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Zusammenfassung

Die Zunahme müdigkeitsbedingter Verkehrsunfälle in den letzten Jahren verdeutlicht die Notwen-
digkeit anhand geeigneter Referenzmaße Assistenzsysteme zur Erkennung von Müdigkeit zu en-
twickeln. Das Ziel der vorliegenden Arbeit ist daher die Klassifikation des Fahrerzustandes
basierend auf den Augenbewegungen anhand von Elektrookulographie (eog).
Um einen Einblick in die Zustände des Fahrens zu geben, die zu sicherheitskritischen Verkehrssi-
tuationen führen, werden zunächst die Konzepte von Fahrermüdigkeit und -ablenkung sowie
verschiedene damit zusammenhängende Terminologien beschrieben. Anschließend werden Tech-
niken betrachtet, um den Fahrer wach zu halten und somit Autounfälle zu verhindern. Da
diese Techniken keine lang anhaltende Wirkung auf die Wachheit des Fahrers zeigen, sind in-
telligente Systeme zur Erkennung der Müdigkeit des Fahrers notwendig. In der Vergangenheit
sind derartige Systeme bereits entwickelt worden, von denen einige in dieser Arbeit vorgestellt
werden.
Wie auch in früheren Studien festgestellt wurde, ist der Fahrerzustand durch objektive und
subjektive Maße quantifizierbar. Zur Erfassung objektiver Maße wird der Fahrer entweder di-
rekt oder indirekt überwacht. Bei der indirekten überwachung des Fahrers werden Messgrößen
verwendet, die die Fahrleistung des Fahrers widerspiegeln, wie zum Beispiel die Spurhaltung
oder Lenkradbewegungen. Im Gegensatz dazu umfasst die direkte überwachung hauptsächlich
physiologische Messgrößen wie Hirnaktivität, Herzfrequenz und Augenbewegungen. Um diese
objektiven Messgrößen beurteilen zu können, sind subjektive Messgrößen wie eine Eigenbew-
ertung durch den Fahrer notwendig. Die vorliegende Arbeit stellt diese Messgrößen vor und
diskutiert die Bedenken hinsichtlich ihrer Interpretation und Zuverlässigkeit.
Die auf dem Markt existierenden Müdigkeitsassistenzsysteme stützen sich alle auf fahrleistungs-
basierte Maße. Diese setzen voraus, dass das Fahrzeug ausschließlich durch den Fahrer selbst
gelenkt wird. Solange andere Assistenzsysteme mit dem Ziel das Fahrzeug in der Mitte der
Fahrbahn zu halten aktiviert sind, würden Maßzahlen zur Fahrleistung falsche Entscheidungen
hinsichtlich einer Warnung treffen. Der Grund dafür ist, dass die Sensoren eine Kombination aus
dem Verhalten des Fahrers und des aktivierten Assistenzsystem messen. Das Müdigkeitswarn-
system kann den Beitrag des Fahrers an der Fahraufgabe nicht bestimmen. Dies unterstreicht
die Notwendigkeit einer direkten Fahrerüberwachung.
Frühere Arbeiten haben als Indikator für Müdigkeit den Abfall der Alpha Spindelrate (asr)
eingeführt. Hierbei handelt es sich um ein Merkmal, das aus den Hirnaktivitätssignalen während
der direkten Beobachtung des Fahrers extrahiert wird. Es wurde gezeigt, dass anhand asr
Ablenkung des Fahrers erfasst werden kann und insbesondere eine visuelle Ablenkung dabei
einen entgegenwirkenden Effekt hat. Basierend auf den Augenbewegungen des Fahrers wurde
ein Algorithmus entwickelt, um die negative Auswirkung der visuellen Ablenkung des Fahrers
auf die asr zu reduzieren. Der Zusammenhang von asr und der Müdigkeit des Fahrers kann
dadurch teilweise verbessert werden.
Da der Fokus dieser Arbeit auf den Augenbewegungen des Fahrers liegt, wird das visuelle System
des Menschen vorgestellt und die Idee des „Was“ und „Wo“ beschrieben, um visuelle Aufmerk-
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samkeit zu definieren. Desweiteren wird die Struktur des menschlichen Auges beschrieben und
die relevanten Arten von Augenbewegungen während der Fahrt definiert. Außerdem werden Au-
genbewegungen in zwei Gruppen mit langsamen und schnellen Augenbewegungen kategorisiert.
Es wird gezeigt, dass Lidschläge je nach Wachsamkeit des Fahrers zu beiden dieser Gruppen
gehören können.

eog als ein Werkzeug zur Messung der Augenbewegungen ermöglicht es uns zwischen müdigkeits-
bzw. ablenkungsbedingten Augenbewegungen und Augenbewegungen aufgrund der Fahrsit-
uation zu unterscheiden. Aufgrund dessen wurde im Rahmen einer Pilotstudie ein Experi-
ment unter vollständig kontrollierten Bedingungen auf einem Testgelände durchgeführt, um den
Zusammenhang zwischen den Augenbewegungen des Fahrers und verschiedenen realen Fahrszena-
rien zu untersuchen. In diesem Experiment sind unerwünschte Kopfschwingungen in den eog-
Signalen und das Sägezahnmuster der Augen (optokinetischer Nystagmus, okn) als situation-
sabhängige Augenbewegungen erkannt worden. Kopfschwingungen treten aufgrund von Bode-
nanregungen auf, wohingegen okn in Kurven mit kleinen Radien (50m) vorkam. Die statistis-
che Untersuchung zeigt eine signifikante Veränderung in den eog-Signalen durch unerwünschte
Kopfschwingungen. Darüber hinaus wird ein analytisches Modell entwickelt, um den möglichen
Zusammenhang zwischen okn und den Tangentenpunkt der Kurve zu erklären. Das entwickelte
Modell wird mit realen Daten einer Strecke mit hohen Krümmungen validiert.

Um alle relevanten Muster von Augenbewegungen während wacher Fahrten und Fahrten unter
Müdigkeit zu erfassen, werden in dieser Arbeit verschiedene Experimente —inklusive Tag- und
Nachtversuche— sowohl unter realen als auch simulierten Fahrbedingungen durchgeführt.

Basierend auf den in den Experimenten erhobenen Signalen werden verschiedene Ansätze zur
Detektion der Augenbewegungen untersucht. Zunächst wird die Detektion von Lidschlägen
basierend auf der Medianfilterung beleuchtet und ihre Nachteile bei der Erkennung langsamer
Lidschläge und Sakkaden aufgezeigt. Danach wird ein adaptiver Erkennungsansatz basierend
auf der Ableitung der eog-Signale vorgeschlagen, welcher nicht nur Lidschläge, sondern auch an-
dere fahrrelevante Augenbewegungen wie Sakkaden und Sekundenschlafereignisse erkennt. Der
vorgeschlagene Algorithmus unterscheidet darüber hinaus, zwischen den häufig verwechselten
fahrrelevanten Sakkaden und einer verringerten Lidschlagamplitude eines müden Fahrers, obwohl
Müdigkeit die Augenbewegungsmuster beeinflusst. Die Auswertung der Ergebnisse zeigt, dass
der dargestellte Algorithmus die bekannte Medianfilterungsmethode übertrifft, so dass schnelle
Augenbewegungen während beider Phasen, wach und müde, korrekt erkannt werden.

Weiter befasst sich die vorliegende Arbeit mit der Erkennung der langsamen Lidschläge als typi-
sche Muster bei Müdigkeit durch die Anwendung einer kontinuierlichen Wavelet-Transformation
auf eog-Signale. In dem vorgeschlagenen Algorithmus werden die schnellen und langsamen Lid-
schläge durch die Einstellung der Parameter der Wavelet-Transformation gleichzeitig detektiert.
Allerdings führt dieser Ansatz zu einer größeren Falscherkennnungsrate im Vergleich zu der auf
der Ableitung basierenden Methode. Deshalb wird in dieser Arbeit für die Lidschlagerkennung
eine Kombination beider Verfahren angewandt. Um die Qualität der gesammelten eog-Signale
zu verbessern und Rauschen und Drift zu entfernen, wird die diskrete Wavelet-Transformation
genutzt. Für die Rauschunterdrückung wird eine adaptive Schwellenstrategie für die diskrete
Wavelet-Transformation vorgeschlagen.

Frühere Forschungsarbeiten haben gezeigt, dass die lidschlagsbasierte Merkmale des Fahrers
(Lidschlagfrequenz, -dauer, usw.) zu einem gewissen Grad mit Müdigkeit korreliert sind. Da-
her können diese —mit einer gewissen Unsicherheit— einen Beitrag zu Müdigkeitswarnsystemen
leisten. Um diese Systeme zu verbessern, werden Eigenschaften der detektierten Lidschläge
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bezüglich ihrer unterschiedlichen Herkunft untersucht. Im Rahmen eines Experimentes unter
realen Straßenbedingungen zeigte sich, dass Lidschläge sowohl spontan als auch aufgrund von
Blickwechseln auftreten. Die Blickwechsel zwischen festen Positionen, die aufgrund der visuo-
motorischen Nebenaufgabe eingetreten sind, induzierten und modulierten das Auftreten von
Lidschlägen. Die Ergebnisse eines weiteren Fahrsimulatorversuchs ohne Nebenaufgabe zeigen,
dass die Menge der Blickwechsel (zwischen verschiedenen Positionen) mit der Wahrscheinlichkeit
des Lidschlagsauftretens positiv korreliert. Aus diesem Grund wird für Müdigkeitswarnsysteme,
die sich ausschließlich auf die änderung der Lidschlagfrequenz stützen, empfohlen, durch Blick-
wechsel (z.B. während visueller Ablenkung) induzierte Lidschläge anders als spontan auftretende
Lidschläge zu behandeln.
Nach der Analyse der Abhängigkeiten von Lidschlagfrequenz und Blickwechseln, wurden aus
jedem erkannten Lidschlag von 43 Probanden, gesammelt unter simulierten und realen Fahrbe-
dingungen, während 67 Stunden von Tages- und Nachtfahrten 19 Merkmale extrahiert. Dies
entspricht der größten Anzahl von lidschlagsbasierten Merkmalen und der größten Anzahl an
Probanden im Vergleich zu früheren Studien. Es werden zwei Ansätze zur Aggregation von Merk-
malen vorgestellt, um ihren Zusammenhang mit der sich langsam entwickelnden Müdigkeit zu
verbessern. Im ersten Ansatz wurden ausschließlich die Teile der gesammelten Daten untersucht,
die am besten mit der subjektiven Selbstbewertung der Fahrer durch die Karolinska Sleepiness
Scale korrelierten. Im zweiten Ansatz werden die gesamten Daten mit der maximalen Menge
an Informationen zur Fahrermüdigkeit untersucht. Bei beiden Ansätzen wird die Abhängigkeit
zwischen den einzelnen Merkmalen und der Müdigkeit statistisch unter Berechnung von Kor-
relationskoeffizienten betrachtet. Die Ergebnisse zeigen, dass sich die Müdigkeitsabhängigkeit
der Merkmale in einem hohen Grad nicht-linear entwickelt. Darüber hinaus zeigte sich, dass für
einige Merkmale bei unterschiedlichen Probanden verschiedene müdigkeitsabhängige Verläufe
möglich sind. Daher stellen wir Warnsysteme in Frage, die sich nur auf ein einziges Merkmal für
ihre Entscheidungsstrategie verlassen, und betonen, dass sie anfällig für hohe Falschalarmraten
sind.
Um zu untersuchen, ob ein einzelnes Merkmal für die Vorhersage von sicherheitskritischen
Ereignissen geeignet ist, untersuchen wir die Veränderung der Merkmale für alle Probanden
kurz vor dem Auftreten des ersten unbeabsichtigten Verlassens der Fahrspur und des ersten un-
beabsichtigten Sekundenschlafs im Vergleich zum Beginn der Fahrt. Basierend auf statistischen
Tests ändern sich vor dem Verlassen der Fahrspur die meisten Merkmale signifikant. Daher recht-
fertigen wir die Rolle der lidschlagbasierten Merkmale für die frühe Fahrermüdigkeitserkennung.
Dies gilt jedoch nicht für die Variation der Merkmale vor Sekundenschlaf.
Weiter wurden alle 19 augenbewegungsbasierte Merkmale gleichzeitig näher betrachtet. Der
Fahrerzustand wurde dabei durch künstliche neuronale Netzwerke, Support-Vektor-Maschines
und k-nearest neighbour Klassifikatoren beurteilt, sowohl für binäre als auch Multi-Class-Fälle.
Die binären Klassifikatoren sind sowohl fahrerunabhängig als auch fahrerabhängig trainiert wor-
den, um die Generalisierungsaspekte der Ergebnisse für ungesehene Daten zu adressieren. Die
binäre Fahrerzustandsklassifikation (wach vs. müde) basierend auf Augenbewegungsmerkmalen
ergab eine durchschnittliche Erkennungsrate von 83% für jeden Klassifikator. Für eine dreistufige
Klassifizierung (wach vs. mittel vs. müde), betrug die Erkennungsrate lediglich 67%, möglicher-
weise aufgrund ungenauer Selbstbewertungen des Vigilanzzustandes. Darüber hinaus wurde die
Frage der unausgeglichenen Daten mit klassifikatorabhängigen und -unabhängigen Ansätzen be-
trachtet. Wir zeigen, dass es für eine zuverlässige Fahrerzustandsklassifikation entscheidend ist,
Ereignisse von beiden Phasen —wach und müde— in ausgeglichener Weise zu berücksichtigen.
Grund hierfür ist, dass die vorgeschlagenen Lösungen früherer Untersuchungen zum Umgang
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mit unausgeglichenen Datensätzen die Klassifikatoren nicht verallgemeinern, sondern zu ihrer
überanpassung führen.
Der Nachteil von Fahrversuchen in Fahrsimulatoren im Vergleich zu realen Fahrversuchen wird
ebenfalls dargestellt. Zu diesem Zweck wird zunächst eine Reduktion der Daten vorgenommen.
Weiter wenden wir die von uns trainierten Klassifikatoren auf nicht in den Trainingsdaten enthal-
tenen Daten müder Fahrer —gesammelt unter realen Fahrbedingungen— an, um zu untersuchen,
ob die Müdigkeit in Fahrsimulatoren repräsentativ für die Müdigkeit unter realen Fahrbedingun-
gen ist. Mit einer durchschnittlichen Erkennungsrate von über 68% für alle Klassifikatoren, kann
von der Vergleichbarkeit beider Experimentalumgebungen ausgegangen werden.
Schließlich werden Ansätze zur Dimensionsreduzierung der Merkmale diskutiert, um die Fahrzeug-
tauglichkeit der extrahierten Merkmale zu bestimmen. Aus diesem Grund wurden Filter und
Wrapper Ansätze eingeführt und miteinander verglichen. Unsere Ergebnisse zeigen, dass die
Wrapper-Ansätze die Filter-basierten Methoden übertreffen.



Abstract

The increase in vehicle accidents due to the driver drowsiness over the last years highlights the
need for developing reliable drowsiness assistant systems by a reference drowsiness measure.
Therefore, the thesis at hand is aimed at classifying the driver vigilance state based on eye
movements using electrooculography (eog).
In order to give an insight into the states of driving, which lead to critical safety situations, first,
driver drowsiness, distraction and different terminologies in this context are described. After-
wards, countermeasures as techniques for keeping a driver awake and consequently preventing
car crashes are reviewed. Since countermeasures do not have a long-lasting effect on the driver
vigilance, intelligent driver drowsiness detection systems are needed. In the recent past, such
systems have been developed on the market, some of which are introduced in this study.
As also stated in previous studies, driver state is quantifiable by objective and subjective mea-
sures. The objective measures monitor the driver either directly or indirectly. For indirect
monitoring of the driver, one uses the driving performance measures such as the lane keeping
behavior or steering wheel movements. On the contrary, direct monitoring mainly comprises the
driver’s physiological measures such as the brain activities, heart rate and eye movements. In or-
der to assess these objective measures, subjective measures such as self-rating scores are required.
This study introduces these measures and discusses the concerns about their interpretation and
reliability.
The developed drowsiness assistant systems on the market are all based on driving performance
measures. These measures presuppose that the vehicle is steered solely by the driver himself. As
long as other assistance systems with the concept to keep the vehicle in the middle of the lane
are activated, driving performance measures would make wrong decisions about warnings. The
reason is what the sensors measure is a combination of the driver’s behavior and the activated
assistance system. In fact, the drowsiness warning system cannot determine the contribution of
the driver in the driving task. This underscores the need for the direct monitoring of the driver.
Previous works have introduced the drop of the alpha spindle rate (asr) as a drowsiness indicator.
This rate is a feature extracted out of the brain activity signals during the direct monitoring the
driver. Additionally, asr was shown to be sensitive to driver distraction, especially a visual one
with an counteracting effect. We develop an algorithm based on eye movements to reduce the
negative effect of the driver visual distraction on the asr. This helps to partially improve the
association of asr with the driver drowsiness.
Since the focus of this study is on driver eye movements, we introduce the human visual system
and describe the idea of what and where to define the visual attention. Further, the structure
of the human eye and relevant types of eye movements during driving are defined. We also
categorize eye movements into two groups of slow and fast eye movements. We show that blinks,
in principle, can belong to both of these groups depending on the driver’s vigilance state.
eog as a tool to measure the driver eye movements allows us to distinguish between drowsiness-
or distraction-related and driving situation dependent eye movements. Thus, in a pilot study,
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an experiment under fully controlled conditions is carried out on a proving ground to investigate
the relationship between driver eye movements and different real driving scenarios. In this
experiment, unwanted head vibrations within eog signals and the sawtooth pattern (optokinetic
nystagmus, okn) of eyes are realized as situation dependent eye movements. The former occurs
due to ground excitation and the latter happens during small radius (50m) curve negotiation.
The statistical investigation expresses a significant variation of eog due to unwanted head
vibrations. Moreover, an analytical model is developed to explain the possible relationship of
okn and tangent point of the curve. The developed model is validated against the real data on
a high curvature track.

In order to cover all relevant eye movement patterns during awake and drowsy driving, different
experiments are conducted in this work including daytime and nighttime experiments under real
road and simulated driving conditions.

Based on the measured signals in the experiments, we study different eye movement detection
approaches. We, first, investigate the conventional blink detection method based on the median
filtering and show its drawback in detecting slow blinks and saccades. Afterwards, an adap-
tive detection approach is proposed based on the derivative of the eog signal to simultaneously
detect not only the eye blinks, but also other driving-relevant eye movements such as saccades
and microsleep events. Moreover, in spite of the fact that drowsiness influences eye movement
patterns, the proposed algorithm distinguishes between the often confused driving-related sac-
cades and decreased amplitude blinks of a drowsy driver. The evaluation of results shows that
the presented detection algorithm outperforms the common method based on median filtering
so that fast eye movements are detected correctly during both awake and drowsy phases.

Further, we address the detection of slower eye blinks, which are referred to as typical patterns
of the drowsiness, by applying the continuous wavelet transform to eog signals. In our proposed
algorithm, by adjusting parameters of the wavelet transform, fast and slow blinks are detected
simultaneously. However, this approach suffers from a larger false detection rate in comparison
to the derivative-based method. As a result, for blink detection in this work, a combination of
these two methods is applied. To improve the quality of the collected eog signals, the discrete
wavelet transform is benefited to remove noise and drift. For the noise removal, an adaptive
thresholding strategy within the discrete wavelet transform is proposed which avoids sacrificing
noise removal for saving blink amplitude or vice versa.

In previous research, driver eye blink features (blink frequency, duration, etc.) have shown
to be correlated to some extent with drowsiness. Hence, within a level of uncertainty they
can contribute to driver drowsiness warning systems. In order to improve such systems, we
investigate characteristics of detected blinks with respect to their different origins. We observed
that in a real road experiment, blinks occur both spontaneously or due to gaze shifts. Gaze
shifts between fixed positions, which occurred due to secondary visuomotor task, induced and
modulated the occurrence of blinks. Moreover, the direction of the gaze shifts affected the
occurrence of such blinks. Based on the eye movements during another experiment in a driving
simulator without a secondary task, we found that the amount of gaze shifts (between various
positions) is positively correlated with the probability of the blink occurrence. Therefore, we
recommend handling gaze shift-induced blinks (e.g. during visual distraction) differently from
those occurring spontaneously in drowsiness warning systems that rely solely on the variation of
blink frequency as a driver state indicator.

After studying dependencies between blink occurrence and gaze shifts, we extract 19 features
out of each detected blink event of 43 subjects collected under both simulated and real driving
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conditions during 67 hours of both daytime and nighttime driving. This corresponds to the
largest number of extracted eye blink features and the largest number of subjects among previous
studies. We propose two approaches for aggregating features to improve their association with
the slowly evolving drowsiness. In the first approach, we solely investigate parts of the collected
data which are best correlated with the subjective self-rating score, i.e. Karolinska Sleepiness
Scale. In the second approach, however, the entire data set with the maximum amount of
information regarding driver drowsiness is scrutinized. For both approaches, the dependency
between single features and drowsiness is studied statistically using correlation coefficients. The
results show that the drowsiness dependency to features evolves to a larger extent non-linearly
rather than linearly. Moreover, we show that for some features, different trends with respect to
drowsiness are possible among different subjects. Consequently, we challenge warning systems
which rely only on a single feature for their decision strategy and underscore that they are prone
to high false alarm rates.
In order to study whether a single feature is suitable for predicting safety-critical events, we
study the overall variation of the features for all subjects shortly before the occurrence of the first
unintentional lane departure and first unintentional microsleep in comparison to the beginning
of the drive. Based on statistical tests, before the lane departure, most of the features change
significantly. Therefore, we justify the role of blink features for the early driver drowsiness
detection. However, this is not valid for the variation of features before the microsleep.
We also focus on all 19 blink-based features together as one set. We assess the driver state
by artificial neural network, support vector machine and k-nearest neighbors classifiers for both
binary and multi-class cases. There, binary classifiers are trained both subject-independent and
subject-dependent to address the generalization aspects of the results for unseen data. For the
binary driver state prediction (awake vs. drowsy) using blink features, we have attained an
average detection rate of 83% for each classifier separately. For 3-class classification (awake vs.
medium vs. drowsy), however, the result was only 67%, possibly due to inaccurate self-rated
vigilance states. Moreover, the issue of imbalanced data is addressed using classifier-dependent
and classifier-independent approaches. We show that for reliable driver state classification, it is
crucial to have events of both awake and drowsy phases in the data set in a balanced manner.
The reason is that the proposed solutions in previous researches to deal with imbalanced data
sets do not generalize the classifiers, but lead to their overfitting.
The drawback of driving simulators in comparison to real driving is also discussed and to this
end we perform a data reduction approach as a first remedy. As the second approach, we apply
our trained classifiers to unseen drowsy data collected under real driving condition to investigate
whether the drowsiness in driving simulators is representative of the drowsiness under real road
conditions. With an average detection rate of about 68% for all classifiers, we conclude their
similarity.
Finally, we discuss feature dimension reduction approaches to determine the applicability of
extracted features for in-vehicle warning systems. On this account, filter and wrapper approaches
are introduced and compared with each other. Our comparison results show that wrapper
approaches outperform the filter-based methods.





