96 research outputs found

    Interactive real-time three-dimensional visualisation of virtual textiles

    Get PDF
    Virtual textile databases provide a cost-efficient alternative to the use of existing hardcover sample catalogues. By taking advantage of the high performance features offered by the latest generation of programmable graphics accelerator boards, it is possible to combine photometric stereo methods with 3D visualisation methods to implement a virtual textile database. In this thesis, we investigate and combine rotation invariant texture retrieval with interactive visualisation techniques. We use a 3D surface representation that is a generic data representation that allows us to combine real-time interactive 3D visualisation methods with present day texture retrieval methods. We begin by investigating the most suitable data format for the 3D surface representation and identify relief-mapping combined with BĂ©zier surfaces as the most suitable 3D surface representations for our needs, and go on to describe how these representation can be combined for real-time rendering. We then investigate ten different methods of implementing rotation invariant texture retrieval using feature vectors. These results show that first order statistics in the form of histogram data are very effective for discriminating colour albedo information, while rotation invariant gradient maps are effective for distinguishing between different types of micro-geometry using either first or second order statistics.Engineering and physical Sciences Research (EPSRC

    Enhancing Mesh Deformation Realism: Dynamic Mesostructure Detailing and Procedural Microstructure Synthesis

    Get PDF
    Propomos uma solução para gerar dados de mapas de relevo dinùmicos para simular deformaçÔes em superfícies macias, com foco na pele humana. A solução incorpora a simulação de rugas ao nível mesoestrutural e utiliza texturas procedurais para adicionar detalhes de microestrutura eståticos. Oferece flexibilidade além da pele humana, permitindo a geração de padrÔes que imitam deformaçÔes em outros materiais macios, como couro, durante a animação. As soluçÔes existentes para simular rugas e pistas de deformação frequentemente dependem de hardware especializado, que é dispendioso e de difícil acesso. Além disso, depender exclusivamente de dados capturados limita a direção artística e dificulta a adaptação a mudanças. Em contraste, a solução proposta permite a síntese dinùmica de texturas que se adaptam às deformaçÔes subjacentes da malha de forma fisicamente plausível. Vårios métodos foram explorados para sintetizar rugas diretamente na geometria, mas sofrem de limitaçÔes como auto-interseçÔes e maiores requisitos de armazenamento. A intervenção manual de artistas na criação de mapas de rugas e mapas de tensão permite controle, mas pode ser limitada em deformaçÔes complexas ou onde maior realismo seja necessårio. O nosso trabalho destaca o potencial dos métodos procedimentais para aprimorar a geração de padrÔes de deformação dinùmica, incluindo rugas, com maior controle criativo e sem depender de dados capturados. A incorporação de padrÔes procedimentais eståticos melhora o realismo, e a abordagem pode ser estendida além da pele para outros materiais macios.We propose a solution for generating dynamic heightmap data to simulate deformations for soft surfaces, with a focus on human skin. The solution incorporates mesostructure-level wrinkles and utilizes procedural textures to add static microstructure details. It offers flexibility beyond human skin, enabling the generation of patterns mimicking deformations in other soft materials, such as leater, during animation. Existing solutions for simulating wrinkles and deformation cues often rely on specialized hardware, which is costly and not easily accessible. Moreover, relying solely on captured data limits artistic direction and hinders adaptability to changes. In contrast, our proposed solution provides dynamic texture synthesis that adapts to underlying mesh deformations. Various methods have been explored to synthesize wrinkles directly to the geometry, but they suffer from limitations such as self-intersections and increased storage requirements. Manual intervention by artists using wrinkle maps and tension maps provides control but may be limited to the physics-based simulations. Our research presents the potential of procedural methods to enhance the generation of dynamic deformation patterns, including wrinkles, with greater creative control and without reliance on captured data. Incorporating static procedural patterns improves realism, and the approach can be extended to other soft-materials beyond skin

