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Abstract

The thesis presents a contribution to the analysis and visualization of computational performance based

on event traces with a particular focus on parallel programs and High Performance Computing (HPC).

Event traces contain detailed information about specified incidents (events) during run-time of programs

and allow minute investigation of dynamic program behavior, various performance metrics, and possible

causes of performance flaws. Due to long running and highly parallel programs and very fine detail

resolutions, event traces can accumulate huge amounts of data which become a challenge for interactive

as well as automatic analysis and visualization tools.

The thesis proposes a method of exploiting redundancy in the event traces in order to reduce the memory

requirements and the computational complexity of event trace analysis. The sources of redundancy are

repeated segments of the original program, either through iterative or recursive algorithms or through

SPMD-style parallel programs, which produce equal or similar repeated event sequences.

The data reduction technique is based on the novel Complete Call Graph (CCG) data structure which

allows domain specific data compression for event traces in a combination of lossless and lossy methods.

All deviations due to lossy data compression can be controlled by constant bounds. The compression

of the CCG data structure is incorporated in the construction process, such that at no point substantial

uncompressed parts have to be stored. Experiments with real-world example traces reveal the potential

for very high data compression. The results range from factors of 3 to 15 for small scale compression with

minimum deviation of the data to factors > 100 for large scale compression with moderate deviation.

Based on the CCG data structure, new algorithms for the most common evaluation and analysis methods

for event traces are presented, which require no explicit decompression. By avoiding repeated evaluation

of formerly redundant event sequences, the computational effort of the new algorithms can be reduced

in the same extent as memory consumption.

The thesis includes a comprehensive discussion of the state-of-the-art and related work, a detailed pre-

sentation of the design of the CCG data structure, an elaborate description of algorithms for construction,

compression, and analysis of CCGs, and an extensive experimental validation of all components.
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1 Performance Analysis for HPC Applications

This chapter provides an introduction to the field of High Performance Computing (HPC) in general and

the requirement for performance optimization in this domain. Furthermore, it explains the contribution

of performance measurement and analysis in the optimization process and shows the contribution of this

thesis for the efficient analysis of huge amounts of trace data.

1.1 Computation and Performance

Computation has always been an important tool in science and engineering. It allows to deduce accurate

and specific facts about a real-world system from general scientific theories by means of mathematical

models. This intellectual tool itself is much older than the term computer as we use it today. Indeed,

computer used to be a human profession in former times and the modern English word for a computing

machine was derived from that [Gri05]. Interestingly enough, parallel and distributed computing was

already prevalent in this past era!

After the birth of electronic computing in the middle of the 20’th century, this scientific tool has become

much more powerful and more affordable and was utilized in more and more scientific and engineering

domains. The computational speed has been growing enormously in an exponential manner for almost

50 years according to Moore’s Law [Moo65], and the growth of the memory and storage capacities has

been almost as fast. This has created unpredicted advancements in all fields of science and engineering

and far beyond. Today, computing devices are regarded as ubiquitous and omnipresent everyday tools.

Today, computational simulation is perfectly accepted as the third cornerstone of scientific methodology

besides theory and experiment. But despite the tremendous growth in the available computing power,

performance is still regarded critical. This is due to the fact that the steady improvement is leveraging

more and better utilization. On one hand, existing simulations can be improved through better computing

resources by using more detailed resolution or more complex models. This has driven the evolution

of weather and climate simulations since their origins, for example. On the other hand, whole new

application domains became feasible that were considered impossible before, for example computational

genetics and biology in the last decade.

Furthermore, the scientific communities anticipate the improving computing power in order to generate

scientific advancements. The same is true for engineering achievements through computation. Therefore,

efficiency has always played an important role in scientific computation and always will.

The field of High Performance Computing (HPC) is dedicated to the enhancement of computing perfor-

mance. On one hand, this includes hardware design, ranging from developing special purpose processors

to composing commodity components. On the other hand, it contains algorithmic improvements and soft-

ware optimization in order to utilize the available computing resources to a maximum possible extend

for the benefit of the target application.
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1.2 Performance Analysis and Optimization

The subject of performance optimization is the enhancement of computational efficiency of existing

application software. It also includes algorithm optimization, but usually this aspect is determined during

the earlier software design phase.

Primarily, performance optimization attempts to increase efficiency by adapting the software to the par-

ticular hardware platform. This is by no means a trivial task. First of all, because there will be no

perfect consistency between the hardware’s provisions and the software’s requirements. Furthermore,

todays hardware platforms are very complex as a result of past performance improvements. This in-

cludes complex memory access via multi-level caches, pipelined instruction execution with complicated

dependencies, branch prediction, speculative execution, and last but not least parallel execution.

All of those concepts enable a considerable performance gain when used properly. Yet, counteracting any

one of those concepts will reliably prevent achieving a notable share of the peak performance. In addition,

it will inhibit the benefits of further hardware improvements. Optimizations may include modifications

that are profitable for all or many platforms, for example increasing the locality of memory accesses, or

only for a selected platform, for example adjustment to a particular size of the second level cache.

The contribution of performance measurement and analysis to the optimization process is threefold:

On one hand, it determines the components of a complex software system that are essential for the

over-all performance, because they consume a large part of the execution time. On the other hand, it

identifies the parts that are worthwhile for optimization because their actual performance is much lower

than anticipated (regarding any performance property). And finally, the analysis can uncover causes of

insufficient performance and opportunities for optimization.

All three phases require detailed insight in the complex execution behavior of the target software on

a particular hardware platform. This includes sequential as well as parallel behavior from arithmetic

operations, memory accesses, and input/output to communication, synchronization, and load balancing.

1.3 Performance Analysis Tools

Software tools for performance measurement and analysis provide the user with the detailed performance

information that is the basis for successful optimization of a program. Almost all tools separate the

measurement part from the analysis part, in order to allow offline analysis of the performance behavior

and to minimize the overhead during run time.

There are two major paradigms for performance measurement. The first and most widely known one is

profiling which collects aggregated summary information for selected components of a program. This is

achieved either in a deterministic or a stochastic manner. The latter is also known as sampling.

The second paradigm is event tracing which records detailed protocols of individual events and their

properties, where the events are selected points of interest during the execution.

The profiling approach causes only a moderate measurement overhead and produces a result data set of

limited size, which limits the detail resolution at the same time. Tracing, is able to produce very detailed

data with almost arbitrary resolution and may therefore produce enormous amounts of data. This imposes

a challenge for interactive visualization and analysis of event traces.

Existing solutions either avoid creating oversized traces or use distributed storage and parallel analysis

in order to cope with the enormous amounts of trace data. This thesis presents an alternative method for

the storage and the analysis of huge amounts of event trace data.
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1.4 Contribution of this Thesis

The proposed approach aims to compress the event trace data without loss of relevant information. This

comprises of two components: Firstly, the detection and removal of redundancy due to repetitions in the

event streams. And secondly, filtering of irrelevant fluctuations in certain properties of the events.

The former is not unlike lossless data compression. It exploits repeated subsequences of events that

are very frequently found in large parallel traces. Repetitions originate either from SPMD-style (Single

Program Multiple Data) parallel programs (spatial repetitions) or from iterative algorithms and even

recursive algorithms (temporal repetitions). The latter component is related to lossy data compression.

It filters irrelevant fluctuations below an adjustable threshold. This enhances the regularity of the event

data which is beneficial for the first stage of compression.

The newly presented method provides a new memory data structure for event trace data called Complete

Call Graphs (CCG) which allows domain specific data compression without the requirement for explicit

decompression. Furthermore, it provides appropriate algorithms for all common analysis tasks.

The chapters of this thesis are organized as follows:

The next chapter provides an comprehensive overview about the state-of-the-art of trace based perfor-

mance analysis tools. It discusses a number of established software tools for performance measurement

and trace analysis including implementation details, trace file formats, internal memory data structures,

and evaluation methods. Furthermore, related data compression methods for event traces of different

application domains are presented.

The chapter The Design of the CCG Data Structure introduces the fundamental design of the newly

proposed main memory data structure and the principle of data compression and shows how aspects of

lossless and lossy compression methods are combined. For all relevant evaluation and analysis methods,

which are required by common analysis and visualization tools, customized alternatives are outlined,

that do not require any explicit data decompression.

The fourth chapter Algorithms for the CCG Data Structure presents the comprehensive discussion of

all algorithms related to the Complete Call Graph data structure. The first part includes the default

construction and compression algorithms and their detail components. The second part focuses on the

analysis and evaluation algorithms, in particular for navigation and searching in CCGs as well as for

statistical summaries and timeline visualization. Besides the essential algorithms, a number of advanced

algorithms is presented for the CCG data structure, including the persistent storage, adaptive compression

and re-compression, and distributed methods for construction, compression and analysis.

The fifth chapter Evaluation of CCG Algorithms contains extensive theoretical and practical validation of

the Complete Call Graph approach. At first, it presents a theoretical data compression model and investi-

gates the best and worst case compression behavior with synthetic experiments. Further on, it examines

the real-world behavior of CCG compression as well as CCG analysis for small scale compression and

large scale compression which reflect two typical application scenarios. Advanced algorithms for CCG

evaluation are covered separately. Finally, recommendations for all major parameters of the CCG algo-

rithms are formulated considering all previous experiment results. A practical performance comparison

of the CCG implementation completes this chapter.

The final chapter provides a summary and conclusions of the thesis and gives an outlook on future work.
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2 State-of-the-Art in Event-Based Trace Analysis and

Related Work

This chapter introduces the state-of-the-art methodology of performance tracing as well as a variety of

established tools. Furthermore, it presents trace data file formats and memory data structures for trace

data, which is the subject of the presented work. Finally, it provides an overview over related work in the

area of compression and reduction of trace data.

An overview on some well known and established tools for interactive and automatic trace analysis forms

the introduction to this chapter. Besides a general functionality overview, this will reveal the requirements

of those kind of applications. Such software tools are regarded as the main targets for improved memory

data structures.

In the following section, several trace file formats are examined as they will provide the data source

for the memory data structures. In fact, the existing memory data structures resemble the file formats

in some aspects. This means, that not only data is transported from trace files to memory, but also the

storage concept is mostly adopted from trace file formats. This could be read as a hint that there has not

been much attention to memory data structures for the purpose of program trace analysis. This would

also explain the lack of publications about this matter. Nevertheless, there is an entire section dedicated

to memory data structures of some well known tools in more detail which has been extracted from parts

of publications about the tools as well as source code access and feedback from the respective authors.

The following part of this chapter covers usual types of queries to event trace data structures and their

implementation. This serves two purposes, it reveals the usual kinds of queries which need to be sup-

ported and it allows an estimation of computational effort and storage requirements. In the end, this will

be the basis of comparison to the newly designed approach.

Finally, this chapter will provide an overview of some existing approaches for compression and reduction

of event traces. Besides event traces for parallel performance analysis, it also covers memory address

traces and MPI replay traces which have partly different properties.

2.1 Tracing and Logging

This thesis proposes a contribution to the analysis of event traces for sequential and parallel performance

analysis, in particular in the High Performance Computing (HPC) field. The term event tracing expresses

the notion of detailed recording of all steps (events) in order to reproduce and comprehend the path of an

algorithm or a program through an abstract space. There is a more general principle called event logging

which is widely used in computer science and computer engineering. Yet, usually tracing and logging

have a different meaning. First of all, logging is a more coarse grained method. Following the above

figure, logging records only landmarks on the path instead of all steps.

Usually, logging mechanisms in software systems record a protocol of important operations, exceptional

states, and failure situations. Logging can be used on the operation system level or on the application

level. Typical examples are the kernel logs of operation system images or the access log of web servers.

The resulting log data is kept for examination at a later time. Furthermore, logging is commonly regarded
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as a continuous and permanent process. On one hand, this means logging is mostly collected for contin-

uous processes. On the other hand, it is permanently used as a part of the regular operation. Therefore,

logging is usually restricted to produce only moderate amounts of data.

Tracing differs from the above conception of logging with respect to the following four characteristics:

detailed: Tracing is more fine grained and produces potentially large results data sets.

limited duration: Tracing is performed during a limited time interval between explicit start and

end points. This may be from the start to the end of a program run or only a part thereof.

complete: It captures all events of certain types that occur during the tracing time.

temporary: Tracing is not part of the regular operation of target programs. Instead, tracing is

applied temporarily to a pristine program by means of so called instrumentation in order to perform

particular investigations. Afterwards, it is removed for the regular "production runs".

For the rest of this thesis, the term trace is used in the latter sense.

2.2 Trace Analysis Tools

This section provides an overview about established trace analysis tools and their functionality. It exam-

ines internals of state-of-the-art tools for interactive and automatic program trace analysis and allows to

anticipate requirements for their data structures and evaluation algorithms.

The tools covered are:

• Vampir and VampirServer

• Paraver and Dimemas

• Jumpshot

• Kojak and Scalasca

• Debugging Wizard (DeWiz)

• Tuning and Analysis Utilities (TAU)

There are many more academic and commercial tools, for example the Intel Trace Analyzer [Cor07],

OpenSpeedShop [SGH06], Pajé [dKdOSB00, dKdOSM03], and Paradyn [MCC+95]. All of them share

their general approach with one of the above mentionend tools, therefore they are not covered separately.

2.2.1 Vampir and VampirServer

The Vampir tool (Visualization and Analysis of MPI Resources) [NAW+95, BNS00, BHNW01] is one of

the most well-known and most widely used tools for HPC trace file visualization. It has been available

for more than ten years as a commercial product. Like it’s predecessor PARvis [NA] it originates from

the Research Center Jülich, Germany (formerly named KFA Jülich). Later, the project moved to TU

Dresden, where it was continued and extended.

As a complement to Vampir there is the VampirTrace software for code instrumentation and run-time

measurement. It is the default tool for generating traces for analysis with Vampir [MKJ+07, KBD+08].

VampirTrace is available as open source software under BSD license since April 2006. It is being devel-

oped in collaboration with the Expert trace library by FZ Jülich [WM00a].

Furthermore, there exists a successor version of Vampir called VampirServer which incorporates a newly

designed distributed software architecture in order to achieve much higher scalability [BNM03, BMSB03].

This concerns scalability with huge amounts of trace data and scalability with the number of processes

or threads [BHNW01, BNM03, BMSB03].



2.2. TRACE ANALYSIS TOOLS 13

Figure 2.1 shows the distributed components. The client is a local visualization application, which is

intended to run on the user’s local workstation. It requires only a modest network connection to the

server since client and server exchange relatively small amounts of data containing only the display

information already adapted to the client’s screen resolution.

The server part consists of the master process and number of distributed workers. The master is respon-

sible for data management and communication with the visualization client. The worker processes are

assigned disjoint parts of the trace data set. Upon client requests, the master forwards partial requests

to the workers. Then, all workers compute partial answers. The master collects the local answers and

forwards the final answer to the client.

Parallelization and distributed storage for trace analysis is an obvious way to cope with increasing effort

and especially with increasing amounts of trace data in the order of magnitude of tens of gigabytes. The

new compression approach of this thesis is an alternative way. In fact, the scalability demands of Vampir

and VampirServer were the starting point for this thesis. Therefore, one objective of the new approach

will be compliance with the conditions and constraints associated with Vampir and VampirServer. Yet,

the distributed storage in VampirServer and the data compression in the CCG approach are complemen-

tary. Both have been incorporated successfully in a prototype implementation [KBN05] and might be

combined in a future version of VampirServer.

The main displays and the functionality of Vampir and VampirServer are introduced below.

Global Timeline Display

The global timeline display presents an overview of all processes of a parallel program in a space-time

diagram similar to a Gantt diagram. The function call behavior is visualized as segments of the process

bars. It distinguishes groups of related functions like MPI, user function, I/O, special library calls, tracing

overhead etc. by color. Messages, collective MPI communication and input/output operations (I/O) are

represented by arrows and lines. Individual arrows are hidden in coarse zoom levels, because they would

obscure the whole display otherwise. As soon as a sufficient zoom level is reached, the single message

lines are shown.

For both, process bars and arrows detailed context information is provided on demand by clicking on

any display item. The horizontal dimension can be zoomend and scrolled arbitrarily to change the time

interval and the detail level to be shown. By this means, the whole amount of data can be explored

effectively. Otherwise, the user could not cope with all detail information all at the same time, let

alone the availability of the corresponding screen or print resolutions. Figure 2.2 shows an example for

a typical global timeline diagram, which is based on a trace of the WRF code (Weather Reseach and

Forecast Model) [MDG+04].

Process Timeline Display

Local timeline diagrams are very similar to their global counterparts but focus on a single process. The

vertical dimension is used to unfold the function call hierarchy of the process, i.e. to arrange the segments

of the process bar according to the associated call depth. For comparison of processes several such

diagrams can be aligned with synchronized zoom intervals. Figure 2.3 gives an impression of a local

timeline for the first process (Id 0) aligned to the global timeline example in Figure 2.2.

As with the global timeline, messages, collective operations and I/O activities are presented with arrows.

Again, all components provide further information on demand (by mouse click). Horizontal zooming

and scrolling works in the same way as for the global timeline diagram.
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Figure 2.1: Overview of VampirServer’s distributed architecture. The measurement system collects local

trace information per process/thread (top left) which is collected at a common parallel file

system (top middle). The distributed server reads the trace data to main memory in parallel

(top right). The display client runs on a remote workstation (bottom). It communicates with

the server’s master process over a standard internet connection to send requests and receive

display data that are already adapted to the pixel resolution of the target windows [KBN05].

Figure 2.2: Vampir global timeline diagram showing 32 of 64 processes of the WRF application. The

alternating phases of the parallel program execution are clearly visible. Note that the first

process differs from the uniform behavior of all other ones.
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Figure 2.3: Local call timeline diagram showing the master process from the global timeline example

in Figure 2.2. The unfolded function call hierarchy allows better insight into the programs

procedural structure. This example includes two performance metrics: the floating point rate

and the total memory allocation. Both show different behavior over the different phases.

Figure 2.4: Vampir summary chart in bar chart mode. It is also zoomable horizontally to closer examine

smaller entries as shown here. All functions are listed separately while the function groups

can be identified by color. This display is most useful for detecting the most time consuming

functions for a particular time interval.
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Figure 2.5: Interactive call tree window. The upper right section shows an top-down call tree repre-

sentation. Below all parent functions (callers) and child functions (callees) to the currently

selected functions are listed.

Figure 2.6: The communication statistics display provides a visual overview about different aspects of

inter-process communication with color-coded values. This example shows the total number

of bytes transfered from senders (left legend) to receivers (top legend) in a run of the Socorro

SPEC MPI benchmark with 128 processes [MKG+04].
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In addition, the local timeline diagram optionally shows available performance metrics, for example

from hardware performance counters. This allows to watch the the performance metrics aligned to

the call hierarchy, providing additional information about individual function calls in an intuitive way.

Figure 2.3 shows an example with two performance metrics aligned to the local timeline.

Summary Chart

The summary chart display presents statistics related to function/subroutines or groups of functions. It

provides aggregated totals of runtime per function including or excluding child calls as well as number

of occurrences. The information can be displayed as absolute values or percentages in linear or loga-

rithmic manner. It is either given globally or for single processes. The user can choose between several

representation such as a bar chart, a pie chart or a plain table. See Figure 2.4 for an example.

In principle, this kind of information is identical to the result of profiling. However, it can be computed

for arbitrary intervals of time which ordinary profiles cannot. The current time interval is automatically

adopted from the timeline diagram. Therefore, the summary charts can be regarded as context informa-

tion to the current timeline view.

Call Tree Display

The call tree display allows investigation of the relationships of function calls in a trace without respect

to temporal order. It provides a top-down tree of all functions with their respective child functions. For

exploring child calls as well as parent functions, two additional lists show all parent or child functions of

the currently selected function. Again, this is similar to call trees provided by profiling tools but adapts to

the currently selected zoom interval. A screenshot of the Vampir call tree display is shown in Figure 2.5.

Communication Statistics Display

The communication statistics display is specifically designed for investigation of the communication be-

havior between processes. It can provide information about number of messages and the total number of

bytes sent or received as well as the communication timing and speed. For all three modes the minimum,

average, maximum and sum values can be displayed. The values are visualized in a two-dimensional

matrix with color-coded entries as shown in Figure 2.6 with an example of 128 processes from the So-

corro SPEC MPI benchmark [MKG+04]. Optionally, only a sub-area of this matrix is displayed because

the complete relation of all processes becomes very large for highly parallel traces. Again, all values are

computed with respect to the currently selected time interval only.

2.2.2 Paraver and Dimemas

The Paraver and Dimemas tools are developed at the European Center for Parallelism in Barcelona/Spain

(CEPBA) since 1991. Paraver is an interactive visualization and analysis tool for event traces not too

different from Vampir. Dimemas is a trace based replay and simulation tool, which allows to predict

run-time behavior of an existing trace under alternative conditions, e.g. different CPU speed or different

communication bandwidth. Furthermore, the so called DiP environment contains the common instru-

mentation and tracing infrastructure. This software is available as a binary package without source code

but with a non-commercial license [LGP+96].

The DiP approach supports all common parallel paradigms, namely MPI, OpenMP and hybrid parallel

programs. It uses two fixed hierarchical models for processes of parallel programs, as well as ressources

of parallel systems [CEP00, CEP01b, CEP01a], see also Section 2.3.7.
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Along both hierarchies automatic filtering and aggregation is supported, i.e. events and their properties

from one level can be aggregated to be shown in condensed form on the parent level. This allows to

provide an overview of performance properties on a high level of the hierarchy, for example the sum of

communication volume inside a cluster node or the average floating point rate over several CPUs.

Unlike all other tracing tools, Paraver supports only three very basic event record types [CEP01a]:

• states events, for example function call enter and leave,

• atomic events, for example for performance counter samples, and

• communication events, for example point to point messages or collective communication.

Therefore, it is said to contain semantic-free records [CEP01a]. This means, all specific events are

mapped to one of the three record types and specific properties are mapped to generic properties ir-

respectively of the semantics. So, different properties may be mapped to the same representation in

different experiments. When visualizing with Paraver, the generic events are displayed regardlessly of

the original meaning. It is left to the user to map the generic display back to the specific semantics. See

Figures 2.7 and 2.8 for examples of the Paraver timeline display and the performance counter display.

2.2.3 Kojak and Scalasca

The Kojak and Scalasca toolkits follow a different approach for performance trace analysis than the

previously mentioned tools. Unlike the trace visualization tools, it uses an automatic analysis process to

scan a trace for performance critical situations. The result is presented to the user via the special display

component called CUBE.

The automatic analysis in Kojak is performed by the command line tool Expert which utilizes the EARL

library [WM99, Wol04]. Based on EARL, the pattern detection tool Expert can access and evaluate a

trace. The single pattern detection sub-programs are looking for certain pre-defined situations (behavior

patterns) inside the event stream. Subsequently, every instance of a detected pattern is classified as

critical or noncritical according to a pattern specific severity rating. This allows a graduation from more

critical to less critical cases. All predefined behavior patterns are arranged in a hierarchy from general

patterns to specific patterns [WM00a], see also Figure 2.9. As an example the so called late sender and

late receiver situations are shown in Figure 2.10. Both concern point to point messages and evaluate the

timing of a pair of matching send and receive events. In this example the severity is calculated as the

delay of one call with respect to the begin of the other.

The Scalasca toolkit is the successor of Kojak that allows to perform automatic analysis of parallel traces

in a distributed manner. It includes the successor to EARL called PEARL (P for parallel) and the successor

to Expert called Scout. Scalasca’s parallel approach requires the same degree of parallelism as the target

trace, i.e. for every trace process there is one analysis process that evaluates all local behavior patterns.

For non-local behavior patterns, like point to point messages or collective MPI communication, Scalasca

performs a re-play of the original communication. By this means the distributed performance properties

are transfered to one communication peer that will perform the evaluation. This scheme is restrictive

in the number of parallel analysis processes, yet, it is appropriate for automatic post-processing on the

same HPC systems using the same CPUs and ressources as the original run. It achieves an outstanding

scalability to tens of thousands of processes [GWWM06, GKP+07].

After the automatic analysis, all results are stored in a single XML output file for visualization by the

display component CUBE. It uses a custom display design consisting of three categories (also called

dimensions, therefore the name CUBE) arranged side by side, see Figure 2.11:

• Performance Metrics

• Call Tree

• System Tree
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Figure 2.7: Global Paraver display of an MPI program eight processes showing states (function calls)

and communication (message arrows). (Taken from [CEP00])

Figure 2.8: Paraver’s performance counter display showing data cache misses over time for eight parallel

MPI processes. (Taken from [CEP00])
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Figure 2.9: Hierarchy of behavior patterns that are evaluated by Expert 3.0. (Taken from [JSC08])
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Figure 2.10: Examples of behavior patters for point-to-point messages. In the late receiver (middle) and

late sender (right) situations either the receive or the send operation is delayed.



2.2. TRACE ANALYSIS TOOLS 21

Figure 2.11: The CUBE display with its three categories Performance Metrics, Call Tree and System

Tree. This particular example shows that 48.21s of run time are wasted by Idle Threads

(first section) whereof 46.57s belong to calls to MPI_Init (middle section). This waste of

run-time is more or less evenly distributed over all participating processes (last section).

Figure 2.12: The CUBE display with performance properties mapped according to topology information.
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The first category shows all behavior patterns reported by EARL. The middle category presents the

Call Tree, i.e. the source code location of behavior patterns. The third category is the so called System

Tree which shows the hierarchy of threads, processes, SMP nodes and multiple machines. This gives the

physical location of performance issues within the computing system. As an alternative, the last category

can show performance properties according to hardware topology information, see Figure 2.12.

All three categories are shown as so called weighted trees that change the severity rating associated to

single tree nodes upon folding and unfolding: When a node is collapsed, it shows the sum value for the

whole sub-tree beneath, whereas an expanded node only shows the exclusive value without contribution

of it’s children. Besides numeric values (absolute or percentage), the tree nodes are marked by a color

coding which allows easy identification of the most important spots in any of the three categories.

For investigation of detailed behavior the three categories are interconnected in a special way: In the

beginning, all three categories show the global results. Selecting a sub-category in the left-most tree

(performance metrics) will restrict the other categories to the particular property exclusively. Likewise,

a selection in the middle category (call tree) makes the last category show details about the selected

performance property with regard to the selected part of the call tree. Selecting the root node in any

category will undo the restrictions.

The approach of Kojak and Scalasca is very convenient for detecting the "usual suspects" of performance

problems as included in the hierarchy of known problems. Therefore, this is a quick and convenient way

to address a number of possible critical performance properties and relieves the user from standard tasks.

2.2.4 Jumpshot

The Jumpshot family from the Mathematics and Computer Science Division at the U.S. Argonne Na-

tional Laboratory contains several successive trace visualization tools over a long history of over 16

years: Beginning with the Upshot tool in 1991 over the Nupshot tool in 1994 and four major versions of

the Jumpshot tools from 1994 to 2007 [HL91, KL94, ZLGS99, WBS+00, CALG07].

The tools provide timeline and statistics visualization as well as interactive browsing and zooming not

unlike the Vampir and Paraver tools, see Figures 2.13 and 2.14 for examples. While the former tools

were implemented in the Tcl/Tk script language, the Jumpshot versions 1 to 4 are implemented in Java.

The tools were and still are part of the MPI Parallel Environment (MPE) which is part of the MPICH

implementation of the MPI standard [CGL98].

Unlike other visualization tools, the Jumpshot traces viewers do not load a complete trace file to main

memory in order to provide quick interactive response to user events. Instead, only selected parts of the

trace data are loaded on demand [CGL00, WBS+00, CALG07]. This provides an advantage in resource

consumption when processing very large traces. Yet, at the same time it is a challenge to achieve quick

and smooth reload operations for large trace files during interactive visualization.

The Jumpshot tools solve this dilemma by far reaching customization of the trace file formats towards

the visualization process. Therefore, all tools are closely coupled to their respective trace formats which

evolved alongside, see also Section 2.3.6.

2.2.5 Debugging Wizard (DeWiz)

The Debugging Wizard (DeWiz) is a set of collaborating software components [KSV03, BKN04]. It is

developed at the Institute of Graphics and Parallel Processing (GUP) at Johannes Kepler University in

Linz/Austria. It is the successor of the tools collection for Monitoring And Debugging (MAD) which

includes the EMU tool (Event Monitoring Utility), the debugging tool ATEMPT (A Tool for Event Ma-

niPulaTion) and many more [KGV96b].
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Figure 2.13: Jumpshot 4 timeline display. (Taken from [CALG07])

Figure 2.14: Jumpshot 4 statistics display. (Taken from [CALG07])
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As the name suggests, DeWiz is mainly regarded as a debugging tool. It primarily focuses on parallel

debugging, especially debugging of message passing programs. In the scope of the presented thesis it

is interesting, because it also relies on tracing unlike most debugging tools, and furthermore because it

contains an innovative approach with respect to storage of trace information.

DeWiz is a modular framework of encapsulated software components that communicate by means of a

standard interface. There are various components available responsible for measurement, data collec-

tion and storage, automatic analysis and visualization. Actual DeWiz tools are created by dynamically

connecting a number of components for input, processing, graphical output etc. This can be done by

setup scripts or manually with an interactive graphical tool. Single components can be implemented in

Java or C/C++. There may be multiple components for particular tasks, for example the communication

between the components can be chosen to use different communication modules, e.g. for shared memory

or plain TCP/IP connections. This is especially important to reduce measurement overhead during online

analysis which is explicitly supported by DeWiz [KSV03, BKN04].

