6,918 research outputs found

    Mouse Simulation Using Two Coloured Tapes

    Full text link
    In this paper, we present a novel approach for Human Computer Interaction (HCI) where, we control cursor movement using a real-time camera. Current methods involve changing mouse parts such as adding more buttons or changing the position of the tracking ball. Instead, our method is to use a camera and computer vision technology, such as image segmentation and gesture recognition, to control mouse tasks (left and right clicking, double-clicking, and scrolling) and we show how it can perform everything as current mouse devices can. The software will be developed in JAVA language. Recognition and pose estimation in this system are user independent and robust as we will be using colour tapes on our finger to perform actions. The software can be used as an intuitive input interface to applications that require multi-dimensional control e.g. computer games etc.Comment: 5 page

    Commercialisation of precision agriculture technologies in the macadamia industry

    Get PDF
    A prototype vision-based yield monitor has been developed for the macadamia industry. The system estimates yield for individual trees by detecting nuts and their harvested location. The technology was developed by the National Centre for Engineering in Agriculture, University of Southern Queensland for the purpose of reducing labour and costs in varietal assessment trials where yield for individual trees are required to be measured to indicate tree performance. The project was commissioned by Horticulture Australia Limited

    Collaborative robot control with hand gestures

    Get PDF
    Mestrado de dupla diplomação com a Université Libre de TunisThis thesis focuses on hand gesture recognition by proposing an architecture to control a collaborative robot in real-time vision based on hand detection, tracking, and gesture recognition for interaction with an application via hand gestures. The first stage of our system allows detecting and tracking a bar e hand in a cluttered background using skin detection and contour comparison. The second stage allows recognizing hand gestures using a Machine learning method algorithm. Finally an interface has been developed to control the robot over. Our hand gesture recognition system consists of two parts, in the first part for every frame captured from a camera we extract the keypoints for every training image using a machine learning algorithm, and we appoint the keypoints from every image into a keypoint map. This map is treated as an input for our processing algorithm which uses several methods to recognize the fingers in each hand. In the second part, we use a 3D camera with Infrared capabilities to get a 3D model of the hand to implement it in our system, after that we track the fingers in each hand and recognize them which made it possible to count the extended fingers and to distinguish each finger pattern. An interface to control the robot has been made that utilizes the previous steps that gives a real-time process and a dynamic 3D representation.Esta dissertação trata do reconhecimento de gestos realizados com a mão humana, propondo uma arquitetura para interagir com um robô colaborativo, baseado em visão computacional, rastreamento e reconhecimento de gestos. O primeiro estágio do sistema desenvolvido permite detectar e rastrear a presença de uma mão em um fundo desordenado usando detecção de pele e comparação de contornos. A segunda fase permite reconhecer os gestos das mãos usando um algoritmo do método de aprendizado de máquina. Finalmente, uma interface foi desenvolvida para interagir com robô. O sistema de reconhecimento de gestos manuais está dividido em duas partes. Na primeira parte, para cada quadro capturado de uma câmera, foi extraído os pontos-chave de cada imagem de treinamento usando um algoritmo de aprendizado de máquina e nomeamos os pontos-chave de cada imagem em um mapa de pontos-chave. Este mapa é tratado como uma entrada para o algoritmo de processamento que usa vários métodos para reconhecer os dedos em cada mão. Na segunda parte, foi utilizado uma câmera 3D com recursos de infravermelho para obter um modelo 3D da mão para implementá-lo em no sistema desenvolvido, e então, foi realizado os rastreio dos dedos de cada mão seguido pelo reconhecimento que possibilitou contabilizar os dedos estendidos e para distinguir cada padrão de dedo. Foi elaborado uma interface para interagir com o robô manipulador que utiliza as etapas anteriores que fornece um processo em tempo real e uma representação 3D dinâmica

    Wieldy Finger and Hand Motion Detection for Human Computer Interaction

    Full text link
    We have developed a gesture based interface for human computer interaction under the research field of computer vision.Earlier system have used the costlier system devices to make an effective interaction with systems, instead we have worked on the web cam based gesture input system.Our goal was to propound lesser cost, wieldy, object detection technique using blobs for detection of fingers.And to give number of count of the same.In addition, we have also implemented the hand gesture recognition

    Hand Posture Recognition with standard webcam for Natural Interaction

    Get PDF
    This paper presents an experimental prototype designed for natural human-computer interaction in an environmental intelligence system. Using computer vision resources, it analyzes the images captured by a webcam to recognize a person’s hand movements. There is now a strong trend in interpreting these hand and body movements in general, with computer vision, which is a very attractive field of research. In this study, a mechanism for natural interaction was implemented by analyzing images captured by a webcam based on hand geometry and posture, to show its movements in our model. A camera is installed in such a manner that it can discriminate the movements a person makes using Background Subtraction. Then hands are searched for assisted by segmentation by skin color detection and a series of classifiers. Finally, the geometric characteristics of the hands are extracted to distinguish defined control action positions

