5,467 research outputs found

    Localization from semantic observations via the matrix permanent

    Get PDF
    Most approaches to robot localization rely on low-level geometric features such as points, lines, and planes. In this paper, we use object recognition to obtain semantic information from the robot’s sensors and consider the task of localizing the robot within a prior map of landmarks, which are annotated with semantic labels. As object recognition algorithms miss detections and produce false alarms, correct data association between the detections and the landmarks on the map is central to the semantic localization problem. Instead of the traditional vector-based representation, we propose a sensor model, which encodes the semantic observations via random finite sets and enables a unified treatment of missed detections, false alarms, and data association. Our second contribution is to reduce the problem of computing the likelihood of a set-valued observation to the problem of computing a matrix permanent. It is this crucial transformation that allows us to solve the semantic localization problem with a polynomial-time approximation to the set-based Bayes filter. Finally, we address the active semantic localization problem, in which the observer’s trajectory is planned in order to improve the accuracy and efficiency of the localization process. The performance of our approach is demonstrated in simulation and in real environments using deformable-part-model-based object detectors. Robust global localization from semantic observations is demonstrated for a mobile robot, for the Project Tango phone, and on the KITTI visual odometry dataset. Comparisons are made with the traditional lidar-based geometric Monte Carlo localization

    Online Localization and Tracking of Multiple Moving Speakers in Reverberant Environments

    Get PDF
    We address the problem of online localization and tracking of multiple moving speakers in reverberant environments. The paper has the following contributions. We use the direct-path relative transfer function (DP-RTF), an inter-channel feature that encodes acoustic information robust against reverberation, and we propose an online algorithm well suited for estimating DP-RTFs associated with moving audio sources. Another crucial ingredient of the proposed method is its ability to properly assign DP-RTFs to audio-source directions. Towards this goal, we adopt a maximum-likelihood formulation and we propose to use an exponentiated gradient (EG) to efficiently update source-direction estimates starting from their currently available values. The problem of multiple speaker tracking is computationally intractable because the number of possible associations between observed source directions and physical speakers grows exponentially with time. We adopt a Bayesian framework and we propose a variational approximation of the posterior filtering distribution associated with multiple speaker tracking, as well as an efficient variational expectation-maximization (VEM) solver. The proposed online localization and tracking method is thoroughly evaluated using two datasets that contain recordings performed in real environments.Comment: IEEE Journal of Selected Topics in Signal Processing, 201

    Information metrics for localization and mapping

    Get PDF
    Decades of research have made possible the existence of several autonomous systems that successfully and efficiently navigate within a variety of environments under certain conditions. One core technology that has allowed this is simultaneous localization and mapping (SLAM), the process of building a representation of the environment while localizing the robot in it. State-of-the-art solutions to the SLAM problem still rely, however, on heuristic decisions and options set by the user. In this thesis we search for principled solutions to various aspects of the localization and mapping problem with the help of information metrics. One such aspect is the issue of scalability. In SLAM, the problem size grows indefinitely as the experiment goes by, increasing computational resource demands. To maintain the problem tractable, we develop methods to build an approximation to the original network of constraints of the SLAM problem by reducing its size while maintaining its sparsity. In this thesis we propose three methods to build the topology of such approximated network, and two methods to perform the approximation itself. In addition, SLAM is a passive application. It means, it does not drive the robot. The problem of driving the robot with the aim of both accurately localizing the robot and mapping the environment is called active SLAM. In this problem two normally opposite forces drive the robot, one to new places discovering unknown regions and another to revisit previous configurations to improve localization. As opposed to heuristics, in this thesis we pose the problem as the joint minimization of both map and trajectory estimation uncertainties, and present four different active SLAM approaches based on entropy-reduction formulation. All methods presented in this thesis have been rigorously validated in both synthetic and real datasets.Dècades de recerca han fet possible l’existència de nombrosos sistemes autònoms que naveguen eficaçment i eficient per varietat d’entorns sota certes condicions. Una de les principals tecnologies que ho han fet possible és la localització i mapeig simultanis (SLAM), el procés de crear una representació de l’entorn mentre es localitza el robot en aquesta. De tota manera, els algoritmes d’SLAM de l’estat de l’art encara basen moltes decisions en heurístiques i opcions a escollir per l’usuari final. Aquesta tesi persegueix solucions fonamentades per a varietat d’aspectes del problema de localització i mappeig amb l’ajuda de mesures d’informació. Un d’aquests aspectes és l’escalabilitat. En SLAM, el problema creix indefinidament a mesura que l’experiment avança fent créixer la demanda de recursos computacionals. Per mantenir el problema tractable, desenvolupem mètodes per construir una aproximació de la xarxa de restriccions original del problema d’SLAM, reduint així el seu tamany a l’hora que es manté la seva naturalesa dispersa. En aquesta tesi, proposem tres métodes per confeccionar la topologia de l’approximació i dos mètodes per calcular l’aproximació pròpiament. A més, l’SLAM és una aplicació passiva. És a dir que no dirigeix el robot. El problema de guiar el robot amb els objectius de localitzar el robot i mapejar l’entorn amb precisió es diu SLAM actiu. En aquest problema, dues forces normalment oposades guien el robot, una cap a llocs nous descobrint regions desconegudes i l’altra a revisitar prèvies configuracions per millorar la localització. En contraposició amb mètodes heurístics, en aquesta tesi plantegem el problema com una minimització de l’incertesa tant en el mapa com en l’estimació de la trajectòria feta i presentem quatre mètodes d’SLAM actiu basats en la reducció de l’entropia. Tots els mètodes presentats en aquesta tesi han estat rigurosament validats tant en sèries de dades sintètiques com en reals

