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Exploring the unknown requires tolerating uncertainty.

Brian Greene





Abstract
Information Metrics for Localization and Mapping

by Joan Vallvé Navarro

Decades of research have made possible the existence of several autonomous systems that
successfully and efficiently navigate within a variety of environments under certain conditions.
One core technology that has allowed this is simultaneous localization and mapping (SLAM),
the process of building a representation of the environment while localizing the robot in it.

State-of-the-art solutions to the SLAM problem still rely, however, on heuristic decisions
and options set by the user. In this thesis we search for principled solutions to various aspects
of the localization and mapping problem with the help of information metrics.

One such aspect is the issue of scalability. In SLAM, the problem size grows indefinitely
as the experiment goes by, increasing computational resource demands. To maintain the
problem tractable, we develop methods to build an approximation to the original network of
constraints of the SLAM problem by reducing its size while maintaining its sparsity. In this
thesis we propose three methods to build the topology of such approximated network, and
two methods to perform the approximation itself.

In addition, SLAM is a passive application. It means, it does not drive the robot. The
problem of driving the robot with the aim of both accurately localizing the robot and mapping
the environment is called active SLAM. In this problem two normally opposite forces drive
the robot, one to new places discovering unknown regions and another to revisit previous
configurations to improve localization. As opposed to heuristics, in this thesis we pose the
problem as the joint minimization of both map and trajectory estimation uncertainties, and
present four different active SLAM approaches based on entropy-reduction formulation.

All methods presented in this thesis have been rigorously validated in both synthetic and
real datasets.





Resum
Information Metrics for Localization and Mapping

by Joan Vallvé Navarro

Dècades de recerca han fet possible l’existència de nombrosos sistemes autònoms que
naveguen eficaçment i eficient per varietat d’entorns sota certes condicions. Una de les prin-
cipals tecnologies que ho han fet possible és la localització i mapeig simultanis (SLAM), el
procés de crear una representació de l’entorn mentre es localitza el robot en aquesta.

De tota manera, els algoritmes d’SLAM de l’estat de l’art encara basen moltes decisions
en heurístiques i opcions a escollir per l’usuari final. Aquesta tesi persegueix solucions fon-
amentades per a varietat d’aspectes del problema de localització i mappeig amb l’ajuda de
mesures d’informació.

Un d’aquests aspectes és l’escalabilitat. En SLAM, el problema creix indefinidament a
mesura que l’experiment avança fent créixer la demanda de recursos computacionals. Per
mantenir el problema tractable, desenvolupem mètodes per construir una aproximació de la
xarxa de restriccions original del problema d’SLAM, reduint així el seu tamany a l’hora que es
manté la seva naturalesa dispersa. En aquesta tesi, proposem tres métodes per confeccionar
la topologia de l’approximació i dos mètodes per calcular l’aproximació pròpiament.

A més, l’SLAM és una aplicació passiva. És a dir que no dirigeix el robot. El problema de
guiar el robot amb els objectius de localitzar el robot i mapejar l’entorn amb precisió es diu
SLAM actiu. En aquest problema, dues forces normalment oposades guien el robot, una cap
a llocs nous descobrint regions desconegudes i l’altra a revisitar prèvies configuracions per
millorar la localització. En contraposició amb mètodes heurístics, en aquesta tesi plantegem
el problema com una minimització de l’incertesa tant en el mapa com en l’estimació de la
trajectòria feta i presentem quatre mètodes d’SLAM actiu basats en la reducció de l’entropia.

Tots els mètodes presentats en aquesta tesi han estat rigurosament validats tant en sèries
de dades sintètiques com en reals.
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1
Introduction
The capability of navigating is, in itself, an expression of intelligence. Being capable of
creating a representation of the environment and moving within it requires perception, motion
planning and control skills.

In our aim to create intelligent artificial devices, science and technology made progress
from different disciplines taking place in robotics. Specifically, research on mobile robotics
focuses on the development of mechanisms with the capability of autonomous navigation,
among others.

Robots have been widely and successfully deployed in industry during the last decades.
However, oftentimes their physical capabilities were exploited (load, productivity, accuracy)
without developing cognitive capabilities to enable higher degree of autonomy. In other
words, adopting the environment to the robot capabilities was preferred rather than over
equipping robots with the ability to adapt themselves to the environment. Then, industrial
manipulation robots have been normally deployed inside a cage where people are not allowed
to stay. And analogously, autonomous ground vehicles systems normally count on several
supporting infrastructures such as wire or tape guided routes, laser reflectors, etc..

The research advances in the last decades are making arise a new paradigm in which
robots (or autonomous devices) and humans cohabit in the same space. Autonomous driving
and industry 4.0 are two exponents of this new paradigm in which autonomous navigation has
a key role. Behind autonomous navigation, different problems take place such as localization
and mapping. One needs a representation of the environment and knowing its location in
order to navigate within it.

Nowadays, we count on several localization and mapping systems. Some of them, how-
ever, are human-based tools to complement our capabilities such as GNSS (GPS, Galileo,
GLONAS...) or Google maps.

Regarding mobile robotics, there are several applications in which offline maps are not
suitable. Trivially, navigation within unmapped environments such as search and rescue or
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any unmapped indoors environment.
Furthermore, the dynamic nature of human environments depends on the scale that is

considered. For instance, in high-level navigation such as route planning, cities can be as-
sumed to be static allowing the use of offline maps and GNSS. However, navigating in such
environments requires finer spatial resolution and human environments become more and
more dynamic as the scale decreases: Buildings, shops, trees, ads, construction works, light
conditions, cars, furniture, people.

Hence, even if the whole world could be mapped at one instance, autonomous navigation
could not fully rely on such a map at certain scales. Therefore, mapping is necessary to be
performed simultaneously to localization in several cases. Moreover, there are other appli-
cations that also require online localization and mapping algorithms beyond navigation such
as augmented reality or online 3D object modeling.

In mobile robotics, simultaneous localization and mapping (SLAM) has been a largely
explored research topic. More than 30 years after the firsts works were published, the research
community have come a long way. Nowadays, several online robotic systems are already capa-
ble of autonomously navigating in specific environments under certain conditions. However,
several open issues are still requesting further research.

Additionally, despite the researchers interest, autonomous navigation is not the ultimate
task we want the robots to do. Rather, it shall be a background non-costly process that
will provide the robot with basic capabilities to do more sophisticated tasks such as fetching
goods, guiding humans, etc. Robotics is just starting to show its potential by demonstrating
the feasibility of basic capabilities such as autonomous navigation. In the following years,
robustness and efficiency of these basic capabilities will give raise to more complex applica-
tions.

1.1 Motivation

Three of the most researched topics in mobile robotics are localization, mapping and path
planning. Mapping can be defined as the problem of generating a representation of the envi-
ronment from the sensory output of a robot that is following a known trajectory [Moravec,
1988; Elfes, 1989]. Localization [Dellaert et al., 1999; Thrun et al., 2000] is the problem of
estimating the pose of such robot within a given a map whilst moving. And, path plan-
ning [Kavraki and Latombe, 1994; LaValle, 1998] is the problem of computing a feasible
trajectory from an initial configuration to a final one, given a map and full certainty about
the robot location within it.

The intersection of these three problems generates four new problems (Figure 1.1). Com-
bining localization and mapping, simultaneous localization and mapping (SLAM) arises as
the problem of generating a map and localizing the robot in it while it is being driven [Smith
and Cheeseman, 1986; Durrant-Whyte, 1988; Thrun et al., 2004; Kaess et al., 2012; Ila et al.,
2017]. Alternatively, the problem of planning a trajectory that will localize better the robot
given a map, i.e. the combination of localization and path planning, is called active localiza-
tion [Fox et al., 1998; Corominas-Murtra et al., 2008]. Exploration [Yamauchi, 1997; Shade
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Figure 1.1: Combining the three main problems in mobile robotics, four new problems arise.

and Newman, 2011], the combination of mapping and path planning, is the problem of driving
a (localized) robot in order to build a map of an environment.

Finally, we call the combination of all three initial problems as Active Simultaneous
Localization and Mapping (Active SLAM) [Stachniss et al., 2005; Valencia et al., 2012], and
we define it as the problem of finding the best path to drive a robot to build a map of a
previously unknown environment and simultaneously localizing itself in it.

As introduced before, in such a dynamic world, offline maps are just suitable for ap-
plications that do not require accurate localization or in special cases in which the static
environment assumption is rigorously fulfilled. Then, there are plenty of cases in which
SLAM is required.

Moreover, in some cases such as search and rescue or indoors navigation, methods to
autonomously drive the robot to map the environment (i.e. exploration) are useful applica-
tions. In these cases active SLAM methods are able to produce more accurate maps than
exploration, since by not decoupling the localization from the problem the robot is better
localized while building the map. This thesis is focused on both applications: SLAM and
active SLAM.

In SLAM, the problem grows as time increases, receiving more sensor data, increasing
the trajectory of the robot to be estimated, enlarging the map, etc. Hence, addressing the
scalability of SLAM poses big challenges.

Significant advances have been made. We can find now state of the art algorithms that
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accurately localize a robot in real time for a restricted number of domains. However, new
application demands require these algorithms to be just a small non-costly module of a more
complex task or to be running in systems with limited computational power (cell phones,
unmanned aerial vehicles, embedded computing systems, etc.). So finding scalable solutions
to the problem is always a valid concern for researchers.

Active SLAM pursues two different and normally opposite aims: exploring the envi-
ronment which drives the robot to unknown areas, and improving robot localization which
means going to already visited places. The latter has been systematically decoupled from the
problem of exploration assuming independence between the localization performance and the
robot trajectory. This assumption remains far from reality in most cases.

Several active SLAM methods in the literature propose the alternation between ex-
ploratory and relocalization goals decoupling path planning. Thus, the potential exploration
and/or relocalization that can be performed along the planned path is not considered. Fur-
thermore, both the alternation and the selection of goals is usually based on heuristics.

Formalization of some SLAM and active SLAM mechanisms should provide a principled
way to tackle these problems. In the present thesis we recall on information theory to for-
malize some of these problems deriving in new methods as opposed to heuristic mechanisms.

1.2 Objectives and scope

The main objective of this thesis is to propose and formalize the use of information gain
metrics to tackle the scalability concern for the SLAM problem and devise new active SLAM
methods.

As introduced before, in SLAM the reduction of the problem size is oftentimes necessary.
However, it normally results in a reduced approximated problem posing a compromise be-
tween accuracy and computational resources. Information metrics can be used to measure
the amount of information loss in the approximated solution.

In the case of Active SLAM, the decision of which paths to take have a direct influence
on both the total travelled distance by the robot, hence time, and the quality of the resulting
map. The information encoded in the trajectory estimate and the ensuing map would allow
us to evaluate different path candidates and even give some clues on how to create the path
candidate set.

Summarizing, our objectives are the use of information metrics for the various parts of
the SLAM and Active SLAM problems:

• Develop and formalize information-based formulations to be used in existing state-of-art
SLAM methods to ease the time and space computational burden of the algorithms.

• Develop information-based Active SLAM methods, formalizing how to measure the
amount of information encoded in a path in order to choose the one that most efficiently
and correctly maps the environment.
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1.3 Thesis overview and summary of contributions

The present thesis is organized in six chapters. After this chapter, the SLAM problem is
described introducing the formulation of the state-of-art non-linear least squares approach
and deriving its variants (Chapter 2). Additionally, an overview of other SLAM approaches
and formulations in the literature is provided establishing connections between them. The
drawbacks and benefits of all presented SLAM methods is also discussed.

Chapter 3 includes a brief introduction to information theory. Some relevant information
metrics for localization and mapping applications are presented and formulated in the multi-
variate Gaussian distribution case.

Later, the use of information metrics in graph SLAM sparsification is explored in Chap-
ter 4. Sparsification allows reduction of the problem size while maintaining its sparsity and
relinearization capability to keep the solution accuracy and efficiency.

Finally, the active SLAM problem is approached making use of entropy to measure the
uncertainty reduction both in map and robot trajectory estimation (Chapter 5). Active
SLAM approaches produce significantly better maps than exploration methods since the
latter decouples localization which it is not independent from the robot trajectory.

The following is a brief overview of this thesis contributions and the related scientific
publications of the thesis author.

• Chapter 1: The scope and motivation of the present thesis have been presented in-
troducing the need of formalization on some SLAM and active SLAM decisions and
methods. The use of information metrics to do this has been proposed.

• Chapter 2: A general formulation for the SLAM problem is developed from the non-
linear least squares approach. Furthermore, links and connections with other SLAM
approaches in the literature are explored providing a general formalization of the SLAM
problem. The general problem formulation and intuitive understanding is the basis on
which the next chapters are developed.

• Chapter 3: From the localization and mapping perspective, an overview of infor-
mation theory is presented. The main metrics are introduced, providing both their
intuitive meaning and the specific formulation for the multi-variate Gaussian case used
in SLAM. The potential applications to mobile robotics applications of each metric are
initially explored.

• Chapter 4: Sparsification aim is to approximate a dense and not relinearizable sub-
graph resulting of a node (or nodes) marginalization with a new sparse and relinearizable
sub-graph. In this problem, all processes involved have been examined in order to
propose new alternatives making use of information metrics. The topology of the new
sub-graph is critical to reach a good approximation. How its population is set and how
it is built is one line of work presented in this chapter. Given the topology, new methods
to compute the best new factors’ parameters are also proposed. All new approaches are
rigorously validated and compared with the state-of-art sparsificaiton methods. This
chapter includes the work of three publications [Vallvé et al., 2017, 2018a,b].
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• Chapter 5: The specific active SLAM approach using a pose-graph SLAM and
occupancy maps is exhaustively explored in this chapter. The use of entropy to measure
the uncertainty in both trajectory and map estimations is developed to devise new
methods. Two main lines of research are included. First, the problem is posed as a
search in the configuration space looking for the most informative robot location to drive
the robot. Secondly, as a search in the action space looking for the most informative
path candidate efficiently building and evaluating large action sets. Four publications
are related with the work presented in this chapter [Vallvé and Andrade-Cetto, 2013,
2014, 2015a,b].

• Chapter 6: A summary of the work presented in the thesis and the closing remarks
are stated. Some lines of research to be considered in future work are also proposed.

In the course of realization of the work presented in this thesis, the author collaborated
in the development of other scientific publications [Valencia et al., 2014; Corominas-Murtra
et al., 2016]. Despite they are slightly related with the work presented in this thesis, the
inclusion of these works would have diverged its scope. Therefore, this work has not been
incorporated to the present thesis. Section 6.2 encloses a list containing all scientific publi-
cations performed during the realization of this thesis.
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2
Simultaneous Localization
and Mapping

2.1 Introduction

In mobile robotics, simultaneous localization and mapping (SLAM) is the problem of building
a representation of the environment (i.e. a map) while localizing the robot in this map at
the same time. The fundamentals of this problem were introduced in the seminal work of
Smith, Self and Cheeseman [Smith and Cheeseman, 1986; Smith et al., 1988, 1990] as well
as the work of Durrant-Whyte and Leonard [Durrant-Whyte, 1988; Leonard et al., 1992;
Durrant-Whyte et al., 1996].

Initially, the problem was posed as concurrently estimating the localization of a robot
and a set of environment landmarks. However, several different environment representations
have been proposed in the literature. From landmark-based to denser representations such
as occupancy grids [Moravec, 1988; Elfes, 1989] or 3D RGB semi-dense [Engel et al., 2013]
or dense [Newcombe et al., 2011] reconstructions.

Furthermore, the so-called pose-graph SLAM [Lu and Milios, 1997; Olson et al., 2006;
Ila et al., 2010; Konolige, 2010] only estimates the robot trajectory establishing geometrical
restrictions due to sensor data alignment, for instance. It could be argued that pose-graph
SLAM is not strictly SLAM since it does not estimate any map representation. However,
most of the pose SLAM methods are capable of easily rendering a map from the sensory data
and the trajectory estimate.

Graphs have been widely used in the SLAM literature for problem representation and
derivation of new methods. Some examples of the latter are graphical SLAM [Folkesson
and Christensen, 2004; Folkesson et al., 2005] which elaborates a SLAM algorithm from a
graphical representation. In [Paskin, 2003], Junction Trees are exploited to derive a new
SLAM method. A similar graph is presented in iSAM2 [Kaess et al., 2012], the so-called
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Bayes tree encodes the incremental QR-factorization algorithm for a non-linear least squares.
Graphs are also used to guide data association search such as the co-visibility graph in ORB-
SLAM [Mur-Artal et al., 2015].

Different ways of representing the SLAM problem in a graph are devised in the literature.
The Bayes net or belief net [Montemerlo and Thrun, 2007; Dellaert and Kaess, 2006] is
a directed uncyclic graph that represents the conditional independence of variables (each
variable only depends on its predecessors). Alternatively, the factor graph [Kschischang et al.,
2001] represents which subsets of variables are indirectly observed by the measurements. The
Markov Random Field also encodes this information but without an explicit representation
of the measurements: it only depicts which nodes are involved in each observation.

In fact, linear algebra is strongly linked to graph theory being most of the times analogous
representations of the same problem. Actually, most of the main processes in linear algebra
have their equivalent process in graph theory. For instance, variable elimination resulting in
a Bayes net is equivalent to QR or Cholesky factorization of a linear problem. Also, most of
the variable ordering methods to improve the factorization efficiency are derived from graph
theory.

Nowadays, factor graph is a popular SLAM representation. It is formally related with
the probabilistic formulation of the problem. A factor graph (see Figure 2.1) is a bipartite
graph in which the SLAM problem is represented using two types of nodes: variable nodes
and factors nodes. Variable nodes (from now on just nodes) represent estimated variables
such as robot or landmark configurations. Factor nodes (from now on just factors) represent
geometrical constraints according to sensor measurements.

Considering that, we realize that SLAM is a very common estimation problem that has
been faced from very different disciplines. Probably, geodesy was the first discipline to for-
mulate a similar problem: computing the coordinates of several points on the earth surface
from a large set of (noisy) measurements. Actually, Cholesky factorization [Benoït, 1924] was
proposed with the purpose to solve it. Nowadays, Cholesky is a largely used factorization for
solving SLAM problems. Also, in [Golub and Plemmons, 1980], a very similar approach to
the state-of-art SLAM methods was introduced.

The Bundle Adjustment (BA) problem, in computer vision, is also equivalent to the SLAM
problem. Given a set of images, a 3D representation of the environment and the camera
trajectory are estimated. Its initial application was aerial cartography [Brown, 1958]. As in
geodesics, it early derived to non-linear least squares formulations [Mikhail and Ackermann,
1976].

A particularity of SLAM is that it has been normally faced as an online mobile robot
application. An early least squares approach for a 2D SLAM using laser scans was pre-
sented in [Lu and Milios, 1997]. However, it was applied to very small problems. Probably
due to the online specification, SLAM methods did not consider least squares until the last
decade [Dellaert and Kaess, 2006; Konolige, 2010] due to its computational burden. In Sec-
tion 2.2 and the following, the extensively used Gauss-Newton least squares formulation is
derived. Afterwards, Section 2.5 provides an overview of past and present alternative SLAM
methods.
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Figure 2.1: Factor graph example. White nodes represent the state variables including the
robot trajectory (x1,x2,x3,x4,x5) and the set of landmarks (l1, l2, l3). Black nodes (factors) rep-
resent observations, i.e. constraints, including odometry constraints (f3, f6, f9, f12), landmark
observations (f2, f4, f5, f7, f8, f10, f11, f13) and a prior for the first robot pose (f1).

2.2 Smoothing and mapping

Classically, the SLAM problem was formulated as a filtering problem. In filtering, only the
present state is estimated. Old observations are concurrently marginalized in a prior on the
current state, and its estimation is updated according to recent observations.

Nowadays, SLAM is formulated as a smoothing problem. In smoothing, all the observa-
tions of the state are taken into account to estimate the solution. Therefore, the smoothing
approach for SLAM includes in the state x all variables that have been observed. This is
widely known as smoothing and mapping (SAM). In Section 2.5, the benefits of smoothing
over filtering are defended.

Normally, the SAM state includes poses of the vehicle along its trajectory exclusively (i.e.
pose-graph SLAM) or together with some environment landmarks (i.e. full SLAM). Thus,
pose-graph SLAM observations are created between robot poses after finding relationships
between corresponding sensor measurements. Full SLAM also includes observations that
relate vehicle poses and some relevant environment landmarks that have been observed. The
state can also include some other variables that are wanted to be estimated such as sensor
intrinsic parameters (IMU biases, camera intrinsic parameters, etc.) or extrinsic ones (sensor
position and orientation).

2.2.1 Probabilistic approach

Dealing with uncertainty is crucial for the proper modeling of the SLAM problems, and
hence for finding well-balanced (i.e., optimal in some sense) solutions. This can be done by
approaching the problem from a probabilistic viewpoint.
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From the point of view of Bayesian inference, we estimate the conditional probability of
the state given all the observations

p(x|Z) = p(x|z1, z2, . . . , zm) =
p(z1, z2, . . . , zn|x)p(x)

p(z1, z2, . . . , zm)
.

where x is the state to estimate and Z = (z1, · · · , zn) is the set of all measurements.
As shown above, the Bayes rule allows us to express this conditional p(x|Z) from its

opposite p(Z|x), which can be easily formulated from the measurement models, as described
further down.

2.2.2 Multi-variate Gaussian distribution

From the very first approaches, SLAM methods uses multi-variate Gaussian distribution to
describe the conditional probability density p(x|Z). It can be represented in the canonical
form p(x|Z) ∼ N (µ,Σ) or alternatively, in the information form p(x|Z) ∼ N−1(η,Λ) [Thrun
et al., 2004]. These are related by,

P (x|Z) ∝ exp
(
− 1

2(x− µ)>Σ−1(x− µ)
)

= exp
(
− 1

2x>Σ−1x + x>Σ−1µ− 1
2µ
>Σ−1µ

)
,

and since µ>Σµ is constant,

P (x|Z) ∝ exp
(
− 1

2x>Σ−1︸︷︷︸
Λ

x + x>Σ−1µ︸ ︷︷ ︸
η

)
= exp

(
− 1

2x>Λx + x>η
)
. (2.1)

The information form defines a multi-variate Gaussian distribution using the information
vector η (i) and the information matrix Λ that can be expressed in terms of the canonical
form

Λ = Σ−1 and η = Λµ. (2.2)

2.2.3 Maximum A Posteriori or Maximum Likelihood Estimation

In the context of Bayesian inference, the Maximum a Posteriori (MAP) estimates the mode of
the posterior conditional probability p(x|Z). In case of a multi-variate Gaussian distribution,
it is its mean, µ = xMAP. Then,

µ = xMAP = arg max
x

p(x|Z)

= arg max
x

p(z1, z2, . . . , zn|x)p(x)

p(z1, z2, . . . , zm)
.

(i)Some papers in the literature define the information vector as a row vector. However, the induced
differences in the following derivations are trivial.
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The Maximum Likelihood Estimation (MLE) is a special case of the Maximum a Posteriori
(MAP) estimation in which there is no prior distribution on the state (i.e. the prior is
a uniform distribution). As already stated, this is the case of smoothing. Hence, p(x)

above is a uniform distribution, thus constant w.r.t. the state. So is the denominator,
which does not depend on x. Furthermore, considering independent measurements, the
conditional probability of all measurements given the state, p(z1, z2, . . . , zn|x), is the product
of conditionals of each measurement given the state. Considering these facts, the problem
can be re-written as,

µ = arg max
x

∏
p(zk|x).

Thus, the mean of the conditional distribution p(x|Z) (or the MAP or the MLE, equivalently)
is the maximization of the product of the conditional probability densities corresponding to
all observations. Hence the name factor to refer to the effect of each observation, since each
observation zk leads to a factor of this product of conditionals, p(zk|x).

Each factor represents a geometrical constraint between some state variables. Deriving
from sensory data, control laws or a dynamic model, each factor is posed as a measurement
zk of the state through a measurement model hk(x) and affected by a Gaussian noise vk ∼
N (0,Ω−1

k ), that is,
zk = hk(x) + vk. (2.3)

Being the noise Gaussian, the conditional probability factor for this observation can be written
as

p(zk|x) = N (hk(x),Ω−1
k ) = exp

(
− 1

2

(
zk − hk(x)

)>
Ωk

(
zk − hk(x)

))
.

Then, substituting and considering that the natural logarithm is a monotonically increasing
function,

µ = arg max
x

log
(∏

p(zk | x)
)

= arg max
x

∑
log exp

(
− 1

2

(
zk − hk(x)

)>
Ωk

(
zk − hk(x)

))
.

Defining the measurement error as ek = hk(x)−zk, and the factor residual as rk = Ω
1/2
k ek

(ii),
we can transform the problem into the more tractable form,

= arg min
x

∑
‖ek‖2Ω−1

k

= arg min
x

∑
‖rk‖2.

That is, the mean of the conditional distribution of the state given the observations is the
one that minimizes the summation of the squared Mahalanobis distance of all measurements

(ii)We define Ω
1/2
k as whichever factorization such that Ωk =

(
Ω

1/2
k

)>
Ω

1/2
k .
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errors ek. Or alternatively, the one that minimizes the sum of squared residuals rk. These
constitute equivalent but alternative forms of the problem: the least squares forms.

2.2.4 Smoothing by Gauss-Newton non-linear least squares

Since measurement models hk(x) are rarely linear, graph-SLAM problems are normally posed
as a Nonlinear Least Squares (NLS) optimization and solved via Gauss-Newton,

∆µ∗ = arg min
∆µ

∑
k

‖rk(µ+ ∆µ)‖2.

