

Collaborative Robot Control with Hand Gestures

Ali Baccar

This thesis is done under the scope of the double degree agreement between Instituto

Politécnico de Bragança and Université Libre de Tunis

Master’s degree in Industrial engineering – Electrical branch

Supervisors

Paulo Leitão

Mohamed Aymen Slim

Bragança

2020

Collaborative Robot Control with Hand Gestures

Ali Baccar

This thesis is done under the scope of the double degree agreement between Instituto

Politécnico de Bragança and Université Libre de Tunis

Master’s degree in Industrial engineering – Electrical branch

Supervisors

Paulo Leitão

Mohamed Aymen Slim

Bragança

2020

Abstract

This thesis focuses on hand gesture recognition by proposing an architecture to control a

collaborative robot in real-time vision based on hand detection, tracking, and gesture

recognition for interaction with an application via hand gestures. The first stage of our system

allows detecting and tracking a bar e hand in a cluttered background using skin detection and

contour comparison. The second stage allows recognizing hand gestures using a Machine

learning method algorithm. Finally an interface has been developed to control the robot over.

Our hand gesture recognition system consists of two parts, in the first part for every frame

captured from a camera we extract the keypoints for every training image using a machine

learning algorithm, and we appoint the keypoints from every image into a keypoint map. This

map is treated as an input for our processing algorithm which uses several methods to recognize

the fingers in each hand.

In the second part, we use a 3D camera with Infrared capabilities to get a 3D model of the hand

to implement it in our system, after that we track the fingers in each hand and recognize them

which made it possible to count the extended fingers and to distinguish each finger pattern.

An interface to control the robot has been made that utilizes the previous steps that gives a real-

time process and a dynamic 3D representation.

Resumo

Esta dissertação trata do reconhecimento de gestos realizados com a mão humana, propondo

uma arquitetura para interagir com um robô colaborativo, baseado em visão computacional,

rastreamento e reconhecimento de gestos. O primeiro estágio do sistema desenvolvido permite

detectar e rastrear a presença de uma mão em um fundo desordenado usando detecção de pele

e comparação de contornos. A segunda fase permite reconhecer os gestos das mãos usando um

algoritmo do método de aprendizado de máquina. Finalmente, uma interface foi desenvolvida

para interagir com robô.

O sistema de reconhecimento de gestos manuais está dividido em duas partes. Na primeira

parte, para cada quadro capturado de uma câmera, foi extraído os pontos-chave de cada

imagem de treinamento usando um algoritmo de aprendizado de máquina e nomeamos os

pontos-chave de cada imagem em um mapa de pontos-chave. Este mapa é tratado como uma

entrada para o algoritmo de processamento que usa vários métodos para reconhecer os dedos

em cada mão.

Na segunda parte, foi utilizado uma câmera 3D com recursos de infravermelho para obter um

modelo 3D da mão para implementá-lo em no sistema desenvolvido, e então, foi realizado os

rastreio dos dedos de cada mão seguido pelo reconhecimento que possibilitou contabilizar os

dedos estendidos e para distinguir cada padrão de dedo.

Foi elaborado uma interface para interagir com o robô manipulador que utiliza as etapas

anteriores que fornece um processo em tempo real e uma representação 3D dinâmica.

Acknowledgements

First of all, I thank God for giving me the wisdom and strength for accomplishing this thesis.

 I would like to express my deep gratitude, appreciation, and respect for my Professor Paulo

Leitão my supervisor in Instituto Politécnico de Bragança and Professor Mohamed Ayman Slim

my supervisor in Université Libre de Tunis for their endless support, encouragement, advice,

patience, interest, and guidance throughout this thesis. I have gained enormously from their

ideas, technical insights and profound thinking. I wish to deeply thank Professor Luis Piardi for

his ideas, suggestions, cooperation and support in this project. Finally, great thanks and love to

my parents for their constant understanding, encouraging, support and endless love to fulfill my

goals.

Contents

Chapter 1: Introduction ...1

1.1. Motivation and Framework ..1

1.2. Objectives ..2

1.3. Contribution ...3

1.4. Document Structure ...3

Chapter 2: State of Art ..4

2.1. Gesture Recognition...4

2.1.1. Detection ...7

2.1.2. Tracking ..7

2.1.3. Recognition ...7

2.1.4. Application ...7

2.2.Gesture Recognition Application and potential applications to Industrial Environments 8

2.2.1. Human-Robot collaboration ..8

2.2.2. Sensor technologies ... 10

2.3. Collaborative robots: Safety and Regulations ... 13

2.3.1. A framework for safety in industrial robotic environments. 14

2.3.2. Separating Human and Robot workspaces ... 15

2.3.3. Shared human and robot work/workspaces .. 16

Chapter 3: Methodology ... 18

3.1. Hardware choice .. 18

3.1.1. Leap Motion Camera ... 20

3.1.2. Intel Realsense D415 ... 23

3.2. Hand Detection .. 24

3.2.1. Thresholding ... 25

3.2.2. Skin color segmentation .. 25

3.3. Finger Detection .. 26

3.4. Software .. 28

3.4.1. Python ... 28

3.4.2. Python Idle .. 28

3.4.3. Unity ... 28

3.4.4. C# Programming language .. 29

3.4.5. Visual Studio .. 29

Chapter4: System Architecture ... 30

4.1. Leap Motion operation for gesture detection .. 30

4.2. Real Sense operation for gesture detection ... 32

4.3. Communication method between scripts and the robot ... 39

Chapter 5: Results and Comparison .. 43

5.1. LeapMotion ... 43

5.2. Intel RealSense .. 46

5.3. Performance of the system ... 49

5.4. Tasks done by the Robot .. 51

Chapter 6: Conclusion and Future work .. 53

6.1. Conclusion ... 53

6.2. Future Work... 54

Bibliography... 55

List of Tables

Table 1 Classification of safety in industrial robot collaborative (S. ROBLA-GÓMEZ 1,

2017) .. 15

Table 2 Technical specifications of Intel RealSense D415. ... 24

Table 3 Confusion matrix Leapmotion sensor detection .. 50

Table 4 Confusion matrix Intel RealSense D415 camera detection .. 50

Table 5 Precision comparison ... 51

Table 6 Sensitivity comparison ... 51

List of Figures

Figure 1 different body parts and objects identified in the literature employed for gesturing

(Agrawal, 2012) ...5

Figure 2 Vision based hand gesture representations (Bourke A, s.d.)6

Figure 3 Vision based hand gesture recognition techniques (Agrawal, 2012)6

Figure 4 Hand Gesture Application (Agrawal, 2012) ..8

Figure 5 A process model of gesture recognition for human-robot collaboration. (Hongyi Liu,

2017) ..9

Figure 6 Different types of gesture recognition sensors. (Hongyi Liu, 2017) 10

Figure 7 A four-stage model of human information processing ... 10

Figure 8 Project Soli and RF-Capture system: (a) concept of Project Soli; (b) concept of RF-

Capture gesture capturing system. (Hongyi Liu, 2017).. 13

Figure 9 Separating human-robot workspace. (S. ROBLA-GÓMEZ 1, 2017) 16

Figure 10 Schematic View of Leap Motion Controller. (FrankWeichert*, 2013) 20

Figure 11 Visualization of Sinus Function within the x-y plane (FrankWeichert*, 2013) 21

Figure 12 eviation between a desired 3D Position and the Measured Positions for a Static

Position. (a)xy-Variation;(b)xz-Variation; (c) yz-Variation. (FrankWeichert*, 2013) 22

Figure 13 Deviation between a Desired 3D Position and the Median of the Measured

Positions. (a) xy-Plane; (b) xz-Plane; (c) yz-Plane. (FrankWeichert*, 2013) 22

Figure 14 RealSense D415 (Monica Carfagni, 2018) .. 23

Figure 15 Convolutional Neural Network (CNN) (LeCun, 1998) .. 25

Figure 16 Examples of static gestures ... 27

Figure 17 Hand Skeleton (Haiyang Jin, 2016) ... 28

Figure 18 Overall system architecture ... 30

Figure 19 Flowchart Leapmotion .. 31

Figure 20 Flowchart RealSense Hand Gesture .. 33

Figure 21 Hand detection using HSV .. 34

Figure 22 Flowchart finger counting ... 36

Figure 23 Flowchart RealSense using OpenPose ... 36

Figure 24 Shell script .. 38

Figure 25 Unity designing interface .. 39

Figure 26 3d hand example from unity assets.. 39

Figure 27 simulation of hand sign ... 41

Figure 28 Build settings .. 41

Figure 29 Robotic workbench ... 42

Figure 30 One hand recognition .. 43

Figure 31 Leapd Service running .. 44

Figure 32 running script of counting fingers ... 44

Figure 33 Ok gesture .. 45

Figure 34 two hands recognition ... 45

Figure 35 hand frame tracking .. 47

Figure 36 Running script of hand gesture recognition ... 47

Figure 37 Keypoint map ... 48

Figure 38 Skeleton map .. 48

file:///C:/Users/ASUS/Desktop/Thesis_Ali_Baccar.docx%23_Toc60208981
file:///C:/Users/ASUS/Desktop/Thesis_Ali_Baccar.docx%23_Toc60208987
file:///C:/Users/ASUS/Desktop/Thesis_Ali_Baccar.docx%23_Toc60209000
file:///C:/Users/ASUS/Desktop/Thesis_Ali_Baccar.docx%23_Toc60209001