One of the major aspects of DeWiz is debugging of message passing behavior including pattern detection

in communication and non-deterministic behavior. This particular and special part is discussed for the

rest of this section [Kra02, KKN04]. The MPI programming model [For95, For97] explicitly allows

wildcard parameters in communication routines. This induces the problem of race conditions which

is generally found in parallel programming. Program errors caused by race conditions are particularly

hard to discover by standard debugging techniques because they appear sporadically and are not reliably

reproducible [Kra00].

Event Graph

DeWiz approaches error detection with the Event Graph model for causality relationships between events

[Kra00]. The Event Graph relies on the happened before relation [Lam78] which specifies the causal

dependency between events. It is defined as follows:

Definition 1. Let {ei
p; i ∈ I, p ∈ P} be a set of events with a sequence number j ∈ N on processes

p ∈ P . The happened before relation→ is the smallest transitive and irreflexive relation→ that satisfies

the following two conditions:

1. If events ei
p and ej

p happen on the same process p and ei
p occurs before ej

p, i.e. i < j, then ei
p → ej

p.

2. If event ei
p sends a message from process pwhich is received by event ej

q on process q, then ei
p → ej

q.

This relation establishes a partial ordering. Events ei
p and ej

q with ei
p 9 ej

q ∧ ej
q 9 ei

p are called

concurrent ei
p ‖ ej

q. In particular, this definition states ei
p 9 ei

p. It follows ei
p ‖ ei

p which is desirable.

User Interface

This Event Graph is presented to the user as a space-time diagram, for examples see Figures 2.15, 2.16

and 2.17. Some events and messages are marked with special colors to highlight error situations, e.g.

invalid parameters, mismatching sender-receiver pairs, etc. Additional information for events can be

requested interactively, for example explicit message properties, source code information or the set of all

logical predecessor and successor events, i.e. all events affecting the current one or affected by it.

Last but not least, race condition situations are marked. Besides observation of race conditions, DeWiz

also allows modifying the event graph in order to change the outcome of a race situation. This allows to

study an alternative situation which could have appeared instead of the actual outcome. By this means,

it is possible to investigate potential errors due to race conditions not (yet) encountered. Furthermore,
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Figure 2.15: Dewiz display of alternative outcomes of a wildcard communication. (Taken from [Kra00])

Figure 2.16: Indication of special message properties: Conflicting properties in send and receive events

(orange) and isolated send and receive events (purple and red). (Taken from [Kra00])

Figure 2.17: Coordinated parallel break point to a local break point in process P0. (Taken from [Kra00])
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DeWiz supports propagating the unmodified or modified event graph to a special MPI run-time system for

guided execution: That means the following execution of the target application (with the same parameters

and the same input) is forced to show the specified outcome of the race conditions [KGV96a]. This record

and replay scheme [Kra00] is most useful in order to make parallel debugging runs reproducible. This

special aspect is ignored by most other parallel debugging tools.

2.2.6 Tuning and Analysis Utilities (TAU)

The Tuning and Analysis Utilities (TAU) constitute a joint effort of the Performance Research Lab [UOR]

at the University of Oregon/USA, of the Advanced Computing Laboratory [LAN] of the US-American

Los Alamos National Laboratory (LANL) and of the Central Institute for Applied Mathematics (ZAM)

[ZAM] at the Research Center Jülich/Germany. It aims to be a portable toolkit for profiling and tracing

of parallel programs covering instrumentation, measurement, data recording, event selection and filtering

as well as actual performance analysis. TAU provides interfaces to Fortran, C, C++, Java and Python.

The TAU infrastructure for data acquisition and pre-processing is very flexible and portable and explic-

itly supports third party analysis tools [SM05]. On behalf of actual performance analysis, TAU uses a

profiling approach, i.e. it does not look at individual events but at summarized information. Through this

means, TAU achieves outstanding scalability and low overhead even for parallel applications with tens

of thousands of processes [MWD+05].

TAU’s profile visualization tool ParaProf provides a variety of different displays visualizing various

kinds of profile data in different ways. This includes exclusive and inclusive aggregated run-times and

a number of occurrences for all instrumented functions. For examples see Figures 2.18, 2.19 and 2.20.

Furthermore, the caller-callee-relations of functions can be investigated with ParaProf, either as plain

graph visualization or accompanied with selected statistical properties, see Figure 2.19 for examples.

Besides two-dimensional diagrams, ParaProf offers a three-dimensional display which is able to present

interdependencies of up to four items. This is achieved by mapping three properties to the spatial dimen-

sions and an additional one to the color axis. Figure 2.20 gives an impression thereof.

Another important aspect of profile analysis is comparative analysis of multiple profiles. This is very

convenient for many purposes. At first, for evaluation of scalability using profiles of an application with

different degrees of parallelism, but also for comparing different program versions, for example before

and after an optimization. Furthermore, it is interesting investigate the behavior of the same program on

different platforms. Last but not least, related properties from the same profile can be compared in order

to study correlation effects.

Phase-Based Profiling

Program behavior that is changing over the course of time is an important issue for performance analysis.

However, this is not covered by traditional flat profiling at all. Therefore, TAU incorporates so called

phase based profiling to address this [MSM05]. Phase profiles can be regarded as a composition of

multiple traditional profiles for disjoint phases of a program run. Those phases are to be defined explicitly

– either statically at compile time or dynamically during program execution. Furthermore, phases can

be nested within one another but must not overlap, i.e. they have a FIFO property like program function

calls (see also Lemma 2 ins Section 4.1.1).

Phase based profiling can capture the dynamic behavior with a certain granularity. Provided there is a

sufficient set of phases, changing program behavior can be tracked by varying statistical properties. Still,

phase based profiling preserves the economical storage requirements of traditional profiling. This is one

of the fundamental advantages of profiling, especially in contrast to all tracing approaches.



2.2. TRACE ANALYSIS TOOLS 27

Figure 2.18: ParaProf showing aggregated exclusive run-time per function (colors) per process (rows) in

stacked mode (left hand side) or non-stacked mode (right hand side).

Figure 2.19: ParaProf’s call graph display (left hand side) and call tree display (right hand side).

Figure 2.20: Three-dimensional profile view visualizing exclusive run-time per function per thread.
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Figure 2.21: ParaProf’s two-level displays for phase-based profiles. In the top window the three phases

are shown in a compound way. The phases correspond to three main functions of an iterative

solver software [BHdW+95]. Some operations appearing outside of explicit phases can

be shown separately. The three phase-specific displays below present the details for the

phases separately for all processes. Smart highlighting allows the identification of common

function calls over all phases. (Taken from [MSM05].)

The definition of phases is not automated but requires user intervention, yet it allows to attach a semantic

meaning to every phase. Phases can be defined by structural, logical or execution time aspects of a

program. Important sub-routines or library calls may define special phases. Also, stages of an underlying

algorithm may induce phases, e.g. initialization, finalization and iteration. Finally, special conditions

during execution might be considered as separate phases, e.g. error recovery, see also [MSM05].

ParaProf provides a special two-level display mode for phase-based profiles. On the more abstract level,

every phase is displayed in summarized mode as overview. On the more specific level, all items of a

single phase are shown separately. See Figure 2.21 for an example with three distinct phases.

Besides profile data, TAU also supports native tracing. TAU’s measurement infrastructure is capable of

generating sets of profiles as well as traces. There is also an own TAU trace format along with tools to

extract TAU profiles from various event trace formats. The former is studied in Section 2.3.9, the latter

will be subject to more elaborate discussion in Section 2.4.4.

2.3 Trace File Formats

This section presents details about a number of trace file formats that are connected to the previously

introduced tools. It will underline the common basic design of all trace formats and point out individual

special solutions.

2.3.1 Common Design of Trace File Formats

All trace file formats share a basic design and have many similarities. First of all, they store the trace

information in a (more or less) plain and unprocessed form. Furthermore, trace events are represented

by so called trace records which cover one event at a time and mark the smallest units of information in

all formats. The record types can be grouped into two categories:
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• event record types and
• definition record types.

Usually, there are separate record types for all of the different event types (see below).

Event Records

Event record types describe actual events, i.e. distinguished incidents during execution. All event record

types contain at least a time stamp which specifies the point in time when the event happened. Further-

more, most event records provide a location specification. This is either a logical location with respect

to the structure of the application (like a thread or process ID) or a physical location with respect to the

computing system (like machine, computing node, CPU, core, etc.). Besides time and location, there are

additional event properties which are specific for certain types of events.

Event records account for the vast majority of records in large traces. Therefore, efficient encoding of

event records is crucial as it directly influences total trace size. Event records are arranged in a sequential

stream or in multiple parallel streams. Always, the events are sorted according to their original temporal

order.

The most important event record types supported by all major trace formats in a very similar way are:

• enter and leave of functions/regions,
• send and receive of point-to-point messages,
• collective MPI communication operations, and
• hardware performance counter samples.

Further examples are:

• I/O activities,
• mutex locking and release, and
• begin and end of OpenMP parallel regions.

Definition Records

Besides event records all formats support a number of so called definition record types. Those records

provide various global properties necessary for later analysis and for convenience. This includes for

example the timer resolution for all time stamps, date and time information of trace creation and platform

information like host name, processor type, processor speed, memory size, etc.

The special definition record types are essential in order to increase the over-all storage efficiency, in

particular for labels, names or descriptions like function names, names of computing nodes, source file

paths etc. Such names come as arbitrary long text and may be referenced very often. In order to increase

encoding efficiency, those labels are mapped to integer tokens (identifiers) of fixed size by definition

records. The tokens are used whenever a reference to the label would be required in event records or in

other definition records. This saves storage space for multiple references.

Common examples for token definition records are:

• process definitions,
• process group definitions,
• function definitions,
• function group definitions,
• source code location definitions, and
• performance counter definition.

In contrast to event records, definition records are usually not critical with respect to their number and

their storage size. Even if there are very many definitions the number of events referencing those defini-

tions is usually much higher.
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Library Interfaces

For all trace formats there are support libraries which provide interfaces for read and write access to the

trace files, such that encoding and parsing issues can be hidden from the programmer and platform issues

like variable type sizes or endianness can be resolved transparently.

All trace format libraries support the standard access scheme where events have to be read and written

in temporal order. Usually, the libraries provide a set of methods for writing of the individual record

types. For reading, the trace events are delivered to the consumer via call back handlers that have to be

registered with the library beforehand. Again, there are separate handlers for the different record types.

In addition to this, some trace format libraries provide more or less efficient selective read access, either

concerning certain record types or concerning selected processes in parallel traces or concerning selected

time intervals. Furthermore, all trace formats include support tools which are in particular necessary for

gathering multiple process traces into a single parallel trace.

2.3.2 The Vampir Trace Format Version 3 (VTF3)

Vampir Trace Format 3 (VTF3) is directly connected with Vampir and VampirTrace. Its predecessor VTF

has been developed by FZ Jülich like Vampir and VampirTrace. The later VTF3 has been developed at

the Center for High Performance Computing (ZHR) of TU Dresden. After the first version of Vampir

Trace Format there was no distinct VTF2 though, but evolving intermediate versions.

VTF3 features three equivalent sub-formats with different encodings, called the binary, the ASCII and

the Fast ASCII sub-formats. The former has advantages with respect to storage space because of the

more dense encoding. All subformats, however, allow ZLib compression on top of them [lGA02]. The

two latter sub-formats allow to manually read or modify traces with standard text tools for debugging

and testing purposes. The difference between both is a more elaborate encoding with verbose keywords

vs. a very terse encoding.

The VTF3 format contains all usual record types as well as some special purpose records, which are

partly experimental or deprecated. It collects all records into a single file. All definition records have to

be placed at the beginning followed by the sorted stream of event records. Therefore, the VTF3 access

library allows only strictly sequential read-through.

The tool vptmerge accompanies VTF3. As the name suggests, it merges multiple process traces into a

single parallel trace. Furthermore, it is also capable of sorting traces with non-monotonic timestamps.

Sorting huge traces is not limited by main memory size but only by disk space.

2.3.3 The Structured Trace Format (STF)

The Structured Trace Format [STF07] has been developed by Pallas GmbH in cooperation with the

Center for High Performance Computing (ZHR), TU Dresden in 2001. After the acquisition of Pallas

GmbH by the Intel corporation [Cor06], the availability of STF is limited to Intel platforms. The current

version of the STF format is part of the Intel Trace Collector and Intel Trace Analyzer tools.

STF’s design goals explicitly names enhanced scalability for large trace file sizes and a very large number

of trace processes. Therefore, it features a storage scheme of multiple files per trace with adjustable

granularity. In particular, there are several types of files for a single trace:

• a global index file referencing all other files,

• a global declarations file containing definition records,

• a so called frames file which contains summary information and special thumbnail information,
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• a statistics file with statistics about event record types,

• n event data files containing the actual event records,

• n anchor files with index and history information for the event data files,

• a single file for all point-to-point message records, and

• a single file for collective communication records.

STF is able to distribute m trace processes to n ≤ m files with a given number of ⌈m/n⌉ processes per

event data file. When accessing only a sub-set of available trace processes, the STF library will touch

only event data files concerned by the very request. By this means, efficient parallel access is provided

as parallel tasks can read disjoint parts of a trace. Yet, the existence of singular files for point-to-point

messages and collective communication impairs efficiency and limits scalability because those two files

are always to be included.

Another fundamental problem is caused by the separate placement of communication records: When two

events in the same process trace are mapped to the same timestamp (e.g. due to limited timer resolution)

then their original order is preserved by the order of the event records in the file. As soon as those records

are placed in different files, the order is ambiguous – it cannot be reliably restored during merging.

Besides parallel access, STF also provides advanced selective access with respect to so called frames.

In order to achieve this efficiently, STF relies on supplementary anchor information for every event data

file. Those contain a set of explicitly stored file positions where it is safe to start reading. The anchors

are accompanied by so called history information which provides the full state of the trace processes at

a given time stamp. With this additional information it is useful to start reading at this position.

Another particular feature of STF is the thumbnail information for the frames. It provides a statistical

overview about the contents of the frames. Thus, it is possible to look at the concise thumbnails first,

and to select the frames to load thereupon. Unfortunately, the encoding of STF is purely binary and not

publicly documented. There are neither publications available about record representation nor about I/O

performance and scalability.

2.3.4 The Open Trace Format (OTF)

The Open Trace Format (OTF) [KBB+06] is actively developed by the Center for Information Services

and High Performance Computing (ZIH) at TU Dresden in corporation with the Performance Research

Lab at the University of Oregon. It has been funded by the Lawrence Livermore National Laboratory

(LLNL) of the University of California. The Open Trace Format has been designed as successor to VTF3

and STF as a scalable and free parallel trace format and is available under the BSD open source license.

OTF organizes trace records in multiple streams, i.e. separate fragments that can be accessed indepen-

dently (see Figure 2.22), by which selective access and parallel I/O can be achieved. A stream contains

events of one or more processes in one file in temporal order while every trace process is mapped to one

stream exclusively.

In addition, there is an index file that stores the mapping of processes to streams. Figure 2.22 provides an

impression of OTF’s storage scheme. The process-to-stream mapping can either be specified explicitly

or created automatically when a trace is written via the OTF library. When reading event records via

the OTF library, the multiple streams are handled completely transparent: The user can select which

processes to read, then the OTF library accesses only streams containing those processes. Multiple

streams are merged on-the-fly in order to deliver a single sorted stream of events. The number of streams

is not limited by the number of file handles available.

The internal representation of records in OTF uses a platform independent ASCII encoding which allows

to find resumption points for reading at arbitrary file positions. Based on this, search for time stamps in a

sorted stream is achieved by binary search on a file, by which very efficient selective access is supported
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Figure 2.22: The OTF storage scheme: the index file, the global definitions file and the event files are

mandatory, all local definitions, snapshots and statistics are optional. (taken from [KBB08])

with O(log n) effort [KBB08]. For the sake of efficient storage size, OTF supports transparent ZLib data

compression [KBB08, lGA02]. In order to support selective access for compressed files a blockwise

scheme is implemented. It decreases storage volume to 20% - 35% of the original size on average,

compensating for the ASCII encoding.

Definition records in OTF can either be declared global or local, i.e. for the whole trace or only for a

particular stream. Furthermore, there are two more classes of auxiliary records besides definitions and

events [KBB08]. There are the so called snapshot records of different types which provide resumption

points for reading. A set of snapshot records allows to re-create the complete state of a trace process at a

certain time stamp. Therefore, it is not necessary to read a stream from the beginning.

The so called summary records allow an overview about the behavior of a trace process over certain

time intervals. They provide statistics about various properties which is useful in order to determine the

processes and time intervals to examine in detail by means of selective access. All snapshot and summary

record types are derived from corresponding event record types. Both classes of auxiliary record types

can be generated from the complete set of event records by the support tool otfaux. All auxiliary

records are optional and reside in separate files per stream, see Figure 2.22. This allows to generate,

re-create or remove them without affecting the event streams.

Finally, the OTF library supports reading and writing of events, definitions, snapshots and summaries

with two interfaces: the high level interface for accessing whole traces and the low level interface for

reading and writing from/to single streams. The former is useful for reading complete traces during

analysis, while the latter is convenient for measurement systems that need to write parallel streams in an

independent manner during run-time.

2.3.5 The Epilog Trace Format

The Epilog trace format (Event Processing, Investigating and Logging) [WM04] has been developed by

Forschungszentrum Jülich GmbH, Germany and University of Tennessee, Knoxville, USA. It is part of

the Kojak project and is available as open source software under the BSD license [koj05]. It is fully

documented in a detailed technical report [WM04].
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The Epilog format uses a binary encoding. It supports all the usual definition and event record types,

see Section 2.3.1. There are special record types for tracing events related to OpenMP multi-threading

[CJP07]. Epilog also uses a fixed location specification for the physical and logical placement of events

with the 4-tuple (machine, node, process, thread).

Another particular feature is Epilog’s support for explicit time synchronization. If computing nodes or

processes use different local timers, then a synchronization record can specify the local-to-global time

stamp transformation at certain points during tracing. Based on such information, it is possible to perform

a global time adjustment as a post-processing step [Rab00, WM04]. Last but not least, Epilog has special

record types to mark certain events induced by tracing itself, for example de-activating and re-activating

of tracing or occasional I/O caused by the tracing sub-system.

2.3.6 The Jumpshot Trace Formats

Associated to the successive visualization tools from the Jumpshot family, as presented in Section 2.2.4,

there is a number of trace formats. Unlike all other tools, Jumpshot uses the terminology event logging

instead of event tracing.

The various trace formats evolved together with the successive visualization tools. All of them use

binary encoding and consist of a single file. First, there were the ALOG format and its successor BLOG

[HL91, KL94]. They utilize a fixed record encoding consisting of six integer values plus a 12 character

text string. The following CLOG format eliminated the fixed length encoding in order to allow more

flexible extensions and additions of record types [ZLGS99]. Those three formats are typical event based

formats in the Jumpshot terminology, i.e. they use trace events as the smallest entities of data.

The SLOG-1 format marks the transition to a so called state based format. Now, the smallest data items

are states, which have a beginning and an end with associated time stamps. A state corresponds to two

enter and leave events in an event based format with two time stamps. The states are organized in so

called frames which contain all states of consecutive disjoint time intervals. Such frames can be loaded

separately, in order to support loading on demand, see Section 2.2.4. In particular, this scheme requires to

duplicate bordering states that are shared between adjacent frames in a post-processing step [WBS+00].

This is a remarkable feature for a trace format: It is no longer a more or less passive container for pristine

measurement data. Instead, it becomes an active part of the visualization tool and modifies the contents

for this purpose.

The latest SLOG-2 format goes even further in the direction of SLOG-1. It is a so called drawable-based

format which means that now drawing objects are used as smallest entities. Instead of the previous

frame structure, the records (drawable objects) are organized in a hierarchy of bounding boxes (actually

bounding intervals) over the time dimension. This requires no duplication of border elements anymore.

In addition, it incorporates coarse summary information near the top of the hierarchy in order to provide

a quick preview [CALG07, CGL00].

2.3.7 The Paraver Trace Format

The Paraver trace format [CEP01a] is another ASCII format that collects all event information in a single

file. It is well documented in [CEP01a] but the read/write library is not available as source code. Unlike

all other trace formats, the Paraver format defines only three event record types:

• state change events for enter/leave events of functions or more general regions (8-tuple),

• atomic user events with a key and a value, e.g. for performance counter values (8-tuple), and

• communication events for point-to-point or collective communication (16-tuple).
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The records are encoded as tuples of integer numbers. All components may carry arbitrary values as far

as the format itself is concerned. The format will transport any contents as far as the producer and the

consumer agree on the semantics. Still there are definitions of standard identifiers that are used by the

Paraver and Dimemas tools, compare Section 2.2.2.

Like all other formats, Paraver requires the event records to be sorted by time stamps, but the event

records need to be sorted by event type as the secondary sort criterion. Furthermore, the format uses two

fixed hierarchies to describe logical and physical location of events separately. This combination allows

to track the dynamic process placement during the execution.

The process model for logical location consists of:

• threads as smallest entities,

• tasks containing multiple threads,

• applications containing multiple tasks, and

• workloads composed of multiple applications.

The ressource model for physical locations contains:

• CPUs as smallest entities,

• nodes of multiple CPUs, and

• systems of multiple nodes.

Besides the single events file, the Paraver format supports two optional files with complementary in-

formation. The so called configuration file allows to specify some "semantics" for the "semantic free"

events. This includes display options, for example whether to show absolute or derived representations of

performance counter values or which colors to use for certain states. The so called naming file allows to

replace identifiers with names, for example for functions or states or any members of the process model

and the ressource model.

2.3.8 The DeWiz Trace Format

DeWiz provides its own trace data format called NOPE which shares many similarities with the other

formats. It uses a binary encoding and distributes parallel traces over multiple files.

Apart from the NOPE trace format, DeWiz includes an interesting concept that is connected with trace

formats as well as with memory data structures. It allows to serialize the memory data structure into a

generic serial byte stream. Later, it can be restored to the original memory data structure. The serial-

ized form is suitable for transfer over communication sockets or network connections. It is intended to

exchange data between components of the DeWiz toolset [BKN04, GUP03]. Yet, it can be used as a

convenient trace file format as well, compare Sections 2.2.5, 2.4.3 and 2.4.5.

2.3.9 The TAU Trace Format

Although primarily focused on profiles, TAU privides its own trace file format. It is used by TAU’s

measurement facilities to generate traces that can be converted to third party trace formats. Furthermore,

it can be used to extract phase-based profiles or flat profiles afterwards as shown in the TAU collaboration

diagram in Figure 2.23.

The TAU trace format supports the most widely used event types and provides a support library for

writing and reading. TAU traces consist of a small definition file and the potentially large event file.

Traces of parallel processes or threads can be written to multiple local traces at first. Later, they are

merged to a single global trace by the tau_merge tool.
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Figure 2.23: Collaboration diagram from the TAU documentation showing the interoperability of trace

file formats and profiling formats as well as tracing and profiling tools. (Taken from [She])

The TAU format encodes the records in a binary and explicitly platform dependent manner, in particular

the platform byte order is not compensated. All record types consume the same fixed number of bytes

[She04]. This simplifies internal management but imposes a certain storage overhead and limits the

extensibility.

2.4 Memory Data Structures

The memory data structures of the tools mentioned above are designed rather simple and straight forward.

In particular, there are hardly any publications about the memory data structures of such tools. Instead

they are regarded as a minor component of the overall software design. Fortunately, this information

could be revealed through direct contact with the respective authors. For many tools access to the source

code was granted [BMN08, koj05, She04, GUP03].

2.4.1 The Vampir and VampirServer Data Structures

The Vampir tool provides visualization of trace data as well as navigation. Furthermore, it offers statistic

summaries according to the current time interval and process selection. All is presented to the user in an

interactive manner. This means, trace data evaluation needs to be reasonably fast in order to give a truly

interactive feedback upon user interaction.

Therefore, it is necessary to load the entire trace into main memory. Extensive external access to hard

discs or network storage upon interactive user requests would be too slow. Even within main memory,

trace evaluation becomes time-critical as far as very large traces are concerned. Processing a request for

very large traces of 1 GB and above may require several seconds.
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The major effort is caused by generating the display information from the trace event data. The graphical

rendering is (almost) never critical, because the display data is bound to be small compared to the size

of the trace data. This is necessary for two reasons: The screen or printer resolution for graphical

rendering is limited and more or less constant. It will hardly exceed 104 pixels per dimension. And

furthermore the human perception is even more limited and cannot discern more than several hundred

elements. Therefore, the evaluation can be regarded as a filter that extracts a small but suitable graphical

representation from a huge but incomprehensible set of event records.

The Vampir tool uses plain C arrays of compound data types as memory data structures for event records.

For different record types, separate arrays with different basic types are allocated. Yet, the event records

from parallel trace processes are kept in a single array. Within each array the events are sorted by

time stamps like they are in trace file formats. This allows linear traversal and random access to be

implemented very efficiently. But during creation repeated re-allocation is required because the eventual

size cannot be predicted generally. Even though re-allocation is done blockwise in large segments it

becomes a performance problem for very large arrays.

VampirServer uses the vector class of the C++ Standard Template Library (STL) which provides a

flexible array-like data structure. Like in Vampir, separate data structures are used for different event

types. The distributed storage of event records is achieved by mapping one or multiple trace processes

to every worker process, compare Section 2.2.1. Within each worker there are separate data structures

for different trace processes. This allows separate evaluation of parallel event records. Yet, evaluation of

point-to-point communication events needs to consider associated send and receive events which would

be placed at different locations. Therefore, send and receive events are assigned to the respective sender

process instead of the original process.

Based on this storage scheme, the interactive visualization is subdivided into three steps: At first, a

search operation for the array indices of the current time interval is performed. This is done via binary

intersection search in the sorted arrays. In the second step, the array section in question is traversed

linearly to collect the evaluation results. This may be either display elements or some kind of statistical

summary information. In the final step, the actual drawing is done. It renders a graphical representation

of the display elements or the statistics, compare Section 2.2.1. In case of VampirServer the display data

is transfered from the server to the client application beforehand.

In this scheme all separate data structures can be evaluated individually. The results are composed only

during the last step by appropriately arranging the display elements together.

2.4.2 The EARL Data Structures

The Event Analysis and Recognition Library (EARL) from the Kojak toolkit is not a trace analysis tool

itself but a software component that is used by Expert. It allows convenient access to event trace data

via the EARL API, independent from an underlying trace format. It is implemented in C++ and provides

interfaces for C++ and Python [WM00b].

While common trace file format libraries restrict reading of events to the original sequential order, the

EARL API provides a more flexible way of accessing event data sets. EARL allows sequential read-

through with call back handlers as frequently found in trace format reading libraries and it provides

references from certain events to particular related events. This allows to traverse the event data set in a

more flexible way.

There are three kinds of references supported by EARL, see below. The references between events are

provided automatically by EARL and may point either forward or backward in time or to parallel process

traces [WM00b]. Furthermore, the call back reading can be combined with the access via references.
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previos/next: Connects all events to the canonical predecessor/successor event according to the

logical and temporal order of events in every trace process.

send/receive: Connects matching send and receive events from MPI point-to-point communica-

tion operations in different process traces.

enter/leave: Connects enter and leave events of function calls or from general regions that comply

with the stack property (FIFO property), compare also Lemma 2 in Section 4.1.1. This reference

always points backwards in time: For leave events it refers to the matching enter event. For enter

events it points to the enter event of the surrounding function or region. By this means, the function

call stack can be traversed upwards following the respective enter events.

This convenient scheme requires a certain scope of the event trace data to be kept in main memory

data structures. During a sequential read-through of the trace events, EARL performes progressive file

reading for the following events. As soon as events outside the current scope are de-referenced, EARL

either re-reads previous sections or reads ahead for subsequent sections automatically.

The memory data structure for trace events consists of an list of a generic data type for event records. The

different event types are modelled in a class hierarchy where specialized types are derived from general

ones. EARL’s event type class hierarchy is shown in Figure 2.24, see also [Wol04].

Event

Flow P2P Team Sync

Enter Exit Send Recv Fork Join ALock

MPI Exit

RLock

OMP Exit

Figure 2.24: The event type hierarchy defined by the EARL library.

The EARL library provides a very convenient interface for navigation in parallel event trace streams. It

is neither as restrictive as common trace format reading libraries that provide strictly sequential access

only, nor does it allow random access, which would be more flexible but unnecessary for typical trace

analysis algorithms. Instead, it serves as a suitable solution for mostly sequential read-through of events

with occasional references to distant events. At the same time, it provides a good trade-off between

overhead and flexibility [WM99, Wol04, WM00b].

2.4.3 The DeWiz Data Structures

DeWiz uses a very particular memory data structure that is closely related to the Event Graph definition

in Section 2.2.5.

All events contain a global unique index e = (p, s) ∈ I which consists of a process identifier p and a

sequence number s within this process. Now, references between events are stored as pairs of indices

(ei, ej) ∈ I × I . Together, this resembles the mathematical definition of a graph G = (V, E) with the

set of vertices V = R and a set of edges E ⊂ I × I .
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For representation of events (graph nodes) and references (graph edges) DeWiz uses an object oriented

class hierarchy of data structures. Furthermore, it uses a common base class for events and references.

Thus, references between events are modelled as a special kind of events that must not be subject to

references themselves!

All events and references are stored in a common global container object, that provides a fast look-up

operation for indices e = (p, s). The container class as well as all event and reference classes allow

serialization to a byte stream. This is usefull for the data transfer over network connections or for the

persistent storage to files, compare Section 2.3.8. Furthermore, the data structure allows progressive

serialization of accumulating event trace sets. This means, serialization and data transfer may start

before the data is complete which is particularly favorable for online monitoring and analysis.

2.4.4 The TAU Data Structures

The TAU tools for analysis of event traces do not contain a real memory data structure like the previously

presented tools. Instead of re-creating a spatial sequence of trace events in memory, it directly uses

the temporal sequence as delivered by the common trace format libraries, compare Section 2.3.1. In

particular, this requires processing of trace events strictly in the order of appearance.