    Active SLAM for autonomous underwater exploration

    Get PDF
    Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.Peer ReviewedPostprint (published version

    Unsupervised Odometry and Depth Learning for Endoscopic Capsule Robots

    Full text link
    In the last decade, many medical companies and research groups have tried to convert passive capsule endoscopes as an emerging and minimally invasive diagnostic technology into actively steerable endoscopic capsule robots which will provide more intuitive disease detection, targeted drug delivery and biopsy-like operations in the gastrointestinal(GI) tract. In this study, we introduce a fully unsupervised, real-time odometry and depth learner for monocular endoscopic capsule robots. We establish the supervision by warping view sequences and assigning the re-projection minimization to the loss function, which we adopt in multi-view pose estimation and single-view depth estimation network. Detailed quantitative and qualitative analyses of the proposed framework performed on non-rigidly deformable ex-vivo porcine stomach datasets proves the effectiveness of the method in terms of motion estimation and depth recovery.Comment: submitted to IROS 201

    Information metrics for localization and mapping

    Get PDF
    Decades of research have made possible the existence of several autonomous systems that successfully and efficiently navigate within a variety of environments under certain conditions. One core technology that has allowed this is simultaneous localization and mapping (SLAM), the process of building a representation of the environment while localizing the robot in it. State-of-the-art solutions to the SLAM problem still rely, however, on heuristic decisions and options set by the user. In this thesis we search for principled solutions to various aspects of the localization and mapping problem with the help of information metrics. One such aspect is the issue of scalability. In SLAM, the problem size grows indefinitely as the experiment goes by, increasing computational resource demands. To maintain the problem tractable, we develop methods to build an approximation to the original network of constraints of the SLAM problem by reducing its size while maintaining its sparsity. In this thesis we propose three methods to build the topology of such approximated network, and two methods to perform the approximation itself. In addition, SLAM is a passive application. It means, it does not drive the robot. The problem of driving the robot with the aim of both accurately localizing the robot and mapping the environment is called active SLAM. In this problem two normally opposite forces drive the robot, one to new places discovering unknown regions and another to revisit previous configurations to improve localization. As opposed to heuristics, in this thesis we pose the problem as the joint minimization of both map and trajectory estimation uncertainties, and present four different active SLAM approaches based on entropy-reduction formulation. All methods presented in this thesis have been rigorously validated in both synthetic and real datasets.Dècades de recerca han fet possible l’existència de nombrosos sistemes autònoms que naveguen eficaçment i eficient per varietat d’entorns sota certes condicions. Una de les principals tecnologies que ho han fet possible és la localització i mapeig simultanis (SLAM), el procés de crear una representació de l’entorn mentre es localitza el robot en aquesta. De tota manera, els algoritmes d’SLAM de l’estat de l’art encara basen moltes decisions en heurístiques i opcions a escollir per l’usuari final. Aquesta tesi persegueix solucions fonamentades per a varietat d’aspectes del problema de localització i mappeig amb l’ajuda de mesures d’informació. Un d’aquests aspectes és l’escalabilitat. En SLAM, el problema creix indefinidament a mesura que l’experiment avança fent créixer la demanda de recursos computacionals. Per mantenir el problema tractable, desenvolupem mètodes per construir una aproximació de la xarxa de restriccions original del problema d’SLAM, reduint així el seu tamany a l’hora que es manté la seva naturalesa dispersa. En aquesta tesi, proposem tres métodes per confeccionar la topologia de l’approximació i dos mètodes per calcular l’aproximació pròpiament. A més, l’SLAM és una aplicació passiva. És a dir que no dirigeix el robot. El problema de guiar el robot amb els objectius de localitzar el robot i mapejar l’entorn amb precisió es diu SLAM actiu. En aquest problema, dues forces normalment oposades guien el robot, una cap a llocs nous descobrint regions desconegudes i l’altra a revisitar prèvies configuracions per millorar la localització. En contraposició amb mètodes heurístics, en aquesta tesi plantegem el problema com una minimització de l’incertesa tant en el mapa com en l’estimació de la trajectòria feta i presentem quatre mètodes d’SLAM actiu basats en la reducció de l’entropia. Tots els mètodes presentats en aquesta tesi han estat rigurosament validats tant en sèries de dades sintètiques com en reals