Figure 39 Hand gestures positions .. 49

Figure 40 Tower building ... 52

Figure 41 putting and removing blocks in and from the ticked area 52

List of the Acronyms

ANN………………….Artificial Neural Network

API …………………..Application Programmer Interface

CNN…………………. Convolutional Neural Network

CPS………………….Cyber-Physical Systems

DOF………………….Degree Of Freedom

FPS…………………..Frame Per Second

HCI………………….Human Computer Interaction

HMI………………….Human Machine Interface

HSV………………….Hue Saturation Value

HMM…………….…..Hidden Markov Models

HRC …………………Human Robot Collaboration

IDE…………………. Integrated development environment

IDLE………………....Integrated Development and Learning Environment

MIT………………….Massachusetts Institute of Technology

RF …………………...Radio Frequency

SDK………………….System Development Kit

TCP…………………..Tool Control Point

TOF…………………..Time of Flight

1

Chapter 1: Introduction

1.1. Motivation and Framework

Traditional human-computer interaction devices such as the keyboard and mouse become

ineffective interaction with the virtual environment applications because 3D environment need

a new interaction device. An efficient human interaction with the modern virtual environment

requires more natural devices. Among them the “Hand Gesture” human-computer interaction

modality has become of major interest. The main objective of gesture recognition is to build a

system which can recognize human gestures and utilize them to control an application.

Vision based hand gesture recognition recently became a high active research area with

motivating applications such as sign language recognition , socially assistive robotics,

directional indication through pointing , control through facial gestures , human-computer

interaction (HCI) , immersive game technology, virtual controllers, etc.

Within the broad range of application scenarios, hand gestures are a powerful human interface

components, however, their fluency and intuitiveness has not been utilized as computer

interface. Recently, hand gestures applications have begun to emerge, but they are still not

robust and are unable to recognize the gestures in a convenient and easy accessible manner by

human. Several advanced techniques are either too fragile or too coarse grained to be of any

universal use for hand gesture recognition. Especially techniques for hand gesture interfaces

should be developed beyond current performance in term of speed and robustness to attain the

needed interactivity and usability.

It is a difficult task to recognize hand gestures automatically from a camera input. It usually

includes numerous phases such as signal processing, detection, tracking, shape description,

motion analysis and pattern recognition. The general problem is quiet challenging because of

several problems such as the complex nature of static and dynamic gestures, cluttered

backgrounds, lightning changes and occlusions.

Trying to solve the problem in its generality needs elaborate techniques that require high

performance against the issues.

2

Hand gesture recognition from video frames is one of the most main challenges in image

processing and computer vision because it provides the computer the capability of detecting

tracking, recognizing and interpreting the hand gestures to control various devices or to interact

with several human machine interfaces (HMI).

1.2. Objectives

The objectives of this thesis is to develop a novel approach to the complete problem of hand

gesture recognition. By proposing new algorithms to an existing problem which is a

collaborative robot controlled manually.

Our work should satisfy numerous conditions:

The first requirement is a real-time performance. This is critical for complete interactivity and

intuitiveness of the interface. This is measured by frames per second (fps). If there the execution

time is log there will be a delay between the real event and the recognition. If the gestures are

carried out in an extremely fast sequence, the event may not be recognized at all.

The second required condition is flexibility, and how well it combines with new applications

and existing applications.

Third, the system should be practically precise enough to be used. The approach should be able

to recognize the defined gestures at least from 90% to 100% of time to be successful and of

practical use.

Fourth, is robustness which the system is able to detect, track and recognize different hand

gestures successfully under different lighting conditions and cluttered backgrounds.

Fifth, the approach should be user-independent in which system must work for various persons

rather than one particular person. The system must recognize hand gestures for different human

hands of different scales and colors.

Finally, the system should be safe to be utilized in the industrial field, which mean it safe for

human the manipulator and the surrounding workers and for objects around the system should

not be harmed in any way.

3

1.3. Contribution

The major contributions of this thesis are the following:

We prepared a new real-time and accurate recognition for the detected hand posture detection

and tracking using a Leap motion camera.

We created real-time hand tracking system from 2D and 3D videos using Intel RealSense

camera.

We developed algorithms to further increase the efficiency of our system.

We developed a Human-Machine interface supported by multiple platforms which creates a 3D

representation of our tracking system in Real-time.

1.4. Document Structure

This thesis includes 6 chapters:

Chapter 1 introduces the framework, vision based hand gesture processing stages and

motivations of our work. The objectives to be accomplished and the contributions are also

mentioned.

Chapter 2 provides the State of art which works related to gesture recognition, its applications

and the potential applications in industrial environments were presented, also there is mention

of works related of collaborative robots, their safety and regulations and the human usability

and ergonomics.

Chapter 3 presents the methodology followed, our hardware choice, software used and different

algorithms to detect hand postures in each hardware, recognition and processing, also finger

tracking and recognition is mentioned

Chapter 4 proposes the architecture of the system were Leapmotion and Realsense operations

for gesture detection were mentioned along with the algorithms used and the communication

method between the script and the robot.

Chapter 5 presents the implementation of our methods, the results, evaluating the performance

of our system and comparison between our methods.

Chapter 6 provides conclusions were brief comparison is made and future work.

4

Chapter 2: State of Art

2.1. Gesture Recognition

In the present world, the interaction with the computing devices has advanced to such an extent

that as humans it has become necessity and we cannot live without it. The technology has

become so embedded into our daily lives that we use it to work, shop, communicate and even

entertain ourselves. It has been widely believed that the computing, communication and display

technologies progress further, but the existing techniques may become a bottleneck in the

effective utilization of the available information flow (Pantic M, 2008). To efficiently use them,

most computer applications require more and more interaction. For that reason, human-

computer interaction (HCI) has been a lively field of research in the last few years. Firstly based

in the past on punched cards, reserved to experts, the interaction has evolved to the graphical

interface paradigm. The interaction consists of the direct manipulation of graphic objects such

as icons and windows using a pointing device. Even if the invention of keyboard and mouse is

a great progress, there are still situations in which these devices are incompatible for HCI. This

is particularly the case for the interaction with 3D objects. The 2 degrees of freedom (DOFs) of

the mouse cannot properly emulate the 3 dimensions of space. The use of hand gestures

provides an attractive and natural alternative to these cumbersome interface devices for human

computer interaction. Using hands as a device can help people communicate with computers in

a more intuitive way. When we interact with other people, our hand movements play an

important role and the information they convey is very rich in many ways. We use our hands

for pointing at a person or at an object, conveying information about space, shape and temporal

characteristics. We constantly use our hands to interact with objects. Hand movements are thus

a mean of non-verbal communication, ranging from simple actions (pointing at objects for

example) to more complex ones (such as expressing feelings or communicating with others).

In this sense, gestures are not only an ornament of spoken language, but are essential

components of the language generation process itself. A gesture can be defined as a physical

movement of the hands, arms, face and body with the intent to convey information or meaning.

In particular, recognizing hand gestures for interaction can help in achieving the ease and

naturalness desired for human computer interaction (Mitra S, 2007).

5

Figure 1 different body parts and objects identified in the literature employed for gesturing (Agrawal, 2012)

The graph above shows the importance of hand and finger gestures to humans as meaning of

expressing their feelings and the notifications of their thoughts.

 To abstract and model the human body parts motion several hand gesture representations and

models have been proposed and implemented by the researchers. The two major categories of

hand gesture representation are 3D model based methods and appearance based methods as

shown in Figure 2.

The 3D model based hand gesture recognition has different techniques for gesture

representation namely 3D textured volumetric, 3D geometric model and 3D skeleton model.

Appearance based hand gesture representation include color based model, silhouette geometry

model, deformable model and motion based model.

8.2%

21%

13%

10%
9%

2%

2%

4%

5%
6%

7%
7%

Body parts

Hand Objects Multiple hands Fingers

others head + fingers foot object + finger

hand + objects hand + finger hand + head body

6

Figure 2 Vision based hand gesture representations (Bourke A, s.d.)

Most of the complete hand interactive mechanisms that act as a building block for vision based

hand gesture recognition system are comprised of three fundamental phases: detection, tracking

and recognition. This section of the research survey discusses some of the prominent vision

based hand gesture recognition techniques used by most of the researchers by categorizing

under the three verticals representing the three fundamental phases of detection tracking and

recognition as shown in Figure 3.

Figure 3 Vision based hand gesture recognition techniques (Agrawal, 2012)

7

2.1.1. Detection

The primary step in hand gesture recognition systems is the detection of hands and the

segmentation of the corresponding image regions. This segmentation is crucial because it

isolates the task-relevant data from the image background, before passing them to the

subsequent tracking and recognition stages (Cote M, 2006) . A large number of methods have

been proposed in the literature that utilize a several types of visual features and, in many cases,

their combination. Such features are skin color, shape, motion and anatomical models of hands.

