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Abstract 

 

This thesis focuses on hand gesture recognition by proposing an architecture to control a 

collaborative robot in real-time vision based on hand detection, tracking, and gesture 

recognition for interaction with an application via hand gestures. The first stage of our system 

allows detecting and tracking a bar e hand in a cluttered background using skin detection and 

contour comparison. The second stage allows recognizing hand gestures using a Machine 

learning method algorithm. Finally an interface has been developed to control the robot over. 

Our hand gesture recognition system consists of two parts, in the first part for every frame 

captured from a camera we extract the keypoints for every training image using a machine 

learning algorithm, and we appoint the keypoints from every image into a keypoint map. This 

map is treated as an input for our processing algorithm which uses several methods to recognize 

the fingers in each hand. 

In the second part, we use a 3D camera with Infrared capabilities to get a 3D model of the hand 

to implement it in our system, after that we track the fingers in each hand and recognize them 

which made it possible to count the extended fingers and to distinguish each finger pattern. 

An interface to control the robot has been made that utilizes the previous steps that gives a real-

time process and a dynamic 3D representation. 

  



 

Resumo 

 

Esta dissertação trata do reconhecimento de gestos realizados com a mão humana, propondo 

uma arquitetura para interagir com um robô colaborativo, baseado em visão computacional, 

rastreamento e reconhecimento de gestos. O primeiro estágio do sistema desenvolvido permite 

detectar e rastrear a presença de uma mão em um fundo desordenado usando detecção de pele 

e comparação de contornos. A segunda fase permite reconhecer os gestos das mãos usando um 

algoritmo do método de aprendizado de máquina. Finalmente, uma interface foi desenvolvida 

para interagir com robô. 

  

O sistema de reconhecimento de gestos manuais está dividido em duas partes. Na primeira 

parte, para cada quadro capturado de uma câmera, foi extraído os pontos-chave de cada 

imagem de treinamento usando um algoritmo de aprendizado de máquina e nomeamos os 

pontos-chave de cada imagem em um mapa de pontos-chave. Este mapa é tratado como uma 

entrada para o algoritmo de processamento que usa vários métodos para reconhecer os dedos 

em cada mão. 

  

Na segunda parte, foi utilizado uma câmera 3D com recursos de infravermelho para obter um 

modelo 3D da mão para implementá-lo em no sistema desenvolvido, e então, foi realizado os 

rastreio dos dedos de cada mão seguido pelo reconhecimento que possibilitou contabilizar os 

dedos estendidos e para distinguir cada padrão de dedo. 

  

Foi elaborado uma interface para interagir com o robô manipulador que utiliza as etapas 

anteriores que fornece um processo em tempo real e uma representação 3D dinâmica. 
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Chapter 1: Introduction 

1.1. Motivation and Framework 

Traditional human-computer interaction devices such as the keyboard and mouse become 

ineffective interaction with the virtual environment applications because 3D environment need 

a new interaction device. An efficient human interaction with the modern virtual environment 

requires more natural devices. Among them the “Hand Gesture” human-computer interaction 

modality has become of major interest. The main objective of gesture recognition is to build a 

system which can recognize human gestures and utilize them to control an application.  

Vision based hand gesture recognition recently became a high active research area with 

motivating applications such as sign language recognition , socially assistive robotics, 

directional indication through pointing , control through facial gestures , human-computer 

interaction (HCI) , immersive game technology, virtual controllers, etc. 

Within the broad range of application scenarios, hand gestures are a powerful human interface 

components, however, their fluency and intuitiveness has not been utilized as computer 

interface. Recently, hand gestures applications have begun to emerge, but they are still not 

robust and are unable to recognize the gestures in a convenient and easy accessible manner by 

human. Several advanced techniques are either too fragile or too coarse grained to be of any 

universal use for hand gesture recognition. Especially techniques for hand gesture interfaces 

should be developed beyond current performance in term of speed and robustness to attain the 

needed interactivity and usability. 

It is a difficult task to recognize hand gestures automatically from a camera input. It usually 

includes numerous phases such as signal processing, detection, tracking, shape description, 

motion analysis and pattern recognition. The general problem is quiet challenging because of 

several problems such as the complex nature of static and dynamic gestures, cluttered 

backgrounds, lightning changes and occlusions. 

Trying to solve the problem in its generality needs elaborate techniques that require high 

performance against the issues. 
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Hand gesture recognition from video frames is one of the most main challenges in image 

processing and computer vision because it provides the computer the capability of detecting 

tracking, recognizing and interpreting the hand gestures to control various devices or to interact 

with several human machine interfaces (HMI). 

1.2. Objectives 

The objectives of this thesis is to develop a novel approach to the complete problem of hand 

gesture recognition. By proposing new algorithms to an existing problem which is a 

collaborative robot controlled manually. 

Our work should satisfy numerous conditions: 

The first requirement is a real-time performance. This is critical for complete interactivity and 

intuitiveness of the interface. This is measured by frames per second (fps). If there the execution 

time is log there will be a delay between the real event and the recognition. If the gestures are 

carried out in an extremely fast sequence, the event may not be recognized at all. 

The second required condition is flexibility, and how well it combines with new applications 

and existing applications. 

Third, the system should be practically precise enough to be used. The approach should be able 

to recognize the defined gestures at least from 90% to 100% of time to be successful and of 

practical use. 

Fourth, is robustness which the system is able to detect, track and recognize different hand 

gestures successfully under different lighting conditions and cluttered backgrounds. 

Fifth, the approach should be user-independent in which system must work for various persons 

rather than one particular person. The system must recognize hand gestures for different human 

hands of different scales and colors. 

Finally, the system should be safe to be utilized in the industrial field, which mean it safe for 

human the manipulator and the surrounding workers and for objects around the system should 

not be harmed in any way. 
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1.3. Contribution 

The major contributions of this thesis are the following: 

We prepared a new real-time and accurate recognition for the detected hand posture detection 

and tracking using a Leap motion camera. 

We created real-time hand tracking system from 2D and 3D videos using Intel RealSense 

camera. 

We developed algorithms to further increase the efficiency of our system. 

We developed a Human-Machine interface supported by multiple platforms which creates a 3D 

representation of our tracking system in Real-time. 

1.4. Document Structure 

This thesis includes 6 chapters: 

Chapter 1 introduces the framework, vision based hand gesture processing stages and 

motivations of our work. The objectives to be accomplished and the contributions are also 

mentioned. 

Chapter 2 provides the State of art which works related to gesture recognition, its applications 

and the potential applications in industrial environments were presented, also there is mention 

of works related of collaborative robots, their safety and regulations and the human usability 

and ergonomics. 

Chapter 3 presents the methodology followed, our hardware choice, software used and different 

algorithms to detect hand postures in each hardware, recognition and processing, also finger 

tracking and recognition is mentioned 

Chapter 4 proposes the architecture of the system were Leapmotion and Realsense operations 

for gesture detection were mentioned along with the algorithms used and the communication 

method between the script and the robot. 

Chapter 5 presents the implementation of our methods, the results, evaluating the performance 

of our system and comparison between our methods.  

