications analysed were executed with 256 tasks the in MareNostrum supercomputer,
allocating 4 MPI tasks per node.
For the PEPC application we applied the performance data extrapolation technique de-

scribed in chapter 7 extracting the counters required to build the CPI breakdown model
presented in the Section 7.4 of that chapter. To extract the counters we used the time-space
multiplexing scheme.
For the rest of applications we gathered the information of a set of 8 performance hardware

counters, described in table 9.1. We chose this set as it contains the counters we commonly
use to perform the computation structure as well as memory related counters.

Counter Name Description

PM_CYC Processor cycles

PM_INST_CMPL Number of Eligible Instructions that com-
pleted

PM_INST_DISP The ISU (Instruction Sequencer Unit) sends
the number of instructions dispatched

PM_LD_REF_L1 Total DL1 (Level 1 Data Cache) Load refer-
ences

PM_ST_REF_L1 Total DL1 Store references

PM_LD_MISS_L1 Total DL1 Load references that miss the
DL1

PM_DATA_FROM_MEM Data loaded from memory

PM_GCT_FULL_CYC The ISU sends a signal indicating the GCT
(Global Completion Table) is full

Table 9.1.: List of all hardware counters used in the experiments

In all cases, we reduce the amount of total data by manually selecting a region for the
analysis that contains few iterations of the main application loop.

9.2. Analyses description

For each application we present a report that includes two diUerent analyses, Vrst, the struc-
ture characterization; second, a set of what-if to illustrate how the structure detected could

130

9.2. Analyses description

be useful to the analyst/developer so as to understand the scalability of his or her application.

9.2.1. Structure characterization

For each application, we Vrst perform a structure detection using the Aggregative Cluster
ReVnement algorithm. To perform this detection, we combine the metrics Completed In-
struction and IPC except for WRF application, where this pair of metrics lead to an over-
aggregation of the clusters, and we used Completed Instructions and Main Memory Accesses
counters
For each application, we present the reVnement tree, the clusters time-line distribution as

well as the scatter plot of the metrics used in the cluster.
Once we have the computation structure, we select those regions that have an important

weight in the total application computation time. This selection considers just the clusters
representing regions that cover more than 5% of the total application computation time. For
each of these most representative clusters, we show a set of metrics useful to observe the
performance of the regions these clusters represent. Further what-if analyses will use these
clusters to evaluate the scalability of the diUerent applications.
In addition, we also provide an insight of the applications’ parallel eXciency, by using the

speedup model presented in [8]. We discuss the factors of this model in Section 9.3. Thanks
to the structure detection, we can measure how the performance cluster aUects to the global
speedup.

9.2.2. What-if analyses

The target of these what-if analyses is to present possible studies that we could perform
thanks to the structure detection. These analyses focus on giving a detailed information
about the application behaviour and also the possible impact certain implementations could
obtain. In this way, we help to focus the parallelization eUorts in those directions that seem
more productive.
We deVne two what-if analyses: Vrst, what would be the beneVts if we improve the applic-

ation?; second, what would be the sensitivity of the application to hardware improvements?

Application improvements

Typically, parallel applications exhibit two main problems, Vrst the imbalance across the
diUerent tasks it comprises and second, poor sequential performance in some of the regions
they contain.
In these analysis, we evaluate two possible improvements the developer could apply to its

application to solve these problems. First, a duration balance of the most time consuming
computation clusters. Second, a sequential performance improvement of the clusters that
show poor IPC.
In practice, the duration balanced improvement could be addressed by tuning the data

distribution across the diUerent application processes. To model it, we consider that all the

131

9. Analysis of Message-Based Parallel Applications

burst that conform a given cluster will have the same duration. This duration will be the
average burst duration observed for such cluster in the real execution.
In the case of the sequential performance improvement, it could be increased for example

by exploiting the memory locality if the application does not take into account the cache
sizes or unrolling loops to avoid the loop overheads. To model the sequential performance
improvement, we scale the duration of the bursts present in the clusters that obtain an IPC
lower than 0.8. We select this IPC because in the MareNostrum supercomputer this is the
minimum value observed in the computation regions of those applications that perform well.
The scale factor used is the ratio of the average IPC obtained for such cluster and 0.8.
As a whole, comparing these two improvements would indicate where is more interesting

to devote the eUorts so as to obtain the maximum gain in the overall performance of the
application. It is interesting to remark that in these two improvements we evaluate the
results considering the modiVcations just in the selected clusters. This will provide a Vner
insight of the scalability diUerent applications exhibit.

Use of diUerent hardware

In this analysis we evaluate how the application will perform when porting to a faster ma-
chine, both in terms of network bandwidth and/or CPU speed. The diUerent networks we
deVne present bandwidths in the range 256 MB/s to 16384 MB/s in powers of two. In terms
of the CPU, we deVne two scenarios:

1. Using general purpose processors. In this scenario, we deVne a set of processors that
can reach performance ratios in range 1 to 64 in powers of two, i.e. using a processor
that can execute the computation as fast as the original platform, to a processor which
can execute the computation 64 times faster.

2. Using acceleration hardware. In this scenario, we deVne a set of accelerators that can
reach performance ratios in range 1 to 64 in powers of two. The diUerent from the
previous scenario is that in this acceleration hardware we only execute those bursts
that belong to the representative clusters. In this way, we can model a realistic situ-
ation where we can only port to these acceleration hardware those regions that have
a important weight in the computation, i.e. big subroutines or kernels of computation.

As a whole, this experiment will show us where could be the behaviour of the application
in diUerent supercomputers, some of them corresponding to currently available hardware
components and some other with future parameters, without the need to having them. With
this information, we can anticipate which could be the problems of the application in these
diUerent machines.

Applications simulation

To measure the impact of the modiVcations we contemplate in these three scenarios we use
the Dimemas simulator, introduced in chapter 8. Detailed information about this simulator
is presented in Appendix A.

132

9.3. Analyses results

To model the modiVcations deVned in the bursts, we use a feature of the simulator that
can adapt the execution times of the CPU burst contained on each of the clusters selected.
To simulate the sequential improvement scenario and the use of new hardware scenario we
the CPU ratio, a divisive factor applied to the bursts duration. When evaluating the duration
balance, we use a simulator feature able to change the duration of these bursts inside a cluster
by a Vxed value during the simulation.
To model the diUerent bandwidths used in the hardware porting scenario, we directly

modify the network bandwidth parameter included in the simulator.
In all the what-if simulations we compare the gains in total execution time with respect

the times obtained in a nominal simulation using the simulator parameters listed in table
9.2. These parameters describe the MareNostrum architecture, where the applications where
executed to gather the data used in the experiments.

Feature SpeciVcation

Number of nodes 2560

Processors per node 4

Input links per node 1

Output links per node 1

Number of buses ∞1

Memory bandwidth per node 600 MB/s

Memory latency 4µs

Network bandwidth 235 MB/s

Network latency 8µs

1 Contention is only deVned by input and
output links

Table 9.2.: Baseline Dimemas cluster conVguration

9.3. Analyses results

In Table 9.3 we present the results of the cluster analysis of the four applications analysed.
Basically, we present the total number of clusters found, and the number of clusters that
represent more than 5% of total application computation time. We also include in this table
the characterization of the four applications in terms of the parallel eXciency, a model to nu-
merically evaluate the speedup of parallel applications deVned in [8]. The parallel eXciency
of an application is deVned by the following equation:

η = CommEff × LB (9.1)

The parameter η is a measurement of the parallelization eXciency, in other words, which
are the losses in the application due to its parallel implementation. For example, a η of 0.7

133

9. Analysis of Message-Based Parallel Applications

PEPC GADGET WRF SU3_AHiggs

Cluster Analysis

Total Clusters 2 16 9 17

Computation Time (%) 98.00 96.55 89.03 92.64

Clusters > 5% 2 4 7 5

Computation Time (%) 98.00 75.50 81.45 60.70

EXciency model factors

η 0.711 0.582 0.712 0.981

CommEff 0.837 0.612 0.793 0.989

LB 0.849 0.951 0.898 0.992

IPC 0.705 0.649 0.493 1.008

#Inst 2.743×1011 2.168×1013 5.583×1011 3.309×1012

Table 9.3.: Cluster analysis results and factors of the speedup model deVned in [8] obtained
by the four applications analysed

indicates that the application spends 30% its time in communications and synchronizations
or imbalances caused by its parallelization.
The parallelization eXciency is decomposed in two factors, Vrst the communications ef-

Vciency, CommEff , which measures which part of the eXciency losses are caused by in
eUective communications regions, i.e. when all the processes interchange information. The
second factor is the load balance, LB, which measures the diUerences in the durations of the
computation regions observed across all processes. This second factor serves to evaluate the
time spent in communications caused by the load imbalance observed across the diUerent
processes. It will be useful to indicate which are the possible improvements in the duration
balancing experiments.
Finally, in the table we also include the average IPC and the total number of instructions

executed, #Inst, within the computation time of each application. These two Vgures serve
to measure the eXciency of the sequential part of the diUerent applications.
Using these factors, we can have a clear idea of how well the application have been par-

allelized and which are the parts of the parallelization itself that provoke the bigger resource
losses.

134

9.3. Analyses results

Figure 9.1.: PEPC reVnement tree

9.3.1. PEPC

Structure detection

This Vrst application we analyse presents a parallel eXciency of 0.711, as can be seen in
Table 9.3. This relatively low value is decomposed in a communications eXciency of 0.837
and a load balance of 0.849, indicating that there is no single element that aUect the most to
the parallelization eXciency.
In this table we can also see that the Aggregative Cluster ReVnement was able to detect

just two clusters, which represent 98% of the total application. We use both cluster in the
rest of the analysis. The outputs of the clustering algorithm are presented in Figures 9.1 is
the reVnement tree, Figure 9.2 shows the scatter plot of clustering metrics, and Figure 9.3
contains the clusters time-line distribution (of 5 iterations of the periodic region). Finally, in
Table 9.4 we present the statistics obtained by each cluster.
The reVnement tree, Figure 9.1, shows that both clusters have a core structure detected in

initial levels, and only noise points are added to them along the diUerent iterations of the
clustering algorithm. This structure indicates that the SPMD regions the clusters represent
are do not have clear sub-structures.
In terms of the sequential performance, Table 9.3 shows that the average IPC of the whole

application is 0.705. In Table 9.4 we can see that the average IPC of Cluster 1 is 0.619 and the
average IPC of Cluster 2 is a little bit higher, 0.870. This diUerence is the main reason to dis-
tinguish them as two clusters (see plot 9.2). The elements that aUect the average IPC obtained
by each cluster can be explained the CPI breakdown model we introduced in chapter 7, de-
picted in Figure 9.4. Using this model we detect that most of the stall cycles that occur in

135

9. Analysis of Message-Based Parallel Applications

Cluster 1 are due to Woating point unit causes: the basic latency of the unit (dark purple) and
also the latency of divisions and square root Woating point instructions (blue). In the case
of Cluster 2, this model indicates us the it is mostly dominated by memory operations: the
basic latency of the Load Store Unit (LSU, dark green) and more precisely that volume of
data cache misses (light green).
In terms of the load balancing, the value obtained by both clusters is around 0.850 (LBdur

in Table 9.4). These values are similar to the overall application load balance (LB in Table 9.3),
which means that the overall imbalance is uniformly distributed across the two main com-
putation regions. The eUects of this imbalance can clearly be seen in time-line 9.3, as the
white communications regions that appear just after the clusters.
In the case of Cluster 1 its duration imbalance can be mainly associated to instructions

load balance (LBinst), 0.885. In Cluster 2, the duration imbalance can also be associated to
instructions load balance, 0.846, and also the IPC balance, 0.942. This variability measured
in the diUerent factors can also be observed in the scatter plot (Figure 9.2).

Figure 9.2.: PEPC scatter plot of discovered clusters

Metric Cluster 1 Cluster 2

Total Computation Time (%) 57.02 40.98

Avg. Duration (ms) 57.954 41.892

LBdur 0.859 0.841

Avg. Completed Inst. 8.130×107 8.260×107

LBinst 0.885 0.846

Avg. IPC 0.619 0.870

IPC Balance 0.974 0.941

Table 9.4.: PEPC clusters characterization

136

9.3. Analyses results

Figure 9.3.: PEPC time-line distribution of clusters

Cluster 1 Cluster 2
0.000

0.200

0.400

0.600

0.800

1.000

1.200

1.400

1.600

1.800

Other Stalls

Stall by FPU Basic Latency

Stall by FDIV/FSQRT

Stall by FXU Basic Latency

Stall by Div/MTSPR/MFSPR

Stall by LSU Basic Latency

Stall by D-cache Miss

Other Reject

Stall by Xlate

Other GCT Stalls (flush, etc.)

Branch Mispredict Penalty

I-cache Miss Penalty

Total Group Complete Cycles

C
P
I

Figure 9.4.: PEPC CPI breakdown model of the clusters found

137

9. Analysis of Message-Based Parallel Applications

ConVguration Execution time (s) Speedup

Nominal 0.835 –

Duration balancing (All Clusters) 0.715 1.168

Algorithmic Improvement 0.740 1.128

Table 9.5.: PEPC speedups of application improvement analyses

Application improvement analysis

Table 9.5 contains the execution time of the nominal simulation, and the execution times
and speedups obtained in the duration balancing simulation and sequential performance
improvement simulations. In Figure 9.5 we can see the cluster time-lines of these three
simulations presented at the same scale, so as to compare them visually. We want to note that
the diUerence execution of the nominal simulation vs. the real execution of this application
was just 3.85%.

We have seen that both clusters detected in PEPC present a relatively low duration load
balancing, so we simulated the balancing of all of them. As a result of this improvement,
we obtained an speedup of 1.168. To understand how the application reached this speedup,
we can observe the time-line of the duration balancing simulation (9.5b) where the commu-
nication region (white) after Cluster 1 (light green) in time-line 9.5a have disappeared due
to the balance of this cluster. These regions corresponds to a synchronization between all
the processes involved in the application. Due to the perfect balance of the clusters, the wait
times of the shorter processes disappear. Similarly, a synchronization that appears just after
Cluster 2 (yellow) also disappears in the diUerent iterations of the application’s main loop.

In the case of the sequential improvement, we quantiVed only the improvement of Cluster
1, as its average IPC is 0.619 is far from the target value of IPC we consider, 0.8. We model
an improvement of the bursts present by reducing their duration by a 30%. As a result of
this reduction, the speedup obtained was 1.128, a lower gain than the one obtained when
balancing the clusters. We can observe in time-line 9.5c that the improvement obtained cor-
responds almost to the Cluster 1 reduction. In addition, there is also a gain to the reduction
collective communication that appears just after this cluster. Even the duration load balan-
cing of the cluster is not modiVed in this experiment, the waiting times it produces (grouped
in the collective communication) are shortened in absolute terms.

138

9.3. Analyses results

(a) Clusters time-line distribution of nominal simulation

(b) Clusters time-line distribution of duration balancing simulation

(c) Clusters time-line distribution of Cluster 1 algorithmic improvement

Figure 9.5.: Clusters distribution time-line of nominal simulation, duration balancing simu-
lation and the algorithmic improvement of PEPC application

139

9. Analysis of Message-Based Parallel Applications

Use of new hardware analysis

We present the results of the acceleration scenario using surface plots. In these surface plots,
the X axis contains the diUerent CPU ratios applied to the bursts, the Y axis contains the
diUerent Bandwidths used and Vnally, the Z axis represents the speedup obtained by this
combination with respect to the nominal simulation.

Figure 9.6 contain the two surface plots obtained for PEPC. Plot 9.6a present the results
of applying the CPU ratios to all the computation of the application, i.e. the use of general
purpose processors. Plot 9.6b present the results of applying the CPU ratios to the two
clusters detected but not to the Vltered CPU bursts, i.e. supposing a port of these clusters to
acceleration hardware.

The Vrst observation we can do in plot 9.6a is that the maximum speedup observed has
an upper bound around 21. This value is far from a theoretical speedup around 64 in the ex-
treme case, where all the computation is reduced 64 times and the message transmissions are
reduced 64 times by using a network with 64 times more bandwidth. A second observation
we can do of this plot is a network bandwidth bound: the speedup does not improve after
using a network of 2,048 MB/s. This shows that PEPC will not beneVt by using networks
with higher bandwidth. On the other hand, we can see that in terms of the CPU ratio, there
is still a margin of improvement, as the slope in this axis is steep.

In the case scenario of only “accelerating” the two clusters detected, plot 9.6b, we can
quickly detect that the top speedup in just around 8. This value is 3 times smaller than
the obtained in the previous conVguration. In this case, the upper bound of the bandwidth
appears at a lower value, around 512 MB/s. The speedup due to the CPU ratio seems to have
a margin of improvement.

If we compare both plots, we can see that this maximum speedup observed when using
accelerators, around 8, is reached when using a general purpose CPU of ratio 8 (plot 9.6a).
This is a really interesting result because the baseline system we use the experiments uses an
old PowerPC 970MP processor. Current CPUs could reach this 8x ratio easily, while having
accelerators of ratios higher than 32x its not that common.

In Figure 9.7 we present the time-lines of Vve iterations of the application when using
the extreme hardware conVgurations: a network of 16,384 MB/s and a general purpose CPU
64 times faster (9.7a) and the same network bandwidth but using an “accelerator” 64 times
faster (9.7b). Notice that those time-lines are at diUerent time scale, so as to show the weight
of the diUerent application phases. In time-line 9.7a we see that when the small regions
become shorter, and the distance between them is approximately the minimum cost of a
communcation call (latency time in Dimemas terminology, set to 4 µs), this is the cause
that the application do not take in advantage higher network bandwidths. On time-line 9.7b
these small computation regions between the communication primitives dominate the iter-
ation execution. Even though these smallest computation regions represent just 2% of the
computation in the initial execution, the imbalance of a minimum part of them provoke a
dramatic loss of performance when porting the application to a computer based on acceler-
ation hardware.

140

9.3. Analyses results

256
512

1024
2048

4096
8192

16384

1

6

11

16

21

26

1

2

4

8

16

32

64

Bandwidth (MB/s)

Sp
e

e
d

u
p

CPU ratio

(a) Speedups using general purpose CPUs

256
512

1024
2048

4096
8192

16384

1

2

3

4

5

6

7

8

1

2

4

8

16

32

64

Bandwidth (MB/s)

Sp
e

e
d

u
p

CPU ratio

(b) Speedups porting the most consuming clusters to accelerators

Figure 9.6.: Results of the simulation when using PEPC in a diUerent hardware

141

9. Analysis of Message-Based Parallel Applications

(a) Clusters distribution time-line using a general purpose CPU

(b) Clusters distribution time-line using an accelerator

Figure 9.7.: PEPC clusters time-lines using 16384 MB/s network bandwidth and general pur-
pose CPU 64 faster and accelerator 64 faster

142

9.3. Analyses results

Figure 9.8.: WRF scatter plot of discovered clusters

9.3.2. WRF

Structure detection

This second application has a parallel eXciency of 0.712, similar to the previous one (Table 9.3).
On the other hand, the parameters that deVne this eXciency have a certain diUerence, be-
ing the communications eXciency 0.793 and the load balancing 0.898. The communications
eXciency is the factor that has more impact on the total parallel eXciency.
WRF is the only application where we used a diUerent hardware counter metrics to detect

the computation structure. We combined Completed Instructions counter with the Main
Memory Accesses counter (also named Last Level Cache Misses). We used this counter
combination instead of Completed Instructions and IPC because we obtained a clearer phase
detection. In the scatter plot of Figure 9.8 the diUerent clusters detected using this pair of
metrics, while Figure 9.9 contains the time-line distribution of the clusters. The reVnement
tree obtained generated by the Aggregative Cluster ReVnement is depicted in Figure 9.10.
Finally, in Table 9.6 we present the statistics obtained by each of them. In this application,
we characterize a cut of 2 iterations of the periodic region detected.
In this application, the Aggregative Cluster ReVnement detected 9 diUerent clusters (Table 9.6.

Only 7 of these clusters cover more than 5% of the total computation time, aggregating
around 81% of the total computation time of the application. The rest of the clusters rep-
resent and additional 8% of the computation time, while the Vltered bursts aggregate the
remaining 11%.
In the time-line of Figure 9.9 we can observe how the diUerent computation phases de-

tected are distributed during two iterations the application execution. The time-line shows
that the structure present sequences long computation, detected as clusters, and short com-
putations, the Vltered bursts in grey, interleaved with communications. That can be clearly

143

9. Analysis of Message-Based Parallel Applications

Figure 9.9.: WRF time-line distribution of clusters

observed after the region detected as Cluster 1 (light green).
The reVnement tree of the structure detection, Figure 9.10, shows that except for Clusters

2, the rest of “major” clusters have been reVned by absorbing noise points, so they represent
SPMD without any clear sub-structures. In case of Cluster 2 (yellow), it absorved Cluster 12
(light brown) in the iteration 6. The scores obtained by Cluster 2 and Cluster 12 on iteration 5
were 92.1875% and 7.8125% respectively. This indicates that in Cluster 2 we can Vnd a group
of 20 processes (7.8125% of the 256 processes) that present an slightly diUerent behaviour
than the rest. This observation is not used in the studies we present here, but can be used for
an in depth-analysis of the imbalances.
Also in the statistics in Table 9.6 and the clusters time-line we can distinguish how the dif-

ferent phases found have variability in terms of their average burst duration and the number
of times they appear on each iteration. For example, Cluster 1 (light green) has an average
burst duration around 100ms, but only appears once on each iteration, while Clusters 3 (red)
and 4 (dark green) have an average burst duration between 3 and 5 ms, but appear several
times on each iteration.
As we mentioned before, the load balancing of WRF is 0.898. On the other hand, observing

clusters the (duration) balancing of the clusters (LBdur in Table 9.6), we can detect that only
Clusters 6 and 7 have values closer to the obtained by overall application, while the rest of
clusters have values below 0.870. These values suggest that the small computation phases
have a positive eUect in the overall balance. In this case, the duration imbalances of Clusters
1 and 6 can be associated to the instructions imbalance (LBinst is smaller than IPC balance),
while in the rest of clusters can be associated with the IPC variability.
In terms of the sequential performance, the average IPC the whole application, 0.493

(Table 9.3), a low value. Table 9.6 shows that Clusters 1, 6 and 7, obtain an IPC slightly
better than this average, while the rest of the “big” clusters obtain a lower IPC. Is interesting
to note that the clusters that obtain the lowest IPCs are the Clusters 3 and 4, 0.436 and 0.444
respectively, represent those SPMD regions with shortest bursts. According to the table, we
see that those regions that obtain a lower IPC also present the higher values L1 and L2, so
it reWect a possible performance loss due to the way the memory is used in these phases. In
any case, all the clusters obtain a performance far from the target IPC of 0.8 we consider as
target, that presents an opportunity to perform sequential performance improvements in the
application.