This is a limitation for general trace analysis algorithms, yet it is sufficient for a number of algorithms.

This scheme is used in the TAU trace tools but also in many other tools included in trace format libraries

or run-time trace recording libraries. First of all, it is suitable for algorithms processing events separately

and require no context information from related records. One example for this type of algorithms is the

extraction of simple statistics about event records, like number of records per type per process. Here, the

temporal order of events is irrelevant. Other examples can be found in the trace format conversion tools

which perform a record-by-record translation from one format to another, e.g. tau2vtf, tau2elg,

tau2slog2, and tau2otf. Here, the order of events is relevant but it is not altered.

For analysis algorithms that read trace events in the original temporal order, an extension to the previous

scheme allows to incorporate some context information. This requires two conditions:

1. The amount of context information is reasonably small at any point in time. In particular it should

be much smaller than the event data.

2. Context information needs to be collected early. This means the context information is extracted

from some event records before it is consumed in conjunction with later event records. And it

needs to be decided a priori which context information to collect from which records.

From the second condition follows that a single pass algorithm can only use backward context. An

example is the summarization of run-time per function. It requires for every leave event the start time

of the associated enter event as context information. This can be provided most efficiently with a replay

of the function call stack with annotated timing information. It consists of a reasonable small set of

backward context data and, in particular, it is not static but allows to add and remove pieces of information

dynamically.

In order to support forward context as well, the previous scheme can be extended to a two pass algorithm.

Now, context information can be collected in the first pass, irrespective whether it is before or after the

recipient. Filter operations are typical examples: The filter rules are established in the first pass (e.g.

the most frequently called functions) and applied in the second pass (e.g. ignoring events related to that

particular functions).

A further extended multi pass scheme is not used by any of the investigated tools and seems undesirable,

because the repeated I/O of potentially huge trace files will cause substantial overhead.
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2.4.5 Similarity to Trace File Formats

When comparing trace file formats with memory data structures for event records it becomes evident that

both are very similar. The two basic design concepts are shared between both:

• record types and

• sequential containers.

On one hand, there are record types as the smallest units of information, compare also Section 2.3.1. In

trace files every record with its individual set of properties is encoded separately while in memory data

structures, all record types are mapped to corresponding data structures or classes.

On the other hand, there are sequences of records in temporal order. In trace formats this corresponds

to a single trace file or to multiple files, compare Sections 2.3.3 and 2.3.4. In memory data structures it

can be found as a single list (e.g. EARL, compare Secton 2.4.2) or as several arrays for different record

types (e.g. Vampir, see Section 2.4.1) or as multiple distributed lists for different record types of separate

trace processes (e.g. VampirServer, see Section 2.4.1). DeWiz does not use lists or arrays as the container

data structures, but provides the concept of a sequence of records by means of the sequence numbers of

events, compare Section 2.4.3.

A further indication, that the common trace file formats and the memory data structures are closely

related, is the fact that the back and forth transformation between both is rather simple and is usually

done record by record.

2.5 Access Methods to Event Data Structures

Based in sequential data structures for trace events there are five types of typical query algorithms that

all state-of-the-art tools rely on. At first, there are two basic algorithms for traversal and navigation:

• Sequential Iterator and

• Time Interval Search.

Then, the following two classes of algorithms provide (interactive) visualization for traces:

• Statistic Summaries over Event Properties and

• Timeline Visualization.

Finally, there are algorithms assisting the human user with tedious search for performance flaws:

• Automatic Analysis.

Like the memory data structures also the evaluation algorithms used by the presented tools are very

similar, in particular the data structure access. This does not include actual drawing and rendering or

user interaction schemes which are not interesting with respect to data structure design.

2.5.1 Sequential Iterator

The sequential iterator is the most basic access method. Beginning with any given position in a single

stream of trace events it is capable of advancing to the following position i.e. the next event (forward it-

erator). A reverse iterator advances in the opposite direction, proceeding from a current position (event)

to the previous one. Bidirectional iterators can advance either in forward direction or backwards. An

iterator will indicate if it cannot proceed because the end of a stream is reached. For an implementation

of a forward iterator on an array or linked list the position is represented by a position index or a pointer.

A forward/backward iteration step is performed by updating the position based on local data. This is a

very simple and efficient operation.
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By means of continued iterator steps a stream of trace events can be traversed from an initial position

until a termination condition becomes true or until a final position is reached. This can be used in order

to implement routines for higher level evaluation:

1. access every event record exactly once

2. replay events in original order

3. replay function call stack

4. match associated enter and leave events

5. match related message send and receive events

The basic iterator is suitable to access every event record exactly once. This is useful when generating

statistics about events, for example number of function calls, messages, etc.

Furthermore, it preserves the original (or opposite) order of events. This allows statements about causal-

ity of events without referring to time stamps which is particularly important for identical time stamps of

successive events due to coarse timers.

2.5.2 Time Interval Search

A second support routine frequently used by higher level analysis algorithms is the search for a specified

time interval. Through this means, a general analysis scheme can be applied to a well-defined sub-set of

trace events. This is most useful to analyze certain phases of program runs separately.

Time interval search has to find positions pa and pb of earliest and latest event records with given time

stamps a ≤ b in a single event stream. It identifies the position of the time interval [a, b] ⊆ [min, max]
where min and max are the minimum and maximum time stamp in the respective event stream.

In order to accomplish this, the search interval is truncated to [a, b] ∩ [min, max] first. If this results in

an empty set the search operation will abort. Then, a modified binary intersection search is started which

handles upper and lower interval bound simultaneously. Thus, the search needs O(log n) effort for n
events provided that random access is possible.

Random access is possible for arrays and vector data structures but not for plain linked lists. For the

latter case binary search can be enabled if an array of anchors is pre-generated. Anchors simply provide

references/positions of an arbitrary subset of all list elements where the anchors need to be sorted with

respect to their targets’ ordering. The number or granularity of the anchors can be chosen adaptively.

Then, the binary intersection search operates on the array of anchors, identifying the list elements closest

before or after the actual interval bounds. From this position a short linear search is started, where short

means not longer than the maximum distance between adjacent anchors’ targets. For a list of n events

and m evenly distributed anchor position, the search effort is reduced from O(n) to O(n/m + log m).

For short distances a linear search operation might be a benefit for random access data structures, too. If

the event of interest can be assumed to be close to the current position because respective time stamps

have a small difference (compared to the maximum time span max − min) the actual execution speed

could be increased by this.

2.5.3 Statistic Summaries

One of the most important classes of high-level evaluation methods is the computation of statistic sum-

maries over various properties of trace events. In general, such methods produce a more or less constant

result set from an arbitrarily large sequence of trace events. For example, if the number of occurrences

of all functions (within time interval [a, b]) is computed, the result will be a list of one value per function
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(absolute or percentage). The length of this list is bounded by the number of functions in that trace. For

alternative time intervals [a′, b′] single functions might be added to or removed from this list. However,

the list’s length will not scale with the intervals length or the event count in a time interval in general.

There are three sub-classes of statistic summary algorithms, with different constraints:

1. evaluate on single events only

2. evaluate pairs of associated events in same stream

3. evaluate pairs of associated events in different streams

Single Event Statistics

The first and simplest class of statistics can be derived from single events, for example the number of

messages sent or received on a given process. To compute such statistics, every event in the selected time

interval has to be accessed exactly once and not necessarily in temporal order.

Local Statistics with Associated Events

Secondly, there is the class of statistics about program states which are defined by the pairs of associated

enter and leave events in the same stream (process). Every state happening during the selected time

interval needs to be investigated once only. The resulting statistic is computed as the sum over all

occurrences of a state.

In order to achieve this, only leave events trigger the investigation of the state in question. The associated

enter event (respectively its properties) needs to be available at this stage. By means of call stack replay

this can be provided with minimum overhead.

Special cases for function calls that intersect with the selected time interval [a, b] have to be handled

separately. In order to correctly evaluate all possible intersections the complete call tree information at

time a is required beforehand. It might be available as auxiliary information at certain anchor positions,

compare time interval search in Section 2.5.2 and Open Trace Format in Section 2.3.4. Otherwise, only

function calls with either enter or leave inside time interval [a, b] can be covered.

Unlike for evaluation of single events, the order of event traversal is important to achieve an efficient

algorithm. It allows stack replay and thus a fast reference from a current leave event to the associated

enter event. Because the sequential iterator (see Section 2.5.1) provides this feature, the second class of

statistic summaries can take advantage of the same basic algorithm as the first one.

Remote Statistics with Associated Events

The third class of summary statistics needs to match associated events from different streams. For ex-

ample, for statistics about point-to-point message speed it is necessary to determine the message size as

well as send and receive time. The latter two are not provided by a single event but by two independent

events in different streams (respectively processes).

In order to match associated send and receive events, all parallel streams (process traces) need to be taken

into account. Again, the replay algorithm is based on the sequential iterator (see Section 2.5.1). However,

it is no longer possible to process the streams independently like for the previous two classes of statistics.

For every process/stream there is a queue data structure (FIFO list) to keep a set of pending messages. If

a send event is encountered it is added as a new pending message for the relevant peer process (receiver).

If a receive event is found, it is compared against all pending messages for this process. The first positive
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match is identified as the valid peer event and removed from the list of pending messages. Matching

of messages has to consider sender and receiver processes, MPI communicator and MPI message tag

according to the MPI Standard [For95, For97].

The order in which to advance through parallel streams is only important for temporary memory require-

ments, i.e. the length of pending messages lists. A static or adaptive round robin scheme is suggested.

When advancing parallel streams in an alternating way another source of ambiguities is introduced.

Events with identical time stamps from different streams can be arranged arbitrarily in the analysis

stream. This is by no means a restriction of parallel trace analysis but reflects a fundamental princi-

ple of concurrent programming [Lam78].

Again, there are special cases to consider when only one of two remotely associated events a and b is

included in the current time interval T . The matching algorithm depends on the previous states of the

pending messages queues, which need to be provided at time a. This might either be provided at certain

anchor positions as pre-computed information (compare Section 2.5.2) or it needs to be generated by

processing the trace from the beginning.

Even though the effort for this class of statistics will be linear with respect to event count, the latter case

would be a severe performance disadvantage for small time intervals. Instead of the event count in [a, b]
the (potentially much larger) event count in [0, b] would determine the total evaluation effort.

2.5.4 Timeline Visualization

Timeline visualization is the second most important high-level evaluation method, compare Figure 2.2.

It consists of two stages: Computation of display data which is already adapted to the target pixel reso-

lution and the actual drawing which is not important here, because it is independent from the trace data

structures. The following is mainly dedicated towards the Vampir, see Section 2.2.1.

The computation of display data is closely dependent on trace data structures. Its result is used as input

for the latter stage and can be stored in any convenient format. In particular, intermediate drawing data

is rather small as it contains only a limited set of items that can be rendered with a given horizontal pixel

resolution. The available pixel resolution is always considered constant and relatively small in the order

of magnitude of 103 to 104 in the vertical and horizontal dimensions. It will hardly ever scale to the

number of events in today’s extensive traces of 106 to 1010 in the foreseeable future.

Timeline visualization considers only a selected time interval T like statistic summary evaluation. An

interactive timeline display can implement zooming and scrolling operations by changing time intervals

of interest during successive timeline queries.

The timeline diagrams show four major visualization items:

• function calls as colored boxes,

• point-to-point messages as arrows,

• collective communication as intervals connected by lines, and

• performance counter values as piecewise linear function chart over time.

For all according events a corresponding item is placed on the display area of w pixels width by h pixels

height. Time stamps of events are mapped to the horizontal axis. The horizontal position p ∈ [0, w−1] ⊂
N is computed from the pixel width w and the time stamp t ∈ [a, b] with the current time interval [a, b]
according to the following formula, compare also Figure 2.25.

p =

⌊

t − a

b − a
· w

⌋

. (2.1)
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Figure 2.25: Mapping of time stamps to horizontal positions in the pixel raster (top). The transformation

from the fine grained time stamps to the coarse grained pixels can be ambiguous (bottom).

Vertical positions are either derived from an event’s process in global timeline diagrams or from call stack

depth in local timeline diagrams. Both, processes and call stack levels are visualized as bars instead of

thin lines. Usually, the vertical axis points downwards instead of upwards.

Function Calls

For every function call in the event stream a colored box is drawn at the appropriate vertical position

which is computed from the time stamps of the enter and leave event according to Equation (2.1). The

color is determined by the associated function, see Figure 2.25 for an example.

The drawing algorithm uses a stack which stores the drawing color associated to the function calls to be

visualized. It keeps the current horizontal position p′. For every event it maps the time stamp t to the new

horizontal pixel position p and draws a box from position p′ to p−1 with the drawing color found on top

of the stack. If the stack is empty, the background color is used instead. After this, the next drawing color

is determined. If the current event is an enter event, then the drawing color associated to the respective

function is pushed to the stack. If it is a leave event, then the current top element is removed from the

stack, activating the previous drawing color again.

Special consideration is necessary for function calls that map to a horizontal width smaller than one pixel.

Such function calls are ignored because they would be invisible anyhow. Thus the effort for calculating

and storing that information can be saved. If there are several consecutive function calls smaller than one

pixel that account more than one pixel’s width together, then one of them is selected for display. This

can be chosen according to the longest time share among those function calls or randomly, as illustrated

in Figure 2.25. Based on the above drawing algorithm such a situation can easily be detected by the test

p = p′, which means new pixel position is equal to the previous one.

Point-to-point and Collective Communication Events

For send and receive events an arrow is drawn from the send event’s position to the receive event’s

position on top of the function call boxes, see Figure 3.9. Matching of associated events is assumed to

be pre-computed by the same algorithm used with statistic summary queries (Section 2.5.3). Like for

enter and leave events, horizontal positions are calculated from events’ time stamps. Vertical positions

are determined by process association or call stack level.

Collective communication events are visualized similar to send/receive events. Instead of a single arrow

the events in neighboring process bars are connected with two lines. The first line connecting both start

points, the second connecting the end points. For multiple process bars visualized next to each other
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this results in a vertical polygon covering the collective communication operation over all participating

processes, see Figure 3.10. Again, special handling is necessary for spots with more communication

events than horizontal pixels. Drawing of single arrows or lines is suppressed in this case. Instead, a

marker is placed showing that there is a large quantity of communication events. It signalizes the user

that individual events will be revealed after sufficient zooming to the respective time interval and thus,

increasing the horizontal pixel resolution.

Performance Counter Samples

Performance counter values over time are visualized separately from the other events. The alignment to

function call states or other events is achieved by separate mapping from the same time stamp resolution

to the common pixel raster, see also Figure 2.25.

Performance counters are always queried in discrete resolution. The intermediate behavior between

successive counter samples cannot be retrieved. Instead, it is either interpolated linearly for properties

that are accumulated continuously or it is assumed to be constant for properties that are pinpointed

at particular values. Furthermore, for the representation of differentiated performance counter values

over time, the difference quotient from successive counter samples is used, which is interpolated with a

constant function over time. Therefore, the performance counter display always shows piecewise linear

or piecewise constant functions over time.

Computational Effort for Timeline Visualization

The computational effort for the generation of drawing data, excluding the actual drawing operation, is

linear with respect to the number of events O(n) in the current zoom interval [a, b]. This is true for all

four visualization items included in the timeline display and, thus, for the sum.

For small traces or limited time intervals of large traces this is no challenging task. Yet, visualization

of the total time interval for large traces becomes computationally expensive. Interactive response to

user interactions cannot be guaranteed. At the same time, the drawing area has constant size w × h.

A visualization scheme, that scales with O(w · p) or O(w · h) and that is independent from the event

count, would be most convenient. However, such an approach is not found in any of the existing tools

and cannot be achieved with the traditional data structures.

The speed of the actual drawing operation depends on the particular display type. It is supposed to have

linear computational effort with respect to the amount of display data. Therefore, it has also linear effort

with respect to the display size, because both are proportional as stated in Section 2.2.1, in Section 2.4.1

and in Section 2.5.4 above.

2.5.5 Automatic Analysis

There are various approaches for automatic performance analysis that try to detect known performance

flaws in order to relieve this task from the user. The general scheme consists of three steps:

1. find certain pre-defined situations in the event stream

2. survey each occurrence of a situation, rate it as critical or non-critical

3. report a set of most critical situations to the user

The first part is the detection of situations of interest. Situations are characterized by a group of related

trace events but not by a single event. Usually, the search algorithm traverses the event trace in temporal

order trying to match all potential situations to the current events. The actual structure of a situation
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needs to be explicitly defined, either encoded in the detection algorithm or as a formal specification

[WM00c, FGM+01]. An example situation is the exchange of a point-to-point message. It consists of the

events enter MPI_Send, send and leave MPI_Send on the sending process and the associated

events enter MPI_Recv, recv and leave MPI_Recv on the receiver process.

As a second step, each situation positively matching the specifications is surveyed for performance prop-

erties. According to this, it is rated as critical or non-critical or alternatively with a continuous severity

value s ∈ [0, 1]. For the point-to-point message situation from the above example, the rating might

consider multiple aspects. It might be classified as a Late Sender event if the enter MPI_Send event

happens a considerable amount of time after the enter MPI_Recv event. If the enter MPI_Send

event happens much earlier than enter MPI_Recv it is rated as Late Receiver. The severity value of

either case would be determined by the actual amount of the delay.

Detection as well as rating of situations requires previous knowledge about semantics and about critical

and non-critical behavior. Therefore, only well-known types of situations are considered for automatic

analysis. Furthermore, only for frequently occurring situations the effort for specification and for au-

tomatic detection is worthwhile. Because of this, automatic performance analysis focuses on standard

situations which have well-defined semantics and performance behavior. First of all, parallelization

paradigms are targeted which includes MPI calls as well as OpenMP directives.

Application specific function calls are rarely or never subject to automatic analysis because both, seman-

tics and expected/optimal run-time behavior are unknown. The required background knowledge is in

general unavailable and cannot be provided in a universally valid way.

Finally, the results of automatic performance analysis will be presented to the user. For this purpose the

critical situations found are grouped and sorted. At first, sets of similar performance flaws are reported

only once instead of for each and every repeated instance. Then, they are sorted according the associated

severity value s in order to show most critical situations first or in highlighted style [WM01, FGS03,

GMT04]. In addition, the user is provided with source code locations causing critical situations.

All of the algorithms for automatic performance analysis can be transfered to the CCG data structure as

well. The most straight forward adaptation would traverse the process traces in temporal order providing

a replay of all events, compare 3.4.2.

2.6 Event Trace Compression by Statistical Clustering

Only few approaches for compression of event traces for parallel performance analysis have been docu-

mented, even though the SPMD (single program multiple data) paradigm suggests redundant behavior in

parallel processes. One exception is the approach for Roth and Nickolayev et. al. [Rot95, Nic96, NRR97]

who proposed clustering of process traces according to "‘similarity"’ of run-time behavior. For each data

cluster only a single representative trace is kept. This scheme is well suited for SPMD-style parallel

applications but cannot exploit redundancy due to repetition within a singe process trace.

For the classification into clusters, the single process traces are mapped to trajectories in a d-dimensional

parameter space according to d performance properties (pi)i=1...d. The pi may be comprised of either

continuous or discrete properties. They are summarized over a sliding window of the (temporary) process

traces. This equals a low pass operator filtering high-frequency effects which would otherwise inhibit

this compression scheme. Then, the clustering is computed according to the Euclidian distance of the

trajectories in certain phases. In order to respect changing behavior, a re-clustering is performed either

in fixed intervals or adaptively.
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The compression factor for a single cluster is always equal to the number of members. If there are

multiple clusters for many parallel process traces then the total compression depends on the sizes of the

representative traces of each cluster. For real-world examples with up to 128 parallel processes a total

compression factor of 12 to 90 has been reported.

This approach has been extended for real-time compression [Nic96, NRR97]. While every process trace

is recorded in a memory buffer, the clustering is computed by a central (external) instance. Then, only

processes chosen as a representative will actually output the trace buffer to a trace file. All remaining

processes will refer to their cluster representative instead.

2.7 Memory Access Traces and Compression

The earliest references in literature about event tracing in general an about trace compression in par-

ticular are about memory access traces. Such traces contain very simple data, usually only in form of

consecutive memory addresses. Few references consider three types of access, which are instruction

fetch, data read and data write. Furthermore, the memory access traces are always regarded as purely

sequential and they contain no timing information for the events.

The main purposes of memory access traces are analysis, simulation and re-play of memory accesses

for the optimization of caching methods. It is used in the design process of hardware caches, cache

hierarchies, and their replacement strategies and it is most usefull for the analysis of virtual memory

paging algorithms and replacement strategies, which are implemented in software.

The compression methods for memory access traces can be divided into two groups. The first group

achieves data compression by selectively omitting data that is not needed for a particular purpose. There-

fore, this are lossy compression schemes that do special purpose compression or semantic compression.

The second group exploits regularity and repetitive behavior of the data in order to achieve lossless

compression. Both, can also be combined to create an improved lossy compression scheme.

The former group of compression methods are associated to the simulation of a particular cache replace-

ment strategy [KSW99, Smi77, Sam89, JH94, CR71, GC97, AH90]. For example [KSW99] is dedicated

to simulation of virtual memory paging with LRU (least recently used) strategies with different param-

eters. It would require substantial changes to be suitable for other page replacement strategies. The

compression transforms the original trace into an equivalent trace that reproduces the exact same LRU

paging behavior [KSW99]. This allows substantial data compression, because multiple successive ac-

cesses to the same page can be removed. Under certain conditions this scheme is guaranteed to produce

optimum compression, i.e. the shortest equivalent trace [KSW99]. Depending on the regularity of the

examples the lossy compression methods allow data reduction of several orders of magnitude.

The latter group of lossless compression methods are related to general purpose lossless compression

procedures, like Lempel-Ziv (LZ) or Lempel-Ziv-Welch (LZW) [ZL77, Wel84]. In a first step, the trace

data is transformed into a so called difference trace [Sam89, JH94] (also known as delta coding). By

storing the differences between successive addresses, usually the numeric values become smaller than

the original addresses and can be encoded with less storage space. Furthermore, the transformed values

reveal more regularity, for example the the widely used patterns of successive memory accesses with

constant stride will be mapped to a constant sequence. This is very convenient for the second step, which

uses standard lossless compression methods to effectively exploit the above mentioned regularity.

The lossless memory access trace compression has been reported to achieve total data compression by

factors of 8 to 30. Further improvement can be achieved by handling instruction fetch accesses and data

read/write accesses separately. With this extension compression factors of up to 150 have been observed

[Sam89].
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2.8 Compression of MPI Replay Traces

Müller et. al. presented an approach for compression of MPI replay traces in 2007 and 2008 [NMSdS07,

RMdSS08]. Such traces contain only the information about MPI operations that is needed to re-create

the original communication behavior. They cover no additional event types like function call events, user

defined events or performance counter samples and carry no individual timing information for events.

The compression scheme consist of two stages, in order to compress process traces of parallel programs

during run-time. The intra-node compression stage looks for repeated patterns in a sliding window over

single event streams. Repetitions are mapped to so called regular section descriptors (RSD) consisting

of a sub-sequence and a repetition count. The RSDs may be nested during this process. The following

inter-node compression applies a post-processing to the single pre-compressed process traces. It replaces

common RSDs in all or some parallel process traces with so called power-RSDs (PRSD) to achieve

further compression. The latter step uses a radix-tree scheme to allow an efficient handling of very large

process counts (MRnet [RAM03]).

The approach is reported to achieve compression in the order of magnitude of 2 to > 103. For favorable

examples the authors even claim "near-constant" trace sizes when scaling with respect to the number of

parallel processes [NMSdS07, RMdSS08], i.e. arbitrarily growing compression ratios.

A recent extension added timing profiles for the duration of computation phases between MPI calls which

are not covered otherwise by this kind of traces. This will allow to replay the communication behavior

with realistic durations between successive MPI calls. For every PRSD the time information is stored

in a histogram with a fixed number of bins which allows to capture a coarse distribution of the timing

behavior [RMdSS08]. It can neither provide individual duration information for single phases between

MPI calls nor time stamp information for communication events.
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3 The Design of the CCG Data Structure

This chapter introduces the contribution of this dissertation, which is a sophisticated memory data struc-

ture for event trace data named Complete Call Graphs. It presents the design of the data structure and

the compression feature as well as adapted evaluation algoritms.

The new data representation is fundamentally different from the classic linear representations. And in

contrast to the traditional manner, it allows significant data compression inside main memory which is

completely transparent to read access which means, no explicit de-compression is required. Further-

more, this novel data structure allows the design of adapted query algorithms which provide an extra

performance benefit in addition to the advantages of the smaller memory footprint.

3.1 Trace Data and Trace Information

Performance Tracing has a reputation for producing large amounts of data where large has always been

defined by the time’s standards. What are the reasons for the very big and ever growing trace data sizes?

And how does the actual information contained in the data relate to this trend?

There are three main factors contributing to the growing amounts of trace data. The first is the trend

towards more complex software projects with larger source codes, using many third party components

and libraries. This also includes a growing code due to optimization and source code specialization

[MWD00]. The second factor is the evolving instrumentation and measurement techniques recording

more detailed data. More fine grained instrumentation produces more trace events and additional prop-

erties for the various event types increase the data volume even more. Typical examples are hardware

performance counters or the cumulative load of the I/O subsystem. The third factor is the trend for longer

and faster program runs as well as massively parallel execution. Both contribute to the enormous growth

of trace data by repeating parts of a program more often. Usually, the number of repetitions of essential

parts of a program directly relates to trace data size. This means the trace data volume is proportional to

the iteration count as well as the degree of parallelism.

The last reason is certainly the main cause for the growth of trace data volumes. It also explains why

the trace sizes keep up with the development of computing technology and available storage. Consider-

ing the three reasons for growing data volume, how does the actual information for the user increase?

For larger software systems (first reason), additional data relate directly to valuable information about

additional components. More elaborate instrumentation and measurement (second reason) also allow a

better insight into a program’s behavior. However, more repeated occurrences of some parts of a program

(third reason) do not provide more useful information to the user, in particular, if a substantial number of

repetitions has already been observed.

The example in Figure 3.1 illustrates this: There is a simple loop of iteration count n. Within the loop

four function calls are performed in a fixed order. The four functions may contain further sub-function

calls. A trace of this loop will give an account on two aspects. At first, the call structure, i.e. the order

and hierarchy of function calls. Furthermore, the temporal behavior, i.e. the run-time consumed by every

function call. If the code behaves regular, then a single iteration might be sufficient to analyze this part
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for ( i= 0; i < n; i++ ) {

foo( i, ... ) {

bar( i, ... );

communication();

fubar( );

}

Figure 3.1: Example of a simple call sequence of four functions that are repeated n times.

of the code. Instead of looking at every iteration independently, a comparison of a certain number of

iterations will reveal the average behavior. Apart from the average case, some outliers might occur either

in the call structure or in terms of run-time.

In order to learn about the average case, a certain number of iterations will be sufficient as an adequate

statistic sample. Larger numbers will not improve the confidence of statistics notably. Hence, there is no

point in storing data about more than a few hundred or few thousand iterations even if there are millions

of repetitions in one trace. Most of the repetitions will be nearly identical to the average case. Storing

many identical iterations implies a high level of redundancy. Therefore, the amount of actual information

is significantly smaller than the data volume. Yet, data about outliers, i.e. iterations that diverge from the

average case, do provide additional information. By definition of outlier they appear infrequently and do

not account for the majority of data.

It follows, that redundant data does not provide additional information and the actual information does

not require large quantities of data. Thus, a compression scheme for redundant data could diminish the

data volume of traces while preserving all of the essential information enclosed.

In the next section, the new CCG data structure for trace data will be introduced which allows efficient

identification of redundant event sequences in a trace. The following section explains how to remove re-

dundant parts in order to compress the data volume in a way that does not require explicit de-compression

in order to read the data. The subsequent sections deal with persistent storage of compressed traces and

adapted evaluation procedures.

3.2 Tree Data Structures for Event Traces

The basic scheme of the newly introduced event trace data structure is derived from general Call Graphs

or Call Trees [GDDC97, GC00]. The most widely known form are the so called first-order call graphs,

that summarize the caller-callee relation between functions. This is frequently found in basic program

profiles [GKM82]. Higher-order call graphs do not consider a single caller function as the argument, but

instead a hierarchy of n nested function calls as call site (n-th order call graphs) [MSM05]. Statistical

properties can be appended to the nodes of a call tree in order to describe the average behavior of all

function calls that match this node. This is used for example to produce more elaborate profiling results

than plain flat profiles [GC00].

As a major difference, the new data structure does re-produce the complete function call hierarchy, not

summarizing any information. Every function call is represented as a node, sub-function calls appear as

ordered child nodes. This results in a tree graph, i.e. a directed acyclic graph, for a sequential program or

for every single process of a parallel program. Hence, the new data structure is referred to as Complete

Call Graph (CCG).
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Figure 3.2: Example of a Complete Call Graph (CCG) of a single process. It shows a hierarchy of

function calls to main, foo, bar and MPI_Send as well as atomic message send events at

the leaf nodes.

Properties to function call events are annotated to the graph nodes, covering function identifiers, run-time

information, performance counter values, and some more. Furthermore, this data structure is not limited

to function call events but is capable of storing any kind of event along with the according properties.

There are special node types for atomic events, i.e. all non-call events, like message passing events or

input/output events. Atomic nodes are always leaf nodes, i.e. they have no children.