The residuals are linearized taking its first order Taylor expansion

rk(µ+ ∆µ) = rk(µ) +
∂rk(x)

∂x

∣∣∣∣
x=µ

∆µ

= rk(µ) + Ω
1/2
k

( ∂hk(x)

∂x

∣∣∣∣
x=µ︸ ︷︷ ︸

Jk

−
�
�
�
�
�>

0
∂zk
∂x

∣∣∣∣
x=µ

)
∆µ, (2.4)

where Jk is the Jacobian of the k-th measurement model evaluated at the current state
estimation x = µ (iii). Then the minimization (2.4) becomes

∆µ∗ = arg min
∆µ

∑
k

‖rk(µ) + Ω
1/2
k Jk∆µ

)
‖2

= arg min
∆µ

∥∥∥∥∥∥∥∥∥∥∥


...

rk(µ)
...


︸ ︷︷ ︸

r

+


...

Ω
1/2
k Jk
...


︸ ︷︷ ︸

A

∆µ

∥∥∥∥∥∥∥∥∥∥∥

2

After each iteration, the state estimate is updated with ∆µ∗ and the problem is relin-
earized and built to be solved again. This requires, re-evaluating the residuals vector r and
measurements Jacobians Jk at the new linearization point to build the residuals Jacobian A.
The process is repeated until convergence.

Additionally, the squared residuals Jacobian is the information matrix of the linearized
conditional probability density of the state given the observations A>A = Λ, p(x|Z) ∼
N−1(η,Λ) (see Prop. 1 in Appendix A). In other words, the problem encodes the parameters
of the multi-variate Gaussian distribution of the state, updating the information matrix in
its square-root form and directly estimating the mean

∆µ∗ = arg min
∆µ

‖A∆µ+ r‖2. (2.5)

(iii)In case of manifolds, the error becomes ek(x) = hk(x)	 zk ⊕vk and Jk = ∂(hk(x)	 zk)/∂x. The ⊕ and
	 are the addition and subtraction operators on the manifold, as described in [Smith et al., 1990].
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Figure 2.2: Sparisty pattern of the residuals Jacobian A (a) and the information matrix Λ (b)
corresponding to the factor graph example (Figure 2.1).

2.2.5 Sparsity

Since the factors usually involve very few nodes of the state, i.e., the measurements observe
very few state variables (two robot poses, a robot pose and a landmark, etc.), the Jacobians
Jk are usually very sparse, as well as the residuals Jacobian A and the information matrix Λ.
In Figure 2.2, we depict the sparsity pattern of the residuals Jacobian A and the information
matrix Λ corresponding to the factor graph example (Fig 2.1). Only the non-zero matrix
blocks are color filled.

The state-of-art methods for solving (2.5) take profit of this sparsity to speed up the
process, as explained in the following sections.

2.3 Batch methods

The first SAM methods for solving SLAM [Dellaert and Kaess, 2006; Kümmerle et al., 2011]
problem where designed to solve the whole problem (2.5) from scratch. Note that the initial
guess is critical for convergence since the problem is highly non-linear.

In an offline scenario, the problem is built and solved iteratively until convergence. Alter-
natively, in online SLAM applications, the problem is built and solved periodically following a
specific heuristic (after each measurement, time-based, after adding a new node, etc.). Since
the prior used is the previous problem solution, normally only a single iteration is executed.

There are mainly two different methods to batch solve the NLS problem (2.5). They are
presented in the following subsections.
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2.3.1 Cholesky factorization

The Gauss-Newton step solves (2.5) imposing null derivative of the squared norm term w.r.t.
the state estimate update ∆µ.

∂‖A∆µ+ r‖2

∂∆µ
=
∂(∆µ>A>A∆µ+ 2∆µ>A>r + r>r)

∂∆µ

= 2 A>A︸ ︷︷ ︸
Λ

∆µ+ 2 A>r︸︷︷︸
ν

= 0. (2.6)

Imposing null derivative, the solution of (2.5) is

Λ∆µ∗ = −ν. (2.7)

Note that the Gauss-Newton method is equivalent to Newton’s method by approximating
the Hessian cost by the squared Jacobian (2A>A), since the gradient of the summation of
the squared residuals is 2ν.

Solving (2.7) requires the inversion of Λ which may be a large matrix (and growing along
the SLAM experiment). To address it, the Cholesky factorization can be used Λ = R>R

being R an upper triangular matrix (iv). Then, (2.7) becomes

R>R∆µ∗ = −ν, (2.8)

which can be solved using a forward-substitution followed by a back-substitution

R>y = −ν, (2.9)

R∆µ∗ = y. (2.10)

As previously stated, the information matrix Λ is very sparse. Efficient Cholesky fac-
torization implementations are suitable for sparse matrices [Davis, 2006; Chen et al., 2008].
Furthermore, the resulting factorization matrix R is normally sparse speeding up the forward
and back-substitution processes.

Exploiting landmark-based sparsity structure

As commonly done in Bundle Adjustment methods since [Konolige, 2010], the sparsity
structure of landmark-based SLAM can be exploited to further improve computational ef-
ficiency [Kümmerle et al., 2011]. Consider that the robot poses xP and landmarks xL are
ordered in blocks. Then (2.7) can be rewritten as[

ΛPP ΛPL

Λ>PL ΛLL

][
∆µP

∆µL

]
= −

[
νP

νL

]
. (2.11)

(iv)or equivalently, Λ = LL> being L a lower triangular matrix: L = R>
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It can be posed as two separate equations

ΛPP∆µP + ΛPL∆µL = −νP (2.12)

Λ>PL∆µP + ΛLL∆µL = −νL. (2.13)

Then, solving for µL in (2.13) and substituting in (2.12) we obtain a new smaller linear
problem

(ΛPP −ΛPLΛ−1
LLΛ>PL)∆µP = −νP + ΛPLΛ−1

LLνL. (2.14)

To build it, the inversion of ΛLL is required but it only has linear cost, since the informa-
tion matrix part relating to the landmark variables ΛLL is block diagonal (see the bottom-left
block corner in Figure 2.2.b). Then, solving the NLS can be done via Cholesky factorization
of the significantly smaller matrix ΛPP − ΛPLΛ−1

LLΛ>PL. Once ∆µP is obtained, ∆µL is
taken from (2.13) with no need to invert or factorize any other matrix.

This is a widely used strategy in Bundle Adjustment. In problems in which the amount
of landmarks are much higher than camera poses the reduction of the problem is significant.
However, in [Agarwal et al., 2010] the scalability of this reduction is questioned for very large
datasets. Actually, (2.14) performs a marginalization of all landmarks inducing a quite dense
problem.

2.3.2 Square-root SAM

Alternatively to Cholesky method, the problem can be solved in its square-root form. The√
SAM method [Dellaert and Kaess, 2006], solves the square-root problem using the QR

decomposition of A

A = Q

[
R

0

]
, (2.15)

being Q an orthogonal matrix (Q−1 = Q>) and R an upper triangular matrix. Applying it
to (2.5) leads to

∆µ∗ = arg min
∆µ

∥∥∥∥∥Q
[
R

0

]
∆µ+ r

∥∥∥∥∥
2

Since it is orthogonal, pre-multiplying by Q, the squared norm remains the same, obtaining

= arg min
∆µ

∥∥∥∥∥Q>Q

[
R

0

]
∆µ+ Q>r

∥∥∥∥∥
2

= arg min
∆µ

∥∥∥∥∥
[
R

0

]
∆µ+

[
b

c

]∥∥∥∥∥
2

= arg min
∆µ

‖R∆µ+ b‖2 + ‖c‖2.
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Since the second term is constant, the solution of (2.5) is

R∆µ∗ = −b (2.16)

which can be solved by back-substitution. Note that the second term is the summation of the
squared Mahalanobis norm of all linearized factors errors of the optimal solution. In other
words, ‖c‖2 is the minimum residual achievable of the linearized problem.

QR decomposition can be computed via several methods such as Givens rotations [Givens,
1958], Householder transformations [Householder, 1958], or Gram-Schmidt process [Gram,
1883; Schmidt, 1907].

Note that for the same problem the matrix R is exactly the same either from Cholesky
factorization of Λ or from QR decomposition of A since

Λ = A>A =
QR

R>Q>QR = R>R =
Chol.

Λ. (2.17)

2.3.3 Augmenting the state

When a new measurement produces a new node in the graph (an odometry measurement or
observing a new landmark), at the time of rebuilding the problem, the state size should be
augmented. The information matrix Λ rows and columns should be augmented by the new
node state size. And the residuals Jacobian A only has to be augmented in its columns. In
both cases the matrix new entries are filled with zeros since the Jacobians of old measurements
w.r.t. the new variables are null.

The estimation mean can be initialized using the measurement inverse model gk(µ, zk)(v)

if available

µ′ =

[
µ

gk(µ, zk)

]
.

Note that in this case, the measurement error ek is zero. Therefore, if only this factor has
been added, building entirely and solving the problem is not required, just the state resize
and adding this factor.

2.3.4 Fill-in, sparsity and variable ordering

The fill-in of R directly affects on the computational cost of solving the forward and/or back-
substitution processes of (2.10) and (2.16). As previously stated, given the high sparsity of
Λ and A, the factorization R is normally sparse and the computational complexity of solving
(2.7) is reduced dramatically.

Moreover, altering the order of the variables induces different factorizations. The R fill-in
can be further reduced altering the order of the state variables. Despite computing the opti-
mal variable ordering given the sparsity pattern of Λ or A is NP-complete [Yannakakis, 1981],
there are some known efficient algorithms that provide variable orderings that significantly
reduce the resulting factorization fill-in. These algorithms compute good variable orderings
given the sparsity pattern of A or Λ based on the Minimum Degree ordering.

(v)The measurement inverse model gk(µ, zk) is a function such that hk([µ
>gk(µ, z)

>]>) = zk
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Figure 2.3: Fill-in induced in R without variable reordering (a) and using COLAMD reorder-
ing method taking as input the residuals Jacobian A (b) and the information matrix Λ (c);
corresponding to the factor graph example (Figure 2.1).

Exact Minimum Degree (EMD) [Tinney and Walker, 1967] and Approximated Minimum
Degree (AMD) [Amestoy et al., 2004] methods can be applied only on symmetric matrices, so
they are suitable if using Cholesky factorization since they require Λ. Column Approximated
Minimum Degree (COLAMD) [Davis et al., 2004] is able to work with rectangular matrices,
being suitable in both Cholesky and QR factorizations. METIS [Karypis and Kumar, 1995]
and NESDIS [Davis] methods use graph partitioning and then compute the Minimum Degree
ordering of the partitioned graphs. Despite being based on approximations and heuristics,
all mentioned ordering methods produce very similar fill-in ratios and its computational cost
is significantly smaller than the solve time [Agarwal and Olson, 2012].

Figure 2.3 depicts an example of the improvement in the R fill-in by using COLAMD
variable reordering. As already explained, COLAMD can be used with both residuals Jaco-
bian A and information matrix Λ. However the resulting ordering can be slightly different
(see the variables order at top of the figure).

2.4 Incremental methods

As introduced before, SLAM is normally perceived as an online robotic application. In this
case, the graph grows adding more factors and nodes as the experiment goes by. Building the
problem (2.5) from scratch (and computing the new Cholesky or QR factorization to solve
it) every time a new node and/or factor is added to the graph is far from optimal.

Incremental smoothing methods reuse the previously factorized problem and incremen-
tally update it with new nodes and/or factors directly into the factorized form. However, it
implies that the variable ordering is not altered and the previous factors are not relinearized
with the new state estimate.

Note that, no matter which factorization is used, if no relinearization is performed after
solving the problem and no new factors are added, the linearized problem (2.5) remains the
same. This means that the optimal estimation update is zero ∆µ∗ = 0. Then, considering
(2.8) and (2.16), ν = 0 and b = 0, respectively, if the residuals are not relinearized.
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2.4.1 Incremental Cholesky

An incremental version of Cholesky factorization was introduced in [Polok et al., 2013]. As
previously mentioned, the measurements only constrain a few nodes of the whole state, and
hence its Jacobians are very sparse. Let Jk be the right Jacobian column-block starting from
the left-most column that contains any non-zero element Jk = [0 Jk]. After an update, only
the bottom-right corner of the information matrix is subject to change

Λ′ = Λ + J>k ΩkJk =

[
Λaa Λab

Λba Λbb + J>k ΩkJk

]
(2.18)

Comparing the old and the new Cholesky factorizations

Λ = R>R[
Λaa Λab

Λba Λbb

]
=

[
R>aa 0

R>ab R>bb

][
Raa Rab

0 Rbb

]
[
Λaa Λab

Λba Λbb

]
=

[
R>aaRaa R>aaRab

R>abRaa R>abRab + R>bbRbb

]
Λ′ = R′>R′[

Λaa Λab

Λba Λbb + J>k ΩkJk

]
=

[
R′>aaR

′
aa R′>aaR

′
ab

R′>abR
′
aa R′>abR

′
ab + R′>bbR′bb

]
(2.19)

we see that the upper part of the factorization remains unchanged R′aa = Raa,R
′
ab = Rab,

and the Cholesky factorization has to be performed only for the bottom-right corner

R′>bbR′bb = Λbb + J>k ΩkJk −R>abRab. (2.20)

Then, the new factorized matrix R′ is obtained from the previous R by only changing its
bottom-right corner to R′bb. Finally, the problem can be solved with the corresponding
forward and back substitution

R′>R′∆µ = ν ′. (2.21)

Remember that since no relinearization of previous factors is performed, only the last factor
residual is not null ν ′ = J>k Ωkek(µ).

2.4.2 Incremental QR

Kaess et al. [2008] proposed iSAM, an incremental version of
√
SAM. Posteriorly, a more

sophisticated version iSAM2 was presented [Kaess et al., 2012]. Since QR decomposition
used in iSAM and iSAM2 is based on an orthogonal matrix, the problem can be updated and
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factorized directly from the previous factorized problem:∥∥∥∥∥
[

R

Ω
1/2
k Jk

]
∆µ+

[
0

Ω
1/2
k ek(µ)

]∥∥∥∥∥
2

=

∥∥∥∥∥Q′
[
R′

0

]
∆µ+

[
0

Ω
1/2
k ek(µ)

]∥∥∥∥∥
2

=

∥∥∥∥∥
[
R′

0

]
∆µ+ Q′>

[
0

Ω
1/2
k ek(µ)

]∥∥∥∥∥
2

= ‖R′∆µ+ b′‖2 + ‖c′‖2. (2.22)

The computational cost of the new decomposition is extremely reduced compared with the
batch decomposition of the entire residuals Jacobian A since only the last rows corresponding
to the new factor do not follow the upper triangular form.

As in the batch case, if the new measurement implies a state augmentation, a new block
column of zeros is added to the matrix R before the incremental update.

2.4.3 Relinearization and variable ordering in incremental methods

The main advantage of smoothing with respect to filtering is the capability of relinearization.
It produces higher accuracy preventing the estimation from becoming inconsistent. Addi-
tionally, variable ordering highly affects on the resulting factorized matrix R fill-in which is
related with the computational costs of the forward and/or back substitution.

However, incremental methods described above do not relinearize the old factors already
encoded in matrix R nor change the variable ordering appending new variables at the end.
Carrying incremental methods endlessly entails avoiding relinearization and variable reorder-
ing. Therefore, if one wants to exploit the SAM benefits, every so often the problem should
be rebuilt (completely or partially) relinearizing factors, reordering variables and finally re-
computing the factorization and solving.

Some heuristics are normally used to decide when the problem should be rebuilt. In
iSAM [Kaess et al., 2008], the problem is rebuilt entirely periodically after n new nodes are
added to the state. However, more elaborate mechanisms can be devised. In iSAM2 [Kaess
et al., 2012] a new graph structure is used called Bayes Tree. It encodes the non-zero entries
of the equivalent R matrix. Also, it introduces a method to partially rebuild the problem
(relinearize and reordering) depending on how much the linearization point diverged from
the current estimate. It makes a difference from iSAM in terms of computational time and
estimation accuracy.

Furthermore, variable reordering can speed-up the incremental factorization process as
well. Both incremental factorizations are faster as bigger is the left-most block of zeros of the
Jacobian. In other words, the righter the variables involved in a measurement are, the faster
the incremental factorization is. Hence, the efficiency of future incremental factorizations
depends on the current variable ordering.

As noted in [Kaess et al., 2012], in SLAM applications new factors mostly involve the
most recently observed nodes. Landmarks and/or poses that have been observed in the recent
past are more likely to be observed again. Therefore, apart from the induced fill-in in R, a
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good variable ordering for incremental methods should consider keeping the most recently
observed nodes (its variables) at the right-most part of the state. Constrained COLAMD
(CCOLAMD) ordering method allows to constrain the ordering by defining ordered groups
of variables. In [Kaess et al., 2012] CCOLAMD is used each time a variable reordering is
performed imposing the last observed nodes to be at the right-most part of the state.

2.5 Before and beyond Gauss-Newton

The Gauss-Newton NLS formulation previously presented has two main drawbacks. The
first is the computational resources demand, not only computational time but also memory
to allocate and operate with large matrices. For the last decade, due to technology advances
it has progressively been a minor drawback for most of average robotics applications, but
the issue made arise several alternative methods to face online SLAM applications such as
filtering or relaxation methods.

Secondly, Gauss-Newton may have convergence issues due to a bad initial guess and
non-linearities. The Gauss-Newton step ∆µ∗ is computed by linearizing the problem in
the current estimate. However, the quadratic form of the NLS is only approximately true
near the optimal solution. Otherwise, the Gauss-Newton step can diverge. Furthermore,
Gauss-Newton approximates the quadratic Newton step by approximating the Hessian by the
squared residuals Jacobian 2A>A. This also contributes to the divergence of the resulting
step.

In the literature, other SLAM methods have been proposed to cope with the mentioned
Gauss-Newton approach drawbacks. This section pretends to be a brief summary of these
alternative SLAM methods.

2.5.1 Filtering

Bayes filters constitute a family of methods historically applied to solve the SLAM problem.
This problem is assumed to be a Markov process (i.e. probability of events depend only on
the state previous to each event) and sensor measurements are observations of the state.

Bayes filters have in their fundamentals the aim of estimating the present value of a state.
It means, the previous state value is recursively used to build a prior on the current value:
prediction. Trivially, concatenating noisy predictions over time accumulates uncertainty and
the estimation of the state rapidly diverges from the actual state. Independent observations
of the state reduce its estimation uncertainty: update.

Applied to SLAM, the traditional Bayes filter approach only includes the current robot
configuration and a set of landmarks in the state. It implies maintaining a (relatively) reduced
problem only growing due to the size of the map.

The prediction only affects the part of the state xR referring to the robot pose due to the
motion model f :

xRk+1 = f(xRk ) + wk+1, (2.23)
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where wk is some noise normally assumed to be Gaussian wk ∼ N (0,Σwk
). This is nor-

mally performed with a dynamic model (e.g. constant velocity) or any proprioceptive sensor
measurement (e.g. wheel encoders or IMU). The second case would be equivalent to the
measurement inverse model as defined in Sec. 2.3.3, f(xk) = g(xk, zk).

In the update step, other sensor measurements observe some geometrical relation between
state variables,

zk = h(xk) + vk. (2.24)

where vk is also a noise normally assumed to be Gaussian vk ∼ N (0,Σvk
). Note the equiv-

alence with (2.3). Smoothing only considers observations since by keeping old robot poses in
the state, it does not encode causality.

Extended Kalman Filter

The Extended Kalman Filter (EKF) is the adaptation of the Kalman Filter [Kalman, 1960]
for non-linear transition and measurement models. It iteratively estimates the state and
its uncertainty modeling it as a multi-variate Gaussian distribution x ∼ N (µ,Σ). Both
prediction and update steps directly operate on the state mean µ and covariance Σ.

Whichever motion model f(x),w is used to perform the prediction step, in the EKF it
consists of an uncertainty propagation,

µk|k−1 = f(µk−1|k−1) (2.25)

Σk|k−1 = FkΣk−1|k−1F
>
k + Σwk

, (2.26)

where the Jacobian of the motion model evaluated at the current state estimation is used to
propagate the covariance:

Fk =
∂f(x)

∂x

∣∣∣∣
x=µk−1|k−1

.

Note that since the motion model only depends on the last robot state (2.23), the Jacobian
Fk will be full of zeros except for the variables corresponding to the robot pose.

The update step reduces the uncertainty of the estimation and also corrects the mean
due to the observation zk:

µk|k = µk|k−1 + Kk(zk − h(µk|k−1)) (2.27)

Σk|k = (I−KkJk)Σk|k−1 (2.28)

being Jk the measurement model Jacobian evaluated at the current state estimation µk|k−1

and Kk the so-called optimal Kalman gain

Kk = Σk|k−1J
>
k (JkΣk|k−1J

>
k + Σvk

)−1. (2.29)
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The EKF has been widely used for SLAM applications from the very first approaches [Ay-
ache and Faugeras, 1989; Leonard et al., 1992] to present applications [Li and Mourikis, 2013].

However, while the prediction step is computationally cheap due to the mentioned Jaco-
bian sparsity, the update step computational cost is important. Since the covariance matrix
Σ is dense, the complexity of the update is at least O(n2.37) due to the matrix products in
(2.28) and (2.29).

Moreover, the prediction step actually performs a marginalization of previous robot state.
Then, it avoids the relinearization of old observations leading to inconsistency due to the non-
linearity of SLAM problems [Julier and Uhlmann, 2001].

Extended Information Filter

As introduced in Section 2.2, a multi-variate Gaussian distribution can be used in canonical
or information form x ∼ N−1(η,Λ). The Extended Information Filter (EIF) is equivalent
to the EKF switched to the information form. Analogously, it operates directly over the
information vector and matrix η,Λ.

Then, the prediction step is obtained by applying (2.2) to the EKF prediction (2.25)
(2.26)

Λk|k−1 = (FkΛ
−1
k−1|k−1F

>
k + Σwk

)−1 (2.30)

ηk|k−1 = Λk−1|kf(µk−1|k−1) (2.31)

And the update step can be obtained from (2.28) via Woodbury identity (see Prop. 2 in
Appendix A)

Λk|k = Λk|k−1 + J>k Σ−1
vk

Jk (2.32)

ηk|k = ηk|k−1 + J>k Σ−1
vk

(
zk − h(µk|k−1) + Jkµk|k−1

)
. (2.33)

Note that the estimation mean is required in (2.31) and (2.33). It can be easily updated
after the prediction step using the motion model (2.25). After the update step, however,
Λk|k should be inverted to recover µk|k using (2.2). Nevertheless, the inverted matrix can be
reused in the next prediction step (2.30).

Since EIF and EKF are equivalent filters only using different Gaussian parameterizations,
EIF also suffers from inconsistency due to the bad linearization points. In contrast to the
EKF, the EIF update step is computationally cheap due to the Jacobian sparsity and the
prediction step is the one computationally expensive due to the mentioned matrix inversion.

The main benefit of EIF is the information matrix sparsity nature. As opposed to the
canonical representation, the information form encodes conditional relations instead of cor-
relation. In other words, it only has non-zero entries if the corresponding variables have been
observed (whether directly measured or as a result of marginalizing old nodes). It allows the
use of sparse algebra implementations to efficiently perform the operations.
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However, after a few prediction steps the information matrix sparsity is lost. To maintain
the sparsity in Λ, in [Thrun et al., 2004] some conditionals are removed by setting the
corresponding off-diagonal blocks to zero.

Alternatively, [Eustice et al., 2005] proposed to keep all robot trajectory in the state (i.e.
avoiding the prediction step) maintaining the sparsity in Λ without performing any approxi-
mation. In [Ila et al., 2010], the same idea was adopted. To mitigate the inconsistency issue
that normally ends in a overconfident estimation, the method discards the least informative
measurements. However, despite maintaining all trajectory in the state, none of the methods
proposed relinearizing the factors. In other words, they adopted the drawbacks from both
smoothing and filtering: large resources demands and inconsistency.

Actually, Thrun et al. [2005] proposed the so-called full SLAM defining it as a batch
information filter that keeps all variables in the state. It allows relinearization to be iteratively
solved. It is, in other words, the Gauss-Newton SAM approach described in the previous
sections.

Particle filters

In most SLAM methods, the probability density is modeled as a multi-variate Gaussian
distribution. The non-linearities of the SLAM problem (due to rotations, for example) make
this assumption very inaccurate.

Particle filters or sequential Montecarlo filters represent the probability density using a
finite number of weighted samples. They are based on the principle that any probability
density function can be approximated as the sum of weighted Dirac deltas, corresponding to
each sample, for a number of samples tending to infinite.

In mobile robotics, particle filters have been applied to robot localization [Dellaert et al.,
1999; Thrun et al., 2000]. However, for highly dimensional problems such as SLAM, the
amount of particles needed to consistently describe the probability density grows exponen-
tially. The Rao-blackwellized particle filter (RBPF) marginalizes out part of the problem
to reduce the dimensionality of the probability distribution represented by the samples. In
exchange, the load of each particle is increased since each one encodes the marginalized sub-
problem. Therefore, RBPF are capable of describing more complex probability distributions
with less samples.