144

9.3. Analyses results

Fi
gu
re

9.
10
.:
W
R
F
re
Vn

em
en
tt
re
e

145

9. Analysis of Message-Based Parallel Applications

M
etric

C
luster

1
C
luster

2
C
luster

3
C
luster

4
C
luster

5
C
luster

6
C
luster

7

C
om

putation
A
pplication

Tim
e
(%
)

29.24
11.47

10.10
10.09

7.58
6.93

6.05

A
vg.D

uration
(m

s)
105.759

20.737
3.044

5.212
28.077

25.065
21.863

L
B

d
u
r

0.817
0.855

0.844
0.816

0.862
0.897

0.914

A
vg.C

om
pleted

Inst.
1.578×

10
8

2.185×
10

7
3.006×

10
6

5.229×
10

6
2.963×

10
7

3.256×
10

7
3.125×

10
7

L
B

in
s
t

0.813
0.960

0.961
0.959

0.958
0.923

0.960

A
vg.IPC

0.659
0.466

0.436
0.444

0.467
0.573

0.631

IPC
B
alance

0.958
0.891

0.897
0.865

0.868
0.938

0.882

A
vg.M

IPS
1492.447

1053.782
987.550

1003.254
1055.725

1298.953
1429.291

A
vg.L1

m
isses

per
10

3
inst.

5.691
18.839

19.786
26.881

15.789
7.619

3.709

A
vg.L2

m
isses

per
10

3
inst.

0.152
0.771

1.065
2.029

0.810
0.450

0.299

A
vg.M

em
ory

B
andw

idth
(M

B
/s)

28.960
103.996

134.601
260.572

109.436
74.787

54.771

Table
9.6.:W

R
F
clusters

characterization

146

9.3. Analyses results

ConVguration Execution time (s) Speedup

Nominal 1.020 –

Duration balancing (Clusters 1 to 6) 0.961 1.061

Algorithmic Improvement 0.820 1.245

Table 9.7.: WRF speedups of application improvement analyses

Application improvement analysis

The results of the two application improvements simulations as well as the nominal simula-
tion are presented in Table 9.7. In this application the relative error of the nominal simula-
tion vs. the real execution was 7.5%. In Figure 9.11 we present the time-lines containing the
clusters distribution of these three simulations.
The speedup obtained when simulating a duration balancing improvement of the 7 clusters

selected is 1.061. We have observed in the previous section that the duration balancing of
these clusters was low, but this simulation shows that the gain obtained when balancing
them is also low. This balancing implied an average reduction of 18% of the longest com-
putation bursts contained in the clusters. As we stated in previous section, the duration
balancing of the overall application is around 0.9, due to the eUect of the smaller compu-
tation. The distribution of computation and communication limits total gain obtained by
balancing the major clusters. We can observe this by comparing the time-lines correspond-
ing to the nominal simulation, time-line 9.11a, and the time-line corresponding to the the
balancing simulation, time-line 9.11b. Obviously, the computation regions in time-line 9.11b
are more balanced, specially Cluster 1 (light green), but the communications and Vltered
computation region just after this cluster produces a skew in diUerent processes. This skew
aUects all the computation regions and limit the total application improvement.
In terms of the sequential performance, we have seen that the average IPC of the applica-

tion is 0.493 and also the average of the 7 major clusters is far from the 0.8 we set as target.
For this reason, the margin of improvement we have in this scenario is higher. As a result,
the speedup obtained is 1.245. Here it is interesting to note that even the duration of the dif-
ferent bursts have been reduced by and average of 55% (the actual reduction factor depends
on the average IPC of each cluster), the overall gain is only 25%. This is caused mainly by
two reasons: Vrst, the 7 major clusters represent 81.45% of the total computation; second,
the Vltered bursts and the 2 clusters that have not been improved and the communications
have an inWuence in the overall time. Comparing the time-line of this simulation 9.11c we
can see how reducing the duration of these clusters produce the mentioned improvement,
but also it is interesting to note that it also causes a minor increase of some communications.
For example, we can observe a communications bubble that appears in the Vrst iteration. It
is visible as the wait region that starts in the intermediate processes just before the Cluster
6 (purple) region and propagates to the Vrsts processes, ending between the Cluster 9 (light
blue) and Cluster 5 (pink) region.

147

9. Analysis of Message-Based Parallel Applications

To sum up, in this application, it seems to be more interesting to put the eUorts to improve
the application in order to tackle the low performance obtained by the diUerent computation
regions more than their duration balance. Even the values we used to run the simulation can
be considered diXcult to obtain in the reality (an average performance improvement of 55%
is quite high), these simulations reWect that the gain obtained applying this improvement
will be higher.

(a) Clusters time-line distribution of nominal simulation

(b) Clusters time-line distribution of duration balancing simulation

(c) Clusters time-line distribution of Clusters 1 to 6 algorithmic improvement

Figure 9.11.: Clusters distribution time-line of nominal simulation, duration balancing simu-
lation and the algorithmic improvement of WRF application

Use of new hardware analysis

The results of the experiments of porting WRF to new hardware are depicted in the surface
plots of Figure 9.12. Plot 9.12a presents the results of using general purpose CPUs. Plot 9.12b
presents the results of using acceleration hardware on the 7 selected clusters.

148

9.3. Analyses results

We can observe that when using general purpose CPUs, the maximum speedup reached is
around 46, an acceptable value. In this scenario, we can observe that the application beneVts
both by using faster processors and faster networks, but it requires a trade-oU between these
two hardware elements. For example, to take advantage of using faster CPUs, we require
using a network of more than 1GB/s. This aXrmation relies on the speedups obtained when
using networks of 256 and 512 MB/s, a “valley” at the right of the plot, where it seems that the
performance will not increase by adding faster CPUs. On the other hand, when using CPUs
of ratios 1, 2, 4 and 8, the application will not get beneVted by using networks faster than
256MB/s. This observation correspond to the blue “valley” in the front of the plot. Finally,
in the extreme cases, we can observe that the CPUs still a have a margin of improvement,
as the slope of the CPU axis is steep, while the network bandwidth seems to be reaching a
bound around the 16GB/s.

The results obtained when just accelerating the 7 majors clusters, plot 9.12b, reWect a dra-
matic performance loss, reaching a maximum speedup value around 3.8. This maximum
speedup is 12 times smaller than the one obtained when using the general purpose CPUs. In
this case, the most remarkable observation we can extract is that the application performance
reaches a plateu when using accelerators 32 times faster and a network between 1 - 2GB/s.
This situation reWects that WRF scalability will be very limited when using a accelerator
based machine. This limitation can be very critical considering that achieving 30x accelera-
tion of a given computation phases is feasible with current hardware and we can Vnd 1GB/s
networks in most of the supercomputers.

If we compare these two possible scenarios we can observe that we would just require a
general purpose CPUs 2 times faster than the original ones and no network improvement
to obtain the same performance as the maximum obtained by using 32 or 64 times faster
accelerators and a network of 1GB/s.

Finally, in Figure 9.13 we present the time-lines of the two extreme cases (16GB/s network
and 64x CPUs/acceleration). These time-lines are at diUerent scale.

In the general purpose CPUs scenario, time-line 9.13a, we can see that all the computation
phases have been reduced proportionally compared to the real execution, time-line of Fig-
ure 9.9, but now, we can see that the communications have increase their importance (there
are more white regions). We have measured it using the speedup model, and theCommEff
obtained when using the extreme conVguration of general purpose CPUs is 0.616 when in
the real execution was 0.793, also pointing the inability of this application to take advantage
of a faster network, due its communication pattern.

In the acceleration hardware scenario, the time-line 9.13b shows again that those clusters
that represented less time in the original execution, Cluster 8 (orange) and Cluster 9 (light
blue), now have a heavy weight because they have not been “accelerated”. In any case,
the application is mainly driven by the Vltered bursts (in grey). On the other hand, it is
interesting to note that in this simulation, the communications eXciency is 0.928, a better
value than the original one. This is caused by the fact that at this point, the application is
mainly dominated by the computation, and reWects the observation done when looking at
the surface plot 9.12b regarding to WRF will not take advantage of a fast network in this
hardware conVguration.

149

9. Analysis of Message-Based Parallel Applications

256
512

1024
2048

4096
8192

16384

1

6

11

16

21

26

31

36

41

46

1

2

4

8

16

32

64

Bandwidth (MB/s)

Sp
e

e
d

u
p

CPU ratio

(a) Speedups using general purpose CPUs

256
512

1024
2048

4096
8192

16384

1

1,5

2

2,5

3

3,5

4

1

2

4

8

16

32

64

Bandwidth (MB/s)

Sp
e

e
d

u
p

CPU ratio

(b) Speedups porting the most consuming clusters to accelerators

Figure 9.12.: Results of the simulation when using WRF in a diUerent hardware

150

9.3. Analyses results

(a) Clusters distribution time-line using a general purpose CPU

(b) Clusters distribution time-line using an accelerator

Figure 9.13.: WRF clusters time-lines using 16384 MB/s network bandwidth and general pur-
pose CPU 64 faster and accelarator 64 faster

151

9. Analysis of Message-Based Parallel Applications

Figure 9.14.: GADGET scatter plot of discovered clusters

Metric Cluster 1 Cluster 2 Cluster 3 Cluster 4

Computation Application Time (%) 40.54 15.92 12.17 6.87

Avg. Duration (ms) 1.166×104 4.578×103 3.501×103 1.980×103

LBdur 0.940 0.948 0.950 0.927

Avg. Completed Inst. 1.844×1010 6.948×109 5.497×109 2.264×109

LBinst 0.943 0.951 0.952 0.939

Avg. IPC 0.698 0.670 0.693 0.505

IPC Balance 0.993 0.994 0.991 0.898

Avg. MIPS 1581.307 1517.855 1570.287 1143.466

Avg. L1 misses per 103 inst. 14.099 29.379 24.406 11.901

Avg. L2 misses per 103 inst. 0.073 0.223 0.195 1.756

Avg. Memory Bandwidth (MB/s) 14.854 43.335 39.115 257.040

Table 9.8.: GADGET clusters characterization

152

9.3. Analyses results

Figure 9.15.: GADGET time-line distribution of clusters

9.3.3. GADGET

Structure detection

Before examining the computational structure of GADGET it is interesting to mention that
this application is the one that has the lowest parallelization eXciency in the set of the applic-
ations analysed, 0.582 (see Table 9.3). This low value is directly caused by the CommEff
value, 0.612, which expresses that the communications have an higher weight in the applic-
ation execution time, more than in the rest of the applications analysed.
We can also see in Table 9.3 that the total number of clusters detected was 16, which

represent 96.55% of the total computation time. The clusters with an aggregated time higher
than 5% are 4 in this application, and represent a 75.50% of the total computation time. In
Figures 9.14, 9.16, 9.15 and Table 9.8 we present the diUerent outputs of the cluster analysis.
The reVnement tree presented Figure 9.16 shows that these four major clusters appeared in

the Vrst iteration, using the smallest Eps value, so they do not contain sub-SPMD structures.
In the scatter plot 9.14, these four clusters, 1 to 4, are the only ones that execute more than
2×109 instructions per burst. This high number of instruction executed per burst is also
reWected in Table 9.8. In this table we can see that the average completed instructions per
burst of these clusters is in range 2.264×109 and 1.844×1010.
In terms of the load balance, all the clusters have values higher 0.9, a value in consonance

of the overall application load balance of 0.951 (Table 9.3). We can advance that the applic-
ation has a little margin of improvement by this side, so the impact of balancing the majors
clusters will be minor as we will later see in the duration balancing experiment.
Regarding the sequential performance, the average IPC measured for the whole applica-

tion is 0.649. Clusters 1, 2 and 3 have an average value close to 0.7, with minor variability
across the diUerent bursts (IPC Balance nearly 1). Cluster 4 has a lower IPC value, 0.505,
and also the IPC balance is slightly lower, 0.898. This variability is observable in plot 9.14,
where Cluster 4 (dark green) has a small horizontal distribution. In resume, the average IPC
values obtained in these clusters suggest that the scenario of sequential improvement can be
considered realistic, specially in case of Clusters 1 to 3, where the IPC is close to the target.

153

9. Analysis of Message-Based Parallel Applications

Figure
9.16.:G

A
D
G
ET

reVnem
enttree

154

9.3. Analyses results

Application improvement analysis

The results of the two application improvements simulations as well as the nominal simu-
lation are presented in Table 9.9. The relative error of the nominal simulation is a little bit
higher in this application, 12.260%. In Figure 9.17 we present the time-lines containing the
clusters distribution of these three simulations.
The total application load balancing is 0.951, and the load balancing of the four major

clusters is always higher than 0.9. As a result, the speedup obtained in the duration balancing
scenario is just 1.035. This simulation conVrms that the good duration balancing values
obtained oUer small margin of improvement.
In the case of the sequential performance improvement scenario, we observe a speedup

of 1.086, slightly higher than the obtained in balancing scenario. Time-line 9.17c presents
the clusters distribution of of this simulation. In this case, we applied an average reduction
around 25% to the bursts of clusters 1 to 4, according to the diUerence between their average
IPCs and the desired IPC of 0.8. Taking into account that these clusters represent 75% of
the computation of the application and the computation represents around 60% of the total
application time (according to the parallelization eXciency), the minor gain observed in this
scenario can be completely explained by the Amdhal’s Law.
The conclusion we can extract of these two application improvements, is that in the com-

putational part of this application have been well implemented, specially in terms of its bal-
ancing. In terms of its performance, the fact that its parallelization eXciency is low, would
limit the beneVts of the possible enhancements, so it would make more sense to tackle Vrst
how to improve the communications eXciency.

ConVguration Execution time (s) Speedup

Nominal 86.717 –

Duration balancing 83.815 1.035

Algorithmic Improvement 79.885 1.086

Table 9.9.: GADGET speedups of application improvement analyses

155

9. Analysis of Message-Based Parallel Applications

(a) Clusters time-line distribution of nominal simulation

(b) Clusters time-line distribution of duration balancing simulation

(c) Clusters time-line distribution of algorithmic improvement simulation

Figure 9.17.: Clusters distribution time-line of nominal simulation, duration balancing simu-
lation and the algorithmic improvement of GADGET application

156

9.3. Analyses results

Use of new hardware analysis

Figure 9.18 contains the plots that express the simulated speedup when porting GADGET to
new hardware conVgurations. Plot 9.18a presents the results of using general purpose CPUs
and plot 9.18b presents the results of using acceleration hardware on the 4 selected clusters.
Observing the plot 9.18a, we can see how GADGET behaves when using faster general

purpose CPUS. The maximum speedup observed in this plot, using a combination of CPUs
64 times faster and a network of 16 GB/s is around 61. In fact, we can observe a linear
speedup when increasing the two parameters with the same proportion: for example, the
speedup when using CPUs 8 times faster and network 8 times faster, 2GB/s is close to 8.
Considering that we are just tuning the network bandwidth and not other network paramet-
ers, this linearity expresses that the communication part of GADGET is mainly dominated
by the transference time of the communications it performs and not the number of messages
transmitted or the possible serializations of small computations and communications.
On the other hand, the speedups obtained when simulating the port to a machine using

accelerators results in minor speedups. In this case, the maximum speedup reached by the
extreme conVguration is around 4.5. Having seen that GADGET is mainly dominated by the
transference time of the communications and the fact that the 4 clusters accelerated represent
around the 15% of the computation time, an approximation to maximum speedup reachable
in this acceleration speedup would be around 6 (in the extreme case), not so far from the
actual value obtained. We can also see in this plot that the scalability of the application in
this hardware conVguration seems to be reaching a plateau around the extreme case, but we
should simulate using larger parameter values to conVrm this observation.
Finally, in Figure 9.19 we present the cluster time-lines obtained in the extreme cases in

these two scenarios. As in previous applications, these two time-lines are not at the same
scale. We can see for example, that the time-line obtained when using general purpose CPUs
is pretty similar to the original execution time-line presented in Figure 9.15, but at a diUerent
scale. This proportional reduction reWects the previously mentioned linear scaling in this
hardware conVguration. On the other hand, the time-line obtained when using accelerators
is totally diUerent from the previous one, and the non-accelerated clusters and the Vltered
bursts now represent most of the application time.

157

9. Analysis of Message-Based Parallel Applications

256
512

1024
2048

4096
8192

16384

1

11

21

31

41

51

61

1

2

4

8

16

32

64

Bandwidth (MB/s)

Sp
e

e
d

u
p

CPU ratio

(a) Speedups using general purpose CPUs

256
512

1024
2048

4096
8192

16384

1

1,5

2

2,5

3

3,5

4

4,5

5

1

2

4

8

16

32

64

Bandwidth (MB/s)

Sp
e

e
d

u
p

CPU ratio

(b) Speedups porting the most consuming clusters to accelerators

Figure 9.18.: Results of the simulation when using GADGET in a diUerent hardware

158

9.3. Analyses results

(a) Clusters distribution time-line using a general purpose CPU

(b) Clusters distribution time-line using an accelerator

Figure 9.19.: GADGET clusters time-lines using 16384 MB/s network bandwidth and general
purpose CPU 64 faster and accelerator 64 faster

159

9. Analysis of Message-Based Parallel Applications

Figure 9.20.: SU3_AHiggs scatter plot of discovered clusters

Metric Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Application Computation Time (%) 31.48 8.05 7.43 7.14 6.61

Avg. Duration (ms) 109.235 223.198 8.250 9.915 183.294

LBdur 0.993 0.988 0.989 0.991 0.990

Avg. Completed Inst. 2.957×108 4.566×108 2.284×107 2.769×107 4.024×108

LBinst 0.993 0.991 1.000 0.998 0.999

Avg. IPC 1.194 0.902 1.219 1.231 0.969

IPC Balance 0.998 0.994 0.991 0.995 0.995

Avg. MIPS 2706.667 2045.860 2793.196 2195.468 1897.511

Avg. L1 misses per 103 inst. 1.151 3.492 0.255 0.345 3.766

Avg. L2 misses per 103 inst. 0.045 0.175 0.115 0.121 0.172

Avg. Memory Bandwidth (MB/s) 15.483 45.896 40.771 43.170 48.431

Table 9.10.: SU3_AHiggs clusters characterization

160

9.3. Analyses results

9.3.4. SU3_AHiggs

Structure detection

As opposite to the previous application, SU3_AHiggs is the application that obtain the best
Vgures of the eXciency model presented in Table 9.3. In the reference execution using 256
tasks in the MareNostrum 2 supercomputer, this application obtained a value of 0.981 of the
parallel eXciency, having a communications eXciency of 0.989 and a load balance of 0.992.
SU3_AHiggs obtain this good Vgures by overlapping computation and communications eX-
ciently.

In terms of the structure detection, we can also see in Table 9.3 using the Aggregative
Cluster ReVnement we detected up to 17 diUerent clusters. These clusters represent 92.64%
of the application computation time. On the other hand, the clusters that aggregate more that
5% of the total computation time are only 5, representing 60.70% of the computation time.
In this way, a third of the total computation time is distributed along 12 clusters, which
represent short computation phases. We can see the scatter plot of the resulting clusters in
Figure 9.20 and the time-line of clusters distribution in Figure 9.21. In Table 9.10 we present
the diUerent statistics obtained by the 5 major clusters. In this application, we have omitted
the reVnement tree due its big size.

In the scatter plot, Figure 9.20, we can observe Clusters 1 (light green), 2 (yellow) and 5
(pink) appear in the top region, having the highest number of Instructions Completed, more
than 2×108. These three clusters present a compact shape, and appear at diUerent ranges of
IPC. On the other hand, Cluster 3 (red) and 4 (dark green) appear in the bottom right region
of the data space, in a region with more clusters. These two clusters execute around 2×107
and 3×107 instructions and present certain spread in terms of the IPC.

As we stated before, the load balance and average IPC of this application are very good.
In the same direction, the major clusters also obtain good Vgures for these metrics. For
example, in terms of the duration balancing, the overall application load balance is 0.992
(LB in Table 9.3). In Table 9.10 we see that the 5 “major” clusters this metric (LBdur) is
always above 0.991, and in the case of Cluster 3 it is nearly perfect (1.000 in the table, 0.9996
the actual measurement). These high values point that in terms of balance, there is no
opportunity to improve the application.

In terms of performance, the application and the Vve major clusters also obtain good val-
ues. The average IPC of the overall application is 1.008, while the major clusters obtain
values in the range 0.902 to 1.231. As these values represent a performance above the tar-
get we proposed for the sequential performance improvement scenario, in next section we
measure a simulation where the improvement corresponds to other possible optimizations,
for example a reduction in the total number of instructions of each of the major phases.

This characterization shows that SU3_AHiggs is the application that obtains the best res-
ults in terms of parallel eXciency, balancing and sequential performance (IPC) of the whole
set analysed. This limits the application improvement scenarios proposed. In this case, the
experiments regarding a possible porting to a new hardware will provide more interesting
insight.

161

9. Analysis of Message-Based Parallel Applications

Figure 9.21.: SU3_AHiggs time-line distribution of clusters

Application improvement analysis

As we have seen in the characterization of the application and the diUerent SPMD regions
found, SU3_AHiggs is an application well balanced with good performance Vgures. For this
reason, the two application improvement scenarios will give us little information.
To make these analyses a little bit more illustrative, we slightly modiVed the simulations

from the previous examples. In the case of the duration balancing scenario, we perform three
diUerent simulations: Vrst, a duration balancing of the 5 major clusters selected; second, a
balancing of all the computation (including the Vltered bursts); and third, a balancing only of
the Vltered bursts. These three diUerent simulations give us some indications to detect which
part of the computation is more critical in terms of the duration balancing. In the case of
the sequential performance improvement, instead of computing the ratio of the average IPC
obtained by each cluster and 0.8, we compute a ratio based on a 10% reduction of the number
of average instructions executed on these clusters whose average completed instructions
is higher than 2.5×108: Clusters 1, 2 and 5 (see Table 9.10). In Table 9.11 we present the
speedups obtained in the diUerent simulations. In this case, the relative error of the nominal
simulation vs. the real execution was 1.47%.

ConVguration Execution time (s) Speedup

Baseline Simulation 5.780 —

Balancing all computation 5.755 1.0042

Balancing clusters 1 to 5 5.770 1.0016

Balancing Vltered bursts 5.779 1.0002

10% instructions reduction Clusters 1, 2 and 5 5.540 1.0432

Table 9.11.: SU3_AHiggs speed-ups according to potential cluster improvements

162

9.3. Analyses results

(a) Clusters time-line distribution of nominal simulation

(b) Clusters time-line distribution of algorithmic improvement simulation

Figure 9.22.: Clusters distribution time-line of nominal simulation and the algorithmic im-
provement simulation of SU3_AHiggs application

In this table we can observe that the speedups obtained by the diUerent duration balancing
scenarios are minimum: 1.0042 when balancing all the computation part of the application,
1.0016 when balancing only the 5 major clusters and 1.0002 when balancing the Vltered
bursts. The measurements conVrm the predicted small gain of balancing the application, but
also show that just balancing the Vltered bursts provide the smallest gain, which means that
these small burst do not have a negative impact in the overall application. In this case, we
do not present the simulation time-lines, as they do not give any interesting insight.
In terms of the sequential improvement, the speedup obtained is 1.043, a small gain. In

Figure 9.22 we present the time-line of the nominal simulation and the result of this scenario,
where we can see how Clusters 1, 2 and 5 have been shortened (by 10%) and the small
reduction in the overall application duration. Considering that the new scenario introduced
for this improvement, reducing the number of instructions of the Clusters 1, 2 and 5 could
be hard to put in practice, this simulation also points that the pay oU obtained by a big
development eUort is very low.
As a conclusion of these two experiments modelling potential application improvements,

we can conVrm the observations introduced previously: SU3_AHiggs is an application well
implemented with a good balance and high performance that presents little opportunity to
improve it.