    Enhanced dynamic reflectometry for relightable free-viewpoint video

    No full text
    Free-Viewpoint Video of Human Actors allows photo- realistic rendering of real-world people under novel viewing conditions. Dynamic Reflectometry extends the concept of free-view point video and allows rendering in addition under novel lighting conditions. In this work, we present an enhanced method for capturing human shape and motion as well as dynamic surface reflectance properties from a sparse set of input video streams. We augment our initial method for model-based relightable free-viewpoint video in several ways. Firstly, a single-skin mesh is introduced for the continuous appearance of the model. Moreover an algorithm to detect and compensate lateral shifting of textiles in order to improve temporal texture registration is presented. Finally, a structured resampling approach is introduced which enables reliable estimation of spatially varying surface reflectance despite a static recording setup. The new algorithm ingredients along with the Relightable 3D Video framework enables us to realistically reproduce the appearance of animated virtual actors under different lighting conditions, as well as to interchange surface attributes among different people, e.g. for virtual dressing. Our contribution can be used to create 3D renditions of real-world people under arbitrary novel lighting conditions on standard graphics hardware

    Material Recognition Meets 3D Reconstruction : Novel Tools for Efficient, Automatic Acquisition Systems

    Get PDF
    For decades, the accurate acquisition of geometry and reflectance properties has represented one of the major objectives in computer vision and computer graphics with many applications in industry, entertainment and cultural heritage. Reproducing even the finest details of surface geometry and surface reflectance has become a ubiquitous prerequisite in visual prototyping, advertisement or digital preservation of objects. However, today's acquisition methods are typically designed for only a rather small range of material types. Furthermore, there is still a lack of accurate reconstruction methods for objects with a more complex surface reflectance behavior beyond diffuse reflectance. In addition to accurate acquisition techniques, the demand for creating large quantities of digital contents also pushes the focus towards fully automatic and highly efficient solutions that allow for masses of objects to be acquired as fast as possible. This thesis is dedicated to the investigation of basic components that allow an efficient, automatic acquisition process. We argue that such an efficient, automatic acquisition can be realized when material recognition "meets" 3D reconstruction and we will demonstrate that reliably recognizing the materials of the considered object allows a more efficient geometry acquisition. Therefore, the main objectives of this thesis are given by the development of novel, robust geometry acquisition techniques for surface materials beyond diffuse surface reflectance, and the development of novel, robust techniques for material recognition. In the context of 3D geometry acquisition, we introduce an improvement of structured light systems, which are capable of robustly acquiring objects ranging from diffuse surface reflectance to even specular surface reflectance with a sufficient diffuse component. We demonstrate that the resolution of the reconstruction can be increased significantly for multi-camera, multi-projector structured light systems by using overlappings of patterns that have been projected under different projector poses. As the reconstructions obtained by applying such triangulation-based techniques still contain high-frequency noise due to inaccurately localized correspondences established for images acquired under different viewpoints, we furthermore introduce a novel geometry acquisition technique that complements the structured light system with additional photometric normals and results in significantly more accurate reconstructions. In addition, we also present a novel method to acquire the 3D shape of mirroring objects with complex surface geometry. The aforementioned investigations on 3D reconstruction are accompanied by the development of novel tools for reliable material recognition which can be used in an initial step to recognize the present surface materials and, hence, to efficiently select the subsequently applied appropriate acquisition techniques based on these classified materials. In the scope of this thesis, we therefore focus on material recognition for scenarios with controlled illumination as given in lab environments as well as scenarios with natural illumination that are given in photographs of typical daily life scenes. Finally, based on the techniques developed in this thesis, we provide novel concepts towards efficient, automatic acquisition systems

    Photorealistic physically based render engines: a comparative study

    Full text link
    PĂ©rez Roig, F. (2012). Photorealistic physically based render engines: a comparative study. http://hdl.handle.net/10251/14797.Archivo delegad