2.1.2. Tracking

If the detection method is fast enough to operate at image acquisition frame rate, it can be used

for tracking as well. However, tracking hands is notoriously difficult since they can move very

fast and their appearance can change vastly within a few frames. Tracking can be defined as the

frame-to-frame correspondence of the segmented hand regions or features towards

understanding the observed hand movements. The importance of robust tracking is twofold.

First, it provides the inter-frame linking of hand/finger appearances, giving rise to trajectories

of features in time. These trajectories convey essential information regarding the gesture and

might be used either in a raw form (e.g. in certain control applications like virtual drawing the

tracked hand trajectory directly guides the drawing operation) or after further analysis (e.g.

recognition of a certain type of hand gesture). Second, in model-based methods, tracking also

provides a way to maintain estimates of model parameters variables and features that are not

directly observable at a certain moment in time (Baxter, 2000).

2.1.3. Recognition

The overall goal of hand gesture recognition is the interpretation of the posture, location or

gesture conveys of the hand or both hands. Vision based hand gesture recognition techniques

can be further classified under static and dynamic gestures. To detect static gestures (i.e.

postures), a general classifier or a template-matcher can be used. However, dynamic hand

gestures have a temporal aspect and require techniques that handle this dimension like Hidden

Markov Models (Wechsler, 2005).

2.1.4. Application domains

Vision based hand gestures recognition systems since its early days of exploration and research

have found vital applications to a wide range of real life and real time scenarios. The evolution

of human computer interaction has been paced up with the advances in pervasive computing

8

and real time application scenarios of computing devices. These applications vary from

Information Visualization, Desktop Applications, sign language, Robotics, virtual reality to

games, medical environment, augmented reality and others.

Figure 4 Hand Gesture Application (Agrawal, 2012)

The next Chapter focuses on the robotics application as it is our main focus especially in the

industrial environment.

2.2. Gesture Recognition Application and potential applications to Industrial

Environments

2.2.1. Human-Robot collaboration

Robotic systems have already become essential components in various industrial sectors.

Recently, the concept of Human-Robot Collaboration (HRC) has generated more interests.

Human workers have unique problem-solving skills and sensory-motor capabilities, but are

restricted in force and precision (Kruger, 2012). Robotic systems, on the other hand, provide

better fatigue, higher speed, higher repeatability and better productivity, but are restricted in

flexibility. Jointly, HRC can release human workers from heavy tasks by establishing

communication channels between humans and robots for better overall performance. Ideally, a

HRC team should work similarly as a human-human collaborative team in a manufacturing

environment. However, time-separation or space-separation is dominant in HRC systems,

which reduced productivity for both human workers and robots.

9

To recognize gestures in the HRC manufacturing context, it is beneficial to investigate into a

generic and simplified human information processing model. Based on this generic model, we

propose a specific model for gesture recognition in HRC. As shown in Figure1, there are five

essential parts related to gesture recognition for HRC: sensor data collection, gesture

identification, gesture tracking, gesture classification and gesture mapping, explained as

follows.

 Sensor data collection: the raw data of a gesture is captured by sensors.

 Gesture identification: in each frame, a gesture is located from the raw data.

 Gesture tracking: the located gesture is tracked during the gesture movement. For static

gestures, gesture tracking is unnecessary.

 Gesture classification: tracked gesture movement is classified according to pre-defined

gesture types.

 Gesture mapping: gesture recognition result is translated into robot commands and sent

back to workers.

HRC has many applications such as Pick and Place, packaging and palletizing, quality

inspection and object manipulation.

Figure 5 A process model of gesture recognition for human-robot collaboration. (Hongyi Liu, 2017)

10

2.2.2. Sensor technologies

Before gesture recognition process starts, raw gesture data need to be collected by sensors. In

this section, different sensors in the literature are analyzed based on various sensing

technologies. As shown in Figure 5, there are two basic categories of data acquisition: image

based and non-image based approaches.

Figure 6 Different types of gesture recognition sensors. (Hongyi Liu, 2017)

2.2.2.1. Image based approaches

Technologies are often inspired by nature. As a human being, we use our eyes to recognize

gestures. Therefore, for robots, it is reasonable to use cameras to “see” gestures. The image-

based approaches are further divided into four categories.

Figure 7 A four-stage model of human information processing

Marker

In marker-based approaches, a sensor is a conventional optical camera. In most marker-based

solutions, users need to wear obvious. Today, we enjoy much faster graphical processing speed

compared with twenty years ago. As a result, more gesture recognition sensors are available on

the market.

Information
Acquisition

Information
analysis

Decision
making

Response
Action

11

Single camera

In the early 90th, researchers started to analyze gestures using a single camera. A drawback of

single-camera-based approaches is the restriction of view angles, which affects a system's

robustness. Recent research, however, applied a single camera in high-speed gesture

recognition. The system utilizes the speed image sensor and specially designed visual

computing processor to achieve high-speed gesture recognition.

Stereo camera

To achieve robust gesture recognition, researchers suggested stereo camera based approaches

to construct 3D environment. They have been applied in applications that use two stereo

cameras to construct 3D depth information. Many stereo camera based approaches follow a

similar. Although stereo camera systems have improved robustness in outdoor environment,

they still suffered from problems such as computational complexity and calibration difficulties

(Wachs, 2011).

Depth sensor

Recently, depth sensing technologies have emerged rapidly. We define a depth sensor as a non-

stereo depth sensing device. Nonstereo depth sensor enjoys several advantages compared to the

traditional stereo cameras. For example, the problems of setup calibration and illumination

conditions can be prevented. Moreover, the output of a depth sensor is 3D depth information.

Compared with color information, the 3D depth information simplifies the problem of gesture

identification. A comparison of gesture identification accuracy by using color and depth

information can be found in Time-of-Flight (ToF) technology is one of the popular depth

sensing techniques. The fundamental principle of the ToF technology is to identify light travel

time Recently, Microsoft Kinect 2 has applied the ToF technology. The advantage of the ToF

technology is the higher frame rate. The limitation of the ToF technology is that the camera

resolution highly depends on its light power and reflection. (Hornegger, 2008)

Depth sensor provides a cheap and easy solution for gesture recognition. It is widely used in

entertainment, education, and research, which has introduced a large developer community.

With a large developer community, many open source tools and projects are available. Due to

resolution restriction, currently, depth sensors are especially popular in body gesture

recognition and close-distance hand and arm gesture recognition.

12

2.2.2.2 Non-image based approaches

Gesture recognition has been dominated by image-based sensors for a long time. Recent

developments in MEMS and sensors have significantly boosted non-image based gesture

recognition technologies.

Glove

Glove-based gestural interfaces are commonly used for gesture recognition. Usually, glove-

based approaches require wire connection, accelerometers, and gyroscopes. However, a

cumbersome glove with a load of cables can potentially cause problems in HRC manufacturing

environment. Glove-based approaches also introduced complex calibration and setup

procedures.

 Band

Another contactless technology uses band-based sensors. Band based sensors rely on a

wristband or similar wearable devices. Band-based sensors adopt wireless technology and

electromyogram sensors, which avoid connecting cables. The sensors only need to contact with

wrist; user's hand and fingers are released. One example is Myo gesture control armband (Labs,

2015) (Zhang, 2015). Recently, several band-based sensor gesture control systems have been

reported.

Non-wearable

The third type of non-image based technologies adopts non wearable sensors. Non-wearable

sensors can detect gestures without contacting human body.

Google introduced Project Soli, a radio frequency (RF) signal based hand gesture tracking and

recognition system (Google, 2015).The device has an RF signal sender and a receiver. It is

capable of recognizing different hand gestures within a short distance. MIT has been leading

non-wearable gesture recognition technology for years. Electric Field Sensing technology was

pioneered by MIT (Smith et al., 1998). A recent discovery from MIT introduced WiTrack and

RF-Capture system that captures user motion by radio frequency signals reflected from human

body. (Hongyi Liu, 2017)

As shown in Fig. 8(b), the RF-Capture system selects particular RF signals that can traverse

through walls and reflect off the human body. The system can capture human motion even from

another room with a precision of 20 cm. Although the precision is not acceptable in HRC

13

manufacturing, non-wearable based technologies are promising and fast-growing sensor

technologies for gesture recognition.

Figure 8 Project Soli and RF-Capture system: (a) concept of Project Soli; (b) concept of RF-Capture gesture capturing
system. (Hongyi Liu, 2017)

 2.2.2.3. Comparison of sensor technologies

Summarizing the advantages and disadvantages of different technologies. It is clear that there

is no sensor that fits all HRC applications. Two observations of the sensor technologies are

provided based on the above analyses: In indoor HRC manufacturing environment, depth

sensors are the most promising image-based techniques. Depth sensors possess advantages of

easy calibration and accurate data processing. A large application developer community exists,

which provides immediate solutions. Non-wearable approaches are the most promising

technology among non-image based approaches. They can avoid direct contact with users,

which provide advantages in an HRC manufacturing environment. Non-wearable sensing is

also a fast-growing field.