Use of new hardware analysis

In Figure 9.23 we present the surface plots showing the speedups obtained by porting the
application to a machine with faster general purpose CPUs and a faster network, plot 9.23a,
and porting the application to a machine with acceleration hardware, plot 9.23b, where only

163

9. Analysis of Message-Based Parallel Applications

the 5 major clusters take advantage of the accelerators.
When using general purpose CPUs, plot 9.23a, we can observe that the maximum speedup

reach is near 61, very close to the theoretical limit of 64. We discussed in previous applica-
tions that this limit could be reached if the network latency had no impact in the application.
This plot shows an interesting situation regarding the scalability of the application. If we

focus on the CPU ratio axis, we can see that the speedup obtained up to 16 times faster
CPUs is always nearly lineal, independently of the network bandwidth. When the CPUs
used are faster that 32 times the original one, the application requires some extra bandwidth
to reach values near the linear speedup. This scalability simulations reWect that the way
this application overlaps the communication and computation allows to reach high speedups
without the need to scale the networking hardware at the same rate that the computation
hardware.
In the second scenario deVned, when using acceleration hardware, the speedups obtained

are much lower than in the previous conVguration. As can be seen in the plot 9.23b, the
maximum speedup obtained by doing this port is just around 2.3. As it happens in the small
CPU ratios of the previous scenario, when accelerating just the major clusters, the maximum
speedup is reached independently from the network bandwidth, as the overlapping of com-
putation and communications is able to hide the transmission times. In any case, this is a
poor speedup, considering the potential eUort of porting up to 5 diUerent regions could be a
hard task.
The time-lines of the extreme executions of these two scenarios are depicted in Figure 9.24.

The time-lines do not share the time scale. Observing the one corresponding to the port to
general purpose CPUs, 9.24b, we can see how it reWects the linear speedup measured: it is a
clear re-scale of the structure observed in the real execution, Figure 9.21. Obviously, in the
time-line 9.24b, corresponding to the porting to acceleration hardware, the structure reWects
that the non-accelerated clusters are now the computational parts that drive the application
execution. In this time-line we can also see some skew across the diUerent tasks that aUect
the execution, specially in the Vrst iteration.

164

9.3. Analyses results

256
512

1024
2048

4096
8192

16384

1

11

21

31

41

51

61

1

2

4

8

16

32

64

Bandwidth (MB/s)

Sp
e

e
d

u
p

CPU ratio

(a) Speedups using general purpose CPUs

256
512

1024
2048

4096
8192

16384

1

1,2

1,4

1,6

1,8

2

2,2

2,4

1

2

4

8

16

32

64

Bandwidth (MB/s)

Sp
e

e
d

u
p

CPU ratio

(b) Speedups porting the most consuming clusters to accelerators

Figure 9.23.: Results of the simulation when using SU3_AHiggs in a diUerent hardware

165

9. Analysis of Message-Based Parallel Applications

(a) Clusters distribution time-line using a general purpose CPU

(b) Clusters distribution time-line using an accelerator

Figure 9.24.: SU3_AHiggs clusters time-lines using 16384 MB/s network bandwidth and gen-
eral purpose CPU 64 faster and accelerator 64 faster

166

Conclusions

167

10. Conclusions

In this thesis we presented the research we conducted using cluster analysis algorithms and
multiple sequence alignment algorithms in the parallel performance analysis scenario.

As contributions to the Performance Analytics are, we proposed and validated new parallel
analysis techniques that rely in these two types of algorithms. We also demonstrated the
utility of the techniques introduced by using them to perform diUerent types analyses of
parallel applications.

10.1. Parallel applications computation structure
detection based on cluster analysis

This Vrst contribution, the core research of the whole thesis, explores the application of
cluster analysis algorithms in the parallel performance analysis scenario. Even the use of
cluster algorithms in the performance analysis is not a novelty by itself, the way we applied
diUers totally from the previous approaches we found in the area.
Firstly, we deVned the minimum analysis granularity we work with, the CPU burst. A

CPU burst, or simply burst, is the region in a parallel application between calls to the parallel
runtime (for example, before sending a message). This granularity is intrinsically related to
the application implementation, but it is orthogonal from the semantical view of the applic-
ation, i.e. how it is have been programmed. We demonstrated that the CPU bursts constitute
an useful granularity in the application analysis.
The cluster analysis is applied then to determine the groups of CPU bursts that behave

similarly according to a given performance metrics. In this case, the metrics we used were
the performance hardware counters, registers oUered by processors that account low level
performance characeristics, such as the instructions executed or the cycles spent to execute
them. In this way, hardware counters suppose an unique piece of information to observe and
measure the application performance.
Using the hardware counters as input metrics of the cluster analysis made us explore

diUerent cluster algorithms to Vnd the more appropriate cluster algorithm. We observed that
the values of these metrics do not follow a Vxed distribution, so the classical k-means-like
algorithms previously used in the performance analysis did not produce good results. As an
alternative, we found that density-based cluster algorithms perfectly fulVl our requirements
as this family of algorithms do not assume any structure of the data. The selected density-
based cluster algorithm was DBSCAN, the most representative of this family. The DBSCAN
algorithm uses two parameters, Epsilon (or Eps for short) and MinPoints. The resulting
clusters are the diUerent subsets of the data space with more than MinPoints individuals,
where all points have at least one neighbor at distance less than Eps. The points which do

169

10. Conclusions

not fall in any cluster are marked as noise. Conceptually, this deVnition determines that the
cluster of the data set are those groups “close enough” (Eps parameter) and “dense enough”
(MinPoints parameter).

As a result of applying DBSCAN to the performance hardware counters data, especially
the combination of Completed Instructions and IPC, we obtain a clear characterization of
the computation structure of the application at detail. The resulting clusters represent the
diUerent computation regions found which are related in terms the performance hardware
metrics used. These clusters, usually a small number, are characterized in terms of diUerent
performance metrics present in the input data, not just the counters used to generate thenm,
and result very useful to understand how the diUerent computation regions of an application
behave.

10.2. Evaluation of the computation structure quality

Knowing that the density based cluster does not assume any model in the resulting clusters,
the quantitative evaluation of the results obtained by applying DBSCAN became a hard
manual task.

In order overcome this problem, we introduced the Cluster Sequence Score that quantit-
ative evaluates the SPMDiness of a parallel application. The SPMDiness of an application is
informally described as how well its computation structure follows the SPMD pattern.

The underlying idea to perform the quantiVcation of the SPMDiness is that if in an SPMD
application all tasks should be performing the same computations with diUerent data at
same time, the sequence of these computations should be the same for all tasks. Then,
representing this sequence of computations as DNA/protein chains, we found that Multiple
Sequence Alignment (MSA) software will be totally applicable in this context. Using an MSA
algorithm to a given set of tasks sequences will produce a alignment, i.e. an disposition of
the given tasks that maximize the number of equal actions that appear at on each position
of the sequences. Thanks to this alignment it is easy to quantify the similarities across the
tasks sequences, the desired SPMDiness quantiVcation.

The Cluster Sequence Score we proposed relies in a computation structure based on cluster
analysis. In this way, the sequences we use in the MSA algorithm are the sequence of dif-
ferent clusters of each task involved in the parallel application analysed. After applying the
MSA algorithm, our implementation traverse the aligned sequences in parallel measuring
for each position the clusters that appear simultaneously in all tasks. As a result, we obtain
the Score per cluster, in other words, how well each cluster represents a SPMD region. A
weighted combination of all the scores per cluster using the percentage of the application
computation time each cluster represents produces the mentioned Cluster Sequence Score,
i.e. the SPMDiness of computation structure detected.

170

10.3. Automatization and reVnement of the structure detection

10.3. Automatization and reVnement of the structure
detection

After acquiring some expertise with the structure detection technique based on DBSCAN
algorithm we detected the limitations of this algorithm. First, the DBSCAN parameters could
be a handicap for an non-expert user and second, and more important, for those inputs with
diUerent densities across the data space, the use of a single Eps parameter limit the ability
to correctly detect the actual clusters where the dataset presents multiple densities. We
proposed the Cluster Aggregative ReVnement algorithm to overcome these problems.

Aggregative Cluster ReVnement was inspired by the X-Means algorithm, which iterat-
ively improves the quality of the classic K-Means algorithm, using the Bayesian Information
Criterion to evaluate the resulting clusters. The proposed algorithm also takes in advantage
the common points of DBSCAN and the hierarchical clustering methods. These methods
basically create a dendrogram, a tree that expresses the similarities between individuals and
groups of individuals. In a dendrogram the root represents the whole data set, the leaves
the individuals, and the height between each intermediate node and the leaves represents
the value of a given distance metric applied to the individuals it joins. In DBSCAN, using a
Vxed MinPoints value, the diUerent higher an lower Eps values applied correspond to higher
(close to root) or lower (close to leaves) “cuts” in a dendrogram, respectively.

Aggregative Cluster ReVnement receives as inputs the data set to analyse and the max-
imum number of reVnement iterations it can execute, N . Then it sets a value of MinPoints
and generates N increasingly sorted Eps values by analysing the data distribution. On each
iteration it applies DBSCAN usingMinPoints and the corresponding Eps to the input data
set, evaluating the resulting clusters using a quality score. Those individuals that belong to
clusters that pass the score are discarded in further iterations. The algorithm Vnishes after
N iterations or when all clusters detected passed the score.

The use of multiple Eps values plus the quality score imply that Vnal clusters will appear
at diUerent iterations of the algorithm, according to the density they have in the data space,
overcoming the DBSCAN limitation.

Using the Aggregative Cluster ReVnement with the CPU burst data of a parallel applica-
tion, and applying the Cluster Sequence Score to evaluate the clusters on each iteration, we
provide the developer/analyst a high quality SPMD computation structure detection with
the added value of the (pseudo-)dendrogram that reWects the hierarchical formation of the
computation regions. In addition, the algorithm just requires the data set as input, but no
other parameters.

10.4. Structure detection in practice

In the rest of the thesis, we presented several uses of the computation structure detection
based on cluster analysis.

171

10. Conclusions

10.4.1. Accurate extrapolation of performance metrics

A common problem when extracting performance data is the limit on the diUerent metrics
that can be read simultaneously. For example, when reading the performance hardware
counters, the number of register that contain them are Vxed in the hardware design, and also
the combinations of the diUerent counters. In order to avoid the run multiple executions of
the parallel application, which are costly in terms of time and resources, it is quite normal to
multiplex the counters selected during the application

We deVned an extrapolation methodology where we apply the computation structure de-
tection based on cluster analysis using the data extracted by multiplexing the performance
counters groups. Using the methodology, we are able to extrapolate, for each cluster, the
averages values of all the performance counters present more groups than can be read sim-
ultaneously, with minimum error. To obtain this correct averages we need to guarantee that
all counters groups have a subset of counters in common, in order to apply the cluster ana-
lysis to this subset; we also need that the resulting clusters contain bursts with values for all
counters groups. First requirement is solved by the fact that completed instructions and total
cycles counters are present in almost all of counters deVned in all processors. The second
requirement is easily assumable due to the diUerent multiplexing schemes we propose.

10.4.2. Information reduction in a multi-scale simulation

Detailed simulations of large scale message-passing parallel applications are extremely time
consuming an resource intensive. We designed and validated a methodology where the
computation structure detection based on cluster analysis is combined with signal processing
techniques to reduce the volume of simulated data by various orders of magnitude. This
reduction makes possible to perform accurate predictions full application time in reasonable
time.

The information reduction process starts using a spectral analysis technique. In a naïve
way, the spectral analysis represents a performance metric, for example the aggregated dur-
ation of all the CPU bursts at a given point of time, as time varying signal. Using the wavelet
transform, it detects the regions with high-frequencies which determine the main iterative
part of the application and also the iterative pattern. Selecting just one or two representat-
ive iterations, it reduces dramatically the data to analyse while being representative of the
application behaviour. To this subset of the input data, we apply the cluster analysis to the
CPU bursts to characterize the inner computation structure. The combination of these two
analyses can be seen as an automatic detection of the computation trends in two granularity
levels: main application iterations and intra-iteration computation phases.

Having this characterization, the (expensive) micro-architectural part of the simulation
is dramatically reduced by carefully selecting the actual CPU bursts to simulate using the
information provided by the cluster analysis. The strong statistical foundation of the cluster
analysis guarantees that the use of a small set of representatives instead of all individuals
adds a minimum error to the Vnal simulation.

172

10.5. Open lines for future research

10.4.3. Parallel applications what-if studies

Using the Vne-grain characterization of the computation regions the Aggregative Cluster
ReVnement algorithm provides we carried out a set of what-if studies to a set of four applic-
ation. In these studies we measure what would the impact of applying diUerent application
improvements and how would the performance by porting the applications to diUerent hard-
ware. The results of these studies provides on a valuable insight about the applications beha-
viour, for example to take decisions on where put the programming resources to maximize
the pay oU in terms of performance, without the need to recodify the application, and also to
anticipate the potential problems that application could suUer when using better hardware
resources, without requiring the actual hardware.

10.5. Open lines for future research

The scale of current supercomputers and the demands of scientists from almost all Velds to
use them make the Performance Analytics a key area to research. This thesis represents our
proposal into this area, focusing on the better understanding of the computation regions of
parallel applications. We consider that the computation regions characterization opens the
opportunity to develop a wide variety of studies, using the techniques presented to in sort of
manners not contemplated in thesis and also improving the techniques themselves.
To resume, we want to focus on the four open lines that seem more interesting in short

term: the scalability of the cluster analysis, the exploration of the metrics space to max-
imize the clustered information, a deep study of the clusters structure, and the design and
validation of a diagnosis system using the structure detection.

10.5.1. Scalability of cluster analysis

As well as cluster analysis targets is to summarize the information present on a datasets, in
some cases the cluster algorithms cost could be prohibitive when dealing with huge amounts
of data. This is the case of the DBSCAN cluster algorithm. In this thesis we have not
emphasize a formal cost analysis of both DBSCAN and the Aggregative Cluster ReVnement,
but we can aXrm that they are costly. The foundation of these algorithms is a “epidemic”
search of neighbours along the data space, an operation of orderO(n2), with an average cost
of O(n log n). This is extremely expensive if we consider that current supercomputers have
the order of hundreds of thousands (or millions) cores, which could produced performance
data at sustained rates of thousands of metrics values per second.
Our main concern with respect to this issue is that it would be critical to improve the

cluster algorithm so as to guarantee that the presented techniques will be applicable in cur-
rent and future scenarios of ever-growing supercomputers. To tackle this problem, our target
is to parallelize the clustering algorithm itself. Having seen some other approaches in the lit-
erature, our proposal consists of distribute the analyses in a reduction network, where the
leaves correspond to parallel DBSCAN executions each of them with a subset of the data.
Then, the reduction consists on merge the models obtained on each of these “local cluster-
ings”, generate a Vnal model and redistribute it to the leaves to perform a Vnal classiVcation.

173

10. Conclusions

The parallelization exposed represents and interesting starting point to research, for ex-
ample to evaluate the possible ways to model the “local clustering” results (remember that
DBSCAN clusters do not follow any data distribution), how merge the local models eX-
ciently and Vnally how to dispose the Vnal classiVed data. As a result, having a parallel
implementation of DBSCAN will let us to perform analyses of bigger scales.

10.5.2. Fine-tune of the structure reVnement

The Aggregative Cluster ReVnement algorithm we presented relies in an accurate selection
of diUerent Eps values and the application of the Cluster Sequence Score to evaluate the
resulting clusters. We demonstrated its usefulness by presenting how it is able to detect
the Vne-grain SPMD phases of diUerent applications. However, we detected that in certain
applications the resulting clusters could be improved.
We observed two diUerent situations were the algorithm do not produced the desired

results. The Vrst one occurs when two clusters are close to the target score, but in the next
iteration of the algorithm they got merged, producing a over-aggregation. The second one
occurs when there is a cluster with high variability and some of bursts it should contain are
classiVed as noise, even using the highest Eps values computed.
As a future work, we want to improve the Aggregative Cluster ReVnement algorithm to

be robust to these two situations. To do so, we require two modiVcations in the algorithm: to
avoid the Vrst problem, we have to adapt the evaluation of the clusters by reducing slightly
the target score required and then classifying the bursts on each iteration; to avoid the second
problem, we have to tune the exploration of the diUerent Eps values.

10.5.3. Metrics space exploration

Along this thesis we have introduced diUerent techniques to detect and evaluate the compu-
tation structure of a parallel application. Essentially, all these techniques focus on a precise
characteristic of the applications analysed, and also of they computation structure: the SPMD
paradigm. The Cluster Sequence Score and it use on the Aggregative Cluster ReVnement has
as main target the detection the application’s SPMD phases at Vne-grain.
To make this detection possible, the selection of the metrics used by the cluster analysis

plays a crucial role, and we demonstrated that the combination of Completed Instructions
and IPC counters produced a good characterization. Almost all experiments presented use
these pair of metrics, showing the desired SPMD patterns, as well as the possible imbalances
appearing in some regions. However, in some cases, other combinations of performance
counters lead to a better detection. For example, in the analysis of WRF in chapter 9, we
used Completed Instructions and Main Memory Accesses.
Considering this, we propose as a future work the exploration of which of the metrics

that can be used to characterize a CPU bursts detects the best computation structure. These
metrics will not only be limited to the performance counters but also any other performance
metric that can be extracted during the application execution, for example the code location.
The exploration itself will require the use of cluster validity indexes, such as the Cluster
Sequence Score, to evaluate the quality of the clusters detected. In addition, we will require

174

10.5. Open lines for future research

other statistical techniques, such as the Principal Components Analysis (PCA), to guide the
metrics combinations.

10.5.4. In-depth analysis of the clusters structure

Appart from determining which metrics combination, in this third proposal, we focus on the
understanding of the clusters structure.
We have seen that the reVnement tree produced by the Aggregative Cluster ReVnement

deVne a hierarchy in the points that belong to a cluster. We studied the relationship between
this hierarchical formation and the target SPMD structure we want to discover.
In terms of analysis, it would be really useful to characterize each of these sub-clusters that

appear at diUerent levels of the reVnement tree and Vnally conform an SPMD. The study of
the possible relationships of performance counters metrics observed along this hierarchy will
provide an unique insight of the internal behaviour of each SPMD phase. For example, with
this information we will be able to detect not only the imbalances in these phases, but also
to quantify the possible causes of them.

10.5.5. Detailed performance data extrapolation

The performance data extrapolation method we presented in chapter 7 we are able to com-
pute the average of a wide set of more performance counters that the ones that can be read
simultaneously when extracting the data by using diUerent multiplexing schemes. These av-
erages values are useful to obtain an initial characterization of each cluster, but as it happens
in the application proVles, they can hide some variability from diUerent occurrences of the
same cluster.
A fourth proposal for a future research will consist on analysing how the diUerent met-

rics multiplexed behave in the diUerent CPU bursts used in the application execution, so
as to study accurately its variability and distribution. In this way, the result of this future
extrapolation method will tell more information about the extrapolated metrics, not just the
average, and not hiding the variability that the diUerent metrics can express.
In addition to the study of the extrapolated metrics distribution, it would be also interest-

ing to add a new multiplexing schemes by using a random permutation of the performance
counters groups, both in time and space. The random permutation of the groups multi-
plexed will be useful to avoid possible systematic errors if exists a correlation between the
application computation structure and the multiplexing schemes we used.

175

Appendices

177

A. The BSC Tools Parallel Performance
Analysis Suite

The BSC Tools is a suite of parallel performance analysis tools, now developed in the
Performance Tools Group of the Barcelona Supercomputing Center (BSC-CNS), with

more than 20 years of expertise.
The BSC Tools suite focuses on the post-mortem analysis of application traces. The big

picture these tools ecosystem is presented in the Figure A.1. In this appendix we include a
detailed description of the most important elements of it includes.

Extrae

Parallel
Application

.prv

.pcf
.row

Paraver trace

.dim
.pcf

Dimemas trace

prv2dim

Dimemas

Trace
Filters

.prv

.pcf
.row

Paraver filtered
trace

Paraver

External traces
Translators

Performance
Analytics

Supplementary
Info.

.xls
.plot

.csv

Figure A.1.: Scheme of the BSC Tools Parallel Performance Analysis Suite, depicting the dif-
ferent tools and their interaction

A.1. Extrae

Extrae is the package devoted to generate traceVles which can be analyzed later by Paraver or
Dimemas. Extrae is a tool that uses diUerent interposition mechanisms to inject probes into
the target application so as to gather information regarding the application performance. The
Extrae instrumentation package can instrument the following parallel programming models:
MPI, OpenMP, CUDA, pthread and OmpSs.

179

A. The BSC Tools Parallel Performance Analysis Suite

In order to specify and control of what and how to trace the application, Extrae can be
conVgured through an XML Vle.

A.1.1. Interposition mechanisms

Extrae takes advantage of multiple interposition mechanisms to add monitors into the ap-
plication. No matter which mechanism is being used, the target is the same, to collect per-
formance metrics at known applications points to Vnally provide the performance analyst a
correlation between performance and the application execution. Extrae currently uses the
following interposition mechanisms:

DynInst

DynInst [27] is an instrumentation library that allows modifying the application by injecting
code at speciVc code locations. SpecVcally, Extrae uses the application binary rewriting
feature DynInst oUers.
With the instrumentations capabilities of DynInst, Extrae can instrument diUerent parallel

programming runtimes as OpenMP (either for Intel, GNU or IBM runtimes), CUDA acceler-
ated applications, and MPI applications. DynInst also oUers Extrae the possibility to easily
instrument user functions by simply listing them in a Vle.

Linker preload (LD_PRELOAD)

Most of the current operating systems allow injecting a shared library into an application
before the application gets actually loaded. If the library that is being preloaded provides
the same symbols as those contained in shared libraries of the application, such symbols can
be wrapped in order to inject code in these calls. In Linux systems this technique is based
on deVning the LD_PRELOAD environment variable according to the interposition library we
want to use.
Extrae contains substitution symbols for many parallel runtimes, as OpenMP (either Intel,

GNU or IBM runtimes), pthread, CUDA accelerated applications, and MPI applications.

Additional instrumentation mechanisms

Extrae also takes the advantage of some parallel programming runtimes that have their
own instrumentation (or proVle) mechanisms available for performance tools. The most
widely known example is the Message Passing Interface (MPI) which provides the ProVle-
MPI (PMPI) layer. MPI/PMPI use a linker capability to deVne weak and strong symbols.
While the weak symbols can be overloaded, the strong symbols can’t and still provide the
functional part of MPI. Such mechanism is used by linking the application with a library
that contains symbols that substitute the weaks symbols. In addition, this proVling interface
is also used by the linker preload mechanism.
An additional instrumentation mechanism is CUPTI, which is an interface of the CUDA

library that can install callback routines that are executed when relevant parts of the code
have been executed in the CUDA application.