    The selection and evaluation of a sensory technology for interaction in a warehouse environment

    Get PDF
    In recent years, Human-Computer Interaction (HCI) has become a significant part of modern life as it has improved human performance in the completion of daily tasks in using computerised systems. The increase in the variety of bio-sensing and wearable technologies on the market has propelled designers towards designing more efficient, effective and fully natural User-Interfaces (UI), such as the Brain-Computer Interface (BCI) and the Muscle-Computer Interface (MCI). BCI and MCI have been used for various purposes, such as controlling wheelchairs, piloting drones, providing alphanumeric inputs into a system and improving sports performance. Various challenges are experienced by workers in a warehouse environment. Because they often have to carry objects (referred to as hands-full) it is difficult to interact with traditional devices. Noise undeniably exists in some industrial environments and it is known as a major factor that causes communication problems. This has reduced the popularity of using verbal interfaces with computer applications, such as Warehouse Management Systems. Another factor that effects the performance of workers are action slips caused by a lack of concentration during, for example, routine picking activities. This can have a negative impact on job performance and allow a worker to incorrectly execute a task in a warehouse environment. This research project investigated the current challenges workers experience in a warehouse environment and the technologies utilised in this environment. The latest automation and identification systems and technologies are identified and discussed, specifically the technologies which have addressed known problems. Sensory technologies were identified that enable interaction between a human and a computerised warehouse environment. Biological and natural behaviours of humans which are applicable in the interaction with a computerised environment were described and discussed. The interactive behaviours included the visionary, auditory, speech production and physiological movement where other natural human behaviours such paying attention, action slips and the action of counting items were investigated. A number of modern sensory technologies, devices and techniques for HCI were identified with the aim of selecting and evaluating an appropriate sensory technology for MCI. iii MCI technologies enable a computer system to recognise hand and other gestures of a user, creating means of direct interaction between a user and a computer as they are able to detect specific features extracted from a specific biological or physiological activity. Thereafter, Machine Learning (ML) is applied in order to train a computer system to detect these features and convert them to a computer interface. An application of biomedical signals (bio-signals) in HCI using a MYO Armband for MCI is presented. An MCI prototype (MCIp) was developed and implemented to allow a user to provide input to an HCI, in a hands-free and hands-full situation. The MCIp was designed and developed to recognise the hand-finger gestures of a person when both hands are free or when holding an object, such a cardboard box. The MCIp applies an Artificial Neural Network (ANN) to classify features extracted from the surface Electromyography signals acquired by the MYO Armband around the forearm muscle. The MCIp provided the results of data classification for gesture recognition to an accuracy level of 34.87% with a hands-free situation. This was done by employing the ANN. The MCIp, furthermore, enabled users to provide numeric inputs to the MCIp system hands-full with an accuracy of 59.7% after a training session for each gesture of only 10 seconds. The results were obtained using eight participants. Similar experimentation with the MYO Armband has not been found to be reported in any literature at submission of this document. Based on this novel experimentation, the main contribution of this research study is a suggestion that the application of a MYO Armband, as a commercially available muscle-sensing device on the market, has the potential as an MCI to recognise the finger gestures hands-free and hands-full. An accurate MCI can increase the efficiency and effectiveness of an HCI tool when it is applied to different applications in a warehouse where noise and hands-full activities pose a challenge. Future work to improve its accuracy is proposed

    A Real-Time Letter Recognition Model for Arabic Sign Language Using Kinect and Leap Motion Controller v2

    Full text link
    The objective of this research is to develop a supervised machine learning hand-gesturing model to recognize Arabic Sign Language (ArSL), using two sensors: Microsoft\u27s Kinect with a Leap Motion Controller. The proposed model relies on the concept of supervised learning to predict a hand pose from two depth images and defines a classifier algorithm to dynamically transform gestural interactions based on 3D positions of a hand-joint direction into their corresponding letters whereby live gesturing can be then compared and letters displayed in real time. This research is motivated by the need to increase the opportunity for the Arabic hearing-impaired to communicate with ease using ArSL and is the first step towards building a full communication system for the Arabic hearing impaired that can improve the interpretation of detected letters using fewer calculations. To evaluate the model, participants were asked to gesture the 28 letters of the Arabic alphabet multiple times each to create an ArSL letter data set of gestures built by the depth images retrieved by these devices. Then, participants were later asked to gesture letters to validate the classifier algorithm developed. The results indicated that using both devices for the ArSL model were essential in detecting and recognizing 22 of the 28 Arabic alphabet correctly 100 %
    corecore