1. Introduction

1.1. Problem statement and motivation

The number of injured and killed persons in traffic accidents of Germany based on the statistics
provided by the Federal Statistical Office of Germany (DESTATIS, 2013a) has slightly decreased
after 1970 (see Figure 1.1). This decrease is the result of introducing different safety regulations
in the course of time. Despite the overall drop of both numbers after 1970, the fact of killing
over 3000 persons along with 370000 person injuries in 2013 should not be neglected.
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Figure 1.1.: The evolution of number of killed and injured persons in traffic accidents of Germany
(DESTATIS, 2013a)

Car crashes, in general, occur because of different reasons such as driver drowsiness, distraction,
bad weather condition, high speed, consuming alcohol, etc. Among these reasons, in Germany,
sleepy drivers are responsible for about 25% of car crashes on highways (Zulley and Popp, 2012).
In addition, one out of every six heavy road accidents with truck involvement is caused by
a drowsy truck driver. Apart from that, an increase of 6% in the number of vehicle accidents
involving person injuries due to driver drowsiness between 2008 and 2012 (see Figure 1.2) reveals
that drowsiness has huge contribution in car accidents.
Based on 14268 crashes in the United States from 2009 to 2013 (Tefft, 2014), a drowsy driver
was involved in the accident percentages with the following consequences:

• the vehicle was towed away from the scene: 6%
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Figure 1.2.: The evolution of number of vehicle accidents due to driver drowsiness and the number of
injured persons involved in them (DESTATIS, 2013b)

• a person was injured: 20%

• a person was killed: 21%.

It is also mentioned by Brown et al. (2014) that in the United States, overall, more than 80000
car crashes and 850 fatalities are the result of drowsy driving every year. In addition, based on
the 100-car naturalistic driving study, 22–24% of crashes and near-crashes were caused by drowsy
drivers (Klauer et al., 2006). According to the National Highway Traffic Safety Administration
(nhtsa), young people, shift workers and people with sleep disorder diseases are at very high risk
of car crashes due to the drowsiness (NHTSA, 1998). In the mentioned study, “slower reaction
time”, “reduced vigilance” and “impaired information process” were noted as the consequences
of drowsiness.

The aforementioned statistics underscore the necessity for developing drowsiness warning sys-
tems. In the ideal case, such assistance systems observe one or several drowsiness related mea-
sures and warn the driver in order to prevent accidents. This is done either based on driving
performance measures such as the steering or lane-keeping behavior or based on the direct mon-
itoring of the driver by means of physiological measures like eye blinks, yawning frequency, etc.
Since adding some sensors to the vehicle for monitoring the lane keeping and steering wheel
movement behaviors of the driver were affordable and technologically much easier to develop,
initially, most of the commercial products by car manufacturers and supplier companies were all
based on driving performance measures.

Along with the development of such driver drowsiness detection systems, the intelligent vehicle
technologies have also grown in the field of driver assistance rapidly to prevent car crashes
by means of other approaches. As an example, the distronic plus with Steering Assist of
Mercedes-Benz (Daimler AG, 2014b) supports the driver to stay within the lane. In other
words, the car steers to some extent together with the driver. Such a system, however, would
not prevent driver drowsiness, and on the contrary, it may lead to insurmountable problem
for the drowsiness warning system, if it is activated. The reason is that the resulting driving
behavior is a combination of the driver actions and the supporting system. Since the warning
system is unable to determine to what extent the driver is contributing, it fails to detect a
drowsy driver. Therefore, the new assistance systems deteriorate the performance of the classical
warning systems. To be emphasized again, many of the driver assistance systems help the driver
to improve the driving performance and to avoid severe crashes, but they are unable to eliminate
crashes to the full extent. This fact highlights the need of new driver drowsiness detection
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systems even for cars equipped with a variety of assistance systems. A possibility to deal with
this problem is to directly observe the driver. Hence, one can think of a driver observation
camera.
The mentioned problem will even get worst, as soon as autonomous cars are developed in near
future. Such cars drive (steer, brake or turn) independently and relieve the driver of the full
concentration on the driving task. However, at the moment that the car is unable to interpret the
surrounding information correctly and a crash deems unavoidable, the driver should undertake
the driving task. Therefore, the car should inform the driver in a timely manner with respect to
driver’s level of attention. Clearly, a driver, who is distracted, should be informed earlier than a
driver who observes the scene ahead carefully. Driver’s level of vigilance and distraction cannot
be determined based on the lane keeping and steering wheel movement behaviors, because the
car itself is responsible for them. Therefore, an autonomous system should directly observe the
driver the whole time as well, in order to assess driver’s vigilance and attentional level. Again,
one can think of a camera-based driver monitoring system.
A driver observation camera monitors one or several driver’s physiological measures such as
repeated yawning, slower reactions, difficulty in keeping eyes open, etc. (Dong et al., 2011).
Prior to employing a camera or developing an eye tracking algorithm, it should, however, be
ascertained to what extent features of the corresponding biological measures reflect the driver
state, especially under real driving conditions which is the ultimate goal of all assistance systems.
In other words, a reliable reference drowsiness measure is needed whose development is beneficial
for evaluating any drowsiness detection system. On this account, this work concentrates on driver
eye movements analysis based on a reference measuring system.
Before introducing different approaches for monitoring the driver and assessing the vigilance
level, we must first define what exactly we are trying to measure and to quantify. Therefore,
next section primarily concerns definition of drowsiness and inattention.

1.2. Definition of drowsiness and inattention

The states of driving, which lead to critical safety situations, have been described and distin-
guished by a variety of terminologies such as distraction, inattention, fatigue, exhaustion, sleepi-
ness, and drowsiness. In addition, the proper states of driving are also referred to as awareness,
vigilance and alertness. Therefore, prior to determining our terminology in this work, first we
define and discuss the aforementioned terms.

Fatigue and sleepiness

Schmidt et al. (2011) stated that the terms fatigue and sleepiness are usually used as synonyms,
although they are not identical. According to Hirshkowitz (2013), depending on the field of
study, the term fatigue might have different meanings. In civil engineering, as an example, it
is defined as “a weakening or material breakdown over time produced by repeated exposure to
stressors”. Human physical fatigue, however, refers to the “weakness from repeated exertion or a
decreased response of cells, tissues, or organs after excessive stimulation or activity”. Considering
this definition, human physical fatigue is not necessarily associated with sleepiness, but improves
after resting. As a result, it is the mental fatigue which is highly correlated with sleepiness and
car crashes and is related to the context of driving (May, 2011). In general, Hirshkowitz (2013)
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defined fatigue as “a sense of tiredness, exhaustion, or lack of energy” which is intensified due
to stress load or in the course of time, also called time-on-task.
Based on Williamson et al. (2014), fatigue as a comprehensive terminology covers not only
sleepiness and mental fatigue, but also fatigue due to illness. Therefore, they associated sleepiness
only to effects such as time since awaking and time of the day effects, while fatigue might occur
due to both duration and work-loading of a task and also sleepiness or illness factors. This is in
agreement with Philip et al. (2005) who also defined sleepiness as “difficulty in remaining awake,
which disappears after sleep, but not after rest.”
Driver fatigue, as defined by May (2011), is the demotivation of continuing the driving task and
also sleepiness. She mentioned following causes for fatigue which are believed to affect each other
as well:

• task-related fatigue and environmental factors (e.g. trip duration or weather/road condi-
tion)

• sleep-related fatigue (e.g. quality/quantity of sleep, circadian rhythm)
Moreover, May (2011) categorized task-related fatigue as either active fatigue or passive fatigue.
The former, in general, is associated with the overload of “attentional resource” such as in the
case of performing a secondary task during driving. The latter, however, interacts with the
monotonicity or familiarity with the route. It is also emphasized that time-on-task deteriorates
the driving performance, if it is combined with monotonous driving.
The circadian rhythm manages the timing of alertness and sleepiness. Based on the circadian
rhythm, two peaks of sleepiness can be predicted (Čolić et al., 2014). For people, who sleep at
night, these peaks occur before afternoon and at night. May (2011) referred to the circadian
rhythm as the internal body clock with high contribution to sleepiness and driving performance
degradation. As a result, for those people, who are not synchronous to the circadian alerting
process, sleepiness is more probable (Hirshkowitz, 2013).
Čolić et al. (2014) used the general term drowsiness as a factor which threatens road traffic
safety and related it to sleepiness reasons with the following subcategories: “sleep restriction or
loss, sleep fragmentation and circadian factors”.

Distraction and inattention

Regan et al. (2011) suggested distinguishing between driver distraction and driver inattention for
a better comparison of research findings. Oxford dictionary (Oxford, 2014) defines distraction
as “a thing that prevents someone from concentrating on something else”. Regan et al. (2011)
also summarized following points for defining distraction in the driving context:

• “There is a diversion of attention away from driving or safe driving.”
• “Attention is diverted toward a competing activity, inside or outside the vehicle, which may

or may not be driving-related.”
• “The competing activity may compel or induce the driver to divert attention toward it.”
• “There is an implicit, or explicit, assumption that safe driving is adversely effected.”

Inattention, on the other hand, is defined as “lack of attention; failure to attend to one’s re-
sponsibilities; negligence” (Oxford, 2014). Hoel et al. (2010) categorized attentional dysfunction
as: “inattention, attentional competition and distraction”. Similar to distraction, inattentive



1.2 Definition of drowsiness and inattention 5

situations also involve the interference in the driving task. Thus, inattention in terms of the
driving task occurs, while performing a secondary non-driving-related task such as text messag-
ing. On the contrary, Hoel et al. (2010) linked distraction to personal concerns like daydreaming.
Finally, performing secondary driving-related tasks in addition to the primary driving task is
considered as attentional competition (e.g. driving and navigating). Unlike Hoel et al. (2010),
Wallén Warner et al. (2008) (as cited by Regan et al., 2011) decomposed inattention as:

• “driving-related distractors inside vehicle”: e.g. navigation system

• “driving-related distractors outside vehicle”: e.g. road signs

• “non driving-related distractors inside vehicle”: e.g. speaking to a passenger

• “non driving-related distractors outside vehicle”: e.g. a passenger on the pavement

• “thoughts/daydreaming”: e.g. personal problems.

According to Pettitt et al. (2005) (cited by Regan et al., 2011), distraction leads to inattentive
driving. Inattention, however, might have other motives than only the distraction.

Regan et al. (2011) defined driver inattention as “insufficient, or no attention, to activities
critical for safe driving” with following sub-categories:

• Driver restricted attention (dra) which is the result of a biological factor such as
blinking. During blinking the driver is not able to perceive any visual information.

• Driver misprioritised attention (dmpa) which, as its name states, occurs, if multiple
driving-related tasks are not correctly prioritized. As a result, a very relevant task to safe
driving is thoroughly excluded such as looking over the shoulders while moving forward
and not paying attention to the vehicle in front for a timely braking reaction. Regan et al.
(2011) emphasized on different interpretations of such level of inattention with respect to
driving experience.

• Driver neglected attention (dna) which happens, if the driver neglects an important
driving-related task. An example is a driver who does not expect a train at a railway
level crossing and, therefore, does not observe properly. In fact, “expectation and over-
familiarity” motivate this type of inattention.

• Driver cursory attention (dca) which is the result of hastiness during driving. Conse-
quently, driving-related tasks are not performed thoroughly.

• Driver diverted attention (dda) which is similar to the definition of driver distraction
and has been studied deeply for understanding of safety in comparison to other categories.
In this category, the secondary task, which diverts driver attention, comprises not only
internal or external activities, but also mental activities. Clearly, dda is either driving-
related, e.g. by navigation system, similar to attentional competition studied by Hoel et al.
(2010) or non-driving-related, like by text massaging. In addition, it might occur both
voluntarily/involuntarily and internally/externally. This category of driver inattention
mainly covers unusual and unexpected tasks which drivers hardly ignore.

Despite the mentioned taxonomy of inattention, Regan et al. (2011) also stated issues such as
whether tools and methods, in general, are able to collect data for all mentioned categories of
driver inattention or whether it is possible to distinguish between the mentioned categories in a
crash. It seems that except for the dda, which has been studied systematically, other categories
need new instrumentations and new algorithms for assessing the experiment data in future.
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It is clear that in the taxonomy of driver inattention defined by Regan et al. (2011), the driver
state itself is also included as a factor which affects the inattention level. For example, severe
drowsiness results in longer eye closures and leads to dra. In addition, they also believe that
depending on the reaction of the driver to an event, different categories of inattention might
occur.
Regan et al. (2011) interpreted the phenomenon of looked but failed to see as either resultant of
drowsiness and, therefore, dra or internal thoughts, i.e. dda. Moreover, daydreaming has been
categorized as dda, since it is also a non-driving-related task. They discriminated daydreaming
from internal unintentional thoughts from this aspect that daydreaming is more fantasy-like,
while internal unintentional thoughts are linked to current concerns. In most cases, the driver
recognizes the daydreaming only after it is finished.

Alertness and vigilance

According to Oxford dictionary (Oxford, 2014), vigilance is defined as “the action or state of
keeping careful watch for possible danger or difficulties”. Moreover, alertness is defined as “the
state of being quick to notice any unusual and potentially dangerous or difficult circumstances”.
Dukas (1998) defined vigilance as “a general state of alertness that results in enhanced processing
of the information by the brain”. Thiffault and Bergeron (2003), however, categorized vigilance
into two groups. The first one deals with “information process and sustained attention”, while
the other one refers to “physiological processes underlying alertness or wakefulness”. Overall,
during driving, the lack of both of them results in safety-critical situations as also mentioned by
Schmidt et al. (2009).

Terminologies of this work

In this work, the term drowsiness will be used to refer to a broader scope including both sleepiness
and fatigue. The term fatigue will not be used further to avoid ambiguity in its definition. Since
in this work only performing a secondary task will be engaged in the primary driving task, we
only use the term distraction or dda in the taxonomy defined by Regan et al. (2011). The state
that a driver does not threaten road safety and is aware of danger is called awake.

1.3. Countermeasures against drowsiness during driving

Countermeasures are techniques for keeping a driver awake and consequently preventing car
crashes. Examples of such countermeasures are taking a nap (43%), opening a window (26%),
drinking coffee (17%), pulling over or getting off the road (15%), turning on the radio (14%),
taking a walk or stretching (9%), changing drivers (6%), eating (3%) and asking passengers to
start a conversation or singing (3%), which are all “driver-initiated” (May, 2011). The percent-
ages represent how often each countermeasure was selected by 4010 subjects based on the results
provided by Royal (2003). Multiple countermeasures have been selected by half of the subjects.
Anund (2009) studied the interaction between countermeasures and various factors such as age,
gender, driving experience, etc. and showed how often each countermeasure is used by drowsy
subjects. She found taking a nap as a very typical countermeasure and showed that this coun-
termeasure was used by those drivers who had experienced sleep-related crashes, professional
drivers, males and drivers aged 46–64 years.
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Schmidt et al. (2011) implicitly analyzed the effect of conversing as a countermeasure. They
showed that a 1-min conversation for verbally assessing the drowsiness level led to an increase
of the vigilance state estimated by physiological measures. However, the activating effect of this
countermeasure lasted only up to 2min in their experiment. Moreover, they emphasized in their
study that their experiment does not declare any issue about the type of conversation and its
generality as a countermeasure, since the conversation only comprised the driver self-estimation
of the drowsiness level. All in all, the distracting effect of talking with a passenger or cell phone
during driving should not be ignored.
Gershon et al. (2011) explored the drowsiness countermeasures based on their usage and per-
ceived effectiveness aspects for professional and non-professional drivers regardless of the drivers’
age. They considered a driver as a professional one, if driving was part of his work requirements
e.g. a taxi or bus driver. However, non-professional drivers had other primary jobs than driving.
The results revealed that listening to the radio and opening the window were the most frequently
used and perceived as effective countermeasures by both groups. They believe that it is the ac-
cessibility of these two countermeasures which has made them so popular. Non-professional
drivers used talking to passengers as the second most common countermeasure. Drinking cof-
fee, however, was used by professional ones more often. In general, planning rest stops ahead,
stopping for a short nap and drinking coffee were more often used by professional drivers in
comparison to the non-professional ones. Gershon et al. (2011) justified this finding based on
the level, at which each group counteracts drowsiness. They called it “tactical/maneuvering
level” for non-professional drivers versus “strategic/planning level” for professional ones. The
former, unlike the latter, tries to decrease the weariness and boredom without planning ahead.
Rumble strips located on the roadsides or on the middle line are another safety technique to
prevent car accidents due to lane departure (May, 2011). As soon as the driver crosses or contacts
the rumple strips with a wheel, vibrations together with a loud noise will be heard inside the car
and notify the driver of the lane departure. Damousis and Tzovaras (2008) and Hu and Zheng
(2009) used rumble strips in their experiments and defined events of hitting rumble strips as
critical events for driver drowsiness detection systems whose occurrences should not be missed.
Anund (2009), however, studied “the effect of rumple strips on sleepy drivers” and analyzed the
5min windows preceding a rumble strip hit and shortly after the hit. The results revealed an
increase in the studied sleepiness indicators such as blink duration and electroencephalography
analysis (will be explained in Section 2.1.2). Interestingly, shortly after the hit the subjects were
alert and enhanced performance was observed. Nevertheless, these effects did not last more than
5min and signs of sleepiness returned. Therefore, as May (2011) also mentioned, rumble strips
are only useful for highlighting the driver drowsiness level but clearly they do not eliminate
drowsiness.

1.4. Driver drowsiness detection systems on the market

This section introduces driver drowsiness detection systems available on the market by car
companies and explains the idea behind their detection methods based on the review provided
by Čolić et al. (2014).

Mercedes-Benz In 2009, Daimler AG introduced the Attention Assist to warn drowsy drivers.
This system is mainly based on steering wheel movements and their velocities (Daimler AG, 2008,
2014a). The idea behind the Attention Assist is that an alert driver steers with small corrections
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and moderate movements. On the contrary, a drowsy driver does not steer for a short time
followed by a fast large-amplitude steering activity. Hence, the transition between these two
phases is monitored for vehicle speeds from 80 to 180 km/h. Since 2013, this range has been
enhanced to 60 and 200 km/h in the new S and E-class series. The system determines whether
the driver is drowsy by comparing the current steering behavior with that of the beginning of
the driving session. If the difference between them exceeds a threshold, the driver is warned
both audibly and visually, i.e. by an audible signal and displaying “Attention Assist: Break!”
in the instrument cluster. In some new models, the attention level in form of a 5-level bargraph
is also displayed during the drive.

Figure 1.3 shows an example of a typical steering event which is detected by the Attention
Assist and its corresponding vehicle trajectory. In this figure, up to t = 6 s, there is no steering
activity which leads to lane departure. However, shortly after t = 6 s, the driver corrects his
lane departure by an abrupt steering wheel movement up to 10◦.
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Figure 1.3.: A typical steering event detected by the Attention Assist as a drowsiness-related steering
wheel movement

Attention Assist has several advantages. First of all, it is able to warn the driver early enough
before the occurrence of microsleep events. Moreover, the parameters of the systems are set
individually at the beginning of the drive. Therefore, regardless of the driving characteristics of
a specific driver, the system adapts itself to the current driver. In addition, weighting factors
such as time of day and driving time have been considered in the warning strategy. Longitudinal
and transverse acceleration and vehicle speed also contribute to improve the system. Since not
all steering wheel movements are necessarily drowsiness-related, the Attention Assist does not
take all steering movements into account. Side wind, road bumps and operation of center console
elements, e.g. navigation system or turn signal indicator, are examples of such non-in-vehicle
and in-vehicle external influences on the steering wheel movements which are filtered out for
assessing driver’s level of drowsiness.
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Volvo Driver Alert Control (dac) introduced by Volvo Group in 2007 works based on a lane
tracking camera which observes the lane keeping behavior (Volvo Group, 2014). It is located
between the rear-view mirror and the windshield. Moreover, steering wheel movements are taken
into consideration. The system is active, if the vehicle speed exceeds 65 km/h. During the drive,
a bargraph displayed in the instrument cluster shows the drowsiness level to the driver. As
soon as it decreases to one bar, the driver will be warned both visually, i.e. a message on the
speedometer and acoustically, i.e. an audible warning.

Ford The Ford Motor Company has also developed a system called Driver Alert, which, similar
to the system of Volvo, is based on the lane keeping behavior (Ford Motor Company, 2010). The
lane tracking camera is located behind the rear-view mirror. Depending on the detected lanes,
the position of the vehicle is predicted and then compared with the true one. If the difference
exceeds a certain threshold, the driver is warned audibly and visually on the instrument cluster.
If the system determines that the alertness level is still decreasing, a second warning is displayed
which should be accepted by pressing a button. The system will be reset after turning the engine
off or after opening the driver’s door.

Volkswagen The Fatigue Detection system is developed by Volkswagen AG and is based on
the steering movements and some other available signals (Volkswagen AG, 2014). It activates
after a minimum driving time of 15min and for a vehicle speed exceeding 65 km/h. In the case
of the drowsiness detection, the driver is warned both visually and acoustically. After 15min,
the warning is repeated, if the driver keeps driving. Under some conditions the system might
not work properly, such as “sporty driving style, winding road and poor road surfaces.”
In addition to the mentioned systems integrated into the vehicle, there are also some other
systems available which can be installed as an additional equipment on a vehicle. More details
about such systems are provided by Kircher et al. (2002), Barr et al. (2005) and Čolić et al.
(2014).

1.5. Thesis outline

The outline of the thesis is pictorially shown in Figure 1.4. It starts with Chapter 2, in which
we discuss and review the approaches for objective and subjective driver state measurements. In
the context of objective measures, both driving performance and driver physiological measures
are covered. Since this thesis concentrates on driver eye movements as a drowsiness indicator,
the human visual system, its structure and relevant types of eye movements are introduced in
Chapter 3. Further, in Chapter 4 the measurement system used in this work is investigated
for in-vehicle applications. This chapter also describes the conducted experiments for collecting
eye movement data which will be used later to achieve the goals of this study (data collection
block in Figure 1.4). Our experiments are based on daytime and nighttime drives both on real
roads and in the driving simulator. After data acquisition, Chapter 5 deals with the detection of
different types of eye movements including both simple and complex approaches like the median
filter-based and wavelet transform methods, respectively (event detection block in Figure 1.4).
Afterwards, in Chapter 6, we answer the question how the occurrence of the eye movements is
associated with each other, especially under distracted driving conditions. From the detected
events in Chapter 5, we introduce extracted blink features in Chapter 7 where we extensively
review the previous studies in order to compare them with our findings (feature extraction
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block in Figure 1.4). In addition, the relationship between extracted features and drowsiness
is investigated individually by event-based and correlation-based analyses. In Chapter 8, a
driver state classification is performed using the extracted features by applying three types of
classifiers. The classification results are compared with each other and the optimal classifier is
suggested (classification and validation blocks in Figure 1.4). This chapter ends by assessing
feature dimension reduction approaches. Finally, in Chapter 9 we summarize and conclude the
results of this work and give an outlook of this study which opens rooms for future work.

1.6. Goals and new contributions of the thesis

The main goal of this thesis is to provide a ground truth-based eye movement analysis for
the future development of driver observation camera with concentration on driver drowsiness
detection. In other words, this work targets the full coverage of requirements to be fulfilled
during the development of the camera and the warning system for timely detection of the onset
of drowsiness. Therefore, studying, implementation and evaluation of drowsiness-related eye
movement features are on the central focus. To this account, well-known methods for event
detection, feature extraction and classification need to be investigated along with providing
new ideas and approaches. These goals can be achieved by designing daytime and nighttime
experiments with representative driving scenarios.
In the following, the main contributions of this thesis towards driver drowsiness detection are
summarized.

