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High performance platform to detect faults in the
Smart Grid by Artificial Intelligence inference

Le Sun Leire Muguira Jaime Jiménez Wang Yong Jesús Lázaro

Inferring faults throughout the power grid involves fast calculation, large scale of data, and low latency.
Our heterogeneous architecture in the edge offers such high computing performance and throughput using an
Artificial Intelligence (AI) core deployed in the Alveo accelerator. In addition, we have described the process
of porting standard AI models to Vitis AI and discussed its limitations and possible implications. During
validation, we designed and trained some AI models for fast fault detection in Smart Grids. However, the AI
framework is standard, and adapting the models to Field Programmable Gate Arrays (FPGA) has demanded a
series of transformation processes. Compared with the Graphics Processing Unit platform, our implementation
on the FPGA accelerator consumes less energy and achieves lower latency. Finally, our system balances inference
accuracy, on-chip resources consumed, computing performance, and throughput. Even with grid data sampling
rates as high as 800,000 per second, our hardware architecture can simultaneously process up to 7 data streams.
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1 Introduction
Electrical power systems suffer occasional sudden faults associated with damage to equipment, service suspensions, or
even the death of employees. Fast and precise high-impedance fault detection is crucial, and it is still an open issue in the
electric industry. To avoid these, fast and precise high-impedance fault detection, among others, is crucial, yet still an
open issue in the electric industry. Fault identification can be understood as a binary classification, and AI technologies
have been demonstrated to detect those faults. Nevertheless, automation, validation processes, and performance related
to electric fault detection have revealed deficiencies that demand a first-rate intelligent system [1, 2]. For a long time,
DNN models’ inference, especially the uncompressed ones, has been predominantly deployed in CPUs and GPUs. However,
approximating DNN has paved the way to FPGAs and ASICs, whereby better inferences have been reached —an accuracy
decrease close to 1% [3], and the current need for real-time and accelerating inference has driven deployments in custom
hardware platforms. So, due to their flexibility and high performance, FPGAs have become efficient accelerators for CNN
inference; for instance, Microsoft Brainwave and Xilinx DPU.

Designing and optimizing FPGA accelerators for CNN inference using hardware description languages are complicated
and require a deep knowledge of the hardware. They can be managed using CNN acceleration platforms based on DPU —a
comparison between different accelerator development flows was presented in [3]. The DPU is an IP core that enhances
the performance of CNN inference on the FPGA [4]. It allows various CNN architectures, efficient and versatile regarding
energy consumption, latency, and design time. Nevertheless, the selected CNN model has to be adapted to the DPU engine,
which means to be compiled for the instructions supported by the DPU.

The method presented in this paper is versatile and can be applied to various scenarios. Although we have used it to
detect faults in overhead lines, it can be used in other applications as well. Our approach is capable of processing data from
different points in the grid simultaneously and in real-time.

2 Background
Big data facilitates access to massive historical information required by data-driven procedures. These approaches can
be divided into statistical, signal processing, and machine learning methods. Machine learning is a notable research
topic applied in multiple engineering fields [5]. Binary classification tasks can learn from a set of information, effectively
distinguishing two groups. These are gradually implemented using machine learning techniques in order to be automatized.
An electrical fault is detected by estimating the system’s state with a mathematical model and analyzing the produced
deviation from the actual output.
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There are different machine learning families. Shallow methods, such as ANN and SVM models, are ineffective in learning
about complex systems under uncertainty and non-linearity. Nevertheless, deep learning techniques have fixed shallow
learning models’ shortcomings. Deep learning models better solve high-dimensional input classification problems [1]. In
contrast with shallow ones, deep learning methods obtain high-level characteristics from the neurons located in numerous
layers, which learn from unstructured and structured information, emulating the human brain for decision-making.

Deep learning techniques have considerable interest in the power industry and are proliferating. Pattern recognition
algorithms based on deep learning have been deployed in image and speech recognition. However, in Medium Voltage, there
is a lot of dispersal literature in the deep learning-based analysis [6]. Performance differences between seven shallow models
(ANN, SVM, NB, BDT, DF, DJ, and QSVM) and four deep learning models (DNN, LSTM-RNN, DNN, and DBN) were
investigated in [1]. DNN, LSTM-RNN, DNN, and DBN were chosen for electrical fault detection. These three deep learning
models were chosen because of their superiority for static classification tasks.