Chapter 6 provides conclusions were brief comparison is made and future work. 
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Chapter 2: State of Art 

2.1. Gesture Recognition 

In the present world, the interaction with the computing devices has advanced to such an extent 

that as humans it has become necessity and we cannot live without it. The technology has 

become so embedded into our daily lives that we use it to work, shop, communicate and even 

entertain ourselves. It has been widely believed that the computing, communication and display 

technologies progress further, but the existing techniques may become a bottleneck in the 

effective utilization of the available information flow (Pantic M, 2008). To efficiently use them, 

most computer applications require more and more interaction. For that reason, human-

computer interaction (HCI) has been a lively field of research in the last few years. Firstly based 

in the past on punched cards, reserved to experts, the interaction has evolved to the graphical 

interface paradigm. The interaction consists of the direct manipulation of graphic objects such 

as icons and windows using a pointing device. Even if the invention of keyboard and mouse is 

a great progress, there are still situations in which these devices are incompatible for HCI. This 

is particularly the case for the interaction with 3D objects. The 2 degrees of freedom (DOFs) of 

the mouse cannot properly emulate the 3 dimensions of space. The use of hand gestures 

provides an attractive and natural alternative to these cumbersome interface devices for human 

computer interaction. Using hands as a device can help people communicate with computers in 

a more intuitive way. When we interact with other people, our hand movements play an 

important role and the information they convey is very rich in many ways. We use our hands 

for pointing at a person or at an object, conveying information about space, shape and temporal 

characteristics. We constantly use our hands to interact with objects. Hand movements are thus 

a mean of non-verbal communication, ranging from simple actions (pointing at objects for 

example) to more complex ones (such as expressing feelings or communicating with others). 

In this sense, gestures are not only an ornament of spoken language, but are essential 

components of the language generation process itself. A gesture can be defined as a physical 

movement of the hands, arms, face and body with the intent to convey information or meaning. 

In particular, recognizing hand gestures for interaction can help in achieving the ease and 

naturalness desired for human computer interaction (Mitra S, 2007).  
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Figure 1 different body parts and objects identified in the literature employed for gesturing (Agrawal, 2012) 

 

The graph above shows the importance of hand and finger gestures to humans as meaning of 

expressing their feelings and the notifications of their thoughts. 

 To abstract and model the human body parts motion several hand gesture representations and 

models have been proposed and implemented by the researchers. The two major categories of 

hand gesture representation are 3D model based methods and appearance based methods as 

shown in Figure 2. 

The 3D model based hand gesture recognition has different techniques for gesture 

representation namely 3D textured volumetric, 3D geometric model and 3D skeleton model. 

Appearance based hand gesture representation include color based model, silhouette geometry 

model, deformable model and motion based model. 
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Figure 2 Vision based hand gesture representations (Bourke A, s.d.) 

Most of the complete hand interactive mechanisms that act as a building block for vision based 

hand gesture recognition system are comprised of three fundamental phases: detection, tracking 

and recognition. This section of the research survey discusses some of the prominent vision 

based hand gesture recognition techniques used by most of the researchers by categorizing 

under the three verticals representing the three fundamental phases of detection tracking and 

recognition as shown in Figure 3.  

 

Figure 3 Vision based hand gesture recognition techniques (Agrawal, 2012) 
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2.1.1. Detection   

The primary step in hand gesture recognition systems is the detection of hands and the 

segmentation of the corresponding image regions. This segmentation is crucial because it 

isolates the task-relevant data from the image background, before passing them to the 

subsequent tracking and recognition stages (Cote M, 2006) . A large number of methods have 

been proposed in the literature that utilize a several types of visual features and, in many cases, 

their combination. Such features are skin color, shape, motion and anatomical models of hands. 

2.1.2. Tracking 

If the detection method is fast enough to operate at image acquisition frame rate, it can be used 

for tracking as well. However, tracking hands is notoriously difficult since they can move very 

fast and their appearance can change vastly within a few frames. Tracking can be defined as the 

frame-to-frame correspondence of the segmented hand regions or features towards 

understanding the observed hand movements. The importance of robust tracking is twofold. 

First, it provides the inter-frame linking of hand/finger appearances, giving rise to trajectories 

of features in time. These trajectories convey essential information regarding the gesture and 

might be used either in a raw form (e.g. in certain control applications like virtual drawing the 

tracked hand trajectory directly guides the drawing operation) or after further analysis (e.g. 

recognition of a certain type of hand gesture). Second, in model-based methods, tracking also 

provides a way to maintain estimates of model parameters variables and features that are not 

directly observable at a certain moment in time (Baxter, 2000). 

2.1.3. Recognition  

The overall goal of hand gesture recognition is the interpretation of the posture, location or 

gesture conveys of the hand or both hands. Vision based hand gesture recognition techniques 

can be further classified under static and dynamic gestures. To detect static gestures (i.e. 

postures), a general classifier or a template-matcher can be used. However, dynamic hand 

gestures have a temporal aspect and require techniques that handle this dimension like Hidden 

Markov Models (Wechsler, 2005). 

2.1.4. Application domains  

Vision based hand gestures recognition systems since its early days of exploration and research 

have found vital applications to a wide range of real life and real time scenarios. The evolution 

of human computer interaction has been paced up with the advances in pervasive computing 
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and real time application scenarios of computing devices. These applications vary from 

Information Visualization, Desktop Applications, sign language, Robotics, virtual reality to 

games, medical environment, augmented reality and others. 

 

Figure 4 Hand Gesture Application (Agrawal, 2012) 

The next Chapter focuses on the robotics application as it is our main focus especially in the 

industrial environment. 

2.2. Gesture Recognition Application and potential applications to Industrial 

Environments 

2.2.1. Human-Robot collaboration 

Robotic systems have already become essential components in various industrial sectors. 

Recently, the concept of Human-Robot Collaboration (HRC) has generated more interests. 

Human workers have unique problem-solving skills and sensory-motor capabilities, but are 

restricted in force and precision (Kruger, 2012). Robotic systems, on the other hand, provide 

better fatigue, higher speed, higher repeatability and better productivity, but are restricted in 

flexibility. Jointly, HRC can release human workers from heavy tasks by establishing 

communication channels between humans and robots for better overall performance. Ideally, a 

HRC team should work similarly as a human-human collaborative team in a manufacturing 

environment. However, time-separation or space-separation is dominant in HRC systems, 

which reduced productivity for both human workers and robots. 
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To recognize gestures in the HRC manufacturing context, it is beneficial to investigate into a 

generic and simplified human information processing model. Based on this generic model, we 

propose a specific model for gesture recognition in HRC. As shown in Figure1, there are five 

essential parts related to gesture recognition for HRC: sensor data collection, gesture 

identification, gesture tracking, gesture classification and gesture mapping, explained as 

follows. 

 Sensor data collection: the raw data of a gesture is captured by sensors.  

 Gesture identification: in each frame, a gesture is located from the raw data.  

 Gesture tracking: the located gesture is tracked during the gesture movement. For static 

gestures, gesture tracking is unnecessary.  

 Gesture classification: tracked gesture movement is classified according to pre-defined 

gesture types. 

 Gesture mapping: gesture recognition result is translated into robot commands and sent 

back to workers. 

HRC has many applications such as Pick and Place, packaging and palletizing, quality 

inspection and object manipulation. 

 

Figure 5 A process model of gesture recognition for human-robot collaboration. (Hongyi Liu, 2017) 
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2.2.2. Sensor technologies  

Before gesture recognition process starts, raw gesture data need to be collected by sensors. In 

this section, different sensors in the literature are analyzed based on various sensing 

technologies. As shown in Figure 5, there are two basic categories of data acquisition: image 

based and non-image based approaches. 

 

Figure 6 Different types of gesture recognition sensors. (Hongyi Liu, 2017)  

2.2.2.1. Image based approaches 

Technologies are often inspired by nature. As a human being, we use our eyes to recognize 

gestures. Therefore, for robots, it is reasonable to use cameras to “see” gestures. The image-

based approaches are further divided into four categories. 

  

Figure 7 A four-stage model of human information processing 

Marker 

In marker-based approaches, a sensor is a conventional optical camera. In most marker-based 

solutions, users need to wear obvious. Today, we enjoy much faster graphical processing speed 

compared with twenty years ago. As a result, more gesture recognition sensors are available on 

the market. 