Murphy and Doucet introduced the use of RBPF for SLAM [Murphy, 2000; Doucet et al.,
2000] in which the particle filter represents the robot trajectory and each sample contains the
resulting grid-based map corresponding to such trajectory. FastSLAM [Montemerlo, 2002]
proposed a similar approach with a landmark-based map using an EKF inside each particle.
Grisetti et al. [2005, 2007] proposed some improvements for grid-based RBPF SLAM resulting
in the GMapping algorithm that became very popular within the community and it is still
widely used nowadays.
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2.5.2 Relaxation methods

After posing SLAM as a NLS problem (2.5), relaxation methods were firstly seen as alterna-
tives to the costly matrix inversion or factorization required using Gauss-Newton. Recalling
(2.7), relaxation methods aim to solve the problem

Λ∆µ = −ν

without inverting nor factorizing Λ.
The computational resources demands of relaxation methods are minor. In exchange, a

large number of iterations is necessary to obtain a solution approximately equal to a single
Gauss-Newton step. The convergence rate mainly depends on how much diagonal-dominant
is the problem. In other words, how much independent is each variable from the rest.

Two main relaxation methods have been adopted to solve SLAM problems, Jacobi and
Gauss-Seidel.

Jacobi method

The most simple relaxation is the Jacobi method. It decomposes the matrix in two terms:
the diagonal and the remainder Λ = ΛD + ΛR. Then, the solution is iteratively found

∆µ(i+1) = Λ−1
D (−ν −ΛR∆µ(i)).

The main benefit of the method is that it can be performed element by element without the
need of performing, storing nor inverting the decomposition matrices

∆µ
(i+1)
j =

1

Λjj

(
− ν −

∑
l 6=j

Λjl∆µ
(i)
l

)
. (2.34)

Here, Λjl denotes the (j, l) entry of Λ and ∆µj the j-th entry of ∆µ.
At each iteration, Jacobi relaxation computes the optimal value of each variable if the

rest of variables where fixed. To compute it, the old values ∆µ(i) are always used even if
a newer value has been computed for some variables. This allows the parallelization of the
process requiring at least two vectors to store ∆µ(i) and ∆µ(i+1).

In [Thrun et al., 2004], in order to recover the (approximated) mean µ in an EIF, a
constant number of Jacobi relaxation iterations is performed following (2.2).

Gauss-Seidel method

Gauss-Seidel relaxation is similar to Jacobi relaxation. This time, the matrix is decomposed
in a lower matrix and a strictly upper matrix (i.e. its diagonal is zero) Λ = ΛL + ΛU . The
solution then can be found element by element

∆µ(i+1) = Λ−1
L (−ν −ΛU∆µ(i)).
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This can be solved by forward-substitution without need of actually computing the descom-
position nor the inversion of ΛL

∆µ
(i+1)
j =

1

Λjj

(
− ν −

∑
l<j

Λjl∆µ
(i+1)
l −

∑
l>j

Λjl∆µ
(i)
l

)
. (2.35)

Gauss-Seidel relaxation can be understood as a variation of Jacobi relaxation that directly up-
dates the values in the same vector. Thus, it uses the most recent state estimation improving
the convergence but avoiding parallelization.

Duckett and Howard introduced relaxation methods to solve SLAM problems [Duckett
et al., 2000, 2002; Howard et al., 2001]. Their proposed iterative methods were described as
“move each node to where its neighbors think it should be” which can be interpreted as a
block-Gauss-Seidel relaxation. Afterwards, the same approach was proposed by Frese et al.
[2005] at multiple resolution levels in order to improve convergence.

2.5.3 Line search

To overcome convergence issues of Gauss-Newton NLS, two different algorithm families are
devised in the different non-linear optimization literature: line search and trust region. They
can be considered as dual strategies. While trust region methods decide the maximum step
size a priori and afterwards its best direction is computed, line search methods compute the
direction of the step first and posteriorly finds its best size.

Depending on how the step direction and the search are performed, different line search
methods are devised. Line search algorithms can be generalized as finding the solution as

∆µ = −αH−1∇︸ ︷︷ ︸
d

, (2.36)

where ∇ is the gradient of the cost, i.e. the sum of squared residuals in SAM. Also, H can
be either the actual Hessian (i.e. Newton method), an approximation of the Hessian (i.e.
quasi-Newton methods) or the Identity matrix (i.e. gradient descent).

Normally, line search is applied in gradient descent or quasi-Newton methods such as
DFP [Davidon, 1959; Fletcher and Powell, 1963] BFGS [Broyden, 1970; Fletcher, 1970; Gold-
farb, 1970; Shanno, 1970] or LBFGS [Nocedal, 1980]. However, it can be applied to the
Gauss-Newton step as well.

All previously mentioned quasi-Newton methods estimate the Hessian (or its inverse)
according to the gradient change by imposing the so-called secant equation: ∆∇ = H∆µ.
The main benefit of most quasi-Newton methods is that the inverse of the Hessian matrix
can be directly estimated instead of the Hessian. It avoids the computational cost of the
Hessian inversion.

Once the step direction d is computed, the step size is determined by finding α. It can
be either exactly computed or loosely found by inexact line search.

Inexact line search iteratively searches for a value of α until some conditions are fulfilled,
such as the Armijo-Goldstein [Armijo, 1966] or Wolfe conditions [Wolfe, 1969, 1971]. The
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former only checks that the step decreases sufficiently the total residual, the latter also checks
for the slope change.

Posing the SLAM NLS problem (2.5) in terms of α and the computed direction d,

r(α) = ‖Aαd + r‖2,

null derivative w.r.t. α can be imposed obtaining the exact optimal step size

α = − d>ν

‖Ad‖2
. (2.37)

For instance, in gradient descent the chosen direction is the negative gradient d = −∇.
Then applying (2.37), the optimal step is

∆µ∗C = − ‖∇‖
2

‖A∇‖2∇. (2.38)

which is called the Cauchy point. However, gradient descent has a very slow convergence
specially when having narrowed curved valleys leading to zig-zag behaviour.

Conjugate Gradient

The Conjugate gradient (CG) [Hestenes and Stiefel, 1952] method alternates conjugate di-
rections with respect to H importantly improving the convergence of gradient descent. Two
vectors d1 and d2 are said to be conjugate w.r.t. a matrix H if and only if d>1 Hd2 = 0.
Differently from gradient descent, CG takes an H-conjugate directions instead of the gradient
itself. This can be done by taking the gradient direction and subtracting out some of the
previous search direction

dk = −(∇k − βkdk−1) with βk =
‖∇k‖2

‖∇k−1‖2
. (2.39)

The negative gradient is taken as the first direction d0 = −∇0.
CG provides the exact solution of the linear problem after a finite number of iterations

lower than the problem size. However, it can provide a good solution (below a defined toler-
ance) in a quite smaller number of iterations. Convergence speed depends on the distribution
of eigenvalues of H, the most uniformly distributed the fastest the convergence. Thus, the
condition number of the Hessian matrix is a good indicator

κ(H) =
|λmax|
|λmin|

, (2.40)

being λmax and λmin the maximum and the minimum eigenvalues of H, respectively. Hence,
the convergence of CG is faster as the condition number come closer to one.

Note that CG does not require storing the Hessian nor even the residuals Jacobian A but
only evaluate the gradient and storing the last direction and gradient norm (2.39). This entails
the main advantages for using CG in SLAM: low memory requirements and low computational
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cost of an iteration. On exchange, the main disadvantage is the slow convergence due to the
usually high condition numbers in SLAM problems.

However, the convergence can be significantly improved by preconditioning. It also can
be understood as re-parameterizing the problem. A good preconditioner should decrease the
condition number. The best preconditioner is the inverse of the Hessian, however it is exactly
what CG method aims to avoid (2.5). Therefore, finding a good preconditioner is a trade-off
between the cost of computing it and the convergence improvement achieved.

Preconditioned conjugate gradient (PCG) has been widely applied in SLAM and Bundle
Adjustment (BA) applications. The first PCG method for SLAM was presented in [Konolige,
2004] using incomplete Cholesky Factorization [Meijerink et al., 1977] as preconditioner.
Dellaert et al. [2010] posteriorly proposed to use a SLAM sub-graph as preconditioner. A
simple sub-graph is easily solved using QR and the whole problem is re-parametrized (or
preconditioned) in terms of the sub-graph variables to be solved by CG.

In [Jian et al., 2012, 2013], the sub-graph preconditioner was shown to perform worse than
Jacobi for 3D BA problems and an algorithm to greedy build sub-graphs to precondition the
CG was proposed. In [Jian and Dellaert, 2014], an hybrid approach is presented which uses
iSAM to solve a sub-graph and only when the error is too high, PCG is used to solve the
whole problem. Afterwards, prior factors are added to the iSAM sub-graph to inject the
PCG solution until the next PCG solution.

PCG has been also explored to solve large BA problems either for solving the NLS problem
or the damped Levenberg-Marquardt problem (see next sub-section). Also, in [Byröd and
Åström, 2010; Agarwal et al., 2010] PCG is shown to be a good alternative in which Cholesky
factorization is infeasible or too resource demanding.

2.5.4 Trust region

Conversely to line search, trust region algorithms first defines a region where the quadratic
model is trusted and afterwards the optimal direction is found within it. Trust region algo-
rithms can be posed as a constrained version of the original problem (2.5):

∆µ∗ = arg min
∆µ

‖A∆µ+ r‖2 (2.41)

s.t. ‖D∆µ‖ ≤ r (2.42)

where r is the maximum radius allowed and D is any matrix to define a metric on the state
domain, such as the identity or the Hessian diagonal.

Several trust region algorithms and variants have been proposed in non-linear optimization
literature. Two of the most suited trust-region algorithms are described below.
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Levenberg-Marquardt

The Levenberg-Marquardt (LM) [Levenberg, 1944; Marquardt, 1963] method imposes the
trust region constraint by adding a radius term in the minimization cost

∆µ∗LM = arg min
∆µ

‖A∆µ+ r‖2 + λ‖D∆µ‖2. (2.43)

The convergence is controlled by dynamically changing the damping factor λ at each
iteration depending on the resulting step. For high values of λ, the solution of (2.43) tends
to the gradient descent direction. On the contrary, for λ tending to zero, the algorithm gets
closer to the original Gauss-Newton in (2.5). Thus, λ is a parameter that inversely refers to
the trust-region maximum radius r.

The damping factor is updated after each iteration due to how similar is the residual
reduction w.r.t. the expected reduction. If the residual reduction was significantly bigger
than the expected reduction, the trust region should be increased (decreasing the damping
factor) and vice-versa.

One drawback of LM is that it can produce a step that does not reduce the cost, due to
non-linearities, if the damping factor becomes too small. In this case, the damping factor is
increased balancing to gradient descent behaviour but the problem should be solved again.

LM can be easily applied to Cholesky and QR methods described in the previous sections
by altering the information matrix and the residuals Jacobian respectively

Λ 7→ Λ + λD

A 7→

[
A√
λD1/2

]
.

For instance, Sparse Pose Adjustment (SPA) proposed by Konolige et al. [2010] imple-
ments a LM optimization for 2D SLAM problems using Cholesky factorization. Kümmerle
et al. [2011] presented g2o using the same approach for solving 3D SLAM problems. g2o is
still widely used as back-end even in recent SLAM applications [Mur-Artal et al., 2015].

Dogleg

The dogleg method [Powell, 1970], computes the step by finding the point that remains inside
the trust region ‖D∆µ(τ)‖ ≤ r of the polygonal path, parametrized by τ , that goes from
initial point to Newton step ∆µ∗N thru Cauchy step ∆µ∗C

∆µ∗DL(τ) =

τ∆µ∗C 0 ≤ τ ≤ 1

∆µ∗C + (τ − 1)(∆µ∗N −∆µ∗C) 1 ≤ τ ≤ 2.
(2.44)

As previously stated, for big problems, the Hessian may be very expensive to be computed.
Therefore, normally a Gauss-Newton step is adopted instead of Newton’s. Also, any quasi-
Newton method can also be used as the quadratic step if the approximated Hessian is positive
definite H � 0.
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Figure 2.4: Dogleg step example. In red, the resulting step ‖D∆µ∗‖ = r. In dotted black, the
LM step path. The trust region is depicted in dashed gray.

In the same manner as LM, the trust region is dynamically resized depending on the
ratio of the resulting and the expected residual reduction. Analogously, depending on how
far is the quadratic step from the trust region, the method balances to gradient descent (see
Figure 2.4). Actually, the dogleg method can be interpreted as an approximation of LM.

The dogleg method has some advantages over LM due to the polygonal parameterization.
Firstly, instead of defining the trust region by the LM damping factor, it is directly defined
by r which is more intuitive. Secondly, the polygonal point search avoids unsuccessful steps
that can take place in LM, allowing resizing the trust region without the need of solving the
problem again.

In exchange, dogleg requires to additionally compute the Cauchy step and perform the
search of τ which requires some residual evaluations. Despite of the extensive use of LM in
BA, dogleg has been proved to be faster in some cases [Lourakis and Argyros, 2005; Börlin
and Grussenmeyer, 2013].

2.6 Discussion

SLAM is a pretty mature research topic in mobile robotics. Given the online nature of the
SLAM problem, it has been solved in several different ways according to the computational
power available at each time. Nowadays, it appears to be a consensus on posing SLAM as a
NLS optimization problem also known as graph-based optimization or SAM.

In this chapter, the state-of-art Gauss-Newton formulation was extensively developed
along with an overview of alternative SLAM methods whether used in the past or currently
being proposed. These alternative methods have been focused on the convergence or the
computational resources required to solve the problem. Apart from the filtering-based ap-
proaches, the totality of these alternatives are coherent with the factor graph representation
and complementary to the NLS formulation.

As vastly exposed, allowing relinearization is critical in terms of accuracy of the solution.
Filtering methods do not allow for relinearization since past observations are marginalized
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out to build a prior on the state. Despite it can significantly reduce the problem size, it leads
to inconsistency of the estimation.

Regarding the Gauss-Newton convergence, any trust-region or line search method can be
useful in case of poor state priors. This is the case of batch solving which is hardly the case in
a mobile robotics application. However, poor priors can also take place in some applications
in which no proprioceptive sensor is available such as visual odometry or visual SLAM.

Although apparently the SLAM back-end can be considered as a quite closed line of
research, there are still several open issues that require further investigation.

Large scale applications reveal the same computational demands problem faced by the
robotics research community in the past. For very large problems, the state-of-art methods
can be computationally unfeasible making PCG an appealing alternative to be explored.
But apart from approaching the problem strictly from the back-end point of view, one can
also look for ways to reduce the problem size. Sparsification faces the problem of reducing
the problem size without avoiding relinearization, i.e. without undermining the accuracy of
the solution (see Chapter 4). Interestingly, graph sparsification can be performed after an
accurate solution has already been found from a large and very connected graph.

Moreover, SLAM is a passive algorithm, that is, it does not drive the robot but only
builds a map and localizes it. The extended problem of autonomously driving the robot in
order to build a map while maintaining a good localization can be considered. This is called
active SLAM in the literature (see Chapter 5).

Several further open issues are still under research such as data association, outlier re-
jection or loop closure detection, to mention a few. These are not covered in this thesis.
Contrary to the common belief, in our opinion there is still a long way to go in the SLAM
research to be explored in the next years.
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3
Information theory overview

3.1 Introduction

Information theory quantifies and formalizes the analysis of all processes related with infor-
mation (communication, storage, encryption, decoding...). Its fundamentals were established
in the seminal work of Shannon [Shannon, 1948] applied to signal processing. However, in-
formation theory has been applied in several disciplines to solve a variety of problems, from
neurobiology to the understanding of black holes.

Information theory is based on a simple idea: The less known some topic is, the more
information one can get about it. In other words, the information content of this chapter is
negligible for people who are familiar with information theory and significant for the rest.
Equivalently in a more appropriate example, the same satellite-based localization measure-
ment is highly informative in case of a coarse robot localization but it has low information
content in case of having an accurate localization. Intuitively, in the words often attributed
to Claude Shannon, information can be understood as the “resolution of uncertainty”.

As previously stated, several decisions and processes in localization and mapping applica-
tions require metrics to avoid simple heuristics. Information theory has been widely applied to
localization and mapping problems by the robotics research community. It provides a formal
manner to take decisions concerning the goodness of the robot localization or environment
representation.

As described in the previous chapter, in SLAM the state is represented as a multi-variate
Gaussian distribution. The following is a collection of some relevant information metrics for
mobile robot localization and mapping applications and its form in the case of multi-variate
Gaussian distribution.
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3.2 Self-information

As previously described, information is transferred to a receiver in the degree that the receiver
has no knowledge about that information a priori. For example, recalling the Monty Python’s
gag “Nobody expects the Spanish inquisition”, each time the inquisitors appear in the scene
they provide less and less information.

Therefore, the information of an event x is high if its probability P (x) is low and vice-
versa. The self-information metric, also called surprisal, measures this effect and is defined
as

I(x) = log
1

P (x)
. (3.1)

Different logarithm basis are used. Base 2 is commonly used being the unit of self-
information bits. In case the natural logarithm is used, the unit is nats. In this thesis and
the following derivations, we use natural logarithms.

Note that self-information is well defined only in discrete probability distributions since
the probability of an specific event in a continuous probability distribution is zero.

3.3 Entropy

Entropy is a key measure in information theory. It can be defined from two slightly different
perspectives: the expected information content of an event from which we know its probability
distribution or also the uncertainty associated to this probability distribution.

As previously stated, the more probable is an event, the less information it provides. En-
tropy measures the expected information of a future event given the probability distribution
of the possible results. For instance, taking randomly a Scrabble tile from the bag has more
entropy than casting a dice. Therefore, the more unpredictable an experiment is, the more
entropy it has. In other words, entropy measures the uncertainty of an experiment, of a
probability distribution.

Shannon defined the entropy H of a discrete random variable X with possible values
{x1, . . . , xn} and probability mass function P (X) as:

H(X) = E[I(X)] = E[− log(P (X))] =

n∑
1

P (xi)I(xi) = −
n∑
1

P (xi) logP (xi).

It can be extended to continuous random variable, defining entropy as in terms of its proba-
bility density function p(X)

H(X) = −
∫
X
p(x) log p(x)dx.

For the multi-variate Gaussian distribution p(x) = N (µ,Σ), as developed in [Ahmed and
Gokhale, 1989], the entropy can be computed by

H(x) = log
(
(2πe)

n
2 |Σ|

)
, (3.2)
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being n the dimension of the state.
In mobile robotics, entropy becomes the main metric from which several uncertainty-

driven methods can be derived.

3.4 Kullback-Leibler divergence

The Kullback-Leibler divergence (KLD), also called relative entropy, is an information metric
that compares how much a probability distribution diverges from another. It was introduced
in [Kullback and Leibler, 1951] and further formalized in [Kullback, 1959] where it was referred
as directed divergence.

The KLD is well defined both in discrete and continuous probability distributions. The
KLD from p(X) to q(X), both continuous probability density functions, is defined as

DKL(p‖q) =

∫
p(x) log

p(x)

q(x)
dx. (3.3)

For multi-variate Gaussian distributions p(x) = N (µ,Σ) and q(x) = N (µ̆, Σ̆), the KLD
from p(x) to q(x) reduces to

DKL(p‖q) =
1

2

(
tr(Σ̆−1Σ)− ln |Σ̆−1Σ|+ ‖µ̆− µ‖2

Σ̆
− n

)
, (3.4)

where n is the dimension of the distributions and tr(·) denotes the trace operator.
Note that the KLD is not symmetric (DKL(p‖q) 6= DKL(p‖q)), thus the term ‘directed’

used by Kullback. Furthermore, it does not accomplish the triangle inequality so it is not
a distance. However, it is non-negative, it is zero if and only if both distributions are equal
and last but not least: it is convex.

These properties make the KLD a useful and widely used metric in SLAM applications
for maximizing the similarity of a new (simplified) distribution and the original one.

3.5 Mutual information

The mutual information (MI) between two random variables X,Y is a measure of dependence
between both variables. The MI quantifies the “amount of information” obtained about X
through Y and vice-versa.

For continuous random variables, it is defined as

I(X;Y ) =

∫
Y

∫
X
p(x, y)

p(x, y)

p(x)p(y)
dxdy. (3.5)

Intuitively, the MI measures how similar is the joint distribution p(X,Y ) to the product of the
two marginal distributions p(X)p(Y ). In fact, the MI is the KLD from the joint distribution
to the product of marginal distributions, I(X;Y ) = DKL(p(X,Y )‖p(X)p(Y )). This can be
seen trivially substituting the above into (3.3).



34 Chapter 3. Information theory overview

Additionally, the MI can be defined in terms of entropy as the entropy of both marginal
distributions minus the joint distribution entropy

I(X;Y ) = H(X) +H(Y )−H(X,Y ). (3.6)

In the multivariate Gaussian case, the MI of two subsets of variables x1 ∈ x and x2 ∈ x

of the distribution x ∼ N (µ,Σ), due to (3.2) is

I(x1; x2) = log
(
(2πe)

n1
2 |Σ11|

)
+ log

(
(2πe)

n2
2 |Σ22|

)
− log

(
(2πe)

n1+n2
2

∣∣∣∣∣Σ11 Σ12

Σ21 Σ22

∣∣∣∣∣
)

=
((((

(((
((((

(((((n1

2
+
n2

2
− n1 + n2

2

)
log(2πe) + log |Σ11|+ log |Σ22| − log

∣∣∣∣∣Σ11 Σ12

Σ21 Σ22

∣∣∣∣∣
= log

|Σ11||Σ22|∣∣∣∣∣Σ11 Σ12

Σ21 Σ22

∣∣∣∣∣
, (3.7)

where Σ11,Σ12,Σ21 and Σ22 are the diagonal and off-diagonal blocks of the covariance matrix
Σ corresponding to the concerned subsets of variables.

Equivalently, in information form x ∼ N−1(η,Λ), the MI is

I(x1; x2) = log
(
(2πe)

n1
2 |Λ11 −Λ12Λ

−1
22 Λ21|−1

)
+ log

(
(2πe)

n2
2 |Λ22 −Λ21Λ

−1
11 Λ12|−1

)
− log

(
(2πe)

n1+n2
2

∣∣∣∣∣Λ11 Λ12

Λ21 Λ22

∣∣∣∣∣
−1)

= log

∣∣∣∣∣Λ11 Λ12

Λ21 Λ22

∣∣∣∣∣
|Λ11 −Λ12Λ

−1
22 Λ21||Λ22 −Λ21Λ

−1
11 Λ12|

= log
|Λ11|

|Λ11 −Λ12Λ
−1
22 Λ21|

= log
|Λ22|

|Λ22 −Λ21Λ
−1
11 Λ12|

. (3.8)

Note that if x1 ∪x2 6= x, the information matrix Λ is the result of marginalizing out the rest
of variables in x via the Schur complement.

In the SLAM context, the MI provides a measure of how much a subset of variables injects
information about another subset. It is used in different methods for graph simplification in
order to identify the most relevant correlations.

3.6 Other metrics

For further completeness, we present other relevant information metrics hereunder.
The conditional entropy H(X|Y ), also called equivocation, measures the expected infor-

mation of the outcome of a random variable X given that another random variable Y is
known. Not to be confused with the entropy of a conditional probability. Conditional en-
tropy is the average of the entropy of conditional probability H(X|Y = y) for all values y
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that Y may take.

H(X|Y ) =

∫
Y
p(y)H(X|Y = y)dy = H(X,Y )−H(Y ).

As well as the MI, the conditional entropy measures how much two random variables are
correlated. In fact, it can be expressed in terms of the MI as H(X|Y ) = H(X)− I(X;Y ).

The cross entropy between two probability distribution p(X) and q(X) is defined as the
weighted expectation (over p(X)) of the self information of q(X):

H(p‖q) = −
∫
X
p(x) log q(x)dx.

It can be interpreted as the expected surprisal when a wrong distribution q(X) is assumed
while the data actually follows the distribution p(X). As well as the KLD, it measures how
different the distributions p(X) and q(X) are, and it is asymmetrical. Actually, it can be
defined in terms of the KLD

H(p‖q) = H(p(X)) +DKL(p‖q).

Kullback and Leibler also proposed a symmetrized version of KLD

DKL(p‖q) +DKL(q‖p). (3.9)

Actually, they referred to KLD as directed divergence and named the symmetrized KLD as
just divergence.

Instead of the symmetrized KLD, due to its simpler derivation and considering its con-
vexity, it is the KLD that has been widely adopted for maximizing the similarity of an
approximation to a target probability distribution. Due to the massive use of the directed
divergence in the literature, it finally was named in their honor and lost the directed adjective.
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4
Information Metrics for
Graph SLAM Sparsification

4.1 Introduction

One of the biggest pitfalls of graph SLAM methods is that the problem grows over time: it
suffers from scalability. To tackle such growing resource demands, efforts have been invested
mainly in two directions: by improving the efficiency of the algorithms, and by reducing the
problem size. Despite recent improvements in algorithm efficiency (see Chapter 2), the later
is still of concern, as the complexity of the solution is always linked to the size of the problem.
Therefore, methods for reducing the problem size while keeping as much of its information
as possible are essential, especially for large SLAM experiments.

As already explained, efficient SLAM methods take profit of two important characteristics
of SLAM: sparsity and capability of relinearization. Maintaining these features is important
so that a computationally efficient and accurate solution to the problem can be found.

In general, node marginalization is the only way of reducing the problem size without loss
of information. However, marginalization has the disadvantage of causing loss of sparsity,
increasing computational cost, and does not allow for relinearization, damping the accuracy.

In the graph-SLAM context, sparsification is the process of finding the best sparse and
relinearizable approximation to the result of marginalization.