    Information metrics for localization and mapping

    Get PDF
    Aplicat embargament des de la defensa de la tesi fins al 12/2019Decades of research have made possible the existence of several autonomous systems that successfully and efficiently navigate within a variety of environments under certain conditions. One core technology that has allowed this is simultaneous localization and mapping (SLAM), the process of building a representation of the environment while localizing the robot in it. State-of-the-art solutions to the SLAM problem still rely, however, on heuristic decisions and options set by the user. In this thesis we search for principled solutions to various aspects of the localization and mapping problem with the help of information metrics. One such aspect is the issue of scalability. In SLAM, the problem size grows indefinitely as the experiment goes by, increasing computational resource demands. To maintain the problem tractable, we develop methods to build an approximation to the original network of constraints of the SLAM problem by reducing its size while maintaining its sparsity. In this thesis we propose three methods to build the topology of such approximated network, and two methods to perform the approximation itself. In addition, SLAM is a passive application. It means, it does not drive the robot. The problem of driving the robot with the aim of both accurately localizing the robot and mapping the environment is called active SLAM. In this problem two normally opposite forces drive the robot, one to new places discovering unknown regions and another to revisit previous configurations to improve localization. As opposed to heuristics, in this thesis we pose the problem as the joint minimization of both map and trajectory estimation uncertainties, and present four different active SLAM approaches based on entropy-reduction formulation. All methods presented in this thesis have been rigorously validated in both synthetic and real datasets.Dècades de recerca han fet possible l’existència de nombrosos sistemes autònoms que naveguen eficaçment i eficient per varietat d’entorns sota certes condicions. Una de les principals tecnologies que ho han fet possible és la localització i mapeig simultanis (SLAM), el procés de crear una representació de l’entorn mentre es localitza el robot en aquesta. De tota manera, els algoritmes d’SLAM de l’estat de l’art encara basen moltes decisions en heurístiques i opcions a escollir per l’usuari final. Aquesta tesi persegueix solucions fonamentades per a varietat d’aspectes del problema de localització i mappeig amb l’ajuda de mesures d’informació. Un d’aquests aspectes és l’escalabilitat. En SLAM, el problema creix indefinidament a mesura que l’experiment avança fent créixer la demanda de recursos computacionals. Per mantenir el problema tractable, desenvolupem mètodes per construir una aproximació de la xarxa de restriccions original del problema d’SLAM, reduint així el seu tamany a l’hora que es manté la seva naturalesa dispersa. En aquesta tesi, proposem tres métodes per confeccionar la topologia de l’approximació i dos mètodes per calcular l’aproximació pròpiament. A més, l’SLAM és una aplicació passiva. És a dir que no dirigeix el robot. El problema de guiar el robot amb els objectius de localitzar el robot i mapejar l’entorn amb precisió es diu SLAM actiu. En aquest problema, dues forces normalment oposades guien el robot, una cap a llocs nous descobrint regions desconegudes i l’altra a revisitar prèvies configuracions per millorar la localització. En contraposició amb mètodes heurístics, en aquesta tesi plantegem el problema com una minimització de l’incertesa tant en el mapa com en l’estimació de la trajectòria feta i presentem quatre mètodes d’SLAM actiu basats en la reducció de l’entropia. Tots els mètodes presentats en aquesta tesi han estat rigurosament validats tant en sèries de dades sintètiques com en reals.Postprint (published version
    • …
    corecore