Information 
Acquisition

Information 
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Decision 
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Single camera  

In the early 90th, researchers started to analyze gestures using a single camera. A drawback of 

single-camera-based approaches is the restriction of view angles, which affects a system's 

robustness. Recent research, however, applied a single camera in high-speed gesture 

recognition. The system utilizes the speed image sensor and specially designed visual 

computing processor to achieve high-speed gesture recognition.  

Stereo camera 

To achieve robust gesture recognition, researchers suggested stereo camera based approaches 

to construct 3D environment. They have been applied in applications that use two stereo 

cameras to construct 3D depth information. Many stereo camera based approaches follow a 

similar. Although stereo camera systems have improved robustness in outdoor environment, 

they still suffered from problems such as computational complexity and calibration difficulties 

(Wachs, 2011). 

Depth sensor 

Recently, depth sensing technologies have emerged rapidly. We define a depth sensor as a non-

stereo depth sensing device. Nonstereo depth sensor enjoys several advantages compared to the 

traditional stereo cameras. For example, the problems of setup calibration and illumination 

conditions can be prevented. Moreover, the output of a depth sensor is 3D depth information. 

Compared with color information, the 3D depth information simplifies the problem of gesture 

identification. A comparison of gesture identification accuracy by using color and depth 

information can be found in Time-of-Flight (ToF) technology is one of the popular depth 

sensing techniques. The fundamental principle of the ToF technology is to identify light travel 

time Recently, Microsoft Kinect 2 has applied the ToF technology. The advantage of the ToF 

technology is the higher frame rate. The limitation of the ToF technology is that the camera 

resolution highly depends on its light power and reflection. (Hornegger, 2008) 

Depth sensor provides a cheap and easy solution for gesture recognition. It is widely used in 

entertainment, education, and research, which has introduced a large developer community. 

With a large developer community, many open source tools and projects are available. Due to 

resolution restriction, currently, depth sensors are especially popular in body gesture 

recognition and close-distance hand and arm gesture recognition. 
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2.2.2.2 Non-image based approaches  

Gesture recognition has been dominated by image-based sensors for a long time. Recent 

developments in MEMS and sensors have significantly boosted non-image based gesture 

recognition technologies. 

Glove  

Glove-based gestural interfaces are commonly used for gesture recognition. Usually, glove-

based approaches require wire connection, accelerometers, and gyroscopes. However, a 

cumbersome glove with a load of cables can potentially cause problems in HRC manufacturing 

environment. Glove-based approaches also introduced complex calibration and setup 

procedures.  

 Band  

Another contactless technology uses band-based sensors. Band based sensors rely on a 

wristband or similar wearable devices. Band-based sensors adopt wireless technology and 

electromyogram sensors, which avoid connecting cables. The sensors only need to contact with 

wrist; user's hand and fingers are released. One example is Myo gesture control armband (Labs, 

2015) (Zhang, 2015). Recently, several band-based sensor gesture control systems have been 

reported. 

Non-wearable  

The third type of non-image based technologies adopts non wearable sensors. Non-wearable 

sensors can detect gestures without contacting human body.  

Google introduced Project Soli, a radio frequency (RF) signal based hand gesture tracking and 

recognition system (Google, 2015).The device has an RF signal sender and a receiver. It is 

capable of recognizing different hand gestures within a short distance. MIT has been leading 

non-wearable gesture recognition technology for years. Electric Field Sensing technology was 

pioneered by MIT (Smith et al., 1998). A recent discovery from MIT introduced WiTrack and 

RF-Capture system that captures user motion by radio frequency signals reflected from human 

body. (Hongyi Liu, 2017) 

As shown in Fig. 8(b), the RF-Capture system selects particular RF signals that can traverse 

through walls and reflect off the human body. The system can capture human motion even from 

another room with a precision of 20 cm. Although the precision is not acceptable in HRC 
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manufacturing, non-wearable based technologies are promising and fast-growing sensor 

technologies for gesture recognition.  

 

 

Figure 8 Project Soli and RF-Capture system: (a) concept of Project Soli; (b) concept of RF-Capture gesture capturing 
system. (Hongyi Liu, 2017) 

 2.2.2.3. Comparison of sensor technologies 

Summarizing the advantages and disadvantages of different technologies. It is clear that there 

is no sensor that fits all HRC applications. Two observations of the sensor technologies are 

provided based on the above analyses: In indoor HRC manufacturing environment, depth 

sensors are the most promising image-based techniques. Depth sensors possess advantages of 

easy calibration and accurate data processing. A large application developer community exists, 

which provides immediate solutions. Non-wearable approaches are the most promising 

technology among non-image based approaches. They can avoid direct contact with users, 

which provide advantages in an HRC manufacturing environment. Non-wearable sensing is 

also a fast-growing field. 

2.3. Collaborative robots: Safety and Regulations 

After many years of rigid conventional procedures of production, industrial manufacturing is 

going through a process of change toward flexible and intelligent manufacturing, the so-called 

Industry 4.0. In this paper, human–robot collaboration has an important role in smart factories 

since it contributes to the achievement of higher productivity and greater efficiency. However, 

this evolution means breaking with the established safety procedures as the separation of 

workspaces between robot and human is removed. These changes are reflected in safety 

standards related to industrial robotics since the last decade, and have led to the development 

of a wide field of research focusing on the prevention of human–robot impacts and/or the 

minimization of related risks or their consequences. This paper presents a review of the main 
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safety systems that have been proposed and applied in industrial robotic environments that 

contribute to the achievement of safe collaborative human–robot work. Additionally, a review 

is provided of the current regulations along with new concepts that have been introduced in 

them. The discussion presented in this paper includes multidisciplinary approaches, such as 

techniques for estimation and the evaluation of injuries in human–robot collisions, mechanical 

and software devices designed to minimize the consequences of human–robot impact, impact 

detection systems, and strategies to prevent collisions or minimize their consequences when 

they occur. 

2.3.1. A framework for safety in industrial robotic environments.  

To provide a structured framework, a classification of the main safety systems in robotic 

environments is provided in Table 1, including the aims pursued by the safety systems, 

hardware and software systems that are employed, devices that are used, and the actions 

involved in each type safety system. Table 1 indicates the sections of the paper where each 

subject is covered. 

The term of Cyber-Physical Systems (CPS) has been incorporated because of the ongoing 

improvements in intelligent manufacturing have significant implications on the usage of robot 

safety systems. In this way, the incorporation of network computing, connected devices and 

data management systems in manufacturing processes, including active safety systems, 

resulted in CPS.  

Cyber-Physical System are defined as physical devices which are provided with technologies 

to collect data about themselves and their surroundings, process and evaluate these data, 

connect and communicate with other systems and initiate actions to achieve their goals (S. 

ROBLA-GÓMEZ 1, 2017). 
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Table 1 Classification of safety in industrial robot collaborative (S. ROBLA-GÓMEZ 1, 2017) 

 

 2.3.2. Separating Human and Robot workspaces 

Common mechanical robots are enormous, heavy and move at high speeds. These conditions make 

it important to forestall impacts between the robot and the humans who may enter the robot 

workspace, in order to avoid harm to the human. The methodology endorsed by the norm ISO 

10218:1992 or its equivalent UNE-EN 775 is set to prevent such crashes or different 

occurrences that may result in any harm, this norm established a mandatory separation among 

human and robot workspaces, by distinguishing human interruptions in robot workspaces, and 

changing the robot behavior. 
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 In view of these restrictions, when an intrusion comes in the robot workspace the robot speed 

is diminished in relation to the distinguished danger level, with the robot halting is the highest 

one. Three degrees of risk detection are proposed alongside control methodologies, passive and 

active safety devices. Such devices incorporate for example acoustic signs, proximity sensors, 

pressure mats, and ultrasonic sensors. 