2.1 Deep learning in the electrical fault detection task
Due to the progress in AI, multiple fault-sensing techniques have been implemented with machine learning technologies.

A realistic and modern dataset for power line fault detection provided by ENET Centre at VSB can be used to measure
the systems’ performance [1, 6].

It is the most extensive known medium voltage overhead data in open source.
Electrical fault detection was automated in [1] with an Ensemble Deep Learning Approach. The computational complexity

in terms of time and resources was high because three deep learning techniques were used to deploy the ensemble system:
DNN, LSTM-RNN, and DBN. They suggested implementing parallel computing capabilities with a cluster of machines to
solve the high computational overhead problem.

Table 1 depicts different implementations of machine learning methods used for electrical fault detection tasks.

Table 1: Machine learning methods used for electrical fault detection tasks.

Aim Method Ref.

Electrical fault detection DNN, LSTM-RNN and DBN [1]
Fault localization in the power grid CNN [7]
Detection of fault power line in a medium voltage over-
head covered conductor

LSTM [6]

Identification of faults in high-voltage cable CNN [7]
Identification of faults in high-voltage transformer CNN [8]
HIF detection and localization Semi-supervised and probabilistic learning [9]
HIF detection Empirical model decomposition combined with a NN [10]
HIF detection Discrete wavelet transform combined with LSTM [11]

2.2 FPGA implementations for Deep learning
In [5] also, LSTM-RNN was used to deal with real-time fault detection and isolation on the More Electric Aircraft. They
compared the performances of the fault detection and isolation on the FPGA (Xilinx Virtex UltraScale FPGA VCU118
Evaluation Kit platform), applying different types of Long Short-Term Memory networks in terms of accuracy and time
and resource consumption. CNN1D was compared with their method, concluding that it could be an alternative in terms of
accuracy but wasting more hardware resources.

Deep neural networks can achieve high accuracies but entail massive computational costs. Most of the CNN-based
classifiers rely on key modules. For example, ResNet in residual blocks, DeseNet in dense blocks, GoogleNet in the inception
module, MobileNet v1 in depthwise convolution, and MobileNet v2 in inverted residual blocks. CNN architecture extensive
review is presented in [12]. Different architectures are compared, showing that MobileNet v1, MobileNet v2, and DenseNet
present the best performance on applications with restricted resources like IoT.

In [2], a compact CNN architecture engine was proposed for HIF detection and classification at the sensors, protective
relays, and other intelligent electronic devices with online monitoring capabilities, decreasing computing complexity in
HIF detection. In [3], an edge device was presented with a processing unit based on CNN with different mathematical
operations and layers for resource-limited applications.

The DPU-IP is an FPGA-based hardware design released by Xilinx Inc. It supports multiple deep learning essential
functions making possible an efficient implementation of different CNNs on FPGA. Multiple standardized CNN architectures’
inference can be accelerated conveniently by using DPUs and improving schedule efficiency [4]. Multiple works are related
to CNN inference acceleration, as explained in [4]. The reasons for the low schedule efficiency problem on the DPU-based
platform were analyzed. The task scheduler was optimized in [4], developing a task assignment based on the Vitis AI software
stack. DPU-based accelerator on FPGA was also evaluated in [13], demonstrating that DPU outperformed GPU and CPU
concerning power efficiency. They proposed a CNN architecture for classification and compression. Power consumption and
resource utilization were considered the most critical performance metrics. They obtained better performance than Nvidia
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Jetson TX2 with 16-bit floating-point precision and ARM Cortex A57 CPU with 32-bit floating-point precision in terms of
throughput being the accuracy loss because of the model compression insignificant.

