53,892 research outputs found

    On the asymptotic and practical complexity of solving bivariate systems over the reals

    Get PDF
    This paper is concerned with exact real solving of well-constrained, bivariate polynomial systems. The main problem is to isolate all common real roots in rational rectangles, and to determine their intersection multiplicities. We present three algorithms and analyze their asymptotic bit complexity, obtaining a bound of \sOB(N^{14}) for the purely projection-based method, and \sOB(N^{12}) for two subresultant-based methods: this notation ignores polylogarithmic factors, where NN bounds the degree and the bitsize of the polynomials. The previous record bound was \sOB(N^{14}). Our main tool is signed subresultant sequences. We exploit recent advances on the complexity of univariate root isolation, and extend them to sign evaluation of bivariate polynomials over two algebraic numbers, and real root counting for polynomials over an extension field. Our algorithms apply to the problem of simultaneous inequalities; they also compute the topology of real plane algebraic curves in \sOB(N^{12}), whereas the previous bound was \sOB(N^{14}). All algorithms have been implemented in MAPLE, in conjunction with numeric filtering. We compare them against FGB/RS, system solvers from SYNAPS, and MAPLE libraries INSULATE and TOP, which compute curve topology. Our software is among the most robust, and its runtimes are comparable, or within a small constant factor, with respect to the C/C++ libraries. Key words: real solving, polynomial systems, complexity, MAPLE softwareComment: 17 pages, 4 algorithms, 1 table, and 1 figure with 2 sub-figure

    On the Skolem Problem for Continuous Linear Dynamical Systems

    Get PDF
    The Continuous Skolem Problem asks whether a real-valued function satisfying a linear differential equation has a zero in a given interval of real numbers. This is a fundamental reachability problem for continuous linear dynamical systems, such as linear hybrid automata and continuous-time Markov chains. Decidability of the problem is currently open---indeed decidability is open even for the sub-problem in which a zero is sought in a bounded interval. In this paper we show decidability of the bounded problem subject to Schanuel's Conjecture, a unifying conjecture in transcendental number theory. We furthermore analyse the unbounded problem in terms of the frequencies of the differential equation, that is, the imaginary parts of the characteristic roots. We show that the unbounded problem can be reduced to the bounded problem if there is at most one rationally linearly independent frequency, or if there are two rationally linearly independent frequencies and all characteristic roots are simple. We complete the picture by showing that decidability of the unbounded problem in the case of two (or more) rationally linearly independent frequencies would entail a major new effectiveness result in Diophantine approximation, namely computability of the Diophantine-approximation types of all real algebraic numbers.Comment: Full version of paper at ICALP'1

    Random Sampling in Computational Algebra: Helly Numbers and Violator Spaces

    Get PDF
    This paper transfers a randomized algorithm, originally used in geometric optimization, to computational problems in commutative algebra. We show that Clarkson's sampling algorithm can be applied to two problems in computational algebra: solving large-scale polynomial systems and finding small generating sets of graded ideals. The cornerstone of our work is showing that the theory of violator spaces of G\"artner et al.\ applies to polynomial ideal problems. To show this, one utilizes a Helly-type result for algebraic varieties. The resulting algorithms have expected runtime linear in the number of input polynomials, making the ideas interesting for handling systems with very large numbers of polynomials, but whose rank in the vector space of polynomials is small (e.g., when the number of variables and degree is constant).Comment: Minor edits, added two references; results unchange

    Some Speed-Ups and Speed Limits for Real Algebraic Geometry

    Get PDF
    We give new positive and negative results (some conditional) on speeding up computational algebraic geometry over the reals: (1) A new and sharper upper bound on the number of connected components of a semialgebraic set. Our bound is novel in that it is stated in terms of the volumes of certain polytopes and, for a large class of inputs, beats the best previous bounds by a factor exponential in the number of variables. (2) A new algorithm for approximating the real roots of certain sparse polynomial systems. Two features of our algorithm are (a) arithmetic complexity polylogarithmic in the degree of the underlying complex variety (as opposed to the super-linear dependence in earlier algorithms) and (b) a simple and efficient generalization to certain univariate exponential sums. (3) Detecting whether a real algebraic surface (given as the common zero set of some input straight-line programs) is not smooth can be done in polynomial time within the classical Turing model (resp. BSS model over C) only if P=NP (resp. NP<=BPP). The last result follows easily from an unpublished result of Steve Smale.Comment: This is the final journal version which will appear in Journal of Complexity. More typos are corrected, and a new section is added where the bounds here are compared to an earlier result of Benedetti, Loeser, and Risler. The LaTeX source needs the ajour.cls macro file to compil

    Mahler measure of one-variable polynomials: a survey.

    Get PDF

    Computing Equilibria of Semi-algebraic Economies Using Triangular Decomposition and Real Solution Classification

    Full text link
    In this paper, we are concerned with the problem of determining the existence of multiple equilibria in economic models. We propose a general and complete approach for identifying multiplicities of equilibria in semi-algebraic economies, which may be expressed as semi-algebraic systems. The approach is based on triangular decomposition and real solution classification, two powerful tools of algebraic computation. Its effectiveness is illustrated by two examples of application.Comment: 24 pages, 5 figure

    Heights and totally real numbers

    Full text link
    1973 Schinzel proved that the standard logarithmic height h on the maximal totally real field extension of the rationals is either zero or bounded from below by a positive constant. In this paper we study this property for canonical heights associated to rational functions and the corresponding dynamical system on the affine line. At the end, we will give a few remarks on the behavior of h on finite extensions of the maximal totally real field.Comment: Major changes regarding the first version. E.g. the last chapter was cancele

    Report on some recent advances in Diophantine approximation

    Get PDF
    A basic question of Diophantine approximation, which is the first issue we discuss, is to investigate the rational approximations to a single real number. Next, we consider the algebraic or polynomial approximations to a single complex number, as well as the simultaneous approximation of powers of a real number by rational numbers with the same denominator. Finally we study generalisations of these questions to higher dimensions. Several recent advances have been made by B. Adamczewski, Y. Bugeaud, S. Fischler, M. Laurent, T. Rivoal, D. Roy and W.M. Schmidt, among others. We review some of these works.Comment: to be published by Springer Verlag, Special volume in honor of Serge Lang, ed. Dorian Goldfeld, Jay Jorgensen, Dinakar Ramakrishnan, Ken Ribet and John Tat
    corecore