 

 

 

 

 

 

 2.3.3. Shared human and robot work/workspaces 

Collaborative tasks involving human and robot make it necessary to remove the separating 

elements between them, and therefore new risks emerge that need to be addressed. In the 

following sections the main approaches to mitigate these risks are presented, including the 

quantification level of injury by collision. The information about the consequences to the human 

body of having a collision with a robot is key in taking the necessary steps to minimize injuries 

to the human and can be used for testing new robot safety systems. 

2.3.3.1. Quantifying level of injury by collision 

Focusing on systems whose principal aim is to enable safe human robot collaboration, several 

researchers have analyzed the consequences of human-robot collisions on the human body. 

This question may be approached from two different points of view. The first one is to estimate 

the pain tolerance, and the second one is to quantify the level of injury following a collision. 

2.3.3.2. Minimizing injury in human-robot collision. 

As in some cases a robot-human collision during the execution of collaborative tasks can be 

unavoidable, an important line of research focusses on the minimization of injuries in humans 

caused by such collisions. The methods that have been proposed to reduce the effects of 

Figure 9 Separating human-robot workspace. (S. ROBLA-GÓMEZ 1, 2017) 
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collisions can be broadly classified as mechanical compliance systems and safety strategies 

involving collision/contact detection. 

2.3.3.3. Collision avoidance  

Although minimizing injuries in case of human-robot collision is very important, the prevention 

of impacts between robot and human is highly desirable. Therefore, a second key aim in human 

robot collaboration is to enhance safety through the implementation of collision avoidance 

systems. For this purpose, several solutions have been tried, which may be in many cases 

complementary to the previously discussed safety systems. 
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Chapter 3: Methodology 

3.1. Hardware choice  

For intelligent robots, tabletop object manipulation is quite possibly the most widely recognized 

task. It joins the capacities of the robot in vision, image procession, object recognition, hand 

arm manipulation, however, the real indoor environment is much more complicated than 

experimental scenarios. The vision of the robot sometimes can hardly provide enough 

information for successfully executing some difficult tasks, such as pick, place or assemble 

some small objects (Haiyang Jin, 2016) .In this case the implementing of the human gestures is 

a problem solving idea. 

Interpretation of human gestures by a computer is used for human-machine interaction in the 

area of computer vision. The main purpose of gesture recognition research is to identify a 

particular human gesture and convey information to the user pertaining to individual gesture. 

From the corpus of gestures, specific gesture of interest can be identified, and on the basis of 

that, specific command for execution of action can be given to robotic system. Overall aim is 

to make the computer to understand human body language, thereby bridging the gap between 

machine and human. Hand gesture recognition can be used to enhance human–computer 

interaction without depending on traditional input devices such as keyboard and mouse. 

Hand gestures are extensively used for telerobotic control and applications. Robotic systems 

can be controlled naturally and intuitively with such telerobotic communication. A prominent 

benefit of such a system is that it presents a natural way to send geometrical information to the 

robot such as: left, right. Robotic hand can be controlled remotely by hand gestures. Several 

approaches have been developed for sensing hand movements and corresponding by controlling 

robotic hand.  

For hand gesture recognition, a highly efficient way is using data glove that can record the 

motion of each finger; some kinds of data glove can even measure the contact force of a 

grasping or pinching action. However, beside the high cost of data glove, they lack the 

capability to track position of the hand and even thought the glove-based gestural interfaces 

give more precision, it limits freedom as it requires users to wear cumbersome patch of devices. 

Therefore, extra approaches are added to track hand positions, such as inferred optical tracking, 

which also increases the complexity of the system. 
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In this work we decided to only use the vision based method for both the hand tracking and 

gesture recognition as it lowers the costs and the hardware complexity significantly. But the 

performance of the gesture recognition is much effected by the lighting and background 

conditions. Thus, some aiding methods like skin color and pure color background are used to 

improve the recognition accuracy. 

 Other scholars use RGB-D data from Kinect for gesture recognition. However, the Kinect 

sensor is developed for body motion tracking, in the research of Kim et al., it has been proved 

that the accuracy of hand motion tracking using Kinect is much lower than LeapMotion sensor, 

which is particularly designed for hand motion tracking. (Yonjae Kim, 2014) 

“The LeapMotion sensor, developed by Leap Motion Inc., is a new non-contact finger/hand 

tracking sensor. It has a high tracking accuracy and provides plenty of software interface for 

pose and gesture recognition. Some preliminary studies have been carried out for robot 

manipulation. Zubrycki et al. use a LeapMotion sensor to control a 3-finger gripper, 

GuerreroRincon et al. developed an interface to control a robotic arm, Marin et al. report the 

first attempt to detect gestures from the data combination of LeapMotion and Kinect. These use 

single LeapMotion for hand tracking and gesture recognition, however, due to the occlusion 

problem between fingers, single sensor can perform well only when the palm is with an ideal 

orientation.” (Haiyang Jin, 2016) 

This solution offers using multiple LeapMotion sensors, but I found a better solution opting 

toward a different type of system as difficulties of accuracy and precision were faced. 

To overcome these difficulties a multi-sensors hand tracking system is developed to overcome 

the limitation of the aforementioned drawback of a single LeapMotion. The tracking space and 

working area are analyzed to gain an appropriate setup for one LeapMotion sensor alongside 

an Intel Realsense Camera. With self-registration, a coordinate system are established. Based 

on the definition of the element actions, an algorithm to calibrate the delay and combine the 

data from both 3D sensors is proposed to improve the stability for both the hand tracking and 

gesture recognition. To develop an operative demonstration system, a 6-DoFs (Degree of 

Freedoms) robotic arm with a 2-finger gripper are combined with the development of a 3D 

Cameras hand tracking system in ROS (Robot Operation System). Functional experiments are 

performed to indicate the results of combined hand tracking and gesture recognition. At the 

end, a scenario experiment is performed to show how this proposed system is used in a robotic 

system. 
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 3.1.1. Leap Motion Camera  

In the last few years, different optical sensors, which allow the acquisition of 3D objects, have 

been developed. Concurrently with the appearance of the new sensors, the number of potential 

applications vastly increases. Applications benefit especially from the increasing accuracy and 

robustness of 3D sensors and a drop in prices. Applications for 3D sensors include industrial 

tasks and many others. 

Object tracking, motion analysis, character animation, 3D scene reconstruction and gesture-

based user interfaces. These applications have different requirements in terms of resolution, 

speed, distance and target characteristics. Particularly with regard to gesture-based user 

interfaces, the accuracy of the sensor is a challenging task. Consumer-grade sensors offer only 

limited positioning accuracy. An analysis of the sensor shows a standard deviation in depth 

accuracy of approximately 1.5cm. The evaluation of the accuracy of optical sensors is the 

subject of current research and scientific discussion. The Leap Motion controller introduces a 

new gesture and position tracking system with sub-millimeter accuracy. In contrast to standard 

multi-touch solutions, this above-surface sensor is discussed for use in realistic stereo 3D 

interaction systems, especially concerning direct selection of stereoscopically displayed 

objects. 

 

Figure 10 Schematic View of Leap Motion Controller. (FrankWeichert*, 2013) 

The Leap Motion controller in conjunction with the current API (Application Programmer 

Interface) delivers positions in Cartesian space of predefined objects like finger tips, pen tip, 

etc. The delivered positions are relative to the Leap Motion controller’s center point, which is 

located at the position of the second, centered infrared emitter. As illustrated in Figure 1, the 

controller consists of three IR (Infrared Light) emitters and two IR cameras. Hence, the Leap 

Motion can be categorized into optical tracking systems based on Stereo Vision. Because of the 

missing point cloud of the scene and the predefined detectable objects, traditional calibration 

techniques are not suitable for the LeapMotion. Nevertheless, a precise reference system is 
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needed in order to evaluate the accuracy and repeatability of the Leap Motion controller. 