    Efficient, image-based appearance acquisition of real-world objects

    Get PDF
    Two ingredients are necessary to synthesize realistic images: an accurate rendering algorithm and, equally important, high-quality models in terms of geometry and reflection properties. In this dissertation we focus on capturing the appearance of real world objects. The acquired model must represent both the geometry and the reflection properties of the object in order to create new views of the object with novel illumination. Starting from scanned 3D geometry, we measure the reflection properties (BRDF) of the object from images taken under known viewing and lighting conditions. The BRDF measurement require only a small number of input images and is made even more efficient by a view planning algorithm. In particular, we propose algorithms for efficient image-to-geometry registration, and an image-based measurement technique to reconstruct spatially varying materials from a sparse set of images using a point light source. Moreover, we present a view planning algorithm that calculates camera and light source positions for optimal quality and efficiency of the measurement process. Relightable models of real-world objects are requested in various fields such as movie production, e-commerce, digital libraries, and virtual heritage.Zur Synthetisierung realistischer Bilder ist zweierlei nötig: ein akkurates Verfahren zur Beleuchtungsberechnung und, ebenso wichtig, qualitativ hochwertige Modelle, die Geometrie und Reflexionseigenschaften der Szene reprĂ€sentieren. Die Aufnahme des Erscheinungbildes realer GegenstĂ€nde steht im Mittelpunkt dieser Dissertation. Um beliebige Ansichten eines Gegenstandes unter neuer Beleuchtung zu berechnen, mĂŒssen die aufgenommenen Modelle sowohl die Geometrie als auch die Reflexionseigenschaften beinhalten. Ausgehend von einem eingescannten 3D-Geometriemodell, werden die Reflexionseigenschaften (BRDF) anhand von Bildern des Objekts gemessen, die unter kontrollierten LichtverhĂ€ltnissen aus verschiedenen Perspektiven aufgenommen wurden. FĂŒr die Messungen der BRDF sind nur wenige Eingabebilder erforderlich. Im Speziellen werden Methoden vorgestellt fĂŒr die Registrierung von Bildern und Geometrie sowie fĂŒr die bildbasierte Messung von variierenden Materialien. Zur zusĂ€tzlichen Steigerung der Effizienz der Aufnahme wie der QualitĂ€t des Modells, wurde ein Planungsalgorithmus entwickelt, der optimale Kamera- und Lichtquellenpositionen berechnet. Anwendung finden virtuelle 3D-Modelle bespielsweise in der Filmproduktion, im E-Commerce, in digitalen Bibliotheken wie auch bei der Bewahrung von kulturhistorischem Erbe

    Acquisition, Modeling, and Augmentation of Reflectance for Synthetic Optical Flow Reference Data

    Get PDF
    This thesis is concerned with the acquisition, modeling, and augmentation of material reflectance to simulate high-fidelity synthetic data for computer vision tasks. The topic is covered in three chapters: I commence with exploring the upper limits of reflectance acquisition. I analyze state-of-the-art BTF reflectance field renderings and show that they can be applied to optical flow performance analysis with closely matching performance to real-world images. Next, I present two methods for fitting efficient BRDF reflectance models to measured BTF data. Both methods combined retain all relevant reflectance information as well as the surface normal details on a pixel level. I further show that the resulting synthesized images are suited for optical flow performance analysis, with a virtually identical performance for all material types. Finally, I present a novel method for augmenting real-world datasets with physically plausible precipitation effects, including ground surface wetting, water droplets on the windshield, and water spray and mists. This is achieved by projecting the realworld image data onto a reconstructed virtual scene, manipulating the scene and the surface reflectance, and performing unbiased light transport simulation of the precipitation effects