In order to take advantage of both FPGA’s flexibility and CPU’s generality, a hybrid CPU-FPGA device was selected in [4],
the Xilinx Zynq UltraScaleC MPSoC zcu104, and the DPU-based acceleration platform was compared with NullHop [14],
another representative CNN accelerator. The compression engine based on a deep-learning design proposed by [3] is also
implemented by a DPU on ZCU104 FPGA Evaluation Kit. They gave design recommendations to decrease the CNN
accelerators’ design time.

3 Algorithm

3.1 Data
The data set [15] we used in the experiment comes from “Enet Centre, VSB — T.U. of Ostrava” named “VSB Power
Line Fault Detection.” Faults in electric transmission lines —among others, of Smart Grids— can lead to a destructive
phenomenon called partial discharge. Real-time, fast and high-throughput analysis of whether there are faults on the grid is
meaningful work. The signal data comes from the real overhead power lines, not a lab, and they contain a lot of background
noise [16]. These signals were measured by a device with lower sampling rate deployed on more than 20 different locations.
This implies that the spectrum of noise and quality of partial dischargh’s are so different from each other.

A total of 8712 measurement samples contains data for 3 phases in the dataset. Each sample contains 800,000 measurements
of a power line’s voltage over 20ms. This leads to a sample rate of 50Hz · 8e5 = 40MHz. As the underlying electric grid
operates at 50Hz, each signal covers a single complete grid cycle (see Fig. 1). Another part of the dataset labels each phase
at each measurement to state whether there was a failure. The method used to label the data is not specified by the author.

In order to use this data, some preprocessing must be done. Data is divided according to their fault tag.
The first step is to normalize the training and testing datasets using the StandardScaler method. This method is considered

one of the most suitable normalization methods for deep learning [17]. It standardizes a feature by subtracting the mean
and then scaling it to unit variance.

Due to the scarce nature of errors in the line, only 6.026% of the data corresponds to a faulty signal. This quantity
is relatively insufficient compared to the full standard sample size. Therefore, it is necessary to balance the number of
samples of the two datasets in the data preprocessing stage. The ideal situation is that the proportion of normal and fault
samples is the same. In the 8712 sets of measurement data, 525 sets are labeled as faulty. That is relatively rare fault
data. These failure data accounted for 6.026% of all data. 80% of the sets are selected for training, and the remaining
20% for validation. At this point, there are 420 faulty sets and 6549 error-free sets. The proportion of faulty sets is too
low. We have selected 500 sets from the error-free group and merge them with 420 sets of faulty data to make the training
dataset. At this point, the data collation and balance are completed. To reduce processing time, we selected half of the
total measurement points per set, which was 400,000 out of 800,000 points, as the research target.

3.2 AI model
This article focuses on a hardware implementation of the AI model; therefore, the number and type of neural nodes are
constrained. All supported AI layers and operators will be mapped to the AI computing engine inside the DPU, which
must be based on a CNN, a limitation of the DPU.

The proposed AI model consists of 4 conv based structures (see Fig. 3). Each module normalizes the values through the
BatchNorm layer. Then it passes the variables to the MaxPooling layer through the ReLu activation function to do down-sampling
calculations to reduce the computation complexity.

It should be noted that the input grid voltage data is one-dimensional sequential data. This data is converted to
two-dimensional to meet the limitations of the DPU. The second dimension is meaningless, so the convolution kernel only
moves laterally in the dimension of the valid data.

The frame is 25,000 long. This size means that every frame covers 0.625ms of the signal (Tframe = 25e3/8e5 · 20ms =
0.625ms).

The AI model consists of two parts, one is a convolutional layer, and the other is a fully connected layer. The input data
is 1-dimensional, and after convolution, it will expand to 32-dimensional data under the scan of a 1-dimensional convolution
kernel with a length of 16 and 10. The convolution kernel extracts features every two strides —Stride is the number of
element shifts over the input matrix. After the convolutional layer, BatchNorm2d is added to normalize the data. The pool
layer is an operation to extract meaningful information, which can remove unimportant information and reduce computing
overhead. The possible overfitting is reduced through the dropout layer. After the 4-times convolutional structure, the data
is flattened to 1 dimension and then gradually converge to 1 output result after three fully connected layers for binary
classification inference. A ReLu activation function and a 20% dropout layer are passed between each fully connected network.
Figure 2 shows the code of the system.