4.1.1 Related work

Several SLAM methods include mechanisms to limit the problem size growth. One of the
simplest approaches consists in uniformly limiting the number of poses with respect to time
or distance traveled, or to marginalize new poses close to old ones, thus growing only with
the size of the area being mapped [Johannsson et al., 2013].
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Information metrics can also be used to limit the size of the problem. For instance, Pose
SLAM [Ila et al., 2010] only keeps new observations and robot poses if their entropy-based
information content is significant. Vial et al. [2011] proposed a conservative sparsification
based on Kullback-Leibler divergence (KLD) for a filter-based SLAM. The sparsification
is directly performed over the information matrix instead of creating a set of new factors.
Kretzschmar and Stachniss [2012] presented an information-based compression method for
laser-based pose graph SLAM, in which they compute a subset of nodes containing the scans
that maximize the mutual information of the map for that subset. Choudhary et al. [2015]
also proposed to discard some landmarks depending on their information content using an
entropy-based cost function.

Khosoussi et al. [2016] faced the issue from a different perspective resorting to graph
theory. Under some assumptions, the weighted number of spanning trees of a graph approxi-
mates the determinant of the state covariance which is strongly related with its entropy (3.2).
Then it can be used for measurement selection as well as graph pruning.

Different authors approache pose sparsification as a KLDminimization problem [Carlevaris-
Bianco et al., 2014; Eckenhoff et al., 2016; Mazuran et al., 2016]. The best sparse approxima-
tion is the one with a minimum KLD from the dense distribution resulting of the marginal-
ization. In case of using the simplest topology, i.e. a spanning tree, there exists a closed form
for the optimal solution of all factors. However, in the majority of cases a tree topology is too
simple to accurately approximate the dense result of node marginalization. For richer (more
populated) topologies, an iterative optimization is needed to solve the KLD minimization.
This is the focus of the work presented in this chapter.

State of the art methods [Carlevaris-Bianco et al., 2014; Eckenhoff et al., 2016; Mazu-
ran et al., 2016] propose the use of interior point and projected quasi-Newton optimization
methods to achieve sparsification. Both methods require the tuning of a set of parameters
that strongly affects their convergence and robustness. Our work explores new methods that
compete or outperform state-of-art methods in both accuracy and computational cost but do
not require parameter tuning.

4.2 Node removal and sparsification in graph SLAM

Usually, the reduction of the SLAM problem size is approached in two different steps: node
marginalization and sparsification (see Figure 4.1). These two processes can be decoupled,
postponing the second one depending on the available computational resources as proposed
by Eckenhoff et al. [2016].

The whole process is faced locally. Once a node is selected for removal, the local problem
is constrained over the immediate surroundings of that node, i.e., the node’s Markov blanket
(all nodes at distance 1) and all its intra-factors (the factors involving only nodes in the
Markov blanket). Optionally, this cropped problem can be solved using (2.5). Then, the new
solution can be used henceforth, yielding slightly better results especially in on-line cases,
according to Mazuran et al. [2016]. The selected node is marginalized via Schur complement,
generating a dense information matrix Λ.
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Figure 4.1: Example of marginalization and sparsification of a node (gray). After cropping a
local problem, marginalization produces a dense and non-relinearizable sub-graph (right figure).
This sub-graph is replaced in the original graph with a sparse approximation (bottom).
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Figure 4.2: Block diagram of the whole marginalization and sparsification process.

The aim of the sparsification process is to approximate the dense distribution, resulting
from node marginalization, with a sparse distribution Λ̆ defined by a new set of factors.
Sparsification is also split in two phases: building a topology, i.e., defining a set of new factors
with their measurement model hk(x); and factor recovery, i.e., computing their mean zk and
information Ω̆k. Figure 4.2 depicts all the different processes included in marginalization and
sparsification. The following sections 4.3 and 4.4 detail factor recovery and topology building
processes, respectively.

4.3 Factor recovery: Kullback-LeiblerDivergence minimization

Factor recovery computes the mean z̆k and information Ω̆k of all new factors of a given
topology. The new set of factors will produce an approximated local distribution q(x) ∼
N (µ̆, Σ̆ = Λ̆−1). Its information matrix Λ̆ will be fixed according to all the new factors
Λ̆ =

∑
k J̆>k Ω̆kJ̆k, being J̆k the residuals Jacobian of each new factor.



40 Chapter 4. Information Metrics for Graph SLAM Sparsification

We look for those mean z̆k and information Ω̆k values that make the new approximated
distribution q(x) most similar to the dense local distribution p(x) ∼ N (µ,Σ = Λ−1) resulting
after node marginalization. As introduced in Chapter 3, the Kullback-Leibler Divergence
(KLD) measures how much a distribution diverges from another. Hence, factor recovery can
be posed as finding the measurement mean z̆k and information Ω̆k of all new factors of a
given topology that minimize the KLD of the sparse approximated distribution q(x) from
the dense distribution p(x). Recalling the KLD for multivariate Gaussian distributions (3.4),
the problem can be posed as

{z̆∗k, Ω̆∗k}∀k = arg min
{z̆k,Ω̆k}∀k

DKL(p‖q)

= arg min
{z̆k,Ω̆k}∀k

1

2

(
tr(Λ̆Σ)− ln |Λ̆Σ|+ ‖µ̆− µ‖2

Λ̆−1 − d
)
, (4.1)

The Mahalanobis norm term ‖µ̆ − µ‖2
Λ̆−1

is the only one that (indirectly) depends on
the new factors mean z̆k. Therefore, it is convenient to set each new factor’s mean as the
expected measurement considering the dense distribution mean z̆∗k = hk(µ). Doing this, the
resulting approximated distribution mean becomes equal to the dense one, µ̆ = µ, and the
Mahalanobis norm term ‖µ̆−µ‖2

Λ̆−1
becomes null. This sets the optimal solution for all new

factors’ means z̆∗k.
To find all factors’ information Ω̆∗k, the rest of the expression can be simplified as follows

{Ω̆∗k}∀k = arg min
{Ω̆k}∀k �

��
1

2

(
tr(Λ̆Σ)− ln |Λ̆Σ|︷ ︸︸ ︷

ln |Λ̆|+���ln |Σ|

−�d
)
,

where constant terms w.r.t. all new factors’ information matrices Ω̆k have been deleted. The
information matrix of the approximate distribution can also be expressed as Λ̆ = J̆>Ω̆J̆,
being

Ω̆ =


. . .

Ω̆k

. . .

 and J̆ =


...

J̆k
...

 .
With all these considerations, the factor recovery solution (3.3) can be written as

z̆∗k =hk(µ), ∀k

Ω̆∗ = arg min
Ω̆

tr(J̆>Ω̆J̆Σ)− ln |J̆>Ω̆J̆|.

s.t. Ω̆ � 0 (4.2)

Since finding all z̆∗k is trivial, in the following we are only concerned with finding the optimal
information matrix Ω̆∗.

Note that in order to evaluate the Kullback-Leibler divergence as well as the posterior
formulation derived above, the covariance matrix of the dense distribution Σ is required.
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However, in some cases such as in original SLAM problems containing only relative mea-
surements, the dense problem resulting from cropping and node marginalization has a rank-
deficient information matrix Λ, so the covariance matrix Σ is singular. In such case, the
KLD is evaluated by projecting both distributions p(x) and q(x) onto a sub-space in which
the covariance is well defined. In other words, any projection Λ = UDU> such that D is
invertible can be used. Then, the KLD minimization in (4.2) is performed in the projected
sub-space by substituting

J̆ 7→ J̆U, Σ 7→ D−1. (4.3)

To obtain the projection, one can re-parametrize the problem to relative poses w.r.t an
arbitrarily chosen node [Eckenhoff et al., 2016; Carlevaris-Bianco et al., 2014] or use a rank-
revealing eigen decomposition [Mazuran et al., 2016]. The first solution is applicable to the
pose-graph SLAM case while the latter is generic.

4.3.1 Factor recovery in closed form

According to Mazuran et al. [2016], when the stacked Jacobian J̆ is invertible, the solution
to (4.2) can be obtained by imposing a null derivative w.r.t. all factor information matrices,

Ω̆k = (J̆kΣJ̆>k )−1. (4.4)

This is the case, for instance, of the spanning tree topology in pose-graph SLAM using the
projection (4.3). The factor recovery is very efficient in this case since it has a closed form
solution. However, the tree topology is normally too sparse to accurately approximate the
exact dense distribution.

4.3.2 Factor recovery via iterative optimization

Other more populated topologies do not admit a closed form solution for all factors, and (4.2)
has to be solved using iterative optimization. The state-of-the-art literature [Carlevaris-
Bianco et al., 2014; Eckenhoff et al., 2016; Mazuran et al., 2016] proposes two different
optimization methods for the factor recovery problem: Interior Point and Limited-memory
Projected Quasi-Newton (PQN) [Schmidt et al., 2009].

Interior point

In the Interior Point method (IP), the positive definiteness constraint is included in the cost
function c(ρ) as a log barrier,

c(ρ) = tr(J̆>Ω̆J̆Σ)− ln |J̆>Ω̆J̆| − ρ ln |Ω̆|. (4.5)

A stricter constraint can be applied instead of the log barrier term to also guarantee conser-
vativeness: ρ ln |Λ− J̆>Ω̆J̆| as in [Eckenhoff et al., 2016].
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The IP method consists of two nested loops. For each value of the log barrier parameter
ρi, the resulting problem (4.5) is solved in the inner loop

Ω̆(i) = arg min
Ω̆

c(ρi).

After inner loop convergence, the outer loop decreases the log barrier parameter, ρi+1 = αρi.
The outer loop ends after inner loop convergence when ρi is ‘close enough’ to 0.

The inner loop can be solved with Newton’s method using the gradient and Hessian of
(4.5) provided by Mazuran et al. [2016]:

∂c(ρ)

∂Ω̆k

= J̆k
(
Σ− (J̆>Ω̆J̆)−1

)
J̆>k − ρ Ω̆−1

k (4.6)

∂2c(ρ)

∂Ω̆ij ∂Ω̆k

= J̆k(J̆
>Ω̆J̆)−1J̆>δij J̆(J̆>Ω̆J̆)−1J̆>k + ρ Ω̆k δij Ω̆k (4.7)

where Ω̆ij is the (i, j) entry of Ω̆, δij is a matrix of zeros except a one in (i, j). Note that to
build the gradient ∇c(ρ) from (4.6) its entries must be stacked into a vector. To do that, an
order should be established only including the block diagonal entries of Ω̆ corresponding to
each factor information Ω̆k. Furthermore, due to the matrix symmetry only upper or lower
triangular entries have to be included.

The tuning of both parameters α and ρ0, together with the inner loop’s end conditions,
strongly affect the IP convergence and robustness. To ensure that the positive definite con-
straint is satisfied, the contributions to the gradient and the Hessian corresponding to the
KLD and the log barrier terms have to be balanced. Relaxing the inner loop end conditions or
enhancing the decrease factor α lead to a lower contribution of the log barrier. This speeds up
the method but may converge to a non positive definite result since the quadratic step ‘jumps
over’ the log barrier. Therefore, tuning the IP parameters is a trade off between convergence
velocity and robustness to divergence. Worse, this tuning is oftentimes problem-dependent.

Limited-memory Projected Quasi-Newton

In the Limited-memory Projected Quasi-Newton (PQN) method, the positive definiteness
constraint is imposed along the line search through the projection of Ω̆ onto the positive
semi-definite subspace. This projection consists in setting all negative eigenvalues to zero.
As with all quasi-Newton methods, PQN does not require the computation and the inversion
of the Hessian, but it evaluates the cost function (4.2) several times at each iteration during
line search. Since the Markov Blanket is of small size, the cost of evaluating (4.2) is not
significantly lower than the Hessian computation and inversion performed in IP. For this
reason, IP greatly outperforms PQN in terms of convergence time.
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Initial guess

An initial guess in case of relative measurements was proposed by Mazuran and Tipaldi [2014]
based on the off-diagonal blocks of the dense information matrix.

Ω̆k = J−>k1 Λk1,k2J
−1
k2

(4.8)

being k1, k2 the two nodes involved in the factor k (so Jk1 ,Jk2 are the non-zero blocks of Jk)
and being Λk1,k2 the off-diagonal blocks corresponding to the involved nodes. Since (4.8) is
normally not symmetric and may be non positive semi-definite, its closest symmetric positive
semi-definite approximation [Higham, 1988] should be taken instead. Such initial guess is
usually much better than the identity matrix often used by default as will be seen in the
results in Section 4.6.

Moreover, and contrary to what is stated in [Mazuran et al., 2016], this initial guess can
be suited to IP with the appropriate initial log-barrier parameter ρ0. For this, the gradient of
c(ρ) (4.6) can be split in two terms, the KLD term and the positive definite constraint term

∇c(ρ) = ∇KLD + ρ∇PD.

To balance their respective contributions we propose to take a weighted ratio between both
terms’ norms, obtaining a warm start

ρ0 = ω
‖∇KLD‖
‖∇PD‖

.

4.3.3 Factor recovery with Factor Descent

Inspired in block-coordinate descent methods, we propose an iterative method for factor
recovery called Factor Descent (FD). Each iteration consists in solving for a block of variables
(those defining one factor’s information matrix Ω̆k) while fixing the rest. The optimal solution
in the factor’s subspace is computed analytically, that is, there is no fitting to any linear or
quadratic function.

Solving (4.2) only for the k-th factor leads to

Ω̆∗k = arg min
Ω̆k

tr(Ῠk + J̆>k Ω̆kJ̆kΣ)− ln |Ῠk + J̆>k Ω̆kJ̆k|

s.t. Ω̆k � 0 (4.9)

where Ῠk is the information matrix constituted by the rest of the factors in the topology,

Ῠk =
∑
i 6=k

J̆>i Ω̆iJ̆i . (4.10)

Descent of the KLD cost is achieved factor by factor, and hence the Factor Descent name.
After solving (4.9) for one factor, we iterate over all the factors until convergence.
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Some similarities with block-relaxation methods can be established since they also com-
pute the solution of a subset of variables leaving the rest fixed. However, while relaxation
methods solve linear problems, FD directly finds the optimal solution of the non-linear prob-
lem (4.2) for one factor when the rest of factors are fixed.

Considering all factors other than k are fixed, the optimal Ω̆k can be computed analyti-
cally by finding the null derivative of (4.9),

∂DKL(p‖q)
∂Ω̆k

=
∂
(
tr(Ῠk + J̆>k Ω̆kJ̆kΣ)− ln |Ῠk + J̆>k Ω̆kJ̆k|

)
∂Ω̆k

= 0. (4.11)

This can be done in different manners depending on the particular properties of Ῠk and J̆k.
Consider the following propositions (see proofs in the Appendix A).

Proposition 1 If Λ̆ is invertible and J̆k is full rank, the derivative (4.11) becomes null in

Ω̆k =(J̆kΣJ̆>k )−1−L−>QL

(
Ῠk −ῨkQ

>
0 (Q0ῨkQ

>
0 )−1Q0Ῠk

)
Q>LL

−1 (4.12)

being the LQ-decomposition(i) of J̆k = LQ =
[
L 0

][QL

Q0

]
.

Proposition 2 If Ῠk is invertible and J̆k is full rank, the derivative (4.11) becomes null in

Ω̆k = (J̆kΣJ̆>k )−1 − (J̆kῨ
−1
k J̆>k )−1. (4.13)

Furthermore, it can be efficiently solved using the Cholesky decomposition of Ῠ = R>R

Ω̆k = (J̆kΣJ̆>k )−1 − (ΓΓ>)−1, (4.14)

where Γ = J̆kR
−1 is directly obtained by back substitution.

Proposition 3 If Λ̆ is invertible, J̆k is full rank and nul(Ῠk) = rank(J̆k), the derivative
(4.11) becomes null in

Ω̆k = (J̆kΣJ̆>k )−1. (4.15)

Prop. 1 applies to all cases, if one takes care to project the sub-graph with (4.3) if
necessary, but its computation is more expensive than the other two propositions. Prop. 2
applies to the cases where the sub-graph with the current k factor removed would still be full
rank. Otherwise, when the rank loss after removing the k factor equals the factor’s degrees
of freedom, Prop. 3 applies.

Cases where neither Prop. 2 nor Prop. 3 apply, and therefore we must resort to Prop. 1,
include e.g landmarks observed from two monocular views (removing one view’s factor ren-
ders the landmark’s depth unobservable) or constrained IMU motion factors (removing the
constraining factors renders the IMU biases unobservable). In SLAM problems such that all

(i)LQ-decomposition of a full row-rank matrix is equivalent to the QR-decomposition of its transposed.
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Algorithm 1 Factor descent method
Input: Dense mean µ and covariance Σ, topology T = {. . . , hk(), . . .}
Output: All factors’ mean z̆k and information Ω̆k

// Precompute constant variables
for hk ∈ T do

Jk ← evaluateJacobian(hk,µ)
Φk ← (J̆kΣJ̆>k )−1

z̆k ← hk(µ)
end for
KCF ← ∅ // Closed form factors’ indexes
while not endConditions() do
// Avoid recomputation of closed form factors
k = nextFactor()
while k ∈ KCF do
k = nextFactor()

end while
// Factor descent
Ῠk ←

∑
i 6=k J̆>i Ω̆iJ̆i

switch rk(Ῠ)
case dim(Ῠ) // Proposition 2

Ω̆k ← Φk − (J̆kῨ
−1
k J̆>k )−1

case dim(Ῠ)− rk(J̆k) // Proposition 3
Ω̆k ← Φk

KCF ← k // Store closed form factors to save iterations
default // Proposition 1

Ω̆k ← Φk − L−>QL

(
Ῠk − ῨkQ

>
0 (Q0ῨkQ

>
0 )−1Q0Ῠk

)
Q>LL

−1

end switch
// Ensure positive definite solution
if Ω̆k � 0 then

V,λ← eigenDecomposition(Ω̆k)
Ω̆k ← Vdiag(max(ε,λ))V>

end if
end while

nodes are of the same dimension and all factors correspond to relative measurements (such
as pose-graph SLAM), either Prop. 2 or 3 are applicable.

The overall factor descent method is described in Alg. 1. Since the first term (J̆kΣJ̆>k )−1

of all three solutions (4.12), (4.14) and (4.15) does not depend on the rest of factors, it can
be computed only once at the beginning of the algorithm. This term can be interpreted as
the projection, onto the k-th factor’s measurement space, of the information of the dense
distribution resulting from node marginalization. Analogously, the second term in both cases
is the projection, onto the measurement space of the k-th factor, of the information of the
rest of factors.

In case of a rank-deficient dense distribution Λ, the projection (4.3) can be applied as
well. Note that the information matrix corresponding to the rest of new factors must be
projected as well

Ῠk 7→ U>ῨU.
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In this case, assuming that Λ̆ is invertible is equivalent to assuming that the rank is not
decreased, rk(Λ̆) = rk(Λ). Also, a full rank Jacobian J̆k only implies linear independence
of all measurement elements. With these considerations, we can ensure that all assumptions
are taken without loss of generality.

Closed form factors

Prop. 3 applies in those cases where the second term of (4.12) is null. That is, in those
factors whose Jacobians J̆k are linearly independent of all the rest of factors’ Jacobians of
the topology. Therefore, the projection onto the measurement space of the k-th factor, of the
information of the rest of factors is null.

In FD, factors in which Prop. 3 applies are only solved once, since the solution does not
depend on the rest of the factors and hence is constant. The method, then, iterates over the
rest of the topology.

Note that the solution (4.15) is exactly the same as (4.4) applicable in case of an invertible
stacked Jacobian J̆ as demonstrated by [Mazuran et al., 2016]. Trivially, a topology such
that the Jacobian of each factor is independent from the rest (Prop. 3) produces an invertible
stacked Jacobian.

However, in a more general case, in some topologies Prop. 3 may apply to just some
factors. In that case, these factors can be solved via closed form (4.4) and the iterative factor
recovery (no matter which method is used) has to be performed only for the rest of factors.
Therefore, we want to emphasize that Prop. 3 extends the cases demonstrated by Mazuran
et al. [2016], in which the the closed form solution (4.4) is applicable.

Positive-definiteness

The solutions (4.12) and (4.14) are based on the KLD derivatives, and no positive definiteness
constraint is applied. Therefore, the result may be a non positive definite solution if the
second term of (4.12) or (4.14) is larger than the first term. That is, if the projection of
the information of the rest of factors has a larger information content than the projection of
the dense distribution. In other words, when the approximation made by the rest of factors
Ῠk is not conservative in some direction, the optimal k-factor would subtract this excess
of information, leading to a negative eigenvalue of Ω̆k. In this case, we set all negative
eigenvalues to a small positive value ε.

Non-cyclic Factor Descent

Factor Descent iterates over all factors cyclically. Clearly, the order in which the factors are
optimized can be altered to our benefit. To improve convergence, we propose selecting at
each step the factor that will decrease the KLD the most. To find it, we make use of the
gradient of the KLD w.r.t. each non-zero element of Ω̆ (thus, each element of each Ω̆k)

∂DKL(p‖q)
∂Ω̆k

= Jk
(
Σ− (J̆>Ω̆J̆)−1

)
J̆>k . (4.16)
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The gradient vector is formed by different segments corresponding to all the factors. Each
one of these vector segments is built appending the upper (or lower) triangular entries of the
matrix (4.16). We select the factor with the largest corresponding gradient segment norm as
the one that would reduce the KLD the most.

4.4 Topology

Whichever factor recovery method is used to solve (4.2), its result is only the best approxima-
tion that can be achieved given the topology used. But different topologies produce different
approximations. Therefore, the design of the topology is critical in terms of the accuracy of
the sparsification approximation. The accuracy of the solution depends on how much the
selected topology can explain the dense distribution.

We focus on the graph SLAM problems in which all factors correspond to relative mea-
surements between pairs of nodes. For simplicity, we consider that all nodes are of the same
dimension. As previously stated, the simplest topology using relative measurements is a
spanning tree. The Chow-Liu tree (CLT) defines the tree topology that can encode more
information from the dense distribution. To do that, it recalls on mutual information (MI)
between all pairs of nodes in order to measure which nodes are more correlated.

However, both MI formulations (3.7) and (3.8) require a non-singular dense information
matrix Λ. Precisely, as previously stated, in graphs containing exclusively relative measure-
ments the resulting dense information matrix is singular. The main objective of computing
the MI between pairs of nodes is measuring how a potential factor between each pair would
explain the original dense distribution. Then, working on a projected sub-space as in sec-
tion 4.3 is not a suitable solution since we lose the track of each node.

Carlevaris-Bianco et al. [2014] compute the MI of each pair of nodes using the infor-
mation form (3.8). Since the dense information matrix Λ is singular, to prevent from null
determinants a Tikhonov regularization is used within all determinants

I(xi,xj) =
1

2
log

|Λ̃ii + εI|
|Λ̃ii − Λ̃ijΛ̃

−1
jj Λ̃ji + εI|

. (4.17)

Remember that, as explained in Ch. 3, in order to obtain Λ̃ii, Λ̃ij and Λ̃jj , all variables
different from i and j should be marginalized out from Λ via Schur complement.

Conversely, Mazuran et al. [2016] compute the MI using the covariance form (3.7). But
first, the Tikhonov regularization is performed to get an approximation of the covariance
matrix Σ̂ = (Λ + εI)−1,

I(xi,xj) =
1

2
log
|Σ̂ii||Σ̂jj |∣∣∣∣∣Σ̂ii Σ̂ij

Σ̂ji Σ̂jj

∣∣∣∣∣
. (4.18)

Note that (4.17) and (4.18) are not strictly equivalent since the regularization is performed in
different places. No matter how the MI is computed, the CLT tree is built by incrementally
taking the pair of nodes with largest MI that do not create a cycle.
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However, even being the most informative tree, since a tree topology is the sparsest
topology, CLT is usually too simple to approximate the original distribution. For this reason,
the so-called sub-graph (SG) topology is proposed by Mazuran et al. [2016]. It is built
departing from the CLT and complementing it with more factors, also based on the already
computed MI values.

Alternatively, the cliquey topology [Mazuran et al., 2016] takes the CLT and converts
pairs of independent factors into one single factor by correlating them. However, it implies
breaking the homogeneity of factors creating factors that involve more than two nodes. We
propose to use only relative pose measurement factors to maintain the pose-graph SLAM
nature.

Differently to the CLT-based methods, Eckenhoff et al. [2016] proposed an `1-regularized
KLD minimization to compute the topology that will encode the most information

Λ̆∗ = arg min
Λ̆

tr(Λ̆Σ)− ln |Λ̆|+ λ‖Λ̆‖1. (4.19)

Then, the topology is built setting relative measurement factors according to the significant
off-diagonal blocks of the resulting Λ̆.

4.4.1 Topology population

We call population to the number of factors that are contained in a sub-graph. Deter-
mining the topology population K is a compromise between sparsity and accuracy. More
populated topologies achieve better approximations, however they undermine the sparsity
of the resulting graph and also solving the factor recovery becomes computationally more
expensive. While using tree topologies allows the use of closed form factor recovery solution,
complementing it with some more factors (SG) leads to constrained iterative optimization.
Moreover, all mentioned iterative factor recovery methods become slower as more populated
are the topologies. While the gradient and Hessian gets larger (IP, PQN), factor descent has
more factors to iterate over.

