579 research outputs found

    High performance platform to detect faults in the Smart Grid by Artificial Intelligence inference

    Get PDF
    Inferring faults throughout the power grid involves fast calculation, large scale of data, and low latency. Our heterogeneous architecture in the edge offers such high computing performance and throughput using an Artificial Intelligence (AI) core deployed in the Alveo accelerator. In addition, we have described the process of porting standard AI models to Vitis AI and discussed its limitations and possible implications. During validation, we designed and trained some AI models for fast fault detection in Smart Grids. However, the AI framework is standard, and adapting the models to Field Programmable Gate Arrays (FPGA) has demanded a series of transformation processes. Compared with the Graphics Processing Unit platform, our implementation on the FPGA accelerator consumes less energy and achieves lower latency. Finally, our system balances inference accuracy, on-chip resources consumed, computing performance, and throughput. Even with grid data sampling rates as high as 800,000 per second, our hardware architecture can simultaneously process up to 7 data streams.10.13039/501100000780-European Commission (Grant Number: FEDER) 10.13039/501100003086-Eusko Jaurlaritza (Grant Number: ZE-2020/00022 and ZE-2021/00931) 10.13039/100015866-Hezkuntza, Hizkuntza Politika Eta Kultura Saila, Eusko Jaurlaritza (Grant Number: IT1440-22) 10.13039/501100004837-Ministerio de Ciencia e Innovación (Grant Number: IDI-20201264 and IDI-20220543

    Optimization techniques for prognostics of on-board electromechanical servomechanisms affected by progressive faults

    Get PDF
    In relatively recent years, electromechanical actuators (EMAs) have gradually replaced systems based on hydraulic power for flight control applications. EMAs are typically operated by electrical machines that transfer rotational power to the controlled elements (e.g. the aerodynamic control surfaces) by means of gearings and mechanical transmission. Compared to electrohydraulic systems, EMAs offer several advantages, such as reduced weight, simplified maintenance and complete elimination of contaminant, flammable or polluting hydraulic fluids. On-board actuators are often safety critical; then, the practice of monitoring and analyzing the system response through electrical acquisitions, with the aim of estimating fault evolution, has gradually become an essential task of the system engineering. For this purpose, a new discipline, called Prognostics, has been developed in recent years. Its aim is to study methodologies and algorithms capable of identifying such failures and foresee the moment when a particular component loses functionality and is no longer able to meet the desired performance. In this paper, authors introduce the use of optimization techniques in prognostic methods (e.g. model-based parametric estimation algorithms) and propose a new model-based fault detection and identification (FDI) method, based on Genetic Algorithms (GAs) optimization approach, able to perform an early identification of the aforesaid progressive failures, investigating its ability to timely identify symptoms alerting that a component is degrading

    Failure analysis informing intelligent asset management

    Get PDF
    With increasing demands on the UK’s power grid it has become increasingly important to reform the methods of asset management used to maintain it. The science of Prognostics and Health Management (PHM) presents interesting possibilities by allowing the online diagnosis of faults in a component and the dynamic trending of its remaining useful life (RUL). Before a PHM system can be developed an extensive failure analysis must be conducted on the asset in question to determine the mechanisms of failure and their associated data precursors that precede them. In order to gain experience in the development of prognostic systems we have conducted a study of commercial power relays, using a data capture regime that revealed precursors to relay failure. We were able to determine important failure precursors for both stuck open failures caused by contact erosion and stuck closed failures caused by material transfer and are in a position to develop a more detailed prognostic system from this base. This research when expanded and applied to a system such as the power grid, presents an opportunity for more efficient asset management when compared to maintenance based upon time to replacement or purely on condition

    Towards Real-Time, On-Board, Hardware-Supported Sensor and Software Health Management for Unmanned Aerial Systems

    Get PDF
    For unmanned aerial systems (UAS) to be successfully deployed and integrated within the national airspace, it is imperative that they possess the capability to effectively complete their missions without compromising the safety of other aircraft, as well as persons and property on the ground. This necessity creates a natural requirement for UAS that can respond to uncertain environmental conditions and emergent failures in real-time, with robustness and resilience close enough to those of manned systems. We introduce a system that meets this requirement with the design of a real-time onboard system health management (SHM) capability to continuously monitor sensors, software, and hardware components. This system can detect and diagnose failures and violations of safety or performance rules during the flight of a UAS. Our approach to SHM is three-pronged, providing: (1) real-time monitoring of sensor and software signals; (2) signal analysis, preprocessing, and advanced on-the-fly temporal and Bayesian probabilistic fault diagnosis; and (3) an unobtrusive, lightweight, read-only, low-power realization using Field Programmable Gate Arrays (FPGAs) that avoids overburdening limited computing resources or costly re-certification of flight software. We call this approach rt-R2U2, a name derived from its requirements. Our implementation provides a novel approach of combining modular building blocks, integrating responsive runtime monitoring of temporal logic system safety requirements with model-based diagnosis and Bayesian network-based probabilistic analysis. We demonstrate this approach using actual flight data from the NASA Swift UAS