• Based on a thorough literature review on the terminologies related to drowsiness, a suit-
able term among many terminologies e.g. fatigue, sleepiness, etc. is targeted which best
describes the driver state during driving. (Section 1.2)

• A new approach for enhancing the calculation of the alpha spindle rate is suggested and
evaluated against the initial calculation method. This idea benefits from the fusion of
eye movement activity information into the calculation of the alpha spindle rate. (Section
2.1.2)

• Most of the previous studies collected eye movement data with the eye movement mea-
surement system used in this work (electrooculography) in laboratories or in fixed-base
driving simulators. However, in this work, the reliability and robustness of this system
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for in-vehicle measurements is evaluated on a proving ground and under fully controlled
real road driving conditions. In addition, due to using vehicle sensors, road-dependent eye
movements are thoroughly analyzed. (Section 4.1)

• The results and findings of this thesis are evaluated based on different experiments on
both real roads and driving simulators with a total number of 43 subjects. Moreover, by
designing both daytime and nighttime experiments, the collected data set contained all
vigilance levels during driving. On the contrary, in previous studies, drowsiness detection
has mostly been explored under simulated driving (see Table 7.3). In addition, almost all
of the previous researches had a smaller number of participants than this study in their
experiments. Moreover, in most of the previous works, sleep-deprived subjects were par-
ticipated in the experiments. This leads to an imbalanced data set in terms of availability
of information about different levels of driver drowsiness and vigilance. (Sections 4.2 and
4.3)

• In an experiment on the real road, where secondary tasks have been performed along
with the primary driving task, eye blink behavior is analyzed. Based on the findings, a
recommendation about task-induced blinks is made. (Chapter 6)

• In order to improve the performance of eye movement detection and the accuracy of the
extracted features, two preprocessing steps, drift and noise removal, are proposed. The
strength of our proposed noise removal approach is its flexibility in selecting noise removal
threshold with respect to the amount of noise. (Section 5.3.3)

• For the detection of blink and distinguishing them from other eye movements, two novel
algorithms are proposed. The first algorithm is based on derivative signal and is suitable
for detection of fast eye movements. The seconds approach is based on continuous wavelet
transform and covers the detection of both fast and slow eye movements. Therefore, in
contrast to other studies, this work addresses the detection of all relevant eye movements
to drowsiness. (Sections 5.2 and 5.3.2)

• This work is the most comprehensive study on eye blink features for in-vehicle applications
and under real driving conditions. By considering all inconsistent definitions of features
in previous studies, 19 features are well-defined and extracted per blink. Afterwards, their
evolution due to drowsiness is studied individually. In addition, the findings are compared
with previous studies which were mostly based on restricted conditions. (Section 7.2)

• Clearly, the quality of driver observation cameras in detecting eye blinks will not be as
high as that of the measurement system used in this work. This issue is investigated and
possible peak amplitude loss is evaluated. (Section 7.6)

• Two feature aggregation approaches are suggested for the investigation of the relation-
ship between extracted eye movement-based features and drowsiness. Based on the first
approach, features are analyzed shortly before safety-critical events. Moreover, the lane-
keeping based and eye movement-based drowsiness detection methods are challenged. How-
ever, the second approach benefits from quick changes of drowsiness level in the course of
time. On this account, in the second approach, feature values are extracted over time
regardless of safety-critical events (Sections 7.1, 7.4 and 7.5)

• Since features based on physiological measures are highly individual and vary from one
subject to the next, we propose two baselining methods to minimize this deteriorating
effect. (Section 7.1.3)
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• Apart from scrutinizing features as separate and independent source of information, they
are fused and investigated by different state-of-the-art classifiers. The performance of the
sophisticated classifiers are evaluated and compared with each other for different types of
extracted features and different data division methods. (Chapter 8)

• One the one hand, data collection in driving simulators, either fixed or moving-base, and
on real roads are very expensive. One the other hand, for driver drowsiness detection
with high detection rate and low false alarm rate, representative data set with both awake
and drowsy driving samples is essential. In this work, first, the imbalanced data sets are
explored and their issue is addressed by artificially balancing the data sets. Moreover, it
is investigated whether artificially balanced data sets can replace data collection of awake
samples. (Chapter 8)

• This thesis provides new insights into the generalization of the data collected in the driving
simulator to that of the real road driving on feature fusion level. To this end, two new
approaches are studied. (Section 8.6)

• Finally, to address the concerns about computational resource in in-vehicle warning sys-
tems, feature dimension reduction approaches are applied. (Section 8.7)



2. Driver state measurement

This chapter introduces approaches for measuring the driver state either objectively or subjec-
tively. The former deals with methods for developing an external measure to prevent car crashes
due to driver drowsiness. The latter, however, serves as the reference for assessing the efficiency
of an objective measure. In addition, previous studies, which have introduced these measures,
are reviewed. A novel idea for improving one of the objective measures is also proposed and
evaluated.

2.1. Objective driver state measures

Driver objective measures, as their name implies, are measures which are collected by a measure-
ment technique such as sensors, electrodes, etc. with no deliberate interference of the driver in
them. An objective measure is developed based on either driving performance measures, driver
physiological measures or their fusion which is called hybrid measures.

2.1.1. Driving performance measures

Čolić et al. (2014) summarized car crashes due to drowsy driving with the following character-
istics which were based on reports by the police or the driver himself:

• “Higher speed with little or no breaking” which means the combination of high speed with
low reaction time due to drowsiness.

• “A vehicle leaves the roadway” which is also called single-vehicle crash due to lane depar-
ture.

• “The crash occurs on a high-speed road” which might be due to monotonicity of such roads.

• “The driver does not attempt to avoid crashing” which is the result of severe drowsiness
and falling asleep.

• “The driver is alone in the vehicle”.

The common point in these characteristics is that they all lead to degraded driving performance.
As a result, by quantifying them by means of sensors installed in the car, it is possible to
develop a drowsiness indicator measure to prevent car crashes. These measures are called driving
performance measures. A main specification of them is that they observe the driver indirectly.
Moreover, they do not measure the drowsiness itself, but its consequences.

An advantage of such measures is that they can be measured even without having a direct
contact with the driver, namely unobtrusively. These measures, which are all related to the
vehicle, mainly contain steering wheel and lane keeping behaviors (Liu et al., 2009). In the
following, both of these behaviors and studies on them are introduced and discussed.
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Driver’s lane keeping behavior

One of the measures reflecting driving performance is the lane keeping behavior which is ex-
tracted from the lane lateral distance. Lane lateral distance refers to the offset between the
middle of the lane and middle of the vehicle. Analysis of this measure is mainly based on the
assumption that an alert driver, unlike a drowsy one, stays in the middle of the lane. However,
not staying in the middle of the lane is not necessarily a reason for a low vigilance state of the
driver. A counterexample is a driver who keeps more to the left side of the lane for a better
forward look, while another car is in front of him. Therefore, the standard deviation of lateral
position (sdlp) is used instead to quantify to what extent the driver swings in the lane.
Johns et al. (2007) and Damousis and Tzovaras (2008), who studied the relationship between
eyelid activity and drowsiness, used lane departure events as safety-critical phases of the drive
for evaluating their eyelid-based drowsiness measure. Damousis and Tzovaras (2008) reported
that the analysis of brain activity (will be explained in Section 2.1.2) did not correlate well with
these events. Similarly, Sommer and Golz (2010) also relied on the sdlp as an objective reference
measure which increased due to drowsiness in their experiment. They defined 13% deviation of
it as the threshold between mild and strong drowsiness.
Verwey and Zaidel (2000) defined the following lane keeping behavior occurrences as driving
errors:

• “road departure error: leaving the pavement with all four wheels”
• “moderate lane crossing error: leaving the pavement with one or two wheels”
• “minor lane crossing error: crossing the solid lane markings with one or two wheels”
• “time-to-line crossing (tlc): crossing the solid lane marking within 0.5 s, if no action is

taken (tlc < 0.5 s)”
They acknowledged the tlc as a reliable measure reflecting poor driving performance. Skipper
and Wierwille (1986) found a significant positive interaction between eyelid closure and sdlp
whose variation improved distinguishing between alert and drowsy classes by a discriminant
analysis model. Åkerstedt et al. (2005) also studied lane departure events defined as “four wheels
outside the left lane marking (accident) and two wheels outside the lane markings (incident)”. In
their study with shift workers, it was shown that the number of incidents increased three times
due to drowsiness. sdlp also increased from 18 cm to 43 cm. Otmani et al. (2005), however, found
no interaction between sdlp and sleep deprivation, although this measure increased during their
experiment for both sleep-deprived and non-sleep-deprived subjects. In fact, it was the driving
duration (time-on-task) which affected the sdlp. Ingre et al. (2006) analyzed the relationship
between sdlp and a subjective measure for shift workers with both enough night sleep and no
night sleep. They found that the significant relationship between them is curvilinear, i.e. looks
like a curved line. Moreover, they emphasized the large between-subject differences in the values
of the sdlp as an issue. Arnedt et al. (2005) reported a tendency to left side lane keeping for
subjects with prolonged wakefulness.
Wigh (2007) and Ebrahim (2011) studied event-based lane keeping behavior. In order to define
events, two zones, called virtual edge zone (vez), were defined on the right and left side of the
vehicle near to each lane. The location and the width of the vez’s were adjusted individually
based on the lane keeping behavior of the driver during driving. Hence, the zones were adapted
for a driver who tended to keep left or right in a lane without any problem. The entrance of the
wheels to the zones were then weighted, i.e. the more the wheel entered the zone, the higher was
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the corresponding weight. In the end, based on an incremental running mean of the weights and
its comparison with a threshold, it was decided whether to warn the driver or not. In fact, the
driver was considered drowsy with respect to the amount and the number of times he entered
or got close to the defined zones which were not necessarily the road lane marking.

Driver’s steering wheel movement behavior

Another very common method for an indirect observation of the driver is the analysis of steering
wheel movements in terms of amplitude and velocity. According to Thiffault and Bergeron
(2003), an alert driver recognizes changes in the road ahead early enough and consequently
reacts with small steering wheel corrections from 1◦ to 5◦. On the contrary, due to drowsiness,
the driver’s reaction time increases. As a result, he reacts to the trajectory changes by means of
larger steering wheel movements from 6◦ to 10◦ or even larger than 10◦. Clearly, this is linked
to larger lane departures which are more dominant during drowsiness as mentioned before.

Thiffault and Bergeron (2003) explored the amplitude and the frequency of steering wheel move-
ments during two conditions: a monotonous versus a non-monotonous driving scenario. Both
measures increased in their study as a function of time-on-task. Bouchner et al. (2006) showed
that for more than 80% of their sleep-deprived subjects, the ratio between fast and slow steering
wheel corrections increased over time. Otmani et al. (2005), however, reported a significant
dependency between age and small steering wheel movements (up to 5◦), i.e. 2.26◦ for the
middle-aged group versus 1.99◦ for the young group. Although this measure was not subject to
changes due to sleep-deprivation, it increased during their experiment.

In addition to single feature analysis of the lane data or steering wheel movements, Friedrichs
et al. (2010), Friedrichs and Yang (2010b) and Pimenta (2011) extracted a large number of lane-
based and steering-based features and studied their relationship with drowsiness by applying
classification methods. By considering the best 11 features (both lane and steering-based ones),
Friedrichs and Yang (2010b) achieved an average detection rate of 73.5%. They defined driver’s
level of vigilance with three classes as awake, questionable and drowsy and evaluated them
against a subjective self-rating measure.

Apart from the question whether steering wheel movements and lane keeping behavior are reliable
measures for drowsiness detection, they are highly subject to external influences as studied by
Friedrichs et al. (2011). In the mentioned study, in addition to driver distraction and vehicle
operations, which might shortly affect steering movements, other factors such as weather (rain,
fog, snow), light conditions (e.g. an illuminated tunnel), vehicle speed, road condition and
curvature were also introduced and explored. They observed that the lack of vision during
night drives affected steering and lane keeping behavior with no direct regard to the driver’s
vigilance state. Furthermore, vehicle speed was acknowledged as a factor with almost a direct
impact on the steering velocity. Hence, effort should be made to compensate these effects while
extracting steering movement-based features. Driving on roads with construction sites also
seems to affect steering movements due to narrowed lane width. Higher road curvature led
not only to a larger deviation of the lane lateral position from the middle, but also to more
frequent fast steering velocities. Interestingly, they found the contribution of road curvature
to the lateral lane deviation masking that of the drowsiness. As the last investigated external
factor, the road condition was introduced which included road surface and bumps. Although
road surface conditions were not found to be correlated with the steering velocity, the non-
uniform delay between road bumps and steering jerks confirmed the destructive effect of road
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bumps on driving performance measures. Friedrichs et al. (2011) also believed that the good
lighting condition of a tunnel positively affects the driver vigilance.
Driver modeling is another approach which also addresses the driver state detection by means
of steering movement and lane keeping behavior (Pilutti and Ulsoy, 1999). By applying system
identification methods, a model is developed for predicting the steering wheel angle based on the
lane lateral position. Changes in the model parameters or the deviation of the measured steering
wheel angle from the predicted one are suggested as the objective measures for driver state
identification by Pilutti and Ulsoy (1999). Hermannstädter and Yang (2013) also distinguished
between distracted and undistracted driving based on driver modeling.
Overall, driving performance measures have some drawbacks. First of all, the lane-based drowsi-
ness detection is restricted to roads with lane marking. Moreover, monitoring steering wheel
movements of a driver depends to some extent on the manufacturing technology of the vehicle.
As a result, the parameters of the warning system should be tuned for each vehicle individually.
Another important issue in studying driver performance measures is the generalization of the
findings to real road conditions from the experiments conducted in driving simulators. As an
example, unevenness of real roads is not easy to implement in driving simulators which definitely
affects the steering behavior. In a study by Hallvig et al. (2013), which compared real road
driving with driving simulator, it was found that during night drives, the subjects tended more
to the middle of the lane in comparison to the driving simulator. In addition, higher sdlp and
shorter tlc were reported in the driving simulator. These behaviors were all interpreted to be
highly related to “threat against safety” on a real road and the fact that higher level of drowsiness
can be achieved in driving simulators. Similarly, Philip et al. (2005) also reported more frequent
lane crossings with higher amplitude in a driving simulator in comparison to a real road scenario.
As mentioned in Section 1.1, the most critical drawback of driving performance measures is that
they are valid measures as long as the driver plays the key role in performing the driving task.
As soon as an assistance system supports the driver in steering and lane keeping, the introduced
measures are unreliable. Therefore, for near future, other solutions of driver drowsiness detection
in partly automated driving conditions are needed. In other words, an indirect monitoring of
the driver should be replaced with the direct monitoring based on driver physiological measures.

2.1.2. Driver physiological measures

Driver physiological measures, in general, are measures based on the direct observation of the
driver which can be either intrusive like electrophysiological ones or non-intrusive like cameras.
Unlike the latter, the former requires a direct contact of the electrodes to the driver’s skin. These
measurement techniques provide an objective measure to describe the driver state (Simon et al.,
2011) and are believed to outperform other introduced measures from the point that they detect
drowsiness at its early phase (Čolić et al., 2014).
In the following, these measurement techniques are introduced and reviewed.

Electroencephalography

Electroencephalography (eeg) is a physiological method for recording brain activity in terms
of electrical potential by electrodes located on special positions on the head (Niedermeyer and
da Silva, 2005; Kincses et al., 2008). This measurement method has the advantage of being a
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continuous recording method together with a high temporal resolution (up to 512 Hz) (Kincses
et al., 2008).
Figure 2.1 shows a 32-electrode arrangement (excluding 4 electrodes for eye movement data
collection) of this measurement system which can also be used during driving by wearing a cap.
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Figure 2.1.: 32-electrode arrangement of eeg (excluding 4 electrodes for eye movement data collection)

In order to improve the conductivity of the electrodes, a special paste should be used between the
electrodes and the skin. However, depending on the number of electrodes being used, injecting
the paste can be very time-consuming and the subjects should wash their hair after data col-
lection. Figure 2.2 shows an electrode, an eeg-cap and the paste being injected from ActiCAP,
Brain Products GmbH (2009).

Figure 2.2.: ActiCAP measurement system for eeg recording by Brain Products GmbH (2009)

The amplitude range of eeg waves is usually between 0 to 200µV which makes it difficult to
distinguish them from noise and some artefacts (e.g. scratching the head) (Svensson, 2004;
Damousis and Tzovaras, 2008). Moreover, eeg is very sensitive to movements and muscle arte-
facts. Even fast spontaneous eye blinks affect the waves easily. Therefore, if a suitable artefact
removal in not applied, the collected data should not be analyzed further. Simon (2013) and
Santillán-Guzmán (2014) studied different approaches for eeg artifact removal.
eeg waves can be either analyzed in the time domain or in the frequency domain. The former
includes calculating some statistical values within an interval (Dong et al., 2011), whereas the
latter covers the analysis within the following different frequency bands: δ (up to 3.5Hz), θ (4–
7Hz), α (7–13Hz), β (14–30Hz) and γ (35–100Hz) (Niedermeyer and da Silva, 2005). Among
these bands, the α-band and especially α-bursts have shown to be the most drowsiness-related
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bands for detecting early phases of drowsiness (O’Hanlon and Kelley, 1977; Kecklund and Åk-
erstedt, 1993; Eoh et al., 2005; Papadelis et al., 2007; Schmidt et al., 2009; Simon et al., 2011).
Moreover, α-waves are mainly dominant during eye closure (Saroj and Craig, 2001). Figure
2.3(b) shows an eeg recording with closed eyes containing α-bursts. For a better comparison,
eeg signals recorded with open eyes are also shown in Figure 2.3(a). The bursts occur with dif-
ferent amplitudes in different locations on the head and are very dominant in parieto-occipital
electrodes, i.e. P3, Pz, P4, O1, O2 electrodes. This was also reported by Simon et al. (2011)
who evaluated α-bursts with respect to the driver drowsiness and called them α-spindles.
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Figure 2.3.: eeg signals showing α-bursts with closed eyes versus open eyes

Figure 2.4 shows the Fourier transform of the electrode O2 for both cases with open and closed
eyes. It can be seen that the bursts are within 8.8–12.5Hz which corresponds to the frequency
range of the α-band.
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Figure 2.4.: Frequency components of the α-bursts by applying the Fourier transform to the wave of the
O2 electrode shown in Figure 2.3
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Simon et al. (2011) suggested a method for identification of the mentioned spindles as explained
in the following. First, a 1-s zero-mean-made segment of the eeg recording with 75% overlap
is multiplied with a Hamming window and the fast Fourier transform of it is calculated. If
the maximum value of the calculated spectrum is located within the range of the α-band, then
the full width at half maximum (fwhm) of the spectral peak is determined and compared with
twice the bandwidth of the Hamming window (BWHamming). Depending on the result of the
mentioned thresholding analysis (desired: fwhm < 2 BWHamming), the segment is subject to
further investigations. BWHamming corresponds to the minimum bandwidth for an oscillatory
activity. This procedure is repeated for all 1-s zero-mean-made segments. After calculating the
signal-to-noise ratio (snr) (for more details see Simon et al. (2011)), segments with acceptable
snr values and peak frequencies, whose deviation from each other is not more than 10%, are
summed up as an α-spindle. Different features such as duration, spectral amplitude and peak
frequency of the discrete α-spindle events are then calculated by moving average within a 1 or
5min windows and 50% to 80% overlap. Simon et al. (2011) also introduced alpha spindle rate
(asr) as the number of α-spindle events occurring within the mentioned moving average time
intervals. Based on the statistical analysis, they showed in their study that α-spindle parameters,
averaged over all subjects, increased within the last 20min of the drive in comparison to the first
20min. In addition, asr in their study outperformed the common α-power for the drowsiness
detection.

In agreement with the mentioned study, Schmidt et al. (2011) explored the variation of asr,
blink duration, heart rate and reaction time in a monotonous daytime drive under real driving
condition. The results showed a significant increase of asr and a significant decrease of heart
rate. Blink duration increased as well, however, it was not statistically significant. On the
contrary, Anund (2009) showed that θ and α activity of the eeg do not necessarily detect phases
shortly before a safety-critical event such as lane departures and hitting the rumble strips.

Unlike Schmidt et al. (2009) and Simon et al. (2011), who analyzed the long-term variation of the
asr, Sonnleitner et al. (2011, 2012) studied the short-time variation of it with respect to driver
distraction, i.e. while the driver performed secondary tasks. These studies showed that under
both real and simulated driving conditions, the asr is subject to contrary variations due to the
type of the secondary tasks, namely auditory and visuomotor, in comparison to the primary
driving task. That means, performing the auditory secondary task leads to an increase of the
asr, while performing the visuomotor secondary task results in a drop. Their experiment under
real road condition is explained in Section 4.2.2. Figure 2.5(a) shows the asr of a participant in
the experiment. asr60 refers to the length of the moving average window, i.e. 60 s, for counting
the number of α-spindles. The phases indicating secondary tasks are also shown. Sonnleitner
et al. (2011) related these results to the “visual information process” whose increase and decrease
directly influences the value of the asr. Performing the visuomotor secondary task in their study
is very similar to the data entering into the navigation system in daily routines. On the other
hand, the auditory secondary task in this study can be considered as a cognitive distraction
similar to a cell phone conversation during driving. Therefore, it can be concluded that the asr
and, in general, the eeg is a very dynamic and sensitive measure which makes its interpretation
ambiguous. A high value of it can either be due to drowsiness or cognitive distraction and,
similarly, its lower values show either alertness or visual distraction of the driver. To put it
another way, not all α-spindles seem to be drowsiness-related.
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(a) sensitivity of the asr to secondary tasks during real daytime driving
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Figure 2.5.: Sensitivity of the asr to auditory and visuomotor secondary tasks and the corresponding
number of horizontal saccades

Our approach for enhancing the ASR

The new approach adopted in this work to resolve the aforementioned ambiguity in the inter-
pretation of the asr values and to consequently improve the correlation of the asr with driver
drowsiness is to remove phases of the drive where the driver is visually distracted. In fact, phases
with a smaller number of spindles should be excluded in the calculation of the asr, in order to
prevent its decay. As a result, the increasing trend of the asr due to drowsiness gets intensified.
In the following, this approach is explained and applied.
Since visual distraction is mostly linked with eye movements, i.e. saccades (will be defined in
Section 3.3), a temporary increase in the number of eye movements can, as a result, be interpreted
as an event with high visual information process. Figure 2.5(b) shows the number of horizontal
eye movements for the same subject synchronous with the asr. It is calculated by a moving
sum window of 15 s which is shifted at 0.02 s steps. As a threshold for defining the increased
number of eye movements, the average plus one standard deviation (std) of the found number
is used, namely mean (nr. of eye movements) + std (nr. of eye movements) which is shown in
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dashed line in Figure 2.5(b). This figure, which is representative of the behavior observed also
for other participants of the mentioned experiment, shows that the visuomotor secondary task
led to an increase of the eye movement occurrence. However, during the auditory secondary
task, the number of eye movements has decreased and is even smaller than that of the driving
parts without any secondary tasks.
Inspired by these findings, the asr can be recalculated by excluding phases of the visual dis-
traction as explained in the following. First, the number of eye movements is calculated and
the mentioned threshold is applied to them. All parts of the drive, for which the number of
eye movements exceeds the threshold, are then marked and excluded in the recalculation of the
asr. We call this signal, which controls the inclusion/exclusion of spindles, the control signal.
Figure 2.6(a) shows asr60 of a nighttime experiment. The parts of the drive detected as visual
distraction are marked.
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Figure 2.6.: asr with different control signals

Around t = 36 s (shown with an arrow), as an example, the drop of the asr is completely
joint with the detected visual distraction. However, not all decreasing parts of the asr are
related to the increased number of eye movements, e.g. around t = 45 s or t = 56 s (shown with
arrows). Obviously, some of the detected events are necessarily driving-task related, because a
safe takeover maneuver also needs several looks in the side and rear-view mirrors. Furthermore,
visual attention, which is not necessarily followed by an increased number of eye movements,
should also be considered in the control signal. Therefore, we applied other criteria as well
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in order to restrict the calculation of the asr only to monotonous phases of drive with the
least demanding visual attention. To this end, curves, construction sites, lane changes, braking
moments can all be considered in the calculation of the control signal as shown in Figure 2.6(b).