Finally, the neural network’s output is passed through a sigmoid function to get an inference from 0 to 1. If the final
output is greater than or equal to 0.5, it is considered a fault.

The training uses an Adam optimizer and Binary Cross Entropy Loss with Sigmoid as the final activation function. The
learning rate is 0.0001, and the training is done 100 times.
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3.3 AI model modification
Based on the previous model, some modifications were explored. The main objective was to improve the throughput. Two
different approaches were explored: (a) Maintaining the time the dataset covers but decimating the number of points by a
factor (T). (b) Maintaining the dataset size but increasing the time it covers by a factor (S).

Figure 4 shows an example of both approaches. As can be seen, T decimates the data by a factor of 2 and S increases the
time by a factor of 2.

Table 2 shows the impact of the different decimation factors on the accuracy of the model. The results show that
decimating the data only slightly reduces the accuracy of the model. On the other hand, increasing the time of the dataset
has a significant impact on the accuracy of the model.

Table 2: The reduction ratio of the accuracy of the model applying different decimation factors. T reduces the dataset and S
increases the time span.

Decimation
Factor S T

1 1.00 1.00
2 -7.41 -3.18
4 -7.06 -3.53
8 -8.11 -3.88

On Alveo U50DD, we deployed 2 DPUs, each of which has three computing engines. These 2 DPUs used almost all
available on-chip resources. We divided the data set into several threads to write into/read from the accelerator card. These
threads provide data to the DPUs using up to four HAL interfaces (see Fig. 5).

4 Hardware architecture design
The design is based on the Alveo U50DD FPGA accelerator board. It requires a CPU to work, and up to three DPUs
can be deployed inside. The System hardware we use is an Intel I7 9700K, 80G RAM, and the Alveo U50DD accelerator
plugged in a PCIe gen3 port.

There are different DPU versions on the Alveo accelerator. Some prioritize throughput over latency, and some do the
opposite. In our approach, we are using the DPU for latency optimization.

The XDMA shell must be used when designing for this kind of board. It is responsible for the communication between
the accelerator and the CPU, and the host CPU side controls it. The XDMA shell forms a logic bridge between the host’s
main memory and the HBM on the accelerator. The FPGA on the accelerator side is in charge of scheduling data from the
onboard HBM memory. The overall design is shown in Fig. 6.

The next step is the migration of the AI model. In our case, from the general PyTorch [18] model to the DPU. The
basic steps are: (a) Designing an appropriate AI model in the standard PyTorch design framework and introducing data
set to train the model. (b) Saving in a checkpoint the trained model’s subgraph, bias, and weights. (c) Performing the
quantization and compilation processes. After compiling, an archive containing subgraph information, DPU type, device
type, and other parameters used by Vitis AI runtime to implement the model on the DPU is obtained.

Once the model is trained, the first step is quantizing the model (see Fig. 7). The numeric representation is converted to
suit the FPGA capabilities better. When training neural networks, 32-bit floating-point weights, and activation values are
generally used. Converting the 32-bit floating-point weights and activations to the 8-bit integer format can reduce computing
complexity without losing prediction accuracy [19]. The fixed-point network model requires less memory bandwidth and
resources, thus providing faster speed and higher power efficiency than the floating-point model.

The second step is compiling the model. Previously the feasibility of the model must be ensured in that all layers,
operators, and tensors of the designed AI model are supported by the compiler (see Fig. 8). Then, the designer informs the
AI compiler of the specific DPU and device models.

The compiler eliminates the differences between these frameworks and provides a unified representation. When the model
contains operations not supported by the DPU, some subgraphs are created and mapped to the CPU. After the above work
is completed correctly, the AI model can run on the DPU-based Alveo accelerator in the Vitis AI runtime environment.