A policy to fix the population of the topology should be adopted. The topology must
satisfy two conditions: It has to connect all the nodes, and there should not be two factors
between the same pair of nodes since it would be redundant. Thus the topology population
K, i.e., the number of factors, for a given Markov blanket of size n should be in the interval

K ∈
[
n− 1, n(n−1)

2

]
. (4.20)

In [Mazuran et al., 2016] the population is fixed proportionally to the minimum popula-
tion, i.e. the spanning tree population

K = γ(n− 1), with γ ≥ 1. (4.21)

Then, while for small Markov blankets the result is quite dense, for bigger ones it becomes
very sparse.
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In [Eckenhoff et al., 2016], a threshold is used to consider significant the resulting off-
diagonal values of (4.19). However, the magnitude of the information matrix entries depends
on the noise of the original measurements, so the tuning of this threshold is highly problem
dependant.

A sparsification application has two opposite aims: sparsity and accuracy of the simplified
graph. For this reason, we propose a new population policy proportional to the total amount
of possible factors,

K = α
n(n− 1)

2
with α ∈ (0, 1]. (4.22)

The parameter α fixes the fill-in ratio of the resulting information matrix. It is a more
intuitive parameter to be tuned by the end user depending on the application specifications.
Also, since its quadratic form, the fill-in ratio adapts better than tree-proportional to very
different Markov blanket sizes.

Note that both tree-proportional and fill-in policies can provide populations out of the
allowed range (4.20). Then, the resulting population of (4.21) and (4.22) must be clipped to
an admissible value.

4.4.2 Building populated topologies

As the previous sections formulation shows, the factors of a populated topology affect each
other in the computation of the optimal solution. Therefore, it is important to remark that
building a sub-graph topology by incrementally taking the most informative factor does not
have to produce the most informative sub-graph topology. In consequence, despite being
CLT the most informative tree, it does not mean that the most informative sub-graph must
contain it. However, optimally solving this combinatorial problem would require significant
computational effort.

Three new alternative methods to build an informative topology are proposed below.
Figure 4.3 shows an example of the different factor recovery results using the CLT topology,
the three topology methods proposed and the best topology found by brute-force search. The
information matrix density after node marginalization can be observed as well as how CLT
is too simple to approximate it.

Downdated mutual information

As introduced early, the mutual information (MI) between pairs of nodes is a useful metric
to measure how much a factor relating those nodes could explain the dense distribution.
However, once the CLT is built, the MI between the rest of pairs of nodes computed either
using (4.17) or (4.18) may not be a reliable metric about the amount of information that
each factor candidate will be able to encode anymore. In other words, the added CLT factors
can already explain some of these correlations.

To tackle this, our first proposal is a variation of the MI-based method to complement
the CLT. First the CLT is computed in the same manner, using the MI. Afterwards, instead
of directly complementing the CLT with the subsequent MI pairs of nodes, the MI of the
remaining pairs of nodes are recomputed taking into account the already added CLT factors.
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Dense CLT MI Downdated
MI

Expected
KLD

Off-
diagonal Best

0 0.659 0.173 0.106 0.0709 0.0379 0.0363

Figure 4.3: Example of factor recovery results using different topology building methods (top).
In the middle row, the information pattern of Λ̆ (or Λ in the first case), colors depict the
log absolute values. In the bottom, the KLD of each factor recovery solution from the dense
distribution.

To do that, before recomputing these MIs, we perform a downdate on the regularized covari-
ance Σ̂ with the information of all CLT factors. Since we are working in the covariance space,
we can rely on the Kalman equations to find an optimal value for the covariance increment,

∆Σ̂ =
∑

j∈CLT
Σ̂J̆>j (Ω̆−1

j + J̆jΣ̂J̆>j )−1J̆jΣ̂. (4.23)

Note that equation (4.23) is obtained by substituting the Kalman gain (2.29) into the covari-
ance update (2.28), for each factor of the CLT, and then adding them all up. Contrary to the
Kalman update, however, this increment is added to the covariance, removing information
and thus constituting a downdate, Σ̂← Σ̂ + ∆Σ̂.

To evaluate (4.23), all CLT factors information matrices Ω̆j are required. Therefore and
ideally, factor recovery for all CLT factors should be performed. However, the factor recovery
solution for these factors depends on the rest of the factors that will be finally added to the
topology, which have not been decided yet. To resolve the situation, we resort to estimating
the final CLT factors information Ω̆j as they would be without complementing with more
factors. Hence, we approximate each Ω̆j with the closed form factor recovery (4.4).

After downdating the CLT estimated contribution to the regularized covariance Σ̂, the
MI of the remaining pairs of nodes can be computed again. Hence, we named it downdated
mutual information. It provides a measure of where there is still information that has not
been explained by the CLT. Finally, until the topology population is achieved, new factors
are added to the topology corresponding to the pairs of nodes with most downdated mutual
information.

The more complementary factors are added to the topology, the more unreliable the
downdated mutual information becomes, for the same reason as the initial MI values. Then,
the downdate could be performed once or recursively after adding each new factor. However,
in our experience, this does not contribute significantly to improve the resulting topology
compared to its computational cost. We propose only doing a single downdate after building
the CLT.
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Expected KLD decrease

Taking profit of our FD method, we propose a new topology building methodology. Departing
from the CLT topology, we incrementally build the topology by finding the factor candidate
that will decrease the KLD the most. To compute that, for each remaining factor candidate
we compute an estimation of its factor recovery solution. Afterwards, the KLD decrease of
including each factor in the topology is computed. The candidate with the most expected
KLD decrease is chosen.

In order to compute the factor recovery solution estimate, we perform one single FD
instance, without iterating. Since the rest of factors contains at least the CLT factors, Ῠk is
invertible and then the FD can be computed using Prop. 2.

Despite a single instance of Factor Descent does not provide the final factor recovery
solution, it is enough to evaluate how much new information can be provided by each factor
candidate. This alternative requires several evaluations of KLD and Factor Descent instances.
However, note that the resulting topology already has a good initial guess equivalent to the
first Factor Descent cycle.

Off-diagonal block determinant

Taking inspiration from the off-diagonal block initialization (4.8), we propose a third method
to build the topology. The off-diagonal block entries of the dense information matrix Λ

corresponding to each pair of nodes can only be explained with a factor between both nodes.
Therefore, a new factor is added to the topology corresponding to the off-diagonal blocks
with the most significant values.

Note that in this case, since we are dealing with an information matrix, adding factors
does not affect the rest of off-diagonal blocks. Thus, no downdating is needed. The abso-
lute determinant of each off-diagonal block of the information Λ is taken as an information
measure.

Differently from the other methods proposed, this topology is built from scratch using
this measure instead of complementing the CLT. For this reason it has to be build taking care
of producing a fully connected topology. To guarantee this, the first n−1 pairs of factors are
chosen such that they built a spanning-tree. Analogously to the CLT procedure, the pairs
of nodes that do not create a cycle with largest off-diagonal block absolute determinant, are
incrementally added to the topology. Once a tree topology is built, the no-cycle restriction is
not applied anymore and more pairs of nodes are added until reaching the desired population.

4.5 Multi-node marginalization and sparsification

Typically, the marginalization and sparsification procedure is done sequentially, node after
node. Once a new node is added to the graph, the marginalization of the previous one is
considered.

However, if the marginalization and sparsification of nodes is made periodically after some
nodes have been added, different alternative schemes appear. Multi-node marginalization and
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A BA B B

A & BA B

1

Figure 4.4: Example of single-node (top) and multi-node (bottom) schemes for removing and
sparsifiying nodes A and B. Triangles indicate factors resulting of an sparsification.

sparsification would be possible considering groups of nodes at a time —for instance, those
selected nodes to be removed that are connected by any factor. In the multi-node scheme,
neither the procedure for marginalization nor sparsification suffer any changes. Taking as the
Markov blanket the union of all removed nodes’ Markov blankets, the marginalization of the
group of nodes leads to a dense problem in the exact same way as if removing a single node.

In the single-node procedure, the approximations are accumulated since some factors
resulting from a sparsification become intra-factors in the next instance. In contrast, in the
multi-node scheme the process is executed only once for the entire group of connected nodes
that have been selected for removal.

Despite connected nodes normally share most of their Markov blankets, the multi-node
Markov blankets are larger than in the single-node scheme, depending on the sparsity of the
graph. This results in bigger sparsification problems and thus higher computational cost to
solve them.

The resulting topology in the multi-node scheme is usually different than that of the
single-node method. While the first is designed considering the union of Markov blankets
as a whole, the second is an accumulation of locally designed topologies. For example,
when sparsifying with tree topologies such as CLT, the resulting topology in multi-node is
indeed a tree, while the accumulation of trees in the single-node scheme usually yields a more
populated final topology. This happens naturally in the general case: the final population of
multiple applications of the single-node sparsification is higher than the final population of
one multi-node sparsification for the same number of removed nodes.

Figure 4.4 depicts a toy example of the two schemes for the removal of two nodes connected
by a factor. Note how in the single-node scheme, three factors (marked with a grey area)
resulting from the first sparsification become intra-factors in the second one.

The election of the most appropriate scheme in terms of computational time depends on
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the graph SLAM morphology. In case of very sparse problems, multi-node Markov blankets
do not or just slightly become bigger and the sparsification computational cost is significantly
smaller than in single-node. Contrarily, in highly connected graphs, the Markov blanket in
the multi-node scheme grows significantly and the factor recovery can take even more time
that sparsifying the nodes one by one.

In terms of accuracy, and in the hypothesis of equal final populations, the multi-node
scheme would be always a better choice since it does not accumulate approximations. How-
ever, for a given population policy, since the final population of the single-node scheme is
normally bigger than in multi-node, it can produce better approximations. We want to re-
mark that this is far from an advantage since after some sparsification instances, the results
are more populated than as specified.

4.6 Results

Several experiments were realized in order to evaluate and validate the work presented in this
chapter. They are organized in five batteries of tests.

A Matlab prototype was implemented to validate the cyclic FD method and test initial
guess goodness. The PQN authors’ Matlab implementation [Schmidt et al.] was used and
IP was implemented using the gradient (4.6) and Hessian (4.7) detailed in [Mazuran et al.,
2016]. However, in Matlab the most computationally expensive operations are optimized,
and therefore CPU time measures are not reliable. For this reason the two first tests where
based on the number of iterations of each factor recovery method. These two tests rapidly
discarded PQN as a suitable method for factor recovery due to its slow convergence.

The remaining three groups of tests were evolved into a C++ implementation of Factor
Descent (FD), non-cyclic FD (ncFD) as well as Interior Point (IP), in both single-node
and multi-node schemes. This allowed us to rigorously compare the convergence rates, the
performances in a real SLAM application, and to evaluate the different topology methods
proposed.

All five batteries of tests are detailed in the following subsections. In all tests, we used
real and synthetic SLAM datasets provided by [Carlone]. Additionally, in order to make a
fair comparison available, a sparsification dataset was built. This dataset contains several
sparsification problems (i.e. node marginalization dense results µ,Λ) of different Markov
blanket sizes. To build it, an experiment was run for the Manhattan M3500 dataset storing
the result of each marginalization for the 80% of the nodes.

4.6.1 Quality of the initial guess

No matter which iterative factor recovery method is used, the closer to the solution is the
initial guess the better. A first test was performed to evaluate the goodness of different initial
guesses for factor recovery in relation with the problem size. Three different initial guesses
were compared: the identity matrix (Id) as used in [Mazuran et al., 2016], the one based on
the off-diagonal blocks (ODB) proposed by Mazuran and Tipaldi [2014] and introduced in
Sec. 4.3.2, and the first cycle of our FD method (FFD).
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Figure 4.5: KLD mean and standard deviation (dashed line 1-σ) of different initial guesses vs.
the Markov blanket size for all problems of the sparsification dataset. Notice the logarithmic
KLD scale.

For all problems in the sparsification dataset, the same topology was generated using
the MI topology method and the tree-proportional population policy with γ = 2 (twice as
factors as in a tree topology). Then, the KLD of the approximation corresponding to each
initial guess from the dense distribution was evaluated and stored. Figure 4.5 depicts the
mean and the deviation of the KLD values as a function of the sparsification problem size,
i.e. the Markov blanket size. In all cases, smaller Markov blankets have better initial guess
approximations. ODB initialization performs better for small Markov blankets whereas the
proposed FFD slightly outperforms it in larger problems. The identity initial guess (Id) is
significantly inferior than the other two initialization methods (notice the vertical log axis).

4.6.2 Algorithm prototype validation

To validate the FD method prototype, we ran a test similar to the initial guess test. For all
problems in the sparsification dataset, factor recovery is computed for different combinations
of initial guess and factor recovery method. Since topology is not the issue in these tests, we
use the same topology for all cases (MI with the tree-proportional policy with γ = 2). In all
combinations, after each factor recovery (IP, PQN or FD) iteration, the KLD from the dense
distribution is stored.

The methods PQN and FD were combined with three different initial guesses: identity
matrix (Id), off-diagonal blocks (ODB) and first FD cycle (FFD). The IP method was only
combined with Id.

As with the initial guess, the convergence rate of the methods depends also on the size of
the sparsification problem. We show in Figure 4.6 the mean KLD evolution for all problem
sizes. While in small problems FD-ODB is the best combination up to 15 iterations, for
larger Markov blanket sizes IP becomes the best choice after a smaller amount of iterations.

Evaluating in terms of number of iterations is not a fair comparison since in an iteration
each method performs very different computations. However, it is enough to validate the
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Figure 4.6: Mean KLD evolution of all sparsification combinations (methods and initial guesses)
for different Markov blanket sizes corresponding to all problems in the sparsification dataset.

algorithm prototype. As expected, PQN is not a suitable method for factor recovery. This
problem is very small and the cost evaluation is significant in comparison with the cost of
computing the solution of the linearized problem. Indeed, PQN is designed for the opposite
case: large problems in which cost evaluation is negligible.

4.6.3 Convergence time

Once the FD prototype has been validated, the IP and both the cyclic factor descent (FD)
and its non-cyclic variant (ncFD) were implemented in C++. This allowed us to evaluate the
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Figure 4.7: Mean KLD temporal evolution of the compared methods, for all problems of Markov
blanket size 3 (left) and 8 (right) of the sparsification dataset. Note the different KLD and time
scales.

respective CPU time burdens, i.e, the real-time convergence rates.
To compare the convergence, the three factor recovery methods solved all problems in the

sparsification dataset, using the same topology (MI and tree-proportional with γ = 2) and
taking the off-diagonal blocks (ODB) as initial guess. The temporal evolution of the KLD of
each method from the dense distribution was stored.

The IP parameters described in subsection 4.3.2 were set as a result of a delicate tuning
process. Specifically, we set the decrease parameter α = 0.5. The balance weight ω = 0.1

was used for setting the initial value ρ0. Also, we imposed a relaxed end condition for the
inner loop when the norm of the KLD gradient becomes lower than 1. Conversely, neither
factor descent nor non-cyclic factor descent have any internal parameter to be tuned.

Figure 4.7 shows the mean KLD temporal evolution of each sparsification method for all
problems of Markov blanket size 3 and 8. As observed in the initial guess test 4.6.1, the
ODB initialization is closer to the optimal solution for small problems than for bigger ones.
Likewise, all methods converge faster for small problems since IP has smaller Hessian and FD
and ncFD have less factors to iterate over. The convergence of FD and ncFD are comparable
to IP’s. Additionally, the benefits of the non-cyclic strategy are clear, specially in bigger
problems.

4.6.4 Application to real SLAM problems

A new battery of tests was made with the purpose of evaluating the performance of each
method and the multi-node scheme in a real application.

We tested each method using both single-node and the multi-node scheme on four different
datasets with different node reduction levels. Since node selection remains out of the scope
of this work, we applied the simple strategy of keeping one node every N .

The typology of the chosen datasets is very different. The Manhattan M3500 sequence
is large and dense (i.e. highly connected), which means large Markov blankets. On the
contrary, the Killian Court dataset has few loop closures leading to small Markov blankets.
The Freiburg Building (FR079) and Intel Research Lab sequences are a compromise between
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γ = 2.0 658 2.26 741 2.27 790 2.29 889 2.36
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γ = 2.0 332 2.33 256 2.38 207 2.42 108 2.67
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le γ = 1.0 (CLT) 538 2.02 605 2.04 645 2.04 726 2.07

γ = 2.0 538 2.02 605 2.05 645 2.06 726 2.12

γ = 1.0 (CLT) 271 2.04 210 2.08 170 2.08 89 2.19K
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γ = 2.0 271 2.04 210 2.08 170 2.08 89 2.20

Table 4.1: Amount of sparsification problems solved (#) and Markov blanket mean size (n) in
single-node and multi-node schemes.

the other two datasets. Much denser datasets such as the city10k constitute a challenge for
our and the other methods, and are considered for future work.

Three iterative optimization methods were compared: IP, FD and ncFD. In all cases,
the topology was equally built using the MI method and the tree-proportional population
policy with γ = 2 as in [Mazuran et al., 2016]. We applied the same end condition for all
methods: when all elements of the KLD gradient become lower than 10−3. Also a maximum
time condition was set to 50ms. For further completeness, the CLT topology with closed
form factor recovery was added to the comparison.

An independent experiment was ran for each method using our own non-linear least
squares SLAM implementation based on Ceres [Agarwal et al.]. Node marginalization and
sparsification was performed every 100 nodes. Then, each experiment accumulates the sparsi-
fication approximations along the whole dataset. The original SLAM graph without removing
any node was taken as a baseline. The global KLD of each method from the baseline was
computed using (3.4) for the whole SLAM problem. As in [Mazuran et al., 2016], factors
involving previously removed nodes were redirected to the closest existing node. In order not
to distort the KLD results, this was also done for the baseline graph. The SLAM problem
was relinearized continuously to prevent linearization errors to be confused with sparsification
inaccuracy.

Table 4.1 contains the amount of sparsification problems solved and the Markov blanket
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KLD RMSE
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CLT 59.39 0.297 0.23 s 45.79 0.607 0.26 s 32.33 0.113 0.28 s 17.32 0.258 0.28 s
IP 3.72 0.037 8.49 s 2.58 0.026 11.41 s 2.93 0.036 14.77 s 3.17 0.138 25.51 s
FD 3.53 0.044 3.30 s 2.44 0.024 4.91 s 2.69 0.048 7.02 s 2.73 0.148 16.25 s

ncFD 3.56 0.046 2.38 s 2.46 0.024 2.97 s 2.69 0.035 3.90 s 2.75 0.136 13.52 s
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CLT 60.39 0.245 0.17 s 46.73 0.495 0.16 s 42.07 0.168 0.16 s 36.68 0.096 0.13 s
IP 3.72 0.017 6.12 s 2.76 0.028 6.70 s 3.54 0.038 7.71 s 4.80 0.093 13.00 s
FD 3.70 0.015 3.11 s 2.78 0.033 4.24 s 3.54 0.037 5.92 s 4.71 0.094 20.30 s
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CLT 28.77 0.094 0.07 s 29.00 0.048 0.08 s 29.16 0.066 0.09 s 17.47 0.118 0.09 s
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CLT 25.33 0.115 0.04 s 21.90 0.079 0.04 s 22.59 0.043 0.04 s 10.42 0.157 0.02 s
IP 5.91 0.023 1.46 s 4.78 0.028 1.37 s 5.61 0.015 1.50 s 1.99 0.018 1.31 s
FD 5.27 0.021 1.43 s 4.81 0.032 1.38 s 5.59 0.016 1.53 s 1.93 0.018 1.49 s

ncFD 5.34 0.022 1.11 s 5.16 0.030 1.00 s 5.55 0.016 0.96 s 2.05 0.018 0.92 s
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CLT 12.93 0.024 0.05 s 13.73 0.015 0.06 s 12.92 0.028 0.07 s 10.11 0.025 0.07 s
IP 2.63 0.008 1.91 s 2.27 0.005 2.15 s 1.66 0.003 2.71 s 1.16 0.009 3.75 s
FD 2.64 0.008 1.81 s 2.33 0.004 2.05 s 1.63 0.004 2.54 s 0.98 0.010 3.29 s

ncFD 2.68 0.008 1.52 s 2.31 0.005 1.59 s 1.71 0.003 2.11 s 0.99 0.009 2.63 s
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CLT 14.81 0.022 0.03 s 13.05 0.014 0.03 s 10.04 0.018 0.02 s 5.94 0.012 0.01 s
IP 3.08 0.009 1.18 s 2.14 0.003 0.97 s 1.70 0.005 1.20 s 0.97 0.017 0.92 s
FD 3.10 0.009 1.18 s 2.16 0.003 1.01 s 1.70 0.006 1.16 s 1.15 0.016 1.11 s

ncFD 3.17 0.010 0.92 s 2.22 0.003 0.78 s 1.75 0.005 0.95 s 1.29 0.018 0.98 s
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CLT 2.48 0.520 0.03 s 6.43 0.290 0.04 s 7.92 1.048 0.04 s 9.51 2.887 0.05 s
IP 0.37 0.230 0.10 s 0.43 0.181 0.22 s 2.18 0.580 0.26 s 0.41 0.473 1.24 s
FD 0.37 0.230 0.05 s 0.45 0.192 0.07 s 2.19 0.571 0.08 s 0.41 0.459 0.26 s

ncFD 0.37 0.229 0.04 s 0.42 0.182 0.07 s 2.18 0.569 0.08 s 0.41 0.385 0.26 s

M
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CLT 2.15 0.266 0.02 s 14.83 0.236 0.01 s 3.39 1.337 0.01 s 3.39 2.402 0.01 s
IP 0.08 0.053 0.07 s 0.36 0.181 0.11 s 0.42 0.262 0.09 s 0.28 0.327 0.32 s
FD 0.08 0.053 0.03 s 0.38 0.191 0.04 s 0.41 0.265 0.04 s 0.28 0.352 0.13 s

ncFD 0.08 0.053 0.03 s 0.36 0.185 0.03 s 0.41 0.255 0.03 s 0.28 0.304 0.10 s

Table 4.2: Comparison of final global KLD and RMSE and CPU time for all factor recovery
methods, different datasets and node reduction levels.

mean size using single-node and multi-node schemes for all datasets-node reduction com-
binations. As can be observed, the multi-node scheme reduces significantly the amount of
sparsifications performed according to the node reduction ratio. That is, for higher reduction
ratios, the nodes selected to be removed are more connected leading to less problems. In
exchange, there is an increase in the Markov blanket mean size. As expected, this Markov
blanket increase is significant for highly connected graphs. With the 90% of node reduction,
in Manhattan dataset, the Markov blanket mean size is almost doubled while in Killian and
Freiburg cases it remains almost the same.

Table 4.2 includes the final global KLD values after applying each method in both single-
node and multi-node schemes in the different datasets for different node reduction ratios. All
iterative methods achieve similar KLD and RMSE values in all experiments. However, the
approximation of CLT is significantly worse. This confirms once again that the tree topology
is too sparse to explain the dense distribution.
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Figure 4.8: Final baseline graph (faded gray) and sparsified graph (purple) in Manhattan
experiment with 80% of node reduction.

The optimal parameters of IP are not the same for all datasets and node reduction levels,
and a significant effort on tuning was needed to achieve the optimal KLD reduction with
as less computational cost as possible. Conversely, the simplicity of the algorithm and the
absence of parameters are the main advantages of FD and ncFD. Furthermore, both FD and
ncFD outperform IP in computational time in almost all the experiments.

Apart from CLT, ncFD is faster than IP and FD in almost all experiments. As pointed
out before, ncFD convergence improvements w.r.t. FD are specially relevant for the case of
big Markov blankets. For this reason, the computation time benefits are more significant for
the denser datasets. While in the Manhattan dataset the total time spent by ncFD is lower
than the cyclic version, in the Killian dataset it is similar.

The multi-node scheme speeds up all methods by reducing the amount of sparsification
problems to be solved. However, the Markov blanket growth may explain the different perfor-
mance in KLD and RMSE depending on the dataset. In the Killian dataset, the multi-node
scheme produces more accurate approximations than the single-node scheme for all methods
and reduction levels. However, in the FR079 and Intel datasets, using multi-node instead of
single-node is not beneficial in any of the cases regarding to KLD and RMSE. The Markov
blanket growth in the Manhattan dataset is strong, undermining the approximation accuracy,
especially for high node reduction levels.

Figure 4.8 shows the final graph of the Manhattan experiment with 80% of node reduction.
The baseline graph is overlapped in faded gray. It can be observed how, despite removing
most of the nodes, the estimation remains practically the same.
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Figure 4.9: Comparison of topology building methods using different fill-in population policies.
The plots show KLD of the optimal factor recovery solution (left) and computational cost (right)
for different Markov blanket sizes. In dashed black, the best topology, shown as a baseline. In
dotted black, the solution of the best topology using the tree-proportional population policy.

4.6.5 Topology

A different set of experiments had the purpose of evaluating the sparsification performance
regarding to the topology methods and the population policy. The comparison included all
proposed topology methods: decreased mutual information (dMI), expected Kullback-Liebler
divergence (eKLD) and off-diagonal determinant (ODD). Also, the state-of-art method which
complements the CLT based on mutual information (MI) and the best (BEST) topology found
using brute force combinatorial search were added to the comparison.

A first experiment was ran using the sparsification dataset. For each stored dense dis-
tribution defined by µ,Λ, all topology methods were launched. In each problem, the same
topology population was used using a fill-in population policy with α = 0.75. The compu-
tational cost of the topology building process and the KLD of the optimal factor recovery
solution (solved using FD) were stored for each topology method and all problems in sparsi-
fication dataset.

The best topology is obtained in a brute-force search, for all possible topology combi-
nations keeping the best set of factors in terms of KLD from the original problem. This
alternative is only considered as a baseline for comparison since it is computationally pro-
hibitive.