Another possibility to make the asr less sensitive to short-term variations is to calculate it
within a longer window, e.g. 5min (300 s) rather than 1min (60 s). Figure 2.7 shows the asr300
before and after applying the control signal. The calculation of the asr has started around
t = 10 min and has an increasing trend up to 30min. After that the overall trend is very weak,
although the subject assessed himself as drowsy after t = 81 min until the end of the drive. By
applying the control signal and recalculating the asr, the overall trend did not change, on some
parts it improved though, such as around t = 70 min.
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Figure 2.7.: asr before and recalculated after applying the control signal

Since this finding is valid and representative for 30 subjects, we conclude that applying the
control signal helped to improve the increasing trend of the asr due to drowsiness for some
parts of the drive. However, it could not improve the overall trend of the asr versus drowsiness.
One reason might be that we handled all non-relevant parts similarly which is not necessarily
correct. A lane change event, as an example, might involve the subject and his visual attention
differently depending on the situation. Apart from this, the control signal was responsible for only
controlling the visual load. Sonnleitner et al. (2011) showed that in addition, cognitive distraction
of the driver affects the asr to a large extent as well. Unfortunately, due to their nature, the
phases of the cognitive distraction are neither monitorable nor measurable for improving the
control signal.

Heart activity and Respiration

By adding an extra electrode to the eeg measurement system, similar to electrocardiography
(ecg), heart rate and heart rate variability (hrv) can be measured based on the so-called R-
to-R (beat-to-beat) interval. There are some studies which believe that these measures are
drowsiness indicators. During a prolonged night driving, Riemersma et al. (1977) showed the
decrease of heart rate and the increase of the hrv in agreement with O’Hanlon (1972) and Lal.
(2001). In the study by Lal. (2001), the drop of heart rate was quantified as up to 6 beat/min
in the driving simulator. Schmidt et al. (2011) also reported a similar result in a monotonous
daytime driving. Moreover, it seems that the regularity of the heart rate depends on the fact
whether the subject is focusing on the task or not (Rosario et al., 2010).
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Lal. (2001) and Tran et al. (2009) analyzed the power spectrum of the hrv based on its low (lf,
0.05–0.1Hz) and high (hf, 0.1–0.35Hz) frequency components and found correlation between
these components or their ratio (lf/hf) with the drowsiness. Rosario et al. (2010) and Chua
et al. (2012) also suggested the hrv for the detection of attentional failures, especially if it is
fused with other measures for integration in safety systems.

In general, however, it is believed that the mentioned measures are also subject to variation due
to other factors such as stress or relaxation. On the contrary to the mentioned studies, Papadelis
et al. (2007) did not find any statistically significant change effects of the hrv in sleep-deprived
subjects. This result was valid even by comparing the first and the last parts of the drive.

The correlation between respiration activity and drowsiness has also been studied. Rosario et al.
(2010) reported 5% increase in the respiration amplitude during drowsy phases in comparison
to the awake phase. Moreover, a decreased respiratory rate due to drowsiness was found by
Dureman and Bodéén (1972).

Recently, new approaches are introduced for a contactless measurement of the heart rate and
respiration which are all based on a camera or a radar signal, etc. (Bartula et al., 2013; Gault
and Farag, 2013). Kranjec et al. (2014) reviewed non-contact heart rate measurement methods.

Eye movement analysis

Eye movement analysis is another approach for driver state detection which is the main topic
of this work. Data collection can be performed by different measurement systems such as
electrooculography (eog), electromagnetic coil systems, also called search coil, and cameras
(Holmqvist et al., 2011). In the following, these measurement systems are introduced based on
Duchowski (2007).

� Electromagnetic coil system

The electromagnetic coil system, the search coil and the scleral contact lens are the most precise
methods for measuring eye movements, since they are directly attached to the eyes. As a contact
lens, these measurement systems look like a ring which is placed over the cornea and sclera and, as
a result, they are the most intrusive measurement systems. They are also believed to manipulate
some eye movements.

Blinking behavior can also be measured by search coils, if they are placed around the eyes
(e.g. above and below) (Hargutt, 2003). Depending on the distance between the coils, which
corresponds to the distance between eyelids, electrical voltage is induced. Therefore, the eyelid
gap can be measured in voltage unit and then converted into millimeter.

� Electrooculography

Electrooculography is a popular measurement system from the eeg and ecg family which also
comprises attaching electrodes directly around the eyes as shown in Figure 2.8.

According to Fairclough and Gilleade (2014), eog benefits from the fact that eyes are considered
as a dipole with its negative and positives poles at the retina and the cornea, respectively.
Therefore, the eye has a static potential field under the assumption that the potential difference
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1

Figure 2.8.: eog electrodes attached around the eyes for collecting horizontal and vertical eye movement
data

between its poles is fixed. As soon as the eyes move, the potential measured by the electrodes
varies. This is exactly what eog measures, the “corneal-retinal potentional” (Stern et al., 2001).
As shown in Figure 2.8, for a bipolar electrode setup, in addition to reference and ground
electrodes1, four electrodes are needed. The two electrodes located at the right and left outer
canthi2 of the eyes collect the horizontal component of eye movements and the other two located
about 2 cm above and below the eye collect eye blinks and the vertical component of the eye
movements. In this arrangement of electrodes, it is assumed that the movements of both eyes
are synchronous. Therefore, it is sufficient to locate the electrodes only around one eye. Since
locating an electrode at the inner canthus of the eye is intrusive, the outer canthus of the other eye
is usually used. This corresponds to a dipole with the negative pole on one eye and the positive
pole on the other one. By moving the eyes, different poles get close to the electrodes which
leads to the potential variation. The measured voltage is the difference between the potential
measured at an active electrode and the reference electrode. The ground electrode, however, is
used for common mode rejection (Nunez and Srinivasan, 2006). In addition to the vertical and
horizontal eye movements, eog can also record eye blinks. The reason is that during blinking,
the eye ball rotates upward which also leads to the change of the dipole field. Consequently,
blinks are only visible in the vertical component of the eog. Since the occurrence of involuntary
blinks (see Section 3.3) is inevitable, they can also be considered as artifacts in the capturing of
voluntary eye movements.
An advantage of the eog is its high sampling frequency (up to 1000Hz) which makes it a very
suitable system for extracting the velocity of very rapid eye movements. In addition, it provides
a continuous recording with some artifacts, though. Its record is independent of almost all
external factors such as wearing glasses, contact lenses or lighting conditions. Unlike cameras,
it can be used in darkness.
According to Straube and Büttner (2007), eog is subject to three types of noise:

• inductive noise: the residential power line or any electromagnetic field affects the recorded
signal by induction and coupling into it. This noise, however, can be filtered out in the
preprocessing step.

• thermal noise: the skin resistance and the electrode’s input resistance generate this type of
noise which deteriorates the signal quality. Therefore, it is recommended to use conductive
paste and to clean the electrodes and the skin before starting the measurement. Otherwise,
drift might be visible in the recorded data as shown in Figure 2.9. We discuss about the
methods for drift removal in Chapter 5.

• capacitive noise: in electrical circuits, capacitive noise refers to the noise due to the nearby
1Reference and ground electrodes are located behind the ears.
2corner of the eye
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Figure 2.9.: An example of the drift in the collected eog data (vertical component)

electronics. Similarly, in eog, this noise corresponds to the nearby muscle artifacts like
chewing.

Furthermore, another disadvantage of the eog is its dependency to the location of electrodes.
If the electrodes are placed very far from the eyes, the measured amplitudes will be smaller.
Therefore, for a specific person, different eye movement characteristics might be measured at
different recording times, if electrodes are located at other places than before.

Attaching electrodes directly around the eyes and injecting the paste also makes this measure-
ment system an obtrusive one. Moreover, since eog measures the potential resulting from eyeball
movements, it can never measure the eyelid gap directly.

Since both eog and the electromagnetic coil system measure relative eye movements, they cannot
measure head movements.

By conducting a pilot study on a proving ground under fully controlled real road conditions, we
investigated the robustness and reliability of the eog measurement system for an in-vehicle eye
movement data collection. Based on the achieved results and findings, which are discussed in
Section 4.1, the eog measurement system has been used in all other experiments conducted in
this work for collecting eye movement data especially during real driving conditions.

� Video-based eye-tracker

The technology of the video-based eye-tracker is based on the “pupil-to-corneal reflection mea-
surement” (Holmqvist et al., 2011). It consists of an infra red (ir) illumination and a camera
looking into the eye. This combination can be located either on a stable platform, e.g. on the
dashboard, called remote eye-tracker or be mounted on the head like a helmet or glasses, called
head-mounted eye-tracker. The disadvantage of a remote eye-tracker is its distance to the eyes
which might affect the quality of the gaze tracking, if it is located very far from the eyes (Straube
and Büttner, 2007). In comparison, a head-mounted eye-tracker benefits from its short distance
to the eye which provides a larger number of pixels for the image processing task. It is also
possible to add a scene camera to the mentioned eye-trackers, in order to know what a subject
is looking at.

Independent of the technology and the manufacturer of the cameras, they typically suffer from
problems listed below:
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• calibration step: most of the cameras need to be calibrated prior to starting the measure-
ment for each subject separately which is time-consuming. The eog measurement system
is, however, calibration-free in most of the applications.

• off-road gazes shifts: some cameras, especially the remote eye-trackers, cannot distinguish
between real eye closures and off-road gaze shifts towards the dashboard. Unintended eye
closures occur due to drowsiness, while off-road gaze shifts are a driving-related task. In
both cases, the camera cannot detect the pupil and consequently false alarm rates are high
in drowsiness detection applications. The mentioned issue does not exist in the eog data,
because the eyeball moves in different directions during the mentioned cases leading to
distinguishable eye movements.

• light and reflection: as also mentioned by Friedrichs and Yang (2010a), light reflections
on the glasses and unstable light conditions also deteriorate image quality and accordingly
the eye movement detection quality.

On the contrary to the eog, as an unobtrusive eye movement measurement method, cameras
are able to measure the eyelid gap. Moreover, some of the cameras also measure head movement
features like nodding frequency as the one used by Friedrichs and Yang (2010a).
Independent of the measurement system used for collecting eye movement data, previous research
has shown that driver’s eye blink features (such as blink amplitude, duration, etc.) are correlated
to some extent with driver drowsiness (Hargutt, 2003; Åkerstedt et al., 2005; Schleicher et al.,
2008). Hence, within a level of uncertainties they can contribute to driver drowsiness warning
systems. In Chapter 7, these studies are reviewed.
Another approach for the camera-based drowsiness detection is pupillometry which studies the
size variation of the pupil and its fluctuations (Rowland et al., 2005).

2.2. Subjective estimation of the drowsiness

Subjective estimation of the drowsiness, as its name says, is based on the rating of subjects
about their vigilance or drowsiness level before, during and at the end of the experiment. This
estimation can be done either by the subject himself or by an investigator.
Williamson et al. (2014) studied 90 drivers in a driving simulator to answer the question: “Are
drivers aware of sleepiness and increasing crash risk while driving?”. According to this study,
drivers are aware of their drowsiness level based on the access to their cognitive information.
Nevertheless, they are poor in judgments about the risk of crashes due to drowsiness. This finding
is in agreement with that of the Baranski (2007) with sleep-deprived subjects who showed that
both subjective and objective measures were related to drowsiness. On the contrary, Moller et al.
(2006) found no interaction between these two measures and concluded that subjects might suffer
from lack of full insight into their degraded performance. Verwey and Zaidel (2000) also reported
disassociation between physiological and subjective measures.
Simon (2013) believes that since cognitive performance degrades in line with the increase of the
drowsiness, a drowsy subject is also less able to estimate himself correctly. In fact, self-rating
requires higher mental performance.
Clearly, due to its nature, subjective self-estimation of the drowsiness cannot be collected very
frequently, because it affects the driver state at the time of recording, especially the monotonic-
ity and drowsiness (Schmidt et al., 2011). It is possible to either collect it verbally, i.e. an
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investigator asks the driver to rate his drowsiness level based on a pre-defined scale or by a
touchscreen and pushing on the desired scale by the subject himself. Each of these variants has
its own shortcomings. As an example, Schmidt et al. (2011) studied how verbal assessment of
driver’s state affects the vigilance during a monotonous daytime driving, i.e. task-related passive
drowsiness. Implicitly, this study also discussed to what extent conversing with passengers can
be considered as a drowsiness countermeasure. The results showed that verbal assessment of the
drowsiness level led to an improved vigilance state which did not last longer than 2min, though.
Therefore, Schmidt et al. (2011) suggested 5-min interval data collection of subjective self-rating
as an effective way to avoid contamination of drowsiness evolution. Using a touchscreen also
involves some off-road gazes shifts and influences the driving performance similar to the visual
distraction.
Another concern about the subjective measure is its interpretation due to its discreteness. In
this context, the following issues raise:

• How should we compare the evolution of a continuous objective measure, which is collected
with a higher frequency, with a less frequently collected subjective self-rating?

• Is it allowed to assume that the subjective self-rating between successive inputs remains
constant or that it varies linearly/non-linearly?

Unfortunately, no consistent answers to these questions can be found in other studies. Our
assumptions about the aforementioned questions will be discussed in Sections 7.1 and 8.1.1.
In the following, different scales for a subjective self-rating are introduced and discussed.

Karolinska Sleepiness Scale

The Karolinska Sleepiness Scale (kss), as the most common self-rating scale (Dong et al., 2011),
was first introduced by Åkerstedt and Gillberg (1990) and has 9 scales as shown in Table 2.1.

Table 2.1.: Karolinska Sleepiness Scale (kss)
KSS Description
1 Extremely alert
2 Very alert
3 Alert
4 Rather alert
5 Neither alert nor sleepy
6 Some signs of sleepiness
7 Sleepy, but no effort to keep alert
8 Sleepy, some effort to keep alert
9 Very sleepy, great effort to keep alert

According to Shahid et al. (2012b), this scale is sensitive to fluctuations and best reflects the
psycho-physical state in the last 10min of self-estimation. Ingre et al. (2006) and Anund (2009)
as well as Sommer and Golz (2010) believed that parts of the drive with kss ≥ 7 are mainly
associated with safety-critical conditions.
There exist a lot of studies which relied on the kss values as a drowsiness reference for evaluating
other objective measures (Åkerstedt et al., 2005; Ingre et al., 2006; Fürsich, 2009; Sommer and
Golz, 2010; Friedrichs and Yang, 2010a; Friedrichs et al., 2010; Friedrichs and Yang, 2010b;
Pimenta, 2011). Belz et al. (2004), as an example, concluded that their studied metrics, such
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as the minimum time to collision, were not drowsy indicators based on the correlation analysis
with the kss. Other studies, however, analyzed the correlation of objective measures with the
kss as an independent factor. Ingre et al. (2006) studied the relationship between the kss and
objective measures of the sdlp and blink duration. The results showed that both measures were
significantly related to the kss with a curvilinear effect. A similar result was found by Åkerstedt
et al. (2005) for shift workers. Kaida et al. (2006) validated kss against eeg features and
achieved significant high correlations between them. Schmidt et al. (2009) studied physiological
measures (e.g. eeg features and heart rate) under monotonous daytime driving while the subjects
rated their drowsiness level based on the kss. According to their finding, the evolution of all
measures was consistent with each other, i.e. the asr increased parallel with the increase of the
subjective self-rating. Interestingly, at the last part of the drive, the kss decreased, although all
physiological measures kept their previous trends. They believed that this improved vigilance
level may correlate with either the circadian effect, the intensified traffic density and even the
joyful feeling that soon the experiment is over or a combination of all mentioned reasons. On
the other side, however, by assuming that physiological measures correctly reflected drivers’
state, they concluded that long monotonous driving (longer than 3 h) led to deterioration of the
self-rating ability due to a declined vigilance level.
Different lengths of time intervals between successive kss inputs have been reported in the men-
tioned studies which are listed in Table 2.2. They are varying from 2 to 30min. Schleicher et al.
(2008) used 30min time interval, but suggested 15–20min for future studies and interpolated
the values linearly.

Table 2.2.: Literature review of the length of time intervals between successive kss inputs
Author time interval

Sommer and Golz (2010) 2min
Ingre et al. (2006) 5min
Åkerstedt et al. (2005) 5min
Friedrichs and Yang (2010a) 15min
Friedrichs and Yang (2010b) 15min
Schmidt et al. (2009) 20min
Schleicher et al. (2008) 30min

According to Svensson (2004) and Sommer and Golz (2010), although each scale of the kss is
clearly defined, it is very probable that subjects interpret the scales inaccurately and relatively
to the previous situations. This is indeed a disadvantage of the kss. In other words, for each kss
input, it is very probable that the subjects compare their current state with the previous ones
for a better self-rating. Anund (2009), as an example, even instructed the subjects to rate their
drowsiness level with respect to the state in the last 5min. Hence, depending on the preciseness
of the first selected kss value, there might be a bias shift on the other selected values until the
end of the experiment. Furthermore, a subject, who due to the mentioned bias shift reaches kss
= 9 relative early, has no other choice to select during deeper phases of the drowsiness.

Stanford Sleepiness Scale

Stanford Sleepiness Scale (sss) has 7 scales and only one of the scales should be selected at the
time of query (Hoddes et al., 1973; Shahid et al., 2012c). sss is very similar to the kss and the
description of its scales is listed in Table 2.3.
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Table 2.3.: Stanford Sleepiness Scale (sss)
SSS Description
1 Feeling active, vital, alert, or wide awake
2 Functioning at high levels, but not at peak; able to concentrate
3 Awake, but relaxed; responsive but not fully alert
4 Somewhat foggy, let down
5 Foggy; losing interest in remaining awake; slowed down
6 Sleepy, woozy, fighting sleep; prefer to lie down
7 No longer fighting sleep, sleep onset soon; having dream-like thoughts

Epworth Sleepiness Scale

Epworth Sleepiness Scale (ess) introduced by Johns (1991) is another subjective measure which
summarizes the likelihood of falling asleep during 8 different situations, such as watching tv,
sitting and reading, as a passenger in the car for one hour without a break, etc. Each situation
can be evaluated based on a 0–3 scale, i.e. from 0 for “would never doze” to 3 for “high chance of
dozing” (Shahid et al., 2012a). The overall score of a subject is between 0 (0 for all situations)
and 24 (3 for all 8 situations). Scores smaller than 10 and higher than 15 are interpreted as
awake and sleepy, respectively (Čolić et al., 2014). This scale is not useful, if sleepiness should be
measured repeatedly (Anund, 2009). The reason is that on the contrary to the other introduced
scales which are situational, ess gives an insight to the general tendency of the sleepiness.
In addition to the mentioned scales, which are collected based on the self-rating of the subject
himself, it is also possible to rely on an expert-rating or video-labeling. Despite the fact that
these are also subjective, they contain information about the subject’s state of which the subject
might not be aware, e.g. a microsleep.
Expert-rating is performed either online, i.e. during the experiment or offline, i.e. based on
the recorded video data. Both of the approaches mainly rely on the observable drowsiness
symptoms such as yawning, heavy eyelids, improper lane keeping, etc. A more reliable expert
rating is achieved, if more than one expert rate the experiment and its events and if the experts
are trained using video examples to reach a common understanding (inter-rater reliability (Field,
2007)). In the end, the majority voting determines the final rating. In general, however, the
quality of offline expert ratings depends highly on the quality of the recorded video data.
Schleicher et al. (2008), who studied blink behavior as a drowsiness indicator, used, in addition
to a subjective self-rating measure, an offline video-rating based on symptoms such as facial
gestures, blink frequency, scaring, etc. Damousis and Tzovaras (2008) also decided based on the
video-labeling whether lane departures occurred simultaneously with microsleep events. In the
experiment conducted by Rosario et al. (2010), an observer recorded body and face movements
online.
In Chapters 5 and 7, we also rely on an offline expert-rating as the ground truth for evaluating the
blink detection algorithm and the occurrence of safety-critical events, such as the lane departure
and microsleep.
There exist other subjective measures such as Visual Analog scales (vas) (Monk, 1989), Crew
Status Check Card and Sleep Survey Form (Morris and Miller, 1996) and Karolinska drowsiness
score (kds) (Jammes et al., 2008; Hu and Zheng, 2009). Čolić et al. (2014) has reviewed many
of them.





3. Human visual system

In this chapter, first, visual attention and the way the human eye operates is described. After-
wards, different types of relevant eye movements during driving are defined. Here, we concentrate
on the drowsiness as the long-term distraction. Therefore, the information process in human
visual system remains out of the scope of this work. This topic is of importance for the inter-
pretation of the short-term distraction.

3.1. Visual attention

The material in this section is taken from Duchowski (2007). He explained visual attention
based on “where” and “what”. The idea of “where” defines visual attention as roaming eyes
in the space (von Helmholtz, 1925). On the contrary, with the definition of James (1981),
visual attention means “focus of attention”, i.e. “what”. At the first glance, these two ideas
seem to be independent. However, they support each other in a way that visual attention is
only understandable, if both definitions are considered. The idea of “where” occurs parafoveally
which means, at first, something roughly attracts our attention as a whole in the entire visual
field. It is similar to a low resolution image. Then, the idea of “what” leads to the collection of
more detailed information through the foveal vision1. In fact, during the second step, the image
will be perceived as a high resolution image. It is believed that in both steps, when the eyes
move and are not fixating, the attention is turned off. There exist also some other ideas such as
“how” which deals with the type of responses and the reaction of eyes to stimulus. Such ideas
are out of our scope, though.

We discussed above about collecting full detailed information using foveal vision which is about
2◦. The fovea is a narrow area with the sharpest image. Nevertheless, the information outside of
it can be seen and perceived within a certain area. The size of this larger area, which is called the
functional visual field, varies depending on the task being performed (Holmqvist et al., 2011).
As an example, its size decreases in line with the increase of the cognitive load during driving.

3.2. Structure of the human eye

Figure 3.1 shows a very simple structure of the human eye. The human eye, which has a spherical
shape, receives the light reflected from objects in the environment. The light rays are then bent
by the cornea and refracted parallel towards the lens. Afterwards, the lens focuses the rays on
the retina from where the image is then received by the rod and cone cells. They convert the
image to electrical nervous stimuli and then sent them to the visual cortex for processing and
interpretation.

1Fovea is the central region of the retina with the most acute perception and the sharpest vision.
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cornea
lens

retina

light

Figure 3.1.: Structure of the human eye while transmitting the ray of light

Six muscles in three pairs are responsible for moving the eye into different directions: the me-
dial and lateral recti for sideways movements, the superior and inferior recti for up and down
movements and the superior and inferior obliques for twisting. These muscles are all shown in
Figure 3.2.
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superior oblique

superior rectus

lateral rectus

medial rectus

inferior rectusinferior oblique

Figure 3.2.: Eye muscles

3.3. Types of eye movements

Eye movements can be categorized based on different characteristics. The first type of catego-
rization is as follows: voluntary versus involuntary or reflexive. Another categorization is based
on the velocity of the eye movements, i.e. slow versus fast eye movements as shown in Figure
3.3. Fast and slow eye movements are also called rapid eye movements (rem) and slow eye
movements (sem).

Eye movements

fast

eye blink saccade

saccadicnon-saccadic

short 

eye closure

(normal eye blink)

long 
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& microsleep

short 

eye closure

long 

eye closure & 
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eye blinks during 

drowsiness

smooth pursuit
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Figure 3.3.: Different categories of eye movements based on their velocity
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In the following, blinks, saccades, fixation, smooth pursuit and optokinetic nystagmus as relevant
eye movements during driving are defined.