Industrial Robots support the ability of fixing different tools to their TCP (Tool Control Point) 

and exhibit high precision in sub-millimeter range. Consequently, industrial robots can act as 

high precision reference systems during the evaluation of the Leap Motion. 

The robot cell builds the metrology system of the mandatory measurements. The analyzed 

parameters related to the sensors are accuracy and repeatability. Accuracy is the ability of a 3D 

sensor to determine a desired position in 3D space. Repeatability is the ability of a sensor to 

locate the same position in every measurement repetition. The analysis of the accuracy and 

repeatability tests was performed in accordance to ISO 9283 standard, which is primarily used 

for industrial robots.  

According to the paper mentioned in the bibliography the LeapMotion sensor went through 

many experiments to assure its accuracy, Robustness and precision. 

The following tests were conducted considering the metrology calibration approaches: 

 Positioning test probe methods (static cases) 

 Path drawing methods (dynamic cases) 

The basic test cases focus on the evaluation of the accuracy of the reference pen tip moving to 

positions on a regular grid of a plane (xy-, xz- and yz-plane) and moving to discrete positions 

on a path, for example along the particular axes (x-, y- and z-axis) of the sensor coordinate 

system and on a sinus function within the xy-plane, as illustrated in Figure2. 

 

Figure 11 Visualization of Sinus Function within the x-y plane (FrankWeichert*, 2013) 
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3.1.1.1. Static test cases:   

The particular diagrams visualize the deviation between the desired static Cartesian position 

and the measured positions relative to the xy-plane (a), xz-plane (b) and yz-plane (c). 

Independent from the axis, the deviation between the desired position and the measured 

positions is less than 0.20mm. In the case of the x-axis the deviation is less than 0.17mm. 

 

Figure 12 eviation between a desired 3D Position and the Measured Positions for a Static Position. (a)xy-Variation;(b)xz-
Variation; (c) yz-Variation. (FrankWeichert*, 2013) 

3.1.1.2. Dynamic Test Cases: 

Next, the dynamic scenarios are analyzed by positioning the reference pen tip in different 

positions using the robot. Figure 13 illustrates the analysis of the accuracy when positioning the 

reference tip on different positions on a regular grid in the xy-, xz- and yz-plane by the robot. 

The diagrams show the deviation between a desired 3D position and the median of the 

corresponding measured positions respectively. Independent from the axis the deviation is 

below 1mm and on average under 0.4mm. 

 

Figure 13 Deviation between a Desired 3D Position and the Median of the Measured Positions. (a) xy-Plane; (b) xz-Plane; 

(c) yz-Plane. (FrankWeichert*, 2013) 
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As the results of these experiments were within our margin of acceptance we decided to opt for 

this Camera as we found that its capabilities suits the tasks and objectives in our work. 

3.1.2. Intel Realsense D415 

The Intel RealSense Depth Camera has been designed to equip devices with the ability to see, 

understand, interact with, and learn from their environment. The D415 features the Intel 

RealSense Vision D4 processor with a high-resolution depth (up to 1280 × 720 pixels at 30 

frames per second), long-range capability (up to about 10 m), rolling shutter technology and, 

as noted, a narrow field of view ideal for precise measurements. The RealSense Vision D4 is a 

vision processor based on 28-nanometer (nm) process technology for real-time calculation of 

stereo depth data. The device has a very compact depth camera (dimensions: 99 × 20 × 23 mm3, 

weight: 72 g) that can either be integrated into computers and mobile devices or used as a self-

standing device. Moreover, it comes with a color camera and a depth camera system, 

comprising two IR cameras and an IR projector. 

 

Figure 14 RealSense D415 (Monica Carfagni, 2018) 

The infrared projector improves the ability of the stereo camera system to determine depth by 

projecting a static infrared pattern on the scene to increase the texture of low-texture scenes. 

The D415 is equipped with a color camera with a resolution up to 1920 × 1080 pixels, and 

provides texture information to be superposed on the depth data. The spatial resolution of the 

depth map of the Intel RealSense D415 is up to HD (1280 × 720 pixels), in a working depth 

range declared by the manufacturer equal to ~160–10,000 mm. The camera works at different 

pixel resolutions corresponding to different minimum depth values, point densities and framed 

areas. 
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Table 2 Technical specifications of Intel RealSense D415. 

Environment Indoor and Outdoor 

Depth Technology Active Infrared(IR) stereo 

Image Sensor Technology Rolling shutter : 1.4µm x 1.4µm pixel size 

Depth of view (Horizontal x Vertical) 69.4 x 42.5° (+-3°) 

Depth stream output Resolution Up to 1280 x720 pixels 

Depth Stream Output Frame rate Up to 90 fps 

Minimum Depth Distance 0.16m 

Maximum range ~10m 

RGB sensor Resolution and frame Rate Up to 1920 x 1080 pixels at 30 fps 

RGB Sensor Field of View (Horizontal x 

Vertical) 

69.4 x 42.5° (+-3°) 

Camera dimension (Length x Depth x Height) 99mm x 20 mm x 23mm 

Connector USB type C 

 

Open library RealSense SDK 2.0 has standard functions for camera initialization, parameters 

setting, functions and methods for reading frames from the video stream, calculating the 

distance from the hand to the depth camera, RGB images and depth maps saving methods. It is 

possible to modify the algorithms available in the source code of the RealSence SDK 2.0. The 

methods and functions from RealSence SDK 2.0 were used to implement gestures image. Some 

additional functions for gesture capture were coded by the authors. 

3.2. Hand Detection 

The LeapMotion detector provides a high accuracy system to detect each hand. It’s based on an 

infra-red detector and is able to detect the hands in a half sphere centered on the Leap Motion 

of about 30 cm in radius (in reality it is not a real half sphere because the angle of view of the 

Leap Motion is 150 degrees). Using the SDK from the Leapmotion made this task relatively 

simpler than the Realsense camera. 

As for the realsense camera we had to develop a system to perform a complete process from 

pre-processing to detection & tracking to feature extraction and finally training and testing by 

HMM algorithm. For such task we opted toward OpenCV which is a library that made the 

system easy to create due to the large amount of inbuilt functions of various image processing 

tasks like edge detection, feature tracking etc. 

First, we have Detect and track the hand. So we decided to create a combination of two 

methods for hand localization the Thresholding and skin color segmentation. 
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3.2.1. Thresholding 

To detect the moving object region, we applied the thresholding on the frame to detect the 

possible moving area in a complex background. 

𝐷𝑖(𝑥, 𝑦) =  {
1, |(𝑥, 𝑦) − 𝐹𝑖+1(𝑥, 𝑦)| 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

3.2.2. Skin color segmentation 

The second method is the skin color segmentation which can be detected by color constraint. 

Skin color is usually detected using HSV (Hue Saturation Value) color space. 

Using these two methods we were able to get hand movement information. Afterwards we used 

‘AND’ logic to combine both extracted information together.  

𝐶𝑖(𝑥, 𝑦) = 𝐷(𝑥, 𝑦)𝑎𝑛𝑑 𝐸𝑖(𝑥, 𝑦) 

This method is divided in several steps, in the first step the image is passed through baseline 

CNN (Convolutional Neural Network) to extract the feature maps of the input. Next the feature 

map is then processed in a multi stage CNN pipeline to create a Confidence Map and a Part 

Affinity Field. In the last step, the Confidence Maps and Part Affinity Fields that are generated 

are processed by a matching algorithm to obtain the poses for each person in the image. 