Thus, the overall graph structure is defined by the function call hierarchy of a program trace. All other

information is appended to that graph. An example of such a graph is given in Figure 3.2. It shows

the Complete Call Graph of a single process P0 where the main function performs a single call to

function foo. Function foo calls bar twice, which calls function MPI_Send three times. Every

function call is represented by a node with corresponding name and run-time information (see also the

following Section 3.2.1). Sub-function calls are denoted by child nodes. Topmost, there is an unnamed

artificial function call node that ensures that there is always a single root in the tree. The leaf nodes are

an example of atomic events shown as ellipses. They are child nodes to the MPI_Send calls and depict

the actual send event of a point-to-point message which is separated from the according function call.

The graphical representation reflects the memory data structure, where nodes correspond to instances of

a C++ class which are connected by pointers.

The most important distinction of the CCG data structure from a classic flat data structure is the existence

of a canonical and well defined hierarchy, i.e. a set of sub-structures (sub-trees) along with an inclusion

relation. Based on this fact, redundant sub-trees will be identified and replaced with a reference to a

single common instance. In particular, the hierarchy allows to do both very efficiently, see Section 3.3

for a more detailed explanation. But before the compression of Complete Call Graphs is presented,

two transformations to the uncompressed CCG are necessary. This concerns the representation of the

run-time information and the branching factor of the graph.
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3.2.1 Time Stamps versus Time Durations

Alongside the general layout of the data structure the method of storing run-time information is crucial

to all subsequent results. The classic way is to store time stamps, i.e. points in time relative to a fixed

zero point, which is the start time of the program run. Usually, it is represented by an integer number

that counts time in so called ticks, which are the smallest units of the available timer.

With regard to Complete Call Graphs using time stamps is most inappropriate, because by definition there

can be no repetitions within a monotone increasing series of time stamps. The CCG uses time durations

to express run-time information instead. Durations are specified as non-negative integer numbers in the

same units of ticks. As shown in Figure 3.2, every node contains a list of time durations describing the

run-time of itself and all child nodes. For every child node, the total duration is given adjacently to the

durations of the gaps before/after each child call. This results in 2n + 1 duration values for a node with

n child nodes. Especially for leaf nodes, there is a single duration value that gives the duration of the

according function call. This scheme introduces a new form of minor redundancy because the sum of all

time durations belonging to a node is also stored within the parent node!

The transformation from time stamps into duration values is a sole subtraction operation. The reverse

transformation involves additions of duration values while traversing a CCG in a top-down manner:

Lemma 1. In order to restore the start timestamp t of any node N at depth level k ≥ 0 of a CCG

hierarchy one has to traverse the data structure from the root node to N . Assumed the path is (ni)0≤i<k,

such that at level i the child ni has to be entered with 0 ≤ ni ≤ si and di
j is the j′th duration value in

the i′th node on that path. Then

t =
k−1
∑

i=0

2·ni
∑

j=0

di
j (3.1)

will restore the time stamp t. Provided ni ≤ si ≤ b = const (see Section 3.2.2), the addition does not

involve more than 2 · b · k terms independent of the total number of preceding events.

Proof. Induction on prefix paths. Assume the start time of the parent node t′ is known. Then it follows

t = t′ + ∆t, where

∆t :=

2·ni−1
∑

j=0

di−1
j (3.2)

is the sum of all durations in the parent node that precede the current node. Equation 3.1 follows from

induction with the root node’s start time t = 0.

Besides time stamps, traces may contain hardware performance counters with very similar characteris-

tics that are also stored as monotone increasing integer values without explicit repetitions, for example

floating point operations or cache misses. Therefore, performance counter samples that are aligned with

time stamps should be transformed from absolute values into differences of successive samples, thus,

appropriate performance counter samples will be handled like an alternative time specification.

3.2.2 The Bounded Branching Factor

The branching factor b is an important property of all tree-like graphs. It is the maximum number of

children to any graph node. Obviously, it always needs to be b ≥ 2 for non-trivial trees. Usually, the

branching factor is not arbitrary but bounded by a constant. Above all, this avoids large trees degenerating

into linear data structures.
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Figure 3.3: A wide graph node with more than b = 2 children (red) on the left is split up into an inter-

mediate tree of artificial nodes (green) on the right.

The branching factor plays an important role in calculating the computational effort for certain operations

on trees. For example, for simple search trees the minimal branching factor b = 2 is always optimal

because it minimizes the effort for manipulation. This is one reason why computer science related

literature mostly focuses on binary trees. However, binary trees are sometimes defined differently from

a general tree that happens to have branching factor b = 2 [Knu97, Chapter 2.3]. More advanced search

tree data structures favor larger branching factors. For example, B-trees and its variants use quite large

branching factors. Interestingly enough, B-trees do not only limit the maximum number of children per

node b but also the minimum with b/2 for non-root nodes [Knu98, Chapter 6.2].

In contrast to this, CCGs derived from actual program traces usually show very large branching factors

which are unbounded in general. This is due to the fact that the maximum call depth of common (non-

recursive) traces is rather small. Therefore, the resulting call tree looks flat. Furthermore, the call depth

usually is almost independent of the traces size and more or less constant. Thus, if a trace is growing in

size then the branching factor will increase, i.e. the CCG will become wider but not deeper.

The definition of the CCG data structure can be modified slightly in order to avoid this unfavorable

behavior by splitting graph nodes with more than b ≥ 2 children. From a single wide node with n ≫ b
children, a set of artificial nodes is generated. Those artificial nodes are arranged in an intermediate tree

with minimal depth. Figure 3.3 shows an example of a wide node and the result of the split operation.

The split operation is explained comprehensively in Section 4.1.2. The consequences for all query algo-

rithms are limited to book-keeping issues, i.e. they must be aware that there are special nodes which do

not represent an actual function call. This modification results in significant positive effects to the data

compression ability and the speed of query algorithms, see the following Sections 3.3 and 3.4.

3.3 In-Memory Compression

As stated above, in-memory data compression is achieved by identifying and removing redundancy from

a CCG. The general assumption is that multiple executions of a part of a program will likely produce

equal or similar sequences in the trace. These will then be transformed into equal or similar sub-trees of a

CCG. From the point of view of the CCG, sub-trees are regarded as redundant if there are multiple equal

or similar instances. If there is a set of equal or similar sub-trees, all but one can be deleted and replaced

by a reference to the remaining instance. Of course, maximum compression is achieved by replacing the

largest possible sub-trees.

After this transformation the CCG is no longer a tree but only a tree-like directed acyclic graph. While

most of the tree properties sustain, it is no longer true that every node has at most one parent node.
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Figure 3.4: Comparison of an uncompressed (left) and a compressed Complete Call Graph (right). Both

represent exactly the same information with 17 respectively 8 graph nodes.

Therefore it is called compressed Complete Call Graph. This is the reason why the data structure has not

been named Complete Call Tree in the first place. As an example Figure 3.4 compares the plain CCG

with the compressed Complete Call Graph of the same trace as in Figure 3.2. Originally, there were two

redundant sub-trees: The calls to bar including all sub-calls are identical and thus redundant as well as

the latter two calls to MPI_Send within function bar. However, they are not identical to the first call

of MPI_Send because the associated leaf node specifies a different peer process. Both sets of redundant

sub-trees have been replaced by references to a single instance in the compressed graph. This shows how

compression of smaller sub-trees is nested into compression of larger surrounding sub-trees. As a result,

data compression expresses itself in the reduced node count of 8 in the compressed graph compared with

17 in the uncompressed counterpart. Both representations carry exactly the same information.

For an actual implementation it is possible not to rely on the unique parent node property which disap-

pears when transforming a CCG into compressed form. Later, a compressed CCG can be handled just

like an uncompressed CCG, i.e. compression is completely transparent for any read access. Details can

be found in Chapter 4.

The term Complete Call Graph (CCG) will denote a compressed graph in the following. This is the more

general form, while the uncompressed graph is a special case therefrom.

3.3.1 Deviation Bounds for Soft Properties

As indicated above, the compression scheme can exploit the equality of sub-trees but also similarity.

Thus, the approach may be implemented as a lossless compression scheme or as a lossy one. However,

for the latter version, the errors or deviations arising are bounded and adjustable. From now on, the term

compression is meant to be the lossy version if not stated otherwise. The lossless version is regarded to

be a special case of the lossy approach with zero error bounds.
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Unlike for equality there is no evident definition for similarity of CCG sub-trees. Therefore, a suitable

definition is needed which takes the special requirements of event trace analysis into account. The

desirable conditions for lossy compression include some properties that should not be altered at all, like

for example identifiers, tokens and pointers. Those are called hard properties. Also, there are properties

that allow small changes without much impact to their meaning. This implies that there is a proper metric

to measure the difference between original and altered values. Timestamps, performance counter values

or maybe even message lengths are examples for such properties, which are called soft properties.

Furthermore, for soft properties there must be reasonable bounds of deviations introduced due to lossy

compression. In general, there can be two types, absolute and relative bounds. For any value v and its

altered counterpart v′ the absolute condition would be

|v′ − v| ≤ A or Alower ≤ v′ − v ≤ Aupper (3.3)

and the relative condition would be

|
v′ − v

v
| ≤ R or Rlower ≤

v′ − v

v
≤ Rupper. (3.4)

where A and R respectively Alower, Aupper, Rlower and Rupper are the given bounds.

The first and most important soft property of trace events is the run-time information. Here, both types

of deviation bounds are relevant, always. At first, for every time stamp ti it should be assured, that it is

not moved to the future or to the past more than T = const. ticks, i.e.

|t′i − ti| ≤ T. (3.5)

This is the absolute time deviation bound. Moreover, every duration of time between two time stamps

di,j = ti − tj ≥ 0 with i > j must not be stretched or shrunk more than a given percentage:

|
d′ − d

d
| ≤ D. (3.6)

This is the relative time deviation bound. Regardless of the representation as time stamps or time dura-

tions, both deviation bounds must be taken into account for temporal accuracy.

Now, two CCG sub-trees are defined as compatible if all hard properties are equal and the deviations in

soft properties are below the respective deviation bounds. It follows that for two compatible sub-trees all

respective child sub-trees have to be compatible, too.

3.3.2 Sub-Tree Comparison

The principle of data compression is replacing compatible sub-trees. Yet, comparing sub-trees for com-

patibility naively imposes the cost of comparing all nodes in it, that means completely traversing all

sub-trees. Thus, the computational effort would be proportional to the number of nodes in a sub-tree.

At the same time, nodes will be touched multiple times when comparing nested sub-trees. In order to

minimize this effort the suggested approach will introduce a sophisticated sub-tree comparison scheme.

It considers the root nodes of sub-trees only and does not take child nodes into consideration directly.

Rather, it restricts the order of processing sub-trees. A sub-tree’s root node must be processed after all

of its child nodes. Instead of checking child nodes recursively, the child pointers are compared: If two

corresponding sub-trees have been found to be compatible, they would have been replaced by references

to the same instance before. Thus, the child node pointers in both parent nodes would be equal. However,

if two corresponding child node pointers are different, then the according sub-sub-trees are assumed to

be incompatible. Thus, the enclosing sub-trees cannot be compatible either.
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The pairwise comparison of all local properties of two graph nodes requires constant effort O(1). The

check for pairwise equal child node pointers causes linear effort with the number of direct children. If

the branching factor is bounded by a constant b = constant (see Section 3.2.2), then the computational

effort of O(b) for the node-by-node comparison can be regarded constant as well.

Time Deviation Estimation

After the sub-tree comparison has been simplified to a node-wise scheme, the deviation bounds for

soft properties still need to be guaranteed globally. For some soft properties this can be achieved on

a per-node basis, for others extra effort is necessary. For the run-time information, which is the most

important example of soft properties, there are two deviation bounds (3.5) and (3.6) which need to apply

globally. Therefore, the following method is explained with the example of run-time information but it

is applicable for other soft properties as well.

In order to ensure relative deviation according to (3.6) it is sufficient to locally guarantee the bounds

for every atomic duration value d stored in every graph node. Then it follows from additivity that the

condition holds globally, i.e. it is true for every duration value between arbitrary time stamps, that can be

expressed as a sum of atomic duration values.

For the absolute deviation bound (3.5) there is no local criterion that guarantees the global condition. Be-

cause run-time information is stored in terms of duration values, the original time stamp t and its deviated

counterpart t′ need to be recomputed from local terms of various graph nodes – compare Equation (3.1)

and Figure 3.5. Thus, total deviation accumulates from various local deviations. When deciding whether

a local deviation is acceptable or unacceptable, previously introduced deviations in current node’s sub-

trees need to be considered (bottom-up approach).

See Section 4.2.4 for an efficient algoritm that propagates accumulated deviation of sub-trees from child

nodes to parent nodes. By using interval arithmetic for the deviation values it allows the cancellation of

positive and negative contributions.

Influence of the Branching Factor

Besides its effect to the computational effort of CCG construction (compare Section 3.2.2), the limited

branching factor is important for the overall compression achieved. In general, the ability for compres-

sion increases with smaller b. A higher child count causes graph nodes to carry more single properties,

i.e. more values to compare. All respective properties must be compatible for two nodes to be compat-

ible. This includes all properties concerning direct child nodes. If p ∈ [0, 1] is the probability that any

two corresponding properties of two nodes match and all properties are statistically independent, then

P (b) = pb · P0 (3.7)

estimates the probability for two complete nodes to be compatible. Since P (b) is monotonic decreasing

the compression ability will increase with smaller values for b. Correspondingly, more direct children

per node make it more likely that at least one is incompatible with its counterpart.

3.3.3 Computational Effort

The computational effort for the outlined compression scheme for Complete Call Graphs comprises of

several parts. For replacing a sub-tree X , all available sub-trees need to be searched for a compatible

replacement. The available set consists of all previously encountered sub-trees that were not removed in

favor of an existing replacement itself.
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Figure 3.5: Accumulation of absolute time stamp deviation over multiple nodes. In order to re-create the

time stamp of the 5th send event (marked green at bottom right) time differences on various

(parent) nodes need to be considered (shown in green). All terms might introduce additional

deviation affecting the particular time stamp and need to be bounded by adapted local bounds.

At first, a sub-set of those candidates is selected that match in respect of all hard properties. This is

possible with O(1) effort by means of an appropriate hash data structure. Then, the earliest of the

remaining candidates is selected that matches with respect to all soft properties. Therefore, the soft

properties of X need to be compared with that of every candidate. A single comparison operation of

two sub-trees requires O(b) effort, compare Section 3.3.2. If l is assumed the maximum number of

replacement candidates for every sub-tree, the total effort connected with a single sub-tree replacement

will be O(l · b). It is possible to have l bounded by a constant, see Section 4.2.2.

In order to compress a Complete Call Graph, the replacement operation needs to be performed for every

single sub-tree. The number of sub-trees equals the number of nodes N in the uncompressed Com-

plete Call Graph as every node is root to its associated sub-tree. Therefore, the total effort for CCG

compression results in

O(N · l · b) (3.8)

with b constant and small. The compression algorithm is discussed comprehensively in Section 4.1.

3.4 Customized Analysis Algorithms

In the beginning the CCG data structure is yet another way of representing data from program traces.

The ability of in-memory compression provides a significant advantage over the classic storage scheme.

However, when it comes to evaluating this data, this approach still has to prove its suitability.
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3.4.1 The Conservative Approach

While the CCG approach is fundamentally different from the classic storage scheme it is possible to

apply the classic evaluation algorithms by emulating a linear data structure from a CCG. This is a generic

conservative approach, which is only suggested for an easy transition.

Only two basic operations are necessary for this purpose. They are both applicable for the classic data

structure: a linear iterator and a fast search operation according to timestamps. The classic iteration

operator traverses a list or an array stepwise forward or backward. It has a linear complexity of O(k)
for k steps. The classic search operation can be implemented as a binary intersection search (which is

possible in arrays) or at least as a linear search (which might be inevitable on linked lists). At the best,

the search operation features a logarithmic complexity of O(log N) for N events.

With the iteration and search operations provided, all classic queries could be adapted to the CCG data

structure, see next Section 3.4.2. When applied to compressed data structures, they operate on a smaller

working set of memory. Even though the query algorithms keep their computational complexity, this

might yield a notable performance advantage. It might be a major benefit, particularly when external

memory is concerned. This is especially the case, if the compressed data structure can fit into main

memory as a whole while the uncompressed data cannot. However, improved algorithms can be designed

for most significant queries to take further advantage of the CCG data structure.

3.4.2 Event Access, Iteration and Searching

This section covers the fundamental evaluation operations on traces which are:

• accessing single events and their properties,

• linear iteration in event sequences (process traces) in temporal order,

• time stamp search in (sorted) event sequences, and

• search according to arbitrary event properties.

The access to single events is a basic and simple prerequisite for any analysis and requires no principle

changes. Either with classic sequential container data structures or with the proposed tree-like data

structure, this is simply an access to elements of compound data types.

A linear iterator for the CCG data structure has to traverse the events in temporal order, which is different

from traversing the nodes. For every event of the current graph node the succeeding or preceding event

is contained in either the same node, the parent node or one of the child nodes. Migrating to a parent,

child or neighbor node is a local operation, which can be assumed to have constant run-time. Thus, the

complexity for iterating linearly through a CCG is O(N) events stored in n graph nodes with N ≫ n.

An efficient search operation for a timestamp t in CCGs can be achieved in a straight forward way. A

recursive search is performed starting with the root node of a process graph. It is assumed that t is

included in the time interval of the root node. Every graph node covers a time interval that is a superset

of all child time intervals. Either, there is a unique child time interval that includes t, then is is made

the new current node. Or no such child node is found, then the current node itself covers timestamp t
and the recursion is terminated. In case the time stamp t does not match an actual event, then the nearest

preceding or succeeding event can be returned optionally. With the branching factor b and maximum

tree depth d the computational effort is O(b · d). Assumed b is constant and d = O(log N) the total

complexity is O(log N), compare also Section 3.2.2.

Searching for events that fulfill arbitrary conditions can be carried out by a complete search. This can be

done either by iterating through process traces linearly or by traversing the management data structure

that contains all replacement candidates, compare Sections 4.2.1, 4.2.2, and 4.2.3. Both have linear

computational complexity, either O(N) with respect to the uncompressed node count or O(n) with

respect to the compressed node count n ≪ N .
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Figure 3.6: Schematic diagram of successive queries onto a CCG. An initial query involves all colored

nodes. The intermediate results are cached. A successive query concerns only the red nodes.

Now the intermediate result for the top level red node can be taken from the cache, all re-

maining red nodes need not be accessed again.

3.4.3 The Cached Summary Query

The most important variety of queries onto trace data is the collection of so called summary statistics for

arbitrary intervals of time and process sets. Frequently encountered examples are the exclusive run time

per function, messages per process or the time share of communication operations. In principle, such

summary statistics can also be generated by profiling, even though profiling is not capable of producing

this information for arbitrary time intervals.

The classic way to compute summary statistics is to iterate through the list of events and sum up the

result over all single events. An alternative way of evaluation is possible by using the additivity property

which states that the sum over values from disjoint subsets equals the value for the union set:

S(T ) =
∑

⊕

S(Ti), T =
⋃

Ti, ∀i 6= j : Ti ∩ Tj = ∅. (3.9)

This scheme of evaluation can be assigned to a CCG data structure in an obvious way by using CCG

sub-trees as the subsets Ti. Thus, the evaluation for any CCG tree can be divided into sub-evaluations

for every sub-tree. In order to generate the result the partial results have to be summarized and perhaps

supplemented by some data from the sub-tree’s root node. This scheme can be applied recursively.

For a single query on an uncompressed CCG this new scheme of evaluation provides no advantage in

terms of computational effort. However, for successive queries as well as for compressed CCGs there is

an opportunity for optimization. Whenever a sub-tree is to be evaluated multiple times, the result of the

first evaluation can be cached and re-used for all following occasions, compare Figure 3.6.

For uncompressed CCGs this happens whenever a query is repeated for an actual sub-tree. Of course, it

seems unnecessary to issue the same query more than one time. But if successive queries cover common

sub-intervals of time, then all nodes and sub-trees thereof do become subject to re-evaluation. Very

frequently there are queries where the former ones involve bigger time intervals A and the following

ones consider only selected sub-intervals B ⊂ A (zooming). Then, all sub-trees involved in the latter

query have already been evaluated during the former. There is no need to re-calculate any intermediate

results except for those nodes that intersect with the time intervals bounds, compare Section 4.5.3.

For compressed CCGs the same effect applies. Furthermore, nodes might be traversed several times

during a single query operation because they are referenced more than once due to compression. When-

ever an intermediate result for a node is required repeatedly, it can be taken from the cache saving the

computational effort for re-evaluation. Thus, the reduction of computational effort equals the node com-

pression, provided a full caching approach is applied. For reduced caching strategies with and further

implementation details see Section 4.5.3.
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Figure 3.7: Vampir timeline display showing the function call behavior (by color) for a selected time

interval (horizontal axis left to right) for a number of parallel processes (vertical axis).

3.4.4 The Timeline Query

Another important kind of request is deriving so called timeline visualizations. Basically, it arranges

states (or single events) along a time axis to reflect the temporal behavior. Usually, the time is displayed

along the horizontal axis from left to right. The vertical axis can be used to show different information,

for example parallel processes or the call stack hierarchy of a single process, see Figures 3.7 and 3.8.

For a timeline visualization, the position and size of every colored box representing a program state must

be computed. This could be done in a straight forward way mapping all states to corresponding pixel

positions proportional to time with respect to a current view interval. This approach works well if the

view interval contains rather few and rather long states. As soon as many states collapse into a single

pixel this visualization method becomes unreliable. The usual solution for this problem is to select any

of the coinciding states more or less by chance, compare Sections 2.2.1 and 2.4.1 and [NAW+95].

Typical pixel resolutions for this type of visualization are in the range of today’s display resolutions

and can be considered almost constant. Practically, they range up to some thousand pixels in horizontal

direction. In any case, it is several orders of magnitude less than the number of states inside any critical

trace. The conventional rendering method, which is traversing all states or events of a trace, shows

a linear computational complexity, proportional to the event count. Thus, this traditional algorithm is

unsatisfactory with respect to correctness as well as with respect to computational effort.

A more expressive graphic representation should involve a sub-pixel aware rendering method. Whenever

multiple states collapse into a single pixel, then the color information reflects this by composing colors

appropriately. Figure 3.8 shows a comparison of the Vampir visualization and an alternative version

using color blending.

Both, the traditional and the visually improved rendering algorithms can be deployed on compressed

CCGs with unchanged computational effort (compare Section 3.4.1). Yet, the summary query introduced

before can be re-used to compute the timeline diagram with less effort but in an improved manner with

correct sub-pixel rendering. The general is to schedule a separate cached summary query for each pixel

column. For every call depth level it has to collect all groups of functions (which are colored identically)



3.4. CUSTOMIZED ANALYSIS ALGORITHMS 61

Figure 3.8: The Vampir process timeline display (top) in comparison with the improved timeline render-

ing output which uses color blending for a more authentic representation (bottom).

and their share of the run time. This information combined with the group-to-color mapping is sufficient

to render the call timeline. Thus, the cached summary query can be used to reduce the computational

effort for timeline visualization again. This underlines the importance of this kind of query. For further

details, the algorithm and the complexity analysis see Section 4.5.4.

3.4.5 MPI Send-Receive Matching

For parallel programs following the point-to-point message-passing paradigm, a specific kind of query

is required to match related message events. Usually, send and receive events are recorded separately

within different processes. Therefore, a matching algorithm is required to compute the bijective relation

of associated send and receive events, see Figure 3.9. This is essential for several purposes:

• determine causal relations between distributed events in parallel programs,

• measure message performance properties like duration and speed, and

• visualize messages between processes for human comprehension.

The mapping for MPI point-to-point messages follows the MPI Standard [For95, For97] which defines

explicit rules for message matching:

• Messages match according to sender, receiver, communicator and tag parameters and according to

temporal order.

• If sender, receiver, communicator and tag are equal for successive messages, then they must be

delivered in same order as sent.

• If one of sender, receiver, communicator or tag differ, then messages need to be delivered as

constrained by the receiver.

• Data type and message length are not taken into account for matching.

Wildcard parameters (like MPI_ANY_SOURCE, MPI_ANY_TAG) need to be resolved during tracing

already, the measurement system needs to determine the actual values. Thus wildcard parameters will
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Figure 3.9: Matching of send and receive events on parallel processes according to the MPI standard.

The visualization connects associated send and receive events with arrows.

not be encountered in trace analysis. Relying on this rules, the matching algorithm will be MPI specific.

For other message passing standards there should be other well-defined rules that allow a corresponding

matching scheme.

According to above-mentioned rules, a matching algorithm cannot work on individual message events. It

rather needs to include all preceding message events. Therefore the match algorithm needs to traverse all

participating process traces from the beginning on in temporal order. This corresponds to a form of par-

tial de-compression when applied to the compressed CCG data structure. Therefore, the computational

complexity for send-receive-matching is at least O(N) for N send or receive events, even when applied

to a CCG representation with n < N nodes. See Section 4.5.5 for the detailed algorithm description and

Section 5.5 for evaluation.

3.4.6 MPI Collective Operation Matching

Matching of collective communication events in MPI follows the same principle as for point-to-point

message events in Section 3.4.5. Again, there are separately recorded events within all participating

processes which are connected by the mapping operation, compare Figure 3.10.

According to the MPI Standard [For95, For97] the mapping algorithm can act very similar to the one for

point-to-point messages (see Section 3.4.5). However, one needs to consider fewer properties:

• The communicator which the collective operation is in.

• The strict temporal order within each communicator.

As only one collective operation can be active on any process at any time, the type and all remaining

parameters of related collective operation events must always match for accurate traces. Matching of

MPI collective operations is considered as a special case of send-receive matching and is not explicitly

referred to further on.

Figure 3.10: Matching of n collective MPI communication events to a common parallel event.
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3.4.7 Automatic Analysis Methods

Besides the fundamental trace evaluation, a variety of methods for automatic trace analysis is known in

literature [WM99, WM00c, FGS03, WMDM07]. Automatic analysis aims to provide readily interpreta-

tion of trace data including a rating of the performance properties. It relieves the human user from the

task of searching for critical spots due to frequently found performance problems.

Usually, such critical spots do not consist of single events but of situations, i.e. conglomerates of related

events. This may comprise for example certain function call sequences (local events only) or message

interchange (local and remote events). Semantic information about certain types of situations is used

to estimate the optimal way of processing and the anticipated performance. Finally, the situations are

reported together with qualitative or quantitative rating. The former classification divides situations into

adequate and critical with respect to performance. The latter gives a scalar weighting or a severity value

in addition. Both allow to select only the critical ones respectively the most severe ones for presentation

to the user [WM98, WM00a, GMT04].

Even though automatic trace analysis covers many different performance situations, it only uses few

basic building blocks for accessing the underlying trace events [WM00b, FGM+01]:

• searching for time stamps and for certain events or situations,

• iterating over events of processes,

• accessing single events and their properties,

• accumulating statistics about events and their properties, and

• relating events locally and remotely.

All of these tasks are covered by the fundamental query algorithms presented above, compare Sections

3.4.2 to 3.4.6. Therefore, existing and future algorithms for automatic analysis of trace data will be able

to rely on the functionality provided by the CCG data structure.

3.5 Persistent Storage and Restoring

So far, the general conception of trace analysis based on compressed CCGs is to create the data structure

on demand, i.e. the compressed CCG is created when reading a trace from a file. Then any desired

analysis is performed on the memory data structure which is dismissed at the end of an analysis session.

Obviously, this causes unnecessary overhead when a trace is read repeatedly. It could easily be avoided

by saving the compressed CCG persistently and restoring it later with much less effort, see Section 4.6.

This process is also known as serialization, because an arbitrary data structure is mapped to a medium

that is supposed to be read and written in a serial manner like a file or a network stream [Eck95].

By this means, a trace file compression scheme can be derived as a by-product of the CCG data structure.

This is suitable for archiving and data transfer. It is sensitive to all compression parameters like error

bounds and branching factors, because it carries altered information like the associated compressed CCG

does. Therefore, it is to be regarded as a lossy compression scheme as well. Depending on the encoding

of the serialized data structure, it is suggested to combine the serialization of compressed CCGs with any

block compression scheme, like gzip or bzip2. This allows the application of a simple, robust and human

readable encoding in plain ASCII text without disadvantages for resulting file sizes.

Beyond the scope of in-memory compression, there are some ideas for further improving trace file com-

pression. First of all, file compression always requires a decompression operation. This is an evident

difference to the transparent way compressed CCGs can be accessed. As soon as there is a decompression

phase, additional techniques can be applied in order to improve compression. In this case, most notably

this is differential coding. It relies on the fact that a graph node can be specified by giving a reasonable



64 3. THE DESIGN OF THE CCG DATA STRUCTURE

similar representative node and indicate all differences by few correction terms. With respect to storage

size, the pair of representative node and correction terms might be shorter than the separately stored

nodes. On one hand, differential coding could be used to create a lossless compression method were

all differences in similar nodes are appended as correction terms. On the other hand, lossy compression

could be enhanced even more by further compressing the remaining representative nodes.

There is a most notable difference when comparing the compressed CCG data structure and the derived

trace file compression method. For compressed CCGs in main memory, rather small branching factors are

recommended. Contrary to this, trace file compression with differential coding prefers large branching

factors because of the improved ratio of the size of a complete node and the size of the correction terms.

See [Knü03] for further information.

By itself, the compressed CCG approach seems too expensive to be used as a sole compression and

decompression tool for trace files. The computational effort and the main-memory requirements are quite

high, in particular when compared with block compression algorithms like Lempel-Ziv [ZL77, Wel84]

and others or tools like gzip or bzip2. Yet, it can provide higher compression ratios than general purpose

compression algorithms. This applies to lossless compression as well as to compression with very narrow

deviation bounds and even more so to compression with substantial deviation bounds.

The main purpose for the persistent storage is to reduce the delay at the beginning of an analysis session.