Eye blinks

Regular and rapid closing and opening of the human eyes is called eye blink which consists of
three stages: closing, closed and opening (Hammoud, 2008). Blinking occurs either voluntarily
or involuntarily. Involuntary blinks can also be divided into spontaneous and reflex blinks.
The former includes eye blinks which occur regularly to protect eyes against external particles.
They also keep the eyes wet by spreading “precornial tear film” over the cornea (Records, 1979).
Reflex blinks, however, are the result of an obvious, identifiable external stimulus like bright
light or loud noise. Stern et al. (1984) also used similar taxonomy but under different terms:
endogenous versus exogenous blinks. Exogenous blinks include reflex, voluntary blinks and long
eye closures such as microsleeps. Thus, endogenous blinks are equivalent to the mentioned
spontaneous blinks. In this work, however, long eye closures and microsleeps are also considered
as spontaneous blinks.

Characteristics of spontaneous blinks like frequency can be influenced by factors such as vigi-
lance, activity, emotion and tasks. Furthermore, air quality and cognitive process also affect the
occurrence rate of such blinks (Stern et al., 1984). In general, performing tasks, which require
visual attention, such as reading decreases the frequency of such blinks. According to Stern et al.
(1984), the amount of the drop depends on the nature of the task and how demanding the task
is. They have also mentioned that during performing tasks, blinks are liable to occur when the
attention has decreased. Another moment, during which the occurrence of spontaneous blinks
is also very probable, is the gaze shift. Gaze shifts are most often accompanied by spontaneous
blinks, especially, while redirecting the attention to a new object (Records, 1979). In Chapter 6,
it will be discussed how performing different secondary tasks and gaze shifts affect the occurrence
of blinks. More information about the characteristics of blinks, e.g. duration, frequency, etc.
will be provided in Chapter 7.

In eog, blinking is only evident in the vertical component as shown in Figure 3.4(a). As this
figure shows, during the awake phase, blinks are very sharp. Therefore, they are categorized
as fast eye movements in Figure 3.3. During the drowsy phase, however, two characteristics
were observed in our experiments. The first one, which is shown in Figure 3.4(b), contains eye
blinks which are still fast in opening and closing motions but with longer closed duration. In
fact, opening and closing phases are almost similar to the awake phase. In Figure 3.4(c), on the
contrary, the blinks are much slower in opening and closing phases with slight changes in the
closed duration. In Chapter 5, we will discuss different methods for detecting all types of blinks
shown in Figure 3.4.

Saccades

We mentioned that the fovea consists of a very small area. Therefore, in order to see different
objects sharply, their image should be projected on the fovea. This is possible by eyes in move-
ments which are referred to as saccades. Saccades are fast movements of both eyes occurring
due to the change of the looking direction in order to reposition the fovea from one image to
another one. They can be characterized by their amplitude and duration (typically 10 to 100ms
(Duchowski, 2007)) which depend on the eyes rotation angle. The amplitude of saccades can
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(c) Blinks during drowsy phase as slow movements

Figure 3.4.: Representative examples of blinks measured by the vertical (V (n)) and horizontal (H(n))
components of the eog

be considered linear to the gaze angle up to ±30◦ (Young and Sheena, 1975; Kumar and Poole,
2002). A voluntary saccade is a saccade used for scanning the visual field. However, an invol-
untary saccade can be induced as a “corrective optokinetic or vestibular measure” (Duchowski,
2007). The very short duration of a saccade leads to a blurred image on the retina which cannot
be perceived. In fact, during this period, we are blind. In addition, it is presumed that the
distance to be traveled during saccadic movement is preprogrammed and consequently cannot
be altered after being determined.
Figure 3.5 shows three examples of saccades occurring in different directions measured by the
eog. For a saccade occurring only in one direction, just one component of the eog varies
remarkably as shown in Figures 3.5(a) and 3.5(b). However, according to Figure 3.5(c), for
diagonal saccades, both H(n) and V (n) signals are informative. Such saccades refer to the
glance at the mirrors during driving. Saccades similar to Figure 3.5(b) occur while looking at
the speedometer.
In Figure 3.5(c), the first saccade in both H(n) and V (n) is followed by a remarkable overshoot.
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Figure 3.5.: H(n) and V (n) representing different types of saccades due to horizontal, vertical and diagonal
eye movements

This happens, if the eye movements are time-locked to a head rotation and leads to the vestibulo-
ocular reflex (vor) (Sağlam et al., 2011). It is the result of a backward movement of the eyes
after having reached the destination, while the head movement is not finished due to its slower
velocity. The second saccade is also time-locked to an eye blink which is only present in V (n).
For the rest of this study, such eye blinks occurring simultaneously with a saccade will be called
saccadic eye blinks. Other examples of such saccades are shown in Figure 5.7.

Figure 3.5 indicates that the amplitude of vertical saccades is smaller than that of the horizontal
saccades. This is due to the fact that the horizontal space of the human eyes, i.e. from one
corner to the other corner, is larger than that of the vertical one, i.e from upper lid to the lower
lid. Therefore, the eyes travel a larger distance in the horizontal direction.

Comparing the long eye closures of Figure 3.4(b) with saccades shown in Figure 3.5, it can be
seen that both eye movements have similar shape and forms, although they occur in totally
different situations. Unintended long eye closures are a drowsiness indicator, while saccades
occur during scanning the visual field. In chapter 5, we suggest a method to distinguish them
from each other.

Fixation

The time interval between two successive saccades, during which the eyes fixate on a new location,
is called fixation (Figure 3.5(b)). Fixation is defined in ISO 15007 (2013) as the “alignment of
the eyes so that the image of the fixated area of interest falls on the fovea for a given time period”.
Fixation on an object can also be interpreted as focusing the attention on that object or visual
intake. Nevertheless, this is not always the case, such as during the “looked but failed to see”
phenomenon (Holmqvist et al., 2011). Fixation can also be considered as miniature or micro eye
movements such as microsaccades.

During a fixation, following tasks are processed: analysis of the image on the fovea, i.e. processing
available visual information, next fixation location and pre-programming of the following saccade
(ISO 15007, 2013). These tasks might not be completed thoroughly during the fixation period
which leads to some corrections by looking back to the previous location. As a result, a minimum
duration of 100 or 150ms has been assumed for the fixation.



36 Human visual system

At the first glance, it seems that fixation duration reflects the complexity of the task being
performed and the depth of the cognitive process (Holmqvist et al., 2011). However, other
factors like stress and daydreaming affect the fixation duration as well.

Smooth pursuit

Smooth pursuit describes the slow eye movements while tracking a moving object with the same
velocity (up to 30 ◦/s) as it moves (Leigh and Zee, 1999). During driving this eye movement
occurs while fixating on any moving or non-moving object outside the vehicle.

Optokinetic nystagmus

The combination of a smooth pursuit followed by a saccade (without head movement) leads to
a sawtooth-like pattern called optokinetic nystagmus (okn). According to Young and Sheena
(1975), okn consists of phases with low and high velocities (slow and fast phases) in opposite
directions. During the slow phase, the eyes fixate on a portion of a moving object while following
it (smooth pursuit). However, during the fast phase, since that portion had moved out of the
field of vision, by a correcting saccadic jump in the opposite direction, the eyes move back to
the previous position to fixate on a new portion of the moving field. This type of eye movement
also occurs during driving and will be studied in Section 4.1.5. An example of okn is shown in
Figure 4.8.



4. In-vehicle usage of electrooculography
and conducted experiments

As mentioned in Section 2.1.2, eog can be a suitable measurement system for collecting eye
movement data. On the contrary to cameras, it does not need any calibration and is not affected
by varying lighting conditions. However, it should be attached directly around the eyes which
makes it impractical as an in-vehicle product for sale.
In this chapter, first, a pilot study is explained in Section 4.1 which concentrates on the appli-
cation of the eog measurement system in the field of automotive. This application is clearly
different from using eog in the laboratory or in fixed-base driving simulators. Hence, the pilot
study evaluates the robustness of the eog measurement system for in-vehicle applications by ex-
ploring road-dependent eye movements. Based on the achieved results of this study, eog is used
in other experiments of this work as well for collecting eye movement data. The conducted day-
time and nighttime experiments for studying driver drowsiness detection are described in detail
in Sections 4.2 and 4.3. These experiments have been designed such that they are representative
of awake and drowsy driving scenarios in real life.

4.1. Eye movement measurement during driving - a pilot study

In this section, we introduce the conducted pilot study and discusses its results which are mostly
based on Ebrahim et al. (2013b). The goal is to know whether the eog measurement system is
reliable and robust for collecting eye movement data during real driving conditions.
To explore the in-vehicle usage of the eog measurement system, in a fully controlled experiment,
the relationship between driver eye movements and different real driving scenarios is investigated
by the eog signals. In order to be able to reproduce similar conditions several times, all data of
the pilot study was collected on the proving ground with a total of eight expert drivers (29–58
years, mean: 39.9 years, all male). All subjects were accompanied by an investigator during the
experiment. Based on the collected data, it is explored, if and how driver eye movements can be
influenced by the road structure, independent of the driver’s drowsiness or distraction. In other
words, we determine which eye movements during driving are road- or situation-dependent. Such
results are, in general, of interest for any driver monitoring system with concentration on eye
movements.

4.1.1. Material

Electrooculography measurement system

In the pilot study and all other experiments, which were conducted within the framework of
this work, eog signals were collected at 250Hz by the measurement system ActiCAP, Brain
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Products GmbH. Horizontal and vertical components H and V of the eog were measured by
four electrodes located around the eyes as shown in Figure 2.8. H and V were defined as follows

V = electrodeabove − electrodebelow (4.1)
H = electroderight − electrodeleft. (4.2)

Two electrodes were also used as reference and ground which were located on the bone behind
each earlobe. H(n) and V (n) refer to the collected signals of both components at sample n. For
further analysis, both H(n) and V (n) were sampled down to 50Hz.

Vehicle

A Mercedes-Benz E-Class (W212) with an automatic gearbox equipped with the explained eog
measurement system was used for this experiment. In addition, a multitude of vehicle-related
measures such as vehicle speed, lane lateral distance, steering wheel angle and global positioning
system (gps) were recorded synchronously at the sampling frequency of 50Hz. During the entire
experiment, four ir-cameras were installed in the car to record videos from the driver’s face, the
vehicle interior, the road ahead and behind synchronously. Therefore, it was always possible to
analyze the driving sections offline.

4.1.2. Test tracks

Since driver eye movements and vehicle speed can highly be influenced by the traffic density dur-
ing the experiment, we decided to collect our data under a fully controlled situation on Applus+
idiada proving ground (Applus+ IDIADA, 2014). This also helped to omit disturbing maneu-
vers, e.g. lane changes and takeover maneuvers. In addition, in a fully controlled experiment, it
would be easier to investigate the reproducibility of the results by different subjects.
The selected tracks (see Figure 4.1), tasks and the concepts behind them are explained below.
All tracks have been driven two times by each subject.

3
1

2

4

baseline P1

baseline

left curve

right curve

Figure 4.1.: Selected tracks of the Applus+ idiada proving ground (Applus+ IDIADA, 2014)

Track 1: General road

This track consists of two straight parts (P1, P2) which have been used for baseline driving in our
experiment. During baselines, the subject was asked to look at the horizon and keep the head
steady. Baselines were driven with the adaptive cruise control system adjusted at 100 km/h.
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The parts of the track, which are not shown as baselines in Figure 4.1, were not driven according
to the mentioned conditions. Measurements of this track are our references for assessing other
tracks’ data.

Track 2: Fatigue1 track

Track 2 mimics a badly maintained road with many ground excitations leading to a lot of head
movements during driving. This track was paved with setts and also contains a straight part
which has been used as a baseline condition similar to track 1. The whole track 2 was driven
at the maximum speed of 50 km/h. The experiment on such a track targets the answer to the
question, if and to what extent the mentioned head movements cause eog signal degradation.

Track 3: Straight line braking surface

On the contrary to track 2 with permanent ground excitations, this track contains temporary
speed bumps with different sizes and shapes. Different categories of bumps were successively
repeated 5 times on the track. The straight parts of track 3 were driven with the adaptive cruise
control system at 80 km/h. Based on the data collected in this track, we study whether hitting
a bump leads to unwanted vertical saccades or blinks.

Track 4: Dry handling track

We have also chosen a curved track, driven with the adaptive cruise control system at 80 km/h,
to study the dependency of eye movements on the road curvature. The minimum curve radius
of the track was roughly 50m. It should be mentioned that track 4 is a wide track which makes
turns at high speeds in larger radii than the curve’s radii possible.

4.1.3. Comparing baselines of track 1 and track 2

We consider the two baselines of track 1 as the reference measurement which reflect the common
behavior of the eyes and the intrinsic noise of our measurement system. Top and bottom plots
of Figure 4.2 represent 30 s of H(n) and V (n) signals of subject S2 for the baseline P1 of track
1, respectively. The peaks in V (n) imply the eye blinks. Figure 4.3 shows also 30 s of H(n) and
V (n) related to the baseline of track 2 for the same subject. The high frequency variations of the
eog signal in Figures 4.2 and 4.3 are due to the mentioned intrinsic noise of the measurement
system. Visual inspection of these two figures reveals that there exist low frequency changes
both in H(n) and V (n) of track 2. They correspond to the slight compensatory movements of
the eyes trying to keep the gaze direction concentrated on the horizon. In fact, the subject has
experienced unwanted head vibrations, while fixating his eyes. In the eog signals, however, it
seems as if the eyes have had movements.
For the frequency analysis of baselines of track 1 and 2, we choose 20 s of V (n) of subject S4
who had the longest eye blink-free time span among the subjects. The spectrograms and power
spectral densities (psd) of V (n) of these baselines are shown in Figure 4.4. The difference
between spectrograms/psds seems to be considerable within 0.5–2.5Hz range in comparison to
other frequencies which might correspond to the unwanted head vibrations of track 2. Moreover,

1The term fatigue refers to its definition in the field of civil engineering and not to the driver drowsiness.



40 In-vehicle usage of electrooculography and conducted experiments

0

50

100

 

 

H
(n
)
[µ
V
]

0 5 10 15 20 25 30

−100

0

100

200

Time [s]

V
(n
)
[µ
V
]

 

 

blink

Figure 4.2.: H(n) and V (n) of subject S2 for baseline P1 of track 1
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Figure 4.3.: H(n) and V (n) of subject S2 for baseline of track 2

similarity of the two psds in higher frequencies implies that ground excitation does not provide
any artifacts in this range, i.e. electrodes do not move or vibrate despite the ground excitation.

In order to quantify the effect of ground excitation versus the normal track for all subjects, a
moving standard deviation filter with the window length of 0.5 s and overlap length of 0.48 s
was applied to H(n) to quantify the variations in both baselines. In other words, at each time
sample n, the standard deviation of the samples within the last 0.5 s (25 samples at 50Hz)
were calculated. We used moving standard deviation filter, because it describes best the local
variation of the eog due to ground excitation. Afterwards, the mean of the calculated values
is used for further analysis of each baseline. The difference of the two mean values of the
calculated standard deviations for all subjects represents the level of the contribution of head
vibration in the eye movement signal. In order to avoid a false calculation, possible saccades
were removed at first from H(n). This was done by applying the saccade detection algorithm
which will be explained in Section 5.2. All calculated means of standard deviations are listed in
Table 4.1. Data of subject S3 has been excluded, as he did not follow the baselines’ instructions.
Figure 4.5 also shows the boxplots of the values listed in Table 4.1. Interestingly, most of the
mean values of track 2 are larger in comparison to those of the track 1 regarding all subjects.
Therefore, it can be concluded that ground excitation leads to unwanted head vibrations which
can be measured by eog signals, although the eyes have not moved. Consequently, eog is
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Figure 4.4.: Spectrogram and power spectral density (psd) of 20 s of V (n) of subject S4 for track 1 and
track 2

not a suitable measurement system for the collection of eye movements on roads with ground
excitation. This was, however, not the case for the highways used in other experiments of this
work.

4.1.4. Bumps and eye movements: related or unrelated?

For assessing the impact of road bumps on eye movements, the exact locations of the bumps of
track 3 should be extracted. In order to determine them, the wheel speed sensor data was used
which was recorded synchronously with eog signals. By calculating the exponentially weighted
moving variance (ewvar) σ̃2(n) (Friedrichs and Yang (2010a)) of the wheel speed w(n) and
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Table 4.1.: Means of moving standard deviations of H(n) for all rounds (R) and parts (P) of track 1 and
track 2, for all subjects (excluding subject S3)

Subject
Track 1 Track 2

R1,P1 R1,P2 R2,P1 R2,P2 R1 R2
1 7.3 8.7 9.5 9.2 10.8 8.9
2 6.3 7.4 6.5 6.6 9.8 9.9
4 5.5 5.8 6.8 5.3 7.0 6.4
5 6.3 7.9 6.8 5.2 7.3 7.4
6 6.2 6.3 5.8 6.3 7.9 7.2
7 5.7 7.6 5.5 6.6 14.1 11.7
8 8.3 11.2 7.4 8.5 14.3 12.0
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Figure 4.5.: Boxplot of the values listed in Table 4.1

applying a threshold (5 (rpm)2) to it, we distinguished between bumps and even sections of the
track. σ̃2(n) is calculated as follows

σ̃2(n) = λσ2 σ̃2(n− 1) + (1− λσ2)
(
w(n)− µ̃(n)

)2
(4.3)

µ̃(n) = λµ µ̃(n− 1) + (1− λµ)w(n) (4.4)

λµ = Nµ − 1
Nµ

, λσ2 = Nσ2 − 1
Nσ2

, (4.5)

where µ̃(n) is the exponentially weighted moving average (ewma) of w(n). λσ2 and λµ are the
forgetting factors adjusted by window size Nσ2 = Nµ = 3 samples. The initial values of σ̃2(0)
and µ̃(0) were set to the average of w(n). Figure 4.6 shows five detected large amplitude bumps
with the height of about 8 cm based on σ̃2(n).
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Figure 4.6.: Detected large amplitude bumps based on the ewvar of wheel speed sensor data

Figure 4.7(a) shows the detected time intervals of multiple single small amplitude bumps (with
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the height of about 5 cm) over V (n) for subject S2. Interestingly, as shown in this figure and
valid for all subjects, we did not find any considerable distortion in the eog signal. This can
be justified by two reasons. One reason might be that in this experiment, we used a vehicle
with above normal damping and ride comfort and consequently the disturbing effect of small
amplitude road bumps was filtered out by the vehicle to a large extent. Moreover, our body acts
as a low pass filter (damper) to compensate the excitement of such small and short-duration
bumps. However, as Figure 4.7(b) shows the influence of bumps with larger amplitudes and
longer durations on eog is very similar to that of track 2, i.e. occurrence of low-frequency
components. This is due to successive repetition of each bump category (each 5 times).
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Figure 4.7.: V (n) of subject S2 and S6 for small (top plot) and large (bottom plot) amplitude bumps of
track 3

4.1.5. Patterns of eye movements due to road curvature

During the investigation of eog signals in the curves of track 4, we observed a peculiar pattern of
the eog signal (see Figure 4.8) which is similar to the sawtooth pattern of the okn described in
Section 3.3. Figure 4.8 shows this pattern for two right and left curves of track 4 (top and bottom
plots, respectively). These two curves are labeled in Figure 4.1, too. According to Figure 4.8, it
can be concluded that the sawtooth pattern direction is related to the curve direction. Moreover,
the occurrence frequencies of the sawtooths and the amplitudes of the fast phases (saccades) in
the right curve are smaller than those of the left curve. These results, which are valid for all
subjects, might be related to different vehicle speeds, different positions of the subjects in the
vehicle and the radii of both curves. The vehicle speed for all subjects was almost the same on
this track due to the used adaptive cruise control. In addition, we assume that the difference
between the positions of the subjects in the car is negligible. The radii of the curves, however,
are to a larger extent different from each other and are roughly 150m and 50m for the right and
left curve, respectively. We observed that the sawtooth pattern was more pronounced for curves
with higher curvature.
Many research studies were devoted to interpreting the pattern of eye movements in curve
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Figure 4.8.: H(n) of subject S8 for track 4, top/bottom: right/left curve

negotiation. Jürgensohn et al. (1991) stated that similar to okn, during curve negotiation, the
subject fixates on a point in front of the car for a certain period (slow phase). As soon as the
point is close to the car, the subject chooses another fixation point (fast phase). Based on Land
and Lee (1994), this moving point can be referred to the tangent point (tp) of the curve or a
point very close to it. As stated by Kandil et al. (2010) and Authié and Mestre (2011), this point
describes the intersection of a tangent through the vehicle and the inner lane marking. They also
believed that subjects rely heavily on the tp and suggested it as a useful source of information for
correct steering during curve negotiation. According to Authié and Mestre (2011), the location
of this point is dependent of the lateral position of the vehicle towards the lanes and the vehicle’s
orientation. Considering all of our results and observations, the sawtooth pattern rarely occurred
for curves with larger radii, meaning that the subject does not necessarily follows the tp or any
other point, while negotiating curves with lower curvature.

Since our experiment was not equipped with a head-mounted camera, it is not clear where the
subjects were looking at during curve negotiation and whether the okn pattern of Figure 4.8 is
the result of reliance on the tp as the informative point. This can be clarified, if the characteris-
tics of sawtooth pattern, e.g. the average time interval of its occurrence ∆t, can be described as
a function of the curve radius r, under the assumption that tp has been observed continuously
during curve negotiation. In Appendix A, this relationship is investigated analytically for the
left curve shown in Figure 4.1 with r = 50 m. We denote the analytically calculated values of ∆t
with ∆tc. Furthermore, the ∆tm value is available from our measured data as shown in Figure
4.8. By evaluating the calculated ∆tc against the measured ∆tm, we can show whether subjects
relied on the region of the tp during the curve negotiation.

According to Appendix A, ∆tc is a function of curve radius r and the angular displacement of the
eyes δ, i.e. ∆tc = f(r, δ). Therefore, for the calculation of ∆tc, the value of δ is needed. In order
to find δ, we conducted an experiment in a stationary position, i.e. no driving, to investigate the
relationship between δ and the saccade amplitudes of okn pattern. There, the subject was asked
to look at points located horizontally between ±45◦ with 5◦ spacing at the height of the eyes
(without head movement). 0◦ was calibrated with respect to subject’s position while looking
straight ahead. The results agree with findings of Young and Sheena (1975) and Kumar and
Poole (2002) who stated that the amplitude of saccades is considered linear to the gaze angle up
to ±30◦. We measured that the saccades within the amplitude range of the sawtooths of Figure
4.8 (roughly 50µV) have happened by eye movements between 5◦ to 10◦, i.e. 5◦ ≤ δ ≤ 10◦.
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Given δ = 4◦, 6◦, 10◦ and 50 m ≤ r ≤ 150 m, possible values of ∆tc are shown in Figure 4.9.
As mentioned before, to evaluate ∆tc, we compared it with ∆tm. According to Figure 4.8,
∆tm ≈ 0.34 s, which agrees with the calculated values of ∆tc, namely 0.3 s < ∆tc < 0.4 s for
r = 50 m and 4◦ ≤ δ ≤ 10◦. This implies that relying on the region of the tp was the case during
the curve negotiation of r = 50 m at v = 80 km/h in our experiment. Moreover, this result states
that tracking the tp is also a possible reason for the existence of okn in our data.
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Figure 4.9.: Calculated sawtooth occurrence time period ∆tc versus curve radius r for δ = 4◦, 6◦, 10◦

By analyzing the V (n) signal, we realized that the occurrence of okn was not recognized within
the vertical eye movements for all subjects. For example, during the occurrence of the thoroughly
apparent sawtooth pattern in H(n) of subject S8 (Figure 4.8), no vertical eye movements were
observed in V (n). On the contrary, for subject S4, the vertical and horizontal components of
eog revealed similar patterns.

It is clear that the observed inevitable sawtooth pattern due to curve negotiation is not related
to the driver’s inattention or drowsiness. Therefore, we suggest the exclusion of tortuous road
sections for further investigation of driver eye movements. Whether features of the okn depend
on the curve parameters and vehicle velocity is, however, out of scope of this work and opens
rooms for future work.