A Confidence map is a 2D representation on where the body part can be located in any given 

pixel while a Part Affinity Fields is a set of 2D vector fields that encodes location and 

orientation of limbs of different people in the image. 

 

Figure 15 Convolutional Neural Network (CNN) (LeCun, 1998) 
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3.3. Finger Detection 

Finger detection is split between static gestures and dynamic gestures. Features for static 

gestures are mainly built based on palm and fingers relative distances. We calculated two types 

of distances. One type is distances between fingertips Fpos and palm center Ppos. The other 

type is distances between two fingers which are adjacent. For example distance between thumb 

and index, distance between index and middle denoted the figure below shows examples of 

static gestures we could effectively recognize. 

The other gesture features are built based on distances between fingers and palms. The distance 

between thumb and index is used to identify the OK gestures. The distance between index and 

middle finger is used to distinguish V gesture and Index and Middle pointing gesture. The rest 

gestures simply combined these two standard gestures. For example the index L gestures on the 

top most in the figure below are index and thumb extended and the rest fingers bent. 

As for the dynamic gestures, features are easily distinguished from static gestures features. We 

calculate the total value of velocity magnitude among fingers and palm. If the total movement 

value is greater than a user-defined threshold, we believe the hand is moving. Otherwise, we 

starts to recognize the static hand gestures. Dynamic Gesture features mainly use the velocity 

of fingertips and palm to detect the movement patterns. Compared with the static gestures, 

dynamic gestures are much more complicated. We starts from the global movement and then 

go through the details of the fingers’ movement. From the global movement, we try to detect 

hand translation movement, hand rotation movement, hand circle movement. Then we consider 

the fingers’ movement. Since there are so many possible movement and will focus on the 

movement of index finger which is very useful in communication and interactions. 
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Figure 16 Examples of static gestures 

Also for dynamic gestures, we have other features as hand translation which indicates fingers 

and palm are moving together straightly without rotation. We calculate the cross correlation of 

velocity vectors between fingers Fv and palm Pv for all fingers. If the absolute values of these 

cross correlations are greater than 0.95, we recognize that the hands are moving straightly. Also 

Hand rotation which contains two parts. One is the difference of current palm normal Pn and 

previous palm normal Pn-1. The other parts is the angle between difference of current palm and 

hand direction PD. We then calculate the cross correlation of the current palm and the hand 

direction. As for Hand circle it indicates the palm is drawing a great circle. Same to hand 

rotation features, we calculate the first order difference between palm normals. 
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Figure 17 Hand Skeleton (Haiyang Jin, 2016) 

Skeletal Tracking Model is a standard hand model provided by Leap Motion. It simulates the 

actual hand skeleton. 

3.4. Software  

As for Software we used Python as our main programming language for both LeapMotion and 

Realsense operating codes also we used Unity software to elaborate an Interface of command. 

3.4.1. Python 

Python is a high-level and general-purpose programming language. Python's design philosophy 

emphasizes code readability with its notable use of significant whitespace. Its language 

constructs and object-oriented approach aim to help programmers write clear, logical code for 

small and large-scale projects. 

3.4.2. Python Idle 

IDLE (Integrated Development and Learning Environment) is an integrated development 

environment (IDE) for Python. . IDLE can be used to execute a single statement just like Python 

Shell and also to create, modify, and execute Python scripts. 

3.4.3. Unity  

Unity is a cross-platform game engine developed by Unity Technologies, the engine is able to 

support more than 25 platforms also it can be used to create three-dimensional, two-

dimensional, virtual reality, and augmented reality software, as well as simulations and other 

experiences. The engine has been adopted by industries outside video gaming, such as 

automotive, architecture, engineering and construction. 
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Unity is originally a game engine development software, but we saw the potential of this 

software to create our Commanding interface, as it provide interesting assets for the  

LeapMotion camera which makes coding simpler and smoother in comparison to other 

software. 

3.4.4. C# Programming language 

C# is a general-purpose, multi-paradigm programming language encompassing static typing, 

strong typing, lexically scoped, imperative, declarative, functional, generic, object-oriented, 

and component-oriented programming disciplines. We used C# as our programming language 

for the Unity Interface. 

3.4.5. Visual Studio 

To ensure the functionality of our interface and to increase the functions provided by it we 

wrote our scripts in Visual Studio platform in C# language. 

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft. 

It is used to develop computer programs, as well as websites, web apps, web services and 

mobile apps. Visual Studio uses Microsoft software development platforms such as 

Windows API, Windows Forms, Windows Presentation Foundation, Windows Store and 

Microsoft Silverlight. It can produce both native code and managed code. 
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Chapter4: System Architecture 

In this chapter we will present the overall architecture of our system, and explain each block. 

 

Figure 18 Overall system architecture 

Our two inputs are the LeapMotion sensor and the Intel RealSense camera D415, they will 

provide 2D/3D data, this extracted data will be identified for a hand gesture, track it for a 

dynamic gesture and generate a keypoint map, this map will allow us to detect the fingers to be 

able to command the Robot. 

4.1. Leap Motion operation for gesture detection 

For Leap motion camera, the detection of hand gestures is done through the Leap motion SDK 

which has multiple functions and methods for hand tracking allowing the detection of gestures 

like circles, tapping, swiping and many others. These functions have their own library files, the 

System Development Kit for Leap motion camera is very rich and made it relatively simple to 

manipulate these functions optimally as the recognition system is built in the SDK allowing an 

optimal and relatively precise detection. To tap further into this system, we have to detect 

fingers, so we have to recognize the fingers in a hand on two hands and the motion of these 
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fingers which is the main point in using such technology, luckily the SDK offers other functions 

allowing the recognition of each finger in each hand. 

In our work, we developed a code to firstly recognize each hand named ‘left’ and ‘right’, this 

is done through a method that detect the hand type measuring the ergonometric in each hand by 

measuring the position of the thumb relatively to the other fingers, such method will help us 

know if we are using left or right hand in the frame. Next we had to distinguish each finger on 

each hand and name them, we made an array of fingers names and allocated each finger to its 

name in the array, and by doing this we made things relatively easier to manipulate each finger 

on its own, we used a built in method which uses machine learning to recognize each finger. 

To perform the tasks above we developed a python code importing all the required libraries in 

the SDK. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 Flowchart Leapmotion 
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To allow the robot to recognize the hand patterns we used hand pattern examples and we 

assigned each pattern to an action, we chose the number of fingers as the main pattern 

distinguish for this task varying from 0 to 5 allowing multiple finger combinations. This task is 

done by calculating the angle of each finger to know which ones are the extended ones. 

4.2. Real Sense operation for gesture detection 

For Real Sense the gesture recognition is more complicated as the developers didn’t come 

with a specific library to perform such tasks, so we opted toward OpenCV (Open Source 

Computer Vision Library) which is an open source computer vision and machine learning 

software library. 
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First we made sure to eliminate as much as noise in the taken image by saturating the colors of 

the skin to make it distinguishable from the background, second we detected the contours of 

the hand which is very important for the calculation of distance and angles later on.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 Flowchart RealSense Hand Gesture 
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Figure 21 Hand detection using HSV 

To perform these methods above we need first to train the system using an estimation method, 

we used ‘OpenPose’ libraries which is a real-time multi-person system to jointly detect human 

body, hand, facial, and foot key-points (in total 135 key-points) on single images. 

 ‘OpenPose’ libraries made us integrate these algorithms easier, first we train the system using 

different hand position maps. On each hand image we mapped the position of joints up to 20 

joints. In that way the system will estimate the position of hand joints in real-time.  