Figure 4.9 (left) shows the mean KLD of the factor recovery solution from the dense
distribution using each of the compared topology methods. The frame to the right in the
same figure shows the mean time required to build the topology. It is important to remark
that the plot does not include the time required for factor recovery.

The most computationally expensive topology method is eKLD since it requires a Factor
Descent instance and a KLD evaluation for all remaining factors after each new factor that
is added to the topology. Despite its computational cost, eKLD performs best in terms
of KLD for the largest Markov blanket sizes. The dMI method improves significantly the
KLD performance of MI by only slightly increasing its computational cost. It confirms that
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downdating the regularized covariance avoids adding factors between nodes whose mutual
information is already explained by the CLT factors. The ODD method is the fastest method
given its simplicity and provides topologies that can still accurately approximate the original
distribution.

The best topology found with brute force combinatorial search using the fill-in population
policy is plotted in dashed black and the best topology using the tree-proportional policy in
dotted black. It can be observed how the tree-proportional population policy becomes too
sparse for big Markov blankets leading to higher KLD values.

Finally, a last battery of experiments were made on two different datasets: the Manhattan
M3500 sequence and the Intel Research Lab sequence. The Manhattan M3500 sequence is a
large and highly connected problem. Then, it has large Markov blankets. Contrarily, the Intel
Research Lab sequence has very few loop closures and smaller Markov blankets. The Freiburg
and Killian datasets were discarded for this test since they provided very few sparsification
problems with Markov blankets bigger than 3 nodes. The topology methods and population
policies differences show up in higher problem sizes.

Several combinations of population policy and topology methods were compared. Both
population policies were used with two different values of the corresponding parameters. For
each four population combinations, four topology methods are compared, MI, dMI, ODD and
eKLD. Additionally, the CLT topology with closed form factor recovery was also included in
the comparative. Note that CLT is exactly equivalent to the MI topology method using the
tree-proportional population policy with γ = 1.0.

For each combination of topology method and population policy, an independent exper-
iment was run. In all experiments, the same 80% volume of nodes were marginalized. As
in previous tests, since node selection is out of the scope, we applied the simple strategy of
keeping one node every 5. Also, the node marginalization and sparsification is performed
every 100 nodes using FD and ODB initial guess in all cases. Therefore, each experiment ac-
cumulates the sparsification approximations along the whole dataset showing the differences
induced exclusively by the topology differences.

As in previous application tests, the original SLAM graph without removing any node was
taken as a baseline. The global KLD of each method from the baseline was again computed
using (3.4) for the whole SLAM problem. Again, the factors involving previously removed
nodes were redirected to the closest existing node as well. In order not to distort the results,
this was also done for the baseline graph. The same end conditions were used in all cases:
the KLD gradient norm lower than 10−3 and a maximum time of 0.20 ms.

The results of all experiments are contained in Table 4.3. Global KLD and RMSE of
the final graph w.r.t. the baseline are reported. Additionally, the table contains the total
computational time spent on sparsification and topology building, and the amount of factors
of the final graph.

As experienced before, the closed form factor recovery makes the CLT the fastest spar-
sification alternative and the one that produces the sparsest final graph. However, the sim-
plicity of the topology produces worse approximations leading to higher global KLD and
RMSE values. In contrast, for the same population policy, the most populated options
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Population Topology KLD RMSE Sparsification Topology Number of
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γ = 1.0 MI (CLT) 32.33 0.114 0.42 s 0.40 s 1605

γ = 1.5

MI 6.99 0.072 10.22 s 0.47 s 2283
dMI 6.74 0.066 10.50 s 0.75 s 2269
ODD 8.73 0.076 9.78 s 0.40 s 2231
eKLD 7.14 0.063 12.11 s 2.85 s 2274

γ = 2.0

MI 2.63 0.035 9.78 s 0.45 s 2624
dMI 2.22 0.023 10.84 s 0.66 s 2623
ODD 2.17 0.040 11.49 s 0.40 s 2619
eKLD 2.77 0.046 16.62 s 4.32 s 2658
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α = 0.75

MI 2.97 0.120 13.60 s 0.51 s 2482
dMI 2.57 0.020 14.55 s 0.81 s 2482
ODD 3.30 0.133 16.23 s 0.42 s 2519
eKLD 4.29 0.056 23.74 s 5.95 s 2579

α = 0.85

MI 0.85 0.046 13.90 s 0.48 s 2895
dMI 0.73 0.026 13.63 s 0.72 s 2898
ODD 0.81 0.027 15.15 s 0.43 s 2937
eKLD 1.66 0.030 19.66 s 9.12 s 2945
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γ = 1.0 MI (CLT) 29.16 0.066 0.15 s 0.13 s 366

γ = 1.5

MI 10.00 0.045 3.53 s 0.12 s 492
dMI 10.65 0.041 4.95 s 0.20 s 492
ODD 9.58 0.024 3.38 s 0.10 s 488
eKLD 5.61 0.030 4.53 s 0.71 s 509

γ = 2.0

MI 5.01 0.023 5.50 s 0.11 s 558
dMI 4.72 0.030 5.21 s 0.16 s 560
ODD 3.98 0.030 5.31 s 0.10 s 563
eKLD 3.11 0.029 5.59 s 0.84 s 577

F
ill

-i
n

α = 0.75

MI 4.52 0.034 5.74 s 0.15 s 545
dMI 3.49 0.023 6.85 s 0.23 s 547
ODD 3.39 0.023 5.77 s 0.12 s 549
eKLD 3.61 0.015 8.47 s 1.34 s 559

α = 0.85

MI 2.21 0.016 6.45 s 0.13 s 610
dMI 2.07 0.017 7.13 s 0.19 s 611
ODD 2.09 0.019 6.70 s 0.11 s 611
eKLD 2.23 0.013 7.89 s 1.63 s 618

Table 4.3: Comparison of different combinations of population policy and topology building
method using FD factor recovery in different datasets at 80% node reduction.

(γ = 2.0, α = 0.85) produce much more accurate approximations both in terms of KLD
and RMSE. Indeed, as repeatedly stated, more populated topologies can better approximate
dense distributions.

Comparing dMI and MI, it can be seen how downdating the regularized covariance slightly
improves the resulting topology, producing better approximations. While in some cases,
eKLD produces informative topologies that can better encode the dense information, in some
cases it produces worse approximations and its computational cost is significantly higher than
the rest of topology methods. While ODD outperforms MI in more populated topologies
(γ = 2.0 and α = 0.85), it produces similar or worse results in sparser cases. ODD is the
fastest method even competing with CLT building since it is only evaluated once for all factor
candidates.

Obviously, for a given population policy option, all four topology methods produce sim-
ilarly sparse final graphs. Differences are due to concatenating sparsification processes. As
we observed in the first results, the fill-in population policy produces more populated topolo-
gies in big Markov blankets. Then, to achieve similar approximations in big Markov blanket
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problems, a higher value of γ is needed for the tree-proportional policy leading to too much
populated topologies in small problems. For this reason, the fill-in policy with α = 0.75

achieves similar KLD and RMSE than tree-proportional with γ = 2 using less factors.

4.7 Discussion and final remarks

Marginalization and sparsification are valuable tools to reduce the size of SLAM problems
without undermining the accuracy and efficiency of the NLS solvers.

Deciding the topology of the new factors to approximate the original distribution is a trade
off between accuracy and computational cost. For the simplest topologies, e.g., spanning tree,
factor recovery has a closed form solution but the approximations are the less accurate. On
the contrary, more populated topologies prevent the applicability of a closed form solution,
thus iterative optimization is required to solve factor recovery; this is more computationally
costly. Furthermore, the more populated the topology is, the more computationally expensive
the factor recovery becomes, regardless of which iterative factor recovery method is used. In
exchange, the more populated the topology is, the better the original graph information can
be encoded, reaching better approximations.

In this chapter Factor Descent (FD) and Non-Cyclic Factor Descent (ncFD) are presented,
two optimization methods for the sparsification of populated topologies in large-scale graph-
based SLAM. Our results show that both methods compete with the most popular state-of-art
method (interior point) both in accuracy and computational time and even outperform it in
most cases. At the same time, the simplicity of the algorithm makes FD and its non-cyclic
version ncFD appealing approaches when compared with the interior point method, since
they do not require delicate tuning of parameters, which in IP we have found to be problem-
dependent. We demonstrated convergence improvements of the non-cyclic factor descent
variant, especially in highly connected problems.

Moreover, the multi-node scheme for periodic marginalization and sparsification has been
explored. This proved to be always a better choice in terms of approximation accuracy, and
it is more efficient in moderately connected problems.

Furthermore, three new methods for building populated pose-graph topologies and a new
policy to determine the topology population are proposed, outperforming the state-of-art
approaches.

All the work presented in this chapter has been published in [Vallvé et al., 2017, 2018a,b].
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5
Information Metrics for
Active Pose-Graph SLAM

5.1 Introduction

As mentioned in the introduction chapter, we define exploration as the problem of driving the
robot with the aim of creating a map of the environment. In exploration, perfect localization
is assumed relying in the localization (or SLAM) algorithm. In other words, paths are planned
only to pursue full coverage. However, the localization performance highly depends on the
robot trajectory and decoupling localization from exploration may lead to a poor quality
map.

Consequently, we define active SLAM as the problem of driving the robot with the aim of
autonomously creating a map of the environment while maintaining also good localization.
In active SLAM two driving forces come into play: exploration and re-localization. Both
can be posed as map and localization uncertainty reductions, respectively. As presented
before, entropy measures uncertainty. Therefore, active SLAM can be posed as the problem
of driving the robot to reduce both map and localization entropies.

In fact, improving the localization accuracy also benefits the accuracy of the resulting
map. In other words, an environment representation built from highly uncertain locations is
very inaccurate. Therefore, while pursuing map uncertainty reduction may be understood as
discovering unknown regions, reducing the robot trajectory estimation uncertainty could be
understood as improving the quality of the map so far built.

5.1.1 Related work

Most exploration techniques [Yamauchi, 1997; Shade and Newman, 2011] do not take into
account the uncertainties in robot motion and sensing and limit themselves to pursue full
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coverage.
Exploration strategies driven by map uncertainty reduction date back to the seminal

work of Whaite and Ferrie [1997] for the acquisition of 3D models of objects from range
data. Within the context of SLAM, it is the work of Feder et al. [1999], who first proposed a
metric to evaluate uncertainty reduction as the sum of the independent robot and landmark
entropies with an exploration horizon of one step to autonomously produce occupancy maps.
Bourgault et al. [2002] alternatively proposed an utility function for exploration that trades
off the potential reduction of vehicle localization uncertainty, measured as entropy over a
feature-based map, and the information gained over an occupancy grid. In contrast to these
approaches, which consider independently the reduction of vehicle and map entropies, Vidal-
Calleja et al. [2010] tackled the issue of joint robot and map entropy reduction, taking into
account robot and map cross correlations for the Visual SLAM EKF case. Torabi et al.
[2007] jointly computed the entropy reduction directly in configuration space but for a limited
number of configurations.

Stachniss et al. [2005] tackled the active SLAM problem as a one step look ahead entropy
minimization problem using a Rao-Blackwellized particle filter. The technique extends the
classical frontier-based exploration method [Yamauchi, 1997] to the full SLAM case. In [Va-
lencia et al., 2012] a similar approach is proposed using a pose-graph SLAM instead. Both
methods [Stachniss et al., 2005; Valencia et al., 2012] evaluate the joint map and trajectory
entropy change for a few frontier-based exploratory and loop closure candidate trajectories.
In [Valencia et al., 2012], exploratory actions considered omnidirectional sensing and eval-
uated paths toward positions near frontiers, disregarding orientation. In a more general
setting, a sensor, such as a laser range finder or a camera, would have a narrow field of view,
and hence, we need to deal with full poses not just positions.

Alternatively, exploration methods have been proposed based on the adaptation of differ-
ent motion planning algorithms such as potential fields or probabilistic planning. Potential
field methods have been previously suited to exploration by Prestes e Silva et al. [2002] and
Shade and Newman [2011]. However, they directly evaluate boundary conditions on de-
terministic maps of obstacles and frontiers, without taking uncertainty into account. The
adaptation of probabilistic planning methods to the exploration problem was introduced
by Oriolo et al. [2004]. In their approach called SRT, the robot executed motion commands
to a random pose sampled inside the newly observed area that was not observed in previ-
ous nodes. Posteriorly, Freda et al. presented a frontier-based SRT [Freda and Oriolo, 2005]
which randomly selected the frontier centroids of the last observation as goals. However, both
approaches directly executed the first random sample without any optimality evaluation.
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5.2 Active pose-graph SLAM

One main objective of mobile robot exploration is obtaining a dense representation of the
environment. In order to allow safe path planning, not only obstacles should be represented
but also free space.

A widely used approach to do this is combining pose-graph SLAM with occupancy grids.
Pose-graph SLAM only estimates the robot trajectory, which consists of nodes only corre-
sponding to robot poses and relative motion factors. Motion factors mainly derive from
odometry or motion commands (for consecutive nodes) or registration of extereoceptive sen-
sory data (for closing loops). At any time, a dense map can be rendered using the trajectory
estimate and the extereoceptive sensory data.

In our work, we focused on a 2D application using lidar. For closing loops, the iterative
closest point (ICP) method provides the transformation between two robot poses by finding
the best alignment of the laser scans taken at the two instances. A 2D occupancy grid is
rendered periodically placing the corresponding scans accordingly to the trajectory estimate
as described hereafter.

5.2.1 Log odds occupancy grid map

In our approach, the pose-graph SLAM estimate and raw sensor data are used to synthesize an
occupancy map. This map will be used to decide the next trajectory to be executed in order
to reduce the uncertainty in both the map and the trajectory. The mapping of unknown cells
near obstacles in the presence of uncertainty might drive the robot to areas near collision,
a situation we need to avoid. Moreover, there is a compromise between tractability and
accuracy in choosing the resolution at which the occupancy cells are discretized.

To provide an accurate computation of the occupancy map, which is necessary for the
proper active pose-graph SLAM operation, we render the map from all poses in the estimated
trajectory, and not only a limited number of them. Moreover, the resolution at which the
occupancy grid map is computed is very fine in order to effectively compute the most uncer-
tainty reduction trajectory. Instead of repeating the ray-casting operation at each iteration,
we store local occupancy maps at each robot pose, and aggregate them efficiently for the
computation of a global occupancy map.

At each robot pose k, the raw sensor data is ray-casted once to accumulate the probability
pk(c) of each cell c to be occupied. This is encoded in a log odds occupancy grid in local
coordinates

mL
k (c) = log

pk(c)

1− pk(c)
. (5.1)

The use of log odds allows us to accumulate different observations of the cell occupancy by
simple addition.

These local log odds occupancy maps are shown in Figure 5.1 for a small number of robot
poses. Negative values (black) mean free space, and positive values (white) mean obstacles.
A value of zero (gray) means unexplored. During open loop, each local map is aggregated
into the global log odds occupancy map m. To relate them in a common reference frame,
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m1 m2 m3 m4

m5 m6 m7 m8

Figure 5.1: A number of log odds occupancy maps in local coordinates.

Figure 5.2: Left: Aggregated log odds occupancy map m. Right: Classified frontier cells (red),
obstacle cells (black), free cells (white) and unobserved cells (grey).

each local map is rotated and translated using efficient image processing routines. Only at
loop closure, i.e. big trajectory estimation change, the occupancy map is recomputed from
scratch using all previously stored local log odds maps but oriented and translated according
to the newly estimated robot poses. The result is shown in the left plot of Figure 5.2.

Generalizing (5.1) to the global coordinate case, we can solve directly for aggregated cell
occupancy probabilities,

p(c) =
exp

(
m(c)

)
1 + exp

(
m(c)

) . (5.2)

Two occupancy probability thresholds define free cells (p(c) < pfree), and occupied cells
(p(c) > pobs). The rest of cells are labeled as unknown. Those free cells that is close to an
unknown cell are defined as frontier cells.

Note that this map aggregation is computed only at the mean pose estimates. To smooth
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out misclassified cells and perform the classification into free, obstacle, unknown and frontier
cells, morphological opening and closing operations on the global map are used. The resulting
detection of frontiers, obstacles and free cells is exemplified in the right image of Figure 5.2.

5.2.2 Entropy minimization

The aim in active SLAM is to plan a trajectory that maps the environment while maintaining
an accurate localization. We can rephrase this in terms of uncertainty. Maximizing the
localization accuracy is equivalent to reducing the localization estimation uncertainty. Also,
mapping the environment (i.e. discovering it) can be understood as reducing the uncertainty
of its representation. In case of pose-graph SLAM using an occupancy grid as the map, and
since this map is rendered from the trajectory estimate, the more accurate the trajectory, the
more accurate will the map be. Considering all this, our aim is to minimize the joint map
and trajectory uncertainty, thus its total entropy.

A pose-graph SLAM estimates the robot trajectory as a multivariate Gaussian distri-
bution x ∼ N (µ,Σ), and an occupancy map models the environment as a set of binary
distributions organized in a spatial grid. The rendered map m depends on the trajectory
used to render it. The joint map and path entropy is defined in Stachniss et al. [2005] as

H(x,m) = H(x) +

∫
p(x)H(m|x = x)dx, (5.3)

where H(x) is the trajectory entropy, and
∫
p(x)H(m|x = x)dx is the entropy average of all

possible maps generated with all possible trajectories.
However, averaging over the entropy of all the (infinite) resulting maps corresponding to

all the (infinite) trajectory samples in the probability distribution is unfeasible. An approxi-
mation should be adopted instead.

Such approximation must consider the following. In case of uncertain trajectory estima-
tion, p(x) is sparse and the entropy of most of the maps associated to each of the trajectory
samples would be very high. This would lead to a higher averaged map entropy term in (5.3).
Conversely, a very accurate trajectory estimation would lead to an average of very similar
and accurate maps due to the concentration of the probability distribution. According to
this, we propose the following approximation

H(x,m) ≈ H(x) + α
(
p(x)

)
H(m|x = µ). (5.4)

Here, the factor α(p(x)) aims at approximating the effect of averaging the map entropy over
the whole trajectory distribution. Our approach to simulate this effect is to set the factor to
the inverse of the determinant of the marginal covariance of the current robot pose estimate,
α(p(x)) = |Σtt|−1, where |Σtt|may be seen as a scalar measure of the localization uncertainty.
Although this does not measure the whole trajectory uncertainty but only its last robot pose,
its computational cost is very reduced. It also provided good results in our experiments.

For better readability, from now on we define m as the map rendered considering the
current trajectory mean µ, thus H(m) = H(m|x = µ).
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Our approximation differs from the used in [Valencia et al., 2012], where α(p(x)) was
not considered. Using our approximation, we experimented interesting behaviours in meth-
ods derived from minimizing the joint map and trajectory entropy. The exploratory and
re-localization forces are balanced and modulated according to the current localization un-
certainty, reducing the sensibility of the algorithm to environment specificities.

Since the trajectory estimation follows a multi-variate Gaussian distribution, the trajec-
tory entropy H(x) as introduced in Chapter 3 can be defined in terms of either covariance
or information matrix as

H(x) = log
(
(2πe)n/2|Σ|

)
= log

(2πe)n/2

|Λ|
, (5.5)

where n is the dimension of the Gaussian distribution, i.e., 3 times the number of poses in
the trajectory in the 2D case.

The map entropy, as defined in [Stachniss et al., 2005], is the summation of the entropy
of all binary random variables of each cell. However, in order to make it independent from
the grid resolution, it can be weighted due to its size as proposed in the same paper and
posteriorly used by Valencia et al. [2012]

H(m) = l2
∑
c∈m

(
p(c) log p(c) +

(
1− p(c)

)
log
(
1− p(c)

))
, (5.6)

where l is the grid resolution and c are the grid cells.
Ultimately, active pose-graph SLAM becomes a search for the sequence of robot motions

that produces the largest joint map and trajectory entropy reduction. To tackle it, we divide
our work into two different research lines: search in configuration space and search in action
space exposed in the following sections.

The search in configuration space relies on the computation of a dense estimation of
the joint entropy decrease for all valid robot configurations. Since the estimation is dense, it
performs an exhaustive search. In exchange, it entails ignoring the entropy change along the
path to reach each configuration.

On the other hand, a search in the action space allows taking into account the entropy
change along the path. However, it undermines the search completeness that can be achieved
in a reasonable amount of time. Optimal path planning algorithms are suited to tackle it.
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5.3 Search in configuration space

Some exploration and active SLAM approaches assume omnidirectional sensors. In a more
general setting, sensors such as certain laser range finders or cameras have a narrow field of
view, and hence, we need to deal with full poses, not just positions. Hence the search in
the whole configuration space (C-space). As previously stated, our work is focused in the
2D case. Therefore, the C-space is a 3D space corresponding to robot position x, y and
orientation θ. To tackle this problem numerically, the C-space is discretized in a 3D grid.
Each cell of this grid corresponds to a configuration.

5.3.1 Dense entropy decrease estimation

The entropy decrease after going from the current pose to any given C-space configuration
depends of the path taken to arrive to such pose. Different routes induce different decrease
values of trajectory and map entropies. Take for instance two different routes to the same
pose, one that goes close to previously visited locations and one that discovers unexplored
areas. In the first, the robot would be able to close loops, and thus maintain bounded
localization uncertainty. In the second, an exploratory route would reduce the map entropy
instead.

There are infinite paths from the current position to a specific configuration, and each
one induces a different effect on the entropy. This would lead to an exhaustive search of the
optimal path to each configuration, which would be intractable. Instead, we consider the
joint entropy decrease after appearing, or “turning up”, in each configuration. That is, not
considering the effect of the path.

We are not interested in the joint entropy at one instant, but only on its change (its
decrease) with respect to the current entropy, after “turning up” in each configuration. Fig-
ure 5.3 shows an example of the dense entropy decrease estimation. Red cells depict higher
expected entropy decrease values after appearing at such configurations. On the contrary,
blue cells depict configurations in which the joint entropy decrease is expected to be negli-
gible. As shown in the figure, entropy decrease can be due to map discovery (map entropy
decrease) or re-localization (trajectory entropy decrease) or a combination of both.

For the estimation of the overall joint entropy decrease we need only to evaluate separately
the decrease of the two terms in (5.4), i.e., trajectory and map entropies, for each configuration
in C-space, and balance the second using α(p(x)) as described. The following is a detailed
explanation of how a dense estimation of each term is computed.

Trajectory entropy decrease estimation

Considering the “turning up” assumption, the jump from the current pose to each free con-
figuration in the C-space will produce the same marginal posterior, i.e. the same trajectory
entropy change, except when a loop closure can be detected at that configuration. Thus,
we set the trajectory entropy decrease estimation of each 3D cell distinguishing between two
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Figure 5.3: Example of a dense entropy decrease estimate in C-space. Each layer represents a
slice of the C-space at a different orientation value. Red areas indicate candidate configurations
with maximum entropy reduction values.

cases:

∆H(x) =

∆HLC(X) if a loop with the corresponding configuration can be closed,

0 otherwise.
(5.7)

Therefore, it is necessary to identify all configurations in which a loop can be established
with any trajectory node of the pose-graph. To do so, we define the match area of the sensor
as the intervals in x, y and θ where loops can be closed. Thus, a loop can be closed in each
configuration in the C-space inside the match area of any previous pose of the trajectory.
Then, for each trajectory pose in the pose-graph, we annotate the C-space cells inside their
match area with the corresponding entropy decrease.

This decrease is computed as follows. Similarly to the information gain used by Ila et al.
[2010], the entropy change after a loop closure in pose-graph SLAM is

∆HLC(x) = − log |I + JkΣJ>k Ωk|, (5.8)

being Ωk the information matrix of the loop closure measurement noise (see Appendix A,
Prop. 6). Note that the computation of the trajectory entropy decrease at loop closure
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requires the covariance matrix Σ which is not directly available using pose-graph SLAM. Let
us recall the Jacobians sparsity which only contains two non-zero blocks corresponding to the
two observed pose-graph nodes (say i and j), Jk = [0 · · · Jki · · · Jkj · · · 0]. Considering this, in
order to compute 5.8, the covariance matrix is not required entirely. Only the the diagonal
blocks Σii, Σjj and the off-diagonal block Σij corresponding to the loop closing nodes are
required:

JkΣJ>k =
[
Jki Jkj

] [Σii Σij

Σji Σjj

][
J>ki
J>kj

]
.

Following the “turning up” assumption, the covariance used to simulate the loop closure
after appearing in each configuration is taken equal to the current configuration. Hence,
to evaluate (5.8) for all trajectory nodes, all the diagonal blocks and the right-most block
column of Σ must be recovered. This can be efficiently performed as in [Ila et al., 2010, 2015;
Kaess and Dellaert, 2009].

To summarize, the dense trajectory entropy decrease estimation is built with a few steps.
First, the block diagonal and right-most block column of the covariance matrix is recovered.
Afterwards, for each node of the pose-graph trajectory, the entropy decrease of a loop clo-
sure (5.8) is evaluated. Then, the resulting value is annotated in the cells that are around
the trajectory node within the match area. The rest of the cells remain with null trajectory
entropy change.

More sophisticated approaches for trajectory entropy change in open loop could be de-
vised. For instance, in order to approximate the noise propagation, the trajectory entropy
change could be set as a growing value along the distance from the current robot configura-
tion. However, the trajectory entropy does not necessarily increase in open loop. Depending
on the relative uncertainty of the current robot pose estimation w.r.t. the average trajec-
tory, the determinant in (5.5) can produce a decreasing entropy when, in fact, new nodes are
injecting noise to the state. In our opinion, this entropy decrease happens since entropy is
measuring the “average uncertainty” of a trajectory that is increasing its number of nodes.
Comparing entropies of trajectories of different number of nodes is not straightforward since
it means comparing the entropy of multi-variate Gaussian distributions of different dimen-
sions. We are content with evaluating the most significant trajectory entropy changes, which
happen in loop closures, avoiding the comparison of entropies in open loop.