Conclusion

We studied the relationship between driver eye movements and different real driving scenarios by
eog signals in a fully controlled experiment. In this pilot study, we explored whether and how
driver eye movements are influenced by the road properties, independent of driver’s drowsiness
or distraction. In addition, the usage of eog measurement system for in-vehicle applications
was studied.

It can be concluded that ground excitation and large amplitude bumps add an extra pattern
to the eog signals which was characterized as a low frequency component. On the other hand,
monitoring driver eye movements seems to be undisturbed by a single small amplitude bump.
Moreover, the sawtooth patterns of okn during curve negotiation are not drowsiness-related.
Therefore, considering all results provided in the pilot study, we conclude that eog is a robust
and reliable measurement system for the collection of eye movement data on real roads and high-
ways. Therefore, in other experiments explained in the following sections a similar measurement
system has been used, because the parts of the highways selected for conducting the real road
experiments were all free of ground excitation, large amplitude bumps and very high curvature.



46 In-vehicle usage of electrooculography and conducted experiments

4.2. Real road experiments

The real road experiments are the experiments conducted on real roads and cover the collection
of data sets related to the awake and drowsy driving in this work.

4.2.1. Daytime driving with no secondary tasks

Two daytime drives with no secondary tasks have been conducted at different times. The first
one was conducted in May 2012 and the second one in September 2013. Since, except for some
additional measurement instruments, both experiment systems and procedures were the same,
we combined the collected data and call them as the daytime drive with no secondary tasks.

Subjects

In total, 18 voluntary subjects, 3 females and 15 males, with an average age of 41.1 ± 10.7
years (27–62 years) participated in the experiment who were all the employees of Daimler AG.
All of the subjects were additionally trained for driving the experiment vehicle with a lot of
measurement systems. These subjects are labeled S26 to S43 in Chapters 7 and 8.

Material and experiment procedure

The same Mercedes-Benz E-Class used for the pilot study was also used for this experiment. It
was equipped with an eog and ecg measurement system and a head tracker. For 9 subjects a
vital camera for measuring the heart and respiration rate and for the other 9 subjects a driver
observation camera were additionally installed in the car. Only eog data has been analyzed
in this work. In addition, lots of vehicle-related measures such as vehicle speed, lane lateral
distance, steering wheel angle and gps were also recorded at the sampling frequency of 50Hz.
The kss was also collected every 15min via a touchscreen which was prompted automatically
by a beep tone. After rating the drowsiness level, the subjects should have also answered a
question about the acceptance of a drowsiness warning with either correct, acceptable or false.
During the whole experiment, four ir-cameras were installed in the car to record videos from
the driver’s face, the vehicle interior, the road ahead and behind synchronously. Therefore, an
offline analysis of all driving sections was always possible.
The A81 highway route in Germany was selected for this experiment as shown in Figure 4.10.
Since our goal was to collect eog data related to alert and less drowsy phases of the drive, the
experiment was conducted at 9 a.m. or at 1 p.m. to have more fit subjects and low highway
traffic. On average each subject drove about 260 km unaccompanied. All subjects were asked
not to perform any secondary tasks such as listening to the radio, operating the navigation
system or talking with mobile phone and to obey all traffic rules, while not driving faster than
130 km/h. They were also allowed to use the adaptive cruise control.

4.2.2. Daytime driving with secondary tasks

This experiment was initially designed for studying the variation of the asr during visuomotor
and auditory secondary tasks under real driving conditions by Sonnleitner et al. (2011). Since
the eog data was collected as well, we used it in this work for studying gaze-shift induced blinks
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Figure 4.10.: Daytime drive experiment’s route (ViaMichelin, 2014), about 130 km

as will be discussed in Chapter 6. The following explanations are derived from Sonnleitner et al.
(2011) and Ebrahim et al. (2013c).

Subjects

A total of 26 voluntary employees of Daimler AG, 7 females and 19 males, participated in the
experiment with the average age of 43.7 ± 8.7 years (25–56 years). All of the subjects were
additionally trained for driving the experiment vehicle. The participants of this experiment
were partially different from those of the previous experiment. These subjects are labeled S1 to
S26 in Chapter 6.

Vehicles

Two Mercedes-Benz S-Class vehicles (W221) and one E-Class vehicle (W212) were used in this
experiment equipped with an extra brake and gas pedal on the passenger seat similar to driving
school vehicles. This was done due to safety reasons during performing the secondary tasks.
All vehicles were also equipped with the eeg (16-electrode-cap) and eog measurement systems
similar to the previous experiment. ir-cameras were installed as well. Vehicle-related measures
were also collected as explained before.
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Experiment procedure

During the experiment, the subjects performed the primary driving task together with four blocks
of secondary tasks lasting 40min on the same highway route as in the previous experiment (see
Figure 4.10). The secondary tasks contained both visuomotor (representative of navigation
system demands) and auditory (comparable with the mobile phone conversation) tasks. All
subjects were instructed to always prioritize the primary task and to drive under official traffic
regulations. The maximum speed allowed was 130 km/h. During the tasks, no overtaking
maneuver was allowed for safety reasons. Moreover, a trained investigator accompanied subjects
during the experiment to intervene in case of safety-critical situations using the extra pedals.

Each block contained 3min of visuomotor task, 1.5min of driving with no secondary task, 3min
of auditory task and finally 1.5min of driving with no secondary task as shown in Figure 4.11.
Start and end markers of each block were recorded automatically. This means that the time
gaps before and after the beginning and end of blocks were discarded.

visuomotor driving auditory driving

3min 1.5min 3min 1.5min

Figure 4.11.: One block of daytime real road experiment with secondary tasks

Visuomotor secondary task

For the visuomotor task, a 2× 2 matrix of four Landolt rings was shown on a display located at
the central console on the right side of the navigation system (see Figure 4.12). The subject had
to determine which side of the screen (right or left) contains the ring with different direction of
opening by pushing on two adjacent buttons of an external number keypad (4: left, 6: right)
located within driver’s reach on the lower central console. In this work, the number of correctly
identified rings is not evaluated, because just the gaze shifts between the road and the screen
are of interest as will be discussed in Chapter 6.

Auditory secondary task

During this task, the subjects listened to an audio book, in order to detect the German definite
article “die” by pressing a button fitted to their left index finger. At the end of each block,
subjects answered a question about the content of the presented audio book. Again, the answers
are not evaluated here.

Figure 4.12 shows the experimental setup of the mentioned secondary tasks.

4.2.3. Nighttime driving with no secondary tasks

This experiment was conducted in March 2010 to collect drowsiness related data under real
driving conditions for studying eeg-based features. Since eog electrodes were used as well, the
experiment is studied in this work.
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performing the visuomotor secondary task, 1.5 minutes of driving without additional secon-

dary task, three minutes of driving with the auditory secondary task and again 1.5 minutes of 

driving without secondary task. The beginning and the end of every task was denoted auto-

matically by recorded announcements. Data collected between blocks and during announce-

ments were excluded from further analysis. The entire experiment lasted about two hours. 

 

Visuomotor secondary task 

During the visuomotor task (Visual Task v2.20, developed by Daimler AG, 2008) a 2x2-

matrix of four Landolt rings was presented on a separate 18-inch LCD-TFT display. The dis-
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right side of the screen by pushing the corresponding button on an external number keypad (4 
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Figure 2: Experimental setup 
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Figure 4.12.: In-vehicle setup of the daytime experiment with secondary tasks (taken from Sonnleitner
et al. (2011))

Subjects

In total, 46 voluntary subjects, who were all employees of Daimler AG, participated in this
experiment. Data of 16 subjects was removed due to technical problems for collecting eeg or
other sensor’s data. Out of the 30 remaining subjects, 14 of them aborted the experiment due
to severe drowsiness which can be considered as an objective measure reflecting subjects’ deep
level of drowsiness. Only the data of these 14 subjects is of interest in this work. Due to data
quality problems of eog signals, however, in the end only data of 10 subjects out of 14 (1 female
and 9 males) are studied with the average age of 35.9± 10.1 years (24–57 years). These subjects
did not participate in other experiments of this work.

Material and experiment procedure

The vehicles used in this experiment were all equipped similarly as in the previous experiments.
The selected route, shown in Figure 4.13, was from Stuttgart to Würzburg via Ulm and driven
directly back to Stuttgart again (not on the same road as before).

The driving task started around 10 p.m. The Mercedes-Benz E-Class vehicle used in the previous
experiment together with an S-class vehicle equipped similarly were used for collecting the data.
In addition, the secondary pedals were installed in the vehicle. The reason was that all subjects
were accompanied by an investigator who was responsible for intervening and controlling the
vehicle in case of safety-critical events. All subjects were told to abort the experiment, if they felt
drowsy. Every 15min, kss data was collected as well. As a rule, as soon as a subject estimated
his drowsiness level at kss = 9 or two times at 8 successively, the experiment was aborted. On
average, a subject aborted the experiment after driving 244 km. Similar driving regulations as
explained in Section 4.2.1 were held in this experiment.
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Figure 4.13.: Nighttime drive experiment’s route (ViaMichelin, 2014), about 450 km

4.3. Nighttime driving experiment in the driving simulator

Since severe drowsiness phases and occurrence of microsleeps cannot be induced in real road
experiments due to safety concerns, drowsy data was collected at the Mercedes-Benz moving-
base driving simulator. With a 360◦ projection screen, it is to a large extent comparable with
real driving (Zeeb, 2010). This experiment was conducted for collecting the most relevant eye
movements to drowsiness.

Subjects

25 employee of Daimler AG, 11 females and 14 males, with an average age of 33.9 ± 8.0 years
(25–56 years) drove at night starting either at 6 p.m. or 10 p.m. after a usual working day. No
driving simulator sickness was reported. These subjects are labeled S1 to S25 in Chapters 7 and
8 and did not participate in other experiments of this work1.

Material and experiment procedure

An S-Class Mercedes-Benz cabin and a highly monotonous, low traffic highway driving condition
during the night with two lanes were selected for this experiment. In addition to the eog and
ecg data, kss and the acceptance of warning were also collected every 15min prompted by a

1The subjects of the daytime driving with secondary tasks in Section 4.2.2, who are also labeled S1 to S26,
were not the same as those who participated in the driving simulator experiment.
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dong tone sound. On the contrary to the real road experiments, subjective self-rating of the
drowsiness level was collected verbally. Similar to other experiments, an ir-camera was installed
in the car for recording the subject’s face during driving. 14 subjects were additionally equipped
with a head tracker and a head mounted eye tracker. These subjects also performed a speech
test right after alternate kss events. They were asked to repeat some sentences for about 4min.
These parts of the experiment, which were collected for other purposes, were removed for further
analysis, since talking leads to noisy eog data.
The very first minutes of the experiment were intended for getting familiar with the simulator
and accommodation of the eyes. Unlike the daytime experiments, where the subject should have
driven the whole route, in this experiment the subjects were asked to drive as long as they could
and even give effort to fight against drowsiness, if it was possible. The length of the circular
route was 200 km and it was repeated after completing one round of it. On average, each subject
drove 335 km with the maximum speed of 130 km/h. Two construction sites were also included
through the 200 km route at 62nd and 88th km to make the driving scenario more realistic. In
addition, some takeover maneuvers were also designed. The subjects were allowed to activate
the adaptive cruise control. They were asked not to talk to the investigators in the control room
who were responsible for observing the subjects during the experiment and for documenting
the experiment. In general, subjects aborted the experiment due to sever drowsiness, either
by themselves or suggested by the investigators. We emphasize that the subjects were not
necessarily drowsy during the entire drive in this experiment.
Table 4.2 summarizes all conducted experiments.

Table 4.2.: Summary of experiments studied in this work
daytime experiment nighttime experiment

pilot study without with without
secondary tasks secondary tasks secondary tasks

real or real real real real simulated
simulated driving
number of subjects 8 18 26 10 25
driven distance – 260 km 260 km 244 km 355 km
driving duration – 2:30 2:30 2:10 2:40

[hh:mm]
starting time – 9 a.m. or 1 p.m. 9 a.m. 10 p.m. 6 p.m. or 10 p.m.

EOG data collection yes yes yes yes yes
KSS data collection no yes no yes yes
accompanied by yes no yes yes no
an investigator?





5. Eye movement event detection methods

This chapter discusses eye movement detection methods. First, it is necessary to clarify, why
the precise detection of eye movements provides the foundation for successful driver drowsiness
detection. If eye movement events are not detected properly, it is obvious that the features
being extracted from them lack useful information for further analysis such as the classification.
Improper event detection is the one with a high rate of missing events or false detections.
Under these circumstances, the relationship between features and driver drowsiness cannot be
determined correctly. As a result, detection of eye movements should be done with care and
high precession, since it directly affects the results of next analysis steps.
It should also be mentioned that correct detection of an eye movement event, e.g. a blink, also
contains the detection of its start and end points precisely. Therefore, if a blink is only partly
detected, it cannot be counted as an acceptable detected event.
In this chapter, first, a well-known method of blink detection based on median filtering is ex-
plained. After discussing the shortcomings of this method, our developed detection algorithms
based on derivative signal and continuous wavelet transform will be explained as alternatives to
the median filter-based method. Moreover, it will be shown how our new approaches complete
each other in terms of detection of different eye moments. The proposed derivative-based de-
tection algorithm is responsible for the detection of rapid eye movements, while the suggested
wavelet transform-based algorithm detects slow eye movements. At the end of this chapter, all
studied event detection methods are discussed and compared with each other.
Parts of the material in this chapter are drawn from Ebrahim et al. (2013a).

5.1. Eye movement detection using the median filter-based
method

Some examples of blinks during the awake and drowsy phases were shown in Figure 3.4. During
the awake phase, in which a person does not suffer from sleep deprivation, blinks often follow
similar characteristics, i.e. their amplitude and duration do not change remarkably. Some
examples of such blinks are shown in the top plot of Figure 5.1. This implies that blink detection
can easily be performed by applying some fixed criteria, e.g. by comparing the V (n) signal with
a fixed threshold. However, as mentioned before, drift, which is not related to any type of
eye movements, is inevitable in the eog signal (see top plot of Figure 5.1). Therefore, a fixed
threshold does not lead to the correct blink detection.
A conventional method for eliminating the drift in the eog signal and improving the blink
detection is to apply a median filter to V (n) and then subtract the result from the original V (n)
signal. This method has been applied in several studies for blink detection, such as in Hargutt
(2003), Martínez et al. (2008), Krupiński and Mazurek (2010) and Huang et al. (2012). As a
result, we have

V̂ (n) = V (n)− Vmed(n), (5.1)
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Figure 5.1.: Drift removal by applying a median filter to V (n) to improve blink detection. Top: awake
phase, bottom: drowsy phase

where Vmed(n) refers to the median filter processed V (n) with empirically chosen window size of
wmed = 2(f4 ) + 1 samples (f = 50 Hz) in this study. At sample n, Vmed(n) represents the median
of V (n) calculated within the interval [n− wmed + 1 , n]. The top plot of Figure 5.1 shows the
result of applying this method. It is clear that due to the eliminated drift in V̂ (n), the blinks
can now be easily detected by applying an amplitude threshold like thamp = 100µV.
The bottom plot of Figure 5.1 shows V (n) signal of the same subject during the drowsy phase.
Subject’s level of drowsiness was assessed based on the video analysis and collected kss values.
As shown in this plot and Figure 3.4, blinks in the drowsy phase differ widely in amplitude and
duration from those of the awake phase. The same median filter has been applied to process
V (n) of the drowsy phase as well. In this case, not all blinks were detected correctly in V̂ (n)
signal. The half of the fourth blink, as an example, has been removed by applying the median
filter as magnified in Figure 5.2. In addition to the amplitude, the duration of this blink is
different in V (n) and V̂ (n).
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Figure 5.2.: Information loss of slow blinks by median filter method

Moreover, the blinks with longer durations (3rd, 5th, 9th and 10th events in Figure 5.1) almost
disappeared after median filtering. Setting a small value for thamp also does not help, as saccades
or noise might be incorrectly detected as blinks. The problem is that the efficiency of the median
filter-based method is highly dependent on the chosen wmed. The more wmed of the median filter
matches the blink duration, the less blink information is lost in V̂ (n). Since the blink duration
not only varies inter-individually, but also for an individual according to the level of drowsiness,
applying a fixed window size median filter would not lead to successful blink detection for the
drowsy phases. In addition, another deficiency of this method is that saccade detection becomes



5.2 Eye movement detection using the derivative-based method 55

impossible, as all saccades shown in Figure 5.1 have been filtered out as drift. Therefore, a
median filter is not suitable for our application, because, here, all fast eye movements (blinks
and saccades) are of interest and a median filter removes both slowly varying drift as well as
some blinks and saccades.

5.2. Eye movement detection using the derivative-based method

In the previous section, we saw that the median filter-based method is a powerful blink detection
method for detecting sharp and short blinks of the awake phase. However, during the drowsy
phase, most of the events are missed or detected with low precision. To overcome the mentioned
problem, this section describes a method which benefits from the derivative of the eog signal
for blink detection. Some previous studies also used derivative signal for detecting blinks such
as Jammes et al. (2008),Hu and Zheng (2009) and Wei and Lu (2012). However, their proposed
algorithms had some weaknesses. Jammes et al. (2008) mentioned that their detection algorithm
is unable to distinguish between longer eye closures and vertical saccades occurred during looking
at the dashboard, because they look very similar to each other. Distinguishing between these eye
movements has been mentioned as an important issue for driver drowsiness detection in other
studies as well (Svensson, 2004). In addition, Jammes et al. (2008) showed that their algorithm
did not detect slow blinks. Wei and Lu (2012) also applied the blink detection method suggested
by Jammes et al. (2008) and used frequency-based methods (Fourier and wavelet transform)
additionally to extract the number of slow eye movements in the horizontal eog signal.
A clear disadvantage of the mentioned studies is that they only concentrated on the detection
of blinks in v(n). However, as mentioned in Sections 3.1 and 3.3, observing the scene ahead by
saccadic eye movements is essential for the safe driving. Unfortunately, distinguishing between
saccades and blinks (either fast blinks or micro sleep events) in V (n) of eog signals have not been
addressed in previous derivative-based algorithms. Here, we introduce a novel derivative-based
approach which takes saccade detection into consideration as well, such that blinks and saccades
are detected simultaneously as fast eye movements and are distinguished form each other. This
property of our algorithm tackles the existing problem in the conventional derivative-based blink
detection algorithms.
The derivative of the V (n) signal, V ′(n), calculated by the Savitzky-Golay filter (Savitzky and
Golay, 1964) with the polynomial order 1 and the frame size 7, is shown in Figure 5.3. In
the Savitzky-Golay filter approach, a polynomial of degree 1 is fitted to 7 samples of V (n)
successively in the least-squares sense. V ′(n) at the midpoint of the 7 samples is obtained by
performing the differentiation on the fitted polynomial rather than on the original V (n). The
mentioned parameters of the filter are only used for the detection of blink events1.
In the following, our blink detection algorithm based on V ′(n) is explained.

1. Detecting potential blinks
According to Figure 5.3, potential blink events can be detected by setting an amplitude
threshold thvel regarding the blink velocity V ′(n) to consider all of its peaks, namely∣∣V ′(n)

∣∣ > thvel . (5.2)

Afterwards, around all accepted peaks, three successive sign changes are searched for.
These points define start, middle and end points of a blink as a, b and c, respectively as

1For the sake of accuracy, another parameter set is used for the extraction of blink features.
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Figure 5.3.: V (n) and its derivative V ′(n) representing eye blinks during the awake phase

shown in Figure 5.3. We have considered the first point after a sign change. Negative to
positive transitions of V ′(n) are defined by a and c, while positive to negative transitions
by b. These three respective points of V (n) are also marked as A, B and C in Figure 5.3.
a to b (A to B) and b to c (B to C) transitions describe closing and opening of eyes during
a blink event. At the end of this step, all potential blinks are detected.

2. Calculating the blink amplitude of potential blinks
After detecting all potential blinks, the blink amplitude is extracted. This comprises
both closing and opening amplitudes, namely B − A and B − C. The difference between
these amplitudes is negligible for normal blinks. Usually, the amplitudes measured at the
beginning (A) and at the end (C) of a blink remain unchanged, as for the first blink in
Figure 5.3. For saccadic blinks, however, this difference is non-zero and is equivalent to
the amplitude of the saccade time-locked to the blink. Therefore, in order not to consider
the amplitude of the saccade in the blink amplitude, the blink amplitude for the i-th blink
is defined as

ampi = min
(
Bi −Ai, Bi − Ci

)
. (5.3)

Wei and Lu (2012), however, used (Bi−Ai)+(Bi−Ci)
2 as the amplitude of the blink. Their

definition ignores the difference between the amplitude of saccadic and non-saccadic blinks.
3. Categorizing potential blinks with respect to their amplitude

Now, the question is whether all detected patterns are true eye blinks. In order to assess
this, the histogram of the amplitude in (5.3) was analyzed as shown in Figure 5.4 for 11
subjects. These subjects participated in the driving simulator experiment (see Section 4.3).
The histograms are normalized with respect to the maximum number of occurrences for
each subject separately. According to Figure 5.4, for almost all subjects, two clusters of
amplitude are distinguishable. The question is what these clusters refer to. The cluster
with the smaller amplitude describes the vertical saccades and microsleep events. This
means that although the focus of detection was on blinks, other eye movements have been
detected as well. The reason is that the chosen thvel was small enough to take other fast
eye movements besides blinks into consideration. Figure 5.5 and the highlighted area in
Figure 5.3 show saccades detected by the explained detection algorithm.
As explained in Section 3.3, saccades and blinks with long eye closures have similar shape
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Figure 5.5.: Simultaneous detection of saccades by eye blink detection algorithm

and form (see Figures 3.4(b) and 3.5). Therefore, analogous to saccades, opening and
closing stages of such blinks are detected by the algorithm and considered in the group
with smaller amplitudes in Figure 5.4. After identifying different clusters in Figure 5.4
(blinks versus saccades/microsleeps), a clustering method such as the k-means clustering
(see Appendix C) is required to find the exact border between them. At first sight, applying
a 2-class clustering seems to be sufficient. However, in addition to saccades and microsleep
events, the data includes blinks from both awake and drowsy phases. In fact, three clusters
are available: 1) saccades and microsleeps (similar to Figure 3.4(b)), 2) blinks during the
drowsy phase or with longer eye closure and smaller amplitude due to drowsiness (similar
to Figure 3.4(c)) and 3) blinks during the awake phase or with short eye closure (similar
to Figure 3.4(a)). Therefore, applying a 3-class clustering algorithm is recommended. The
thresholds of both 3-means, th3-means, and 2-means, th2-means, are shown in dashed and
solid lines, respectively, in Figure 5.4. th3-means on the left side refers to the threshold
between saccades/microsleeps (cluster 1) and blinks of the drowsy phase (cluster 2). The
threshold on the right side discriminates the second and the third clusters. Obviously, by
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applying the 2-class clustering, many decreased amplitude blinks due to drowsiness will
be incorrectly clustered as saccades or vice versa as for subjects S18 and S22. Finally, all
events fulfilling both B−A > th3-means,left and B−C > th3-means,left are accepted as blinks.
It is noticeable that the thresholds differ from person to person which implies that no fixed
threshold should be applied for distinguishing between the clusters.

4. Distinguishing between vertical saccades and blinks with longer eye closure
The goal of this step is to distinguish between saccades and other eye movements which are
all clustered in a common group in the previous step. There, only the minimum amplitude
of B − A and B − C was of interest, while now the actual amplitude of these events are
studied. The amplitude of the i-th eye movement of this group, ampem,i, is defined as

ampem,i =
∣∣Ci −Ai∣∣. (5.4)

In fact, the relative variation of the amplitude is considered, overcoming the overshoots
in saccadic eye movements (see Figures 3.5(c) and 5.3). Similar to the previous step, the
histograms of the amplitudes calculated by (5.4) are analyzed as shown in Figure 5.6 for
subjects S15, S19 and S22.
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Figure 5.6.: Normalized histogram of all detected potential saccades and blinks with long eye closure.
Their clustering thresholds are also shown.