2.3. Collaborative robots: Safety and Regulations

After many years of rigid conventional procedures of production, industrial manufacturing is

going through a process of change toward flexible and intelligent manufacturing, the so-called

Industry 4.0. In this paper, human–robot collaboration has an important role in smart factories

since it contributes to the achievement of higher productivity and greater efficiency. However,

this evolution means breaking with the established safety procedures as the separation of

workspaces between robot and human is removed. These changes are reflected in safety

standards related to industrial robotics since the last decade, and have led to the development

of a wide field of research focusing on the prevention of human–robot impacts and/or the

minimization of related risks or their consequences. This paper presents a review of the main

14

safety systems that have been proposed and applied in industrial robotic environments that

contribute to the achievement of safe collaborative human–robot work. Additionally, a review

is provided of the current regulations along with new concepts that have been introduced in

them. The discussion presented in this paper includes multidisciplinary approaches, such as

techniques for estimation and the evaluation of injuries in human–robot collisions, mechanical

and software devices designed to minimize the consequences of human–robot impact, impact

detection systems, and strategies to prevent collisions or minimize their consequences when

they occur.

2.3.1. A framework for safety in industrial robotic environments.

To provide a structured framework, a classification of the main safety systems in robotic

environments is provided in Table 1, including the aims pursued by the safety systems,

hardware and software systems that are employed, devices that are used, and the actions

involved in each type safety system. Table 1 indicates the sections of the paper where each

subject is covered.

The term of Cyber-Physical Systems (CPS) has been incorporated because of the ongoing

improvements in intelligent manufacturing have significant implications on the usage of robot

safety systems. In this way, the incorporation of network computing, connected devices and

data management systems in manufacturing processes, including active safety systems,

resulted in CPS.

Cyber-Physical System are defined as physical devices which are provided with technologies

to collect data about themselves and their surroundings, process and evaluate these data,

connect and communicate with other systems and initiate actions to achieve their goals (S.

ROBLA-GÓMEZ 1, 2017).

15

Table 1 Classification of safety in industrial robot collaborative (S. ROBLA-GÓMEZ 1, 2017)

 2.3.2. Separating Human and Robot workspaces

Common mechanical robots are enormous, heavy and move at high speeds. These conditions make

it important to forestall impacts between the robot and the humans who may enter the robot

workspace, in order to avoid harm to the human. The methodology endorsed by the norm ISO

10218:1992 or its equivalent UNE-EN 775 is set to prevent such crashes or different

occurrences that may result in any harm, this norm established a mandatory separation among

human and robot workspaces, by distinguishing human interruptions in robot workspaces, and

changing the robot behavior.

16

 In view of these restrictions, when an intrusion comes in the robot workspace the robot speed

is diminished in relation to the distinguished danger level, with the robot halting is the highest

one. Three degrees of risk detection are proposed alongside control methodologies, passive and

active safety devices. Such devices incorporate for example acoustic signs, proximity sensors,

pressure mats, and ultrasonic sensors.

 2.3.3. Shared human and robot work/workspaces

Collaborative tasks involving human and robot make it necessary to remove the separating

elements between them, and therefore new risks emerge that need to be addressed. In the

following sections the main approaches to mitigate these risks are presented, including the

quantification level of injury by collision. The information about the consequences to the human

body of having a collision with a robot is key in taking the necessary steps to minimize injuries

to the human and can be used for testing new robot safety systems.

2.3.3.1. Quantifying level of injury by collision

Focusing on systems whose principal aim is to enable safe human robot collaboration, several

researchers have analyzed the consequences of human-robot collisions on the human body.

This question may be approached from two different points of view. The first one is to estimate

the pain tolerance, and the second one is to quantify the level of injury following a collision.

2.3.3.2. Minimizing injury in human-robot collision.

As in some cases a robot-human collision during the execution of collaborative tasks can be

unavoidable, an important line of research focusses on the minimization of injuries in humans

caused by such collisions. The methods that have been proposed to reduce the effects of

Figure 9 Separating human-robot workspace. (S. ROBLA-GÓMEZ 1, 2017)

17

collisions can be broadly classified as mechanical compliance systems and safety strategies

involving collision/contact detection.

2.3.3.3. Collision avoidance

Although minimizing injuries in case of human-robot collision is very important, the prevention

of impacts between robot and human is highly desirable. Therefore, a second key aim in human

robot collaboration is to enhance safety through the implementation of collision avoidance

systems. For this purpose, several solutions have been tried, which may be in many cases

complementary to the previously discussed safety systems.

18

Chapter 3: Methodology

3.1. Hardware choice

For intelligent robots, tabletop object manipulation is quite possibly the most widely recognized

task. It joins the capacities of the robot in vision, image procession, object recognition, hand

arm manipulation, however, the real indoor environment is much more complicated than

experimental scenarios. The vision of the robot sometimes can hardly provide enough

information for successfully executing some difficult tasks, such as pick, place or assemble

some small objects (Haiyang Jin, 2016) .In this case the implementing of the human gestures is

a problem solving idea.

Interpretation of human gestures by a computer is used for human-machine interaction in the

area of computer vision. The main purpose of gesture recognition research is to identify a

particular human gesture and convey information to the user pertaining to individual gesture.

From the corpus of gestures, specific gesture of interest can be identified, and on the basis of

that, specific command for execution of action can be given to robotic system. Overall aim is

to make the computer to understand human body language, thereby bridging the gap between

machine and human. Hand gesture recognition can be used to enhance human–computer

interaction without depending on traditional input devices such as keyboard and mouse.

Hand gestures are extensively used for telerobotic control and applications. Robotic systems

can be controlled naturally and intuitively with such telerobotic communication. A prominent

benefit of such a system is that it presents a natural way to send geometrical information to the

robot such as: left, right. Robotic hand can be controlled remotely by hand gestures. Several

approaches have been developed for sensing hand movements and corresponding by controlling

robotic hand.

For hand gesture recognition, a highly efficient way is using data glove that can record the

motion of each finger; some kinds of data glove can even measure the contact force of a

grasping or pinching action. However, beside the high cost of data glove, they lack the

capability to track position of the hand and even thought the glove-based gestural interfaces

give more precision, it limits freedom as it requires users to wear cumbersome patch of devices.

Therefore, extra approaches are added to track hand positions, such as inferred optical tracking,

which also increases the complexity of the system.

19

In this work we decided to only use the vision based method for both the hand tracking and

gesture recognition as it lowers the costs and the hardware complexity significantly. But the

performance of the gesture recognition is much effected by the lighting and background

conditions. Thus, some aiding methods like skin color and pure color background are used to

improve the recognition accuracy.

 Other scholars use RGB-D data from Kinect for gesture recognition. However, the Kinect

sensor is developed for body motion tracking, in the research of Kim et al., it has been proved

that the accuracy of hand motion tracking using Kinect is much lower than LeapMotion sensor,

which is particularly designed for hand motion tracking. (Yonjae Kim, 2014)

“The LeapMotion sensor, developed by Leap Motion Inc., is a new non-contact finger/hand

tracking sensor. It has a high tracking accuracy and provides plenty of software interface for

pose and gesture recognition. Some preliminary studies have been carried out for robot

manipulation. Zubrycki et al. use a LeapMotion sensor to control a 3-finger gripper,

GuerreroRincon et al. developed an interface to control a robotic arm, Marin et al. report the

first attempt to detect gestures from the data combination of LeapMotion and Kinect. These use

single LeapMotion for hand tracking and gesture recognition, however, due to the occlusion

problem between fingers, single sensor can perform well only when the palm is with an ideal

orientation.” (Haiyang Jin, 2016)

This solution offers using multiple LeapMotion sensors, but I found a better solution opting

toward a different type of system as difficulties of accuracy and precision were faced.

To overcome these difficulties a multi-sensors hand tracking system is developed to overcome

the limitation of the aforementioned drawback of a single LeapMotion. The tracking space and

working area are analyzed to gain an appropriate setup for one LeapMotion sensor alongside

an Intel Realsense Camera. With self-registration, a coordinate system are established. Based

on the definition of the element actions, an algorithm to calibrate the delay and combine the

data from both 3D sensors is proposed to improve the stability for both the hand tracking and

gesture recognition. To develop an operative demonstration system, a 6-DoFs (Degree of

Freedoms) robotic arm with a 2-finger gripper are combined with the development of a 3D

Cameras hand tracking system in ROS (Robot Operation System). Functional experiments are

performed to indicate the results of combined hand tracking and gesture recognition. At the

end, a scenario experiment is performed to show how this proposed system is used in a robotic

system.

20

 3.1.1. Leap Motion Camera

In the last few years, different optical sensors, which allow the acquisition of 3D objects, have

been developed. Concurrently with the appearance of the new sensors, the number of potential

applications vastly increases. Applications benefit especially from the increasing accuracy and

robustness of 3D sensors and a drop in prices. Applications for 3D sensors include industrial

tasks and many others.