5 Results
Two DPU instances were deployed on the Alveo card. In total, 10 million batches were tested. Each batch has 25,000
samples and includes 3 phase voltage values, measured as 32 bit floating point numbers. Such a group of vectors constituted
by 25,000 samples was considered as one frame —for the case of no decimation. The inference accuracy on the training set
reaches 100% and 91.2% on the test set. Due to the translation of number types between the PyTorch and DPU, the
accuracy is slightly lower than the original PyTorch model.
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Back to the very beginning of the question discussed, the result of detecting grid failure is between yes and no. This is a
binary classification problem. Equation (1) represents the Sigmoid function. The result of the Sigmoid function takes a
value between 0 and 1, which answers the question of yes or no. When the value obtained by this activation function is
greater than a certain threshold, the result will be regarded as yes, and vice versa.

Sigmoid(x) =
1

1 + e−x
(1)

The Sigmoid function is executed in the CPU because there is no corresponding computing core in the DPU architecture.
It has little impact since this activation function will only be called once when the binary classification result is finally
obtained. We measured that with the sigmoid activation function applied to two DPUs, the inference speed is 432.3FPS.
However, without the Sigmoid, the results go up to 434.1FPS, leading to an improvement of 0.4%.

Over the basic structure, we have decimated the dataset (see Table 2). Figure 9 depicts the results. The accuracy
evaluation is performed on the test dataset after the number of regular and faulty is balanced. Both datasets are randomly
sampled on the overall dataset. The percentage of precision is calculated as if the inference result is equal to the label of
the dataset, then it is correct. This label is set in a cycle by cycle basis.

Figure 9 shows that decimation of 8 improves accuracy and FPS compared to smaller decimation factors. A decimation
of 16 significantly reduces accuracy, rendering the system unusable. In many studies [20], the MCC is used to measure the
correlation between the inference data and the original data. In addition, the F1 score is used in statistical analysis of
binary classification. It is calculated from the precision and recall of the test, where the precision is the number of true
positive results divided by the number of all positive results, including those not identified correctly, and the recall is the
number of true positive results divided by the number of all samples that should have been identified as positive. The
value of F1 score ranges from 0 to 1. A higher F1 score means that inference has better accuracy for both false positives
and false negatives. MCC ranges from -1 to 1. A higher MCC score indicates a higher correlation in the inference results.
Negative numbers indicate negative correlation, near 0 indicates no correlation. Table 3 shows the evaluation results, as the
decimation sampling window is 8 samples.

Table 3: Statistical analysis of classification results.

Precision 0.88
Recall 0.89
F1 0.88
MCC 0.77

If we calculate the throughput using Eq. (2):

T = FPS · Fs · 32 bit (2)

Where Fs is the number of samples per frame, FPS is the number of frames per second, and T is the throughput in
Mbit s−1. The maximum throughput under this AI model for 2 DPU implementation for a decimation factor of 8 and
11,733FPS is about 1173Mbit s−1. The Alveo U50DD’s power consumption is 49W. With this speed, the system can
process 7 streams from different measuring units (see Eq. (3)).

Streams = FPS · Tframe = ⌊11,733 s−1 · 0.625ms⌋ = 7 (3)

In this experiment, two units of 3-engine DPUs were used. The utilization of LUT and on-chip RAM are close to 60%
for the Alveo application acceleration design flow. The design guideline advises utilizing less than 80% to obtain consistent
implementations. For designs between 60% and 80%, congestion difficulties may arise. If we deploy only one DPU, it
should be possible to deploy more functional areas in the same FPGA chip. For reference, the system resource usage is
summarized in Table 4.

Table 4: Resource usage of the system

1 2
Utilization % Utilization %

Resource Available

LUT 870,720 251,632 28.90 445,468 51.16
LUTRAM 402,720 19,921 4.95 35,096 8.71
FF 1,743,360 371,399 21.30 668,243 38.33
BRAM 1,344 276 20.50 427 31.77
URAM 640 192 30.00 384 60.00
DSP 5,952 1,566 26.31 3,128 52.55
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6 Comparison
The preprocessing stage, like the ones described in [1], dramatically impacts the inference of the DNN model. It is essential
to extract features from data before feeding it to an AI model. A well-designed procedure like [21], combined with a clever
algorithm, can increase inference accuracy. Nevertheless, in the same way, in addition to the preprocessing stage, the
computing platform and computing power are also important. Because in some scenarios, such as power grid scenarios, the
requirement for inference speed is very high. This work focuses on finding the balance between speed and accuracy rather
than deploying feature extraction and preprocessing algorithms on the CPU. When the sampling window is suitable, the
accuracy is good in the current rough preprocessing mode mentioned above.