For subject S15, two classes are again distinguishable. The group with smaller amplitudes
refers to vertical saccades, while the other group describes blinks with long eye closure.
Due to smaller vertical than horizontal space of human eyes, the amplitude of vertical
saccades are limited. As a result, vertical saccades with large amplitudes comparable to
the microsleep events shown in Figure 3.4(b) do not occur during common driving tasks.
On the other hand, it is clear that if microsleep events similar to the saccadic pattern shown
in Figure 3.4(b) do not occur often, the clusters will not be as distinguishable as for subject
S15. This is the case for subject S22, while for subject S19, the number of such events was
so small that only one cluster can be distinguished. Therefore, for histograms similar to
subjects S15 and S22, the k-means (k = 2) algorithm is applied and for histograms without
distinct clusters, the 95th percentile is used as the border between vertical saccades and
microsleep events. The thresholds are shown in Figure 5.6.

5. Plausibility check of detected fast eye movements
Since eog signals are very sensitive to any muscle artifact around the electrodes, it might
be possible that some artifacts are confused with eye movements. A possible method for
overcoming this problem is to ascertain which eye movements are related to each other and
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to exclude unrelated ones. This is logical during driving, as it is assumed that the driver
looks straight ahead most of the time. Therefore, a main looking direction can be defined.
As a result, for all saccades representing looking away from the main looking direction,
another saccade in the opposite direction should be present as shown in Figure 3.5. All
detected saccades, which do not fulfill the mentioned criterion, are discarded. For saccades
occurring as saccadic blinks, a threshold, ths, is additionally required to avoid confusing
them with non-saccadic (normal) blinks. In fact, the value of |A − C| in Figure 5.3 is
crucial. Based on a similar argument, microsleep events can be checked as well, because
eye closures should be followed by an eye opening during driving. It is obviously supposed
that none of the subjects falls thoroughly asleep until end of the experiment. Finally, all
detected eye movements, which are not assigned to adjacent movements, are considered
as false detections and are removed from the detected events’ data set. In order to find
ths, the histogram of the |A− C| amplitude of the blinks occurring both before and after
detected saccades are analyzed. The reason is that if a saccade is adjacent to a saccadic
blink, four different combinations of them may occur:

• up-going saccade, down-going saccadic blink
• down-going saccade, up-going saccadic blink
• down-going saccadic blink, up-going saccade
• up-going saccadic blink, down-going saccade.

These pairs are shown in the first four plots from the left of Figure 5.7. The ths is found
by applying the k-means algorithm (k = 2) to the histogram of |A−C| amplitude of these
blinks to distinguish between two clusters: saccadic versus non-saccadic blinks. After
finding the threshold, all blinks fulfilling |A−C| > ths are candidates to be considered as a
pair together with a detected saccade. Moreover, it is also possible that two saccadic blinks
are joined together as shown in the first two plots from the right of Figure 5.7. Finally,
only the saccades of pairs similar to those shown in Figure 5.7 are considered as correct
eye movement detection.
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Figure 5.7.: Possible combinations of two vertical saccades in V (n)

6. Horizontal saccade detection
Similar to the vertical saccades, horizontal saccades are detected by comparing |H ′(n)|
with a threshold as explained in Step 1. As blinks are not available in H(n), detected
patterns are either saccades or artifacts. Therefore, only the saccades, which pass the
mentioned plausibility check, are considered as horizontal saccades in the end.

Figure 5.8 summarizes the described algorithm for blink detection.
A clear drawback of the suggested algorithm is that slow blinks might not be detected correctly
based on this method. If both closing and opening phases of the blinks are very slow, then
the derivative-based method definitely misses the detection of both of them. If thvel in (5.2)
is selected to be very low for detecting these slower blinks, noise or a lot of non-relevant eye
movements will be detected wrongly as well and removing them would be very cumbersome.
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Figure 5.8.: Flow chart of the derivate-based method for blink detection

For blinks, which are fast in one phase and slow in the other phase, either the opening or the
closing phase is detectable based on our proposed algorithm, not both of them. We call such
events incomplete events. The problem is that according to step 5 of the explained detection
algorithm, incomplete events do not pass the plausibility check and are consequently discarded.
We observed that it is the closing phase which gets slower due to drowsiness in comparison to the
opening phase. A solution to detect incomplete events as well is to adapt the threshold applied
to V ′(n) in (5.2) for event detection. This approach was also applied in some cases in this study.
Therefore, as soon as an incomplete event is detected, the threshold in (5.2) is reduced in order
to find the missing pair of it, namely either opening or closing phase of it. However, for slow
velocity blinks in both closing and opening phases another approach is needed which is explained
in the next section.
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5.3. Eye movement detection using the wavelet transform-based
method

This section studies another method of eye movement detection which is based on the wavelet
transform (wt). The wavelet transform has been applied for detection of fast blinks and saccades
in brain computer interaction and activity recognition applications (Reddy et al., 2010; Bulling
et al., 2011; Barea et al., 2012). Obviously, relevant eye movements to such applications are
fully controlled and are different from spontaneous eye movements relevant to driver drowsiness.
Barea et al. (2012) only targeted the detection of saccadic eye movements without discussing
blink detection. In the studies by Reddy et al. (2010) and Bulling et al. (2011), only the
detection of fast blinks was addressed. Therefore, their proposed algorithms are inapplicable
to the detection of slow blinks due to drowsiness. Analysis of slower movements has been
investigated in Magosso et al. (2006) and Wei and Lu (2012). The former concentrated on very
slow eye movements which occur while the eyes are completely closed for a long time. Such eye
movements are interesting for sleep disorder-related research studies and are out of the scope of
driver drowsiness detection. The method suggested by Wei and Lu (2012), however, was used
for extracting a feature based on slow horizontal eye movements. It did not target the detection
of slow blinks in V (n).

Unfortunately, the introduced algorithms based on wavelet transform in previous studies are
not applicable to driver drowsiness detection, since they have only aimed to detect sharp blinks
similar to those occurring during the awake phase. In this section, however, after highlighting
the advantage of the wavelet transform over the Fourier transform, we will propose two new
algorithms. The first algorithm targets the detection of both slow and fast blinks by applying
continuous wavelet transform in Section 5.3.2. On the one hand, this algorithm can be considered
as a supplementary to the previous algorithm explained in Section 5.2 for additionally covering
the detection of slow blinks. On the other hand, it can also be applied independently to detect
all fast and slow blinks and saccades. Therefore, events are never incomplete, if this method is
applied. In fact, at the end of this section, all of the relevant eye movements for driver drowsiness
detection are investigated. The second algorithm is a preprocessing step which benefits from
the properties of the discrete wavelet transform. First, it will be shown in Section 5.3.3 how
this transform can be used to remove noise and drift in the eog signals. Then, the second new
algorithm adaptively removes noise in the collected data in order to avoid information loss. We
applied both noise and drift removal approaches based on wavelet transform to all eog signals
in this work before applying eye movement detection algorithms. This helped to improve the
performance of the event detection.

The background theories in this section are taken from Burrus et al. (1998), Niemann (2003),
Keller (2004), Mallat (2009), Poularikas (2009) and Soman et al. (2010).

5.3.1. Discrete Fourier transform

Fast and slow eye movements can be characterized based on their frequency components. There-
fore, frequency analysis of the eog signal is another approach for detecting different types of eye
movements.

A discrete time signal x(n) is analyzed in the frequency domain by applying the discrete Fourier
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transform (dft) F{.} to it, defined as

F
{
x(n)

}
≡ X (Ω) =

N−1∑
n=0

x(n) e−iΩn , (5.5)

where Ω = 2πk
N with k = 0, 1, 2, · · · , N − 1 and number of time samples N .

Since the dft does not provide time localization information, the short time Fourier transform
(stft) was introduced as the solution to this problem. Unlike the dft, which considers the
whole signal from the first to the last sample at once, in stft, the signal is first multiplied by a
window function, which is non-zero for a short time, and then the dft is calculated. Therefore,
the resulting dft only represents the frequency components of the windowed part of the original
signal and consequently provides the time localization information. As an example, a cosine
signal x(n) with the frequency of 8Hz (low frequency component) and one discontinuity from
n = 1.5 s to 1.502 s (high frequency component) is analyzed as shown in Figure 5.9 (top left plot).
The sampling frequency is 1000Hz. The stft was applied by choosing the Hamming window as
the window function by considering different window lengths Lwin, namely Lwin = 0.02 s, 0.2 s and
2 s. It is clear that depending on the Lwin value, stft provides different frequency component
information. The high frequency component of x(n) is apparent with the best time localization
for shorter Lwin, e.g. Lwin = 0.02 s (top right plot). In this case, the 8Hz frequency of the
cosine as the low frequency component expands up to 100Hz. By choosing a longer window,
e.g. Lwin = 2 s, however, the frequency resolution for cosine wave improves at a cost of less
time localization for the discontinuity (bottom right plot). For Lwin = 2 s, the high frequency
component is completely lost in the spectrogram.

All in all, although the stft is a good solution for adding time localization information to the
dft, its efficiency in terms of eye movement detection depends to a large extent on the chosen
window length. This fact is even highlighted, if non-periodic and stochastic signals like eog
signals are being analyzed.

5.3.2. Continuous wavelet transform

Another possibility for providing time localization information in the frequency domain is the
wavelet transform. Similar to dft, which is based on a trigonometric function, this transform
also uses special functions which are called wavelets. According to Young (1993), a small wave
ψ(t), which is oscillatory (zero average) and decays quickly, with the following characteristic

cψ =
+∞∫
−∞

|Ψ(Ω)|2
|Ω|

dΩ <∞ (5.6)

is called a wavelet, where Ψ(Ω) is the Fourier transform of ψ(t). (5.6) is an important condition
for the existence of the inverse wavelet transform (Niemann, 2003). ψ(t) is also referred to the
mother wavelet. Additionally, each mother wavelet has λ vanishing moments which fulfill the
following condition

+∞∫
−∞

tk ψ(t) dt = 0 , (5.7)
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Figure 5.9.: The impact of window length Lwin on the efficiency of the stft

where 0 ≤ k ≤ λ−1 and λ is a positive integer. Figure 5.10 shows examples of Haar, Daubechies,
Coiflets, Symlets, Mexican hat and Morelet mother wavelets. db2, coif2 and sym2 denote the
second vanishing moments of the corresponding mother wavelets. The Haar wavelet has only
one vanishing movement at λ = 0.

The wt can be performed either continuously or discretely. The continuous wavelet transform
(cwt) of x(t) is defined as

W
{
x(t)

}
≡ Xψ(a, b) =

+∞∫
−∞

x(t) 1√
a
ψ∗
( t− b

a

)
dt =

+∞∫
−∞

x(t)ψ∗a,b(t) dt , (5.8)

where ψa,b(t)1 is a set of scaled (a ∈ R > 0) and translated (b ∈ R) wavelets originating from
the mother wavelet ψ(t). a is referred to as scale and the factor 1√

a
normalizes the energy of

the scaled wavelets. Obviously, in cwt, continuous values of a and b can be selected. Thus,
by this transform, a time-scale (two dimensional) representation of the original signal x(t) is
possible, since the variation of a and b results in the multiplication of all scaled and translated
variants of ψ(t) with x(t) (see Figure 5.11). The resulting time-scale plane is called the scalogram.
In matlab, scalograms represent the absolute value of the calculated Xψ(a, b) and are scaled
between 0 and 240. This representation is used in this work as well.

1The asterisk ∗ denotes the complex conjugate.
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Figure 5.10.: Examples of typical mother wavelets

Figure 5.11.: Scaling and translation of the mother wavelet with varying a and b

A large value of a yields a stretched ψ(t) and underscores slow changes of x(t), namely low
frequency components. On the contrary, a small scale a results in a compressed ψ(t) which is
proper for highlighting rapid changes of x(t), namely high frequency components. The relation-
ship between scale a and frequency is shown in Figure 5.11.
Soman et al. (2010) relates the wt to the correlation analysis such that large transform values
represent a well match between parts of the signal under investigation and wavelets. In fact,
cwt measures the similarity between x(t) and the wavelet set. Poularikas (2009) defines the
wt as the decomposition of x(t) into sets of basic functions ψa,b(t).
In order to calculate the cwt numerically, (5.8) should be discretized. Therefore, discrete values
of a, b and t are needed. In addition, the integral is replaced by the summation. The upper and
lower limits of the integral are also substituted by the upper and lower limits of the domain of
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x(t) and selected ψ(t).
The scalogram of Figure 5.12 shows the cwt of the x(t) signal in Figure 5.9 for 1 ≤ a ≤ 256
with Haar as the mother wavelet (see Figure 5.10). On the contrary to the stft, here, both
frequency components are visible in the scalogram. Larger scales, e.g. a = 120, represent the
low frequency component of x(t) (8Hz), while the high frequency component (the discontinuity)
is shown by lower scales. Therefore, wt is a powerful method for analyzing signals such as eog
with different frequency components at different time samples.
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Figure 5.12.: Scalogram of the cwt for x(t) signal shown in Figure 5.9, top plot: 1 ≤ a ≤ 256, bottom
plot: 1 ≤ a ≤ 20

For the eog signals, the goal is to detect blinks in all phases of the drive and to distinguish
between saccades and blinks. To this end, Figure 5.13 shows the scalograms of the cwt with
Haar, Morlet, Daubechies and Coiflet mother wavelets for 20 s of the awake and drowsy phases
of the drive. The scalogram was calculated based on (5.8). The scale a has been varied from
1 to 50 (1 ≤ a ≤ 50). Comparison of the scalograms considering all mother wavelets indicates
that time localization quality of blinks are the same for all of the mother wavelets. Sharp blinks
of the awake phase are representative of abrupt changes which are highlighted in low scales. For
the drowsy phase, however, the blinks are more visible for larger values of a in comparison to
the awake phase due to their lower frequency and slow changes. This corresponds to the smaller
values of Xψ(a, b) (darker color of the scalogram) at lower scales in Figure 5.13. Overall, the
scalograms show that a > 15 does not provide accurate time localization information.
Figure 5.14 shows Xψ(a, b) of Figure 5.13 at a = 5, 10 and 15. It can be seen that for higher
scales, the amplitude of the cwt is higher at a cost of worse time localization for all mother
wavelets. In addition, detection of peaks in the cwt by the Haar wavelet seems to be easier
than other mother wavelets. This is due to the similarity between pattern of blinks and Haar
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Figure 5.13.: Scalograms of the cwt with different mother wavelets for V (n) signal of the awake phase
(left plots) and the drowsy phase (right plots) of the drive

wavelet. As an example, considering a = 10 for the Morlet wavelet (third row in Figure 5.14),
it is clearly difficult to identify the start and end of an eye blink. For the drowsy phase, as
mentioned before, a = 5 seems not to be a suitable scale due to the low amplitude of Xψ(a, b).
Overall, the detection of blinks can be performed by defining a threshold regarding Xψ(a, b) with
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specific values of a, because Xψ(a, b) does not suffer from the drift problem introduced in Section
2.1.2. In fact, similar to stft, due to varying characteristics of eye movements, for detection of
all events more than one scale is needed.
The results with the Haar wavelet are very similar to the negative of the derivative of the eog
signal V ′(n) (Mallat, 2009; Barea et al., 2012). Mallat (2009, Chapter 6.1.2) proved mathemati-
cally that applying the wt with a mother wavelet with λ vanishing moments can be interpreted
as the λ-th order derivative of the original signal. Hence, applying the Haar mother wavelet to
a signal in the wt yields the first derivation of that signal at low scales.
Figure 5.15 demonstrates −V ′(n) together with Xψ(a, b) with the Haar mother wavelet at a =
5, 10, 15, 30 and 100 for the same eog signals shown in Figure 5.13. Except for the fact that at low
scales Xψ(a, b) is much smoother than V ′(n), for the detection of fast blinks both signals provide
recognizable peaks at low scales. However, slower blinks, e.g. around t = 10 s in the right plots of
Figure 5.15 (shown with an arrow), are difficult to detect in Xψ(a, b) with a = 5, 10 and V ′(n),
because the amplitudes are not significantly high. Interestingly, the amplitude of Xψ(100, b)
is very large around t = 10 s which makes the wavelet transform at large scales suitable for
detection of slow eye movements. This fact is highlighted in Figure 5.16. In the top plot of
this figure, the first and the last 20 s represent fast (high frequency) and slow (low frequency)
blinks, respectively. The bottom plot shows Xψ(a, b) with a = 10, 30 and 100. At a = 10,
only fast blinks are recognizable in the Xψ(a, b) with accurate time localization information. At
a = 30, some of the slower eye movements are also evident, such as at t ≈ 28 s. However, in
Xψ(100, b), all of the slower movements can be detected due to their large amplitudes. In fact,
the bottom plot of Figure 5.16 clarifies that larger amplitudes at higher scales represent low
frequency components of the eog signals. Although at a = 100 high frequency movements are
also recognizable, extracting the exact location of these blinks is not as easy as at lower scales.

Our approach for detection of fast and slow eye movements by CWT

If only detection of fast eye movements based on the cwt signals is of interest, the event detection
algorithm explained in Section 5.2 can be applied to e.g. Xψ(10, b) due to the similarity between
the result of cwt and V ′(n) signals. For the detection of both fast and slow blinks, however,
the following algorithm has been applied.
Similar to (5.2) in the previous algorithm, Xψ(a, b) signal is compared with a threshold to detect
relevant peaks. We have empirically selected a = 10, 30 and 100 to cover the following. a = 10
and 100 are suitable for the detection of fast and slow blinks, respectively. We have used a = 30
to improve the time localization of slower blinks detected in Xψ(100, b) as explained in the next
steps.
Figures 5.15 and 5.16 show that the amplitude of the cwt signals have different ranges depending
on the value of a. Hence, different thresholds should be set for event detection at each scale.
The asterisks in Figure 5.17 show all detected peaks of Xψ(a, b) at each a by applying different
thresholds, separately.
According to the bottom plot of Figure 5.16, an event might be detected at several scales in
Xψ(a, b) signals depending on its velocity. First, we analyze the lowest scale, namely a = 10. For
each detected peak of Xψ(10, b), we consider a ±∆t time offset around its time index tpeak,10.
Empirically, we selected ∆t = 0.3 s. If other peaks at other scales, namely a = 30 and 100, are
also detected in the time interval [tpeak,10 −∆t, tpeak,10 + ∆t], they will be merged, since they
are referring to the same event which is already detected at a lower scale. Otherwise, that peak
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Figure 5.14.: cwt with different mother wavelets for V (n) signal of the awake phase (left plots) and the
drowsy phase (right plots) of the drive with a = 5, 10 and 15

will be analyzed further. The same procedure is applied to a peak which is detected only at
a = 30 and 100. Mathematically, we have
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Figure 5.15.: Comparison of Xψ(a, b) with the Haar wavelet at a = 5, 10, 15, 30 and 100 with the negative
of the derivative of the eog signal −V ′(n) for the awake and drowsy phases of the drive

• a = 10: if tpeak,a 6=10 ∈ [tpeak,10 −∆t, tpeak,10 + ∆t], then merge tpeak,10 and tpeak,a 6=10.
Otherwise, accept tpeak,a 6=10 as a new peak.

• a = 30: if tpeak,a 6=30 ∈ [tpeak,30 −∆t, tpeak,30 + ∆t], then merge tpeak,30 and tpeak,a 6=30.
Otherwise, accept tpeak,a 6=30 as a new peak.

• a = 100: if tpeak,a 6=100 ∈ [tpeak,100−∆t, tpeak,100 +∆t], then merge tpeak,100 and tpeak,a 6=100.
Otherwise, accept tpeak,a 6=100 as a new peak.

It should be mentioned that positive and negative peaks are considered separately. Therefore,
only peaks with the same sign are compared with each other. The circles in Figure 5.17 show the
accepted peaks at each specific scale a, while their counterparts at other scales were discarded
due to merging. For example, the first blink was detected in Xψ(10, b) by a maximum and
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Figure 5.16.: Comparison of cwt at a = 10, 30 and 100 for the detection of fast (the first 20 s) and slow
(the last 20 s) blinks
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Figure 5.17.: Detected and accepted peaks at different scales of Xψ(a, b) signals

a minimum peak. Thus, the corresponding peaks detected in Xψ(30, b) and Xψ(100, b) were
ignored. At t ≈ 27 s, however, only in Xψ(100, b) a negative peak was detected. This figure also
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shows that during the first 20 s, a lot of peaks in Xψ(100, b) have fulfilled our condition, although
no blink in eog signal can be related to them. These peaks refer to the time interval between
blinks which are all non-relevant. The events related to these peaks can be then discarded by
considering some constraints on the amplitude and duration of a detected event.
Figure 5.18 summarizes the proposed blink detection algorithm.
For all accepted peaks at a = 10, the start, middle and end points of a blink can be either
extracted from Xψ(10, b) or from V ′(n) based on sign changes as explained before. For all other
peaks, we only use Xψ(30, b) for improving time localization information. In fact, Xψ(100, b) is
only used for roughly finding the occurrence of a potential slow blink.
In general, the efficiency of the cwt method in event detection applications highly depends
on the selection of a suitable scale value. We saw that depending on the value of a, an event
might be missed thoroughly. Kadambe et al. (1999) found the suitable value of a for detection
of events of the ecg signals by comparing the number and the location of detected peaks in
different scales. If similar number of peaks at similar locations were detected at two successive
scales, then increasing the scale values is suggested to be of no benefit. Otherwise, the scale
should be increased. This method, however, is not suitable for our application, since different
events are not necessarily recognizable at a specific scale. Therefore, similar to our algorithm
in Figure 5.18, we suggest the usage of three scales for the full coverage of all fast and slow
blinks. The first scale, should be low enough (5 ≤ afast ≤ 10) to pronounce fast blinks. On the
contrary, the second scale needs to be large to highlight slow movements (aslow ≈ 10 afast). In
order to improve the time localization information of detected blinks by aslow, a middle-valued
a (2 afast ≤ atime-loc ≤ aslow/2) is needed as well.
The next step will be the extraction of start and end of detected events from the corresponding
wavelet signal. We showed that Haar wavelet processing of the eog signal is similar to the high
pass filtering and consequently its results are very similar to the time derivative of the eog
signal. Thus, the detection algorithm explained in Section 5.2 can now be applied to the result
of the wavelet-transformed eog signal as well for extracting start and end points of a detected
event.