Object tracking, motion analysis, character animation, 3D scene reconstruction and gesture-

based user interfaces. These applications have different requirements in terms of resolution,

speed, distance and target characteristics. Particularly with regard to gesture-based user

interfaces, the accuracy of the sensor is a challenging task. Consumer-grade sensors offer only

limited positioning accuracy. An analysis of the sensor shows a standard deviation in depth

accuracy of approximately 1.5cm. The evaluation of the accuracy of optical sensors is the

subject of current research and scientific discussion. The Leap Motion controller introduces a

new gesture and position tracking system with sub-millimeter accuracy. In contrast to standard

multi-touch solutions, this above-surface sensor is discussed for use in realistic stereo 3D

interaction systems, especially concerning direct selection of stereoscopically displayed

objects.

Figure 10 Schematic View of Leap Motion Controller. (FrankWeichert*, 2013)

The Leap Motion controller in conjunction with the current API (Application Programmer

Interface) delivers positions in Cartesian space of predefined objects like finger tips, pen tip,

etc. The delivered positions are relative to the Leap Motion controller’s center point, which is

located at the position of the second, centered infrared emitter. As illustrated in Figure 1, the

controller consists of three IR (Infrared Light) emitters and two IR cameras. Hence, the Leap

Motion can be categorized into optical tracking systems based on Stereo Vision. Because of the

missing point cloud of the scene and the predefined detectable objects, traditional calibration

techniques are not suitable for the LeapMotion. Nevertheless, a precise reference system is

21

needed in order to evaluate the accuracy and repeatability of the Leap Motion controller.

Industrial Robots support the ability of fixing different tools to their TCP (Tool Control Point)

and exhibit high precision in sub-millimeter range. Consequently, industrial robots can act as

high precision reference systems during the evaluation of the Leap Motion.

The robot cell builds the metrology system of the mandatory measurements. The analyzed

parameters related to the sensors are accuracy and repeatability. Accuracy is the ability of a 3D

sensor to determine a desired position in 3D space. Repeatability is the ability of a sensor to

locate the same position in every measurement repetition. The analysis of the accuracy and

repeatability tests was performed in accordance to ISO 9283 standard, which is primarily used

for industrial robots.

According to the paper mentioned in the bibliography the LeapMotion sensor went through

many experiments to assure its accuracy, Robustness and precision.

The following tests were conducted considering the metrology calibration approaches:

 Positioning test probe methods (static cases)

 Path drawing methods (dynamic cases)

The basic test cases focus on the evaluation of the accuracy of the reference pen tip moving to

positions on a regular grid of a plane (xy-, xz- and yz-plane) and moving to discrete positions

on a path, for example along the particular axes (x-, y- and z-axis) of the sensor coordinate

system and on a sinus function within the xy-plane, as illustrated in Figure2.

Figure 11 Visualization of Sinus Function within the x-y plane (FrankWeichert*, 2013)

22

3.1.1.1. Static test cases:

The particular diagrams visualize the deviation between the desired static Cartesian position

and the measured positions relative to the xy-plane (a), xz-plane (b) and yz-plane (c).

Independent from the axis, the deviation between the desired position and the measured

positions is less than 0.20mm. In the case of the x-axis the deviation is less than 0.17mm.

Figure 12 eviation between a desired 3D Position and the Measured Positions for a Static Position. (a)xy-Variation;(b)xz-
Variation; (c) yz-Variation. (FrankWeichert*, 2013)

3.1.1.2. Dynamic Test Cases:

Next, the dynamic scenarios are analyzed by positioning the reference pen tip in different

positions using the robot. Figure 13 illustrates the analysis of the accuracy when positioning the

reference tip on different positions on a regular grid in the xy-, xz- and yz-plane by the robot.

The diagrams show the deviation between a desired 3D position and the median of the

corresponding measured positions respectively. Independent from the axis the deviation is

below 1mm and on average under 0.4mm.

Figure 13 Deviation between a Desired 3D Position and the Median of the Measured Positions. (a) xy-Plane; (b) xz-Plane;

(c) yz-Plane. (FrankWeichert*, 2013)

23

As the results of these experiments were within our margin of acceptance we decided to opt for

this Camera as we found that its capabilities suits the tasks and objectives in our work.

3.1.2. Intel Realsense D415

The Intel RealSense Depth Camera has been designed to equip devices with the ability to see,

understand, interact with, and learn from their environment. The D415 features the Intel

RealSense Vision D4 processor with a high-resolution depth (up to 1280 × 720 pixels at 30

frames per second), long-range capability (up to about 10 m), rolling shutter technology and,

as noted, a narrow field of view ideal for precise measurements. The RealSense Vision D4 is a

vision processor based on 28-nanometer (nm) process technology for real-time calculation of

stereo depth data. The device has a very compact depth camera (dimensions: 99 × 20 × 23 mm3,

weight: 72 g) that can either be integrated into computers and mobile devices or used as a self-

standing device. Moreover, it comes with a color camera and a depth camera system,

comprising two IR cameras and an IR projector.

Figure 14 RealSense D415 (Monica Carfagni, 2018)

The infrared projector improves the ability of the stereo camera system to determine depth by

projecting a static infrared pattern on the scene to increase the texture of low-texture scenes.

The D415 is equipped with a color camera with a resolution up to 1920 × 1080 pixels, and

provides texture information to be superposed on the depth data. The spatial resolution of the

depth map of the Intel RealSense D415 is up to HD (1280 × 720 pixels), in a working depth

range declared by the manufacturer equal to ~160–10,000 mm. The camera works at different

pixel resolutions corresponding to different minimum depth values, point densities and framed

areas.

24

Table 2 Technical specifications of Intel RealSense D415.

Environment Indoor and Outdoor

Depth Technology Active Infrared(IR) stereo

Image Sensor Technology Rolling shutter : 1.4µm x 1.4µm pixel size

Depth of view (Horizontal x Vertical) 69.4 x 42.5° (+-3°)

Depth stream output Resolution Up to 1280 x720 pixels

Depth Stream Output Frame rate Up to 90 fps

Minimum Depth Distance 0.16m

Maximum range ~10m

RGB sensor Resolution and frame Rate Up to 1920 x 1080 pixels at 30 fps

RGB Sensor Field of View (Horizontal x

Vertical)

69.4 x 42.5° (+-3°)

Camera dimension (Length x Depth x Height) 99mm x 20 mm x 23mm

Connector USB type C

Open library RealSense SDK 2.0 has standard functions for camera initialization, parameters

setting, functions and methods for reading frames from the video stream, calculating the

distance from the hand to the depth camera, RGB images and depth maps saving methods. It is

possible to modify the algorithms available in the source code of the RealSence SDK 2.0. The

methods and functions from RealSence SDK 2.0 were used to implement gestures image. Some

additional functions for gesture capture were coded by the authors.

3.2. Hand Detection

The LeapMotion detector provides a high accuracy system to detect each hand. It’s based on an

infra-red detector and is able to detect the hands in a half sphere centered on the Leap Motion

of about 30 cm in radius (in reality it is not a real half sphere because the angle of view of the

Leap Motion is 150 degrees). Using the SDK from the Leapmotion made this task relatively

simpler than the Realsense camera.

As for the realsense camera we had to develop a system to perform a complete process from

pre-processing to detection & tracking to feature extraction and finally training and testing by

HMM algorithm. For such task we opted toward OpenCV which is a library that made the

system easy to create due to the large amount of inbuilt functions of various image processing

tasks like edge detection, feature tracking etc.

First, we have Detect and track the hand. So we decided to create a combination of two

methods for hand localization the Thresholding and skin color segmentation.

25

3.2.1. Thresholding

To detect the moving object region, we applied the thresholding on the frame to detect the

possible moving area in a complex background.

𝐷𝑖(𝑥, 𝑦) = {
1, |(𝑥, 𝑦) − 𝐹𝑖+1(𝑥, 𝑦)| 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

3.2.2. Skin color segmentation

The second method is the skin color segmentation which can be detected by color constraint.

Skin color is usually detected using HSV (Hue Saturation Value) color space.

Using these two methods we were able to get hand movement information. Afterwards we used

‘AND’ logic to combine both extracted information together.

𝐶𝑖(𝑥, 𝑦) = 𝐷(𝑥, 𝑦)𝑎𝑛𝑑 𝐸𝑖(𝑥, 𝑦)

This method is divided in several steps, in the first step the image is passed through baseline

CNN (Convolutional Neural Network) to extract the feature maps of the input. Next the feature

map is then processed in a multi stage CNN pipeline to create a Confidence Map and a Part

Affinity Field. In the last step, the Confidence Maps and Part Affinity Fields that are generated

are processed by a matching algorithm to obtain the poses for each person in the image.

A Confidence map is a 2D representation on where the body part can be located in any given

pixel while a Part Affinity Fields is a set of 2D vector fields that encodes location and

orientation of limbs of different people in the image.