[6] also discusses the use of RNN or LSTM neurons for inference of sequential signals such as VSB. RNN is a basic
feed-forward neural network with a feedback connection to its previous state in each hidden layer. However, the neurons of
RNN are entirely different from the structure of CNN. FPGA cannot change the internal structure at any time, so the
convolution kernel inside the current DPU cannot be directly applied to RNN neurons. When the DPU of the RNN neuron
structure matures, inference accuracy may improve further.

Table 5 shows the accuracy of our proposal with other present in the literature. Compared with other studies, the
experimental method in this paper has no obvious advantage in inference accuracy. However, the inference speed of this
paper is much higher than other studies as Table 6 and Table 7.

Table 5: Accuracy results from different works.

Study Technique Accuracy

[22] SAE+DNN 89%
[23] Training Interference+CNN 96%
[24] PMU placement+CNN 95%
[1] Double PSO+DNN 97%
[6] BLSTM+RNN 98%
Our study FPGA accelerator + DNN 91%

AI tools and DPUs from Xilinx can be deployed on heterogeneous accelerators. FPGA PL and ARM CPUs can exist on
modern SoCs like Xilinx Zynq UltraScale+ MPSoC [3]. The combination of the two can be competent for many applications.
For example, AI DPU can be deployed on its PL to connect with the ARM CPU using the AXI bus. This structure is more
efficient and concise than our project’s DPU — HBM memory — PCIe — CPU connection. Nevertheless, the scale of their
chips means that their performance cannot be compared to heterogeneous platforms.

Few studies have been done on the impact of computing performance on AI inference. And indeed, some people deployed
enhanced AI models on cloud services, but their specific algorithms are not deep learning algorithms [25]. We can only
use our data to simulate the performance comparison in this case. In this project, the AI model must first complete the
training on CPU or optionally on GPU and will be transplanted to the DPU of the FPGA when the requirements are met.
Therefore, the AI models before and after transplantation have the same structure and nodes. In this way, we can use the
performance indicators of running the same AI model on the CPU, GPU, and DPUs to speculate on the actual situation.

Table 6 shows a throughput comparison. In [3], each frame is not identical to ours, so the FPS is not comparable between
the two studies. The speedup percentage of the CPU can be compared.

Table 6: Throughput results from different works. The FPS is not comparable between the studies. However, the speedup
percentage of the CPU can be compared.

Accelerator DPU (FPS) CPU (FPS) Speedup (%)

UltraScale+ MPSoC [3] 123.46 22.20 5.56
Alveo (2 x 3E) 1031.86 12.92 79.86

Next, we use the CPU as the benchmark indicator to calculate the speedup ratio of the DPU. As a performance
comparison, we used: (a) I7-9700k to test the CPU inference performance. (b) Tesla V100 GPU computing card running
on the cloud to test GPU inference performance. (c) A single DPU. (d) Two DPUs. The test data scale is 76,500 frames,
7650MB overall. 25,000 dataset was used for the comparison as a baseline. The results are summarized in Table 7.

7 Conclusions
In this paper, we used Xilinx’s latest tool Vitis AI to deploy the AI inference FPGA core DPU in the Alveo accelerator.
Our electronic platform quickly finds faults in the power grid by fast processing specifically designed and trained AI.
This heterogeneous computing architecture features high computing performance, throughput, inference accuracy, and
few on-chip resources consumed. Even with grid data sampling rates as high as 800,000 per second, the AI model in our
hardware architecture can process up to 7 such data streams simultaneously.
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Table 7: Comparison results between CPU, GPU, and DPU with 25,000 datasets.