Construction and compression of very large traces on a workstation might be quite time consuming.

Compared with this, restoring of a previously compressed CCG is much quicker. The initial delay is

reduced from several minutes to some seconds.

As a solution the actual construction and compression with moderate compression parameters should be

scheduled right after tracing time on the original HPC platform. It could either process all merged process

traces together or every process trace on its own. It is not suggested to perform CCG compression during

tracing time! The overhead in computational effort and memory consumption would entirely disturb the

observation of the program execution.

3.6 Summary

The presented combination of the CCG data structure with inherent compressibility and the associated

query algorithms promise a general advancement in trace analysis. On one hand, it reduces the memory

footprint of the data itself. This allows to analyze larger traces that would be inaccessible otherwise. On

the other hand, it decreases the computational effort of typical query algorithms. The acceleration of

analysis is particularly important for interactive analysis and visualization tools.

The following Chapters 4 and 5 will focus on detailed algorithm design and theoretical assessment re-

spectively on experimental validation with real-world examples.
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4 Algorithms for the CCG Data Structure

This chapter is dedicated to the algorithms for construction, compression and evaluation of the newly

introduced data structure. It will provide implementation details for the ideas from the previous chapter

and investigate their computational complexity.

4.1 CCG Construction

For optimal efficiency the construction and compression algorithms for Complete Call Graphs are closely

incorporated such that at no time an intermediate uncompressed CCG needs to be stored. For the sake

of explanation they are discussed separately in the current and the next section. Section 4.3 shows how

both are combined.

4.1.1 General Construction

The construction of a CCG from a program trace relies on a single read-through of all recorded events in

temporal order. Without loss of generality the CCG construction focuses on a single process trace only.

For parallel traces the CCG construction can be performed in parallel but independently, since there are

no inter-process relationships at this stage.

There are three groups of events to distinguish in the construction process: function enter events, function

leave events and atomic events. The former two are mapped to call nodes which represent function calls

within a trace. A call node carries a function identifier and a list of n ≤ b child node references (pointers).

Furthermore, it represents 2 · n + 2 time stamps, including its own enter and leave time stamps as well

as the enter and leave time stamps for all child nodes. During this early phase of node creation, timing

information is actually stored as time stamps, not yet as duration values.

For all enter and leave time stamps the following Lemma applies:

Lemma 2 (Stack Property). Let ∼ be the one-to-one relation that assigns every enter event e to its

associated leave event l ∼ e and vice versa. Then the enter event precedes its associated leave events in

terms of time:

e < l. (4.1)

For two pairs of associated events eA ∼ lA and eB ∼ lB in the same process there is

eA < eB < lA ⇐⇒ eA < lB < lA. (4.2)

Proof. From the procedural programming paradigm follows that a function call ends after it has been

started which implies (4.1). The stack property (4.2) is directly inherited from the procedural program-

ming model which defines a LIFO scheme for function calls.

Atomic events cover all remaining kinds of events. They are always leaf nodes, i.e. have no children, and

carry specific properties according to their specific types. Nodes representing atomic event, which relate

to a single time stamp, carry no timing information. Instead, the time is included by the direct parent

node which necessarily is a call node.
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The CCG creation procedure starts with an initial empty call node with start time 0 which is going to be

the root of the tree. At the same time, this is the initial active node. Now, for every event an appropriate

modification to the existing tree is performed in order to insert the associated information into the CCG:

Enter events: For every enter event e create a new function call node F with start time te and

function identifier taken from e. Furthermore, append F as latest child node to the current active

node P and append te to the time stamp list of P . Finally, F becomes the new active node which

is left pending until the respective leave event l ∼ e arrives.

Leave events: For a leave event l the current active node F must have been created by the asso-

ciated enter event e ∼ l because of the stack property (4.2) which can be checked by comparing

the function identifiers of l and F . Then, append the time stamp tl to the time stamp lists of the

current node F and its parent node P . Finally, make P the current active node again and finalize

node F .

Atomic events: For atomic events a separate node is created that does not depend on any earlier

or later events. Therefore, node creation and finalization can be performed in one step.

Finalization: On finalization of a node it is guaranteed that all child nodes have been finalized

before according to (4.2). At first, the time representation is transformed from 2 ·n+2 time stamps

ti to 2 · n + 1 time durations di:

di = ti+1 − ti, i = 0, ..., 2n. (4.3)

Then, the actual CCG compression looks for a replacement for the current node (see Section 4.2).

If successful, the node is deleted. Otherwise, the node is copied to a permanent representation

with an optimized encoding (see Section 4.1.3). In either case, the reference from the parent node

P to the current node is updated to point to the correct new represenataion.

In Figure 4.1 the CCG construction process is demonstrated for the following example trace:

10 enter A

20 enter B

30 leave B

50 enter C

60 send

70 leave C

90 leave A

The computational complexity for CCG construction without compression as described here is O(N)
for N events. For every event, either node creation or node finalization or both have to be performed,

causing constant effort per event. The time transformation has constant effort per event, too, because

every time stamp delivered by an event takes part in not more than three subtractions: one inside the

current node and two in the parent node.

4.1.2 Splitting of Wide Nodes

According to Section 3.2.2, wide nodes with child count n > b have to be split into a tree of artificial

nodes. A straight forward implementation would wait until finalization of a wide node and derive a

balanced tree of artificial nodes. In general, this approach works fine. In particular, a balanced tree would

always have minimum depth logb n. However, this way of splitting has a severe drawback concerning

very wide nodes with n ≫ b children. Then, the complete node would have to be stored before it can be

transformed. Only after this, the compression scheme can reduce the memory requirements. Thus, this

simple splitting approach has temporary memory requirements of O(n).
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Figure 4.1: Demonstration of CCG construction: Starting with an empty root node (a) the function A is

entered at time 10 (b). Then sub-function B is called at time 20 (c) and immediately left at

time 30 (d). Finalization of node B results in (e). A call to function C at time 50 creates a

corresponding node (f). Then a atomic event send at time 60 creates a leaf node (g) which is

finalized instantly (h). Now function C is left at time 70 (i) and finalized (j). Finally, function

A is left at time 90 producing state (k) and in turn state (l) after finalization. As the end of

the trace is reached there is still the root node to be finalized. Thus, (m) is the resulting CCG.

In particular, for degenerated flat traces this would be unacceptable. Such traces consist only of a main

function with direct child function calls but no deep call hierarchy. While inappropriate for a naive CCG

implementation, such traces are perfectly valid originating for example from limited instrumentation

where only MPI communication functions are considered which contain no child function calls.

A more advanced algorithm allows to create the artificial nodes while new children are appended to a

wide node F and before the finalization of F . The algorithm works in two stages: An early stage is

performed just before the next child node is to be appended. This stage limits the actual number of child

references to ≤ b · log n instead of ≤ b. This is a sufficient reduction for practical purposes compared to

the original number n. Finally, the late stage enforces the strict limit of b children per node. See Figure

4.3 for an example.

During early stage splitting, all nodes are assigned a child level. This is necessary in order to create a tree

of artificial nodes with minimum depth and branching factor b (minimum-depth tree). All newly added

child nodes get the initial level 0. Further on, groups of children of same level are turned into a new

artificial node, whose level is therefore incremented by 1. Before a new child is appended to a node there
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Figure 4.2: Example of on-the-fly splitting of wide nodes. In (a) there is a function foo with currently

three children A, B and C which have already been finalized and may have been replaced

already (gray). A fourth child D is about to be appended. With the limit b = 3 the child

level 0 of node foo is filled up. Before D can be added, early stage splitting takes place. All

current children A, B, C are replaced by an artificial node X1 of child level 1. Then D is added

in child level 0 (b). Both, X1 and D are subject to finalization and compression at once (gray).

After some more children have been added there are two artificial nodes X1 and X2 of child

level 1 present and another three children J, K, L are waiting to be added (c). In turn J, K, L

are replaced by level-1 node X3. Now, the three level-1 nodes X1, X2, X3 are transformed

to a new artificial node Y1 of level 2 (d). Three more children M, N, O are appended before

finalization of node foo (e). Now foo has 4 > b child nodes. Prior to finalization late stage

splitting will reduce this number to ≤ b by introducing X4 of level 1 and Y2 of level 2 (f).

Compare Figure 4.3 for the complete artificial sub-tree generated from wide node foo.

is a check, if the lowest level l already contains b entries L1, ...Lb. If so, those entries are replaced with

a new artificial node A which adopts the children Li. This reduces the current child count of node F by

b − 1. The artificial node A is inserted to the next higher child level l + 1 and the procedure is iterated

until a level with < b entries is reached. Then A can be finalized and replaced immediately, following

the normal course of the compression scheme, compare Figure 4.2. By this means, artificial nodes are

created, finalized and compressed while the parent node F itself is still growing. This works without

prior knowledge of the final child count of a wide node.

Complementing the early stage of node splitting there is the late stage performed just before node final-

ization. It has to terminate the intermediate states of the l = logb n pending child levels with mi ≤ b
entries each. For every pending child level l an additional artificial node is generated and inserted to the

level l + 1. This works just like in early stage but regardless of the number of entries per level.

Figure 4.3 shows a comparison of the resulting unbalanced minimum-depth tree with its strictly balanced

counterpart. Both are guaranteed to have the same minimal depth, which is the most important feature.

Therefore, search operations in either one have optimal logarithmic complexity. Yet, the temporary

memory requirements are drastically reduced from O(n) for the balanced tree to O(b · log n) for the

minimum-depth tree.

Furthermore, the minimum-depth approach splitting has an advantage in terms of the following node

compression. While the balanced splitting would create an even spectrum of artificial nodes with n =
2...b children per node, the minimum-depth splitting creates the majority of artificial nodes with b chil-



4.1. CCG CONSTRUCTION 69

foo

                       

(a) Node main with 11 children without splitting,

 

       

 

       

 

       

 

     

 

     

 

     

foo

     

 

       

 

     

 

     

 

     

foo

     

(b) ... after balanced splitting (left uncompressed, right compressed),

 

       

 

       

 

       

 

     

 

       

 

   

foo

     

 

       

 

     

 

       

 

   

foo

     

(c) ... and after minimum-depth splitting (left uncompressed, right compressed).

Figure 4.3: Comparison of a wide CCG node main without splitting (a), after balanced node splitting

(b) and after the minimum-depth splitting (c). For a detailed explanation of the early and late

stages of splitting see Figure 4.2.

dren during the early stage plus a few remaining ones with ≤ b children duing the late stage. Under

optimal conditions, all artificial nodes on the same child level and with the same child count are compati-

ble to one another. Then, the minimum-depth splitting scheme allows better compression, see Figure 4.3

for an example.

4.1.3 Graph Node Encoding

The graph nodes representing trace events are regarded as atomic items for the CCG approach. This

section focuses on the encoding of the nodes.

In the life cycle of every CCG node there are two phases, that are covered by two different node data

types. Before node finalization and comression, CCG nodes are stored in temporary construction data

types. During node finalization, CCG nodes are either removed due to compression or transformed into

a permanent representation.

The construction nodes a stored in a generic data type, that is able to hold any node type as well as

additional properties that are only required until finalization. This allows to fill in partial information

before the actual node type is determined. The memory consumption of construction nodes is not critical,

because there is only a limited number of at any point in time.
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Figure 4.4: OOP class hierarchy for node data structures (left). ConstructNode represents any node

type prior to finalization. Later nodes are copied to an instance of the non-abstract sub-classes

of PermanentNode: either ParentNode (for function calls), CollNode (for collec-

tive MPI communication events) or MsgNode (for point-to-point communication events).

The hierarchy is extended by template meta-programming (TMP) in order to reduce over-all

memory consumption (right).

The permanent node are stored in separate compound data types for different node types. They share

some common properties which should be accessible in a uniform manner, but also have some type

specific properties. Furthermore, permanent nodes are read-only data structures and are critical with

respect to memory consumption, because they constitute the actual CCG. Therefore, the data types for

the different node types are modeled in an OOP (object oriented programming) class hierarchy, featuring

convenient virtual access methods for common node properties, see Figure 4.4(left).

With this storage scheme for permanent nodes, the total memory consumption of CCGs is approximately

twofold compared to sequential data structures (arrays). This is mainly due to the additional references

(pointers) between CCG nodes, that are not present in sequential arrays.

Yet, the CCG approach allows further optimization of the node storage scheme: The time duration values

contained in the call nodes are usually much smaller than the original time stamp values. Therefore, it

is rarely necessary to use a universal 64 bit integer variable. Instead integer variables of 32 bit, 16 bit or

even 8 bit length would be sufficient often1.

Therefore, the OOP class hierarchy can be extended to include node types with different integer types

for time durations, see Figure 4.4(right). On creation of every permanent node the smallest integer type

is selected, that is sufficient to hold all duration values.

This scheme is transparent to read access via virtual methods, yet, node finalization and transformation

become more complicated. In particular, this has negative impact on the code size and its maintainability.

However, this concept can be put into practice elegantly and very efficiently by using C++ template meta

programming [Vel95a, Vel95b]. Templates are a C++ language concept providing parameterized data

types and function definitions. They are evaluated at compile time, not at run time. Templates are

fundamentally different from objects and inheritance between oriented classes, but it can be combined

with them very nicely. For more information on this see relevant literature about C++ in general and C++

templates in particular [Eck95, Vel95a, Vel95b].

1An alternative solution could be run-length encoding for the time duration values in order to remove leading zeros.
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4.1.4 Graph Node Allocation

All nodes taht are not replaced during CCG construction need to be stored permanently. This results in

(potentially) large memory consumption which is accumulated by many small pieces. The typical size

of a single permanent node is 20 to 200 bytes. Yet, the total memory consumption may as well grow to

the order of magnitude of the available main memory size.

The memory is allocated via the memory management interface of the operating system, for exam-

ple via the POSIX malloc() function. If implemented in a naive way, this would imposes cause

notable overhead with respect to run-time, because of the frequent memory allocation calls, and with re-

spect to memory consumption, because of internal memory management information per allocated block

[BMBW00].

Frequent calls to the memory management interface can be avoided by introducing an adapted memory

allocation scheme. It uses two different approaches for construction time nodes, which are frequently

created and deleted, and for permanent nodes, which are created consecutively without intermediate

deletion.

At any point in time, there is only a small number of construction nodes present, thus, they will not

become critical with respect to memory consumption. Their number corresponds to the current depth of

the function call stack. Therefore, construction nodes are arranged in a stack data structure where they

are re-used, diminishing almost all memory allocation operations on their behalf.

The permanent nodes account for the major memory consumption of any CCG. They are created conse-

qutively and with out intermediate deletion or re-allocation. Therefore, permanent nodes can be placed

at consecutive locations inside a large pre-allocated memory area. By this means, many small allocations

are replaced by a few large ones eliminating the run-time overhead as well as the memory consumption

overhead almost completely.

4.2 CCG Compression

The compression of a CCG is achieved by replacing maximum compatible sub-trees with references to

a single instance. Instead of comparing whole sub-trees in full depth it is desirable to use a comparison

scheme with constant complexity, independent of the size or the depth of the sub-tree. This is possible

given that all nodes have no more than b = constant children (see Sections 3.2.2 and 3.3.2).

The pairwise sub-tree comparison considers only the top nodes of every sub-tree and its child references

(child pointers). If the top nodes match with respect to node type, hard properties, and soft properties

and all pairwise corresponding child references point to the same sub-tree, then the complete sub-trees

are guaranteed to be compatible. This means, the test for identity of arbitrarily large sub-trees is reduced

to a single pointer comparison.

This simplification is only valid, if corresponding compatible child nodes have been compared and re-

referenced to the same replacement node before, see Section 3.3.2. Therefore, this optimized scheme

determines the order in which the graph nodes have to be handled to a bottom-up order from child nodes

to their parent nodes.

Fortunately, this is the very order of node finalization in the course of the construction process, see

Section 4.1. Thus, compression can be incorporated into the finalization step, such that compression for

a single node is performed right after its creation. See Figure 4.5 for an illustrative example.
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Figure 4.5: Successive compression in a CCG. The first graph (a) shows the uncompressed sub-tree.

After the finalization of node bar* it is found to be compatible with node bar and replaced

by a reference (b). Note the slight difference in run-times: the deviation arising from this is

propagated to the parent node as a deviation interval [-1,0]. After finalizing foo* it is

replaced by a reference to foo as both reference the same child node (c).

4.2.1 Search for Replacement Nodes

In the course of CCG compression, for every node (sub-tree) C a search for a compatible replacement

node (sub-tree) P is performed, see Figure 4.5. The search operation considers the following node

attributes:

1. node type,

2. child references (pointers),

3. hard properties, and

4. soft properties.

The optimized search method for replacement nodes uses the first three node attributes in order to quickly

locate a sub-set of replacement candidates. Only those are subject to the expensive one-by-one compar-

ison with respect to soft properties. For the node C a hash value h = h(C) is computed from the node

type, the child node pointers and its hard properties. Then h is used as index in a hash data structure

containing all previous nodes that are not eliminated in the course of compression.

The hash data structure contains Nhash bins for all values (h mod Nhash) ∈ [0, Nhash − 1], compare

Figure 4.6. To every hash bin there is a collision list which distinguishes nodes with identical hash values

but different attributes. To each collision list entry there is a so called S-list of similar nodes whose entries

differ only in soft properties. The collisions lists are usually rather short, provided there is a reasonable

hash function [JJ97] and the number of all S-lists in the whole data structure is in the same order of

magnitude as Nhash. The latter can be achieved by adaptive re-hashing as the lengths of the collision

lists exceed a certain threshold.

Finally, the soft properties (fourth attribute) are examined for all replacement candidates in the S-list.

Each entry Si is compared to C with respect to all soft properties, see Section 4.2.4. The first matching

entry is selected as replacement for C and the search is aborted. If no entry is found, then C is appended

to the end of the S-list where it is available as future replacement candidate.

4.2.2 Caching of Nodes

In general, the length L of the S-list S is unbounded and effort for linear traversal is O(L). In order to

achieve constant over-all effort for the search operation, L can be restricted by a constant bound such

that only the L∗ most recent candidates are respected. The limited search method is implemented with a
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S−list

Figure 4.6: Hash data structure for graph nodes. Each hash table entry points to a collision list (blue).

Every collision list references multiple S-lists, which contain all nodes with common hard

properties. There are various strategies for searching within S-lists, see below.

cache area out of cache

high priority low priority

search
new entryfirst match

Figure 4.7: Search and caching scheme within S-Lists: There are ≥ M∗ entries in the cache area which

are considered in search operations in strict front-to-back order(blue). The first match is taken

as a result. Furthermore, this element is swapped with its predecessor in order to increase its

priority (green). If no match is found then a new entry is inserted at the end of the cache area,

pushing the previous item at this position out of cache (red).

priority cache with the least frequently used strategy (LFU). Every S-list (compare above) is managed as

a separate cache, such that only the first L∗ entries are actually regarded as cache area and later entries

are ignored, but still kept in the storage container, compare Figure 4.6.

Searching is performed in a front-to-back manner and stops at the first actual match, the corresponding

item is used as result. As a side effect, the result item at index i is swapped with its predecessor at index

i − 1, (i > 2). Though this means, priority is increased for successfully matching entries.

If the search turns out negative, because there is no matching item among the first L∗ entries, then a new

one is created at (or near) the end of the cache. This gives minimum priority to newly created entries.

The previous entry at this position is moved out of the cache area to the end of the S-list, compare also

Figure 4.7.

The run-time effort of this caching scheme still grows linear with the length of the S-list like for full

search. Yet, it is bounded by a constant L∗. The additional effort for the priority cache is constant per

search operation.
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Figure 4.8: Effect of search order: assume four sub-graphs that are identical in terms of hard properties

(left). Nodes A1, A2, A3, A4 are pairwise compatible (i.e. matching soft and hard proper-

ties). C1, C2 and D are pairwise compatible, too. B is compatible to D but not to C1 and C2
(not transitive). With front-to-back search without re-ordering the compression results in the

configuration where D is replaced by B (middle). With the priority cache scheme introduced

above, D is replaced by C1 (right). This influences the compression for the parent node A4:

it can either be replaced only by A1 (middle) or by A2 and A3 (right).

4.2.3 Influence of the Node Search Order

The search for replacement nodes always returns the first compatible node instead of the best match

(according to any rating), because of the tremendous computational complexity for an optimal selection.

Therefore, the search order influences the compression result. In particular, if there are multiple valid

replacements for a candidate node, then the first one tested will win. For compatible parent nodes it is

crucial, that each pair of corresponding child nodes is replaced by the same reference (if compatible), see

Section 3.3.2. Otherwise, the parent nodes cannot be re-referenced to the same instance. Because of this,

a closer look at the effects of the search order to the compression is necessary. Three search strategies

are discussed below:

• front-to-back search,

• back-to-front search, and

• priority cache search (according to Section 4.2.2).

The front-to-back search always tests nodes in the order of creation, i.e. it returns the earliest compatible

node. In case the earliest replacement is only able to cover a small share of all nodes (of a group) and a

more recent node is covering a larger share, then the latter cannot be preferred over the earlier. This is

a severe disadvantage in the long run. Furthermore, the front-to-back search is unsuitable for a limited

search approach. If only the L∗ earliest nodes are regarded, no new nodes can be incorporated once there

are more than L∗ entries which could effectively disable any further compression.

Unlike front-to-back search, the back-to-front strategy is more suitable for limited search. It always picks

the most recent compatible replacement, thus it will adapt to new nodes very quickly. Unfortunately,

this conflicts with the requirement, that corresponding child nodes should be replaced with the same

references. If new nodes appear in between the compression of the first and the second set of child

nodes, then the new nodes are preferred over the previous ones. As a consequence, sporadic new nodes

at leaf level will destroy an established compression path for the parent node, it’s parent nodes and so on.

The priority cache search (see Section 4.2.2) is adaptable to new situations and at the same time regular

enough to ignore occasional disturbances due to newly added nodes. It increases the most frequently

used node within a limited part of the compression history (depending on L∗) inserts new nodes with

low priority. Thus, short-term changes are ignored while long-term changes are taken into account.

As a positive side effect, the latter scheme reduces the number of node comparisons. It increases the

priority for frequently referenced nodes and thus decreases the number of comparisons before this node

is found the next time. On average, the effort in the more probable cases is decreased at the expense of

the less probable cases, reducing the over-all effort.
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Figure 4.8 shows an example for front-to-back search and priority cache search. Assume, that in the

original situation in Figure 4.8(left) the nodes C1, C2 and D are pairwise compatible and B is com-

patible to D but not to C1 and C2. With front-to-back search D is always re-referenced to B – Figure

4.8(middle). Using priority cache search the replacement chosen depends on how often it has been used

before. In the given scenario, C1 is picked instead of B, because B is used only once (for itself) whereas

C1 is used twice.

4.2.4 Node Comparison

The comparison of two nodes with respect to all soft properties tests if the difference of corresponding

values lies within the allowed deviation bounds. Sometimes, the deviation bounds are defined globally

but in some cases it needs to be adaptive. In particular, the absolute time deviation for nodes needs

to be propagated from children to parent nodes as introduced in Section 3.3.2. The actual deviation

estimation for sub-trees is performed with deviation intervals2 instead of absolute values. This improves

compression notably, because it allows mutual cancellation of positive and negative deviations.

Lemma 3. Interval arithmetic performs operations on intervals a = [a∗, a
∗] ∈ IR instead of scalar

numbers x ∈ R. All intervals have to be non-empty, i.e. a∗ ≤ a∗. Point intervals a = [x, x], x ∈ R are

allowed. Monadic and dyadic operations F : IR → IR (e.g. abs, sin, cos, ...) and ⊙ : IR × IR → IR

(e.g. +,−, ∗, /, ...) based on corresponding scalar operations f : R → R and ◦ : R × R → R can be

defined in a general way as:

F (a) = F ([a∗, a
∗]) :=

[

min
x∈a

(f (x)) , max
x∈a

(f (x))
]

, (4.4)

a ⊙ b = [a∗, a
∗] ⊙ [b∗, b

∗] :=

[

min
x∈a

min
y∈b

(x ◦ y), max
x∈a

max
y∈b

(x ◦ y)

]

. (4.5)

Following this definition, interval addition + and interval subtraction− are no longer inverse operations

[AH83]. The alternative operation ⊖ can be introduced as inverse interval addition:

[a∗, a
∗] + [b∗, b

∗] := [a∗ + b∗, a
∗ + b∗] (4.6)

[a∗, a
∗] − [b∗, b

∗] := [a∗ − b∗, a∗ − b∗] (4.7)

[a∗, a
∗] ⊖ [b∗, b

∗] := [a∗ − b∗, a
∗ − b∗] , a∗ ≤ b∗, a

∗ ≥ b∗. (4.8)

Proof. The proof for Equations (4.6), (4.7) and (4.8) is trivial.

Propagation of deviation bounds can be implemented according to Lemma 4 using interval arithmetic,

compare also Figure 4.9.

Lemma 4. Let P and C be graph nodes with n children each. Let (dP
0 , ..., dP

2n) and (dC
0 , ..., dC

2n),
dP

i , dC
i ∈ R be the 2n + 1 duration values of P and C and (eC

1 , ..., eC
n ), eC

i ∈ IR the deviation intervals

of the sub-trees rooted in C’s child nodes. Let the interval T ∈ IR globally define the maximum absolute

deviation of time stamps. Then the maximum intervals Tj ∈ IR with

Tj + eC
j ⊆ T, j = 1, ..., n, (4.9)

Tj := T ⊖ eC
j . (4.10)

2This is equivalent to managing upper and lower bounds separately.
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Figure 4.9: Comparison of two nodes P and C for absolute time deviation: For the second child nodes

(2), the time deviation is s3 = tP3 − tC3 , compare Equation (4.14). This is added to deviation

interval eC
2 of the second sub-tree. The result s3 + eC

2 contributes to the deviation interval E
of current node , see Equations (4.16) and (4.17).

are the sufficient local deviation bounds for accumulated deviations in durations. Now, the tests

j−1
∑

i=0

(

dP
i − dC

i

)

∈ T, ∀ j = 1, ..., 2n + 1 and (4.11)

2j−2
∑

i=0

(

dP
i − dC

i

)

∈ Tj , ∀ j = 1, ..., n (4.12)

can be performed with local data only.

Proof. For both nodes P and C the following tPj and tCj

tXj =

j−1
∑

i=0

dX
i , j = 0, ..., 2n + 1, (tX0 = 0), X ∈ {P, C} (4.13)

re-create the time stamps of the nodes relative to the node’s first time stamp and

sj = tPj − tCj =

j−1
∑

i=0

dP
i −

j−1
∑

i=0

dC
i , j = 0, ..., 2n + 1, (s0 = 0) (4.14)

=

j−1
∑

i=0

(

dP
i − dC

i

)

(4.15)

are the deviations between the time stamps of P and C. All sj must be bounded by the global deviation

interval T . The deviations in the sub-trees given by the eC
j are moved to the past or to future by s2j−1 as

the start time stamp t2j−1 of the sub-trees includes alterations. Therefore, the combined deviation must

obey the global bound:

s2j−1 + eC
j ⊆ T. (4.16)

This is assured by s2j−1 ∈ Tj ⊆ T according to (4.9).

If the test for local time stamp deviation from Lemma 4 was successful then node C can be replaced

by P . Then the time stamp deviation interval E for node C will be necessary when C’s parent node is

compared with respect to soft properties.
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Lemma 5. Let C be a graph node that is subject to replacement with properties as defined in Lemma

4. Its deviation interval can be computed from all time stamp deviations in C and in the sub-trees of its

child nodes as:

E = {si}
2n+1
j=0 ∪

n
⋃

j=1

(

s2j−1 + eC
j

)

. (4.17)

For leaf nodes this simplifies to E = {0, s1}. If node C is not replaced, E defaults to 0.

Proof. With sj and eC
j like in Lemma 4 E is the superset of all time stamp deviations in C.

The deviation interval E will be part of the comparison of the parent node of C. Always, there is 0 ∈ E
since s0 ≡ 0. Note that the eP

i from replacement nodes are not needed in Lemma 4 or in Lemma

5. For every temporary node C the deviation intervals eC
i of all child nodes Ci are only required at

finalization time of C, i.e. those of recently finalized nodes. It is most suitable to store all child node’s

deviation intervals in the temporary parent node C instead of the child nodes Ci directly. This means,

to every child node pointer a deviation interval is supplemented in the temporary node data structure.

The permanent notes do not need to contain deviation intervals anymore, thus reducing the total memory

consumption. Compare also Figure 4.5 where deviation intervals are associated to the edges of the CCG.

4.2.5 Compression Metrics

The degree of compression achieved can be measured in two ways: Counting the number of final graph

nodes or comparing the total memory usage. For both the compression ratio R is defined as the uncom-

pressed value divided by the compressed value. The compression ratio according to the graph node count

is defined as

Rnodes :=
N

n
=

nodes in uncompressed CCG

nodes in cCCG
. (4.18)

The compression ratio according to memory usage is defined as

Rmemory :=
M

m
=

memory for uncompressed CCG

memory for cCCG
. (4.19)

The former reflects the reduction of total effort for graph traversal and evaluation algorithms when con-

stant complexity per node is assumed. The latter reports the raw memory savings.

Both, Rnodes and Rmemory can be determined without establishing an uncompressed version of the CCG.

The values of n, N , m and M can be counted in the course of compression. At finalization time of each

node C, its memory size mC is known. Always, N is increased by one and mC is added to M . If a node

is subject to compression, then n and m remain unchanged. If C is not replaced but kept in the CCG then

n and m are increased in the same way as N and M . It follows, that compression will never increase

node count or memory usage:

n ≤ N =⇒ Rnodes ≥ 1, (4.20)

m ≤ M =⇒ Rmemory ≥ 1. (4.21)

In general, Rnodes and Rmemory are not proportional. They show similar behavior with respect to some

parameters, e.g. the time deviation bounds abs and rel, and behave differently with respect to other, e.g.

the branching factor b. See Chapter 5 for experimental results.
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Figure 4.10: Structure of the combined algorithm for CCG construction and compression comprising of

three parts for enter events, leave events and atomic events.