180

A.1. Extrae

Some compilers allow instrumenting the application routines by using special compilation
Wags at the compilation and link phases. Applying such Wag typically tells the compiler to
call some predeVned callbacks that can be hooked by performance tools like Extrae.
The programming model OmpSs provides instrumentation version of its compiled binar-

ies. The instrumentation is the synergy of both BSC teams (performance tools and program-
ming models) to facilitate and integrate the performance analysis into this successful parallel
programming model. OmpSs compiler (Mercurium) can inject code into the application and
the runtime (Nanos++) emits information referring its internal evolution. This results in
Paraver traceVles that not only contain information regarding the application evolution but
also more speciVc information about the parallel programming model.

Extrae API

Finally, Extrae gives the user the possibility to manually instrument the application and emit
its own events if the previous mechanisms do not fulVll the user’s needs. The Extrae API is
detailed in the Extrae user-guide documentation that accompanies the package.

A.1.2. Sampling mechanisms

Extrae does not only oUer the possibility to instrument the application code, but also oUers to
use sampling mechanisms to gather performance data. While adding monitors into speciVc
location of the application produces insight which can be easily correlated with source code,
the resolution of such data is directly related with the application control Wow. Adding
sampling capabilities into Extrae allows providing performance information of regions of
code which has not been instrumented.
Currently, Extrae sports two diUerent sampling mechanisms. The Vrst mechanism is the

old-known signal timers, which Vres the sampling handler at a speciVed time interval. The
second sampling mechanism uses the processor performance counters to Vre the sampling
handler at a speciVed interval of performance events triggered. While the Vrst mechanism
can provide totally uncorrelated samples with the application code, the second mechanism,
using the appropriate performance counters, can provide insight of the application but still
presenting some correlation with the application code/performance.

A.1.3. Performance data gathered

The monitors added by Extrae gather diUerent types of information. Depending on the
monitor placement, each monitor can be taught to gather speciVc information. The most
common information gathered is:

Timestamp When analyzing the behavior of an application, it is important to have a Vne-
grained timestamping mechanism (up to nanoseconds). Extrae provides a set of clock
functions that are speciVcally implemented for diUerent target machines in order to
provide the most accurate possible timing. On systems that have daemons that inhibit
the usage of these timers or that do not have a speciVc timer implementation, Extrae

181

A. The BSC Tools Parallel Performance Analysis Suite

uses advanced POSIX clocks to provide nanosecond resolution timestamps with low
cost.

Performance and other counter metrics Extrae uses the PAPI and the PMAPI interfaces
to collect information regarding the microprocessor performance. With the advent of
the components in the PAPI software, Extrae is not only able to collect information
regarding how is behaving the microprocessor only, but also allows studying multiple
components of the system (disk, network, operating system, among others) and also
extend the study over the microprocessor (power consumption and thermal informa-
tion).

Extrae mainly collects these counter metrics at the parallel programming calls and at
samples. It also allows capturing such information at the entry and exit points of the
user routines instrumented.

Reference to the source code Analyzing the performance of an application requires relat-
ing the code that is responsible for such performance. This way the analyst can locate
the performance bottlenecks and suggest improvements on the application code. Ex-
trae provides information regarding the source code that was being executed (in terms
of name of function, Vle name and line number) at speciVc location points like pro-
gramming model calls or sampling points.

A.2. Paraver

Paraver is a Wexible parallel program visualization and analysis tool based on an easy-to-
use GUI. Paraver was developed responding to the basic need of having a qualitative global
perception of the application behaviour by visual inspection and then to be able to focus
on the detailed quantitative analysis of the problems. Paraver provides a large amount of
information on the behaviour of an application. This information directly improves the
decisions on whether and where to invest the programming eUort to optimize an application.
The result is a reduction of the development time as well as the minimization of the hardware
resources required for it.
Some Paraver features are the support for

• Detailed quantitative analysis of program performance

• Concurrent comparative analysis of multiple traces

• Mixed support for message passing and shared memory (networks of SMPs)

• Flexible personalization of the semantics of the visualized information

One of the main features of Paraver is the Wexibility to represent traces coming from
diUerent environments. Traces are composed of state intervals, events and communications
with an associated timestamp. These three elements can be used to build traces that capture
the behaviour along time of very diUerent kinds of systems.

182

A.2. Paraver

A.2.1. Analysis views

Paraver oUers a minimal set of types of views of a trace. The philosophy behind the design
was that diUerent types of views should be supported if they provide qualitatively diUerent
analysis types of information. Frequently, visualization tools tend to oUer many diUerent
views of the parallel program behaviour. Nevertheless, it is often the case that only a few of
them are actually used by users. The other views are too complex, too speciVc or not adapted
to the user needs.
Paraver diUerentiates two types of views:

• Time-line View: to represent the behaviour of the application along time in a way
that easily conveys to the user a general understanding of the application behaviour.
It also supports detailed analysis by the user such as pattern identiVcation, causality
relationships, etc.

• Histogram View: to provide quantitative measurement of the information present in
the trace discarding the time component. The Histogram View provides an intuitive
way of accounting the information available in the trace, oUering a wide set of stat-
istics and the possibility to easily combine diUerent metrics. It eases the detection of
correlations of the performance metrics. In addition, the Histogram View is connected
to Time-line View, to observe how the information it shows is distributed along time.

Time-line View

The Time-line View is Wexible enough to visually represent a large amount of information
and to be the reference for the quantitative analysis. The Paraver view consists of a time dia-
gram with one line for each represented object. The types of objects displayed by Paraver are
closely related to the parallel programming model concepts and to the execution resources
(processors).
In the Vrst group, the objects considered are: application (Ptask in Paraver terminology),

task and thread. Although Paraver is normally used to visualize a single application, it can
display the concurrent execution of several applications, each of them consisting of several
tasks with multiple threads.
The information in the Time-line View consists of three elements: a time dependent value

for each represented object, Wags that correspond to puntual events within a represented
object, and communication lines that relate the displayed objects. Figure A.2 displays a basic
time-line where the coloring correspond to the value of the state of each task, events are
represented as small green Wags and point-to-point communications are presented as yellow
lines.
A Visualization Module blindly represents the values and events passed to it, without

assigning to them any pre-conceived semantics. This plays a key role in the Wexibility of
the tool. The semantics of the displayed information (activity of a thread, cache misses,
sequence of functions called,...) lies in the mind of the user. Paraver speciVes a trace format
but no actual semantics for the encoded values. What it oUers is a set of building blocks,
the Semantic Module, to process the trace before the visualization process. Depending on

183

A. The BSC Tools Parallel Performance Analysis Suite

Figure A.2.: Basic Paraver time-line view

Figure A.3.: Detail of the Paraver Semantic Module showing the semantic functions regard-
ing thread states

how you generate the trace and combine the building blocks, you can get a huge number of
diUerent semantic magnitudes.

The separation between the Visualization Module which controls how to display data and
the Semantic Module which determines the value visualized oUers a Wexibility and expressive
above than frequently encountered in other tools. Paraver Semantic Module is structured as
a hierarchy of functions which are composed to compute the value passed to the visualization
module, see Figure A.3. Each level of function corresponds to the hierarchical structure of
the process model on which Paraver relies. For example: when displaying threads, a thread
function computes from the records that describe the thread activity, the value to be passed
for visualization; when displaying tasks, the thread function is applied to all the threads
of the task and a task function is used to reduce those values to the one which represents
the task; when displaying processors, a processor function is applied to all the threads that
correspond to tasks allocated to that processor.

Many visualization tools include a Vltering module to reduce the amount of displayed
information. In Paraver, the Filtering Module, Figure A.4 is in front of the semantic one. The
result is added Wexibility in the generation of the value returned by the Semantic Module.

184

A.2. Paraver

(a) Communications Vlter (b) Events Vlter

Figure A.4.: Communication and Event sections of the Paraver Filtering Module

The Histogram View

A global qualitative display of application behaviour is not suXcient to draw conclusions on
where the problems are or how to improve the code. Detailed numbers are needed to sustain
what otherwise are subjective impressions.
The quantitative analysis module, the Histogram View, of Paraver oUers the possibility

to obtain information on the user selected section of the visualized application and includes
issues such as being able to measure times, count events, compute the average value of the
displayed magnitude, etc.
The Histogram View functions are also applied after the Semantic Module in the same

way as the Visualization Module. Again here, very simple functions (average, count, etc.)
at this level combined with the power of the Semantic Module result in a large variety of
supported measures.
Depending on the semantics of the information we want to visualize, the Histogram View

presents two diUerent visualizations: Vrst, if we want to compute statistics over a discrete
variable, the Histogram View will be depicted as table of the statistic we want to observe;
second, if we want to compute the statistics of a continuous variable, the Histogram View
will be depicted as a pure histogram.
Figure A.5 contain an example of these two diUerent possible presentations of the informa-

tion using the Histogram View. The Vrst one, A.5a, presents a statistics table. In this example,
the X axis represents the diUerent MPI primitives (a discrete variable), the Y axis contains the
diUerent processes of the application, and each table cell contains the aggregated duration
each process spent on each MPI routine. Second view, A.5b, is a pure histogram, where the Y

185

A. The BSC Tools Parallel Performance Analysis Suite

(a) ProVle-like view presentation (b) Pure histogram data presentation

Figure A.5.: Paraver Histogram View

axis represents again the application processes and the X axis are diUerent histogram bins of
the IPC measured. In this case, the coloring represents, in a gradient increasing from green
to blue, the IPC distribution obtained by each process.

A.2.2. Paraver object model

As described previously, Paraver functionality is tightly coupled with the hierarchical object
model. Paraver works with two ortogonal object models:

• The process model, composed by the objects that correspond to the three levels of the
most frequently programming models: application, process and thread objects.

• The resource model, that represents the physical resources where the diUerent threads
are Vnally executed. The resource objects are tightly connected with the cluster of
SMPs where applications has been executed: processor and node.

Process Model

The Paraver process model, depicted in Figure A.6 is a superset of the most frequently used
programming models. On a Paraver window, the type of process model object to be repres-
ented can be selected among:

• Set of applications (WORKLOAD)

• Application (APPL)

186

A.2. Paraver

THREADS

THREADS

THREADS

THREADS

THREADS

TASK

TASKTASK

TASK

TASK

Application (APPL)

Application (APPL)

WORKLOAD

Figure A.6.: Paraver process model

• TASK

• THREAD

A parallel application (APPL level) is composed by a set of sequential or parallel processes
(named as TASK in paraver process model hierarchy). The parallel processes are composed
by more than one thread while the sequential processes are mapped into one THREAD. The
top of the process model hierarchy is the WORKLOAD level representing a set of diUerent
applications running on the same resources.

Resource Model

The resource model represents the resources where the applications are executed. On a
Paraver window, the type of resource object to be represented can be selected among:

• Cluster of nodes (SYSTEM)

• NODE (set of processors)

• Processor (CPU)

The processors (CPU) are the resources where the threads are executed. Processors are
grouped in nodes (NODE). A task is mapped into a node and thus all its threads share their
processors in that node. The mapping is not necessarily one to one, so it is possible to have
several tasks from a single application on a given node. Tasks from diUerent applications can
also be mapped into the same node.

187

A. The BSC Tools Parallel Performance Analysis Suite

SYSTEM
NODE

CPU

CPU Local
Memory

CPU

NODE

CPU

CPU Local
Memory

CPU

NODE

CPU

CPU Local
Memory

CPU

L L L

B

Figure A.7.: Paraver and Dimemas resource model

A.2.3. Paraver Trace

The trace Vle contains records which describe absolute times when events or activities take
place during the execution of the parallel code. Each record represents an event or activity
associated to one thread in the system. This Vle has the extension prv and is usually called
the dot prv Vle. Furthermore, trace Vles have associated some other Vles to conVgure some
aspects of the environment: the symbolic information for the numerical values of the prv Vle
are contained in a Vle with the extension pcf and row labels are contained in a Vle with the
extension row.
The Paraver trace Vle (the dot prv Vle) is composed by a header and a body, Figure A.8. The

header describes the process and resource model objects and the body contains the ordered
list of records.

Trace body

Trace header
#Paraver (22/05/12 at 16:20):1021312_ns:2(1:1):1:2(1:1,1:2),3
c:1:1:2:1,2
c:1:1:1:1
c:1:1:1:2

1:1:1:1:1:0:10O:4
1:2:1:2:1:0:200:4
1:1:1:1:1:10O:37:1
1:1:1:1:1:200:57:4
3:1:1:1:1:300:325:2:1:2:1:200:330:1O:3000
2:1:1:1:1:300:670070:1
...

Figure A.8.: Paraver trace Vle structure

Trace header

The header has two diUerent parts, a Vrst line that deVnes the process and the resource model
of the traceVle, Figures A.9a, A.9b and A.9c, and a set of lines deVning the communicators

188

A.2. Paraver

for each of the applications deVned, Figure A.9d.
The general structure of the process and resource model is presented in Figure A.9a. It

contains Vrst a magic number (#Paraver), the date when the trace was obtained, and the
last timestamp present on the trace (end_time). Next it deVnes the process model, including
the number of nodes and its number of processors. This part is listed as rsrcDef in A.9a
and described in A.9b. Finally, it contains total number of applications contained on the
trace (nAppl), and the deVnition and mapping of each application to the resources. This part
is listed as applDef in A.9a, and described in A.9c.
The following lines of the header contain the deVnition of the communicators (subsets of

the Tasks that take part in a communication operation) created by each application. These
records are described in A.9d. In all cases, the task identiVers and the thread identiVers are
numbered from 1 to N.
For example, in the trace header present in Figure A.8 deVnes a system with 2 nodes and

one CPU per node (2(1:1)). The trace contains information for a single application with two
tasks, where each task has just a single thread that executed in nodes 1 and 2 respectively
(2(1:1,1:2). This application deVned 3 communicators, one including all tasks (that could
correspond to the MPI_COMM_WORLD if the application is MPI), and one including each task.
It is interesting to note that nodes and CPUs are identiVed across the trace body using

values of 1 to N, being N the total number of nodes or CPUs in the system.

Trace body

The trace body contains list of records ordered by their timestamps. Paraver trace has three
types of records: states, user events and communications.
State records. State records, Figure A.10 represent intervals of actual thread status. The

Vrst Veld is the record type identiVer (for state records, type is 1). The next Velds identify the
resource (cpu Veld) and the object to which the record belongs (the triad appl:task:thread).
Remember that cpu is the global processor identiVer (if no resource levels have been deVned
the processor identiVer must always be zero). Beginning time and ending time of the state
record also have to be speciVed, and Vnally, the state Veld is an integer that encodes the
activity carried out by the thread. This kind of records are sorted by its begin_time.
Events. Event records, Figure A.11 represent punctual events. They are codiVed using

type/value pairs. The events are often used to mark the entry and exit of routines or code
blocks, hardware counter reads, etc. They can also be used to Wag changes in variable values.
In a single event record we can Vnd a list of one or more type/value pairs, indicating events
generated simultaneously.
Communications. Communication records, Figure A.12, represent the logical and phys-

ical communication between the sender and the receiver in a single point to point com-
munication. Logical communications correspond to the send/receive primitive invocations
by the user program. Physical communication corresponds to the actual message transfer
on the communication network. In case of using Extrae, where the value of the physical
communications times are unknown, the physical communication times correspond to the
logical communication times. Communication records are sorted by lsend (logical send)
timestamp.

189

A. The BSC Tools Parallel Performance Analysis Suite

: : : :#Paraver (dd/mm/yy at hh:mm) end_time rsrcDef nAppl applDef[:applDef]

Trace finalization time

Resource definition (see below)

Total number of applications

List of applications definitions/mapping (see below)

Trace generation date

(a) Paraver trace header structure

Total number of nodes in the system

Number of CPUs per node

nNodes (nCPUs_1,...,nCPUS_n)

(b) rsrcDefinition section of the Paraver trace
header

nTasks (nThreads1:node,...,nThreadsN:node) ,nComms

Total number of tasks in the application

Number of threads of each tasks
and node identifier where it executed

Number of communicators

(c) applDefinition section of the Paraver trace header

: : : :c appl id_comm nTasks taskList

Application that created the communicator

Comm. identifier

Number of tasks involved

List of tasks identifiers involved

(d) Communicator deVnition record structure

Figure A.9.: Paraver trace header records deVnition

190

A.3. Dimemas

: : :1 cpu:appl:task:thread begin_time:end_time state_id

Application object that produced this state

Time interval with when
the object was in the state

State identifier

Figure A.10.: Paraver state record speciVcation

: : :

Application object that produced this event

Time when the event
happend

(List of) Event
Type(s)/Value(s) pairs

2 cpu:appl:task:thread timestamp type:value[:type:value]

Figure A.11.: Paraver event record speciVcation

: : : : : : :

Application object that send de message
(cpu:appl:task:trhread)

Logical time when the message is programmed to be send

Analogous information for the
receiving object

Message size and identifier

Physical time when the message is really sent

3 sender lsend psend receiver lrecv precv size:tag

Figure A.12.: Paraver communication record speciVcation

A.3. Dimemas

Dimemas is a performance analysis tool for message-passing programs. It enables the user
to develop and tune parallel applications on a workstation, while providing an accurate pre-
diction of their performance on the target parallel machine. The Dimemas simulator re-
constructs the time behaviour of a parallel application on a machine modelled by a set of
performance parameters. Thus, performance experiments can be done easily. The suppor-
ted target architecture classes include networks of workstations, single and clustered SMPs,
distributed memory parallel computers, and even heterogeneous systems.

191

A. The BSC Tools Parallel Performance Analysis Suite

Parameter Description

System Parameters

Number of nodes Total number of nodes in the system

Network Parameters

Number of buses Total number of concurrent messages in the network

Network bandwidth Bandwidth capacity of the network (MB/s)

Network latency Latency of messages send by the network (µs)

Node Parameters

Processors per node Number of CPUs, deVned per node

Processor ratio Divisive factor of execution time1

Input links per node Injection links to the network

Output links per node Read links from the network

Memory bandwidth per node Memory bandwidth capacity (MB/s)

Memory latency Latency of messages sent by memory (µs)

1 The processor ratio is applied to all CPUs in a given node

Table A.1.: Dimemas simulator parameters

A.3.1. Dimemas model

Dimemas model is the same as the Paraver resource model, presented in Figure A.7. It is
composed of a network of SMP nodes. Each node has a set of processors and local memory,
used for communications within the node. The diUerent parameters that can be modelled
are described in Table A.1.
It is interesting to note that, in Figure A.7, the interconnection network is represented with

two parameters: number of links from a node to the network, represented with L, and num-
ber of buses in the network, represented with B. Parameter L limits the number of messages
coming in and going out for a given node, enabling connectivity analyses. Parameter B
applies to the number of concurrent messages in the network, enabling network contention
analyses.
Internally, the simulator models three diUerent kind of operations: CPU consumption,

point-to-point communications and collective communications. In the Dimemas trace we
can also add user events to describe logical regions.

CPU consumption operations

The CPU consumption operation, or CPU burst, is simulated simply by advancing the sim-
ulation clock the duration as indicated in the input trace. This duration can be modiVed by
the Processor ratio, a divisive factor that will be applied to all the CPU consumption opera-

192

A.3. Dimemas

tions that execute in a given processor. In addition, we can also deVne modules factors, also
divisive facto, that will be applied to those CPU bursts inside a module. Finally, we can also
substitute the duration of the CPU bursts inside a module with a Vxed duration value. These
modules are regions of time deVned by using events pairs (start and end).

Sender

Receiver

(a) Dimemas point-to-point communications
diagram

A B

(b) Dimemas collective communica-
tion diagram

Figure A.13.: Dimemas communication diagrams

Point-to-point communications

A simple Dimemas communication is depicted in Figure A.13a. In this Figure, white re-
gions represent CPU time consumption, light blue blocking time due message not completely
transmitted, light purple blocking time due message is not ready in the processor, and green
stands for latency time. Two arrows represent the logical, with a dotted line, and the physical
communication, with a continuous line. Logical stands for when the task sends the message
and the receiver is able to read it. Physical communication stands for when the message is
really passing trough the communication network, using the resources. Both can be diUerent
because of resources contention, synchronization behaviour, load balance, etc.
Point to point communications are modelled using the parameters latency and bandwidth,

thus the time for a message to be delivered is computed as deVned in Formula A.1. This
formula is both applicable to the point-to-point transmissions messages between nodes, using
the network latency and bandwidth, or transmissions intra-nodes, using the memory latency
and bandwidth.

T = latency +
message_size
bandwidth

(A.1)

Collective communications

Global communications model use a diUerent formula to compute the duration of the mes-
sage transmission, and synchronization is included before the communication itself. Al-

193

A. The BSC Tools Parallel Performance Analysis Suite

MODEL_[IN |OUT] MODEL_[IN |OUT]_FACTOR Description

0 0 Non existent phase

CTE 1 Constant time phase

LIN P Linear time phase, P = number of processors

LOG Nsteps Logarithmic time phase

Table A.2.: Dimemas collective communications MODEL_[IN |OUT]_FACTOR pos-
sible values

though not all implementations of global operations require synchronization, good results
suggest us to maintain this simple model. Figure A.13b shows the timing model for collect-
ive communication. In this Figure, white blocks represent application computation, brown
blocks represent blocking time due the synchronization and blue blocks represent the actual
communication, where message transmission time T_trans is delimited by times A and B.
Many collective operations have two phases: a Vrst one, where some information is collec-

ted, fan in, and a second one, where the result is distributed, fan out. Thus, for each collective
operation, communication time T_trans can be evaluated as deVned in Formula A.2.

T_trans = FAN_IN + FAN_OUT (A.2)

Where FAN_IN is calculated as deVned in Formula A.3.

FAN_IN =

(
latency +

SIZE_IN
bandwidth

)
×MODEL_IN_FACTOR (A.3)

Depending on the scalability model of the fan in phase, the parameterMODEL_IN_FACTOR
can take the values detailed in Table A.2. In case of a logarithmic model,MODEL_IN_FACTOR
is evaluated as the Nsteps parameter. Nsteps is evaluated as follows: initially, to model a
logarithmic behavior, we will have log2 P phases, where P is the number of tasks involved.
Also, the model wants to take into account network contention. In a tree-structured commu-
nication, several communications are performed in parallel in each phase. If there are more
parallel communications than available buses, several steps will be required in the phase.
For example, if in one phase 8 communications are going to take place and only 5 buses are
available, we will need 8/5 steps. In general we will need C/B steps for each phase, being
C the number of simultaneous communications in the phase and B the number of available
buses. Thus, if steps_i is the number of steps needed in phase i, Nsteps can be evaluated as
deVned in Formula A.4.

Nsteps =

dlog2 P e∑
i=1

steps_i (A.4)

Finally, for FAN_OUT phases, the same formulas are applied, changing MODEl_IN
byMODEL_OUT , and SIZE_IN by SIZE_OUT . SIZE_IN and SIZE_OUT pos-

194

A.3. Dimemas

SIZE_IN/OUT Description

MAX Maximum of the message sizes sent/received by root

MIN Minimum of the message sizes sent/received by root

MEAN Average of the message sizes sent and received by root

2*MAX Twice the maximum of the message sizes sent/received by root

S+R Sum of the size sent and received root

Table A.3.: Dimemas collective communications options for SIZE_IN and SIZE_OUT

sible values are described in Table A.3.