Platform FPS Power
(W)

Throughput
(Mbit s−1) FPS/W

CPU 12.92 95.00 10.34 0.14
GPU 381.19 300.00 304.95 1.27
DPU (1 × 3E) 519.50 49.00 415.60 10.60
DPU (2 × 3E) 1,031.86 58.90 825.49 17.52

The paper also details porting standard AI models to Vitis AI and discusses its limitations and possible implications.
Although AI models are standard, adapting them to FPGAs has demanded a series of transformations.
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Figure 1: Examples of the dataset. The top signal shows a fault in the electric transmission line, while the bottom signal is
normal. Both signals have high frequency components, but the signal with the fault has a more pronounced high
frequency component. The IA algorithm is able to classify the different nature of the high frequency components
and detect the fault. While we do not know the origin of the high frequency components, training the IA does
not require understanding their origin. Instead, it requires a large dataset of signals with and without faults.
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class CNN(nn.Module):

def __init__(self):

super(CNN, self).__init__()

self.conv1 = nn.Conv2d(1, 32, kernel_size=(16, 1), padding=0, stride=(2, 1))

self.bn1 = nn.BatchNorm2d(32)

self.rl1 = nn.ReLU()

self.pool1 = nn.MaxPool2d((2, 1))

self.do1 = nn.Dropout(0.2)

self.conv2 = nn.Conv2d(32, 64, kernel_size=(16, 1), padding=0, stride=(2, 1))

self.bn2 = nn.BatchNorm2d(64)

self.rl2 = nn.ReLU()

self.pool2 = nn.MaxPool2d((2, 1))

self.do2 = nn.Dropout(0.2)

self.conv3 = nn.Conv2d(64, 128, kernel_size=(10, 1), padding=0, stride=(2, 1))

self.bn3 = nn.BatchNorm2d(128)

self.rl3 = nn.ReLU()

self.pool3 = nn.MaxPool2d((2, 1))

self.do3 = nn.Dropout(0.2)

self.conv6 = nn.Conv2d(128, 64, kernel_size=(10, 1), padding=0, stride=(2, 1))

self.rl6 = nn.ReLU()

self.fc1 = nn.Linear(12096, 2048)

self.rl7 = nn.ReLU()

self.do7 = nn.Dropout(0.2)

self.fc2 = nn.Linear(2048, 128)

self.rl8 = nn.ReLU()

self.do8 = nn.Dropout(0.2)

self.fc3 = nn.Linear(128, 1)

Figure 2: This code defines the CNN with multiple convolutional, batch normalization, pooling, dropout, and fully-connected
layers. The CNN uses ReLU activation and is specially designed for binary classification.
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Figure 3: AI model. There are four initial convolutional steps with added MaxPool and Dropout to reduce the data size.
Afterwards there are a series of transforms to end with the sigmoid function that provides a True/False output.
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Figure 4: Example of both kinds of dataset’ decimation. Top original signal, followed by both kinds of decimations: Same
time (T) or same number of samples (S).
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is composed of 3 engines. Each engine has 4 cores for the different operations over the data.
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fp32

fp32

fp32

fp32

fp32 int8PyTorch
Framework

Pruned
Neural

Network

Prune

FineTune

Quantize
parameters
& activation

Quantized
compressed

neural network

Figure 7: Quantization flow. The process using 32-bit floating point until we get a pruned neural network. Afterwards it is
quantized for the final hardware implementation.

Quantized
neural network

Subgraph library

Operator library

Tensor library

Compiler

DPU architecture

Compiled model
for DPU

Figure 8: Compilation flow. We built the final complied model for the DPU using the quantized neural network as well as
the hardware libraries and the DPU architecture.

12



pre
pri

nt
25000 12500 6250 3125 1563

Dataset size

1 2 4 8 16
Decimation

2,500

5,000

7,500

10,000

12,500

15,000

17,500

Fr
am

es
 p

er
 se

co
nd

Decimation result

FPS

88

90

92

94

96

%

accuracy
utilization

Figure 9: Decimation results. Even by reducing the dataset, the DPU is still processing data 95% of the time (utilization
value). Accuracy drops sharply after a decimation factor of 8.
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