4.3 The Combined Construction and Compression Algorithm

For an actual implementation the compression part is embedded in the CCG construction. By this means,

at no point a large uncompressed parts need to be stored before compression. All compression steps that

affect a particular node are performed at finalization of the very node. This includes the search for an

suitable replacement node whereupon either a replacement is found or a new permanent node is created

from the temporary node. Figures 4.10 and 4.11 give an overview of the combined construction and

compression algorithm. It consists of three parts for enter events, leave events and atomic events. Only

the latter two contain actual compression.

For enter events an temporary node is created, initialized and appended to the temporary parent node

(Figure 4.10 left). An additional check is performed for the parent node’s child count in order to trigger

a node split operation if necessary (see Section 4.1.2). The creation and finalization of artificial nodes is

almost identical to the handling of atomic nodes.

For leave events there is a previously created temporary node to be finalized (Figure 4.10 middle). At

first, late stage splitting is performed if necessary (see Section 4.1.2). If new artificial nodes are created,

they are to be handled separately like explained for atomic nodes below. Then, all time stamps of the

current node are translated into time durations b efore the actual compression takes place including the

search for replacement nodes (Figure 4.11). If a replacement nodes was found, the temporary node is

deleted, achieving actual compression. Otherwise a permanent node is created from the temporary node

and added to the set future replacement candidates. Finally, the child reference from the parent node to

the current node is updated.

The algorithm for atomic events combines parts of both others (Figure 4.10 right). The first part is

similar to the one for enter events, including the early splitting of the parent node and the creation of

a new temporary node. The final part is shared with the algorithm for leave events including the actual

compression part (Figure 4.11).
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Figure 4.11: The compression algorithm as used by the combined CCG construction and compression.

4.4 Advanced Construction and Compression Techniques

Based on the default construction and compression algorithm discussed above, some advanced tech-

niques can be derived:

Re-compression: Reducing an existing compressed CCG further with enlarged deviation bounds.

Merging: Merging of several (compressed) CCGs or sub-graphs thereof into a joint graph.

Adaptive compression: Determine compression parameters complying given ressource limits.

The following sections present the necessary modifications to the basic CCG construction and compres-

sion algorithms.

4.4.1 Re-Compression of Existing CCGs

Starting with a compressed CCG with deviation bounds abs and rel, re-compression requires enlarged

deviation bounds3 absnew ⊇ abs and relnew ⊇ rel. If nodes A and B become compatible with respect

to absnew and relnew that were not with respect to the original deviation bounds, then the compression

ratio can be further increased. It is inevitable to assume that the original deviation bounds have been

used to maximum extent, because detailled deviation information is unavailable, compare Section 4.2.4.

This is an overestimation for nodes replaced with smaller actual deviation. Therefore, re-compression

will achieve inferior compression than original compression with absnew and relnew.

3Deviation bounds are modeled as intervals instead of scalars, see Section 4.2.4 and Lemma 3.
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The re-compression scheme needs to use the following effective deviation bounds for the comparison of

nodes A and B with respect to the soft properties:

abs∗ := absnew ⊖ abs, and (4.22)

rel∗ := relnew ⊖ rel. (4.23)

The operation ⊖ denotes the inverse interval addition, see Lemma 3 in Section 4.2.4.

The CCG re-compression consists of two stages that are to be iterated. The first stage searches for

compatible nodes. According to Section 4.2.1, such nodes can only be found in the same S-list. The

trivial algorithms would search for pairs of compatible nodes and use either one as a replacement for

the other. A more sophisticated scheme would use locally optimal replacement nodes, i.e. nodes that are

eligible to replace the largest number of other nodes. Both schemes would cause O(l2) effort with the

length of the S-list l. An even more ambitious approach selecting globally optimal replacements, which

make parent nodes (and parent’s parents, etc.) compress optimally, would be exceedingly expensive in

terms of computational complexity.

During the first stage, all replacements of a node B by node A are recorded in a translation table T :
B → A which requires further temporary memory of order O(n − nnew) with the current node count n
and the subsequent node count nnew.

The second stage of node re-compression performes the translation of child node referencing according to

the table T . It adjusts all child references to any of the previously deleted nodes B in all nodes. If at least

one child reference was changed inside a node, an additional re-hashing must be performed, because

child references are involved in the computation of hash value. After the second stage the translation

table T is reset. The effort for checking all child references is at least O(n · b) because for every node

there are at most b children. The table look-up in T as well as the re-hash operation are assumed to have

constant effort O(1). Both stages of the CCG re-compression algorithm are shown in Figure 4.12.

If a node is moved to a new S-list, there is potential for further compression within this S-list. Therefore,

the the two stages need to be iterated until no new replacements occur in order to produce a completely

re-compressed CCG. The iteration is guaranteed to terminate according to the following lemma.

Lemma 6. Re-compression of Compressed Complete Call Graphs terminates after d iterations with the

maximum depth of the graph d.

Proof. A node p is subject to re-compression after the latest child B has been re-compressed whereupon

the respective child reference is translated. Assume B was re-compressed in iteration i, then P appears

in the right S-list in iteration i + 1 and can be replaced. The index i is the order of a node.

Leaf nodes have order 1 and can be replaced in the first round. All nodes of order 2 are only dependent on

leaf nodes. Thus they can be replaced in the second round and so on. A maximum oder node, which has

no parent node by definition, is subject to re-compression in round d. Deviation intervals are propagated

from leaf nodes upwards in the very same scheme.

In order to guarantee absolute global deviation bounds, the deviation intervals of all replaced nodes need

to be tracked, compare Sections 3.3.2 and 4.2.1 as well as Lemma 5. This requires O(n) temporary

memory in a separated data structure, because permanent nodes contain no deviation information like

construction nodes.

In Section 4.1.4 contiguous memory placement for node objects was introduced which does not allow to

deallocate memory selectively. Therefore, re-compression could not reduce the memory consumption m
but would cause memory fragmentation. The node count n is reduced nonetheless. This could be solved

by new allocation and copying requiring additional temporary memory as well as another iteration of

node re-referencing stage.
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Figure 4.12: The CCG re-compression algorithm including translation of node references. It is repeated

as long as new translations are found.

The total effort of the re-compression algorithm comprises from the two stages that are iterated ≤ d
times. The first stage compares every node with all l ≤ L nodes in the same S-list with O(n · l) effort.

The second stage needs O(n · b) effort as stated above. This results in a total effort of

O (d · n · (l + b)) . (4.24)

It relates to O(N · l · b) effort for CCG construction and compression according to Section 3.3.3. This

indicates no notable advantage for re-compression of an existing CCG over compressing the original

data with absnew and relnew in the first place. Instead, the disadvantages indicated above makes re-

compression generaly inadvisable, compare also Section 5.3.1.
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4.4.2 Merging of Disjoint CCGs

Assuming there are two or more compressed or uncompressed CCGs without shared sub-graphs (disjoint

CCGs) and there are unique child identifiers (pointers) between all Gi. Strictly speaking, the {Gi}i form

a common CCG G∗ already, yet with unconnected components. True merging should create connections

between the original graphs Gi such that sub-trees become shared between previously disjoint sub-graphs

reducing the total memory consumption. However, the existence of identical sub-trees in multiple Gi is

rather improbable, in particular for large sub-trees which are more promising in terms of compression.

Compare the arguments for a single node in Section 3.3.2 and Equation 3.3.2.

As a consequence, it is suggested to combine merging with re-compression. This implies the same

disadvantages in terms of overhead and reduced compression as for re-compression, see Section 4.4.1.

4.4.3 Adaptive Deviation Bounds

So far, deviation parameters have been specified explicitly in order to have node count and memory

usage reduced by an amount which is not precisely predictable. For some applications it is desirable to

explicitly limit resource usage (memory consumption) while the exact deviation bounds are to be defined

implicitly. Through this means, it is possible to analyze a given trace with the (approximately) minimum

deviation bounds that comply with the available resources.

The general algorithm for adaptive compression keeps track of the resource usage while following the

conventional construction and compression procedure. When the given resource limit is exceeded, the

algorithm concludes that the current deviation bounds are too restrictive.

Then, the adaptive algorithm needs to perform two tasks in order to resume construction and compres-

sion: expanding the deviation bounds and reducing the current resource usage. Both are discussed below.

If certain maximum deviation bounds are not sufficient to compress the given trace in accordance with

the resource limits, the algorithm must abort.

Expansion Strategies

Adaptive compression always starts with conservative initial deviation bounds or zero deviation. The ex-

pansion of current deviation bounds to more relaxed bounds can be done according to several strategies:

• explicitly scheduled,

• arithmetic expansion,

• geometric expansion, or

• dynamic expansion.

For the first method an explicit list of deviation bounds pi must be specified, which is monotone increas-

ing pi ( pi+1 for generic deviation parameters pi ∈ IR. This approach might be usefull for special

purposes, yet in general, it is rather inconvenient.

The second method expands the deviation bounds by a constant offset e per iteration. This results in a

linear expansion strategy pi = p0 + e ∗ i. The successive growth from small scale compression bounds

to medium and large scale compression parameters will require many iterations for small e, compare

Sections 5.2.1 and 5.2.2.

The third method uses a constant expansion factor f for the current deviation bounds. It results in an

exponential growth pi = p0 ∗ f i. Compared to the second strategy, this allows a slow increase for small

scale compression parameters and an accelerated growth for large scale parameters.
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Unlike the three former static methods, a dynamic expansion strategy can anticipate the final ressource

usage Utotal by:

Upi

total =
d

c
· Upi

current, (4.25)

if progress information is available during reading: For example, if the numbers of previously processed

events c and total events d are given. The term Upi

current denotes the current resource usage. With an

appropriate compression model, the parameter pi+1 can be predicted such that U
pi+1

total ≈ Uavail, compare

also the compression model in Section 5.1.1.

Even though, this estimation may be very coarse, it allows to perform bigger expansion steps in the early

phase of a trace and smaller steps near the end.

Resumption Strategies

After updating the deviation bounds, there is the task of reducing the current resource usage in order to

proceed in compliance with the ressource limits. Two resumption strategies are proposed, compare also

Figure 4.13

• adaptive re-start or

• adaptive re-compression

The adaptive re-start strategy simply dismisses all current data and restarts construction and compression

from the beginning of the trace. This eliminates the current ressource usage completely but abandons the

previous compression effort.

The alternative re-compression strategy employs the CCG re-compression algorithm as introduced in

Section 4.4.1. By this means, the previous effort is not wasted but re-used. However, repeated re-

compression would multiply the negative effects of re-compression. Furthermore, additional temporary

memory would be required in a situation where memory consumption is critical.

Optimal Deviation Bounds

The previous algorithm for adaptive compression find sufficient deviation bounds to compress a given

trace with limited ressources, provided such parameters exist. The following extension allows to find

nearly optimal deviation bounds, this means the most restrictive bounds that comply with the ressource

limits except for accuracy ε > 0. For this purpose an expanding strategy is not suitable, because it would

be restricted to unreasonably small expansion steps of ε. Instead, an interval inclusion for the optimum

deviation parameters is proposed.

It requires two arbitrary parameter sets pinf and psup, such that compression with pinf will exceed the

allowed ressources4 and compression with psup complies with the ressource limits.

Then, the optimal parameters can be determined by successive interval bisection as follows: Determine

a midpoint parameter setting pmid with pinf < pmid < psup. If compression succeeds before ressources

are exceeded, then the next iteration is started with pinf := pmid, otherwise, compression is aborted and

the iteration continues with psup := pmid. The iteration stops if |psup − pinf | < ε is reached.

In case of parameter intervals, the ‘<’ relation needs to be replaced by the inclusion relation ‘⊂’. Then

the iteration uses parameter intervals pinf ⊂ pmid ⊂ psup. If multi-dimensional vectors of parameters are

used instead of scalars, then the ‘<’ relation needs to be applied per component. The multi-dimensional

midpoint can be computed over all dimensions simultaneously or in a single dimension at a time in an

alternating manner. See [AH83] for both cases as well as for their combination, in particular the Chapter

Methods for the Simultaneous Inclusion of Complex Zeros of Polynomials.

4It is not necessary to actually complete compression with this parameters. Detecting the fact is sufficient.
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Figure 4.13: Algorithms for compression with adaptive deviation bounds: The re-compression approach

(left) produces high overhead and has only reduced compression ability. The re-start ap-

proach (right) allows maximum compression with less overhead. Note the similar compo-

nents but the different repetition structure.
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4.5 CCG Analysis Algorithms

After construction and compression of CCGs, evaluation and analysis algorithms for the CCG data struc-

ture have to be designed. This section covers the most important evaluation operations which may be

used either as building blocks or as model for further evaluation methods. There are two basic categories.

The first category handles single positions in a CCG, that means positions at graph nodes or positions

relative to the original sequence of trace events:

• random access to positions in the CCG,

• linear traversal over positions, and

• timestamp search.

The second category contains evaluation algorithms for ranges of positions:

• statistical summaries,

• timeline rendering, and

• send-receive matching.

The latter kinds of evaluation operations use position information as input and provide specific result

information as output.

4.5.1 The Random-Access Iterator

Random access iterators are objects with the ability to conveniently navigate in a container data structure,

hiding away implementation details. It can be regarded as a smart pointer that is able to proceed from

the current element to a successor or a predecessor element. Furthermore, an iterator is not supposed to

alter the referred data structure in any way, even though, the data structure may be changed by operations

that are using the iterator.

Inside a CCG there are two directions for iterating, i.e. two separate successor/predecessor relations. One

one hand, regarding graph nodes, which have an inherent parent/child direction. This uses the semantics

of a tree graph. On the other hand, regarding the original events which have a natural before/after

direction. While events in CCGs are represented by positions inside a graph node, the event-related

iterator emulates a linear list of events.

Traversal in both directions can be implemented by the same iterator class. The directions are named

like following, compare also Figure 4.14 for an illustration:

• up: proceed to the parent node

• down(i): proceed to the i′th child node

• forward: proceed to the next event

• backward: proceed to the previous event

Mind, that for compressed CCGs there is no unique parent node property anymore, thus, the upward

direction is undefined. Instead, it is considered as returning in the same way the iterator traversed its

path downwards before. Therefore, an iterator object is made up of a stack containing CCG nodes as

they have been traversed on the way from a root node to the current node. The four operations up, down,

forward and backward are implemented as follows:

up: Remove the top-of-stack element, i.e. return to the parent of the current node. This is allowed

only, if the current node is a non-root node. After an up operation the iterator position points right

after the reference to the previous node.

down(i): Push the i’th child of the current node to top-of-stack making it the new current node.

This is only valid if there is an i’th child to the current node. The iterator position will point to the

beginning of the new top node.
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Figure 4.14: The left hand side shows how an iterator moving upwards (red) or downwards (green) on a

CCG (node semantics). The right hand side shows the complete path of the forward traversal

(blue) through the events of a CCG (event semantics).

forward: Proceed to the next following event, handling different cases:

• If the iterator points to the beginning of a node with children the iterator will proceed to the

beginning of the first child, like the down(0) operator would.

• If the iterator points to a node’s beginning and there are no children then the iterator proceeds

to the node’s end.

• If pointing to the end of a node, an iterator would proceed to the begin of the next child node

of the same parent node.

• If no more child nodes are left in the current parent node, the iterator proceeds to the parent’s

end position.

backward Backward traversal is the inverse of forward.

The random access iterator is also capable of tracking time stamps of events. Assumed, the start time of

the current node is known, then the start time of every child node can be computed from local information

by adding all time duration values before the the particular child, compare Figure 3.5.

The four iterator operations presented here, are used as basic elements when constructing more complex

evaluation algorithms. The computational effort of up, forward and backward, is assumed to be constant

O(1) while the operation down(i) has O(i) ≤ O(b) complexity, compare Section 3.2.2.

4.5.2 Timestamp Search

The objective of time stamp search is to find the very graph node containing a certain time stamp. Within

every process graph this has got an unique solution provided the time stamp lies inside the total scope of

this process. The result is an iterator object pointing to the node of interest.

Figure 4.15 shows the recursive algorithm which starts with the root node. The time interval of the current

node contains the target time-stamp t. If exactly one ot the time intervals of the direct child nodes covers

t as well, then the algorithm continues with this node. Otherwise, the current node is returned as result.

The computational effort of this search operation is determined by the number of recursive steps which

is bounded by the maximum tree depth d. Every recursion step involves the traversal of the children of

the current node, resulting in O(d · b) complexity.
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Figure 4.15: Recursive algorithm for fast time-stamp search in a CCG.

4.5.3 Summary Query Algorithms

One of the most important and most frequently used evaluation operation is the so called summary query.

It provides a summary over certain properties of events in a given time interval and a set of processes.

Examples for properties covered by summary queries are exclusive or inclusive run time per function,

number of calls or sub-calls per function, message count or volume, I/O volumes and many more.

In general, summary queries are applicable to all properties which provide additivity, i.e. the sum of

partial results for disjoint subsets equals the result for the superset:

P (A) =
∑

P (Bi) ∀i 6= j : Bi ∩ Bj = ∅, A =
⋃

Bi. (4.26)

On one hand, summary queries are utilized to provide a coarse overview of a trace. This can cover

questions like Which functions cause the major computational load? or Which processes show above-

average communication?

On the other hand, a more fine grained overview of the temporal and spacial distribution of certain

properties can be obtained with multiple summary queries for adjacent time intervals. Figure 4.16 shows

an example of a color coded timeline diagram displaying the number of state changes per time segment.
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Figure 4.16: Vampir Server’s Color Coded Timeline diagram displaying frequency of certain trace events

over time. This example reveals high rates of state changes in the first process.

Caching Queries on Uncompressed CCGs

At first, the recursive evaluation algorithm is applied to uncompressed CCGs. In order to compute the

partial result for any graph node A, the respective partial results of all child nodes are summarized and

maybe supplemented by additional information from A itself.

This fits most naturally to the structure of the CCGs. Some additional precautions are necessary for

nodes that intersect with the boundaries of the query time interval. Figure 4.17 shows the structure of an

uncompressed CCG of a single process, which at the same time resembles the evaluation graph of the

recursive query.

When extending the scope from single queries to successive queries, the recursive approach can be

enhanced by a caching scheme. Assuming there are overlapping time intervals within successive queries

then there are graph nodes evaluated repeatedly for the same partial results.

Redundant computation of partial results can be avoided by introducing caching. Once a partial result

has been computed, it is inserted into the cache in order to avoid future re-computation. Only nodes

intersecting with the bounds of the query time interval must be treated separately and are excluded from

the caching scheme. Thus, all nodes intersecting with the interval bounds must be evaluated in the

conventional way. This causes only O(d) effort with the tree depth d, because there are at most d nodes

intersecting with each of the two interval bounds.

The memory consumption for complete caching is O(N). In order to limit the cache size one might

select only a sub-set of the results to be cached. There are several heuristics available:

1. Select every c’th item in order of arrival, covering 1/c of all graph nodes on average.

2. Select all nodes with depth levels l( mod c) = 0, covering 1/c of all graph nodes on average.

3. Select all nodes which are more often referenced than a certain threshold a, which can be combined

with the former heuristics. There is no fixed share of cached nodes.

4. Fixed size caches with replacement strategies, like LRU (Least Recently Used) or LFU (Least

Frequently Used).

Assuming the cache strategy (2) is used, the cache memory requirements are like O(N/c). The evalua-

tion effort is reduced from O(N) for the initial query to O(d + bc) for successive queries where d is the

tree depth and b the branching factor. The term d derives from the fact, that few nodes intersect with the

two interval borders. Those nodes are connected by two critical paths with not more than d intersecting

nodes each, which are excluded from caching, compare Figure 4.18. The term bc expresses the need to

traverse up to c depth levels before a cache hit terminates the recursion.
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The same average complexity applies to caching strategy (1) but with a unbounded worst case scenario.

Both, (1) and (2) will profit when combined with (3), which would slightly increase the memory require-

ments but reduce the average computational effort notably depending on the actual threshold a.

P0

Figure 4.17: Uncompressed CCG with multiple evaluation paths. Initial evaluation involves all graph

nodes. Zooming in to a time interval requires re-evaluation of some nodes (colored nodes).

With caching nodes’ partial results can be re-used, terminating recursive re-evaluation. The

same applies for the next zoom level (blue nodes).

P0

Figure 4.18: Uncompressed CCG with critical paths along the time interval borders marked red, corre-

sponding to the second query in Figure 4.17.

P0 P1 P2

Figure 4.19: Compressed CCG with multiple evaluation paths corresponding to the uncompressed ex-

ample in 4.17. Some sub-trees are replaced by references to other sub-trees. This allows to

re-use partial results from cache even during an initial query. Furthermore, sub-trees can be

shared among CCGs of multiple processes (orange).

Caching Queries on Compressed CCGs

The same caching scheme as described before can also be applied to compressed CCGs The compu-

tational effort for initial queries is reduced from O(N) without caching (for uncompressed as well as

compressed CCGs) to O(n) with complete caching or to O(n + bc) with partial caching like before. For

successive queries the first term vanishes. Like before the depth d characterizes the effort to traverse all

non-cache-able nodes along the time interval boundaries. Thus, the computational effort is O(d + bc).
The cache memory requirement is now O(n/c) instead of O(N/c). This reduction equals the node

compression ratio Rnodes, compare Section 4.2.5.
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Thus, the cache efficiency is increased when used with compressed CCGs instead of uncompressed

ones, because fewer cache entries are re-used more frequently. As an example, Figure 4.19 shows

successive queries to an compressed CCG which is derived from the uncompressed graph in Figure 4.17.

This example also shows how the caching mechanism can be extended over multiple CCGs of parallel

processes.

4.5.4 The Timeline-Rendering Algorithm

The timeline rendering query generates a visual representation of function activity inside a process over

time. Functions are associated to groups, that are displayed with the same color. Rectangles of appro-

priate color mark the activities of functions over a period of time. Those are either arranged as a colored

bar per process (compare Figure 3.7) or reproduce the call stack in the vertical direction (compare Fig-

ure 3.8). The rest of this section focuses on the call timeline while the process timeline is regarded as a

special case ignoring the call depth.

As indicated in Section 3.4.4, the call timeline has to deliver a visualization for a given time interval

T = [tmin, tmax] with a horizontal pixel resolution of w and tmin and tmax aligned to the pixel raster.

For motivation assume that there are much more events in T than pixels. This problem is mapped to

the cached summary query by performing column-wise queries for sub-intervals of time Si ⊂ T that are

associated to the pixel raster, compare Figure 4.20:

Si := tmin + [i · h, (i + 1) · h) , ∀0 ≤ i < w, h =
tmax − tmin

w
. (4.27)

The subject of the cached summary queries on Si is a mapping of function groups G and call levels j to

exclusive run-time ei : (G, j) → R. Let F be a function call denoted by enter and leave events, then

ei(G, j) =
∑

F∈G∧level(F )=j

|F ∩ Si| . (4.28)

This can be computed efficiently by a summary query, compare Section 4.5.3. For CCGs without devia-

tions in run-time information it is assured that

si =
∑

∀j,∀G

ei(j, g) ≤ |Si| . (4.29)

In consideration of time stamp deviations this needs to be altered to:

si =
∑

∀j,∀g

e(j, g) ≤ (1 + Rupper) · |Si| . (4.30)

Once all ei(G, j) are known, the pixel colors can be computed according to a linear color blending as

the inner product

Ci,j = Cdef ·
Ei,j

|Ei,j |
, Ei,j :=







ei(1, j)
ei(2, j)

...






, Cdef :=







(r1, g1, b1)
(r2, g2, b2)

...






(4.31)

where Cdef is the color definition vector for the function groups. Its entries may be composed of color

components like RGB values. Normalization is necessary, because Equation (4.30) is not an identity.

Alternative, non-linear color blending models are applicable as well.
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Figure 4.20: Timeline rendering to a pixel raster according to statistics of exclusive run-time per func-

tion group. Multiple activities within a single pixels range are visualized by blending the

respective colors. Left hand side shows a magnification of the version on the right.

Computational Effort

The over-all effort for computing timeline visualization data is composed from w single cached summary

queries. The complexity for a single cached summary query is O(ni) for initial queries and O(d + bc)
for successive queries, compare Section 4.5.3, where ni is the node count for the time interval Si only.

Furthermore, with compressed CCGs the query for sub-interval Si might rely on cached intermediate

results from all previous sub-intervals {Sj}j<i.

The total effort for the computation of the timeline visualization is O(nT ) in worst case with the node

count nT for time interval T . Taking advantage of caching, the effort is reduced to

O(w · d + w · bc). (4.32)

Note that this is not explicitly dependent on node count nT , but implicitly via d. The actual graphical

rendering of the results is excluded here.

4.5.5 The MPI Send-Receive Matching Algorithm

The algorithm for matching send and receive events as introduced in Section 3.4.5 needs to iterate through

all send and receive events in all processes. Within each process, the temporal order of the events has

to be maintained but over parallel processes the order is free. For every current message event C, either

the peer event P (in a different process) has been encountered before or will be later. A list of pending

messages will store the earlier one until the arrival of the later. In the former case, P will be found in

the list of pending messages of the other process. Then it is removed from the list and the pair (C, P ) is

reported as part of the result. In the latter case, C is appended to the local list of pending events. It will

be searched as the pending event as soon as the peer event is handled.

Figure 4.21 illustrates the algorithm. For simplification it is assumed that all event types besides send

and receive are ignored. The data structure for temporarily storing pending events maintains a separate

FIFO lists for every value of the 5-tuple of properties:

(sender, receiver, communicator, tag, issuer.). (4.33)

This relates to the properties relevant for MPI message matching, see Section 3.4.5. By this means,

linear search for replacement nodes is eliminated completely. As soon as the correct FIFO list has been

identified, the first entry will be the matching peer event.
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Figure 4.21: Algorithm for matching of send and receive events. The highlighted extension (orange)

allows for an alternating iteration over parallel processes.

The algorithm may consider all parallel processes or only a sub-set. In the latter case, all events referring

to excluded processes need to be ignored. The order of traversing process traces is insignificant. Yet, it

will influence the order of the resulting event pairs. With respect to performance and temporal memory

consumption, an alternating scheme might be preferred. A minor modification which highlighted in

Figure 4.21 can achieve this. Instead of traversing one process after another, it is done in an interleaving

manner which allows notable decrease in temporary resource consumption, compare Section 5.5.

4.6 Persistent Storage and Restoring

Section 3.5 introduced the general idea for persistent storage and restore operations. Below, the de-

tailed algorithms for both operations are discussed. In particular, the order of storing the graph nodes is

designed to allow an efficient restore operation.
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Figure 4.22: Algorithms for the serialization (left) and restore operations (right) for CCGs.

Serialization

Storing a data structure into a file is also referred to as serialization [Eck95], because it transforms an

arbitrary data structure to a serial representation which is not necessarily present in the first place. For the

present application, the order of serializing graph nodes is chosen according to the requirements of the

restore operation, see Section 4.6. The particular order is bottom-up such that child nodes are processed

before their parent nodes.

Cross references or pointers inside the data structure require special consideration. Their values (ad-

dresses) are no longer valid in the serialized stream nor in a restored instance. Therefore, any pointers

need to be transformed to identifiers, and all objects need to be supplemented by their respective identi-

fiers such that the references can be re-establish during restore.

The resulting serialization algorithm for CCGs works recursively like shown in Figure 4.22(left). Ini-

tially, the serialization operation is started for every root node of a parallel CCG. In the course of recursive

traversal of the CCG, every node has to be written to file exactly once, even if it is referenced multiple

times. Therefore, it has to be marked after the first encounter.

In case the existing CCG may be destroyed during serialization, then nodes can be marked by overwrit-

ing with invalid contents. Otherwise, a hash table (with O(1) access) or a search data structure (with

O(log n) access) has to be maintained holding all nodes already accomplished. Besides the additional

effort, the extra memory requirements for this bookkeeping makes the destructive approach favorable.

Writing of the single nodes is done in a straight forward way. All members of the node data structure are

written consecutively as a line of an ASCII text file preceded by its identifier and a node type specifica-

tion. This format is chosen because it is quite robust and avoids platform dependency issues altogether.

Standard lossless ZLib compression [lGA02] is applied to the output for convenience.



94 4. ALGORITHMS FOR THE CCG DATA STRUCTURE

The transformation of child pointers to identifiers is achieved by type-casting the pointer addresses to

an integer of equal size which is guaranteed to be unique within the same memory address space. For a

distributed scheme, an arbitrary bijective mapping is necessary to map pairs of process identifiers p and

pointers m to unique identifiers i:

(p, m) ∈ [0, pmax] × [0, mmax] −→ i ∈ [0, n] (4.34)

Writing a single node of fixed size to file is assumed to take constant time. Therefore, the over-all effort

for serialization of a CCG with n nodes is linear O(n) or almost linear O(n log n).

Restore

The CCG restore operation involves two steps for every node: recovering of the single nodes and re-

establishing of cross-references to the child nodes, see also Figure 4.22(right).

Processing the single nodes works straight forward again: from every serialized node create a memory

object of the correct type and fill in all members. Optimizations like placement in a pre-allocated memory

areas (Section 4.1.4) or sophisticated encoding via template meta programming (Section 4.1.3) are still

feasible. In addition, the mapping T : i → p from the node identifier i to the new memory address p
needs to be recorded for the second step. After node re-creation, all child node identifiers i are replaced

by their corresponding pointers p according to the mapping T . It is guaranteed that the mapping for all

child nodes is present by this time, because of the determined serialization order, see Section 4.6.