Figure 15 Convolutional Neural Network (CNN) (LeCun, 1998)

26

3.3. Finger Detection

Finger detection is split between static gestures and dynamic gestures. Features for static

gestures are mainly built based on palm and fingers relative distances. We calculated two types

of distances. One type is distances between fingertips Fpos and palm center Ppos. The other

type is distances between two fingers which are adjacent. For example distance between thumb

and index, distance between index and middle denoted the figure below shows examples of

static gestures we could effectively recognize.

The other gesture features are built based on distances between fingers and palms. The distance

between thumb and index is used to identify the OK gestures. The distance between index and

middle finger is used to distinguish V gesture and Index and Middle pointing gesture. The rest

gestures simply combined these two standard gestures. For example the index L gestures on the

top most in the figure below are index and thumb extended and the rest fingers bent.

As for the dynamic gestures, features are easily distinguished from static gestures features. We

calculate the total value of velocity magnitude among fingers and palm. If the total movement

value is greater than a user-defined threshold, we believe the hand is moving. Otherwise, we

starts to recognize the static hand gestures. Dynamic Gesture features mainly use the velocity

of fingertips and palm to detect the movement patterns. Compared with the static gestures,

dynamic gestures are much more complicated. We starts from the global movement and then

go through the details of the fingers’ movement. From the global movement, we try to detect

hand translation movement, hand rotation movement, hand circle movement. Then we consider

the fingers’ movement. Since there are so many possible movement and will focus on the

movement of index finger which is very useful in communication and interactions.

27

Figure 16 Examples of static gestures

Also for dynamic gestures, we have other features as hand translation which indicates fingers

and palm are moving together straightly without rotation. We calculate the cross correlation of

velocity vectors between fingers Fv and palm Pv for all fingers. If the absolute values of these

cross correlations are greater than 0.95, we recognize that the hands are moving straightly. Also

Hand rotation which contains two parts. One is the difference of current palm normal Pn and

previous palm normal Pn-1. The other parts is the angle between difference of current palm and

hand direction PD. We then calculate the cross correlation of the current palm and the hand

direction. As for Hand circle it indicates the palm is drawing a great circle. Same to hand

rotation features, we calculate the first order difference between palm normals.

28

Figure 17 Hand Skeleton (Haiyang Jin, 2016)

Skeletal Tracking Model is a standard hand model provided by Leap Motion. It simulates the

actual hand skeleton.

3.4. Software

As for Software we used Python as our main programming language for both LeapMotion and

Realsense operating codes also we used Unity software to elaborate an Interface of command.

3.4.1. Python

Python is a high-level and general-purpose programming language. Python's design philosophy

emphasizes code readability with its notable use of significant whitespace. Its language

constructs and object-oriented approach aim to help programmers write clear, logical code for

small and large-scale projects.

3.4.2. Python Idle

IDLE (Integrated Development and Learning Environment) is an integrated development

environment (IDE) for Python. . IDLE can be used to execute a single statement just like Python

Shell and also to create, modify, and execute Python scripts.

3.4.3. Unity

Unity is a cross-platform game engine developed by Unity Technologies, the engine is able to

support more than 25 platforms also it can be used to create three-dimensional, two-

dimensional, virtual reality, and augmented reality software, as well as simulations and other

experiences. The engine has been adopted by industries outside video gaming, such as

automotive, architecture, engineering and construction.

29

Unity is originally a game engine development software, but we saw the potential of this

software to create our Commanding interface, as it provide interesting assets for the

LeapMotion camera which makes coding simpler and smoother in comparison to other

software.

3.4.4. C# Programming language

C# is a general-purpose, multi-paradigm programming language encompassing static typing,

strong typing, lexically scoped, imperative, declarative, functional, generic, object-oriented,

and component-oriented programming disciplines. We used C# as our programming language

for the Unity Interface.

3.4.5. Visual Studio

To ensure the functionality of our interface and to increase the functions provided by it we

wrote our scripts in Visual Studio platform in C# language.

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft.

It is used to develop computer programs, as well as websites, web apps, web services and

mobile apps. Visual Studio uses Microsoft software development platforms such as

Windows API, Windows Forms, Windows Presentation Foundation, Windows Store and

Microsoft Silverlight. It can produce both native code and managed code.

30

Chapter4: System Architecture

In this chapter we will present the overall architecture of our system, and explain each block.

Figure 18 Overall system architecture

Our two inputs are the LeapMotion sensor and the Intel RealSense camera D415, they will

provide 2D/3D data, this extracted data will be identified for a hand gesture, track it for a

dynamic gesture and generate a keypoint map, this map will allow us to detect the fingers to be

able to command the Robot.

4.1. Leap Motion operation for gesture detection

For Leap motion camera, the detection of hand gestures is done through the Leap motion SDK

which has multiple functions and methods for hand tracking allowing the detection of gestures

like circles, tapping, swiping and many others. These functions have their own library files, the

System Development Kit for Leap motion camera is very rich and made it relatively simple to

manipulate these functions optimally as the recognition system is built in the SDK allowing an

optimal and relatively precise detection. To tap further into this system, we have to detect

fingers, so we have to recognize the fingers in a hand on two hands and the motion of these

31

fingers which is the main point in using such technology, luckily the SDK offers other functions

allowing the recognition of each finger in each hand.

In our work, we developed a code to firstly recognize each hand named ‘left’ and ‘right’, this

is done through a method that detect the hand type measuring the ergonometric in each hand by

measuring the position of the thumb relatively to the other fingers, such method will help us

know if we are using left or right hand in the frame. Next we had to distinguish each finger on

each hand and name them, we made an array of fingers names and allocated each finger to its

name in the array, and by doing this we made things relatively easier to manipulate each finger

on its own, we used a built in method which uses machine learning to recognize each finger.

To perform the tasks above we developed a python code importing all the required libraries in

the SDK.

Figure 19 Flowchart Leapmotion

32

To allow the robot to recognize the hand patterns we used hand pattern examples and we

assigned each pattern to an action, we chose the number of fingers as the main pattern

distinguish for this task varying from 0 to 5 allowing multiple finger combinations. This task is

done by calculating the angle of each finger to know which ones are the extended ones.

4.2. Real Sense operation for gesture detection

For Real Sense the gesture recognition is more complicated as the developers didn’t come

with a specific library to perform such tasks, so we opted toward OpenCV (Open Source

Computer Vision Library) which is an open source computer vision and machine learning

software library.

33

First we made sure to eliminate as much as noise in the taken image by saturating the colors of

the skin to make it distinguishable from the background, second we detected the contours of

the hand which is very important for the calculation of distance and angles later on.

Figure 20 Flowchart RealSense Hand Gesture

34

Figure 21 Hand detection using HSV

To perform these methods above we need first to train the system using an estimation method,

we used ‘OpenPose’ libraries which is a real-time multi-person system to jointly detect human

body, hand, facial, and foot key-points (in total 135 key-points) on single images.

 ‘OpenPose’ libraries made us integrate these algorithms easier, first we train the system using

different hand position maps. On each hand image we mapped the position of joints up to 20

joints. In that way the system will estimate the position of hand joints in real-time.

Next we made a Python algorithm that takes a video, detect the location of each hand in the

frame and estimate the position of joints on each hand numbering them and generating a

skeleton map which made it easier to locate each point to further calculate the distance between

each point, calculate angles, directions in a 2D or a 3D environment.

35

We considered each pair of points as a joint, and by calculating the distance between each point

we made sure to distinguish the extended fingers from the not extended ones which allowed us

to count the number of extended fingers and generating a both skeleton and keypoint maps

saving them as .jpg file for further calculation.

This method made us not only count the number of extended fingers but also detect which finger

exactly is extended and organizing them in an array table.

In the script above we used the open Pose “.caffemodel” to train our system and we saved every

frame captured. Also numpy library helped us to further develop and manipulate our system.

36

Figure 23 Flowchart RealSense using OpenPose Figure 22 Flowchart finger counting

37

Next we modify the frame that we captured and detect the points using OpenCV machine

learning methods.

After that we assign each point to a pair of points as an array, next we distinguish each pair of

points to determine which finger and assign each pair in the finger names array. This allowed

us to count how many fingers are used by increasing the f counter each time we detect the pair

of points assigned to one finger.

38

Above we calculated the distance between each point to help us get more information before

drawing the keypoint and the skeleton maps.

At this point we got our keypoint and skeleton maps, so the next step is the process these

information but we ran into a problem that processing a whole video takes too much time, so

we opted toward taking multiple images processing each one of them separately which made

the system runs a lot faster and smoother.

Using a Shell script allowed us to run all the Python Codes at once.

Figure 24 Shell script

39

4.3. Communication method between scripts and the robot

To communicate with the robot we used unity interface, unity allowed us to have a functional

multi-platform interface that works on Windows, IOS, Android and other platforms.

Figure 25 Unity designing interface

Leapmotion provided us with free graphical assets downloadable from their official website,

these 3D graphical assets are based on the keypoints on each hand to create a 3D dynamic

skeleton. We download the asset package and then we import it in the Project window, later we

can drag in every model we need and attach our script to it. Every 3d model is composed of sub

models which represent every bone in our hands.

 .

Figure 26 3d hand example from unity assets

These assets provided us with scripts to control the 3D graphics, these scripts are written in

C# so we had to modify them to fulfill our requirements.