    2020 NASA Technology Taxonomy

    Get PDF
    This document is an update (new photos used) of the PDF version of the 2020 NASA Technology Taxonomy that will be available to download on the OCT Public Website. The updated 2020 NASA Technology Taxonomy, or "technology dictionary", uses a technology discipline based approach that realigns like-technologies independent of their application within the NASA mission portfolio. This tool is meant to serve as a common technology discipline-based communication tool across the agency and with its partners in other government agencies, academia, industry, and across the world

    Intelligent fault detection and classification based on hybrid deep learning methods for Hardware-in-the-Loop test of automotive software systems

    Get PDF
    Hardware-in-the-Loop (HIL) has been recommended by ISO 26262 as an essential test bench for determining the safety and reliability characteristics of automotive software systems (ASSs). However, due to the complexity and the huge amount of data recorded by the HIL platform during the testing process, the conventional data analysis methods used for detecting and classifying faults based on the human expert are not realizable. Therefore, the development of effective means based on the historical data set is required to analyze the records of the testing process in an efficient manner. Even though data-driven fault diagnosis is superior to other approaches, selecting the appropriate technique from the wide range of Deep Learning (DL) techniques is challenging. Moreover, the training data containing the automotive faults are rare and considered highly confidential by the automotive industry. Using hybrid DL techniques, this study proposes a novel intelligent fault detection and classification (FDC) model to be utilized during the V-cycle development process, i.e., the system integration testing phase. To this end, an HIL-based real-time fault injection framework is used to generate faulty data without altering the original system model. In addition, a combination of the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) is employed to build the model structure. In this study, eight types of sensor faults are considered to cover the most common potential faults in the signals of ASSs. As a case study, a gasoline engine system model is used to demonstrate the capabilities and advantages of the proposed method and to verify the performance of the model. The results prove that the proposed method shows better detection and classification performance compared to other standalone DL methods. Specifically, the overall detection accuracies of the proposed structure in terms of precision, recall and F1-score are 98.86%, 98.90% and 98.88%, respectively. For classification, the experimental results also demonstrate the superiority under unseen test data with an average accuracy of 98.8%

    Industrial applications of the Kalman filter:a review

    Get PDF
    International audienc

    Fault Signature Identification for BLDC motor Drive System -A Statistical Signal Fusion Approach

    Full text link
    A hybrid approach based on multirate signal processing and sensory data fusion is proposed for the condition monitoring and identification of fault signal signatures used in the Flight ECS (Engine Control System) unit. Though motor current signature analysis (MCSA) is widely used for fault detection now-a-days, the proposed hybrid method qualifies as one of the most powerful online/offline techniques for diagnosing the process faults. Existing approaches have some drawbacks that can degrade the performance and accuracy of a process-diagnosis system. In particular, it is very difficult to detect random stochastic noise due to the nonlinear behavior of valve controller. Using only Short Time Fourier Transform (STFT), frequency leakage and the small amplitude of the current components related to the fault can be observed, but the fault due to the controller behavior cannot be observed. Therefore, a framework of advanced multirate signal and data-processing aided with sensor fusion algorithms is proposed in this article and satisfactory results are obtained. For implementing the system, a DSP-based BLDC motor controller with three-phase inverter module (TMS 320F2812) is used and the performance of the proposed method is validated on real time data.Comment: 7 Pages, 7 figure

    Fault Diagnosis and Condition Monitoring of Power Electronic Components Using Spread Spectrum Time Domain Reflectometry (SSTDR) and the Concept of Dynamic Safe Operating Area (SOA)

