359 research outputs found

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods

    The effect of electronic word of mouth communication on purchase intention moderate by trust: a case online consumer of Bahawalpur Pakistan

    Get PDF
    The aim of this study is concerned with improving the previous research finding complete filling the research gaps and introducing the e-WOM on purchase intention and brand trust as a moderator between the e-WOM, and purchase intention an online user in Bahawalpur city Pakistan, therefore this study was a focus at linking the research gap of previous literature of past study based on individual awareness from the real-life experience. we collected data from the online user of the Bahawalpur Pakistan. In this study convenience sampling has been used to collect data and instruments of this study adopted from the previous study. The quantitative research methodology used to collect data, survey method was used to assemble data for this study, 300 questionnaire were distributed in Bahawalpur City due to the ease, reliability, and simplicity, effective recovery rate of 67% as a result 202 valid response was obtained for the effect of e-WOM on purchase intention and moderator analysis has been performed. Hypotheses of this research are analyzed by using Structural Equation Modeling (SEM) based on Partial Least Square (PLS). The result of this research is e-WOM significantly positive effect on purchase intention and moderator role of trust significantly affects the relationship between e-WOM, and purchase intention. The addition of brand trust in the model has contributed to the explanatory power, some studied was conduct on brand trust as a moderator and this study has contributed to the literature in this favor. significantly this study focused on current marketing research. Unlike past studies focused on western context, this study has extended the regional literature on e-WOM, and purchase intention to be intergrading in Bahawalpur Pakistan context. Lastly, future studies are recommended to examine the effect of trust in other countries allow for the comparison of the findings

    A systematic review of physiological signals based driver drowsiness detection systems.

    Get PDF
    Driving a vehicle is a complex, multidimensional, and potentially risky activity demanding full mobilization and utilization of physiological and cognitive abilities. Drowsiness, often caused by stress, fatigue, and illness declines cognitive capabilities that affect drivers' capability and cause many accidents. Drowsiness-related road accidents are associated with trauma, physical injuries, and fatalities, and often accompany economic loss. Drowsy-related crashes are most common in young people and night shift workers. Real-time and accurate driver drowsiness detection is necessary to bring down the drowsy driving accident rate. Many researchers endeavored for systems to detect drowsiness using different features related to vehicles, and drivers' behavior, as well as, physiological measures. Keeping in view the rising trend in the use of physiological measures, this study presents a comprehensive and systematic review of the recent techniques to detect driver drowsiness using physiological signals. Different sensors augmented with machine learning are utilized which subsequently yield better results. These techniques are analyzed with respect to several aspects such as data collection sensor, environment consideration like controlled or dynamic, experimental set up like real traffic or driving simulators, etc. Similarly, by investigating the type of sensors involved in experiments, this study discusses the advantages and disadvantages of existing studies and points out the research gaps. Perceptions and conceptions are made to provide future research directions for drowsiness detection techniques based on physiological signals. [Abstract copyright: © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

    Systems engineering approaches to safety in transport systems

    Get PDF
    openDuring driving, driver behavior monitoring may provide useful information to prevent road traffic accidents caused by driver distraction. It has been shown that 90% of road traffic accidents are due to human error and in 75% of these cases human error is the only cause. Car manufacturers have been interested in driver monitoring research for several years, aiming to enhance the general knowledge of driver behavior and to evaluate the functional state as it may drastically influence driving safety by distraction, fatigue, mental workload and attention. Fatigue and sleepiness at the wheel are well known risk factors for traffic accidents. The Human Factor (HF) plays a fundamental role in modern transport systems. Drivers and transport operators control a vehicle towards its destination in according to their own sense, physical condition, experience and ability, and safety strongly relies on the HF which has to take the right decisions. On the other hand, we are experiencing a gradual shift towards increasingly autonomous vehicles where HF still constitutes an important component, but may in fact become the "weakest link of the chain", requiring strong and effective training feedback. The studies that investigate the possibility to use biometrical or biophysical signals as data sources to evaluate the interaction between human brain activity and an electronic machine relate to the Human Machine Interface (HMI) framework. The HMI can acquire human signals to analyse the specific embedded structures and recognize the behavior of the subject during his/her interaction with the machine or with virtual interfaces as PCs or other communication systems. Based on my previous experience related to planning and monitoring of hazardous material transport, this work aims to create control models focused on driver behavior and changes of his/her physiological parameters. Three case studies have been considered using the interaction between an EEG system and external device, such as driving simulators or electronical components. A case study relates to the detection of the driver's behavior during a test driver. Another case study relates to the detection of driver's arm movements according to the data from the EEG during a driver test. The third case is the setting up of a Brain Computer Interface (BCI) model able to detect head movements in human participants by EEG signal and to control an electronic component according to the electrical brain activity due to head turning movements. Some videos showing the experimental results are available at https://www.youtube.com/channel/UCj55jjBwMTptBd2wcQMT2tg.openXXXIV CICLO - INFORMATICA E INGEGNERIA DEI SISTEMI/ COMPUTER SCIENCE AND SYSTEMS ENGINEERING - Ingegneria dei sistemiZero, Enric