40

the script above is written is C# in Visual studio platform to add the 3D models to the interface,

link them to our controlling script, remove them if no hand is detected and update them every

frame.

41

Figure 27 simulation of hand sign

The script allows to track hand or hands and represent a 3D hand simulating gestures.

Unity allows us to export our application in different platforms using Build settings.

Figure 28 Build settings

Next we had to communicate to the robot using our python script

42

First we had to connect to the robot Host IP and the PORT using ModbusTCP library, then we

assign each finger gesture to a different Robot action.

Figure 29 Robotic workbench

43

Chapter 5: Results and Comparison

In this chapter we will present the results and we will provide some pictures ensuring that the

system is operating in a smooth manner.

5.1. LeapMotion

Below we present a 3D hand detection in real-time using the leap motion sensor, we found that

putting the sensor below the arm gives the best results also it works better in short distances, if

the hand gets too close to the sensor the system will stop detecting the hand so keeping 400 mm

between the sensor and the hand is optimal.

After several tests the Leap motion sensor will work optimally and provides a high accuracy

gesture recognition when the palm rotates less than 60°, however when the rotation angle of the

palm reaches 90°, the fingers might get occluded by the palm this is called finger occlusion,

and when the rotation angle closes to 180°, we get finger occlusion again which makes it harder

to perform hand gestures. A second sensor could be used here to cover the blind spots in the

first sensor, this solution is far more reliable and accurate than all the others but it increases the

complexity and the costs of our system, the Leap motion manufactures developed a prediction

algorithm that will predict the position of hand when it reaches the blind spots, this solution is

easier and cheaper but it is less reliable and accurate. Also we faced another minor problem it’s

when the hand is too close to the background, the tracking and the accuracy will be reduced.

Thankfully in our Robot controlling system the tracking is done far from the background, so it

will performs its task smoothly

Figure 30 One hand recognition

44

Next we have figures on how the counting fingers is performed.

First we have to run the Leap Motion service on Terminal using “Sudo Leapd” line command,

this command require an admin authority this is why we used the “Sudo” command.

Figure 31 Leapd Service running

Leapd is a service that comes along the SDK, it’s completely free to download.

Second we run the python code on a different terminal using “python prg.py” line command.

The Leap Motion system have to be running in the background or else the python code won’t

respond.

Figure 32 running script of counting fingers

45

The python script running on Terminal allows us to see which hand is used and how many

fingers are extended, this is running in real-time so every time a different parameter is changed

it will be immediately shown on the terminal.

The python script running on Terminal allows us to see which hand is used and how many

fingers are extended, this is running in real-time so every time a different parameter is changed

it will be immediately shown on the terminal.

Our Terminal will show exactly which hand is in use and the number of fingers, but also it show

the dynamic gestures. Along with finger counting we made sure to detect other static gestures

like”OK” gesture.

Figure 33 Ok gesture

Other dynamic gestures are detected too like swipe, finger circle, hand circle and tap. These

gestures can be applied to new robot movements too or it can be used to mimic hand gestures.

Also to extend the number of movements in the robot we can use the second hand too which

doubles the number of functions.

Figure 34 two hands recognition

46

One of the main advantages of the LeapMotion camera is it covers a concentrate space as it

consist of two cameras and three infrared LED’s aimed at above. And since the sensors need to

cover a much smaller field, the hardware is significantly more accurate, even the smallest finger

movements are recognized and translated nearly without latency.

The field of view is not very large though and spans about 140°-150° which gives it a high

accuracy but its accuracy decreases when the hand is around the edges of the field.

One disadvantage of this sensor is that when one finger covers the sensor won’t detect it also

when the fingers are really tight next to each other the cameras won’t be able to recognize each

finger individually, as we mentioned prior using a second sensor to cover the blind spot here is

an optimal solution.

Also one of the big advantages of this device is the availability of open-source software which

allows users to contribute to the development of this device. Also it provides flexibility of

development as it provides development kits in multiple programming languages as C++, C#

and Python.

After all the tests, and considering the ISO9283 the accuracy of human hands is around 0.4 mm

thereby the LeapMotion sensor falls under the margin of acceptance as its accuracy is around

0.2 mm in 3D.

Furthermore, we tested the sensor in a no light conditions, the detection will not be successful,

so the presence of light is mandatory.

5.2. Intel RealSense

Intel RealSense D415 is used here it is capable taking high definition videos up to 1280 x 720

pixels. We had to try different algorithms to get the best result of this camera, as first we took

one picture and tried to fade the background to adjust to the skin color margin that we used,

used contours to draw a rectangle around the hand, calculate the angles between each finger to

count them, this solution was simple but it lacked the accuracy.

47

Figure 35 hand frame tracking

Introducing a model training using OpenPose libraries allowed us to generate keypoint maps,

these maps will provide us with the exact positions of the hand keypoints which represent every

bone on the hand. This will be crucial in extracting useful information later such as finger

counting. We tried to take a video process each frame on its own, this solution is accurate but

it takes significant amount of time to process all the frames as it depends on the processor’s

capacity, but due the necessity of our system to be able to run in real-time this solution is lacking

in term of functionality.

Figure 36 Running script of hand gesture recognition

48

The script running on terminal takes one frame process it and generate two maps one with

keypoints located on the detected hand and one with a skeleton which connects the keypoints

to form a skeleton map.

Figure 37 Keypoint map

Each two keypoint represent a bone in our hand, so pairing them was a good idea to further

calculate distances and angles.

Figure 38 Skeleton map

The skeleton map will show us the pairing of points, also in the picture above it shows the

number of fingers after calculating them in the script.

49

Processing each frame will allow us to recognize all static gestures that we did.

One of the pros of using the Intel RealSense camera is its robustness with a good build quality,

it functions well in small distances under 3 meters, it has a good support Intel driver updates

and it works on all major operating systems.

But we recognized some disadvantages regarding our system. It has a lot of noise we had to

filter the noise off the background every time we use it.

Comparing to the Leapmotion sensor Intel RealSense camera is more versatile and flexible in

general usage. If we are focusing on hand gestures recognizing, we found that the Leapmotion

camera performs better but in everything else the Intel RealSense is much better. One thing the

RealSense camera is better in our system is its safety as it provides the ability to track different

objects at the same time which increases the safety of our system, in our case tracking the Robot

and other humans around the area of control to maintain the safety of the manipulator,

surrounding humans, the robot and the goods that we are dealing with and to ensure the well-

functioning of the system.

In term of price both sensors are relatively cheap if we are taking in consideration that we are

working in industry but the Intel Real sense’s price is higher as it costs around 182 €, as for the

LeapMotion sensor it costs 70€ which is much lower price than the Intel RealSense D415.

The presence of light is essential for this sensor to function proporly.

5.3. Performance of the system

To determine the accuracy of our detection methods, we evaluated our approach using

confusion matrix. Confusion matrix allows visualization of the performance of each method.

We classified the hand gestures into 6 gesture positions, these positions represent the finger

counting from 0 to 5 as shown in the figure below.

Figure 39 Hand gestures positions

50

These gestures are used to show how accurate the classification using both cameras, we posed

6 gestures with 20 samples each, totally there were 240 samples of gestures that we used for

this test.

First we used the LeapMotion sensor to detect the hand gestures and to provide a confusion

matrix.

Table 3 Confusion matrix Leapmotion sensor detection

 Zero_fingers One_finger Two_fingers Three_fingers Four_fingers Five_fingers

Zero_fingers 20 0 0 0 0 0

One_finger 0 19 1 0 0 0

Two_fingers 0 1 18 1 0 0

Three_finger 0 0 0 16 3 1

Four_fingers 0 0 0 0 18 2

Five_fingers 0 0 0 0 1 19

This Confusion matrix allowed us to measure the performance of this method.

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 =

110

120
 = 91.66%

Miss classification =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 =

10

120
 = 8.33%

Table 4 Confusion matrix Intel RealSense D415 camera detection

 Zero_fingers One_finger Two_fingers Three_fingers Four_fingers Five_fingers

Zero_fingers 18 1 1 0 0 0

One_finger 0 18 2 0 0 0

Two_fingers 0 2 17 1 0 0

Three_finger 0 0 1 17 2 0

Four_fingers 0 0 0 1 16 3

Five_fingers 0 0 0 0 2 18

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 =

104

120
 = 86.66%

Miss classification =
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 =

16

120
 = 13.33%

51

For further performance analysis we calculated the Precision and the sensitivity of each gesture.

Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃

Sensitivity (Recall) =
𝑇𝑃

𝑇𝑃+𝐹𝑁

Table 5 Precision comparison

 LeapMotion Intel RealSense D415

Zero_fingers 100% 90%

One_finger 95% 90%

Two_fingers 90% 85%

Three_finger 80% 85%

Four_fingers 90% 80%

Five_fingers 95% 90%

Table 6 Sensitivity comparison

 LeapMotion Intel RealSense D415

Zero_fingers 100% 100%

One_finger 95% 85.714%

Two_fingers 94.737% 80.952%

Three_finger 94.118% 89.474%

Four_fingers 81.818% 80%

Five_fingers 86.364% 85.714%

5.4. Tasks done by the Robot

Our robot has 3 main actions, these actions are already programmed so our job is to send the

command by ModbusTCP.