Header

Operations

Offsets (optional)

Figure A.14.: Dimemas trace Vle structure

A.3.2. Dimemas trace

Dimemas trace Vle contains the diUerent operations performed by a single application, that
can have multiple tasks and multiple threads per task. A Dimemas trace has the extension
dim. Physically, a Dimemas trace is very similar to a Paraver trace where records do not
have any associated time-stamp. In addition, the communications, instead of being stored
as a single communication record, are separated in send primitives and receive primitives.
It is the task of the simulator itself to reconstruct both the execution times and also match
the communications performed by the diUerent tasks and threads using the simple model
described.
The global structure of a Dimemas trace is presented in Figure A.14. It has three diUer-

ent parts: a header containing the application deVnition and the communicators deVnition
(equivalent to Paraver trace header); a body with the diUerent operation records and event
records; and a oUsets section, a dictionary pointing to the position in the Vle (the oUset) of
each task and thread to accelerate the access to the Vle.

195

A. The BSC Tools Parallel Performance Analysis Suite

#DIMEMAS trace_name offsets [,offsets_offset] ptask_info: : :

Name of the trace

0 offset information NOT present
1 offset information preset

If offset information present, @from file start

Application definition (see below)

(a) Initial part of the Dimemas trace header

tasks_num (task_1_thread_num,...,task_n_thread_num) comms_num

Number of tasks

:

Number of threads per task

Number of communicators defined by the application

(b) ptask_info Veld deVnition

Figure A.15.: First line of Dimemas trace header deVnition

Trace header

As in the Paraver trace Vle, the header has two diUerent parts: the Vrst line of the Vle
that indicates if the tasks oUsets are present and its location on the Vle plus the application
description; and a set of multiple lines containing the communicators deVnition.
The Vrst line of the header is described in Figure A.15. First part, A.15a, contains the

magic number (#DIMEMAS) plus the trace name. Next Veld, offsets indicates whether the
trace Vle contains oUsets information or not. If its the case offsets_offset Veld contains the
absolute position of the Vrst tasks oUset record in bytes from the beginning of the traceVle.
The second part, A.15b, contains the description of the application as the total number of
tasks (tasks_num), a list with the total number of threads per tasks and the total number of
communicators described by the application.
Following to this line, we Vnd as many communicators description records, Figure A.16,

as detailed in the application description.

: : : :

Communicator identifier (from 1 to n-1)

Number of tasks involved

Idenfiers of the tasks involved

d 1 comm_id task_count task_id_1:...:task_id_n

Figure A.16.: Paraver communicator deVnition record structure

196

A.3. Dimemas

Trace body

The trace body is a list of the operations records emitted by each thread of each task. In
this case, the records are sorted by task and thread, and for a given pair task/thread, by the
occurrence of the operation modelled in the execution of the application.
In the trace body we can distinguish Vve diUerent types of records: CPU bursts, send op-

erations, receive operations, collective operations (also called global operations) and events.
The Vrst four records correspond directly to the operations described in the Dimemas model.
The event records can be used to delimit regions of the application as diUerent modules. The
CPU bursts inside a module region can be tuned by apply a divisive module factors to their
duration, or substitute the duration with a constant duration to perform balancing experi-
ments. Events are also useful to analyse a resulting simulated trace in Paraver produced by
Dimemas analysis.
CPU burst. CPU burst, Figure A.17, correspond to CPU consumption operations and

basically contain the object that demands the CPU consumption and the number of seconds
it demands.

1 task_id:th_id burst_duration: :

Application object that
demands the CPU usage

Duration of the CPU burst (in seconds)

Figure A.17.: Dimemas CPU burst record deVnition

Send operation. Send operations records, Figure A.18, points the simulator that the object
indicated, the sender, wants to send a message to a given partner, the receiver. If we are
simulating a regular MPI application, the receiver thread_id would be marked as -1. The
message has a given size in bytes as well as a communicator and a tag. The communicator
indicated must have been deVned on the header, and both sender and receiver must belong
to it. The tag Veld is useful to identify the message and match the receiver operation in
the partner. The synchronism Veld indicates which if the send operation will be blocking or
non-blocking and the if the send protocol executed in the simulator will require a rendezvous
with the receiver or not.
Receive operation. Receive operation records, Figure A.19, are the symmetric records to

the send records, but emitted by the objects that require the reception of a message. In this
case, the recv_type Veld indicates if the receive operation will be blocking or non-blocking
or if it is a wait operation, block operation until the required message is eUectively received,
linked to a previous non-blocking receive operation.
Collective operations. Collective operation records, also named global operations, Fig-

ure A.20, are the records emitted by an application object to perform a collective commu-
nication as described in the Dimemas model. Apart from the object who emits the record, a
collective operation also includes the type of collective communication, Veld global_op_id.
This Veld indicates which of the predeVned Dimemas collective communications is being
modelled. The possible values are listed in Table A.4. Their implementations of the diUerent

197

A. The BSC Tools Parallel Performance Analysis Suite

:2 object dest_object msg_size tag:comm_id synchronism: : : :

Application object (task_id:thread_id) who
asks to send a message

Application object (task_id:thread_id)
 receiver of the message

Size of the messages (in bytes)

Message tag and communicator used
Type of send type and protocol

0: No immediate / No Rendezvous
1: No immediate / Rendezvous
2: Immediate / No rendezvous

3: Immediate / Rendezvous

Figure A.18.: Dimemas send operation record deVnition

3 object src_object msg_size tag:comm_id recv_type: :: ::

Application (task_id:thread_id) object who
wants to receive a message

Application object (task_id:thread_id)
source of the message

Size of the messages (in bytes)

Message tag and communicator used
Type of receive operation:

0: Blocking reception
1: Non-blocking reception

2: Wait (blocking reception related
to previous non-blocking)

Figure A.19.: Dimemas receive operation record deVnition

collectives operations are inspired by the MPI collective communications listed on the table.
Next Velds correspond to the communicator used, comm_id, the object of the application that
will act as root if the collective communication requires it and the total amount of bytes send
and received during the communication.
Events. Event records, Figure A.21, are the equivalent records to Paraver events. In

principle, the events emitted are only used in Dimemas simulator to mark regions or modules
in the Paraver way, i.e. type and value diUerent to 0 to mark and entrance to a module and
the same type a value 0 to mark the exit of the module. Using the modules we can adapt the
CPU factor at Vner level.

Trace oUsets

The trace oUsets section is an optional section of to indicate where diUerent records of tasks
and threads appear in the trace body. If present (indicated in the trace header), this section
contains as many oUset records as tasks appear in the trace-Vle. The oUset record is described
in Figure A.22, it contains the identiVer of the corresponding task, and, for each thread in this

198

A.3. Dimemas

: : : : :

Application object that wants to take part
in the global operation (task_id:thread_id)

Global operation identifier (see Table)

Communicator used

Application object (task_id:thread_id) that will
act as root of the global operation (if needed)

Total number of bytes sent and received during the global operation

10 object global_op_id comm_id root_object bytes_sent:bytes_recv

Figure A.20.: Dimemas collective operation record deVnition

: :

Application object (task_id:thread_id) that produced the event(s)

List of of one or more event type/value pairs

20 object event_type:event_value[:event_type:event_value...]

Figure A.21.: Dimemas event recod deVnition

task,the oUset in bytes from the beginning of the trace-Vle where the Vrst record of the given
thread appears in the trace body. Using these oUsets, the initialization of of the simulator is
speedup, avoiding an expensive process of locating the initial records per tasks/threads. The
trace oUsets are specially interesting when using large trace-Vles.

: :

Task identifier (from 0 to n-1)

Offset of each thread of the current task
from file start

s task_id offset_thread_1:...:offset_thread_n

Figure A.22.: Dimemas oUset record deVnition

A.3.3. Dimemas conVguration Vle

The Dimemas conVguration Vle is the Vle that includes the parameters values of the resource
model, detailed in Table A.1, as well as the mapping between one or more application traces
to the resources modelled. This conVguration Vle has the extension cfg.
This Vle uses the Self Describing Data Format (SDDF), so on each conVguration we can

Vnd the deVnition of the records it uses. Basically, the most important records are the ones
listed in Figures A.23, A.24, A.25 and A.26.
As a summary, the environment information record, Figure A.23, contains the general

values regarding the number of nodes in the system, the network parameters (latency, band-
width, buses, etc.) as well as the model of the collective operation.

199

A. The BSC Tools Parallel Performance Analysis Suite

global_op_id value MPI equivalent collective communication

0 MPI_Barrier

1 MPI_Bcast

2 MPI_Gather

3 MPI_Gatherv

4 MPI_Scatter

5 MPI_Scatterv

6 MPI_Allgather

7 MPI_Allgatherv

8 MPI_Alltoall

9 MPI_Alltoallv

10 MPI_Reduce

11 MPI_Allreduce

12 MPI_Reduce_Scatter

13 MPI_Scan

Table A.4.: Possible values of global_op_id Veld in a collective communication record of
Dimemas

Next, we Vnd as many node information, Figure A.24, records as nodes exist in the
system to model. In this way, the cluster modelled can contain nodes with diUerent charac-
teristics. In the node information record appear the number of processors the node has; the
number of input and output links to the system network; the memory parameters and the
speed ratio, the (divisive) CPU ratio applied to the CPU bursts that will run in the present
node.

mapping information record is the element of the conVguration Vle where application
traces are linked and mapped to the hardware described. It contains the Vle name of the
trace, the number of tasks present on this application trace and then a list indicating on
which node we want to execute each tasks.
The last record to highlight is the modules information record. This record contains a

type/value pair, to deVne which event type/value pair describe a module, and which mul-
tiplicative factor (execution_ratio) will be applied to the CPU bursts inside the module.
This factor overwrites the node speed factor while the module is active. If the factor is a
negative value, it will be interpreted as a constant duration value for the CPU bursts inside
the module.

200

A.3. Dimemas

#1:
"environment information" {

char "machine_name"[];
int "machine_id";
// "instrumented_architecture" "Architecture used to instrument"
char "instrumented_architecture"[];
// "number_of_nodes" "Number of nodes on virtual machine"
int "number_of_nodes";
// "network_bandwidth" "Data tranfer rate between nodes in Mbytes/s"
// "0 means instantaneous communication"
double "network_bandwidth";
// "number_of_buses_on_network" "Maximun number of messages on network"
// "0 means no limit"
// "1 means bus contention"
int "number_of_buses_on_network";
// "1 Constant, 2 Lineal, 3 Logarithmic"
int "communication_group_model";

};;

Figure A.23.: Dimemas system deVnition record structure

#2:
"node information" {

int "machine_id";
// "node_id" "Node number"
int "node_id";
// "simulated_architecture" "Architecture node name"
char "simulated_architecture"[];
// "number_of_processors" "Number of processors within node"
int "number_of_processors";
// "number_of_input_links" "Number of input links in node"
int "number_of_input_links";
// "number_of_output_links" "Number of output links in node"
int "number_of_output_links";
// "startup_on_local_communication" "Communication startup"
double "startup_on_local_communication";
// "startup_on_remote_communication" "Communication startup"
double "startup_on_remote_communication";
// "speed_ratio_instrumented_vs_simulated" "Relative processor speed"
double "speed_ratio_instrumented_vs_simulated";
// "memory_bandwidth" "Data tranfer rate into node in Mbytes/s"
// "0 means instantaneous communication"
double "memory_bandwidth";
double "external_net_startup";

};;

Figure A.24.: Dimemas node deVnition record structure

201

A. The BSC Tools Parallel Performance Analysis Suite

#3:
"mapping information" {

// "tracefile" "Tracefile name of application"
char "tracefile"[];
// "number_of_tasks" "Number of tasks in application"
int "number_of_tasks";
// "mapping_tasks_to_nodes" "List of nodes in application"
int "mapping_tasks_to_nodes"[];

};;

Figure A.25.: Dimemas mapping deVnition record structure

#5:
"modules information" {

// Module type
int "type";
// Module value
int "value";
// Speed ratio for this module, 0 means instantaneous execution
double "execution_ratio";

};;

Figure A.26.: Dimemas modules deVnition record structure

202

A.4. Trace manipulators and Translators

A.4. Trace manipulators and Translators

Apart from the three main tools described in this Appendix, in the BSC Tools ecosystem we
Vnd a set of minor applications useful to manipulate the application traces and make them
more tractable or to translate traces from and to other analysis packages.

A.4.1. Trace manipulators

Trace manipulators apply exclusively to Paraver traces and oUer a series of capabilities fo-
cused on reducing or summarizing the information present on the trace, so as to leverage the
memory requirements of Paraver.

trace_filter. The trace Vlter oUers two main capabilities to restrict the information
present on a Paraver trace Vle. First, it can erase the state, event or communication records
deVned by user. For example, it can erase those states whose duration is smaller than a
given value or the events of a given type. The second Vltering option refers to the possibility
to erase from the Paraver trace an application task or a set of application tasks. The trace
Vlter application is presented both as a command-line tool and also integrated in the Paraver
application.

cutter. As it names suggest, the trace cutter provides an interface to cut the trace. This
cut can be easily by giving a time range as well as by a percentage range of the application.
The resulting trace will discard the records outside the cut ranges. In addition, this trace cut
can keep the original timestamps, to locate where in the original run happened the cut or the
timestamps can be translated considering the initial value of the cut as the 0 time. The cut
application also oUers the ability of Vlter user-deVned set of tasks. This tool is also oUered
both as command-line and integrated in Paraver.

sc. This tool name stands for software counters and oUers a way to resume the values
of a given type of events as well as the number of events of given type. The operation is
simple and user just have to provide the summarization frequency, the type of event (or
events) to summarize. In the output trace, the events summarized are discarded, and a new
summarization events with the computed value emitted with the supplied frequency.

comm_reducer/comm_fusion. These two tools are the equivalent of the software counters
to summarize communication records. The comm_reducer directly summarizes all the com-
munications that appear every a user-deVned interval. The comm_fusion application we Vnd
a secondary time interval that restricts the communications to be merge to those closer that
this value.

merger. This application provides a way to merge multiple application traces into a single
one. To perform this operation all traces must share the same resources description and the
same application description on.

task_shifter. In some cases, due to imprecisions in the system clocks of diUerent nodes
where an application run, the Paraver traces present an excessive jitter across the timestamps
of the diUerent tasks. The task shifter application permits to manually correct the these
timestamps by applying a shifting factor per task.

stats. The statistics application is not purely a trace manipulator, but a tool to extract
statistics about the records present in a given trace, for example the number of computation

203

A. The BSC Tools Parallel Performance Analysis Suite

bursts states and the time they represent or the number of communications and the volume
of messages transmited.

A.4.2. Trace translators

The trace translators permit the interoperation between tools inside the BSC Tools ecosystem
as well as to import (and export) traces from (and to) other software packages.

prv2dim. The Paraver to Dimemas translator suppose the core application to interoperate
between the main tools of the BSC Tools suite. Although the Extrae package is able to
generate Dimemas traces, the common analysis workWow using the tools starts by obtaining
a Paraver trace. First, with Extrae we obtain a full application trace that is manipulated using
the Vltering tools listed previously and Vnally analysed with Paraver. Once an interesting
region is detected, we cut on the original trace and translate it using prv2dim to perform the
desired experiments with Dimemas.

The interoperation in the reverse sense, from Dimemas to Paraver, relies in the ability of
Dimemas to generate Paraver traces.

otf2prv. The Open Trace Format (OTF) is a trace format deVnition proposed by the Tech-
nische Universität Dresden, the University of Oregon and the Lawrence Livermore National
Lab. It primary target is to be scalable. To do so, it deVnes a trace as the collection of multiple
Vles (or streams) to ease the generation and the lecture. Finally it provides an optimized API
to produce and read the traces. otf2prv is capable to translate OTF traces to Paraver format.
The symmetric translator, prv2otf, is currently in development.

prv2prof. This tool provides the translation capabilities to transform the Paraver traces
into proVles, summarizing the information available. This translator has been used to suc-
cessfully interoperate between Paraver traces and the TAU Performance System from the
University of Oregon and the HPC-Toolkit from IBM.

A.5. Performance Analytics

The Performance Analytics is the newest area added to the BSC Tools ecosystem. It is the
result of the current research mainly focused on extracting insight from application traces
to ease the analysis process. In Figure A.1, we depict the Performance Analytics features
as a box that uses a Paraver trace as an input provides also feedback to the trace and also
generates other “supplementary information”. Actually, this is the initial way we operate
with these new features, but they also could be categorized in other points in the workWow.

Currently, we can list up to four diUerent Performance Analytics techniques into the BSC
Tools suite: cluster analysis, spectral analysis, detailed performance evolution analysis and
performance tracking. The cluster analysis tool features and its interaction with the rest of
the tools is described in Appendix B. Here we introduce brieWy the rest of the works.

204

A.5. Performance Analytics

Figure A.27.: Folding mechanisms scheme. Picture obtained from [6]

A.5.1. Spectral analysis

The spectral analysis technique is described in [64]. In brief, it consists on representing the
input trace as a signal, and then apply a set of signal processing techniques to detect the
typical periods a scientiVc parallel application exhibits. In practice, the spectral analysis
results in ’automatic cutter’, that receives a Paraver trace of several gigabytes, a produces a
trace cut that contains just one or two of those detected periods. This trace cut size is usally
one or two orders of magnitude smaller than the original, but it contains a detailed view of
the main computation and communication pattern the application performs.
Additionally, there is an on-line implementation of spectral analysis [128] into the Extrae

package. Using this implementation, the traces produced by the tracing package are directly
one or two representative periods of the application, avoiding the space requierements when
generating a trace of a large-scale application.

A.5.2. Detailed performance evolution analysis

The detailed performance evolution analysis relies on combining both instrumentation and
sampling. This way, it introduces a "folding" mechanism [6]. The folding provides very
detailed performance information of code regions on iterative and regular applications.
Figure A.27 shows how the folding works on a trace-Vle that contains instrumented in-

formation on two iterations of a loop that executes three routines (A, B and C) and sampling
information (shown as Wags). The folding creates three synthetic routines and populates
them with the sparse samples from the trace-Vle maintaining their relative timestamp.
The tool that implements the folding mechanism reads a Paraver trace that contains

sampling and instrumentation information, applies the folding mechanism, and provides
a scatter plot that characterize the time-varying behaviour of a desired metric(s) of a given
computation region of the application (a subroutine, a cluster, etc.). Figure A.28 contains the
time-varying evolution of Vve diUerent performance counters for the most time-consuming
computation region of CGPOP application, detected using the cluster analysis. Finally, this
tool can also feedback the folded samples into one of the regions analysed in the original
trace so as to take advantage of the Paraver analysis power.

205

A. The BSC Tools Parallel Performance Analysis Suite

Figure A.28.: Application of the folding mechanism to multiple performance counters

A.5.3. Performance tracking

The performance tracking is a technique that relies in object tracking methods to detect how
the behaviour of a parallel application evolves through diUerent scenarios [7]. It provides a
versatile approach allowing a wide scope of studies, including multiple time intervals within
same experiment and multiple executions with diUerent conVgurations. This enables the
user to perform very diverse parametric and evolutionary studies, to see which factors (i.e.
hardware, software versions or program conVguration variables) have bigger impact on the
resulting performance, foresee trends in future experiments and better understand how and
why the behaviour of the program evolves.
This approach mimics the threefold structure of a visual tracking algorithm, including:

• Generation of a sequence of images. Each execution scenario is represented as a 2D
performance space deVned by a given pair of metrics (i.e. IPC and Instructions). Then,
every computation of the program is depicted in this space according to their perform-
ance behaviour.

• Object recognition within each image. Clustering is used to group all computations
presenting similar behaviour. In this way, we are able to automatically identify in the
performance space a set of diUerent performance trends exhibited by the most relevant
code regions.

• Motion analysis of the objects across images. We analyse the whole sequence of images
to see the evolution of these performance trends across scenarios.

As a result, this tool produces a sequence of scatter plots showing changes in the per-
formance characteristics of the diUerent code regions. This representation enables to easily

206

A.5. Performance Analytics

Figure A.29.: Sequence of plots showing the program structure at diUerent scenarios. Picture
obtained from [7]

207

A. The BSC Tools Parallel Performance Analysis Suite

identify behavioural variations and perturbations. In Figure A.29 you can see how the per-
formance of the main code regions in CGPOP application (detected using cluster analysis)
varies depending on the architecture and the compiler used.

208

B. The ClusteringSuite Software
Package

All the research described on the present thesis was supported by the development of a
production-class software included in the BSC Tools ecosystem. In this appendix we

include the major facts of the software design as well as a detailed description of the actual
tools implemented. This part can also be used as a brief manual of this software.

B.1. ClusteringSuite design

The ClusteringSuite is the piece of code that implements the techniques introduced along
this thesis. Basically, it is composed by two main libraries, libClustering and libTrace-

Clustering, and a set of binaries that invoke them to oUer the diUerent features. All this
collection of software follows an object-oriented design and is implemented in C++, with
limited features implemented in C.

B.1.1. Software engineering

In this section we present the a coarse-grain description of the software engineering behind
the ClusteringSuite package. This package represents the third version of the software
package that aggregates a set of features that became stable as the development of the thesis
advanced.
The features of the package are divided in two main parts: Vrst, a core cluster analysis

library, libClustering, that includes the abstraction of the information containers and the
clustering algorithms; second, the libTraceClustering that oUers the features of extracting
the required information from application traces, prepare the information to perform to use
the libClustering and generate the diUerent outputs. Both libraries oUer a clean façade
class to access the diUerent features they implement that is used by the diUerent binaries.
In the following points we detail the classes that compose each library and the interaction
among them.

libClustering

Figure B.1 contains a basic UML class model of the libClustering. It contains the four main
classes required to perform a cluster analysis. First, a Point, the abstraction of n-dimensional
point including basic operation such as the Euclidean distance to another Point. A set of
points is aggregated over a DataSet, useful to manipulate data ranges or to build indexes to

209

B. The ClusteringSuite Software Package

ClusterAlgorithm

DBSCAN gMeans CAPEK

DataSet

<<refers>>

Point

Partition

<<generates>>

<<uses>>

Figure B.1.: UML class model of the libClustering library

ease the access to each individual point. Next, the hierarchy where the top class is Clusterin-
gAlgorithm acts as an interface to the actual implementations of multiple algorithms. The
ClusteringAlgorithm objects process a DataSet and generate a Partition, a class that relates
the Points in a DataSet to the cluster they belong. In this Figure we just depict three of the
possible cluster algorithms this library oUers.

libTraceClustering

libTraceClustering is the library that includes all the logic required to extract the inform-
ation from an application trace (a Paraver trace or a Dimemas trace) and then process it
to execute a cluster analysis using the libClustering library. As can be seen in the UML
class model of this library, Figure B.2, the interaction between these two libraries relies on a
hierarchy inheritance, where TraceDataSet and CPUBurst are specializations of DataSet and
Point respectively deVned in the libClustering library.
ClusteringDeVnition class contains the information to set up all the model. First, it deVnes

which of the cluster algorithms from the libClustering will be used (and the possible
values for its parameters). Second, it deVnes the diUerent ClusteringParameter objects. Each
ClusteringParameter represents one of the dimensions that describe a Point (specialized as
CPUBurst at this level) used by the ClusteringAlgorithm to discover the diUerent clusters.
Using the ClusteringParameter’s, a DataExtractor object will read the contents of a Trace

Vlling the TraceDataSet with the CPUBursts found.
Then the particular ClusteringAlgorithm is executed and creates the corresponding Parti-

tion object (also part of the libClustering library). This Partition object will be used Vrst
by a ClusteringStatistics object to compute statistics (and also the possible extrapolations
described in chapter 7) and by PlotManager (also deVned by the ClusteringDeVnition object)
to generate output plots of the clusters found. Then TraceReconstructor will create an output
trace with the same information of the original and the information (events) to identify to
which cluster each CPU bursts belongs.
In case of using the Aggregative Cluster ReVnement algorithm, the library behaves dif-

ferently than using a regular cluster algorithm. Basically, it will make use of DBSCAN (to
clarify the drawing, in Figure B.2 it is represented as it uses any ClusteringAlgorithm) on

210

B.1. ClusteringSuite design

DataSet

TraceDataSet

Point CPUBurst

ClusteringParameter ClusteringDefinition
<<defines>>

DataExtractor

Partition

ClusteringStatistics
Trace

<<uses>>

<<generates>>

TraceReconstructor

<<uses>>

<<generates>>

<<uses>>

<<uses>>

ClusteringAlgorithm
<<defines>>

<<refers>>

PlotManager
<<defines>>

<<uses>>

AggregativeCluster
RefinementClusterSequenceScore

<<uses>>

<<uses>>

<<uses>> <<generates>>

Figure B.2.: UML class model of the libTraceClustering library

each reVnement step as well as a ClusterSequenceScore object to evaluate the quality of the
intermediate clusters (the diUerent Partitions). AggregativeClusterReVnement produces a
Vnal Partition of the data, but the library can keep track of intermediate ones to also pro-
duce intermediate traces and plots useful to evaluate the hierarchical generation of the Vnal
clusters.