Next we made a Python algorithm that takes a video, detect the location of each hand in the 

frame and estimate the position of joints on each hand numbering them and generating a 

skeleton map which made it easier to locate each point to further calculate the distance between 

each point, calculate angles, directions in a 2D or a 3D environment. 



35 

 

We considered each pair of points as a joint, and by calculating the distance between each point 

we made sure to distinguish the extended fingers from the not extended ones which allowed us 

to count the number of extended fingers and generating a both skeleton and keypoint maps 

saving them as .jpg file for further calculation. 

This method made us not only count the number of extended fingers but also detect which finger 

exactly is extended and organizing them in an array table. 

 

  

 

In the script above we used the open Pose “.caffemodel” to train our system and we saved every 

frame captured. Also numpy library helped us to further develop and manipulate our system. 
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Figure 23 Flowchart RealSense using OpenPose Figure 22 Flowchart finger counting 
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Next we modify the frame that we captured and detect the points using OpenCV machine 

learning methods. 

 

After that we assign each point to a pair of points as an array, next we distinguish each pair of 

points to determine which finger and assign each pair in the finger names array. This allowed 

us to count how many fingers are used by increasing the f counter each time we detect the pair 

of points assigned to one finger. 
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Above we calculated the distance between each point to help us get more information before 

drawing the keypoint and the skeleton maps. 

At this point we got our keypoint and skeleton maps, so the next step is the process these 

information but we ran into a problem that processing a whole video takes too much time, so 

we opted toward taking multiple images processing each one of them separately  which made 

the system runs a lot faster and smoother. 

Using a Shell script allowed us to run all the Python Codes at once.  

 

Figure 24 Shell script 
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4.3. Communication method between scripts and the robot 

To communicate with the robot we used unity interface, unity allowed us to have a functional 

multi-platform interface that works on Windows, IOS, Android and other platforms. 

 

Figure 25 Unity designing interface 

Leapmotion provided us with free graphical assets downloadable from their official website, 

these 3D graphical assets are based on the keypoints on each hand to create a 3D dynamic 

skeleton. We download the asset package and then we import it in the Project window, later we 

can drag in every model we need and attach our script to it. Every 3d model is composed of sub 

models which represent every bone in our hands. 

 .  

Figure 26 3d hand example from unity assets 

These assets provided us with scripts to control the 3D graphics, these scripts are written in 

C# so we had to modify them to fulfill our requirements. 



40 

 

 

 

the script above is written is C# in Visual studio platform to add the 3D models to the interface, 

link them to our controlling script, remove them if no hand is detected and update them every 

frame. 
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Figure 27 simulation of hand sign 

The script allows to track hand or hands and represent a 3D hand simulating gestures. 

Unity allows us to export our application in different platforms using Build settings. 

 

 

Figure 28 Build settings 

 

Next we had to communicate to the robot using our python script 
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First we had to connect to the robot Host IP and the PORT using ModbusTCP library, then we 

assign each finger gesture to a different Robot action. 

 

 

Figure 29 Robotic workbench 
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Chapter 5: Results and Comparison 

In this chapter we will present the results and we will provide some pictures ensuring that the 

system is operating in a smooth manner. 

5.1. LeapMotion 

Below we present a 3D hand detection in real-time using the leap motion sensor, we found that 

putting the sensor below the arm gives the best results also it works better in short distances, if 

the hand gets too close to the sensor the system will stop detecting the hand so keeping 400 mm 

between the sensor and the hand is optimal. 

After several tests the Leap motion sensor will work optimally and provides a high accuracy 

gesture recognition when the palm rotates less than 60°, however when the rotation angle of the 

palm reaches 90°, the fingers might get occluded by the palm this is called finger occlusion, 

and when the rotation angle closes to 180°, we get finger occlusion again which makes it harder 

to perform hand gestures. A second sensor could be used here to cover the blind spots in the 

first sensor, this solution is far more reliable and accurate than all the others but it increases the 

complexity and the costs of our system, the Leap motion manufactures developed a prediction 

algorithm that will predict the position of hand when it reaches the blind spots, this solution is 

easier and cheaper but it is less reliable and accurate. Also we faced another minor problem it’s 

when the hand is too close to the background, the tracking and the accuracy will be reduced. 

Thankfully in our Robot controlling system the tracking is done far from the background, so it 

will performs its task smoothly 

 

Figure 30 One hand recognition 
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Next we have figures on how the counting fingers is performed. 

First we have to run the Leap Motion service on Terminal using “Sudo Leapd” line command, 

this command require an admin authority this is why we used the “Sudo” command. 

 

Figure 31 Leapd Service running 

Leapd is a service that comes along the SDK, it’s completely free to download. 

Second we run the python code on a different terminal using “python prg.py” line command.  

The Leap Motion system have to be running in the background or else the python code won’t 

respond. 

 

Figure 32 running script of counting fingers 
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The python script running on Terminal allows us to see which hand is used and how many 

fingers are extended, this is running in real-time so every time a different parameter is changed 

it will be immediately shown on the terminal.  

The python script running on Terminal allows us to see which hand is used and how many 

fingers are extended, this is running in real-time so every time a different parameter is changed 

it will be immediately shown on the terminal. 

Our Terminal will show exactly which hand is in use and the number of fingers, but also it show 

the dynamic gestures. Along with finger counting we made sure to detect other static gestures 

like”OK” gesture. 

 

Figure 33 Ok gesture 

Other dynamic gestures are detected too like swipe, finger circle, hand circle and tap. These 

gestures can be applied to new robot movements too or it can be used to mimic hand gestures. 

Also to extend the number of movements in the robot we can use the second hand too which 

doubles the number of functions.  

 

Figure 34 two hands recognition 
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One of the main advantages of the LeapMotion camera is it covers a concentrate space as it 

consist of two cameras and three infrared LED’s aimed at above. And since the sensors need to 

cover a much smaller field, the hardware is significantly more accurate, even the smallest finger 

movements are recognized and translated nearly without latency. 

The field of view is not very large though and spans about 140°-150° which gives it a high 

accuracy but its accuracy decreases when the hand is around the edges of the field. 

One disadvantage of this sensor is that when one finger covers the sensor won’t detect it also 

when the fingers are really tight next to each other the cameras won’t be able to recognize each 

finger individually, as we mentioned prior using a second sensor to cover the blind spot here is 

an optimal solution. 

Also one of the big advantages of this device is the availability of open-source software which 

allows users to contribute to the development of this device. Also it provides flexibility of 

development as it provides development kits in multiple programming languages as C++, C# 

and Python. 

After all the tests, and considering the ISO9283 the accuracy of human hands is around 0.4 mm 

thereby the LeapMotion sensor falls under the margin of acceptance as its accuracy is around 

0.2 mm in 3D.  

Furthermore, we tested the sensor in a no light conditions, the detection will not be successful, 

so the presence of light is mandatory. 

5.2. Intel RealSense 

Intel RealSense D415 is used here it is capable taking high definition videos up to 1280 x 720 

pixels. We had to try different algorithms to get the best result of this camera, as first we took 

one picture and tried to fade the background to adjust to the skin color margin that we used, 

used contours to draw a rectangle around the hand, calculate the angles between each finger to 

count them, this solution was simple but it lacked the accuracy. 
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Figure 35 hand frame tracking 

Introducing a model training using OpenPose libraries allowed us to generate keypoint maps, 

these maps will provide us with the exact positions of the hand keypoints which represent every 

bone on the hand. This will be crucial in extracting useful information later such as finger 

counting. We tried to take a video process each frame on its own, this solution is accurate but 

it takes significant amount of time to process all the frames as it depends on the processor’s 

capacity, but due the necessity of our system to be able to run in real-time this solution is lacking 

in term of functionality.  