The ModbusTCP is protocol with a TCP interface allows us to connect our system to the robot

using a port.

The first action is to build a tower from blocks in going from the big block in the bottom until

the smallest one in the top.

52

Figure 40 Tower building

The second action is a game which the robot take the black blocks from the beak and put them

in the ticked area, it uses a built in camera to recognize where it should put the block. It will

continue putting all the black blocks until all the ticked areas are full.

Figure 41 putting and removing blocks in and from the ticked area

The third action is to remove the black blocks from the ticked areas and put them back in the

beak, it will take the blocks one by one until all the ticked areas are empty.

Our system will count the number of fingers we are extending and then translate it to a

command, per example if I showed two finger as hand gesture the robot will do the task number

1 which is the Tower building.

53

Chapter 6: Conclusion and Future work

6.1. Conclusion

This thesis shows the using of different methods in the field of hand gesture these methods

consist of detecting different gestures in short distance using different cameras. The aim of

applying these methods is to compare different algorithms and hardware to classify hand

gesture recognition methods, we evaluated these methods in term of many parameters such as

accuracy, simplicity, execution time, safety and sensitivity .the first method is using a Leap

motion sensor, this method provides a lot of functions already set by manufactures and

relatively easy to use which made it simpler and relatively easier to implement in comparison

to other methods as hand manipulation libraries are rich of pre developed functions, also it’s

cheaper than most all the other alternatives out there, performs well in term of accuracy and

sensitivity, great in term of execution time as it focuses solely on hand gesture recognition and

ignore all the potential of tracking other objects in frame or background which decreases the

safety in comparison to other hardware, Intel Real sense camera provides the possibility to track

hand gestures and other objects in the field of view or background which made it safer and more

reliable in the industrial field also it offers a great amount of accuracy and sensitivity, but it

increases the complexity of the system as it offers the use of different algorithms. In term of

time execution it falls short to the first method as processing all the data in a video frame by

frame takes a lot of time if we want to control the robot in a real time. We applied different

algorithms to reduce the execution time without stripping this method of its strengths. One

algorithm uses 3D video extraction and processing each frame one by one. This algorithm

amasses a great amount of usable data in term of hand tracking and other objects in the

background also it offers a great amount of accuracy but it lacks significantly in term of t ime

execution. Extracting 2D video reduced the execution time but it didn’t help much in Real-time

domain. Offering a second algorithm to extract a set amount of frames and process each of them

reduced the execution time but made the system less accurate, the third algorithm uses CNN

which is multi layers neural network it’s one of the deep learning techniques. Applying CNN

in this algorithm reduced two phases which are image extraction and classification to one phase

only, so processing data becomes faster.

At the end the best solution we come to is to uses a hybrid system of multi cameras/sensors

which take the strengths of the Leap motion sensor and the strengths of the Real sense camera,

in that way we get the best of both worlds.

54

6.2. Future Work

After performing all the methods and reviewing the results, the following are suggestions for

future works:

Designing a mobile application to translate common gestures to meaningful words, the output

could be words shown on a screen or be dictated by sound to aid people with hearing

impairments.

Record gestures with high resolution size such as 6k to examine the CNN algorithm.

Implement different algorithms in deep learning like RNN and compare the efficiently of CNN

and RNN in terms of accuracy.

55

Bibliography

Agrawal, S. S. (2012). Vision based hand gesture recognition for human computer

interaction: a survey. Dordrecht: Springer Science+Business Media.

Baxter, J. (2000). A model of inductive bias learning. J Artif Intell, 149-198.

Bourke A, O. J. (n.d.). Evaluation of a threshold-based tri-axial accelerometer fall. Retrieved

from https://www.sciencedirect.com/science/article/B6T6Y-4MBCJHV-

1/2/f87e4f1c82f3f93a3a5692357e3fe00c

Cote M, P. P. (2006). Comparative study of adaptive segmentation techniques for gesture

analysis in unconstrained environments. IEEE, 28-33.

Dina Satybaldina, G. K. (2016). Application Development for Hand Gestures.

Moscow,Russian Federation: National Research Nuclear University “MEPhI”.

FrankWeichert*, D. (2013, June 13). AnalysisoftheAccuracyandRobustnessoftheLeap

MotionController. ISSN, p. 14.

geeksforgeeks. (2015, 5). geeksforgeeks.org. Retrieved from www.geeksforgeeks.org:

https://www.geeksforgeeks.org/openpose-human-pose-estimation-

method/#:~:text=OpenPose%20is%20the%20first%20real,C%2B%2B%20implementa

tion%20and%20Unity%20Plugin.

Haiyang Jin, Q. C. (2016, june 2). Sciencedirect. Retrieved from Sciencedirect.com:

https://www.elsevier.com/catalog?producttype=journal

Hongyi Liu, L. W. (2017, January 13). Gesture recognition for human robots collaborative: a

review. International journal of industrial ergonomics, p. 13.

Hornegger, J. (2008). Gesture recognition with a Time-Of-Flight camera. International

Journal of Intelligent Systems Technologies and Applications, 5.

Jože Guna *, G. J. (2014, January 14). An Analysis of the Precision and Reliability of the

Leap Motion Sensor and Its Suitability for Static and Dynamic Tracking. Retrieved

from mdpi.com: www.mdpi.com/journal/sensors

Kruger, J. L. (2012, Octobre 7). Spatial Programming for Industrial Robots based on Gestures

and Augmented Reality. IEEE, p. 7.

LeCun, Y. (1998). analyticssteps. Retrieved from analyticssteps.com:

https://www.analyticssteps.com/blogs/convolutional-neural-network-cnn-graphical-

visualization-code-explanation

Mitra S, A. T. (2007). Gesture recognition: a survey. IEEE , 311-324.

Monica Carfagni, R. F. (2018, Decembre 21). Metrological and Critical Characterization of

the Intel. MDPI, p. 20.

Pantic M, N. A. (2008).) Human-centred intelligent human–computer Interaction. Int J Auton

Adapt Commun, 168-187.

56

S. ROBLA-GÓMEZ 1, V. M.-S.-F.-O. (2017, Septembre 26). Working Together: A Review

on Safe Human-Robot Collaboration in Industrial Environments. IEEE, p. 20.

Wachs, J. K. (2011). Vision-based hand-gesture applications. ACM, 60-71.

Wechsler, F. L. (2005). Open Set Face Recognition Using Transduction. IEEE, 1686-1697.

Yonjae Kim, P. C. (2014). Experimental Evaluation of Contact-Less Hand Tracking Systems

for. IEEE, 3502-3509.

Zhang, Y. H. (2015). wearable, low-cost electrical impedance tomography. Proceedings of the

28th Annual ACM Symposium on User Interface Software & Technology, 215-243.

	Abstract
	Resumo
	Acknowledgements
	Contents
	Chapter 1: Introduction
	1.1. Motivation and Framework
	1.2. Objectives
	1.3. Contribution
	1.4. Document Structure

	Chapter 2: State of Art
	2.1. Gesture Recognition
	2.1.1. Detection
	2.1.2. Tracking
	2.1.3. Recognition

	2.2. Gesture Recognition Application and potential applications to Industrial Environments
	2.2.1. Human-Robot collaboration
	2.2.2. Sensor technologies
	2.2.2.1. Image based approaches
	Marker
	Single camera
	Stereo camera
	Depth sensor

	2.2.2.2 Non-image based approaches
	Glove
	Band
	Non-wearable

	2.2.2.3. Comparison of sensor technologies

	2.3. Collaborative robots: Safety and Regulations
	2.3.1. A framework for safety in industrial robotic environments.
	2.3.2. Separating Human and Robot workspaces
	2.3.3. Shared human and robot work/workspaces
	2.3.3.1. Quantifying level of injury by collision
	2.3.3.2. Minimizing injury in human-robot collision.
	2.3.3.3. Collision avoidance

	Chapter 3: Methodology
	3.1. Hardware choice
	3.1.1. Leap Motion Camera
	3.1.1.1. Static test cases:
	3.1.1.2. Dynamic Test Cases:

	3.1.2. Intel Realsense D415

	3.2. Hand Detection
	3.2.1. Thresholding
	3.2.2. Skin color segmentation

	3.3. Finger Detection
	3.4. Software
	3.4.1. Python
	3.4.2. Python Idle
	3.4.3. Unity
	3.4.4. C# Programming language
	3.4.5. Visual Studio

	Chapter4: System Architecture
	4.1. Leap Motion operation for gesture detection
	4.2. Real Sense operation for gesture detection
	4.3. Communication method between scripts and the robot

	Chapter 5: Results and Comparison
	5.1. LeapMotion
	5.2. Intel RealSense
	5.3. Performance of the system
	5.4. Tasks done by the Robot

	Chapter 6: Conclusion and Future work
	6.1. Conclusion
	6.2. Future Work

	Bibliography