B.1.2. Libraries and tools

The features oUered by these two libraries is eUectively presented to the user as a set of
command-line application binaries. These binaries orchestrate the diUerent steps of the
cluster analysis to produce the desired results.
The tools oUered in the ClusteringSuite package are BurstClustering, Clustering-

DataExtractor and DBSCANParametersApproximation.

BurstClustering The main tool that includes the cluster analysis based on a application
trace. The user provides an XML Vle (used by all three tools) to conVgure the ana-
lysis (a ClusteringDeVnition class in the model) and a trace Vle. Using the libTrace-
Clustering it processes the provided trace, run the cluster algorithm (both the ones
implemented in the libClusterig or the Aggregative Cluster ReVnement) and gener-
ates the output trace and the cluster statistics and plots.

ClusteringDataExtractor A tool that only oUers the data extraction from the input trace
and the plot generation, but not the cluster analysis. It is useful to performn prelimin-

211

B. The ClusteringSuite Software Package

ary observations about the data distribution so as to adapt the parameters used by the
cluster analysis, for example to Vlter the individuals.

DBSCANParametersApproximation This tool is useful when using the DBSCAN algorithm
to help the user to tune the algorithm parameters.

B.2. ClusteringSuite tools usage

This section is intended as a brief manual of regular use of the three tools included in the
ClusteringSuite software1. As mentioned before, the tools oUered in the software package
use an input trace where the information is extracted. Even it could be a Paraver or Dimemas
trace, it almost all cases, the input trace is a Paraver trace. The second input Vle these tools
requires is the conVguration Vle XML. This Vle is key to deVne which the parameters of the
clustering process.
In brief, the cluster analysis process its composed by 5 steps. First four steps are re-

quired to generate the XML conVguration Vle, while the last two are the execution of the
BurstClustering tool itself and the observation and analysis of the results.

1. Selection of the clustering/extrapolation parameters.

2. DeVne the Vlters and normalization applied to the input data

3. Select the cluster algorithm and its parametrization

4. DeVne the output plots

5. Execute the cluster analysis

6. Observe the diUerent outputs

The actual deVnition of the diUerent records in the XML Vle are described in the following
section (B.3), while this one include the guidelines to detect the information it will contain.

1. Select the clustering parameters

The Vrst decision to take when performing a cluster analysis is which of the data present in
the input trace will be used to describe each CPU burst, in the ClusteringSuite termino-
logy, we call them simply the parameters.
Using the Paraver vocabulary, a CPU burst is expressed in a trace as a State Record of

value 1 (Running State). The parameters available to characterize a CPU burst are those
events that appear at the end time of the given Running State. As a Paraver event is a pair
event/value, in the XML Vle we use the event type to indicate events we whose values will
be stored in the diUerent bursts. We can also use Running State duration (diUerence between
end time and begin time) as a CPU burst parameter.

1All the guidelines presented in this section are applicable to the ClusteringSuite v2.XX

212

B.2. ClusteringSuite tools usage

In the XML we will express those parameters that will be used by the cluster algorithm,
the clustering parameters, and those that will be used in the extrapolation process, the ex-
trapolation parameters. The parameters can be deVned as single event reads (single events)
or combinations of pair of events (mixed events). In case we use the CPU burst duration, it
will always be used as a clustering parameter.

It could be obvious, but to deVne the diUerent parameters it is essential to know Vrst which
ones we want to use and which are the event type codiVcation present in the trace. To do
that we need to go through to the Paraver ConVgutarion File (.pcf Vle generated by Extrae)
and check which events appear in the trace and their event type encoding. Almost in all
analyses we use the Performance Hardware Counters events, being Completed Instructions
and IPC the usual metrics combinations used by the cluster algorithm.

2. DeVne the Vlters and normalizations

Once knowing which are the clustering parameters, we have to decide the possible Vlters
we want to apply. The Vlters prevent the cluster algorithm of analysing CPU bursts that
can bias the result or do not add any valuable information. We found two diUerent Vlters:
a duration Vlter to discard those burst whose duration is shorter than a given value, and a
range Vlter that can be deVned to each parameter and eliminates those bursts than are out of
the boundaries.

To tune the duration Vlter we use the stats tools provided by the CEPBA-Tools pack-
age. Using the -bursts_histo parameter this tool computes a plot as the one presented in
Figure B.3 for a given Paraver trace. This plot is an histogram where the x axis is the dura-
tion of the CPU bursts and quantiVes both the aggregated time of the CPU bursts, the green
bars, and the number of bursts, the red line. Observing this plot we can select the duration
that eliminates de maximum number of bursts (red line at left of the select duration), while
maintaining a high value of aggregated time (green bars at right of the selected point). For
example, in the Figure B.3, a reasonable duration Vlter will be 10 miliseconds.

With respect to the normalizations, we provide the possibility of applying Vrst a logar-
ithmic normalization, useful when the parameter range is wide and can bias the results of the
cluster analysis. The logarithmic normalization can be applied to each parameter independ-
ently. The second normalization is a pure range normalization to set the parameter values
in range [0, 1], following the formula range (∀ai ∈ A, ai ← (ai − min(A))/(max(A) −
min(A))). When using the range normalization, it will be applied to each parameter used,
so as to guarantee that all of them have the same weight in the analysis. If we to add more
weight one of the parameters used in the cluster analysis, we can apply a multiplicative
factor.

To clarify how the diUerent normalizations and Vlters work, this is the order as they are
applied: when a CPU burst is read, its duration is checked and then the diUerent paramet-
ers that have range Vlters deVned; to those bursts that pass the Vlters its performed the
logarithmic normalization of each parameter that requires it and afterwards the range nor-
malization. Finally, the scaling factor is applied.

213

B. The ClusteringSuite Software Package

 0×100

 1×105

 2×105

 3×105

 4×105

 5×105

 6×105

 7×105

 8×105

1 µs
10 µs

100 µs

1 m
s

10 m
s

100 m
s

1s 10 s

 0

 20

 40

 60

 80

100

N
u
m

b
er

 o
f

b
u
rs

ts

%
 o

f
co

m
p
u
ta

ti
o
n
 t

im
e

Number of bursts
% of computing time

Figure B.3.: Bursts histogram produced by stats tool

3. Select the output plots

We can combine the parameters deVned previous to generate GNUplot scripts of 2D and 3D
scatter-plots. The plots can print both the normalized data or the raw data (before normal-
izations). The user can tune tune the ranges to print and also the axis-labels of the plots.
In addition, users can let the library to produce all 2D plots obtained combining all metrics
deVned.
Once having the parameters, Vlters and plots, we can run the application Clustering-

DataExtractor to extract the data and produce the plots described before runing the cluster
algorithm. The resulting plots will show all the data available, distinguishing between the
duration Vltered bursts, the range Vltered bursts and the ones that will take part in the cluster
analyses. These plots are an useful aid to Vne tune the parameter Vlters and normalizations.

4. Select the cluster algorithm

Even though the Aggregative Cluster ReVnement and DBSCAN are the two basic algorithms
oUered by the ClusteringSuite package, there is a fewmore clustering algorithms oUered to
the user. Table B.1 contains the list of these algorithms and their parameters. It is interesting
to note that the Aggregative Cluster ReVnement is the only algorithm that does not require
any parameter and it not have to be expressed in the XML conVguration Vle.
For further information about the diUerent algorithms included in the package, we point to

the following papers: [78] for DBSCAN algorithm, [129] for GMEANS and [130] for CAPEK,
PAM and XCLARA.

214

B.2. ClusteringSuite tools usage

Cluster Algorithm Name Parameters

DBSCAN epsilon, min_points

GMEANS critical_value, max_clusters

CAPEK1 k

MUSTER_PAM1 max_clusters

MUSTER_XCLARA1 max_clusters

1 libClustering includes a common interface to this
algorithms oUered by the MUSTER library (http://
tgamblin.github.com/muster/main.html

Table B.1.: Cluster algorithms included in the libClustering and their parameters

In case of DBSCAN we provide the application DBSCANParametersApproximation to help
the paremeter selection, according to the technique described in [78].

5. Execute the cluster analysis

Once deVned the diUerent elements necessary to perform the analysis, we need to execute
the BurstClustering tool. The diUerent parameters of this tool and a short description
of them are listed in Table B.2. Basically, to perform a regular analysis using the cluster
algorithm deVned in the XML Vle we need to execute the command:

BurstClustering -d <clustering_definition.xml> -i <input_trace> -o <output_trace>

The tool will process the information provided in the conVguration Vle, extract the data
from the input trace, execute the cluster algorithm and then generate the required output
plots, extrapolation Vles and the output trace. These Vles will be explained in the further
step.
In case we want to execute the Aggregative Cluster ReVnement algorithm, the command

varies slightly:

BurstClustering -d <clustering_def.xml> -ra[p] -i <input_trace> -o <output_trace>

By adding the -ra parameter, the tool discards the algorithm indicated in the clustering
deVnition XML Vle and then applies this diUerent algorithm. In case we use the parameter
-rap, the tool will produce, apart from the regular outputs, the traces and plots of interme-
diate steps of the Aggregative Cluster ReVnement algorithm.

6. BurstClustering tool outputs

The BurstClustering oUers three main outputs: scatter-plots of the diUerent metrics, a
cluster statistics Vle (including the extrapolation) and a reconstructed Paraver trace. In addi-

215

http://tgamblin.github.com/muster/main.html
http://tgamblin.github.com/muster/main.html

B. The ClusteringSuite Software Package

Parameter Description

Required parameters

-d <clustering_definition.xml> Clustering deVnition XML to be
used

-i <input_trace.prv> Input (Paraver) trace to be used

-o <output_trace.prv> Output (Paraver) trace with cluster
information added

Optional parameters

-h Show help message and exit

-s Performs a silent execution, without
informative messages

-m <number_of_samples> Performs a cluster analysis using
the number of burst indicated and
classifying the rest

-a[f] Generates an output Vle with the
aligned sequences (in FASTA format
when using ’-af’)

-ra[p] Executes the Aggregative Cluster
ReVnement instead of the cluster
algorithm indicated in the XML.
When using ’-rap’ generates plots
and outputs from intermediate steps

-t Print accurate timings (in
µseconds) of diUerent algorithm
parts

-e EvtType1, EvtType2,... Changes the Paraver trace pro-
cessing, to capture information by
the events deVned instead of CPU
bursts

Table B.2.: BurstClustering tool parameters

216

B.2. ClusteringSuite tools usage

tion, it also generates the reVnement tree, when using the Aggregative Cluster ReVnement.
Optionally, it can produce the a Vle with the sequence alignment and a Vle containing the
Cluster Sequence Score values. Here we will describe brieWy all of them.
The scatter-plots are simply GNUplot scripts that can be load using this plotting tool.

As seen in previous steps, they can be 2 or 3 dimensional combinations of diUerent metrics
used to characterize the CPU bursts. In any case, the points in the scatter plots are coloured
to distinguish the diUerent clusters found. These plots are useful to observe, qualitatively,
variations in the clusters with respect to the metrics used. In Figure B.4 we show 4 diUerent
plots combining 8 diUerent hardware counters. First plot, B.4a, show the metrics used by
the cluster algorithm. In the rest of combinations we can observe that the clusters represent
clear isolated clouds, with a minor exception of the plot comparing Main Memory Accesses
vs. L2 Data Cache Accesses, B.4c, where Cluster 4 (in red) appear in two diUerent clouds.
The plot scripts are named using the output trace preVx plus a trailing string expressing

the combination of metrics used. They have the extension .gnuplot. All of them use a Vle
ended in .DATA.csv that contain on each line the diUerent parameters described in the XML
Vle plus the cluster identiVer assigned for each CPU burst analysed.
The clustering statistics Vle is a CSV Vle that contains the number of individuals, the

aggregated duration and the average duration per CPU burst, and the average values of
extrapolation parameters deVned in XML, for each cluster found. This Vle is really useful to
analysed quantitatively the behaviour of the diUerent clusters found. The clusters statistics
Vle is named using the preVx of the input trace, but ending in .clusters_info.csv.
Next output that is always produced is the output trace. Basically, this is exactly the same

input trace where all the CPU burst have been surrounded using a certain events to identify
them. Thanks to these events, we can take advantage of the vast analysis power of Paraver
and Dimemas to perform further analyses and correlate the clusters with all the information
present on the trace. For example, we can observe the time-line distribution of the diUerent
computation regions detected. An example of Paraver time-line and its corresponding dur-
ation proVle can be seen in Figure B.5. We provide a set of Paraver conVguration Vles with
pre-deVned views and histograms related to cluster events.
In case we executed the Aggregative Cluster ReVnement algorithm, the tool will also pro-

duce a reVnement tree Vle. This Vle has the same preVx as the output trace and the exten-
sion TREE.dot. It is a text Vle that describes the reVnement tree using the DOT language.
To visualize it we require the GraphViz2 software package. We also recommend using of
the interactive tool xdot3 to navigate through the reVnement tree output. An example of a
reVnement tree can be seen in Figure B.6.
Finally, using the parameter -a, the tool will produce a CSV Vle containing the sequences

obtained after applying the Cluster Sequence Score. This Vle, named as the output trace
with the extension .seq, contains the sequence of the cluster identiVers (numbers) and gaps
(marked as hyphens) introduced by the alignment algorithm for each task and thread present
on the input trace. If use the parameter -af, the Vle will be generated in the FASTA format,
transforming the Vrst 21 clusters in an amino-acid identiVer. The FASTA Vle can be load in

2http://www.graphviz.org/
3http://code.google.com/p/jrfonseca/wiki/XDot

217

http://www.graphviz.org/
http://code.google.com/p/jrfonseca/wiki/XDot

B. The ClusteringSuite Software Package

(a) Instructions vs. IPC (b) Stores vs. Loads

(c) Main memory accesses vs. L2 data cache
acessess

(d) Integer instructions vs. Floating point instruc-
tions

Figure B.4.: Output plots produced by BurstClustering tool combining diUerent metrics

218

B.2. ClusteringSuite tools usage

(a) Time-line distribution of discovered clusters

(b) Duration histogram of the clusters per application task

Figure B.5.: A Paraver time-line and proVle showing information related to a cluster analysis

219

B. The ClusteringSuite Software Package

S
T

E
P

 1
 E

p
s =

 0
.0

0
1

8
5

6
9

6

S
T

E
P

 2
 E

p
s =

 0
.0

0
2

0
4

3
4

S
T

E
P

 3
 E

p
s =

 0
.0

0
2

3
0

2
2

2

S
T

E
P

 4
 E

p
s =

 0
.0

0
3

2
0

6
7

S
T

E
P

 5
 E

p
s =

 0
.0

0
3

2
8

4
3

S
T

E
P

 6
 E

p
s =

 0
.0

0
3

9
5

9
0

2

S
T

E
P

 7
 E

p
s =

 0
.0

0
4

6
9

8
9

5

N
o
ise

 S

co
re

 =
 3

1
.2

5
%

N
o
ise

 S

co
re

 =
 3

1
.2

5
%

C
lu

ste
r 1

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 2

 S
co

re
 =

 1
0

0
%

C
lu

ste
r 3

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 4

 S
co

re
 =

 1
0

0
%

C
lu

ste
r 5

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 6

 S
co

re
 =

 1
0

0
%

C
lu

ste
r 7

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 8

 S
co

re
 =

 7
5

%

C
lu

ste
r 8

 S

co
re

 =
 7

5
%

C
lu

ste
r 9

 S

co
re

 =
 5

0
%

C
lu

ste
r 9

 S

co
re

 =
 8

7
.5

%

C
lu

ste
r 1

0

 S
co

re
 =

 3
7

.5
%

C
lu

ste
r 1

1

 S
co

re
 =

 3
7

.5
%

C
lu

ste
r 1

1

 S
co

re
 =

 3
7

.5
%

C
lu

ste
r 1

2

 S
co

re
 =

 3
7

.5
%

C
lu

ste
r 1

2

 S
co

re
 =

 3
7

.5
%

N
o
ise

 S

co
re

 =
 2

5
%

C
lu

ste
r 1

3

 S
co

re
 =

 5
0

%
C

lu
ste

r 9

 S
co

re
 =

 8
7

.5
%

C
lu

ste
r 8

 S

co
re

 =
 7

5
%

C
lu

ste
r 1

1

 S
co

re
 =

 7
5

%

N
o
ise

 S

co
re

 =
 2

5
%

C
lu

ste
r 9

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 1
1

 S

co
re

 =
 8

7
.5

%
C

lu
ste

r 8

 S
co

re
 =

 7
5

%
C

lu
ste

r 1
3

 S

co
re

 =
 5

0
%

N
o
ise

 S

co
re

 =
 2

5
%

C
lu

ste
r 8

 S

co
re

 =
 7

5
%

C
lu

ste
r 1

1

 S
co

re
 =

 8
7

.5
%

C
lu

ste
r 1

3

 S
co

re
 =

 5
0

%

N
o
ise

 S

co
re

 =
 2

5
%

C
lu

ste
r 8

 S

co
re

 =
 1

0
0

%
C

lu
ste

r 1
1

 S

co
re

 =
 8

7
.5

%

C
lu

ste
r 1

1

 S
co

re
 =

 1
0

0
%

Figure
B
.6.:Exam

ple
ofa

reVnem
enttree

produced
by

B
u
r
s
t
C
l
u
s
t
e
r
i
n
g
tool

220

B.3. Creating the clustering deVnition XML

Figure B.7.: ClustalX sequence alignment window

any alignment software, such as ClustalX4 for its visualization. In Figure B.7 we can see a
ClustalX window with a set of aligned sequences.
If we use any of these two last parameters, the tool will also produce a Vle with the

extension SCORES.csv, that contains the numerical results of the Cluster Sequence Score.
When using the Aggregative Cluster ReVnement with the parameter -rap the tool will

produce the plots, traces, reVnement trees, sequence Vles and score Vles for each reVnement
step. The intermediate statistics Vles will not be generated and these intermediate trace Vles
will only contain cluster events, to check the intermediate cluster distribution, but not to
correlate them with other information. The intermediate Vles will have an inter-Vx STEPX in
their Vle name, to distinguish at which step (iteration) of reVnement were produced.
Finally, it is interesting to note that we guarantee the colour coherence in all those outputs

generated by the BurstClustering that use colour information to distinguish the cluster
identiVers. In case of ClustalX we provide a modiVed version of software package with the
required amino-acid colouring.

B.3. Creating the clustering deVnition XML

In brief, the clustering deVnition XML Vle contains the description of four elements of the
clustering process: the parameters associated to each CPU burst in the trace used by cluster
analysis and the extrapolation process; the Vltering ranges and normalizations applied to
this data; the cluster algorithm to be used; and Vnally, the description of the diUerent output
plots, generated as GNUplot scripts. We can see how these diUerent parts are distributed in
the XML Vle in Figure B.8.

4http://www.clustal.org/

221

http://www.clustal.org/

B. The ClusteringSuite Software Package

<clustering_definition use_duration="no" apply_log="yes" normalize_data="yes"
duration_filter="10000" threshold_filter="0">

 <clustering_algorithm name="xxx">
 <!-- specific cluster algorithm parameters -->
 </clustering_algorithm>

 <clustering_parameters>
 <!-- 'single_event'/'mixed_events' nodes defining the CPU bursts
 parameters (dimensions) to be used by the cluster algorithm -->
 </clustering_parameters>

 <extrapolation_parameters>
 <!-- 'single_event'/'mixed_events' nodes defining the CPU burst
 parameters (dimensions) to be used in the data extrapolation
 process -->
 </extrapolation_parameters>

 <output_plots all_plots="no">
 <!-- 'plot_definition' nodes defining 2D/3D plots combining the
 'clustering_parameters'/'extrapolation_parameters' --
 </output_plots>

</clustering_definition>

Definition of the output plots combining the CPU parameters

CPU bursts parameters to be extrapolated

CPU bursts parameters to be used by cluster algorithm

Cluster algorithm parametrization

End tag

Figure B.8.: Clustering deVnition XML Vle structure

Following the current description of the Vle it could be easily generated using a regular
text editor or a XML editor.

Parameter selection

There are two ways to deVne how the parameters are read from a Paraver trace. First, the
values of individual events situated at the end of the Running State, using single_event

nodes. Second, combining the values of two diUerent events with a basic mathematical
operation, using mixed_events nodes.
A single_event node, see Figure B.9a, contains Vrst two attributes: apply_log that in-

dicates if a logarithmic normalization will be applied to its values; the name parameter is the
label the will be used in the diUerent output Vle. The inner node event_type is mandatory,
to deVne the event type that appears in the Paraver trace. Optional nodes range_min and
range_max are used to Vlter the CPU burst outside these boundaries. Finally, optional node
factor is a multiplicative value so as to weight the parameter value.
A mixed_events node, see Figure B.9b, is pretty similar to the previous one, but includes

two mandatory internal nodes event_type_a and event_type_b, to deVne the two types of
events involved, and the attribute operation to deVne the mathematical operation applied
to the values read. Possible operations are +, -, * and /. The operation is applied to the
values of the two events deVned, before the logarithmic normalization.