    Driver drowsiness monitoring using eye movement features derived from electrooculography

    Get PDF
    The increase in vehicle accidents due to the driver drowsiness over the last years highlights the need for developing reliable drowsiness assistant systems by a reference drowsiness measure. Therefore, the thesis at hand is aimed at classifying the driver vigilance state based on eye movements using electrooculography (EOG). In order to give an insight into the states of driving, which lead to critical safety situations, first, driver drowsiness, distraction and different terminologies in this context are described. Afterwards, countermeasures as techniques for keeping a driver awake and consequently preventing car crashes are reviewed. Since countermeasures do not have a long-lasting effect on the driver vigilance, intelligent driver drowsiness detection systems are needed. In the recent past, such systems have been developed on the market, some of which are introduced in this study. As also stated in previous studies, driver state is quantifiable by objective and subjective measures. The objective measures monitor the driver either directly or indirectly. For indirect monitoring of the driver, one uses the driving performance measures such as the lane keeping behavior or steering wheel movements. On the contrary, direct monitoring mainly comprises the driver’s physiological measures such as the brain activities, heart rate and eye movements. In order to assess these objective measures, subjective measures such as self-rating scores are required. This study introduces these measures and discusses the concerns about their interpretation and reliability. The developed drowsiness assistant systems on the market are all based on driving performance measures. These measures presuppose that the vehicle is steered solely by the driver himself. As long as other assistance systems with the concept to keep the vehicle in the middle of the lane are activated, driving performance measures would make wrong decisions about warnings. The reason is what the sensors measure is a combination of the driver’s behavior and the activated assistance system. In fact, the drowsiness warning system cannot determine the contribution of the driver in the driving task. This underscores the need for the direct monitoring of the driver. Previous works have introduced the drop of the alpha spindle rate (ASR) as a drowsiness indicator. This rate is a feature extracted out of the brain activity signals during the direct monitoring the driver. Additionally, ASR was shown to be sensitive to driver distraction, especially a visual one with an counteracting effect. We develop an algorithm based on eye movements to reduce the negative effect of the driver visual distraction on the ASR. This helps to partially improve the association of ASR with the driver drowsiness. Since the focus of this study is on driver eye movements, we introduce the human visual system and describe the idea of what and where to define the visual attention. Further, the structure of the human eye and relevant types of eye movements during driving are defined. We also categorize eye movements into two groups of slow and fast eye movements. We show that blinks, in principle, can belong to both of these groups depending on the driver’s vigilance state. EOG as a tool to measure the driver eye movements allows us to distinguish between drowsiness or distraction-related and driving situation dependent eye movements. Thus, in a pilot study, an experiment under fully controlled conditions is carried out on a proving ground to investigate the relationship between driver eye movements and different real driving scenarios. In this experiment, unwanted head vibrations within EOG signals and the sawtooth pattern (optokinetic nystagmus, OKN) of eyes are realized as situation dependent eye movements. The former occurs due to ground excitation and the latter happens during small radius (50m) curve negotiation. The statistical investigation expresses a significant variation of EOG due to unwanted head vibrations. Moreover, an analytical model is developed to explain the possible relationship of KON and tangent point of the curve. The developed model is validated against the real data on a high curvature track. In order to cover all relevant eye movement patterns during awake and drowsy driving, different experiments are conducted in this work including daytime and nighttime experiments under real road and simulated driving conditions. Based on the measured signals in the experiments, we study different eye movement detection approaches. We, first, investigate the conventional blink detection method based on the median filtering and show its drawback in detecting slow blinks and saccades. Afterwards, an adaptive detection approach is proposed based on the derivative of the EOG signal to simultaneously detect not only the eye blinks, but also other driving-relevant eye movements such as saccades and microsleep events. Moreover, in spite of the fact that drowsiness influences eye movement patterns, the proposed algorithm distinguishes between the often confused driving-related saccades and decreased amplitude blinks of a drowsy driver. The evaluation of results shows that the presented detection algorithm outperforms the common method based on median filtering so that fast eye movements are detected correctly during both awake and drowsy phases. Further, we address the detection of slower eye blinks, which are referred to as typical patterns of the drowsiness, by applying the continuous wavelet transform to EOG signals. In our proposed algorithm, by adjusting parameters of the wavelet transform, fast and slow blinks are detected simultaneously. However, this approach suffers from a larger false detection rate in comparison to the derivative-based method. As a result, for blink detection in this work, a combination of these two methods is applied. To improve the quality of the collected EOG signals, the discrete wavelet transform is benefited to remove noise and drift. For the noise removal, an adaptive thresholding strategy within the discrete wavelet transform is proposed which avoids sacrificing noise removal for saving blink amplitude or vice versa. In previous research, driver eye blink features (blink frequency, duration, etc.) have shown to be correlated to some extent with drowsiness. Hence, within a level of uncertainty they can contribute to driver drowsiness warning systems. In order to improve such systems, we investigate characteristics of detected blinks with respect to their different origins. We observed that in a real road experiment, blinks occur both spontaneously or due to gaze shifts. Gaze shifts between fixed positions, which occurred due to secondary visuomotor task, induced and modulated the occurrence of blinks. Moreover, the direction of the gaze shifts affected the occurrence of such blinks. Based on the eye movements during another experiment in a driving simulator without a secondary task, we found that the amount of gaze shifts (between various positions) is positively correlated with the probability of the blink occurrence. Therefore, we recommend handling gaze shift-induced blinks (e.g. during visual distraction) differently from those occurring spontaneously in drowsiness warning systems that rely solely on the variation of blink frequency as a driver state indicator. After studying dependencies between blink occurrence and gaze shifts, we extract 19 features out of each detected blink event of 43 subjects collected under both simulated and real driving conditions during 67 hours of both daytime and nighttime driving. This corresponds to the largest number of extracted eye blink features and the largest number of subjects among previous studies. We propose two approaches for aggregating features to improve their association with the slowly evolving drowsiness. In the first approach, we solely investigate parts of the collected data which are best correlated with the subjective self-rating score, i.e. Karolinska Sleepiness Scale. In the second approach, however, the entire data set with the maximum amount of information regarding driver drowsiness is scrutinized. For both approaches, the dependency between single features and drowsiness is studied statistically using correlation coefficients. The results show that the drowsiness dependency to features evolves to a larger extent non-linearly rather than linearly. Moreover, we show that for some features, different trends with respect to drowsiness are possible among different subjects. Consequently, we challenge warning systems which rely only on a single feature for their decision strategy and underscore that they are prone to high false alarm rates. In order to study whether a single feature is suitable for predicting safety-critical events, we study the overall variation of the features for all subjects shortly before the occurrence of the first unintentional lane departure and first unintentional microsleep in comparison to the beginning of the drive. Based on statistical tests, before the lane departure, most of the features change significantly. Therefore, we justify the role of blink features for the early driver drowsiness detection. However, this is not valid for the variation of features before the microsleep. We also focus on all 19 blink-based features together as one set. We assess the driver state by artificial neural network, support vector machine and k-nearest neighbors classifiers for both binary and multi-class cases. There, binary classifiers are trained both subject-independent and subject-dependent to address the generalization aspects of the results for unseen data. For the binary driver state prediction (awake vs. drowsy) using blink features, we have attained an average detection rate of 83% for each classifier separately. For 3-class classification (awake vs. medium vs. drowsy), however, the result was only 67%, possibly due to inaccurate self-rated vigilance states. Moreover, the issue of imbalanced data is addressed using classifier-dependent and classifier-independent approaches. We show that for reliable driver state classification, it is crucial to have events of both awake and drowsy phases in the data set in a balanced manner. The reason is that the proposed solutions in previous researches to deal with imbalanced data sets do not generalize the classifiers, but lead to their overfitting. The drawback of driving simulators in comparison to real driving is also discussed and to this end we perform a data reduction approach as a first remedy. As the second approach, we apply our trained classifiers to unseen drowsy data collected under real driving condition to investigate whether the drowsiness in driving simulators is representative of the drowsiness under real road conditions. With an average detection rate of about 68% for all classifiers, we conclude their similarity. Finally, we discuss feature dimension reduction approaches to determine the applicability of extracted features for in-vehicle warning systems. On this account, filter and wrapper approaches are introduced and compared with each other. Our comparison results show that wrapper approaches outperform the filter-based methods