Map entropy decrease estimation

According to the map entropy (5.6), the change in map entropy is attained after moving to
a new configuration and changing the cells probability p(c). Entropy will be decreased after
classifying unknown cells (p(c) ≈ 0.5), either to obstacle (p(c) ≈ 1) or free (p(c) ≈ 0).

Frontiers are widely used in exploration literature [Yamauchi, 1997]. They are defined
as the boundary between the unknown and free areas. Trivially, unknown cells can only be
classified thru frontiers.

Estimating the amount of cells that will be discovered behind a frontier is challenging,
but it is heavily linked to the size of the frontier visible to the sensor. We are content with
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approximating entropy reduction as the map entropy reduction after classifying the frontier
cells visible to the sensor from each robot configuration.

Some considerations can be made in order to improve the efficiency and the accurateness
of this computation.

• The same robot position with different orientations share several beam directions of
both scans.

• Close frontier cells can be discovered by different beams of the same scan and should
be computed once.

• The use of image convolutions is an efficient tool to take benefit from.

Taking these considerations into account, we designed a method to efficiently build a
dense map entropy decrease over the discretized C-space (3D grid). First, a ray casting 2D
grid is computed for each of several discretized laser beam directions. Afterwards, for each
robot orientation layer, the corresponding laser beam directions are summed. The result is a
3D grid corresponding to the C-space that contains the amount of frontier cells that can be
observed from each configuration.

This method is detailed below with figures to exemplify the process in a specific case of
frontiers and obstacles and a beam direction of 202◦.

1. Ray casting grid: First, we want to compute the ray casting for all positions and all laser
beam directions. That is, a 3D grid which dimensions are x, y, and the direction of each
laser beam. Each layer of this grid corresponds to one discretized beam direction of the
whole 360◦. For each beam direction layer, we want to annotate for each position (x, y)
if the nearest non-free cell along the beam direction is a frontier or not (an obstacle). For
each beam direction layer, this can be computed using a one-dimensional convolution
motion kernel as explained below.

We start the process from an image containing ones
(red) in frontier cells and a minus ones (blue) in ob-
stacles. The rest of the cells contain zeros (black).

We use a kernel that contains zeros everywhere ex-
cept for the cells in the corresponding beam direc-
tion which have positive exponentially decreasing
values.



5.3. Search in configuration space 75

The result of a convolution of this kernel over the
previous image contains positive values (red) for
those cells such that their closest non-free cell in
the beam direction is a frontier.
Otherwise, those cells such that the closest non-free
cell in the beam direction is an obstacle contain
negative values (blue).

After binarizing the positive values, we obtain the
cells from which a frontier can be observed in the
beam direction. The values in unknown cells are
set to zero since we only consider computing the
map entropy change for free configurations.

2. Multiple beams compensation: As previously stated, each frontier cell will be observed
by a different amount of beams depending on how far is the sensor. Knowing the cell
size l and the angle between two consecutive laser beams β, the amount of beams b
that cast at the same cell is inveresly proportional to the distance r from the robot to
that cell

b =
l

r tanβ
.

Therefore, before proceeding to sum different beam directions corresponding to laser
angle of view at each robot orientation, the previous ray casting should be compensated
in order not to overestimate the number of frontier cells being observed.

For each beam direction layer, a convolution is per-
formed over an image with ones (white) at frontier
cells and zeros (black) at the rest.
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Again, the kernel is full of zeros except for the
cells in the corresponding beam direction. In
this case, these cells contain the compensation:
min(1, r tanβ/l), being r the distance to the ker-
nel’s center.

The result of this convolution is multiplied by the
corresponding binary ray casting layer to discard
occlusions. Finally, we obtained a compensated ray
casting layer.

3. Map entropy decrease grid. Finally, we are able to compute the dense map entropy
decrease estimation. That is, a 3D grid corresponding to the discretized C-space con-
taining the map expected entropy decrease after appearing into each configuration.
This is performed layer by layer, i.e. for each robot orientation.

Each orientation layer is obtained by adding the
compensated ray casting beam directions corre-
sponding to that orientation and the sensor angular
aperture.
Since the result of the summation is the amount of
frontiers cells discovered from each configuration,
the entire 3D grid is weighted by the entropy change
of discovering a single cell from unknown (to either
free or obstacle), following (5.6).

Finally, to compute the joint entropy decrease, before summing the map entropy decrease
estimation grid and the trajectory entropy decrease estimation grid, the former is weighted
by the inverse to the determinant of the marginal covariance at the current configuration
α(p(x)) = |Σt|−1 according to (5.4).

Frontier-based strategies assume that the most map entropy decreasing configurations are
just in front of a frontier. However these poses are not necessarily close to frontiers. Actually,
the most map entropy decrease locations are normally far from frontiers (see Fig 5.4).
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Figure 5.4: Exploration goal at a frontier (blue) and optimal map entropy reduction goal in C-
space (green). Frontier cells are depicted in red, obstacles in black, and the laser scan ray-tracing
of both configurations in their corresponding faded color.

5.3.2 Planning for joint entropy minimization

We propose two different ways of using the dense entropy decrease estimation in active pose-
graph SLAM. Both strategies drive the robot with the objective of minimizing both map and
trajectory entropies, i.e., maximizing coverage while maintaining the robot well localized.
The first strategy builds an entropy-decrease potential field and plans a trajectory towards
a minima using a gradient descent method. The second approach directly chooses the most
entropy decrease configuration as the goal and plans a trajectory through the free space to
reach it.

Gradient descent on an entropy decrease field

In gradient descent motion planning methods, the objective is to find a scalar function φ

defined over all C-space cells such that its gradient ∇φ will drive the robot to a minimum. In
our case, the gradient of φ will drive the robot to the configuration corresponding to a joint
trajectory and map entropy minimum.

Shade and Newman [2011] defined a potential scalar function using attraction and re-
pulsion fields on frontiers and the current robot pose, with some boundary conditions on
obstacles. Choosing frontiers as attractors poses some challenges. Frontier cells have a signif-
icant probability of being yet unseen obstacles. The use of potential fields to reach frontiers
produces perpendicular robot configurations at the arriving locations, thus making the robot
potentially face these new obstacles directly, with the consequent unavoidable collision. More-
over, as previously stated, normally the most entropy decrease configuration does not remain
in the frontiers (see Fig 5.4).
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Figure 5.5: The entropy decrease grid is cropped at a desired value v and smoothed with a
harmonic function to produce the desired information potential field. Zone (a) represents a region
with steep entropy reduction due to a possible loop closure. Zone (b) represents an exploratory
area.

In contrast with this approach, we propose to build a potential scalar function from the
joint entropy decrease estimation. For it to become the scalar function φ, one more step
is required. The dense entropy decrease estimation grid is turned into a potential field by
performing some smoothing convolutions using an harmonic function of the form

φx,y,θ =
1

6
(φx−1,y,θ + φx+1,y,θ + φx,y−1,θ + φx,y+1,θ + φx,y,θ−1 + φx,y,θ+1), (5.9)

which basically performs a mean of all the neighbor cells in the C-space grid. To prevent the
smoothing from removing small but high entropy decrease configurations, attraction areas
are defined as those under the threshold of 60% of the minimum entropy value. The joint
entropy decrease values of these cells are reset after each smoothing convolution (see Fig 5.5).

In our computation of the entropy grid we have considered obstacles to adequately prop-
agate entropy change along sensor rays taking into account occlusions, but we have still not
penalized configurations that get close to them. To this end, we resort to the use of bound-
ary conditions as in [Shade and Newman, 2011], with the difference that instead of using
Neumann boundary conditions to guarantee flow parallel to obstacles, we still want some
repulsive perpendicular effect from them. This effect can be achieved by mirroring weighted
inner cell values near obstacles. A unitari weight means parallel traverse along the obstacle
boundary, and larger values induce repulsion. In the method reported here we start each
planning step with low repulsion to reduce bottlenecks at local minima and increasing it and
re-planning in case a collision is detected. The final path is obtained traversing the gradient
descent steps.

The most interesting feature using gradient descent planning is the resulting path rather
than the final configuration. While the convergence to the largest joint entropy reduction
configuration cannot be assured, the path taken goes thru the potential field valleys, i.e. thru
the most entropy decreasing configurations. For instance, it can produce a path that closes
some loops before reaching an exploratory goal. Or, conversely, a path to a loop closures that
explores some new areas along the travel.

Nevertheless, gradient descent methods perform poorly in large environments with many
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obstacles, requiring huge smoothing iterations and suffering severely of bottleneck effect and
local minima (doors or thin passages). Also, holonomic traverse is assumed in this planner,
providing paths that are not realizable by most of mobile robots.

RRT* to the configuration with largest entropy decrease

A second option explored in our work is to use a fast and asymptotically optimal planner like
RRT* [Karaman and Frazzoli, 2010] to drive the robot to the largest joint entropy decrease
configuration. This method renounces to the most entropy decreasing path and chooses
instead the shortest path in the free C-space meeting non-holonomic restrictions if needed.

The RRT* planner does not suffer from local minima and it does not require the above-
mentioned smoothing iterations. Then, it is significantly faster than gradient descent method.

RRT* is probabilistically complete, meaning that the probability of producing a solution
(if it exists) tends to 1 as time tends to infinity. Also, it is asymptotically optimal, i.e.
the solution converges to the optimal solution. However, the time to find a solution and to
optimize in terms of cost (distance in our case) is unknown and depends on the environment
complexity and size.

In our application, we prioritize having a quite good solution with bounded computational
cost rather than the best solution. Consequently, in our implementation, if RRT* fails to get
a path to the most entropy decrease configuration after a number of iterations, the path of
the tree that leads to the largest joint entropy decrease configuration is chosen.

5.3.3 Results

Several simulations were performed to compare the two proposed active SLAMmethods based
on the entropy decrease estimation (EDE) against a frontier-based exploration [Yamauchi,
1997]. The frontier-based method drives always the robot to the closest frontier larger than
a threshold, without considering the localization and map uncertainties. In our simulation
the frontier size threshold was fixed at 5 cells. When there are no frontiers of this size, this
threshold is reduced to 1. After the frontier-based method produces a goal, the RRT* planner
is used to compute the path.

Simulations were executed in two commonly used environments of varying size and com-
plexity, the Cave and Freiburg maps [Howard and Roy]. In all cases, robot motion was esti-
mated with an odometric sensor with noise covariance Σu = diag(0.1m, 0.1m, 0.0026 rad)2.
The robot is fitted with a laser range finder. Laser scans were simulated by ray casting over
the ground truth grid map of the environment using the ground truth robot location. Loop
closure constraints were computed using the iterative closest point algorithm fixing the noise
covariance at Σy = diag(0.05m, 0.05m, 0.0017 rad)2. The loop closure match area was fixed
at ±1m in x and y, and ±0.35 rad in orientation. That is, the configuration area for which
we can guarantee that a loop closure between two poses can be established.

All experiments were carried out with a Quad core Intel Xeon system at 3.10GHz and
with 8GB of memory.
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Frontier-based EDE EDE
RRT* gradient descent RRT*

Computation time: 2814.14 s 601.02 s 487.15 s
Loops closed: 15.4 22 17

Table 5.4: Average computational time and amount of loops closed for all compared exploration
strategies in the cave map.

(a) Frontier-based with RRT* (b) EDE with gradient descent (c) EDE with RRT*

Figure 5.6: Final trajectories after one 200 steps simulation of each exploration strategy in the
cave map. In red the robot trajectory, in green the loop closure links, and in black the occupancy
map rendered at the last trajectory estimate.

Exploration in the cave map

The cave map is a simple scenario consisting of a single room resembling an industrial plant
or a house room. In our simulations, the map was scaled to a resolution of 20 m × 20 m.
To account for random effects of the motion and sensor noises as well as of the RRT* tree
growth, each simulation was executed 5 times for each exploration strategy and limited to
200 SLAM simulation steps and 100 planning steps.

Table 5.4 contains, for each compared method, the average values of the computational
time of the whole experiment and the amount of loops closed. Since frontier-based strate-
gies do not consider the trajectory entropy, the accumulation of localization error produces
erroneous maps mostly around obstacles and frontiers. Planning over these maps compli-
cates the finding of free trajectories to the goals, resulting in large computation times for the
frontier-based strategy.

The plots in Figure 5.6 show one realization of the experiment for each strategy. Red
dots and lines indicate the executed trajectories. Green lines indicate loop closures and the
black dots are the accumulated laser scans according to the trajectory estimate.

It can be observed how the frontier-based strategy results in many collisions since frontiers
are mostly misclassified due to the larger trajectory uncertainty. In contrast, EDE with
gradient descent tends to produce valleys of high confidence. It is due to both obstacle
repulsion and attractive trajectory entropy decrease configurations. Instead, the resulting
paths of EDE with RRT* do not consider the effect on the entropy along the path. Alternation
of exploratory and revisiting goals is clearly depicted.
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(a) Map entropy. (b) Trajectory entropy.

Figure 5.7: Average entropies of 5 simulation runs in the Cave map. (blue) Frontier-based with
RRT*. (green) Gradient descent on the EDE field. (red) EDE with RRT*.

Figure 5.7 shows the average map and trajectory entropy evolution for the three strategies.
Similar map entropy (full coverage) is reached by all three methods while the entropy-based
proposed methods significantly reduce the trajectory entropy compared to the frontier-based
strategy. Surprisingly, all methods end up closing similar number of loops on average, the
different trajectory entropy values indicate that the quality of those loops closed is signifi-
cantly better for the EDE strategies. This happens because the frontier-based strategy closes
loops only by chance resulting in a final map of worse quality.

Exploration in the Freiburg map

The second environment analyzed is the Freiburg indoor building 079, of a significant larger
complexity and size. Three simulations were launched fixing the SLAM steps limit at 200
and the planning steps at 100.

Table 5.5 contains the average computation time as well as the amount of loops closed for
each method. The plots in Figure 5.8 show average map and trajectory entropy evolution,
respectively, of the 3 simulation runs for the three exploration strategies.

Given the highly complex nature of this environment, EDE with gradient descent was the
worst performing method in this case, rapidly getting trapped in local minima (thin doors).
This is depicted by the flat green line in frame (a).

Frontier-based EDE EDE
RRT* Potential fields RRT*

Computation time 2505.44 s 2586.84 s 11951.18 s
Loops closed: 12.5 3 12.5

Table 5.5: Average computational time and amount of loops closed for all compared exploration
strategies in the Freiburg building.
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(a) Map entropy. (b) Trajectory entropy.

Figure 5.8: Average entropies for the 3 simulation runs in the Freiburg map. In blue, the
frontier-based with RRT*; in green, EDE with potential gradient descent; in red, EDE with
RRT*.

The frontier-based method is outperformed by EDE with RRT* both in map and tra-
jectory entropies since it does not plan revisiting actions. In exchange, performing of the
entropy decrease estimation for a bigger environment has significant computational cost.

Figure 5.9 shows one realization of the rendered occupancy map for each of the three
strategies. The figure clearly depicts the various conclusions that had been already mentioned.
Frontier-based exploration does not consider loop closing and thus produces maps with larger
uncertainty, i.e., thicker grayish walls. Gradient descent on the EDE field ends up trapped
in local minima. And, EDE with RRT* produces larger and more accurate maps.

Figures 5.10 and 5.11 show intermediate steps in the computation of the EDE-RRT*
map. The first figure shows one instance of the computed map and the pose-graph SLAM
trajectory estimation. Note how the pose graph effectively covers the whole explored area
with only a few informative links between poses (green lines). The second figure shows an
instance of the RRT* in green covering all free space and the path to the most entropy
decrease configuration in blue. Long paths are normally obtained using this method.

EDE with RRT* does not consider visiting non optimal configurations that are closer and
chooses always going to the one that produces the most entropy decrease. The distance of
the path to each configuration, thus time spent on reaching it is not considered. Penalizing
the path distance may lead to even better performance due to adding the temporal factor in
the optimization.
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(a) Frontier-based with RRT*

(b) EDE with gradient descent

(c) EDE with RRT*

Figure 5.9: Occupancy grid map built after a 200 steps simulation in the Freiburg environment.
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Figure 5.10: EDE-RRT* pose-graph SLAM. The red dots and lines indicate the robot tra-
jectory. The blue dots represent the current sensor reading, and the blue triangle and the
hyper-ellipsoid indicate the current robot pose estimate.
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Figure 5.11: This is an instance of the RRT* tree and the computed path to the goal (blue)
in the Freiburg map. The black dots indicate failed leaf extensions due to collision.
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5.4 Search in action space

As explained in the previous section, searching in the C-space avoids taking into account the
entropy changes along the planned path. It forces the strong assumption of only considering
the entropy change after appearing at each evaluated configuration.

Therefore, if the effect of the path (actually, the paths) to reach a configuration want
to be taken into account, we should switch to searching in action space (A-space). Action
selection in Active SLAM has been approached in the past as the analysis of the effect on
the joint entropy of a small heuristically chosen set of path candidates [Stachniss et al., 2005;
Valencia et al., 2012]. In both cases, the very small sets of action candidates were built
computing paths to revisitng configurations and frontier-based poses. This entails two main
inconvenients.

First, since it is goal-based, the action set is built under the idea of a single purpose:
exploration or re-localization. Considering that searching in the A-space allows taking into
account the effect of the path, it is somehow renouncing to this possibility from the very
begining. In our work, we consider paths that may accomplish both purposes by closing a
loop in the way of an exploratory configuration or vice-versa.

Second, the optimal path in terms of joint entropy reduction it is not likely to be in a
very small set of heuristically decided candidates. Our approach is based on creating a large
action candidate set without assumptions about where the optimal configurations are. For
instance, as seen in the previous section, optimal exploratory configurations are very usually
far from frontiers.

Karaman and Frazzoli [2010] presented the asymptotically optimal planner RRT* de-
signed for path planning given a goal and using cost functions that satisfy the triangular
inequality. The expansive nature of the RRT* algorithm suggests that it can be useful in
the action set generation for Active Pose SLAM. We propose to benefit from the RRT* tree
expansion strategies and explore the use of an entropy-based cost function for tree expansion.

5.4.1 Entropy decrease estimation for several action candidates

We propose a method to estimate the joint entropy decrease of several action candidates.
Also, we want to evaluate each action candidate taking into account the effect of the whole
path. Consequently, the entropy decrease estimation will be performed considerable times,
thus it demands further efficiency in its computation.

At the same time, the map and trajectory entropy decrease estimations used in the pre-
vious section did not take into account accumulation along the path. That map entropy
decrease estimation compensates multiple observation of the same frontier cell by different
laser scan beams of the same robot configuration but not from different planned path con-
figurations. Analogously, trajectory entropy did not consider how the loop closure entropy
change is reduced when closing other loops with other nodes in the vicinity.

In conclusion, the map and trajectory entropy decrease estimation methods for C-space
methods described in sec. 5.3 should be redesigned for A-space search application.
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We refer to specific parts of the state x using subindexes. So for instance, after some
experiment steps, the robot performed a trajectory x1:t, which is estimated by the pose-
graph SLAM. At this point we can render an occupancy map mt from its means µ1:t. From
this moment, an action (or path) candidate a is defined as a sequence of relative motions
a = ut+1:T , which would produce a sequence of new robot configurations xt+1:T , from where
tentative measurements zt+1:T would be made, and an expected map mT would be rendered.

In the previous section, the entropy decrease was estimated for all C-space configurations
but ignoring the entropy change along the path to reach them (T = t+ 1). In this case, the
evaluation of candidates (paths) of different sizes will take place. Consequently, we propose
the minimization of the joint entropy change divided by the distance of the path candidate

a∗ = argmin
H(x1:T ,mT )−H(x1:t,mt)

dist(ut+1:T )
. (5.10)

In other words, we will take the candidate that maximizes the information gain per meter
traveled. Additionally, adding the distance (thus, time) into the cost, the consideration of
non-optimal but close configurations may take place in contrast with the methods proposed
in the previous section.

Then, at the planning step t the current joint entropy term of (5.10) is computed as in
the previous section (5.4)

H(x1:t,mt) ≈ H(x1:t) + |Σtt|−1H(mt). (5.11)

It can be evaluated directly using the current pose marginal covariance Σtt as well as evalu-
ating the map entropy of the current map (5.6) and the trajectory entropy (5.13) using the
current trajectory estimation marginals.

To compute the expected joint entropy after executing an action candidate –the second
numerator term in (5.10)–,

H(x1:T ,mT ) ≈ H(x1:T ) + |ΣTT |−1H(mT ), . (5.12)

three components are required: the trajectory entropy H(x1:T ), the map entropy H(mT )

and the marginal covariance of the last node ΣTT , necessary to compute the factor α(p(x)).
It is important to consider that a part of a path candidate ak = ut+1 : k can be considered

a path candidate as well. Also, the set of candidates will be generated by the RRT* algo-
rithm, then the evaluation should exploit the tree morphology of the action set. Therefore, our
approach is to compute the three required components (H(mk), H(x1:k),Σkk) incrementally
from the corresponding values of the previous path candidate step (H(mk−1), H(x1:k−1),Σk−1k−1).
The following is an exhaustive description of how we efficiently compute these three compo-
nents.
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5.4.2 Trajectory entropy decrease and last node’s marginal covariance es-
timation

The trajectory entropy H(x1:k) could be computed knowing the entropy of multivariate
Gaussian (3.2). However, this implies the computation of the determinant of a large matrix.
Also, we might end up dealing with numerical and ill-defined matrix issues as explained
in [Stachniss et al., 2005]. Hence, we opt for the same approximation also used in [Valencia
et al., 2012], which averages over all individual pose marginals

H(x1:k) ≈
1

k

k∑
i=1

ln
(
(2πe)

n
2 |Σii|

)
, (5.13)

being n the dimension of the individual pose vector, n = 3 in our case.
Alternatively, a Pose-graph SLAM could be computed to evaluate (5.13) for each path

candidate. But since we want to evaluate several path candidates, this method would not be
efficient at all. Instead, an iterative estimation of the trajectory entropy (5.13) and the last
node’s marginal covariance is computed by distinguishing between two cases: open loop and
loop closure.

Open loop

In open loop, a new node is added to the graph according to the motion commands or
odometry measurement. The covariance matrix grows but the block corresponding to the
old nodes remains the same. Then, the trajectory entropy at the k-th time step from (5.13)
becomes

H(x1:k) ≈
k − 1

k
H(x1:k−1) +

1

k
ln
(
(2πe)

n
2 |Σkk|

)
. (5.14)

Thus, the trajectory entropy in open loop can be incrementally computed using the resulting
marginal covariance Σkk which can be effectively computed by linearly propagating it (2.26).

Loop closure

A loop closure is expected to happen when another trajectory pose happen to be within the
match area of the current configuration. In other words, when a candidate robot configuration
xk falls inside the match area of any pose within the pose-graph SLAM trajectory estimate
xl, l ∈ [1, t], the expected observation zk will produce a loop closure.

Encoding a pose-graph SLAM for each action candidate has been discarded because of its
computational resources demand. We could instead use the trajectory entropy change from
closing such loop as in the previous section (5.8). However, in one hand it would imply mixing
different entropy definitions (5.13) with (3.2). On the other hand, evaluating the information
gain (5.8) requires the covariance blocks corresponding to the observed nodes: Σll,Σlk and
Σkk. In the C-space search, they could be approximated as Σll, Σlt and Σtt, respectively
since all candidates had size one, i.e. k = t + 1. However, in longer paths, considering
possible previous loop closures entails the need of maintaining the whole covariance matrix



88 Chapter 5. Information Metrics for Active Pose-Graph SLAM

in each candidate. It would be equivalent to encoding a pose-graph SLAM or an EKF in all
candidates which is unfeasible.

Instead, we propose an efficient way to approximate the trajectory entropy change and
the resulting marginal covariance after a loop closure. When a loop is closed, all nodes’
marginal covariances Σii∀i ∈ (1, k] change to new values Σ′ii. Then, the trajectory entropy
change (5.13) can be expressed in terms of the change in the marginal covariances

∆HLC(x1:k) ≈
1

k

k∑
i=1

ln
(
(2πe)

n
2 |Σ′ii|

)
− 1

k

k∑
i=1

ln
(
(2πe)

n
2 |Σii|

)
=

1

k
ln

k∏
i=1

|Σ′ii|
|Σii|

.

=
1

k
ln

k∏
i=1

ρi. (5.15)

The marginal covariance determinant ratios ρi are approximated taking three assumptions
or approximations. First, we assume “clean” loops, meaning that no node in the loop has
more than two connections. Assuming this, a loop closure to the l-th node does not produce
any change on the previous marginals (ρi = 1, ∀i ≤ l). Secondly, the new marginal covariance
Σ′kk is approximated as a covariance propagation from Σll resulting in the k-th determinant
change ratio ρk. Thirdly, we assume the rest of the determinant change ratios to be lineraly
distributed:

∆HLC(x1:k) ≈
1

k
ln

k∏
i=l+1

ρi

≈ 1

k
ln

k−l∏
j=1

(
ρl + j

ρk − ρl
k − l

)
. (5.16)

Note that loop closure entropy change ∆HLC(x1:k) is applied to the open loop entropy
H(x1:k) that was previously computed (5.14).