222

B.3. Creating the clustering deVnition XML

<single_event apply_log="yes" name="PM_INST_CMPL">
 <event_type>42001090</event_type>
 <range_min>1e6</range_min>
 <range_max>1e8</range_max>
 <factor>1.0</factor>
</single_event>

(a) single_event node structure

<mixed_events apply_log="yes" name="IPC" operation="/">
 <event_type_a>42001090</event_type_a>
 <event_type_b>42001008</event_type_b>
 <range_max>3</range_max>
 <factor>1.0</factor>
</mixed_events>

(b) mixed_events node structure

Figure B.9.: Nodes to deVne the parameters extracted from a trace

To deVne the CPU bursts parameters that will be used by the cluster algorithm, they have
to be placed below the clustering_parameters node, see Figure B.8. To deVne those that
will be used to characterize the resulting clusters (as averages in the .clusters_info.csv

Vle), we have to place them below the extrapolation_parameters node.
If we want to use the duration of the CPU bursts as a parameter, we need to set to yes the

attribute use_duration present in the root node (clustering_definition).

Filtering and normalization

The Vltering and normalization is expressed at two points of the XML Vle. We have seen
that the parameter deVnition nodes include both a range Vltering and also a logarithmic
normalization. The Vltering information included in the extrapolation parameters is not
taken into account.
The second point is the root node. In this node we Vnd diUerent attributes, see Figure B.8

regarding Vlters and normalizations. First one is apply_log, that indicates if logarithmic
normalization will be applied to the burst duration, if used. Next one is normalize_data,
that indicates if a Vnal range normalization will be applied to the values of all parameters
(independently). Next we Vnd the duration_filter, expressed in µs, to discard those burst
with less duration than the indicated. Finally, the threshold_filter is a percentage to
discard all the clusters found whose aggregated duration represents less percentage of the
total clusters duration than the indicated.

Output plots

Once deVned the parameters used to characterize the CPU bursts, below the output_plots
node we can deVne the output plots combining the diUerent metrics.
If we set the attribute all_plots of this main node to yes, the libTraceClustering lib-

rary will generate all possible 2D plots combining the parameters deVned (clustering para-

223

B. The ClusteringSuite Software Package

<plot_definition raw_metrics="yes">
 <x_metric title="IPC" min="0.1" max="2">IPC</x_metric>
 <y_metric title="Instr. Completed" min="4e7" max="5e7">PAPI_TOT_INS</y_metric>
 <z_metric title="Memory Instructions">Memory_Instructions</z_metric>
</plot_definition>

Figure B.10.: plot_definition node of the clustering deVntion XML

meters and extrapolation parameters). If we want to manually deVne the combinations we
can use the plot_definition structure, see Figure B.10.
What we Vnd Vrst in the plot_definition node is the attribute raw_metrics. In case we

applied normalization to the clustering parameters setting this attribute to “yes” indicates
that the resulting plot will use the raw values of the parameters. Then we Vnd three kind of
nodes [x|y|z]_metric. Each of these nodes has a mandatory attribute title that will be
used as the plot label for the corresponding axis. They have two optional attributes max and
min to deVne the axis range. Finally, the content of each of these nodes must be the name
attribute of any of the parameters deVned previously (clustering parameter of extrapolation
parameter). In case we want to use the duration, as it is deVned diUerently from regular
parameters, it has to be referenced simply using the text Duration.
We can combine up to three metrics to create a 3 dimensional scatter-plot, where the

individuals will be distinguished in series according to the cluster identiVer assigned. The
same is applicable when using just two metrics (x and y). If we just deVne a single metric (x
metric), the resulting plot will be a 2 dimensional plot using the cluster identiVer as y axis.

224

Bibliography
[1] GNU binutils Homepage. http://www.gnu.org/

software/binutils/.

[2] J. Mellor-Crummey, L. Adhianto, M. Fagan, M. Krentel,
and N. Tallent. HPCToolkit User’s Manual. Rice Univer-
sity, February 2012. For HPCToolkit 5.2.1 (Revision : 3664).

[3] N. R. Tallent, J. Mellor-Crummey, M. Franco,
R. Landrum, and L. Adhianto. Scalable Fine-grained
Call Path Tracing. In ICS ’11: Proceedings of the 25th
lnternational conference on Supercomputing, pages 63–74,
Tucson, Arizona, USA, 2011.

[4] F. Wolf and B. Mohr. Automatic performance analysis
of hybrid MPI/OpenMP applications. Journal of Systems
Architecture, 49(10-11):421–439, 2003.

[5] D. G. Higgins and P. M. Sharp. CLUSTAL: a package for
performing multiple sequence alignment on a microcom-
puter. Gene, 73(1):237–244, 1988.

[6] H. Servat, G. Llort, J. Gimenez, and J. Labarta. Detailed
Performance Analysis Using Coarse Grain Sampling. In
PROPER ’09: Proceedings of the 2nd Workshop on Productiv-
ity and Performance, Delft, The Netherlands, August 2009.

[7] J. G. German Llort, Harald Servat and J. Labarta. On
the usefulness of object tracking techniques in perform-
ance ana. Technical Report UPC-DAC-RR-2013-1, Computer
Architecture Department, UPC, 2013.

[8] M. Casas, R. Badia, and J. Labarta. Automatic Analysis
of Speedup of MPI Applications. In SC ’08: Proceedings of
the 22nd annual international conference on Supercomput-
ing, ICS ’08, pages 349–358, New York, NY, USA, 2008. ACM.

[9] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering:
a review. ACM Computing Surveys, 31:264–323, September
1999.

[10] O. Y. Nickolayev, P. C. Roth, and D. A. Reed. Real-Time
Statistical Clustering for Event Trace Reduction. The In-
ternational Journal of Supercomputer Applications and High
Performance Computing, 11(2):144–159, Summer 1997.

[11] D. H. Ahn and J. S. Vetter. Scalable analysis techniques
for microprocessor performance counter metrics. In SC
’02: Proceedings of the 2002 ACM/IEEE conference on Super-
computing, pages 1–16, Los Alamitos, CA, USA, 2002. IEEE
Computer Society Press.

[12] K. A. Huck and A. D. Malony. PerfExplorer: A Perform-
ance Data Mining Framework For Large-Scale Parallel
Computing. In SC ’05: Proceedings of the 2005 ACM/IEEE
conference on Supercomputing, page 41, Washington, DC,
USA, 2005.

[13] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Bio-
logical Sequence Analysis: Probabilistic Models of Proteins
and Nucleic Acids. Cambridge University Press, 1998. ISBN:
9780521629713.

[14] T. Tchoukalov, C. Monson, and B. Roark. Multiple Se-
quence Alignment for Morphology Induction. InWorking
Notes for the CLEF 2009 Workshop, Corfu, Greece, September
2009.

[15] N. Shoval and M. Isaacson. Sequence Alignment as
a Method for Human Activity Analysis in Space and
Time. Annals of the Association of American Geographers,
97(2):282–297, 2007.

[16] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic De-
tection of Parallel Applications Computation Phases. In
IPDPS ’09: Proceedings of the 23rd IEEE International Paral-
lel and Distributed Processing Symposium, Rome, Italy, May
2009.

[17] J. Gonzalez, J. Gimenez, and J. Labarta. Automatic Eval-
uation of the Computation Structure of Parallel Applica-
tions. In PDCAT ’09: Proceedings of the 10th International
Conference on Parallel and Distributed Computing, Applica-
tions and Technologies, Hiroshima, Japan, December 2009.

[18] J. Gonzalez, J. Gimenez, and J. Labarta. Performance
Data Extrapolation in Parallel Codes. In ICPADS ’10: Pro-
ceedings of the 16th International Conference on Parallel and
Distributed Systems, Shanghai, China, December 2010.

[19] J. Gonzalez, J. Gimenez, M. Casas, M. Moreto,
A. Ramirez, J. Labarta, andM. Valero. SimulatingWhole
Supercomputer Applications. IEEE Micro, 31:32–45, 2011.

[20] J. Gonzalez, K. Huck, J. Gimenez, and J. Labarta. Auto-
matic ReVnement of Parallel Applications Structure De-
tection. In LSPP ’12: Proceedings of the 2012 Workshop on
Large-Scale Parallel Processing, Shanghai, China, May 2012.

[21] libunwind Homepage. http://www.nongnu.org/

libunwind.

[22] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci.
A Portable Programming Interface for Performance Eval-
uation on Modern Processors. International Journal of
High Performance Computing Applications, 14(3):189–204,
2000.

[23] D. Terpstra, H. Jagode, H. You, and J. Dongarra. Col-
lecting Performance Data with PAPI-C. In M. S. Müller,
M. M. Resch, A. Schulz, andW. E. Nagel, editors, Tools for
High Performance Computing 2009, pages 157–173. Springer
Berlin Heidelberg, 2010.

[24] A. Malony, S. Biersdorff, S. Shende, H. Jagode, S. Tomov,
G. Juckeland, R. Dietrich, D. Poole, and C. Lamb. Paral-
lel Performance Measurement of Heterogeneous Parallel
Systems with GPUs. In ICPP ’11: Proceedings of the 40th
International Conference on Parallel Processing, pages 176 –
185, sept. 2011.

[25] M. P. I. Forum. MPI: A Message-Passing Interface Standard.

225

http://www.gnu.org/software/binutils/
http://www.gnu.org/software/binutils/
http://doi.acm.org/10.1145/1995896.1995908
http://doi.acm.org/10.1145/1995896.1995908
http://www.ncbi.nlm.nih.gov/pubmed/3243435
http://www.ncbi.nlm.nih.gov/pubmed/3243435
http://www.ncbi.nlm.nih.gov/pubmed/3243435
http://doi.acm.org/10.1145/1375527.1375578
http://doi.acm.org/10.1145/1375527.1375578
http://doi.acm.org/10.1145/331499.331504
http://doi.acm.org/10.1145/331499.331504
file:citeseer.ist.psu.edu/nickolayev97realtime.html
file:citeseer.ist.psu.edu/nickolayev97realtime.html
http://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2007.00536.x
http://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2007.00536.x
http://www.tandfonline.com/doi/abs/10.1111/j.1467-8306.2007.00536.x
http://www.nongnu.org/libunwind
http://www.nongnu.org/libunwind
http://hpc.sagepub.com/cgi/content/abstract/14/3/189
http://hpc.sagepub.com/cgi/content/abstract/14/3/189
http://dx.doi.org/10.1007/978-3-642-11261-4_11
http://dx.doi.org/10.1007/978-3-642-11261-4_11

Bibliography

[26] B. Mohr, A. D. Malony, S. Shende, and F. Wolf. Towards
a Performance Tool Interface for OpenMP: An Approach
Based on Directive Rewriting. In EWOMP ’01: Proceedings
of the Third Workshop on OpenMP, 2001.

[27] B. Buck and J. K. Hollingsworth. An API for Runtime
Code Patching. International Journal of High Performance
Computing Applications, 14(4):317–329, November 2000.

[28] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood.
Pin: Building Customized Program Analysis Tools with
Dynamic Instrumentation. In PLD ’05: Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’05, pages 190–200, New
York, NY, USA, 2005. ACM.

[29] S. L. Graham, P. B. Kessler, andM. K. Mckusick. Gprof: A
call graph execution proVler. In SIGPLAN ’82: Proceedings
of the 1982 SIGPLAN symposium on Compiler construction,
pages 120–126, New York, NY, USA, 1982. ACM.

[30] Open|Speedshop Homepage. http://www.

openspeedshop.org/.

[31] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel,
G. Marin, J. Mellor-Crummey, and N. R. Tallent.
HPCTOOLKIT: Tools for performance analysis of optim-
ized parallel programs. Concurrency and Computation:
Practice and Experience, 22(6):685–701, 2010.

[32] S. S. Shende and A. D. Malony. The TAU Parallel Per-
formance System. International Journal of High Perform-
ance Computing Applications, 20(2):287–311, 2006.

[33] B. Miller, M. Clark, J. Hollingsworth, S. Kierstead,
S. Lim, and T. Torzewski. IPS-2: The Second Generation
of a Parallel ProgramMeasurement System. IEEE Transac-
tions on Parallel and Distributed Systems, 1(2):206–217, 1990.

[34] M. Geimer, F. Wolf, B. J. N. Wylie, E. Ábrahám, D. Becker,
and B. Mohr. The Scalasca performance toolset architec-
ture. Concurrency and Computation: Practice and Experi-
ence, 22(6):702–719, April 2010.

[35] Z. Szebenyi, F. Wolf, and B. J. N. Wylie. Space-EXcient
Time-Series Call-Path ProVling of Parallel Applications.
In SC ’09: Proceedings of the 2009 ACM/IEEE Conference on
Supercomputing, Portland, Oregon, USA, November 2009.

[36] CEPBA-Tools. Paraver. Parallel Program Visualization and
Analysis tool Version 3.0. TRACEFILE DESCRIPTION. Bar-
celona Supercomputing Center, June 2001.

[37] Score-P Project Homepage. http://www.score-p.org.

[38] H. Brunst and B. Mohr. Performance Analysis of Large-
Scale OpenMP and Hybrid MPI/OpenMP Applications
with VampirNG. In IWOMP 2005: First International Work-
shop on OpenMP, 2005.

[39] D. Eschweiler, M. Wagner, M. Geimer, A. Knüpfer, W. E.
Nagel, and F. Wolf. Open Trace Format 2: The Next Gen-
eration of Scalable Trace Formats and Support Libraries, 22
of Advances in Parallel Computing. Applications, Tools and
Techniques on the Road to Exascale Computing. IOS Press,
2012. ISBN 978-1-61499-040-6.

[40] A. Knüpfer, R. Brendel, H. Brunst, H. Mix, andW. Nagel.
Introducing the Open Trace Format (OTF). In ICCS ’06:
Proceedings of the 6th International Conference con Compu-
tational Science, pages 526–533, Reading, Uniterd Kingdom,
May 2006.

[41] M. Wagner, A. Knüpfer, and W. E. Nagel. Enhanced
Encoding Techniques for the Open Trace Format 2. In
ICCS ’12: Proceedings of the 12th International Conference
on Computational Science, 2012.

[42] M. Itzkowitz, B. J. N. Wylie, C. Aoki, and N. Kosche.
Memory ProVling using Hardware Counters. In SC ’03:
Proceedings of the 2003 ACM/IEEE conference on Supercom-
puting, pages 17–, Phoenix, Arizona, USA, November 2003.

[43] G. Lakner, I.-H. Chung, D. G. Cong, S. Fadden, N. Gor-
acke, D. Klepacki, J. Lien, C. Pospiech, S. R. Seelam, and
H.-F. Wen. IBM System Blue Gene Solution: Performance
Analysis Tools. IBM, September 2008.

[44] L. Adhianto, J. Mellor-Crummey, and N. R. Tallent. Ef-
fectively Presenting Call Path ProVles of Application Per-
formance. In PSTI ’10: Proceedings of the First Interna-
tional Workshop on Parallel Software Tools and Tool Infra-
structures, pages 179–188, Washington, DC, USA, 2010.

[45] J. Mellor-Crummey, R. J. Fowler, G. Marin, and N. Tal-
lent. HPCVIEW: A Tool for Top-down Analysis of Node
Performance. Journal of Supercomputing, 23(1):81–104, Au-
gust 2002.

[46] R. Bell, A. Malony, and S. Shende. Paraprof: A Port-
able, Extensible, and Scalable Tool for Parallel Perform-
ance ProVle Analysis. In Euro-Par 2003: Proceedings of the
9th International European Conference on Parallel and Dis-
tributed Computing, 2003.

[47] K. A. Huck, A. D. Malony, and A. Morris. Design and
Implementation of a Parallel Performance Data Manage-
ment Framework. In ICPP ’05: Proceedings of the 34th Inter-
national Conference on Parallel Processing, ICPP ’05, pages
473–482, Washington, DC, USA, 2005. IEEE Computer Soci-
ety.

[48] M. Geimer, B. Kuhlmann, F. Pulatova, F. Wolf, and
B. J. N. Wylie. Scalable Collation and Presentation of
Call-Path ProVle Data with CUBE. In ParCo ’07: Proceed-
ings of the Conference on Parallel Computing, pages 645–652,
Aachen/Juelich, Germany, September 2007. Minisymposium
Scalability and Usability of HPC Programming Tools.

[49] J. M. Bull. A hierarchical classiVcation of overheads in
parallel programs. In Proceedings of the First IFIP TC10 In-
ternational Workshop on Software Engineering for Parallel
and Distributed Systems, pages 208–219, London, UK, UK,
March 1996. Chapman & Hall, Ltd.

[50] F. Wolf and B. Mohr. Automatic Performance Analysis
of MPI Applications Based on Event Traces. In Euro-Par
2000: Proceedings of the 6th International European Confer-
ence on Parallel and Distributed Computing, pages 123–132,
London, UK, 2000. Springer-Verlag.

226

http://dx.doi.org/10.1177/109434200001400404
http://dx.doi.org/10.1177/109434200001400404
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/1065010.1065034
http://doi.acm.org/10.1145/800230.806987
http://doi.acm.org/10.1145/800230.806987
http://www.openspeedshop.org/
http://www.openspeedshop.org/
http://dx.doi.org/10.1002/cpe.1553
http://dx.doi.org/10.1002/cpe.1553
http://www.score-p.org
http://doi.acm.org/10.1145/1048935.1050168
http://dx.doi.org/10.1109/ICPPW.2010.35
http://dx.doi.org/10.1109/ICPPW.2010.35
http://dx.doi.org/10.1109/ICPPW.2010.35
http://dx.doi.org/10.1023/A:1015789220266
http://dx.doi.org/10.1023/A:1015789220266
http://dx.doi.org/10.1109/ICPP.2005.29
http://dx.doi.org/10.1109/ICPP.2005.29
http://dx.doi.org/10.1109/ICPP.2005.29

Bibliography

[51] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. EXcient
Pattern Search in Large Traces Through Successive Re-
Vnement. In D. L. Marco Danelutto, Marco Vanneschi,
editor, Euro-Par 2004: Proceedings of the 10th International
European Conference on Parallel and Distributed Computing,
page 47. Springer-Verlag GmbH, 2004.

[52] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr.
Scalable parallel trace-based performance analysis. In
EuroPVM/MPI ’06: Proceedings of the 13th European
PVM/MPI User’s Group conference on Recent advances in
parallel virtual machine and message passing interface,
EuroPVM/MPI’06, pages 303–312, Berlin, Heidelberg, 2006.
Springer-Verlag.

[53] D. Böhme, M. Geimer, F. Wolf, and L. Arnold. Identify-
ing the root causes of wait states in large-scale parallel
applications. In ICPP ’10: Proceedings of the 39th Interna-
tional Conference on Parallel Processing, pages 90–100, San
Diego, CA, USA, September 2010. IEEE Computer Society.

[54] A. Espinosa, T. Margalef, and E. Luque. Automatic Per-
formance Evaluation of Parallel Programs. In PDP ’98:
Proceedings of the Sixth Euromicro Workshop on Parallel and
Distributed Processing, pages 43–49, Los Alamitos, CA, USA,
1998. IEEE Computer Society.

[55] J. Jorba, T. Margalef, and E. Luque. Performance Ana-
lysis of Parallel Applications with KappaPI 2. In ParCo ’05:
Proceedings of the Parallel Computing Symposium, Malaga,
Spain, September 2005.

[56] T. Fahringer, M. Gerndt, G. Riley, and J. Täff. Know-
ledge SpeciVcation for Automatic Performance Analysis.
Technical report, APART Technical Report, 2001.

[57] H. L. Truong and T. Fahringer. SCALEA: A Performance
Analysis Tool for Distributed and Parallel Programs. In
Euro-Par 2002: Proceedings of the 8th International European
Conference on Parallel and Distributed Computing, pages
75–85, London, UK, 2002. Springer-Verlag.

[58] C. Seragiotto, T. Fahringer, M. Geissler, and H. Mad-
sen, G.and Moritsch. On using Aksum for semi-
automatically searching of performance problems in par-
allel and distributed programs. In Euromicro 2003: Pro-
ceedings of the 11th Conference on Parallel, Distributed and
Network-Based Processing., pages 385–392, 2003.

[59] T. Fahringer and C. Seragiotto, Jr. Aksum: a perform-
ance analysis tool for parallel and distributed applications.
Kluwer Academic Publishers, Norwell, MA, USA, 2004.

[60] B. P. Miller, M. D. Callaghan, J. M. Cargille,
J. K. Hollingsworth, R. B. Irvin, K. L. Karavanic,
K. Kunchithapadam, and T. Newhall. The Paradyn
Parallel Performance Measurement Tool. Computer,
28(11):37–46, 1995.

[61] P. C. Roth and B. P. Miller. On-line automated perform-
ance diagnosis on thousands of processes. In PPoPP ’06:
Proceedings of the eleventh ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages 69–
80, New York, NY, USA, 2006. ACM Press.

[62] M. Gerndt, A. Schmidt, M. Schulz, and R. Wismuller.
Performance Analysis for TeraWop Computers: a Distrib-
uted Automatic Approach. In Euromicro 2002: Proceedings
of the 10th Conference on Parallel, Distributed and Network-
Based Processing., pages 23–30, 2002.

[63] M. Gerndt, K. Fürlinger, and E. Kereku. Periscope: Ad-
vanced Techniques for Performance Analysis. In ParCo
’05: Proceedings of the Parallel Computing Symposium,
Malaga, Spain, September 2005.

[64] M. Casas, R. Badia, and J. Labarta. Automatic Structure
Extraction from MPI Applications TraceVles. In Euro-Par
2007: Proceedings of the 13th International European Confer-
ence on Parallel and Distributed Computing, 4641 of Lecture
Notes in Computer Science, pages 3–12, 2007.

[65] F. Freitag, J. Corbalan, and J. Labarta. A Dynamic Peri-
odicity Detector: Application to Speedup Computation.
In IPDPS ’01: Proceedings of the 15th IEEE International Par-
allel and Distributed Processing Symposium, 01, Los Alami-
tos, CA, USA, 2001. IEEE Computer Society.

[66] A. Knüpfer, B. Voigt, W. E. Nagel, and H. Mix. Visualiz-
ation of Repetitive Patterns in Event Traces. In PARA’06:
Workshop on State of the Art in ScientiVc and Parallel Com-
puting, 2006.

[67] A. Knüpfer and W. E. Nagel. New Algorithms for Per-
formance Trace Analysis Based on Compressed Complete
Call Graphs. In ICCS ’05: Proceedings of the 5th Interna-
tional Conference on Computational Science, Lecture Notes
in Computer Science, pages 116–123, 2005.

[68] P. C. Roth. ETRUSCA: Event Trace Reduction Using Statist-
ical Data Clustering Analysis. Master’s thesis, University of
Illinois at Urbana-Champaign, 1996.

[69] H. Abdi and L. J. Williams. Principal Component Ana-
lysis. Wiley Interdisciplinary Reviews: Computational Stat-
istics, 2(4):433–459, 2010.

[70] R. Gorsuch. Factor analysis. L. Erlbaum Associates, 1983.

[71] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program beha-
vior. In ASPLOS-X: Proceedings of the 10th international
conference on Architectural support for programming lan-
guages and operating systems, pages 45–57, New York, NY,
USA, 2002. ACM Press.

[72] P. Berkhin. Survey Of Clustering Data Mining Tech-
niques. Technical report, Accrue Software, San Jose, CA,
2002.

[73] R. Xu and D. W. II. Survey of clustering algorithms. IEEE
Transactions on Neural Networks, 16:645–678, 2005.