The mapping table T of size O(n) needs to be stored explicitly during the re-store phase and can be

discarded later. However, the restroe operation does not require the hash table structure for look-up of

replacement nodes, compare Section 4.2.1. The computational effort for restoring a CCG with n nodes

is O(n) if T is maintained as an hash table with O(1) access.

File Compression

With the serialization and restore operations, the in-memory compression scheme can be extend to a

trace file compression method. The compression step would consist of reading the classic trace file,

constructing and compressing the CCG in memory, and saving the data structure to a compressed output

file. The decompression step would re-create the CCG from the compressed file, traverse all events

in temporal order and re-construct a classic trace file. All effects of lossy and lossless compression in

memory apply to file compression in the same way.

4.7 CCGs with Distributed Data

Performance trace analysis is a very data-intensive matter and the CCG data structure is dedicated to

relieve the enormous main memory requirements. Nevertheless, the memory consumption might still

exceed the available resources, particularly with regard to low or zero deviation bounds and moderate

compression ratios.

This section introduces a distributed storage approach using CCG data structure. This concerns dis-

tributed construction and compression as well as distributed evaluation.

With traditional data structures, trace analysis is usually memory-bound, this means memory is the limit-

ing ressource while computational effort is of minor importance. The CCG approach trades lower mem-

ory consumption for increased computation, thus the parallelization provides advantages with respect to

the available memory sizes and the parallel computation.
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(b) Distributed process graphs.

Figure 4.23: Examples of connected (a) and distributed (b) CCGs. When splitting the former into three

partitions, some redundant nodes (blue) need to be (re-)introduced.

4.7.1 Distributed Data Decomposition

In general, the key to efficient parallelization of data intensive problems lies in a suitable domain de-

composition for the data [KDS99]. Splitting a parallel trace graph into single process graphs is the first

and most convenient way for decomposition, compare Figure 4.23. Then construction and evaluation of

process graphs can be done in parallel and independently, see Sections 4.1.1 and 4.7.5.

If decomposition into single process graphs is insufficient, splitting of single process graphs is inevitable

and maximum sub-graphs (sub-trees) of a process graph need to be distributed to remote locations.

This scheme produces a number of remote sub-graphs and an incomplete local root tree of the original

graphincluding so called stub nodes, that refer to a remote location instead of a local sub-graph, see

Figure 4.24(b). Different partitioning schemes may result in different separated sub-graphs, compare

Figure 4.24(b,c) and Section 4.7.3.

Remote references are allowed only from stub nodes in the local root graph to the root nodes of the

remote sub-graphs but not between remote sub-graphs. This will guarantee separate, unconnected remote

sub-graphs which will be an advantage for evaluation, see Section 4.7.5 below. Due to this restriction,

distributed CCGs will re-introduce redundant graph nodes across the partitions, that could be removed

with non-distributed compression, compare also Section 4.7.3.

4.7.2 Distributed CCG Construction

The proposed distributed CCG construction algorithm uses active partners that perform construction

and compression as well as passive partners that serve as a mere storage locations. It allows to handle

t parallel process traces with p ≤ t active entities. If this is insufficient, data can be moved to q ≥ t
passive storage locations.

Every process graph is read sequentially by one of the active entities, creating a local graph, compare

Section 4.1.1. As soon as a certain memory consumption is reached, one or more sub-graphs are moved

to a passive remote location. This has to include all previously finalized nodes, otherwise it would be

impossible to separate nodes from either sub-tree at a later time.
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(c) Alternative partitioning of the sub-graphs.

Figure 4.24: Decomposition of a single connected process graph (a) into distributed sub-graphs (b) with

three partitions and an incomplete root tree with stub nodes (empty rectangles). An alterna-

tive partitioning (c) shows that the number of redundant nodes (blue) changes notably.

Construction and compression continue with an empty supply of replacement candidates and reduced

local memory consumption. In the end, the active entities will keep the remaining sub-trees as well

as the incomplete local root trees of every trace process. Moving sub-graphs between remote storage

locations can be implemented by means of serialization and restore including re-referencing, compare

Section 4.6. As an alternative, the control of CCG construction for a process trace can be passed to

another location that becomes the current active entity. This could avoid the transfer of extensive sub-

trees, yet it still enforces a serial processing scheme, where every process traces is handled by a single

active entity at a time.

4.7.3 Distributed CCG Compression

Distributed storage is suitable to handle very large CCGs that would not fit to main memory of a single

computing node even in compressed form. Both, storage size and computational effort can be split to a

fraction of the original value. However, distribution is not transparent with respect to the compression

ratios Rnodes and Rmemory.

In general, compression ratios decrease if the distributed scheme of CCG compression is applied, because

remote compatible nodes cannot be replaced by references but must remain redundantly. In the worst

case, distribution into p partitions re-produces every node p times. This means, node count and memory

consumption grow by factor p and the compression ratios Rnodes ≥ p and Rmemory ≥ p are reduced to

Rnodes/p and Rmemory/p.

In the best case, there are no remote redundancies. This does not necessarily mean that all pairwise

compatible nodes are located in the same partition. It is sufficient, that for every node A there is a

compatible local node B even if there are other remote compatible nodes C. In this case, the only

remaining overhead consists of nstub stub nodes where nstub ≥ p is the granularity of the distribution.
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Assumed the total node count N ≫ nstub is much larger than the granularity, the compression ratios

Rnodes and Rmemory remain almost unchanged.

In practice, the reduction of compression ratios will be near best case it is improbable that a node could

be referenced from all remote locations but not at all locally.

On average, distributing a large CCG to p separated smaller CCGs will have the same effect on com-

pression ratios as compressing p independent CCGs of smaller size, including the trend that larger CCGs

(the non-distributed one) usually yield higher compression ratios than smaller ones (the distributed par-

titions), compare the compression model in Section 5.1.1.

The Compression speed is affected by the distributed approach in two ways. Assume a sufficiently

balanced distribution, which is assumed to reflect the average case. On one hand, the compression

effort decreases inverse proportional to the number of active parallel entities p ≤ t because each needs

to process N/p nodes instead of N . On the other hand, the search for replacement nodes needs to

traverse a potentially shorter candidate list, because only a sub-set of all global candidates is present at

the same location. The latter effect is almost completely ceased if a limited search strategy is applied,

compare Section 4.2.1. Both effects combined, produce a superlinear speed-up for p ≤ t parallel entities.

However, the speed-up cannot grow further than t when distributing sub-graphs to q ≥ t locations, as

every process trace is read linearly.

4.7.4 Distributed Serialization and Restoring

Distributed serialization and restoring can be achieved more or less in the same way as discussed in

Section 4.6. A few minor issues allow further flexibility for serialized distributed CCGs.

As a precondition, the distributed parts of a CCG should be serialized individually using a disjoint naming

or numbering scheme except for stub nodes which should be named identical to the nodes they refer to.

This would allow to unite multiple parts of a distributed CCG by simply concatenating the respective

serialized files. Then, restoring of a distributed CCG is possible with original or reduced granularity.

4.7.5 Distributed Evaluation

Since distribution of CCGs is data-driven rather than computation-driven, the associated evaluation al-

gorithms should adapt to the distributed data.

For the summary query algorithm (Section 4.5.3) an efficient distributed implementation works like

following: At first, the unchanged algorithm is applied to all partitions separately, returning a partial

result each. Then, the global result is summarized from all collected partial results. Assuming the effort

for subsuming partial results is insignificant, the parallel speed-up of this scheme is close to p with p
distributed partitions of balanced size.

For other sequential evaluation algorithms, there are no convenient and efficient distributed counterparts,

for example for the iterator algorithms or the send-receive matching algorithms. The general difficulties

of distributed event trace analysis are not specific to the CCG data structure but apply to distributed ver-

sions of traditional data structures in the same way, compare for example [Bru08, GWWM06, GKP+07].
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5 Evaluation of CCG Algorithms

This chapter presents theoretical and practical evaluation of construction and compression as well as

querying for the Complete Call Graph data structure. The practical part contains experiment results

for synthetic examples to investigate the worst and best case scenarios, on one hand, and for real-world

application examples to show realistic behavior, on the other hand. Finally, recommendations for various

parameters are derived. Furthermore, the results are compared to the state-of-the-art in this area.

5.1 Theoretical and Synthetic Evaluation

At first, the general compression behavior and the maximum spectrum of compression ratios is illustrated

with theoretical models and synthetic experiment results.

5.1.1 Compression Model

Here, a simplified compression model is designed for node compression ration Rnodes with respect to

a single deviation bound p. Let g1, ..., gN be N graph nodes with identical hard properties. Let each

node gi have d soft properties vi
1, ..., v

i
d. Assume N is sufficiently large and the values vi

j are statistically

independent and bounded by finite limits.

Two nodes ga and gb are compatible if
∣

∣va
i − vb

i

∣

∣ ≤ p, with a common deviation bound p. Each node

gi can be mapped to position (vj)j=1,...,d in a d-dimensional parameter space. There it covers the d-

dimensional area

Ai
p =

∏

j

[

pi
j − p, pi

j + p
]

, (5.1)

that means it is would be suitable as replacement for any other node mapped inside Ai
p. The d-dimensional

volume ap =
∣

∣Ai
p

∣

∣ is ap = (2p)d independent of i. Let furthermore L be the (average) diameter in every

dimension of the d-dimensional cube C containing all vi.

In order to cover C completely according to d-dimensional volume n nodes with

n ≥
Ld

ap
=

Ld

(2p)d
, n ≥ 1 (5.2)

are necessary but at least one. It follows

n ≥ max

(

1,

(

L

2p

)d
)

. (5.3)

With the definition of the node compression ratio it follows

Rnodes :=
N

n
≤

N

max

(

1,
(

L
2p

)d
) ≤ N. (5.4)
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Figure 5.1: CCG compression model: Rnodes vs. deviation bound for varying dimension (number of soft

properties per node) d = 2, ...9 with N = 400 and L = 10 (left) and for varying node count

N and diameter L with d = 4 (right).

Figure 5.1(left) shows an example of the theoretical limit for the node compression ratio Rnodes accord-

ing to Equation (5.4). The edge at p = L/2 = 5 marks the point where a single node would be sufficient

to cover C. Then the maximum compression ratio N is reached. Therefore, the interval 0 ≤ p ≤ L/2 is

the more interesting one.

Furthermore, it is assumed that L and N are independent. That means, after sufficiently many nodes of

a certain kind the d-dimensional cube C will not grow anymore when increasing N further. Thus, the

diameter L will stay constant. Following this reasoning the compression ratio is predicted to grow for

larger traces of the same kind.

All real-world traces will composed of many sets of nodes with identical hard properties. The set may

differ with respect to the number of soft properties d, the size of the set N and the d-dimensional diameter

L. Therefore the over-all compression ratio will be combined as a weighted average from many separate

Rx
nodes. Figure 5.1(right) shows an example of a number of separate compression models according to

Equation (5.4) and their weighted average.

5.1.2 Non-Monotone Compression

Contrary to the previous model, CCG compression is not strictly monotonous with respect to any soft

property p∗. Although, larger values for p∗ will typically provide better compression, this is not neces-

sarily so. Figure 5.2 shows an example of the (unlikely) case where increased deviation bounds lead to

less compression. In Figure 5.2(top) function foo calls bar five times. All occurrences of barX are

compatible with respect to hard properties. With respect to soft properties pi and deviation bound ±3
the second occurrence bar2 is compatible to the first one bar1. Therefore, node bar2 is replaced by

a reference to bar1. All other nodes are not compatible to each other or to bar1. The resulting nodes

compression ratio is Rnodes = 6
5 .

Now assume that with smaller compression parameters ±2 the nodes bar1 and bar2 are no longer

compatible. Then bar2 is not removed but still available. Because node compatibility is not a transitive

relation it is possible that bar3, bar4 and bar5 can be replaced by references to bar2 like shown in

5.2(bottom). The node compression ratio for the latter case is Rnodes = 6
3 . Thus, smaller compression

parameters may lead to better compression, q.e.d.
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Figure 5.2: Example of an compressed CCG that achieves less compression with the generic bound ±3
(top) and improved compression with the reduced deviation bound ±2 (bottom).

The reason is that in general, node replacement is not chosen optimally but according to a heuristic.

Smaller compression parameters may inhibit compression of some nodes earlier. Later on, the existence

of that particular node might induce better compression that would be impossible otherwise.

This counter example is no contradiction to the previous monotonous compression model from Sec-

tion 5.1.1. Rather, the monotonous compression model is valid for large numbers of nodes whereas

non-monotone compression is happening with few nodes only. With more nodes it is probable that

another replacement will neutralize the penalty of a case of non-optimal compression.

5.1.3 Best Case Compression

Best case experiments examine the suitability of CCG compression for very regular traces with steady

timing behavior. Firstly, it is tested with the simplest synthetic trace that contains a long sequence of

calls to the same function. Figure 5.3 shows the number of required graph nodes versus the number of

enter/leave events in the trace: For up to 20 million events there are only 7 to 26 graph nodes required,

depending on the branching factor b. This behavior clearly reflects a logarithmic growth rounded to

integers. This relates to the tree depth that would be necessary to store all nodes in a balanced tree.

In this example the maximum compression is as big as Rnodes > 2 850 000 and Rmemory > 800 000.

With linear growth of the event count and logarithmic growth of CCG node count, the asymptotic com-

pression ratio is infinitely large. Another example uses a slightly less regular function call pattern includ-

ing deep recursion. Figure 5.4 gives the CCG node count versus the event count for an unbalanced binary

recursion call pattern. Such patterns typically occur in divide-and-conquer algorithms like quicksort or,

like in this synthetic example, the trivial recursive computation of the Fibonacci sequence.

This example needs only few more nodes than the example in Figure 5.3, showing the same logarithmic

growth. Therefore, the asymptotic compression grows infinitely as well. The maximum branching factor

b has no influence here, because the effective branching factor is determined by the binary recursion.
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Figure 5.3: The CCG node count n achieved with a most regular call structure. (The corresponding node

compression ratio Rnodes ranges from 10 500 to 2 850 000!)
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Figure 5.4: The CCG node count n for an unbalanced binary recursion call pattern. (The corresponding

node compression ratio Rnodes ranges from 17 000 to 600 000!)

5.1.4 Worst Case Compression

After the best-case evaluation, the other end of the spectrum shall be examined with the most difficult

examples for compression. This will involve two scenarios: Firstly, most irregular function call patterns

and secondly, very irregular timing behavior. This are the most typical cases for irregularities in hard

properties or soft properties and serve as an example for other cases.

The example for very irregular call patterns is a long sequence of calls to randomly selected functions

out of 10 candidates with regular timing. With branching factor b this results in 10b possible leaf nodes

that are pairwise incompatible with respect to hard properties. The number of possible artificial sub-trees

formed from this will grow even more tremendously due to the combinatorial complexity. This resembles

the worst-case situation for deeper function call patterns including sub-calls, sub-sub-calls, etc.

Figure 5.5 shows the resulting Rnodes which is almost constant for growing record count, except for the

outlier b = 5. Rmemory which is not shown behaves similarly. Concluding from this experiments, CCG

compression is able to achieve substantial compression for very irregular call patterns with sufficient

event count. As anticipated, the compression ratios are much smaller than for regular examples.
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Figure 5.5: Node compression ratio for random call patterns with regular timing.
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Figure 5.6: Node compression ratio for regular call patterns with random timing and small deviation

bounds for timing (abs = 1000, rel = 10%).

The experiments investigating the impact of irregularity in soft properties are sensitive to the deviation

bounds, which causes diverse behavior. Now, the function call pattern is regular again. At first, small

deviation bounds (abs = 1000, rel = 10%) are used, which lie below the variability of the particular soft

properties. The resulting compression shown in Figure 5.6 is very similar to the previous experiment’s

results in Figure 5.5 because it creates a similar random scheme of pairwise (in)compatible nodes.

As deviation bounds nearly cover the complete range of the random property, the compression ability

improves notably, like shown in Figure 5.7 with larger bounds for time deviation (abs=10000, rel=100%).

The improvement is obviously favoring small branching factors b, because with less values per node it

is more likely that all are covered by the deviation bounds. As soon as the deviation bounds are large

enough to cover all samples always, it will approach the behavior of the best case, see Section 5.1.3.

In combination, irregularity in the call pattern and in timing, i.e. in hard and soft properties, decreases the

compression further, as expected. Figure 5.8 shows the results for random call patterns and random tim-

ing with very small deviation bounds (abs=10, rel=1%). Still, all Rnodes are above 2. Larger branching

factors b show an advantage, after a longer saturation phase after which the compression ratios remain

on an almost constant level. Rmemory behaves similar to Rnodes but on lower levels between 2 and 7.5.
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Figure 5.7: Node compression ratio for regular call pattern with random timing and large deviation

bounds for timing (abs = 10000, rel = 100%).
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Figure 5.8: Node compression ratio Rnodes for random call pattern combined with random timing and

very small deviation bounds (abs=10, rel=1%).

5.2 Real-World Construction and Compression

The following experiments examine the real-world compression behavior of CCG construction and com-

pression. As example application the SMG2000 code is used [JMC02, Fal00, BFJ00]. It is a parallel

semicoarsening multigrid solver for a special kind of linear systems with very good scalability. SMG2000

is a widely known benchmark code and is available as part of the ASCI Purple benchmark suite1.

All experiments use an example trace from SMG2000 with 8 CPUs and approximately 36 million event

records. It was created on a cluster of dual Intel Xeon nodes with 3 GHz, 512 KB cache and 2 GB main

memory memory per node. The timer resolution is identical to the CPU clock tick of 0.33 ns. In OTF

format [KBB08] the trace accounts for 184 MB of compressed trace file size (563 MB uncompressed).

The CCG experiments were performed on a cluster of dual AMD Opteron nodes with 2.2 GHz, 1024 KB

cache and 4 GB main memory per node. Each of the CCG construction and compression runs was strictly

sequential, though. Distributed computation was only used for the extensive parameter studies.

1ASCI: Accelerated Strategic Computing Initiative, USA supercomputing initiative that started in 1992. Nowcalled ASC:

Advanced Simulation and Computing Program.
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The experimental evaluation of CCG Construction and Compression focuses on two main characteristics:

Firstly, the degree of compression, and secondly, the compression effort respectively compression run-

time. It will investigate several influencing factors for both:

• deviation bounds for soft properties,
• branching factor b,
• event count, i.e. trace size, and
• maximum node search length.

The most important factors are the deviation bounds for soft properties that may also interact with one

another. The influence of deviation bounds is presented based on experiment results for the two most

common and most important soft properties: the absolute and relative time deviations. This is divided

in two typical application scenarios for small scale and large scale compression. When using two or

more soft properties, it is safe to assume that either all are kept quite restricted or all are rather relaxed.

Opposing settings for coexisting soft properties seem unusual.

The following factors are investigated with respect to their effect on small scale and large scale com-

pression but not with respect to their mutual interaction. Recommendations for parameter setting based

on experiment result will be postponed until Section 5.6. Then the results of CCG construction and

compression will be balanced against corresponding results for query operations.

5.2.1 Small Scale Compression

Small scale compression covers the cases where deviations due to lossy compression are small or non

existent. Here, absolute time deviation is allowed abs = 1 ... 10000 ticks which equals 0.33 ns to

3.33 µs in this example with a 3 GHz CPU and relative deviation ranges over rel = 0.001 ... 1.0 (0.1%
to 100%). Those values allow notable compression while preserving reasonable accuracy with respect to

temporal behavior. Furthermore, the results for lossless compression are shown (abs = 0, rel = 0.0).

The node compression ratio Rnodes ranges from 5 to 55 for the given compression parameters abs and

rel, see Figures 5.9 and 5.12. The former equals the result for lossless compression, the latter is achieved

with abs = 10000 and rel = 1.0. The growth process with respect to one compression parameter abs or

rel looks monotonous. It saturates when the other compression parameter prevents further compression.

This meets the theoretical model, compare Section 5.1.1.

The memory compression ratio Rmemory behaves similarly but on a lower level, see Figures 5.10 and

5.13. For lossless compression or very small deviation bounds Rmemory = 3 is produced. It is growing

up to Rmemory = 17 in the current scope (for abs = 10000, rel = 1.0). The similarity of the behavior of

Rnodes and Rmemory is typical. The graphs look almost identical except for a factor f with 1 < f < 4.

Although in general Rnodes and Rmemory are not strictly proportional (see Section 4.2.5) they behave

similar for a constant b. This similarity will reappear in following experiments. Therefore sometimes

only one graph will be shown.

Compression run-time for the above experiments ranges from 6560 s (1.8 h!) for lossless compression

to 4700 s (1.3 h!) for very small scale compression to 65 s for medium scale compression (Figure 5.11).

Most experiments show a reasonable run-time, only cases with very small deviation bounds abs ≤ 100
or rel ≤ 0.01 are extremely slow. For larger bounds the run-time is more or less constant.

As the compression run-time is dominated by search for replacement nodes the plot of run-time vs. node

count in Figure 5.14 allows better insight in the cause of very slow compression. The search operation

consists of two stages. First, a hash look-up provides a candidate list with constant effort O(1). Then,

those lists need to be traversed with linear effort O(l) with respect to the average list length l, compare

Section 4.2.1. With small scale compression and large node count this results in quadratic effort O(l2)
because for every list entry a complete list traversal is performed. This is clearly visible as worst case

behavior in Figure 5.14.
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Figure 5.9: Node compression ratio Rnodes vs. time deviation abs for small scale compression.
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Figure 5.10: Memory compression ratio Rmemory vs. time deviation abs for small scale compression.
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Figure 5.11: Compression run-time for small scale compression vs. time deviation rel.
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Figure 5.12: Node compression ratio Rnodes vs. time deviation rel for small scale compression.
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Figure 5.13: Memory compression ratio Rmemory vs. time deviation rel for small scale compression.
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Figure 5.14: Influence of final node count n on compression run-time for small scale compression.
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5.2.2 Large Scale Compression

Large scale compression allows deviation bounds of abs = 10 000 ... 10 000 000 (3.33 µs to 3.33 ms in

this example) and rel = 0.1 ... 10.0 (10 % to 1 000 %). Therefore, it achieves much better compression

and is much faster than small scale compression in the previous experiments.

The node compression ratio varies from Rnodes = 11 to 649, see Figures 5.15 and 5.18. With respect to

the abs parameter Rnodes grows like predicted in Section 5.1.1. With respect to rel the initial growth is

inhibited (for small rel < 0.5). For larger rel > 0.5 it follows the normal behavior. This complies with

the theoretical model in Section 5.1.1 because both compression parameters, abs and rel influence the

compression concurrently. In this case, the stricter one determines the over-all compression result.

For comparison the maximum possible compression ratio Rmax
nodes = 1112 is given as well. It is achieved

with unlimited compression parameters. Maximum possible compression is determined by the CCG

itself respecting only hard properties but no soft properties.

Like before, the behavior of Rmemory is similar to Rnodes. It is ranging from 5 to 220, see Figures 5.16

and 5.19. The maximum memory compression ratio reaches Rmax
memory = 458.

The compression run-time behavior for large scale compression is notably faster than small scale com-

pression in previous section. Now, time ranges from ≈ 48 s to ≈ 125 s (Figure 5.17). Again, there is

an increase in run-time towards small compression parameters abs ≤ 10 000 and rel < 1.0 but not as

excessively as in the small scale case. Apart from that run-time is constant below 60 s. It is very close to

the lower bound for compression run-time of 48 s which is achieved with maximum compression.

The run-time depending on node count (Figure 5.20) reveals a notable difference compared to small scale

compression (Figure 5.14). Obviously, the maximum effort is not quadratic anymore but linear O(l), i.e.

the search effort for replacements per node seems constant. This is possible because the distribution of

nodes changes from small scale compression to large scale one.

The reason can be found in the two-stage data structure keeping replacement candidates, compare Section

4.2.1. In its second stage there are linear lists of nodes with identical hard properties. For every replace-

ment candidate one of those lists is traversed linearly. For small scale compression, those lists usually

grow rather long. Now, with large scale compression, the length of those lists is generally quite short be-

cause few nodes are sufficient to represent all following ones. Following experiments will demonstrate,

that restricting the linear search to a limited number of nodes will decrease the over-all effort notably

with minimal decrease in compression. See Section 5.2.5, compare also Sections 4.2.1 and 4.2.2.

The correlation of higher compression with reduced effort may seem surprising at first. However, one

must not conclude that large scale compression is always superior to small scale compression because it

also influences the accuracy of all soft properties.

Corollary 1. For CCG compression the following correlation can be observed on average: Increased

deviation bounds for soft properties, which reduce the accuracy of the compressed representation, yield

better compression ratios and reduce the computational effort.

5.2.3 Influence of Branching Factor

The maximum branching factor b is a basic graph property which affects both, uncompressed and com-

pressed CCGs. Since the original branching factors of call trees are usually unbounded, nodes with more

than b child nodes are split into multiple so called artificial nodes with ≤ b children each, see Sections

3.2.2 and 4.1.2. This is done before actual compression. Therefore, the absolute node count and the

absolute memory consumption are influenced by this parameter. Both behave similar in uncompressed

mode and in various compression modes from lossless and small scale compression to large scale and
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unlimited compression. Figure 5.21 shows the influence of b to the node count n. Always, there is an

almost constant behavior for b ≥ 10 and a distinct overhead for b < 10 which is rising for b → 2. The

reasons for this is obvious, because small b require more original nodes to be split into a larger number

of small nodes, thus raising the node count.

The influence of b to the memory consumption m (not shown) looks very similar to the one shown

in Figure 5.21 for all cases with a range from 2.3 MB to 1570 MB. The explanation is similar as for

n above. Indeed, the memory consumption for more small nodes are partly compensated because the

memory consumption per node decreases. Yet, there is additional memory consumption for references

(pointers) to nodes which increases for larger node counts.

Figure 5.22 shows the effect of b to Rnodes and Rmemory. In general, a higher branching factor allows

better node compression (Rnodes). There is a strong increase for small b ≤ 20 and only a moderate further

growth for larger b. The behavior of the memory compression ratio Rmemory differs notably from that for

Rnodes. For small b there is a small growth of Rmemory, too. Yet, for larger b and large scale compression

there is a slow decline of Rmemory. For small scale compression (abs ≤ 100, rel ≤ 0.1) Rmemory is

almost constant not declining.

The opposite effects emerge from the quotient of uncompressed and compressed node count or memory

usage. In fact, all absolute values N , n, M and m show an initial steep decline followed by an almost

constant behavior, like shown in Figure 5.21 for n and N .

Corollary 2. For growing branching factors and sufficiently large compression the compression ratios

Rnodes and Rmemory show opposite behavior. At the same time, the node counts N (total) and n (com-

pressed) and the memory consumption M (total) and m (compressed) stay almost constant for b ≥ 10.

Therefore, sufficiently large values of b ≥ 20 are recommended with respect to actual resource usage

n and m. Larger b provide no additional advantage. Considering the preferences of CCG queries (see

Section 5.4) which profit from small branching factors the over-all recommendation will be a value of

b = 20. This is also used in all experiments, unless stated otherwise.

Apart from the compression ability, run-time is very important, see Figure 5.23. For b < 10 there

is a small disadvantage in run-time whereas for b ≥ 10 it is almost constant. This supports above

recommendation of b = 20.

5.2.4 Influence of Trace Size

The size of input traces is not a free parameter, i.e. it cannot be freely adjusted. Yet, it is a fundamental

influence to the storage data structure. According to the theoretical compression model the maximum

possible compression grows with the number of input records, i.e. with the uncompressed node count N ,

see Section 5.1.1. The following experiments will investigate the compression behavior in practice.

The first of two experiments compares the compression behavior for a set of related parallel traces (on

horizontal axis) with different compression parameters (abs, rel). All trace originate from the same

application (again SMG2000) runnig on the same platform with varying degree of parallelization and

different problem sizes. All other input parameters (solver, domain decomposition, blocking) were un-

changed. The resulting traces are expected to show same general behavior and the same degree of

general regularity or irregularity (without attempting precise definitions of this terms).

Figure 5.24 shows the result of the first experiment. For all parameter sets (abs, rel) the compression

ratios Rnodes stay broadly constant for all the example traces with varying record count. There are notable

fluctuations for some traces (e.g. at 12.5 M records). This presumably caused by slightly anomalous

traces, because the extend of the fluctuations is proportional to the value of Rnodes. Yet, the outliers do

not obscure the obvious general trend.
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Figure 5.15: Node compression ratio Rnodes vs. time deviation abs for large scale compression.
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Figure 5.16: Memory compression ratio Rmemory vs. time deviation abs for large scale compression.
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Figure 5.17: Compression run-time for large scale compression vs. time deviation rel.
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Figure 5.18: Node compression ratio Rnodes vs. time deviation rel for large scale compression.
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Figure 5.19: Memory compression ratio Rmemory vs. time deviation rel for large scale compression.
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Figure 5.20: Influence of final node count n on compression run-time for large sclale compression.
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Figure 5.21: Absolute node count depending on maximum branching factor b.
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Figure 5.22: Compression ratios Rnodes (top) and Rmemory (bottom) vs. maximum branching factor b.
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Figure 5.23: Compression run-time vs. maximum branching factor b.

Corollary 3. For related traces that are identical with respect to the following properties:

• compression parameters (deviation bounds abs, rel, etc. and branching factor b, etc.),
• application code (with deterministic execution),

• application specific parameters (algorithm, domain decomposition, ...), and

• platform (architecture, CPU and memory speed, communication and I/O speed)

the compression ratiosRnodes andRmemory are usually similar. The following properties can be changed

without significant influence on them:

• number of processes/threads and

• different problem sizes.