 

Figure 36 Running script of hand gesture recognition 
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The script running on terminal takes one frame process it and generate two maps one with 

keypoints located on the detected hand and one with a skeleton which connects the keypoints 

to form a skeleton map. 

 

Figure 37 Keypoint map 

Each two keypoint represent a bone in our hand, so pairing them was a good idea to further 

calculate distances and angles.  

 

Figure 38 Skeleton map 

The skeleton map will show us the pairing of points, also in the picture above it shows the 

number of fingers after calculating them in the script. 
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Processing each frame will allow us to recognize all static gestures that we did. 

One of the pros of using the Intel RealSense camera is its robustness with a good build quality, 

it functions well in small distances under 3 meters, it has a good support Intel driver updates 

and it works on all major operating systems. 

But we recognized some disadvantages regarding our system. It has a lot of noise we had to 

filter the noise off the background every time we use it. 

Comparing to the Leapmotion sensor Intel RealSense camera is more versatile and flexible in 

general usage. If we are focusing on hand gestures recognizing, we found that the Leapmotion 

camera performs better but in everything else the Intel RealSense is much better. One thing the 

RealSense camera is better in our system is its safety as it provides the ability to track different 

objects at the same time which increases the safety of our system, in our case tracking the Robot 

and other humans around the area of control to maintain the safety of the manipulator, 

surrounding humans, the robot and the goods that we are dealing with and to ensure the well-

functioning of the system. 

In term of price both sensors are relatively cheap if we are taking in consideration that we are 

working in industry but the Intel Real sense’s price is higher as it costs around 182 €, as for the 

LeapMotion sensor it costs 70€ which is much lower price than the Intel RealSense D415. 

The presence of light is essential for this sensor to function proporly. 

5.3. Performance of the system  

To determine the accuracy of our detection methods, we evaluated our approach using 

confusion matrix. Confusion matrix allows visualization of the performance of each method. 

We classified the hand gestures into 6 gesture positions, these positions represent the finger 

counting from 0 to 5 as shown in the figure below. 

 

Figure 39 Hand gestures positions 
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These gestures are used to show how accurate the classification using both cameras, we posed 

6 gestures with 20 samples each, totally there were 240 samples of gestures that we used for 

this test. 

First we used the LeapMotion sensor to detect the hand gestures and to provide a confusion 

matrix. 

Table 3 Confusion matrix Leapmotion sensor detection 

 Zero_fingers One_finger Two_fingers Three_fingers Four_fingers Five_fingers 

Zero_fingers 20 0 0 0 0 0 

One_finger 0 19 1 0 0 0 

Two_fingers 0 1 18 1 0 0 

Three_finger 0 0 0 16 3 1 

Four_fingers 0 0 0 0 18 2 

Five_fingers 0 0 0 0 1 19 

 

This Confusion matrix allowed us to measure the performance of this method. 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 = 

110

120
 = 91.66% 

Miss classification = 
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 = 

10

120
 = 8.33%  

Table 4 Confusion matrix Intel RealSense D415 camera detection 

 Zero_fingers One_finger Two_fingers Three_fingers Four_fingers Five_fingers 

Zero_fingers 18 1 1 0 0 0 

One_finger 0 18 2 0 0 0 

Two_fingers 0 2 17 1 0 0 

Three_finger 0 0 1 17 2 0 

Four_fingers 0 0 0 1 16 3 

Five_fingers 0 0 0 0 2 18 

 

Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 = 

104

120
 = 86.66% 

Miss classification = 
𝐹𝑃+𝐹𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 = 

16

120
 = 13.33% 
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For further performance analysis we calculated the Precision and the sensitivity of each gesture. 

Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Sensitivity (Recall) = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

Table 5 Precision comparison 

 LeapMotion Intel RealSense D415 

Zero_fingers 100% 90% 

One_finger 95% 90% 

Two_fingers 90% 85% 

Three_finger 80% 85% 

Four_fingers 90% 80% 

Five_fingers 95% 90% 

 

Table 6 Sensitivity comparison 

 LeapMotion Intel RealSense D415 

Zero_fingers 100% 100% 

One_finger 95% 85.714% 

Two_fingers 94.737% 80.952% 

Three_finger 94.118% 89.474% 

Four_fingers 81.818% 80% 

Five_fingers 86.364% 85.714% 

 

5.4. Tasks done by the Robot 

Our robot has 3 main actions, these actions are already programmed so our job is to send the 

command by ModbusTCP.  

The ModbusTCP is protocol with a TCP interface allows us to connect our system to the robot 

using a port. 

The first action is to build a tower from blocks in going from the big block in the bottom until 

the smallest one in the top. 
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Figure 40 Tower building 

The second action is a game which the robot take the black blocks from the beak and put them 

in the ticked area, it uses a built in camera to recognize where it should put the block. It will 

continue putting all the black blocks until all the ticked areas are full. 

 

Figure 41 putting and removing blocks in and from the ticked area 

The third action is to remove the black blocks from the ticked areas and put them back in the 

beak, it will take the blocks one by one until all the ticked areas are empty. 

Our system will count the number of fingers we are extending and then translate it to a 

command, per example if I showed two finger as hand gesture the robot will do the task number 

1 which is the Tower building. 



53 

 

Chapter 6: Conclusion and Future work 

6.1. Conclusion 

This thesis shows the using of different methods in the field of hand gesture these methods 

consist of detecting different gestures in short distance using different cameras. The aim of 

applying these methods is to compare different algorithms and hardware to classify hand 

gesture recognition methods, we evaluated these methods in term of many parameters such as 

accuracy, simplicity, execution time, safety and sensitivity .the first method is using a Leap 

motion sensor, this method provides a lot of functions already set by manufactures and 

relatively easy to use which made it simpler and relatively easier to implement in comparison 

to other methods as hand manipulation libraries are rich of pre developed functions, also it’s 

cheaper than most all the other alternatives out there, performs well in term of accuracy and 

sensitivity, great in term of execution time as it focuses solely on hand gesture recognition and 

ignore all the potential of tracking other objects in frame or background which decreases the 

safety in comparison to other hardware, Intel Real sense camera provides the possibility to track 

hand gestures and other objects in the field of view or background which made it safer and more 

reliable in the industrial field also it offers a great amount of accuracy and sensitivity, but it 

increases the complexity of the system as it offers the use of different algorithms. In term of 

time execution it falls short to the first method as processing all the data in a video frame by 

frame takes a lot of time if we want to control the robot in a real time. We applied different 

algorithms to reduce the execution time without stripping this method of its strengths. One 

algorithm uses 3D video extraction and processing each frame one by one. This algorithm 

amasses a great amount of usable data in term of hand tracking and other objects in the 

background also it offers a great amount of accuracy but it lacks significantly in term of t ime 

execution. Extracting 2D video reduced the execution time but it didn’t help much in Real-time 

domain. Offering a second algorithm to extract a set amount of frames and process each of them 

reduced the execution time but made the system less accurate, the third algorithm uses CNN 

which is multi layers neural network it’s one of the deep learning techniques. Applying CNN 

in this algorithm reduced two phases which are image extraction and classification to one phase 

only, so processing data becomes faster. 

At the end the best solution we come to is to uses a hybrid system of multi cameras/sensors 

which take the strengths of the Leap motion sensor and the strengths of the Real sense camera, 

in that way we get the best of both worlds.  
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6.2. Future Work 

After performing all the methods and reviewing the results, the following are suggestions for 

future works: 

Designing a mobile application to translate common gestures to meaningful words, the output 

could be words shown on a screen or be dictated by sound to aid people with hearing 

impairments. 

Record gestures with high resolution size such as 6k to examine the CNN algorithm. 

Implement different algorithms in deep learning like RNN and compare the efficiently of CNN 

and RNN in terms of accuracy.  
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