[74] J. Hartigan andM.Wong. Algorithm AS 136: A K-Means
Clustering Algorithm. Journal of the Royal Statistical Soci-
ety. Series C (Applied Statistics), 28:100–108, 1979.

[75] D. Pelleg and A. W. Moore. X-means: Extending
K-means with EXcient Estimation of the Number of
Clusters. In ICML ’00: Proceedings of the Seventeenth In-
ternational Conference on Machine Learning, pages 727–734,
San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers
Inc.

227

http://www.di.unipi.it/europar04/
http://www.di.unipi.it/europar04/
http://www.di.unipi.it/europar04/
http://dx.doi.org/10.1007/11846802_43
http://dl.acm.org/citation.cfm?id=976094.976107
http://dl.acm.org/citation.cfm?id=976094.976107
file:citeseer.ist.psu.edu/roth96etrusca.html
file:citeseer.ist.psu.edu/roth96etrusca.html
http://dx.doi.org/10.1002/wics.101
http://dx.doi.org/10.1002/wics.101
file:citeseer.ist.psu.edu/berkhin02survey.html
file:citeseer.ist.psu.edu/berkhin02survey.html

Bibliography

[76] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data,
chapter Partitioning Around Medoids (Program PAM), pages
68–125. John Wiley & Sons, Inc., 1990.

[77] J. Joe H. Ward. Hierarchical Grouping to Optimize an
Objective Function. Journal of the American Statistical As-
sociation, 58(301):236–244, March 1963.

[78] M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A Density-
Based Algorithm for Discovering Clusters in Large Spa-
tial Databases with Noise. In E. Simoudis, J. Han, and
U. Fayyad, editors, KDD96: Proceedings of the Second Inter-
national Conference on Knowledge Discovery and Data Min-
ing, pages 226–231, Portland, Oregon, 1996. AAAI Press.

[79] C. Notredame. Recent progress in multiple sequence
alignment: a survey. Pharmacogenomics, 3(1):131–144,
January 2002.

[80] S. B. Needleman and C. D. Wunsch. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. Journal of Molecular Biology,
48(3):443–453, March 1970.

[81] T. F. Smith and M. S. Waterman. IdentiVcation of com-
mon molecular subsequences. Journal of Molecular Bio-
logy, 147(1):195–197, March 1981.

[82] R. Bellman. The theory of dynamic programming. Bul-
letin of the American Mathematical Society, (60):503–515,
1954.

[83] D. G. Higgins, A. J. Bleasby, and R. Fuchs. CLUSTAL
V: improved software for multiple sequence alignment.
Computer applications in the biosciences : CABIOS, 8(2):189–
191, 1992.

[84] F. Jeanmougin. Multiple sequence alignment with Clustal
X. Trends in Biochemical Sciences, 23(10):403–405, 1998.

[85] R. Chenna, H. Sugawara, T. Koike, R. Lopez, T. J. Gibson,
D. G. Higgins, and J. D. Thompson. Multiple sequence
alignment with the Clustal series of programs. Nucleic
Acids Research, 31(13):3497–3500, 2003.

[86] M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna,
P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wal-
lace, A. Wilm, R. Lopez, and et al. Clustal W and Clustal
X version 2.0. Bioinformatics, 23(21):2947–2948, 2007.

[87] C. Notredame, D. G. Higgins, and J. Heringa. T-CoUee: A
Novel Method for Fast and Accurate Multiple Sequence
Alignment. Journal of Molecular Biology, 302(1):205–217,
September 2000.

[88] T. Lassmann and E. Sonnhammer. Kalign - an accurate
and fast multiple sequence alignment algorithm. BMC
Bioinformatics, 6(1):298, 2005.

[89] T. Lassmann, O. Frings, and E. L. L. Sonnhammer. Kalign2:
high-performance multiple alignment of protein and
nucleotide sequences allowing external features. Nucleic
Acids Research, 37(3):858–865, 2009.

[90] N. Shu and A. Elofsson. KalignP: Improved multiple se-
quence alignments using position speciVc gap penalties
in Kalign2. Bioinformatics, 27(12):1702–1703, 2011.

[91] R. C. Edgar. MUSCLE: multiple sequence alignment with
high accuracy and high throughput. Nucleic Acids Re-
search, 32(5):1792–1797, 2004.

[92] R. Edgar. MUSCLE: a multiple sequence alignment
method with reduced time and space complexity. BMC
Bioinformatics, 5(1):113, 2004.

[93] A. Joshi, A. Phansalkar, L. Eeckhout, and L. K. John.
Measuring Benchmark Similarity Using Inherent Pro-
gram Characteristics. IEEE Transactions on Computers,
55(6):769–782, 2006.

[94] J. Hutter and A. Curioni. Car-Parrinello Molecular Dy-
namics on Massively Parallel Computers. ChemPhys-
Chem, 6:1788–1793, 2005.

[95] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R.Fatoohi, S. Fineberg, P. Frederickson, T. Las-
inski, R. Schreiber, H. Simon, V. Venkatakrishnan, and
S. Weeratunga. The NAS Parallel Benchmarks. Tech-
nical Report RNR-94-007, NASA Advanced Supercomputing
(NAS) Division, 1994.

[96] P.-F. Lavallée, G. C. de Verdière, P. Wautelet, D. Lecas,
and J.-M. Dupays. Porting and Optimizing HYDRO to new
Platforms. Whitepaper, PRACE, December 2012.

[97] R. Teyssier. Cosmological hydrodynamics with adaptive
mesh reVnement. Astronomy and Astrophysics, 385(1):337–
364, 2002.

[98] N. Anquetil, C. Fourrier, and T. C. Lethbridge. Exper-
iments with Clustering as a Software Remodularization
Method. In WCRE ’99: Proceedings of the Sixth Working
Conference on Reverse Engineering, page 235, Washington,
DC, USA, 1999. IEEE Computer Society.

[99] P. Tonella, F. Ricca, E. Pianta, and C. Girardi. Eval-
uation methods for Web application clustering. In Pro-
ceedings of the 5th IEEE International Workshop on Web Site
Evolution, pages 33–40, 2003.

[100] Y. Liu, Z. Li, H. Xiong, X. Gao, and J. Wu. Understand-
ing of Internal Clustering Validation Measures. In ICDM
’10: Proceedings of the 2010 IEEE International Conference
on Data Mining, pages 911–916, Washington, DC, USA, 2010.
IEEE Computer Society.

[101] M. Halkidi andM. Vazirgiannis. A density-based cluster
validity approach usingmulti-representatives. Pattern Re-
cognition Letters, 29:773–786, April 2008.

[102] C. B. Do and K. Katoh. Protein Multiple Sequence Align-
ment. In J. D. Thompson, M. Ueffing, and C. Schaeffer-
Reiss, editors, Functional Proteomics, 484 ofMethods in Mo-
lecular Biology, pages 379–413. Humana Press, 2008.

[103] G. Tóth. Versatile Advection Code. In HPCN Europe
’97: Proceedings of the International Conference and Exhibi-
tion on High-Performance Computing and Networking, pages
253–262, London, UK, 1997. Springer-Verlag.

[104] B. Sprunt. The Basics of Performance-Monitoring Hard-
ware. IEEE Micro, 22(4):64–71, July 2002.

228

http://dx.doi.org/10.1002/9780470316801.ch2
file:citeseer.ist.psu.edu/nickolayev97realtime.html
file:citeseer.ist.psu.edu/nickolayev97realtime.html
file:citeseer.ist.psu.edu/chu02incremental.html
file:citeseer.ist.psu.edu/chu02incremental.html
file:citeseer.ist.psu.edu/chu02incremental.html
http://bioinformatics.oxfordjournals.org/content/8/2/189.abstract
http://bioinformatics.oxfordjournals.org/content/8/2/189.abstract
http://linkinghub.elsevier.com/retrieve/pii/S0968000498012857
http://linkinghub.elsevier.com/retrieve/pii/S0968000498012857
http://nar.oxfordjournals.org/content/31/13/3497.abstract
http://nar.oxfordjournals.org/content/31/13/3497.abstract
http://www.ncbi.nlm.nih.gov/pubmed/17846036
http://www.ncbi.nlm.nih.gov/pubmed/17846036
http://www.biomedcentral.com/1471-2105/6/298
http://www.biomedcentral.com/1471-2105/6/298
http://bioinformatics.oxfordjournals.org/content/27/12/1702.abstract
http://bioinformatics.oxfordjournals.org/content/27/12/1702.abstract
http://bioinformatics.oxfordjournals.org/content/27/12/1702.abstract
http://nar.oxfordjournals.org/content/32/5/1792.abstract
http://nar.oxfordjournals.org/content/32/5/1792.abstract
http://www.biomedcentral.com/1471-2105/5/113
http://www.biomedcentral.com/1471-2105/5/113
http://dx.doi.org/10.1109/ICDM.2010.35
http://dx.doi.org/10.1109/ICDM.2010.35
http://dl.acm.org/citation.cfm?id=1349901.1350238
http://dl.acm.org/citation.cfm?id=1349901.1350238
http://dx.doi.org/10.1007/978-1-59745-398-1_25
http://dx.doi.org/10.1007/978-1-59745-398-1_25
http://dx.doi.org/10.1109/MM.2002.1028477
http://dx.doi.org/10.1109/MM.2002.1028477

Bibliography

[105] J. M. May. MPX: Software for Multiplexing Hardware
Performance Counters in Multithreaded Programs. In IP-
DPS ’01: Proceedings of the 15th International Parallel & Dis-
tributed Processing Symposium, page 22, Washington, DC,
USA, 2001. IEEE Computer Society.

[106] Q. Liang. Performance Monitor Counter data ana-
lysis using Counter Analyzer. http://www.ibm.com/

developerworks/aix/library/au-counteranalyzer/

index.html.

[107] R. Azimi, M. Stumm, and R. W. Wisniewski. Online Per-
formance Analysis by Statistical Sampling of Micropro-
cessor Performance Counters. In ICS ’05: Proceedings of
the 19th International Conference on Supercomputing, pages
101–110, Cambridge, Massachusetts, USA, 2005.

[108] W. Mathur and J. Cook. Improved Estimation for Soft-
ware Multiplexing of Performance Counters. In MAS-
COTS 2005: Proceedings of the 13th IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems, pages 23–34, Washington,
DC, USA, 2005. IEEE Computer Society.

[109] D. Vianney, A. Mericas, B. Maron, T. Chen, S. Kunkel,
and B. Olszewski. CPI analysis on POWER5, Part 1: Tools
for measuring performance. http://www-128.ibm.com/

developerworks/library/pa-cpipower1.

[110] D. Vianney, A. Mericas, B. Maron, T. Chen, S. Kunkel,
and B. Olszewski. CPI analysis on POWER5, Part 2: In-
troducing the CPI breakdown model. http://www-128.

ibm.com/developerworks/library/pa-cpipower2.

[111] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete computer system simulation: The SimOS ap-
proach. IEEE Parallel and Distributed Technology, 3:34–43,
1995.

[112] F. Bellard. QEMU, a Fast and Portable Dynamic Trans-
lator. In USENIX’05: Proceedings of the annual conference
on 2005 USENIX Annual Technical Conference, pages 41–46,
2005.

[113] R. Bedichek. SimNow: Fast Platform Simulation Purely
in Software. In Hot Chips 16: Proceedings of the 16th Hot
Chips Symposium on High Performance Chips, Aug 2004.

[114] E. Perelman, G. Hamerly, M. Van Biesbrouck, T. Sher-
wood, and B. Calder. Using SimPoint for accurate and
eXcient simulation. In SIGMETRICS 2003: Proceedings
of the 2003 ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, SIGMET-
RICS ’03, pages 318–319, New York, NY, USA, 2003. ACM.

[115] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C. Hoe.
SMARTS: accelerating microarchitecture simulation via
rigorous statistical sampling. In ISCA ’03: Proceedings of
the 30th annual international symposium on Computer ar-
chitecture, ISCA ’03, pages 84–97, New York, NY, USA, 2003.
ACM.

[116] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and
W. E. Weihl. PROTEUS: a high-performance parallel-
architecture simulator. In SIGMETRICS ’92/PERFORM-
ANCE ’92: Proceedings of the 1992 ACM SIGMETRICS joint

international conference on Measurement and modeling of
computer systems, SIGMETRICS ’92/PERFORMANCE ’92,
pages 247–248, New York, NY, USA, 1992. ACM.

[117] J. E. Miller, H. Kasture, G. Kurian, C. G. III, N. Beck-
mann, C. Celio, J. Eastep, and A. Agarwal. Graphite: A
Distributed Parallel Simulator for Multicores. In HPCA
’10: Proceedings of the 16th IEEE International Symposium
on High-Performance Computer Architecture, 2010.

[118] E. S. Chung, E. Nurvitadhi, J. C. Hoe, B. Falsafi, and
K. Mai. A complexity-eUective architecture for acceler-
ating full-system multiprocessor simulations using FP-
GAs. In SIGDA ’08: Proceedings of the 16th international
ACM/SIGDA symposium on Field programmable gate arrays,
FPGA ’08, pages 77–86, New York, NY, USA, 2008. ACM.

[119] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren,
G. Hallberg, J. Hogberg, F. Larsson, A. Moestedt, and
B. Werner. Simics: A full system simulation platform.
Computer, 35(2):50–58, Feb 2002.

[120] E. Argollo, A. Falcón, P. Faraboschi, M. Monchiero,
and D. Ortega. COTSon: infrastructure for full system
simulation. SIGOPS Oper. Syst. Rev., 43(1):52–61, 2009.

[121] L. Carrington, A. Snavely, X. Gao, and N. Wolter. A
Performance Prediction Framework for ScientiVc Applic-
ations. In ICCS ’03: Proceedings of the 3rd International
Conference on Computational Science, 2003.

[122] E. A. León, R. Riesen, A. B. Maccabe, and P. G. Bridges.
Instruction-level simulation of a cluster at scale. In SC
’09: Proceedings of the 2009 ACM/IEEE Conference on Super-
computing, pages 1–12, Portland, Oregon, USA, November
2009.

[123] G. Zheng, G. Gupta, E. Bohm, I. Dooley, and L. V. Kale.
Simulating Large Scale Parallel Applications Using Stat-
istical Models for Sequential Execution Blocks. In ICPADS
’10: Proceedings of the 2010 IEEE 16th International Confer-
ence on Parallel and Distributed Systems, ICPADS ’10, pages
221–228, Washington, DC, USA, 2010. IEEE Computer Soci-
ety.

[124] M. Winkel, R. Speck, H. Hübner, L. Arnold, R. Krause,
and P. Gibbon. % bf A massively parallel, multi-disciplinary
Barnes–Hut tree code for extreme-scale N-body simulations.
Computer Physics Communications, 183(4):880–889, 2012.

[125] J. Michalakes, J. Dudhia, D. Gill, T. Henderson, J. Klemp,
W. Skamarock, andW. Wang. The Weather Reseach and
Forecast Model: Software Architecture and Performance.
In Proceedings of the 11th ECMWF Workshop on the Use of
High Performance Computing In Meteorology, Reading, UK,
25 - 29 October 2004 2004.

[126] V. Springel. The cosmological simulation code GADGET-
2. Monthly Notices of the Royal Astronomical Society,
364(4):1105–1134, 2005.

[127] K. Kajantie, M. Laine, K. Rummukainen, and M. Sha-
poshnikov. % bf 3D SU(N) + adjoint Higgs theory and
Vnite-temperature QCD. Nuclear Physics B, 503(1–2):357–
384, 1997.

229

http://www.ibm.com/developerworks/aix/library/au-counteranalyzer/index.html
http://www.ibm.com/developerworks/aix/library/au-counteranalyzer/index.html
http://www.ibm.com/developerworks/aix/library/au-counteranalyzer/index.html
http://portal.acm.org/citation.cfm?id=1097871.1098153
http://portal.acm.org/citation.cfm?id=1097871.1098153
http://www-128.ibm.com/developerworks/library/pa-cpipower1
http://www-128.ibm.com/developerworks/library/pa-cpipower1
http://www-128.ibm.com/developerworks/library/pa-cpipower2
http://www-128.ibm.com/developerworks/library/pa-cpipower2
http://doi.acm.org/10.1145/781027.781076
http://doi.acm.org/10.1145/781027.781076
http://doi.acm.org/10.1145/859618.859629
http://doi.acm.org/10.1145/859618.859629
http://doi.acm.org/10.1145/133057.133146
http://doi.acm.org/10.1145/133057.133146
http://doi.acm.org/10.1145/1344671.1344684
http://doi.acm.org/10.1145/1344671.1344684
http://doi.acm.org/10.1145/1344671.1344684
http://doi.acm.org/10.1145/1654059.1654063
http://dx.doi.org/10.1109/ICPADS.2010.98
http://dx.doi.org/10.1109/ICPADS.2010.98
http://www.sciencedirect.com/science/article/pii/S0010465511004012
http://www.sciencedirect.com/science/article/pii/S0010465511004012
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://dx.doi.org/10.1111/j.1365-2966.2005.09655.x
http://www.sciencedirect.com/science/article/pii/S0550321397004252
http://www.sciencedirect.com/science/article/pii/S0550321397004252

Bibliography

[128] G. Llort, M. Casas, H. Servat, K. Huck, J. Gimenez, and
J. Labarta. Trace Spectral Analysis toward Dynamic
Levels of Detail. In ICPADS ’11: Proceedings of the 2011
IEEE 17th International Conference on Parallel and Distrib-
uted Systems, ICPADS ’11, pages 332–339, Washington, DC,
USA, 2011. IEEE Computer Society.

[129] A. G. Foina, R. M. Badia, and J. R. Fernandez. G-

Means Improved for Cell BE Environment. In Facing the
Multicore-Challenge, pages 54–65, 2010.

[130] T. Gamblin, B. R. de Supinski, M. Schulz, R. Fowler, and
D. A. Reed. Clustering Performance Data EXciently at
Massive Scales. In ICS ’10: Proceedings of the 24th In-
ternational Conference on Supercomputing, pages 243–252,
Tsukuba, Japan, 2010. ACM.

230

http://dx.doi.org/10.1109/ICPADS.2011.142
http://dx.doi.org/10.1109/ICPADS.2011.142
http://doi.acm.org/10.1145/1810085.1810119
http://doi.acm.org/10.1145/1810085.1810119

Bibliography

231

	Abstract
	Agradecimientos
	I Introduction and Related Work
	1 Introduction
	1.1 Motivation
	1.2 Performance Analytics
	1.2.1 Cluster Analysis in the Parallel Performance Scenario
	1.2.2 Sequence analysis in Parallel Performance Scenario

	1.3 Contributions
	1.3.1 Technical Contributions
	1.3.2 Examples of applications of the techniques presented

	1.4 Dissertation Organization
	1.5 Publications

	2 The Parallel Performance Analysis Field
	2.1 Analysis Placement
	2.2 The Performance Data
	2.2.1 Data Acquisition
	2.2.2 Emitted Data

	2.3 Analysing the Performance Data
	2.3.1 Data Presentation
	2.3.2 Performance Analytics

	3 Introduction to Cluster Analysis and Multiple Sequence Alignment
	3.1 Cluster Analysis
	3.1.1 Centroid-based clustering
	3.1.2 Connectivity based clustering
	3.1.3 Density-based clustering

	3.2 Sequence Analysis
	3.2.1 Dynamic programming
	3.2.2 Progressive methods
	3.2.3 Iterative methods

	II New Performance Analytics Techniques
	4 Computation Structure Detection using Cluster Analysis
	4.1 Computation bursts and cluster analysis
	4.2 Data Preparation
	4.2.1 Pre-processing
	4.2.2 Dimensionality Reduction

	4.3 Clustering algorithm selection
	4.4 DBSCAN parameters
	4.5 Cluster analysis results
	4.5.1 Ease of the computation structure analysis
	4.5.2 Applications syntactic structure and behaviour structure

	4.6 Clusters quality evaluation

	5 Evaluation of the computation structure quality
	5.1 Cluster Sequence Score Motivation
	5.2 Multiple Sequence Alignment (MSA)
	5.3 Cluster Sequence Score
	5.4 Validation

	6 Automatization of the Structure Detection
	6.1 Limitation of the structure detection based on DBSCAN
	6.2 The Aggregative Cluster Refinement algorithm
	6.2.1 Aggregative Cluster Refinement foundations
	6.2.2 Algorithm Description

	6.3 Aggregative Cluster Refinement results
	6.3.1 SPMD structure detection
	6.3.2 Study of the refinement tree

	III Practical Uses
	7 Performance Data Extrapolation
	7.1 Performance Data Extraction Limits
	7.2 Extrapolation Methodology
	7.2.1 Performance hardware counters multiplex
	7.2.2 Extrapolation Steps

	7.3 Validation
	7.3.1 Experiments data
	7.3.2 Weighted error
	7.3.3 Validation Results
	7.3.4 Multiplexing scheme selection

	7.4 A Use Case: construction of CPU breakdown models per cluster

	8 Information Reduction for Multi-level Simulation
	8.1 Scenario
	8.2 Methodology
	8.2.1 The Information Reduction Process
	8.2.2 Multi-level Simulation

	8.3 Validation
	8.3.1 Information Reduction Quality
	8.3.2 Multi-level Simulation Quality

	8.4 A Use Case: Performance Prediction

	9 Analysis of Message-Based Parallel Applications
	9.1 Applications Analysed
	9.1.1 Data gathering

	9.2 Analyses description
	9.2.1 Structure characterization
	9.2.2 What-if analyses

	9.3 Analyses results
	9.3.1 PEPC
	9.3.2 WRF
	9.3.3 GADGET
	9.3.4 SU3_AHiggs

	Conclusions
	10 Conclusions
	10.1 Parallel applications computation structure detection based on cluster analysis
	10.2 Evaluation of the computation structure quality
	10.3 Automatization and refinement of the structure detection
	10.4 Structure detection in practice
	10.4.1 Accurate extrapolation of performance metrics
	10.4.2 Information reduction in a multi-scale simulation
	10.4.3 Parallel applications what-if studies

	10.5 Open lines for future research
	10.5.1 Scalability of cluster analysis
	10.5.2 Fine-tune of the structure refinement
	10.5.3 Metrics space exploration
	10.5.4 In-depth analysis of the clusters structure
	10.5.5 Detailed performance data extrapolation

	Appendices
	A The BSC Tools Parallel Performance Analysis Suite
	A.1 Extrae
	A.1.1 Interposition mechanisms
	A.1.2 Sampling mechanisms
	A.1.3 Performance data gathered

	A.2 Paraver
	A.2.1 Analysis views
	A.2.2 Paraver object model
	A.2.3 Paraver Trace

	A.3 Dimemas
	A.3.1 Dimemas model
	A.3.2 Dimemas trace
	A.3.3 Dimemas configuration file

	A.4 Trace manipulators and Translators
	A.4.1 Trace manipulators
	A.4.2 Trace translators

	A.5 Performance Analytics
	A.5.1 Spectral analysis
	A.5.2 Detailed performance evolution analysis
	A.5.3 Performance tracking

	B The ClusteringSuite Software Package
	B.1 ClusteringSuite design
	B.1.1 Software engineering
	B.1.2 Libraries and tools

	B.2 ClusteringSuite tools usage
	B.3 Creating the clustering definition XML

	Bibliography