5.4.3 Map entropy decrease estimation

As previously introduced, the reduction in map entropy (5.6) is attained after moving to
new locations and sensing new data and depends on the number of cells that will change its
classification probability, i.e. either obstacle or free cells will be discovered.

Each intermediate pose xk of each action candidate will produce a different observation
of the environment zk, so different cells will be classified producing different map entropy
changes. For each action candidate ak, the map entropy change will depend on the number
of cells discovered in all observations made during the action. Therefore, it is important not
to overcount cells discovered by different poses of the same path. As contrast with the search
in C-space methods, we need a method for computing which (instead of just how many) cells
will be discovered from any robot pose xk. Then, for a sequence of poses of a candidate path
ak, we will be able to estimate the accumulated number of discovered cells.
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(a) For a robot configuration example, the
expected visible cells (white) taking into ac-
count the known obstacles (black).
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(b) Example of convolution results in the two spe-
cific ray directions depicted in the left frame in
their respective colors.

Figure 5.12: Example of ray casting for a particular robot configuration.

Extending the work presented in the previous section, an efficient method to compute ray
casting from several robot configurations over the known environment is devised. It makes
use of convolutions and pre-computes most of the process as well.

Given a robot configuration candidate xk, for each ray direction within the sensor spread
we compute which cells are between the sensor and the nearest obstacle (if there is any) and
not further than the maximum simulated sensor range (see Figure 5.12.a). To do this, We
use a convolution using a kernel of zeros except for the cells in a specific direction which
have exponentially decreasing values. For each ray direction, convolving this kernel with an
image of ones at the obstacles, and substracting it from the same kernel centered at the robot
position, the discovered cells will be those with positive values (see Figure 5.12.b).

This operation must be computed for each ray direction included in the sensor spread and
for all robot configurations of all action candidates. However, we can pre-compute most of
it. In one hand, the kernel for each of all 360◦ discretized directions is computed once at the
beginning of the algorithm. On the other hand, at each planning step, the convolution over the
obstacles can be precomputed for all discretized directions. Then, for a robot configuration
candidate xk, we only need to translate the kernels corresponding to all directions to this
configuration, substract the convoluted obstacles and binarize (see Figure 5.12.b).

Then we accumulate the discovered cells from the directions within the sensor spread
corresponding to the robot orientation (see Figure 5.12.a). Finally, accumulating the discov-
ered cells in all robot configurations xt+1:k, we can estimate the map entropy change of the
candidate ak using (5.6).

Tuning as a parameter the sensor maximum range, i.e. the kernel size, we can be more
conservative or optimistic in the estimation of cells discovered through the frontiers. Using
the same value as the real sensor, we will assume that all the unknown cells are free whereas
when using a lower value, we will assume the existence of obstacles. This value depends on
the environment morphology and is fixed experimentally.
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5.4.4 RRT*: Generating and evaluating the action set

The RRT* algorithm presented by Karaman and Frazzoli [2010] is an asymptotically optimal
version of the rapidly-exploring random trees (RRT) by LaValle [1998]. It was designed to
find an optimal path from the current robot pose to a given goal in a known environment.

The RRT has a simple extend routine: a new node in the RRT is added in the direction
of a random sample from the nearest node with a distance ν. The RRT* extend routine is
more complex. After creating a new node as in the RRT, it is not automatically connected
to the tree from its predecessor. Instead, it is connected to one of its neighbors according to
a given cost function. Afterwards, it is checked if the new node can yield a lower cost to any
of each near neighbors and it is rewired if it is the case. These two actions allow the RRT*
to be asymptotically optimal.

The expansive nature of the RRT and RRT* algorithms suggests that they can be useful
to generate a large action set for active pose-graph SLAM since they provide several collision
free paths from the current robot pose to several free configurations. Knowing this, we
propose to grow an RRT* in the known and free environment and then take each one of the
RRT* nodes and the path to reach it as an action candidate ak. After the tree is grown, the
best action candidate a∗k is chosen from all the paths to each node according to the evaluation
introduced in Section (5.10).

The cost function used in the RRT* extend routine will affect the resulting paths of the
tree. Using the distance as cost function, as usual, the algorithm will provide the shortest
paths to several free configurations. However, using another cost function the tree will grow
and rewire differently and the resulting RRT* paths will not be optimal in distance traveled
but in that cost function. Considering this, we propose two action set generation alternatives
using the RRT*. The first is using the distance as the cost function (dRRT*) as typically,
and the second one is using the entropy change divided by the distance (eRRT*), as defined
in (5.10).

This cost function is not a distance since it is not always positive nor it meets the trian-
gular inequality. This is because the map and trajectory entropy computation depends on
previous configurations. Therefore, in one hand when a rewire is preformed, the cost of all
node successors should be re-evaluated. On the other hand, the RRT* algorithm is not guar-
anteed to provide asymptotically optimal paths according to the entropy-based cost function
used.

In RRT*, once a solution path is found, the extension process is continued for a time
in order to keep improving this solution. Some heuristics can be set to end the extension
once the solution has been sufficiently improved. In our case, we do not have a specific
goal to be reached by the tree. Instead, our objective is to have several paths to several free
configurations spread over the free discovered environment to take it as action set. Therefore,
we stop extending after certain amount of nodes per free square meter is reached. This value
is fixed experimentally since it depends on the morphology of the environment.

During the extension of eRRT*, the evaluation of the cost function (5.10) is computed
(and recomputed after a rewiring). So when the tree extension is stopped, all candidates have
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(a) dRRT*.

(b) eRRT*.

Figure 5.13: Two examples of the resulting path candidates using the two different cost func-
tions proposed. Color of branches represent the value of the information gain per meter travelled
(5.10) of the path that ends in the corresponding node. Red paths indicate better candidates.
In gray, the pose-graph SLAM nodes.

its corresponding expected joint entropy change per meter. However, in the dRRT* case, it
can be computed once the extension processes is stopped.

Figure 5.13 shows the two resulting action sets using dRRT* and eRRT*. The color
corresponds to the evaluation of the cost function of each path. Both frames share the same
color scale, the more red, the more entropy decrease path. It can be seen how eRRT* branches
are better than the dRRT* in terms of joint entropy decrease per meter traveled. Indeed,
although not optimality can be assured since (5.10) is not a distance, the rewiring improves
the resulting candidates due to the cost function used.

5.4.5 Results

Several simulations were performed to compare the performance of the two variants of the
presented Active Pose SLAM method (dRRT* and eRRT*) against three other exploration
approaches. The first method is the typical frontier-based exploration [Yamauchi, 1997]. This
method drives the robot to the closest frontier larger than a threshold (90 cm in our case),
without considering the localization and map uncertainties. When there are no frontiers of
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Figure 5.14: Average results for the five simulation runs in Freiburg 079.

this size, this threshold is reduced progressively. The path to the selected frontier centroid is
planned using the RRT* planner using distance as cost function.

The second method to which we compare is Active Pose SLAM [Valencia et al., 2012],
it evaluates the joint entropy decrease of three heuristically generated action candidates
including one revisiting path and the two closest frontiers. And finally, the third method
evaluated is the entropy decrease estimation (EDE) using RRT* described in the previous
Section 5.3.

Five simulations are performed in the commonly used Freiburg 079 map [Howard and
Roy] limiting the experiments to a 250m final trajectory. In all of them, robot motion was
estimated with an odometric sensor with a noise covariance factor of 15%. The robot is fitted
with a laser range finder sensor with a match area of ±1m in x and y, and ±0.35 rad in
orientation. This is the maximum range in C-space for which we can guarantee that a link
between two poses can be established. Relative motion constraints were measured using the
iterative closest point algorithm with noise covariance fixed at Σy = diag(0.05m, 0.05m,
0.0017 rad)2. Laser scans were simulated by ray casting over a ground truth grid map of the
environment using the true robot location, and corrupted with similar values of Gaussian
measurement noise.

A number of different metrics were used to compare the performance of the five methods
with respect to the distance traveled. We stored average values for the 5 runs of trajectory
and map entropy for each of the methods; the average map coverage, measured as the number
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Frontier Heuristic Active EDE dRRT* eRRT*based Pose SLAM
Final map entropy (nats) 527.92 670.93 584.23 526.58 558.80
Final trajectory entropy
(nats)

-5.06 -10.11 -6.55 -6.34 -5.57

Total time (seconds) 1089.15 78997.9 1083.70 8752.13 59785.42
Loops closed 22.6 43.2 25.4 18.8 34.4
Coverage (m2) 741.32 514.10 660.86 749.96 707.10
Map error (m2) 130.80 87.84 106.34 126.56 112.22

Table 5.6: Average comparison of the performance of several exploration methods in the
Freiburg 079 map.

of cells labeled in the occupancy map; and the average map error, measured as the number
of cells in the occupancy map which were inconsistent with at least one rendered sensor data
point measured at the respective mean of the estimated trajectory pose. Two other measures
of performance were total execution time, including all the different processes of each method
except for the map rendering, and the total number of loop closures computed by each of
the methods. Table 5.6 shows the final average values of each metric for each method. The
average evolution of the map and trajectory entropies along the traveled distance for all
methods can be observed in the top frames of Figure 5.14. The map error with respect to
coverage is plotted in the bottom frame of the same figure.

The computational cost of eRRT* is significantly larger than dRRT* because the cost
function evaluation is computed several times for each node in the eRRT* extension process
due to the rewiring, whereas in the dRRT* it is only computed once for each node after the
tree is finished. This is a time consuming step because the cost function requires also the
estimation of the joint trajectory and map entropy. Nonetheless, both approaches are less
computationally expensive than the use of the Heuristic Active Pose SLAM method which
simulates a pose-graph SLAM for each action candidate.

Frontier-based and EDE methods are much faster but they do not evaluate the effect
of the paths with regards to entropy reduction, but only seek to minimize distance to pre-
computed goals. The frontier-based method, reaches a low level of map entropy but with a
high trajectory entropy value, and thus large map error, since it only pursues maximizing
coverage. Heuristic active Pose SLAM performance is characterized by a very conservative
behavior with regards to localization uncertainty because of the absence of the factor α(p(x))

in its entropy approximation function.
While the EDE method ends the simulations with lower trajectory entropy values, the

two A-space search based proposed methods, dRRT* and eRRT*, are better in terms of map
entropy on average. At the final part of the simulations, both methods have lower levels of
map error for the same coverage levels than the rest (Figure 5.14 bottom). Moreover, we
see how the dRRT* reaches higher coverage in the same distance traveled while the eRRT*
improves over map error. The performance of eRRT* is slightly better than dRRT* with
regards to map error, and significantly better than the heuristic Active Pose SLAM with
regards to both coverage and error. However, entropy evaluation is time consuming in RRT*
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extension, thus an action set generation that only takes into account distance traveled as in
dRRT* is an adequate compromise.

Next, we analyze the effect of loop closures in the final exploration results. For instance,
the frontier-based method finalizes with higher trajectory entropy values on average than
EDE and dRRT*, even after closing a similar amount of loops. This is because the loops
closed by frontier-based were not optimally chosen to reduce uncertainty, but rather closed
by chance. Obviously, the conservative behavior of heuristic Active Pose SLAM results in a
large amount of loop closures on average. The eRRT* also closed a large amount of loops on
average because using the entropy based cost function, the RRT* rewiring generates paths
that include such loop closure poses.

Figure 5.15 shows single simulation runs for the five methods. In the first frame, we
can observe the final localization error of the frontier-based exploration with the last sensor
observation in blue. The heuristic Active Pose SLAM final graph is largely connected and
all the trajectories remained near the initial robot pose, leaving the rest of the scene largely
unexplored, as can be observed in Figure 5.15 b. The EDE and dRRT* final graphs (frames c
and d) contain straight paths due to the distance cost function used in the RRT*. Conversely,
the eRRT trajectory presents neither straight paths to the goal, nor strong loop closing
trajectories, but rather a combination of the two for which the cost function is minimal.
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(a) Frontier-based exploration. (b) Heuristic Active Pose SLAM.

(c) Entropy Decrease Estimation. (d) dRRT* Active Pose SLAM.

(e) eRRT* Active Pose SLAM.

Figure 5.15: Final trajectories after a 250m exploration simulation of the Freiburg 079 map for
all methods compared. In red the trajectory estimate, in green loop closure links, in black the
whole raw sensor data rendered at the trajectory estimate, and in blue the marginal robot pose
estimate for the current state (mean and variance) along with the sensed data at that location.
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5.5 Discussion and final remarks

In this chapter, the application of entropy is proposed to formally measure the uncertainty
reduction in the context of active SLAM. With this purpose, the state-of-art in entropy-based
exploration was revised and a new joint entropy decrease formulation was proposed. An
advantage of our joint estimation of map and trajectory entropy reduction is that depending
on the localization uncertainty, it nicely rebalances between exploratory and re-localization
trajectories. When the localization uncertainty rises, the entropy term corresponding to all
loop closure configurations grows biasing the robot towards re-localization configurations.

Despite this is a pattern also experienced in previous formulations [Valencia et al., 2012],
in our work, this behaviour is enhanced. The introduction of the factor α(p(x)) weights down
the map entropy decrease contribution due to the localization uncertainty. As observed in
the validation simulations, it makes the algorithm less sensitive to the environment size and
complexity. Furthermore, as discovered in our experiments, even when there is a bias towards
one behaviour, the other one is still contributing. For instance, when loop closure candidates
are heavily weighted, the one with largest exploratory interest will most probably be chosen.

Two different perspectives were presented to approach the problem: searching in the
configuration space and in the action space. While the first approach allows to compute a
dense entropy decrease estimation over all possible configurations, this estimation does not
take into account the effect of the path to reach such configuration. Conversely, searching
on the A-space takes into account the entropy change produced during the path but the
computational cost is directly related with the amount of candidates evaluated.

The methods have been validated and compared with a popular frontier-based exploration
strategy and a similar state-of-art active SLAM method [Valencia et al., 2012]. Several
simulations in two different scenarios were launched and the performance was measured in
terms of computational cost, map and trajectory entropy as well as coverage and map error.

The work presented in this chapter has been partially published in [Vallvé and Andrade-
Cetto, 2013, 2015a, 2014, 2015b].



97

6
Final remarks

6.1 Conclusions

In this thesis we explored the use of information metrics in mobile robotics localization and
mapping applications.

An extensive introduction to SLAM is provided in Chapter 2. The problem formulation
of the state-of-art NLS approach has been derived both for batch and incremental meth-
ods. Additionally, a complete SLAM literature review is given establishing connections with
equivalent problems in other disciplines. The links with other popular SLAM approaches such
as Bayesian filtering or relaxation methods were identified and their drawbacks have been
stated. The Levenberg-Marquardt and Dogleg methods have been presented as a suitable
alternative for SLAM setups with poor initialization.

Secondly, a brief overview of information theory is presented in Chapter 3 introducing
some relevant metrics exploited in the subsequent chapters.

A core contribution of this thesis, the reduction of the SLAM problem size is addressed in
Chapter 4 as the concatenation of node(s) marginalization and the posterior sparsificaiton of
its dense and non-relinearizable result. Sparsification consists on computing an approximation
of this dense distribution with a new set of factors allowing relinearization and maintaining the
sparsity. The approximation goodness equally relies on two processes in which is formed of:
topology building and factor recovery. The topology building establishes the amount of new
factors used, as well as their measurement model and the arrangement of all new factors with
the affected variables. Factor recovery computes the best approximation given the topology.
Three new methods to build the topology are presented making use of information-based
metrics for the pose-graph SLAM case. Also, we propose a more intuitive alternative policy
to decide the topology population, i.e. the amount of new factors that constitute the sparse
approximation. Factor recovery is posed as a Kullback-Liebler divergence minimization from
the dense marginalization result to the sparse approximation, since it measures the similarity
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of two distributions. Two new methods have been proposed to solve the factor recovery:
Factor Descent and its non-cyclic variant. Both are proved to compete with state-of-art
methods both in computational time and approximation accuracy. More importantly, in
contrast with state-of-art methods this proposed methods do not require parameter tuning
and its implementation is very simple without need of optimization libraries.

In a second core contribution of this thesis, active SLAM is approached in Chapter 5
for the 2D pose-graph SLAM case using lidar. Entropy measures are exploited to frame
the problem as a minimization of both map and trajectory estimation uncertainty. Then,
the joint map and trajectory entropy for 2D pose-graph active SLAM is formulated. Four
different active pose-graph SLAM methods are proposed following two different perspectives:
searching in the configuration space and in the action space. While the former approach
allows to compute an estimation of the entropy reduction densely all over the configuration
space, it implies not considering the effect on entropy of the path to reach each configuration.
Conversely, the action search uses a sparser action candidate set that takes into account
the entropy effect of the whole candidate path. All proposed methods are demonstrated to
outperform the state-of-art active SLAM methods with several simulations in synthetic and
real world environments.

6.2 List of publications

On the course of the development of the present thesis, the author participated in nine scholar
publications that are listed below.

Journals

• J. Vallvé, J. Solà and J. Andrade-Cetto. Pose-graph SLAM sparsification using factor
descent. Robotics and Autononous Systems, conditionally accepted.

• J. Vallvé, J. Solà and J. Andrade-Cetto. Graph SLAM sparsification with populated
topologies using factor descent optimization. IEEE Robotics and Automation Letters,
vol. 3, pp. 1322-1329, 2018.

• J. Vallvé and J. Andrade-Cetto. Potential information fields for mobile robot explo-
ration. Robotics and Autonomous Systems, vol. 69, pp. 68-79, 2015.

Conferences

• J. Vallvé, J. Solà and J. Andrade-Cetto. Factor Descent optimization for sparsification
in graph SLAM. 8th European Confenrence on Mobile Robots (ECMR), Paris, Sep. 2017,
pp. 95-100.

• A. Corominas Murtra, J. Vallvé, J. Solà, I. Flores and J. Andrade-Cetto. Observability
analysis and optimal sensor placement in stereo radar odometry. IEEE International
Conference on Robotics and Automation (ICRA), Stockholm, May 2016, pp. 3161-3166.



6.3. Future work 99

• J. Vallvé and J. Andrade-Cetto. Active Pose SLAM with RRT*. IEEE International
Conference on Robotics and Automation (ICRA), Seattle, May 2015, pp. 2167-2173.

• J. Vallvé and J. Andrade-Cetto. Dense entropy decrease estimation for mobile robot ex-
ploration. IEEE International Conference on Robotics and Automation (ICRA), Hong
Kong, May 2014, pp. 6083-6089.

• R. Valencia, J. Saarinen, H. Andreasson, J. Vallvé, J. Andrade-Cetto and A. Llilienthal.
Localization in highly dynamic environments using dual-timescale NDT-MCL. IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, May 2014,
pp. 3956-3962.

• J. Vallvé and J. Andrade-Cetto. Mobile robot exploration with potential information
fields. 6th European Conference on Mobile Robots (ECMR), Barcelona, Sep. 2013,
pp. 222-227.

6.3 Future work

Finally, we enumerate some possible future lines of research that emerged during the devel-
opment of the work exposed in this thesis.

Regarding the sparsification problem, a new topology population policy can be devised by
fixing the desired expected information loss. It would be challenging since it requires a way
to estimate the KLD a priori, without knowing the specific topology nor the factor recovery
solution given that topology.

Also, we consider the application of sparsification to highly dense problems with lower
rank factors and heterogeneity of measurement models, such as in the visual inertial case [Hsi-
ung et al., 2018]. Some work presented in this thesis has to be reformulated for these cases.
While the factor recovery formulation and factor descent methods presented already consider
these cases, new topology methods should be devised. The approach of using new synthetic
factors with the same measurement model as real sensor measurement has to be revisited.
New alternatives can be explored, from building topologies with visual and inertial mea-
surements to designing new ad hoc measurement models. The selection of the node to be
removed has to be also studied for this special case considering the implications in future
SLAM iterations into the state estimation.

Actually, the node removal selection is still an open issue that has not been addressed in
the present work. Different approaches can be devised depending on specific final applications.
Making use of information metrics, the nodes to be removed can be selected by estimating
the expected information loss or by anticipating the sparsification computational cost. In
both cases, the Markov blanket size (i.e. the node connectivity) may be a good indicator.
Alternatively, considering the effect on the state estimation and the real application, the
temporal aspects could be taken into account: Recent nodes (whether trajectory poses or
landmarks) are more likely to be engaged in new factors, and their estimation is also more
likely to be refined. This suggests that a good approach would be biasing the node removal
to the past, while maintaining a more populated graph for the present. Intuitively, this is
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what humans do when navigating: we forget the temporary map of the street (shops, trees,
cars and so on) after turning a corner. Information metrics could be explored to tackle node
selection in order to emulate this behaviour as well.

Referring to active SLAM, future work includes the extension to the 3D case and the
use of new sensor setups and environment representations. Extending the presented methods
to the 3D case would require new methods to create the expected joint entropy decrease
estimation while the formulation is still applicable. In this case, the C-space dimension
grows considerably to 6D. This would make the C-space search approaches almost unfeasible
in terms of computational resources. Even though A-space search would become sparser in
this higher dimensional C-space, it is easily scalable since computational cost and memory
requirements is directly related to the RRT* size in both proposed methods dRRT* and
eRRT*. Then, the approach remains still valid but new methods to estimate the entropy
decrease should be developed. Specifically, the map entropy decrease would require an non-
trivial extension to 3D occupancy grids.

Finally, the use of other sensors and/or other map representations also requires new
map entropy decrease estimation methods. Dense occupancy-based representations of the
environment should be considered in all cases instead of landmark-based representations,
since only the first ones are capable of encoding free-space. Free space classification is critical
to allow collision-free motion paths. Furthermore, the discovery of free space is the principal
aim of exploration methods and one of the objectives of active SLAM.
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A
Propositions
Proposition 1 The squared measurements Jacobian is equal to the information matrix of
P (x|Z), A>A = Λ

Proof: The information form of the conditional probability of the state given all the mea-
surement is

P (x|Z) =
P (Z|x)P (x)

P (Z)

since P (x) is uniform and all measurements zk are independent,

∝
∏
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In the other hand, the squared measurements Jacobian is

A>A =
[
· · · A>k · · ·

]
...

Ak

...

 =
[
· · · J>k Ω

>/2
k · · ·

]
...

Ω
1/2
k Jk
...

 =
∑
k

J>k ΩkJk. (A.1)
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Proposition 2 The EIF information matrix update is obtained from applying the Woodbury
matrix identity to the EKF covariance update.

Proof: For clearity we simplify the notation (Jk = J,Σvk
= Σv,Kk = K) Condensing the

EKF covariance update in a single expression

Σk|k = (I−KJ)Σk|k−1

= Σk|k−1 −Σk|k−1J
>(JΣk|k−1J

> + Σv)−1JΣk|k−1,

the Woodbury identity can be applied backwards leading to

= (Σ−1
k|k−1 + J>Σ−1

v J)−1

= (Λk|k−1 + J>Σ−1
v J)−1.

Then, trivially

Λk|k = Σ−1
k|k = Λk|k−1 + J>Σ−1

v J.

For the information vector update, a previous identity need to be presented departing
from Woodbury identity:

Σk|k−1 −Σk|k−1J
>(JΣk|k−1J

> + Σv)−1JΣk|k−1 = (Λk|k−1 + J>Σ−1
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Σk|k−1J
>(JΣk|k−1J
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)
J>(JJ>)−1

(A.2)

Then, departing from the relation between the canonical form and the information form, we
substitute the corresponding updates formulas
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Proposition 3 If Λ̆ is invertible and J̆k is full rank, the derivative (4.11) becomes null in

Ω̆k = (J̆kΣJ̆>k )−1−L−>QL
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0 )−1Q0Ῠk
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−1 (A.3)
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L 0
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]
.

Proof: The derivative of (4.9) w.r.t Ω̆k is
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= J̆kΣJ̆>k − J̆k(Ῠk + J̆>k Ω̆kJ̆k)
−1J̆>k . (A.4)

Applying the decomposition into the second term:
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Substituting in (A.4) and imposing null derivative leads to (A.3). Since Q is orthogonal and
Q0Λ̆Q>0 = Q0ῨkQ

>
0 , then ∃Λ̆−1 ⇒ ∃(Q0Λ̆Q>0 )−1 ⇒ ∃(Q0ῨkQ

>
0 )−1 .

Proposition 4 If Ῠk is invertible and J̆k is full rank, the derivative (4.11) becomes null in

Ω̆k = (J̆kΣJ̆>k )−1 − (J̆kῨ
−1
k J̆>k )−1. (A.5)

Proof: If Ῠk is invertible, applying the Woodbury matrix identity forwards and backwards
to the second term of (A.4)
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Substituting in (A.4) and imposing null derivative leads to (A.5).
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Proposition 5 If Λ̆ is invertible, J̆k is full rank and nul(Ῠk) = rk(J̆k), the derivative (4.11)
becomes null in (4.4)

Ω̆k = (J̆kΣJ̆>k )−1.

Proof: Consider J̆k∈Rm×n,Ῠ∈Rn×n, n>m. Since J̆k is full rank, rk(J̆k) = m. According to
Prop. 3, ∃(Q0ῨkQ
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0 ) = n −m. Since Q is orthogonal, rk(QῨkQ
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formula
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>
L −QLῨkQ
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Proposition 6 Let zk be a measure with corresponding Jacobian Jk and measurement noise
information matrix Ωk. The entropy change in the pose-graph estimation X ∼ N (µ,Σ) (or
equivalently X ∼ N−1(η,Λ)) after adding the measure is

∆H(X) = log
(2πe)n/2
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− log

(2πe)n/2
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)
(A.6)
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