    Comparing algorithms for aggressive driving event detection based on vehicle motion data

    Get PDF
    Aggressive driving is one of the main causes of fatal crashes. Correctly identifying aggressive driving events still represents a challenge in the literature. Furthermore, datasets available for testing the proposed approaches have some limitations since they generally (a) include only a few types of events, (b) contain data collected with only one device, and (c) are generated in drives that did not fully consider the variety of road characteristics and/or driving conditions. The main objective of this work is to compare the performance of several state-of-the-art algorithms for aggressive driving event detection (belonging to anomaly detection-, threshold- and machine learning-based categories) on multiple datasets containing sensors data collected with different devices (black-boxes and smartphones), on different vehicles and in different locations. A secondary objective is to verify whether smartphones could replace black-boxes in aggressive/non-aggressive classification tasks. To this aim, we propose the AD 2 (Aggressive Driving Detection) dataset, which contains (i) data collected using multiple devices to evaluate their influence on the algorithm performance, (ii) geographical data useful to analyze the context in which the events occurred, (iii) events recorded in different situations, and (iv) events generated by traveling the same path with aggressive and non-aggressive driving styles, in order to possibly separate the effects of driving style from those of road characteristics. Our experimental results highlighted the superiority of machine learning-based approaches and underlined the ability of smartphones to ensure a level of performance similar to that of black-boxes
    • …
    corecore