The second experiment observes progressing compression for a single parallel trace. The data points

show the compression ratios when processing the trace from the beginning to a certain point. Figure 5.25

reveals the progressing compression behavior for a single trace with 61 M records for varying compres-

sion parameters (abs, rel). The rightmost data points correspond to the rightmost ones in Figure 5.24.

Particularly, the large scale compression example shows an obvious change in behavior at approximately

x = 25M records. The same effect can be found in the other examples at the same point. Before this

critical point, there is a monotone increase in Rnodes, followed by a slight decline followed by a further

gradual ascent. The end point of the decline phases is not identical over all examples. Instead, it ends

sooner for large scale compression and later for small scale compression.

The reason for the three phases can be found in corresponding phases of the execution of the SMG2000

code. At approximately 3 s run-time out of 50 s total run-time2, the application switches from initializa-

tion to the solver phase. At first, the CCG compression adapts to reappearing patterns of the initialization

phase. As soon as the solver phase starts, new patterns have to be adapted. This requires many new

graph nodes, which decreases the compression ratio. Dissmissing supply of representing nodes at this

point would have minimal influence to the over-all compression result. As soon as the new patterns are

absorbed and repeated more or less regularly, almost no new nodes are added. Thus, compression ratios

start to increase again. With small scale compression (many representing nodes) this takes longer as with

large scale compression (fewer representing nodes).

For all experiments shown here, the behavior of Rmemoryis very similar to approximately 1
2 · Rnodes.

2Note, that record count is not proportional to run-time even though both are monotonous.
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Figure 5.24: Influence of trace size (record count) to node compression ratio Rnodes. A series of different

traces with varying record count (x-axis) show corresponding compression ratios Rnodes

with different deviation bounds (color).
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Figure 5.25: Progressing compression ratio Rnodes during the compression of a trace with advancing

record count (x-axis) and different deviation bounds (color).

Corollary 4. The compression ratios Rnodes and Rmemory are neither constant nor monotonous during

the course of compression. Instead, there may be phases with different compression ability that affect the

over-all compression proportionately.

5.2.5 Influence of Search Length Parameter

The effort for CCG compression is largely determined by search for replacement nodes. In particular, lin-

early traversing lists of candidate nodes dominates the over-all effort. Section 4.2.2 presents an algorithm

for searching replacement nodes that contains a search length parameter L. This parameter effectively

reduces the search effort and the over-all compression run-time. The following experiments investigate

its influence on the compression ratio. Compression of the example trace is performed with varying L
from very small to large values and infinity. This is done with a range of deviation bounds from lossless

compression over small, medium and large scale compression.
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Figure 5.26: Influence of search length parameter L to the ratio Rnodes and run-time t. The dotted gray

lines connect samples with identical deviation bounds abs and rel from lossless compres-

sion (leftmost) to large scale compression (right). Note the double logarithmic scales.

Figure 5.26 shows the node compression ratio and the run-time for different values of L and various

deviation bounds abs = 0 ... 1 000 000 and rel = 0.0 ... 10.0. Both, Rnodes and t decrease with smaller

L. For example with medium scale compression (abs = 10000, rel = 1.0) Rnodes is 55 for unlimited

search length L and decreases to 44 for L = 100 while compression run-time is slightly reduced from

65 s to 59 s. For smaller deviation bounds, the benefit of limited search length is higher, lossless com-

pression with a reduction from L = ∞ to L = 100 to L = 5 shows a dramatic decrease of Rnodes from

5.0 to 2.7 to 1.22 while the corresponding compression time falls from 6566 s to 111 s to 71 s! With

large deviation bounds (abs = 100, 000, rel = 5.0) the compression ratio falls from 329 to 83 while L
is reduced from 1000 to 5. Still, the run-time decreases only slightly from 51 s to 48.2 s.

Therefore, the limitation of search length is an important feature for small scale compression, but less rel-

evant for larger deviation bounds. A rather large default value for L will allow almost optimal results for

large scale compression while effectively reducing the computational effort for small scale compression.

Corollary 5. For small scale compression, limited node search length L allows a notable reduction in

compression effort (run-time) with only small decrease in compression ratios Rnodes and Rmemory. For

large scale compression, there is almost no influence with sufficiently large L. Very small L notably

inhibit compression with only minor reduction of run-time.
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5.3 Advanced Construction and Compression Algorithms

In addition to the standard CCG construction and compression algorithms investigated before, the fol-

lowing experiments evaluate advanced construction and compression procedures. At first, it covers re-

compression of already compressed CCGs. Then, adaptive compression is demonstrated which deter-

mines actual deviation bounds automatically in order to comply with given resource limits. Finally,

serialization and restore operations are presented.

5.3.1 Re-Compression of CCGs

CCG re-compression introduced in Section 4.4.1 allows to reduce an existing CCG by increasing the de-

viation bounds for soft properties. This makes graph nodes compatible with respect to the new deviation

bounds that were not with respect to the previous ones. Figure 5.27 shows the example compression ratios

for the original compression Roriginal
nodes with (abs = 100, rel = 0.1) compared with the re-compression

Rre
nodes with (abs = 1000, rel = 0.5) as well as renewed compression Rnew

nodes with (abs = 1000,

rel = 0.5) . As expected, the re-compression results lie between the original and the renewed ones:

Roriginal
nodes ≤ Rre

nodes ≤ Rnew
nodes with Roriginal

nodes : Rre
nodes : Rnew

nodes ≈ constant. (5.5)

Figure 5.28 shows the corresponding run-time behavior for all three cases. Obviously, the re-compression

is much slower than either the renewed compression or the original compression. There is a distinct

influence of b to the run-time for re-compression. This reflects the theoretical effort for re-compression

O(d · n · (l + b)), where smaller b cause larger d and larger n, compare Section 4.4.1, Equation (4.24).

For small b ≤ 15 this causes a substantial disadvantage of several factors.

Due to the reduced compression ratios achieved and the memory fragmentation problems (compare Sec-

tion 4.4.1), the re-compression algorithm seems not desirable as a stand-alone operation. Yet, it may be

useful as part of other algorithms, for example merging of independent CCGs, see Section 4.4.2.

Corollary 6. CCG re-compression with relaxed deviation bounds is much slower than compression with

the new deviation bounds and achieves limited compression ratios.
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and renewed compression with varying branching factor b.
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Figure 5.28: Compression run-time for original compression, re-compression and renewed compression.

5.3.2 Adaptive CCG Compression

Adaptive compression primarily works like standard compression algorithm. In regular intervals it

checks for compliance with ressource limits. If this turns out negative, a re-start is performed. This in-

cludes dismissing the current intermediate graph and relaxing deviation bounds, compare Section 4.4.3.

For the experiments shown here, exponential relaxation strategies with constant factors f = 1.5 − 8 are

used. Starting with initial deviation bounds r0 and a0 the bounds are ai = a0 · f i and ri = r0 · f i

after the i’th relaxation step. The experiments shown in Figures 5.29 and 5.30 use initial parameters

r0 = 0.01 and a0 = 10. For the example trace with 24.9 million events the node count resource limits

were nmax = 100 000 − 3 000 000, which are unachievable with initial deviation bounds.

Figure 5.29 shows that the node compression ratio Rnodes grows exponentially with the number of re-

starts, i.e. it grows proportionally to the deviation parameters. For the larger resource limit (nmax =
3 000 000) only one or two re-starts are necessary, for the smallest resource limit (nmax = 100 000)

already 4 to 21 re-starts are needed. This results in very large final deviation bounds. As expected, for

larger f fewer re-start steps are observed. Yet, this may lead to exaggerated final deviation bounds, which

are much higher than the minimal deviation bounds that would comply with the resource restrictions.

Figure 5.30 shows the run-time behavior for the same experiments. As anticipated, the run-time decreases

with larger f , i.e. fewer re-start steps before reaching the same final deviation parameters. Yet, with

constant f and decreasing resource limits the total run-time is not necessarily increasing even though the

number of re-starts grows. Instead, run-time is actually reduced in most of the cases. The reason for this

at first surprising behavior is that smaller ressource limits make the compression algorithm spend less

time with very small deviation bounds, because re-start occurs earlier, compare Section 5.2.1.

Corollary 7. Adaptive compression is able to quickly determine suitable deviation bounds for given

resource limits. Faster relaxation strategies lead to smaller total run-time but allow less fine-grained

control over final deviation bounds.

In above experiments, the decision about a re-start is made after the resource limits are exceeded. In fact,

it would be sufficient to predict that it will be exceeded with current deviation bounds. Simple heuristics

might be designed, for example: restart if less than x percent of records account for ressource consump-

tion of more than x percent of the limit. Yet, compression behaves non-uniformly with cumulating record

count, compare Section 5.2.4 and Figure 5.25. Therefore, such heuristic approaches would reduce the

over-all effort for the cost of even further exaggeration of final deviation bounds.
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Figure 5.29: Compression ratio Rnodes vs. the number of re-start steps for adaptive compression with

limited node count (100 000, 250 000, 500 000, 750 000, 1 000 000, 2 000 000, 3 000 000).
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Figure 5.30: Adaptive compression run-time including multiple re-start steps vs. the number of re-starts.

5.3.3 Serialization and Restore of CCGs

CCG serialization and restoring is evaluated with the original SMG2000 trace which uses 5.5 MB to

463 MB memory with large scale or small scale compression. The experiments support the predictions

of linear effort for both operations, compare Section 4.6. Both operation are very fast compared to

repeated compression. Figure 5.31 shows almost perfect linear behavior for serialization and restore

run-time with respect to memory consumption m. The corresponding sustained speed ranges from 25 to

29 MB/s. The speed of the restore operation is slower due to the necessary pointer translation. It shows

equally linear behavior with over-all speed from 8 to 9.5 MB/s.

The speed with respect to node count (not shown) ranges from 90 000 to 255 000 nodes/s for serialization

and from 30 000 to 75 000 nodes/s for restoring. It is only roughly constant and has a distinct influence

of b especially for smaller n. This suggests that the speed is actually bound by the data volume. The

effects on speed with respect to node count are induced by the proportions between m, b and n.

Corollary 8. Serialization and restore of CCGs show strictly linear effort with respect to the data volume.

Both are very fast in comparison to repeated CCG construction and compression.
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Figure 5.31: Run-Time for CCG serialization and restore vs. CCG memory consumption m.

5.4 Cached Summary Queries

The very purpose of CCGs is the analysis of application traces. CCG construction and compression

can be done via batch processing early. Restoring a CCG from serialized form is fast, as shown above.

Only querying is always to be performed on demand. Usually, many successive queries are required to

generate the insight to the human user. Therefore, query performance is important in order to allow a

convenient workflow which is not impaired by long waiting periods.

Statistic summary queries are the most frequent and most performance demanding queries on CCGs.

Many important evaluation procedures rely on multiple statistic queries, e.g. complex information like

the well known timeline diagram [BNS00, BHNW01] are derived from multiple summary queries. Fur-

thermore, it includes the time search query when restricting the time interval in question.

Most of the time, such kinds of queries are utilized successively for overlapping areas of a trace. Most

frequently this happens for nested time intervals as the user usually approaches traces from a global

overview down to specific interesting details which are revealed only on this path. This can be exploited

for notable performance improvement.

5.4.1 Cache Strategies

The Cached Summary Queries re-uses intermediate results of recent queries. This is beneficial when

parts of a CCG are to be evaluated multiple times in successive queries. And it is also advantageous for

an isolated query, because some sub-graphs of a CCG are traversed multiple times due to compression.

In this section, summary queries are examined following the path from global overview to a small detail.

On all time intervals, performance is shown for initial queries as well as for successive queries taking

advantage of cached intermediate results of former queries. Note that in a real world scenario only the

very first global query would be a initial one while all following queries take full advantage of caching.

In order to balance the cache memory requirements and the performance improvement of the queries

a partial caching scheme is applied, i.e. only selected nodes are subject to caching (respectively the

intermediated results associated with that nodes). Here, all nodes with a certain depth level are cached

as well as all nodes referenced more often than a given threshold.
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The according caching parameters are like follows. The cache modulus parameter cm = 10 triggers

caching for all nodes with

depth(node) mod cm = 0. (5.6)

Hence, after at most cm steps of depth traversal there will be a node with cached intermediate results.

Furthermore, caching is performed for all nodes that are referenced more often than a certain threshold

cr = 5, the cache references parameter. Section 4.5.3 provides theoretical model of query speed.

5.4.2 Experiment Results

The following experiments cover two scenarios. At first, initial queries with previously empty caches.

Usually, those are issued only once in a series of interactive queries. Furthermore, successive queries with

pre-filled caches. Both experiments cover queries on CCGs with varying total sizes from n = 27 000 to

n = 4 200 00 nodes3. For every example, different sub-intervals of the complete time range have been

selected, including the full range from 51 965 000 to 31 005 400 000 ticks (approx. 17ms to 10.3s) and

intermediate time intervals of length t = 1010 ticks down to t = 104 ticks (approx. 3.3s to 3µs). The

time intervals corresponds to irregular sub-sets of the CCG’s nodes. Their size can be assumed roughly

proportional to the uncompressed and compressed node counts N and n ≤ N in the interval.

Figure 5.32(top) shows that the initial query time is roughly proportional to the length of the query

intervals t (roughly constant distance with respect to logarithmic time axis). The influence of the total

node count n (x-axis) is almost linear, see also non-logarithmic in Figure 5.33(top).

Successive queries show a logarithmic behavior with respect to the node count n, see Figure 5.32(bottom)

and Figure 5.33(bottom) with non-logarithmic time axis. Compared to initial queries with large t there

is a substantial performance gain of more than one order of magnitude. For smaller queries there is only

a moderate performance advantage. Yet, such queries are quick, already. For small t ≤ 104 the results

for both cases are almost constant below 0.5 ms.

Figure 5.33 gives a detailed look at the experiment with large query interval of lengths t with non-

logarithmic time axis. In particular, it shows the influence of the branching factor b = 10, 20, 40 on

query performance. For initial queries this results in a nearly linear behavior with respect to n with

slightly slower speed for larger b = 40 – see Figure 5.33(top). For successive queries the influence of n
is not linear any more but logarithmic! Furthermore, there is a a distinct advantage for smaller b = 10 –

see Figure 5.33(bottom).

Corollary 9. The Cached Summary Query achieves different speed for initial queries with previously

empty caches and for successive queries with pre-filled caches. The computational effort of initial queries

is proportional to the compressed number of nodes npart covered by the query time interval O(npart).
Successive queries are much faster than their initial counterparts by more than an order of magnitude.

Their computational effort is reduced to O(log npart).

5.5 MPI Send-Receive Matching

The matching of MPI send and receive events is based on event iterators, compare Section 3.4.2). The

matching algorithm performs a partial de-compression by traversing all original events in correct order,

see Section 3.4.5, and temporarily stores a sub-set of un-compressed events. Therefore, ressource usage

could exceed the size of the underlying CCG. This halfway contradicts the idea of evaluation with a

compressed data structure. However, iterating over the events of all processes in an alternating scheme

allows to limit the amount of pending events at any point in time, as presented in Section 4.5.5.

3The CCG size may vary due to different compression or due to different trace sizes
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Figure 5.32: Comparison of query run-time for initial (top) and successive (bottom) queries with respect

to the total node count n with fixed branching factor b = 20. The query intervals vary from

length t = 1 · 104 to 3 · 1010. (Mind the logarithmic time axis.)
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Figure 5.34: Temporary ressource usage of the matching algorithm for MPI send and receive events with

4 processes and varying phase length h. The respective maxima are proportional to h.

Figure 5.34 illustrates the number of pending events with a small example trace with p = 4 parallel

processes and s ≈ 110 000 evenly distributed send and receive events. After every h message events the

operation switches to the next process trace. In the beginning there are regular phases of ascending and

descending resource usage with length h. With progressing operation and with growing number of traces

processes the phases become less distinct.

The maximum resource usage is obviously proportional to h and the minimum is almost 0 which is

reached regularly after p = 4 phases. The behavior in Figure 5.34 represents a reasonable real-world

scenario. With additional pre-conditions for the distribution patterns of send and receive events upper

bounds for the resource usage can be deduced. The (improbable) worst case scenario still requires s/2
temporary entries for s message events.

The number of message events s is fixed for a given trace and is not influenced by the compressed node

count n, the ratios Rnodes and Rmemory or the branching factor b. Accordingly, the speed of the matching

operation is almost constant at ≈ 5 500 events/s. The speed is almost unaffected by the phase length h.

This is consistend with the O(1) access to the list of pending events, compare Section 4.5.5.

5.6 Recommended Parameter Settings

From all the experiment results shown before a recommendation for CCG parameter settings can be

derived. On one hand, there are deviation parameters for soft properties. On the other hand, there are

internal parameters of the CCG compression and evaluation algorithms. Below, reasonable defaults are

given for both if no specific settings are known.

5.6.1 Deviation Bounds for Soft Properties

The most important compression parameters are the deviation bounds for soft properties. In all previous

experiments the deviation bounds abs and rel for time durations were presented. This are good examples

for all remaining deviation bounds because all enforce either an absolute limit similar to abs or a relative

restriction proportional to the particular value similar to rel. The following list contains all deviation

parameters supported in the current implementation:
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• absolute time deviation for time stamps (abs),

• relative time deviation for time durations (rel),
• relative deviation of counter values that relate to time durations (rcounter),

• absolute deviation of bytes in point-to-point send or receive operations (lensend/receive),

• absolute deviation of time spent in send or receive operations (dursend/receive),

• absolute deviation of bytes exchanged in collective communication (lencollective), and

• absolute deviation of time spent in collective communication operations (durcollective).

The setting of deviation parameter will affect performance as well as the accuracy with respect to soft

properties. Both goals are conflicting. Always, the particular field of application has to determine the

accuracy necessary. Within this range, the deviation bounds should be specified as large as possible,

because the most restrictive one would limit the over-all compression ability.

If in doubt, they should rather be more restrictive. However, even for very accurate evaluation small

deviations are usually acceptable, at least in the same order of magnitude as the measurement error.

Usually, all of the deviation bounds aim for a similar degree of accuracy. It seems unusual to have some

very restrictive and very tolerant bounds at the same time. Yet, there is one exception: Deviation bounds

to (currently) nonrelevant properties should be unlimited.

The following examples of real-world scenarios shall illustrate two typical settings.

Example Scenario: Visual Trace Analysis

For trace visualization and interactive analysis similar to Vampir the deviation bounds for all properties

of interest should be rather restrictive in order to provide a realistic impression of the dynamic run-time

behavior. Still, there is room for lossy compression as certain small timing fluctuations are irrelevant.

An absolute time deviation of 5 µs and a relative time deviation of 5% could be typical conservative

settings. This would basically limit small time durations to 5% deviation (even if it is less than 5 µs) and

large durations to ±5 µs (even if it is less than 5%). With the particular timer resolution of for example

3 GHz (1/3 ns per tick) this translates to:

abs =
1 µs

timer resolution
=

1 µs

1/3 ns
= 3000 and (5.7)

rel = 5% = 0.05. (5.8)

Note, that the absolute time deviation should be below of half the minimum message latency to avoid

reversed messages, i.e. messages that look like being send backwards in time. Therefore, above example

would be valid for a minimum message latency of 10 µs or above which is a realistic value.

Example Scenario: MPI Communication Re-Play

For MPI message replay, which is for example used for benchmarking, the deviation parameter settings

would look completely different. As the original run-time behavior is irrelevant, the regarding deviation

bounds would be unbounded.

On the other hand, all communication related deviation bounds like lensend/receive, dursend/receive,

lencollective, and durcollective should be set to zero or very restrictive. However, if certain properties

always have zero deviation bounds in a particular field of application, they should be treated as hard

properties instead of soft properties. This would mean no additional restriction to compression but would

notably improve compression speed, compare Section 3.3.3.
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5.6.2 Algorithm Parameters

The search length parameter l and the maximum branching factor b have no influence on data accuracy

but only on compression capability and performance of compression and evaluation.

The search length parameter l should always be bounded according to the results presented in Sec-

tion 5.2.5. A rather large value like 1000 will effectively avoid excessive compression run-time for small

scale compression. At the same time, it will hardly influence the maximum compression ratios achievable

with large scale compression.

The maximum branching factor b affects CCG compression as well as querying. In general, compression

performance and compression ratios improve with larger b. For Cached Recursive Queries a rather small

value of b provides an advantage in terms of query speed. For larger b querying becomes slower even

though there are less nodes in the first place, because large b improve compression. As both effects are

opposed, b can be set in favor of compression or for the benefit of query speed. As a good compromise

a setting of b = 10 ... 30 is recommended. This will achieve good query performance while the penalty

for compression with small b < 10 is avoided.

5.7 Comparison of the CCG implementation to State-of-the-Art

Trace Analysis Tools

The preceding results showed that the CCG approach is clearly suitable to build interactive analysis tools

on top of it. It is able to handle very large traces effectively and efficiently. Now, the last part of this

chapter presents a comparison to the state-of-the-art, in particular the Vampir and VampirServer tools,

compare Section 2.2.1. For the two commercial tools as well as for the CCG implementation, the two

most important features are compared, which are the memory consumption, the loading time from files

and the speed of statistic summary queries. Again, the SMG2000 example trace is used, see Section 5.2.

The total memory consumption for all cases is given in Figure 5.35. Vampir uses quite substantial

amounts of memory, probably due to inefficient re-allocation of memory. It’s successor VampirServer

shows a memory consumption in the range of the uncompressed trace file size, as expected. The CCG

implementation requires notably less memory from 430 MB to 100 MB to 10 MB for minimum, medium

scale and maximum compression. This underlines the main advantage of the compressed CCG approach.

The following comparison looks at loading time from trace files, see Figure 5.36. Vampir and Vampir-

Server are both faster than the CCG construction, because they contain no compression phase. Vam-

pirServer shows an notable advantage over the sequential Vampir version, in particular with more dis-

tributed worker nodes. Loading from multiple parallel trace files (yellow) is even faster than loading

from a single trace file (red). CCG construction and compression is substantially slower for minimum

and small scale compression, but shows similar speed with medium scale compression and beyond.

As an alternative during an interactive workflow, the CCG may be restored from a previously compressed

and serialized version. The restore operation is much faster than CCG creation. With medium scale

compression and below, it is only slightly slower than loading in Vampir or VampirServer. With large

scale compression and above it is much faster however, due to the very small data volume.

The last comparison looks at the run-time for statistical queries, compare also Section 5.4. The run-time

of three queries covering the full trace as well as parts of 1/3 and 1/30 of the complete time interval is

shown in Figure 5.37. The event count is approximately proportional to the interval length.

The CCG-based cached query works with pre-filled caches (successive query) because this represents

the typical situation during interactive trace analysis, compare also Section 3.4.3. It is faster than the

corresponding query in VampirServer with a single worker process. It is more than twice as fast with
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Vampir VS 1+1 VS 2+1 VS 4+1 VS 8+1

load trace 23s 17.0 - 18.3s 10.1 - 17.4s 8.5 - 15.4s 4.5 - 14.3s

sum query 1/1 7s 0.680s 0.352s 0.181s 0.104s

sum query 1/3 2s 0.211s 0.114s 0.063s 0.039s

sum query 1/30 < 1s 0.059s 0.037s 0.027s 0.021

sum query 1/300 < 1s 0.010s 0.010s 0.009 0.011

Table 5.1: Loading and querying times of the default example trace with Vampir and VampirServer.

min. compr. small scale medium scale large scale max. compr.

load + compress 147s 32 - 87 20 - 31s 20s 20s

restore 40.675 36.852 21.142 1.128 0.422

initial

sum query 1/1 9.983 8.621 5.543 0.663 0.255

sum query 1/3 2.884 2.379 1.679 0.156 0.044

sum query 1/30 0.742 0.602 0.440 0.055 0.028

sum query 1/300 0.141 0.116 0.086 0.022 0.016

successive

sum query 1/1 0.226 0.215 0.186 0.122 0.043

sum query 1/3 0.088 0.083 0.073 0.050 0.009

sum query 1/30 0.020 0.018 0.017 0.012 0.002

sum query 1/300 0.005 0.005 0.004 0.003 0.001

Table 5.2: Loading and querying times of the default example trace with the CCG implementation.

minimum and small scale compression and up to ten times as fast with maximum compression. The query

run-time values for VampirServer and the CCG implementation cover only the queries itself excluding

any output or screen rendering operations. Note that for VampirServer there is an additional overhead

because of network communication with the master process (compare [BNM03, Bru08]). However,

this overhead should be constant with a single worker node. Therefore, it is assumed smaller than the

minimum query run-time of 0.01 s.

The complete list of all run-time results can be found in Table 5.1 for Vampir and VampirServer and in

Table 5.2 for the CCG implementation. The tables reveal that VampirServer already provides a notable

advantage over the sequential Vampir version, even with only a single worker node. Furthermore, they

show that VampirServer is able to achieve quicker query responses with more worker processes. The

scaling is almost optimal. However, VampirServer cannot scale beyond n worker nodes for a trace with

n processes (n = 8 in this case). With 4 or 8 worker nodes on 4 or 8 CPUs VampirServer is approximately

as fast as the CCG implementation with medium or large scale compression on a single CPU.

Of course, the presented comparison to a state-of-the-art software tool is not ultimate. In particular, it

does not investigate further ways of optimization and tuning that may be possible for either tools. Yet,

the comparison shows that the CCG implementation is able to achieve comparable performance as the

product quality software tool VampirServer while providing substantial resource reduction. Alternatively,

it can provide enhanced scalability with the same resources. Furthermore, it allows a new mode for

event trace processing: Coarse-level trace analysis with increased deviation bounds may be a desired

compromise solution when the accurate procedure becomes impossible due to exorbitant data volumes.

And last but not least, the CCG approach may be combined with distributed trace analysis, as introduced

in Section 4.7, in order to achieve unmatched scalability.
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6 Conclusion and Outlook

Finally, this chapter provides a conclusion of the thesis and gives an outlook on future work.

Summary and Conclusion

This thesis proposed a new data structure named Complete Call Graph for the representation of event

traces in main memory. It is especially designed according to the requirements and conditions of auto-

matic and interactive performance analysis tools.

After introducing the principles of the new event trace representation and the method for domain specific

data compression, a comprehensive discussion of all essential algorithms for construction, compression

and analysis of the CCG data structure confirmed that it is an adequate alternative to the established data

representation methods using sequential arrays or lists.

An elaborate theoretical and experimental evaluation with real-world examples demonstrated the data

compression ability according to the reduction of memory consumption and the reduction of the number

of graph nodes. The former is measured by the memory compression ratio Rmemory and achieved results

from ≈ 3 for lossless or small scale compression, to > 10 for medium scale compression, and to more

than 100 for large scale compression. The latter is measured by the node compression ratio Rnodes and

ranged from ≈ 5 for lossless or small scale compression, to > 40 for medium scale compression, and up

to more than 500 for large scale compression. Experiments with synthetic examples indicated that the

maximum compression can grow infinitely for very regular traces.

The newly designed analysis algorithms based on the CCG data structure were shown to profit twofold,

from the reduced memory footprint as well as from the decreased computational effort. The degree

of compression can be controlled by the deviation bounds for soft properties which allows to bias the

approach either towards high accuracy with moderate compression or towards extreme compression with

limited accuracy.

Future Work

The future work based on the results of this thesis should to focus on three subjects: incorporating

an implementation of the Complete Call Graph data structure into existing event trace analysis tools,

incorporating new trends in trace-based performance analysis, and extending the notion of a compressed

representation one step further to the graphical user interface.

The existing research implementation of the CCG data structure and the associated algorithms need to

be developed into a robust, product quality implementation, in order to make it attractive for established

trace analysis tools. This may include minor refinements for the benefit of the practical usage. The

general feasibility has already been demonstrated by a prototype integration into the VampirServer tool

[KBN05], see also Section 2.2.1 and Figure 2.1.

Furthermore, new trends in performance analysis need to be incorporated into the event trace analysis

and visualization. This may include new event types, new performance metrics, and new objectives for

optimization. One example is the trend towards energy efficient computing which requires to consider

not only execution time but also energy consumption as the subject of optimization.
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Future Research

The future research starting from the existing Complete Call Graph approach should go one logical step

further, bringing the notion of "information compression" to the end-user.

This thesis has been demonstrating, how the CCG data structure can provide all building blocks of

the classical paradigms of event trace analysis and visualization while notably reducing the memory

consumption and the computational effort. This allows better performance of trace analysis tools, faster

interactive responce and higher scalability for traces of growing size.

In addition, the CCG approach provides the potential to extend the scope of visualization and analysis

tools by an automatic classification of regular and irregular behavior of repeated event sequences. In a

first step, this would require to identify classes of related call sequences. The classes should contain all

pairwise identical call sequences (sub-trees) irrespective of the run-time behavior and other soft prop-

erties. Furthermore, also structurally similar call sequences should be included, for example variable

iteration counts within a otherwise identical sequence. Again, this will require an appropriate definition

of similar. The CCG approach already provides a preliminary support for this classification. The S-lists

in the management data structure for replacement nodes contain groups of related nodes (sub-trees) that

differ only with respect soft-properties, see Section 4.2.1.

In the second step, the classes of related call sequences could be investigated for their dynamic behavior

in order to automatically distinguish the frequent regular behavior from rare fluctuations and outliers.

This rating could be presented to the user by a sophisticated visualization design, allowing a quick

survey of regularity for large traces. Furthermore, the user could reliably judge the average regular

behavior of essential program parts by investigating a single instance thoroughly. The irregular and

maybe performance critical parts would still be available for separate consideration and comparison.

Similar to the CCG data compression, the "information compression" would allow the user to focus on

the important information by ignoring redundancy due to repetitions. A first attempt towards this concept

has been reported in [Voi06].
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