    High quality dynamic reflectance and surface reconstruction from video

    Get PDF
    The creation of high quality animations of real-world human actors has long been a challenging problem in computer graphics. It involves the modeling of the shape of the virtual actors, creating their motion, and the reproduction of very fine dynamic details. In order to render the actor under arbitrary lighting, it is required that reflectance properties are modeled for each point on the surface. These steps, that are usually performed manually by professional modelers, are time consuming and cumbersome. In this thesis, we show that algorithmic solutions for some of the problems that arise in the creation of high quality animation of real-world people are possible using multi-view video data. First, we present a novel spatio-temporal approach to create a personalized avatar from multi-view video data of a moving person. Thereafter, we propose two enhancements to a method that captures human shape, motion and reflectance properties of amoving human using eightmulti-view video streams. Afterwards we extend this work, and in order to add very fine dynamic details to the geometric models, such as wrinkles and folds in the clothing, we make use of the multi-view video recordings and present a statistical method that can passively capture the fine-grain details of time-varying scene geometry. Finally, in order to reconstruct structured shape and animation of the subject from video, we present a dense 3D correspondence finding method that enables spatiotemporally coherent reconstruction of surface animations directly frommulti-view video data. These algorithmic solutions can be combined to constitute a complete animation pipeline for acquisition, reconstruction and rendering of high quality virtual actors from multi-view video data. They can also be used individually in a system that require the solution of a specific algorithmic sub-problem. The results demonstrate that using multi-view video data it is possible to find the model description that enables realistic appearance of animated virtual actors under different lighting conditions and exhibits high quality dynamic details in the geometry.Die Entwicklung hochqualitativer Animationen von menschlichen Schauspielern ist seit langem ein schwieriges Problem in der Computergrafik. Es beinhaltet das Modellieren einer dreidimensionaler Abbildung des Akteurs, seiner Bewegung und die Wiedergabe sehr feiner dynamischer Details. Um den Schauspieler unter einer beliebigen Beleuchtung zu rendern, mĂŒssen auch die Reflektionseigenschaften jedes einzelnen Punktes modelliert werden. Diese Schritte, die gewöhnlich manuell von Berufsmodellierern durchgefĂŒhrt werden, sind zeitaufwendig und beschwerlich. In dieser These schlagen wir algorithmische Lösungen fĂŒr einige der Probleme vor, die in der Entwicklung solch hochqualitativen Animationen entstehen. Erstens prĂ€sentieren wir einen neuartigen, rĂ€umlich-zeitlichen Ansatz um einen Avatar von Mehransicht-Videodaten einer bewegenden Person zu schaffen. Danach beschreiben wir einen videobasierten Modelierungsansatz mit Hilfe einer animierten Schablone eines menschlichen Körpers. Unter Zuhilfenahme einer handvoll synchronisierter Videoaufnahmen berechnen wir die dreidimensionale Abbildung, seine Bewegung und Reflektionseigenschaften der OberflĂ€che. Um sehr feine dynamische Details, wie Runzeln und Falten in der Kleidung zu den geometrischen Modellen hinzuzufĂŒgen, zeigen wir eine statistische Methode, die feinen Details der zeitlich variierenden Szenegeometrie passiv erfassen kann. Und schließlich zeigen wir eine Methode, die dichte 3D Korrespondenzen findet, um die strukturierte Abbildung und die zugehörige Bewegung aus einem Video zu extrahieren. Dies ermöglicht eine rĂ€umlich-zeitlich zusammenhĂ€ngende Rekonstruktion von OberflĂ€chenanimationen direkt aus Mehransicht-Videodaten. Diese algorithmischen Lösungen können kombiniert eingesetzt werden, um eine Animationspipeline fĂŒr die Erfassung, die Rekonstruktion und das Rendering von Animationen hoher QualitĂ€t aus Mehransicht-Videodaten zu ermöglichen. Sie können auch einzeln in einem System verwendet werden, das nach einer Lösung eines spezifischen algorithmischen Teilproblems verlangt. Das Ergebnis ist eine Modelbeschreibung, das realistisches Erscheinen von animierten virtuellen Schauspielern mit dynamischen Details von hoher QualitĂ€t unter verschiedenen LichtverhĂ€ltnissen ermöglicht
    • 

    corecore