    Get PDF
    Title from PDF of title page viewed April 1, 2021Dissertation advisors: Faisal Khan and Yong ZengVitaIncludes bibliographical references ( page 117-132)Thesis (Ph.D.)--School of Computing and Engineering and Department of Mathematics and Statistics. University of Missouri--Kansas City, 2021Fault diagnosis and condition monitoring (CM) of power electronic components with a goal of improving system reliability and availability have been one of the major focus areas in the power electronics field in the last decades. Power semiconductor devices such as metal oxide semiconductor field-effect transistor (MOSFET) and insulated-gate bipolar transistor (IGBT) are considered to be the most fragile element of the power electronic systems and their reliability degrades with time due to mechanical and thermo-electrical stresses, which ultimately leads to a complete failure of the overall power conversion systems. Therefore, it is important to know the present state of health (SOH) of the power devices and the remaining useful life (RUL) of a power converter in order to perform preventive scheduled maintenance, which will eventually lead to increased system availability and reduced cost. In conventional practice, device aging and lifetime prediction techniques rely on the estimation of the meantime to failure (MTTF), a value that represents the expected lifespan of a device. MTTF predicts expected lifespan, but cannot adequately predict failures attributed to unusual circumstances or continuous overstress and premature degradation. This inability is due in large part to the fact that it considers the device safe operating area (SOA) or voltage and current ride-through capability to be independent of SOH. However, we experimentally proved that SOA of any semiconductor device goes down with the increased level of aging, and therefore, the probability of occurrence of over-voltage/current situation increases. As a result, the MTTF of the device as well as the overall converter reliability reduces with aging. That said, device degradation can be estimated by accomplishing an accurate online degradation monitoring tool that will determine the dynamic SOA. The correlation between aging and dynamic SOA gives us the useful remaining life of the device or the availability of a circuit. For this monitoring tool, spread spectrum time domain reflectometry (SSTDR) has been proposed and was successfully implemented in live power converters. In SSTDR, a high-frequency sine-modulated pseudo-noise sequence (SMPNS) is sent through the system, and reflections from age-related impedance discontinuities return to the test end where they are analyzed. In the past, SSTDR has been successfully used for device degradation detection in power converters while running at static conditions. However, the rapid variation in impedance throughout the entire live converter circuit caused by the fast-switching operation makes CM more challenging while using SSTDR. The algorithms and techniques developed in this project have overcome this challenge and demonstrated that the SSTDR test data are consistent with the aging of the power devices and do not affect the switching performance of the modulation process even the test signal is applied across the gate-source interface of the power MOSFET. This implies that the SSTDR technique can be integrated with the gate driver module, thereby creating a new platform for an intelligent gate-driver architecture (IGDA) that enables real-time health monitoring of power devices while performing features offered by a commercially available driver. Another application of SSTDR in power electronic systems is the ground fault prediction and detection technique for PV arrays. Protecting PV arrays from ground faults that lead to fire hazards and power loss is imperative to maintaining safe and effective solar power operations. Unlike many standard detection methods, SSTDR does not depend on fault current, therefore, can be implemented for testing ground faults at night or low illumination. However, wide variation in impedance throughout different materials and interconnections makes fault location more challenging than fault detection. This barrier was surmounted by the SSTDR-based fault detection algorithm developed in this project. The proposed algorithm was accounted for any variation in the number of strings, fault resistance, and the number of faults. In addition to its general utility for fault detection, the proposed algorithm can identify the location of multiple faults using only a single measurement point, thereby working as a preventative measure to protect the entire system at a reduced cost. Within the scope of the research work on SSTDR-based fault diagnosis and CM of power electronic components, a cell-level SOH measurement tool has been proposed that utilizes SSTDR to detect the location and aging of individual degraded cells in a large series-parallel connected Li-ion battery pack. This information of cell level SOH along with the respective cell location is critical to calculating the SOH of a battery pack and its remaining useful lifetime since the initial SOH of Li-ion cells varies under different manufacturing processes and operating conditions, causing them to perform inconsistently and thereby affect the performance of the entire battery pack in real-life applications. Unfortunately, today’s BMS considers the SOH of the entire battery pack/cell string as a single SOH and therefore, cannot monitor the SOH at the cell level. A healthy battery string has a specific impedance between the two terminals, and any aged cell in that string will change the impedance value. Since SSTDR can characterize the impedance change in its propagation path along with its location, it can successfully locate the degraded cell in a large battery pack and thereby, can prevent premature failure and catastrophic danger by performing scheduled maintenance.Introduction -- Background study and literature review -- Fundamentals of Spread Spectrum Time Domain Reflectometry (SSTDR): A new method for testing electronics live -- Accelerated aging test bench: design and implementation -- Condition monitoring of power switching in live power switching devices in live power electronic converters using SSTDR -- An irradiance-independent, robust ground-fault detection scheme for PV arrays based on SSTDR -- Detection of degraded/aged cell in a LI-Ion battery pack using SSTDR -- Dynamiv safe operating area (SOA) of power semiconductor devices -- Conclusion and future researc
    • …
    corecore