5.3.3. Discrete wavelet transform

Discrete wavelet transform (dwt) can be introduced based on two independent approaches. The
first approach defines it as the discretization of a and b in the cwt which is performed based on
the dyadic grid as follows

a = 2−j , b = k τ0 2−j , (5.9)

where j, k ∈ Z and kτ0 is the dilation step. Consequently, ψa,b(t) changes to

ψj,k(t) = 1√
2−j

ψ
( t− k τ0 2−j

2−j
)

= 2j/2 ψ
(
2j t− k τ0

)
. (5.10)

For simplicity, we consider τ0 = 1 here. Clearly, for j = k = 0, we have ψ0,0(t) = ψ(t).
In addition to the mentioned approach, which introduces dwt as the counterpart of the cwt, the
second approach, however, defines the dwt independently based on the Haar scaling functions
and wavelet functions and the idea of nested spaces. In the following, this approach is studied.
It will be shown how dwt can be applied to eog signals during preprocessing step to perform
noise and drift removal.
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Haar scaling function

The Haar scaling function φ(t) is defined as

φ(t) =
{

1 0 ≤ t ≤ 1
0 otherwise. (5.11)

It is clear that the product of φ(t−m) and φ(t− n) for m 6= n and m,n ∈ Z is equal to zero for
all values of t. This expresses the orthonormality for the set of time-shifts of φ(t), namely

+∞∫
−∞

φ(t−m)φ(t− n) dt = 0 for m 6= n and m,n ∈ Z (5.12)

+∞∫
−∞

φ(t−m)φ(t−m) dt = 1 . (5.13)

For j = 0, the mentioned set spans the space V0 as

V0 ≡ Span
k
{φ(t− k)} = Span

k
{φ0,k} , (5.14)

where k ∈ Z and Span{.} denotes the closed space1. In addition to the previous space, for j = 1,
the space V1 can be defined which contains φ(t− k) scaled by 2, namely

V1 ≡ Span
k
{
√

2φ(2t− k)} = Span
k
{φ1,k}. (5.15)

The factor
√

2 is a normalization constant which keeps the energy of signals in both spaces
similar.

φ(t− k) in V0 can easily be represented by the shrunk φ(2t− k) in V1 leading to V0 ⊂ V1, e.g.

φ(t) = φ(2t) + φ(2t− 1) (5.16)
φ(t− 1) = φ(2t− 2) + φ(2t− 3) . (5.17)

Similarly, for the j-th scale, the space is defined as

Vj ≡ Span
k
{2j/2 φ(2jt− k)} = Span

k
{φj,k} (5.18)

which leads to
· · ·V−1 ⊂ V0 ⊂ V1 ⊂ · · · ⊂ V∞ . (5.19)

This is depicted in Figure 5.19(a). Vj−1 ⊂ Vj implies that in comparison to Vj , a part is missing
in Vj−1. This missing part can be explained in terms of the Haar wavelet function.

In general, V0 ⊂ V1 leads to the following expression of φ(t)

φ(t) =
∑
n

h(n)
√

2φ(2t− n), (5.20)

1The space containing the set of functions expressed by the linear combination of φ(t − k) is called the span
of the basis set φ(t− k). If the space comprises the limits of the expansions as well, then it is a closed space.
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(b) Scaling and wavelet function spaces

Figure 5.19.: Schematic of spaces spanned by scaling and wavelet functions

where n ∈ Z and h(n) denotes the normalized coefficients. Accordingly, in example (5.16), we
have h(0) = h(1) = 1√

2 such that φ(t) = 1√
2

√
2φ(2t) + 1√

2

√
2φ(2t− 1).

Haar wavelet function

The Haar wavelet function ψ(t) is defined as

ψ(t) =


1 0 ≤ t ≤ 1

2
−1 1

2 ≤ t ≤ 1
0 otherwise.

(5.21)

Obviously, the set of translates of ψ(t), namely ψ(t− k), k ∈ Z also contains orthonormal pairs.

Similar to V0 and V1,W0 andW1 can be defined which are spanned by ψ(t− k) and ψ(2t− k),
i.e.

W0 ≡ Span
k
{ψ(t− k)} (5.22)

W1 ≡ Span
k
{
√

2ψ(2t− k)}. (5.23)

However, due to the characteristics of ψ(t), we haveW0 6⊂W1 which means that the translates of
ψ(t) cannot be represented by translates of ψ(2t) despite the fact thatW0 ⊥W1. Generalization
of this point to other spaces formed by the j-th scale of ψ(t) leads to

· · ·W−1 ⊥W0 ⊥W1 ⊥W2 · · · . (5.24)

Previously, it was mentioned that since V0 ⊂ V1, only the members of V0 can be represented
by the members of V1. Now, however, by adding members of W0 to V0, it is also possible to
represent functions φ(2t−k) of V1 by members ofW0 and V0, e.g. φ(2t) = φ(t)+ψ(t)

2 . In fact,W0
is the missing part in V0 which makes V0 to be a subset of V1. Mathematically, it is expressed as
V1 = V0 ⊕W0 with V0 ⊥W0. ⊕ denotes the direct sum of the vector spaces. Similarly, for V2
we have V2 = V1 ⊕W1. This is shown schematically in Figure 5.19(b). Finally, generalization
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of this truth for the j-th scale expresses Vj as

Vj = Vj−1 ⊕Wj−1 (5.25)
= Vj−2 ⊕Wj−2 ⊕Wj−1

...
Vj = V0 ⊕W0 ⊕ · · · ⊕Wj−2 ⊕Wj−1

(5.19) and (5.25) make the multi-resolution analysis by the dwt possible.

Since W0 is also a subset of V1, namely W0 ⊂ V1, ψ(t) can also be represented by functions of
V1 such as ψ(t) = 1√

2

√
2φ(2t)− 1√

2

√
2φ(2t− 1). Consequently, similar to (5.20), ψ(t) can also

be expressed as
ψ(t) =

∑
n

g(n)
√

2φ(2t− n), (5.26)

where n ∈ Z and g(n) refers to the normalized coefficients. By scaling and translating φ(t) and
ψ(t) in (5.20) and (5.26) by t→ 2jt− k, we have

φ(2jt− k) =
∑
n

h(n)
√

2φ(2j+1t− 2k − n) (5.27)

ψ(2jt− k) =
∑
n

g(n)
√

2φ(2j+1t− 2k − n). (5.28)

By replacing m = 2k + n, we have

φ(2jt− k) =
∑
m

h(m− 2k)
√

2φ(2j+1t−m) (5.29)

ψ(2jt− k) =
∑
m

g(m− 2k)
√

2φ(2j+1t−m). (5.30)

According to (5.18) and (5.20), a signal x(t) of space Vj+1, namely x(t) ∈ Vj+1, is defined as

x(t) =
∑
k

cj+1(k) 2
j+1

2 φ(2j+1t− k), (5.31)

where cj+1(k) denotes the approximation coefficient. In fact, in (5.31), x(t) is being approximated
by a set of scaling functions. Based on (5.25), which implies Vj+1 = Vj ⊕Wj , x(t) can also be
expressed by the functions φ(t) and ψ(t) of the lower scale j as follows

x(t) =
∑
k

cj(k) 2
j
2 φ(2jt− k) +

∑
k

dj(k) 2
j
2 ψ(2jt− k), (5.32)

where dj(k) refers to the detail coefficient.

In order to calculate cj(k), the projection of x(t) on 2
j
2 φ(2jt− k) is calculated, namely

cj(k) =
∫
x(t) 2j/2 φ(2jt− k)dt . (5.33)
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By replacing (5.29) in the previous equation we have

cj(k) =
∑
m

h(m− 2k)
∫
x(t) 2(j+1)/2 φ(2j+1t−m) dt. (5.34)

By comparing (5.34) with (5.33), cj(k) and similarly dj(k) are defined as

cj(k) =
∑
m

h(m− 2k) cj+1(m) (5.35)

dj(k) =
∑
m

g(m− 2k) dj+1(m). (5.36)

(5.35) and (5.36) are very similar to the definition of discrete convolution and the concept of
digital filtering which is defined as

y(n) =
∑
k

u(n− k)x(k). (5.37)

Consequently, according to Addison (2010), h and g in the previous equations perform the
low pass and high pass filtering, respectively. Accordingly, cj(k) and dj(k) are referred to as
coefficients of low pass and high pass filters applied to x(t) in the framework of a digital filter
bank. The factor 2 in h(m− 2k) and g(m− 2k) leads to down sampling of the signal x(t).

x(t) can, in addition to the representations in (5.31) and (5.32), also be represented in lower
scales with regard to (5.25). Therefore, for an upper scale j = J to the lowest scale j = 0 we
have

x(t) =
∑
k

cJ(k)φJ,k(t) (5.38)

=
∑
k

cJ−1(k)φJ−1,k(t) +
∑
k

dJ−1(k)ψJ−1,k(t)

=
∑
k

cJ−2(k)φJ−2,k(t) +
∑
k

J−1∑
j=J−2

dj(k)ψj,k(t)

...

=
∑
k

c0(k)φ0,k(t) +
∑
k

J−1∑
j=0

dj(k)ψj,k(t) .

Figure 5.20 pictorially shows the J-stage decomposition of (5.38). The box containing the
downward arrow and 2 represents the down sampling of h and g in (5.35) and (5.36).

…

…

Figure 5.20.: J-stage decomposition tree
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Figures 5.21 and 5.22 show the three-stage decomposition of the eog signal with Daubechies
(db41) wavelet (see Appendix E) for the awake and drowsy phase, respectively. Both figures
show that by increasing the number of decomposition stages j (e.g. j = 3 instead of j = 2),
information loss in the approximation coefficient c0 increases which is definitely helpful for noise
reduction purpose. It can be seen that in the case of j = 3, the information loss in c0 is larger
than that of c1

2. Therefore, depending on the application, one of the c2, c1 and c0 coefficients
in Figure 5.22 are a desired denoised version of the original eog signal. Noise removal by dwt
will be explained in this section.
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Figure 5.21.: Three-stage decomposition of the eog signal during the awake phase by db4 wavelet

Reconstruction

As explained in the previous parts, the dwt decomposes the signal into approximation and detail
coefficients at a coarse resolution. Similar to other transforms, this transform can be performed
inversely to reconstruct the original signal. This is explained by considering (5.31) and (5.32) at

14th vanishing moment
2c1 in the case of j = 3 corresponds to c0 in the case of j = 2.
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Figure 5.22.: Three-stage decomposition of the eog signal during the drowsy phase by db4 wavelet

scales j + 1 and j. By replacing (5.27) and (5.28) in (5.31) and (5.32) we have

x(t) =
∑
k

cj+1(k) 2
j+1

2 φ(2j+1t− k)

=
∑
k

cj(k) 2
j
2 φ(2jt− k) +

∑
k

dj(k) 2
j
2 ψ(2jt− k)

=
∑
k

cj(k)
∑
n

h(n) 2
j+1

2 φ(2j+1t− 2k − n) +
∑
k

dj(k)
∑
n

g(n) 2
j+1

2 φ(2j+1t− 2k − n).

(5.39)

We multiply both sides of the above equation by 2
j+1

2 φ(2j+1t −m) and integrate them which
leads to (5.33) for j + 1, namely cj+1(k) on the left side. The right side equation vanishes due
to orthogonality of φ(.) at all values except for m = 2k + n (or n = m− 2k) leading to

cj+1(m) =
∑
k

cj(k)h(m− 2k) +
∑
k

dj(k) g(m− 2k). (5.40)
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The above equation differs from the convolution equation of (5.37) in the 2k factor. In fact, for
each value of k, only the odd or the even indexed h(m) and g(m) are used. This corresponds
to up-sampling of c and d by e.g. adding zero values between existing values and then applying
h(m) and g(m) filters. This step can be repeated again for calculating the coefficients of the next
stage as visualized in Figure 5.23. Therefore, if all coefficients are used without any changes,
the signal under investigation is perfectly reconstructed. However, by removing some or parts of
the coefficients c and d, which correspond to e.g. drift or noise in the signal, the reconstructed
signal differs from the original one. Thus, this is a very advantageous property for noise or drift
removal.

…

…
…

Figure 5.23.: J-stage reconstruction tree

Our approach for adaptive noise removal

As mentioned in previous parts, the multi-resolution analysis by wavelets makes the decomposi-
tion of signals possible. Therefore, by decomposing a noisy signal, the noise component can be
extracted to a large extent. An example of denoising was shown in Figure 5.22. In this figure,
the detail coefficients (especially d2), unlike the approximation coefficients, seem not to contain
relevant information and consequently can be considered as noise. By defining thresholds the
contribution of all decomposed coefficients in the reconstruction chain can be controlled. Clearly,
the goal is to remove noise and to keep the useful parts of the signals, e.g. eye blink peaks, as
good as possible.

As Figures 5.21 and 5.22 show, depending on the noise level, the d1 coefficient might also
be involved in the noise reduction process. Figures 5.24 and 5.25 show examples of the eog
signals denoised by removing only d2 (Figures 5.24(a) and 5.25(a)) and by removing both d1
and d2 (Figures 5.24(b) and 5.25(b)) in the reconstruction step, respectively. In both figures,
Ṽ1(n) and Ṽ2(n) represent the denoised versions of V (n). The denoising threshold of Ṽ1(n) was
set such that the coefficient d2 was completely removed during the reconstruction, while other
coefficients contributed to the reconstruction step thoroughly. Accordingly, the maximum value
of d2 in Figures 5.21 and 5.22 has been considered as the corresponding threshold, i.e.

thdenoising,d2 = max
(
d2(n)

)
. (5.41)

Hence, all values of d2, which were smaller than thdenoising,d2 , were discarded during the recon-
struction step. On the contrary to Ṽ1(n), Ṽ2(n) was calculated by removing both d2 and d1,
i.e.

thdenoising,d2 = max
(
d2(n)

)
(5.42)

thdenoising,d1 = max
(
d1(n)

)
. (5.43)
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The residuals are also plotted (third row in Figures 5.24 and 5.25) and are defined as the difference
between the original and denoised signals, namely

ε1(n) = V (n)− Ṽ1(n) (5.44)
ε2(n) = V (n)− Ṽ2(n). (5.45)

The psd of the residuals, namely E1(f) and E2(f), are also shown in the last rows of Figures 5.24
and 5.25. In the last plot of Figure 5.24(a), the highest power of ε1(n) is concentrated above
15Hz, while in the last plot of Figure 5.24(b), frequencies between 5 to 10Hz show dominant
power. In the time domain, this is evident in larger values of ε2(n) at the blink locations which
corresponds to a larger information loss of blink peaks in Ṽ2(n) in comparison to Ṽ1(n) (compare
ε1(n) and ε2(n) in Figure 5.24). As a result, removing coefficient d1 seems not to be necessary
for this part of the eog signal. However, the comparison of E1(f) and E2(f) in Figures 5.25(a)
and 5.25(b) indicates that the information loss between 5 to 10Hz is still smaller than the noise
removed at higher frequencies. Correspondingly, the amplitude of ε2(n) is in the same range as
that of ε1(n). Therefore, removing coefficient d1 seems not to be critical in this case.
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Figure 5.24.: Example 1: denoising of the eog signal by removing different coefficients during the recon-
struction

In fact, these two examples show that an adaptive noise removal procedure is needed due to the
different levels of noise in different parts of the eog signal. Otherwise, an inflexible reconstruction
strategy causes the following problems:

• by removing both d1 and d2, the information loss of less noisy parts of the eog signal is
inevitable (Figure 5.24(b)).

• by removing only d2, noisy parts of the eog signals are sacrificed to save blink peak
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Figure 5.25.: Example 2: denoising of the eog signal by removing different coefficients during the recon-
struction

information of less noisy parts (Figure 5.25(a)).

Thus, in this work, the following compromise was made. The average value of E2(f) in two
frequency bands, namely 5 Hz ≤ f ≤ 10 Hz as the low frequency components and f ≥ 15 Hz
as the high frequency components have been compared with each other and the following rules
have been applied

if E2(5 Hz ≤ f ≤ 10 Hz) ≥ E2(f ≥ 15 Hz)× 1.1, remove d2 (5.46)
if E2(5 Hz ≤ f ≤ 10 Hz) < E2(f ≥ 15 Hz)× 1.1, remove d2 and d1 (5.47)

where E2(f) denotes the average of E2(f). According to these rules, in Figure 5.24, only the co-
efficient d2 is removed in the reconstruction step, while in Figure 5.25 both d1 and d2 coefficients
are removed.

Figure 5.26 shows the scatter plot of ε1(n) and ε2(n) plotted in Figure 5.25. Although different
coefficients were removed during the reconstruction step, the values of the residuals are very
similar to each other. This underscore the strength of the proposed denoising procedure, i.e. the
blink peaks have not been influenced very differently by removing different coefficients.

The introduced denoising procedure has been applied to all collected eog signals in this work in
the framework of preprocessing before applying the proposed eye movement detection methods.
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Figure 5.26.: Scatter plot: ε1(n) versus ε2(n) shown in Figure 5.25

Our approach for drift removal

Similar to the noise removal, multi-resolution analysis makes drift removal possible. Here, the
question is which components should be taken into consideration in the reconstruction step in
order to only remove the drift. Tinati and Mozaffary (2006) suggested a drift removal method for
the ecg signals by calculating the energy of the wavelet decomposition coefficients at different
levels and comparing it with a threshold. If the calculated energy is higher than a pre-defined
threshold, then the current decomposition level is suitable and the signal can be reconstructed.
Otherwise, the number of decomposition stages should be increased.

Based on our observations of the eog signals, drift is a low frequency component, which is
usually represented below 0.3Hz. Therefore, 6 or 7 decomposition stages should be enough
for reconstructing the drift signal. Figure 5.27 shows two examples of V (n) signals in awake
(top plot) and drowsy (bottom plot) phases. The drift removal in this figure is based on the
same approach used for denoising. The only difference is the coefficients which are used for the
reconstruction. For 6- and 7-stage decompositions, we only used the approximation coefficients
c5 and c6 for reconstruction, respectively, and ignored all other coefficients. The resulting signals
of reconstruction are drift signals which are shown in green (6-stage) and magenta (7-stage) in
Figure 5.27. By subtracting the drift signal from the V (n) signal, the drift is removed and the
result is called V̌ (n).

In the top plot of Figure 5.27, which refers to the awake phase, it seems that the number of
decomposition stages has not deteriorated V (n). The form of blinks in both V̌ (n) signals is
similar to V (n). However, in the bottom plot, which refers to the drowsy phase, the closed
phase of the microsleep event located between t ≈ 5 s and t ≈ 8 s (shown with an arrow) suffers
from a new unwanted deformation after the 6-stage decomposition. This phenomenon also
occurred in other similar events and is a representative example. Therefore, we have used the
7-stage decomposition for the rest of this work and considered only c6 in the reconstruction for
extracting the drift. Similar to the noise removal, drift removal was also applied to all collected
eog signals in this work in the framework of preprocessing before applying the proposed eye
movement detection methods.
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Figure 5.27.: Two examples of drift removal with the wavelet decomposition and reconstruction for awake
(top) and drowsy (bottom) phases of V (n)

5.4. Comparison of event detection methods

In this section, the introduced event detection methods are evaluated by comparing them with
a reference. To this end, we have labeled eye movement events in our offline eog signals based
on the synchronously recorded video data from the subjects’ face. By comparing the detected
events with the labeled ones, events are then assigned to these three categories: true positive
(tp), false positive (fp) and false negative (fn) according to Table 5.1. Clearly, true negative
(tn) cannot be assessed in this application.

Table 5.1.: confusion matrix: events of video labeling versus those of the proposed detection methods
detection

event detected not detected

video labeling
labeled True Positive (tp) False Negative (fn)

not labeled False Positive (fp) True Negative (tn)

After counting all detected and missed events, the corresponding metrics for the evaluation of
detection methods are calculated. The metrics used in this work are recall (rc) and precision
(pc) which are defined as follows

RC = TP
TP + FN

× 100 (5.48)

PC = TP
TP + FP

× 100 . (5.49)

rc describes the proportion of correctly detected events among true ones (TP + FN), while pc
represents the proportion of correctly identified events among all detected ones (TP + FP).
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5.4.1. Median filter-based versus derivative-based method

First, we compare the performance of the event detection by the median filter-based method
introduced in Section 5.1 with that of the proposed derivative-based method in Section 5.2. As
mentioned before, both methods are only suitable for detection of fast eye movements. Therefore,
only the detection of these eye movements, i.e. fast blinks and vertical saccades, are compared
with each other. Figure 5.28 shows the rc and pc values for seven subjects.
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Figure 5.28.: rc and pc of vertical saccade and blink detections for the derivative-based algorithm and
the median filter-based method during the awake and drowsy phases

As the goal is the detection of saccades and blinks not only during the awake phase, but also dur-
ing the drowsy phase of the drive, the rc and pc during these phases were calculated separately
with regard to the collected kss values. This helps to highlight the efficiency of the detection
methods, when different forms of events are present in the data. For each phase, 10min of the
collected eog is evaluated1. To this end, we defined the awake phase by kss ≤ 5 (Figures 5.28(a)
and 5.28(c)) and the drowsy phase by kss ≥ 8 (Figures 5.28(b) and 5.28(d)). These definitions
with the gap of 2 kss steps, namely kss = 6 and 7, emphasize the difference between events of
the two phases under investigation.
The calculated rates show that during the awake phase (Figures 5.28(a) and 5.28(c)), both the
proposed algorithm and the median filter-based method detected all true blinks correctly (all
rcs = 100% in Figure 5.28(a)). However, for all subjects, the median filter-based method always

1Only 10min of the collected eog was labeled.
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had a smaller pc (see Figure 5.28(c)). The reason is that most of the saccades combined with
head rotation were wrongly considered as blinks, especially for subject S21. During the drowsy
phase (Figures 5.28(b) and 5.28(d)), for subjects S18 and S24, the blink detection using the
proposed algorithm outperformed the median filter-based method by about 20%. For saccade
detection, the proposed algorithm achieved pc > 95% and rc > 80% for all subjects during the
awake phase. For subject S16 all existing saccades were detected correctly. Moreover, lower pc
values for saccade detection in Figure 5.28(d) in comparison to Figure 5.28(c) imply that the
saccade detection during the drowsy phase is more difficult, since small amplitude blinks due to
drowsiness might be mistaken for saccades.
It should be mentioned that not only the detection of events but also the quality of the extracted
features out of the detected events plays a key role in assessing drowsiness. The blink amplitude
as defined in (5.3) and the duration as the time difference between points C and A in Figure 5.3
were extracted from all detected blinks using the median filter-based method and the proposed
algorithm. The moving average of these features over 15-min windows is shown in Figure 5.29
for subjects S15, S16 and S18 as representative examples. In addition, the numbers of blinks per
minute are shown in the last row. The background colors refer to the self-rated drowsiness level
by the subjects as awake (kss ≤ 5), medium (6 ≤ kss ≤ 7) and drowsy (kss ≥ 8). In most of
the plots, the ranges of the calculated features are different with respect to the applied detection
methods.
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Figure 5.29.: Average duration (first row), amplitude (second row) and number of blinks (third row) versus
self-estimated drowsiness level for subjects S15, S16 and S18 based on the derivative-based
algorithm and the median filter-based method

For subject S15, the amplitudes of detected blinks by both methods are very similar. Neverthe-
less, the evolution of blink duration runs counter to the evolution of drowsiness using the median
filter-based method for about one hour. This means that during this time, based on the blink
detection results using the median filter-based method, blink duration is negatively correlated
with drowsiness, while the proposed algorithm shows positive correlation. The reason is that
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although the median filter-based method has detected some of the blinks during the drowsy
phase, the start and end points of them were not extracted correctly as also shown in Figure
5.2. Moreover, for about 30min, a large number of blinks was not detected (see left plot of last
row in Figure 5.29). The differences in the evolution of blink amplitude, duration and number
plotted for S15 are similar to the subjects S15, S19, S20, S21 and S24. For S16, however, it is
the number of detected blinks which is similar for both methods. This is also shown in Figure
5.28 where rc and pc were very close to each other. Nevertheless, the increasing behavior of
blink duration is very weak using the median filter-based method in comparison to that of the
proposed algorithm. The features of subjects S22 and S23 also have the same differences as
subject S16. For subject S18, despite an equal number of detected blinks during some parts of
the drive using both methods, the extracted amplitudes and durations of these parts also deviate
from one another. Such deviation is also the case for subjects S19 and S25.

According to Figure 5.29, the average number of blinks has increased for subjects S15 and S16,
while for subject S18, it has decreased. One explanation is that, the average duration of the
blinks for subject S18 increased to a larger extent in the course of time in comparison to other
subjects. Therefore, in comparison to other subjects, the eyes of subject S18 were closed for a
longer time during the experiment which leads to a smaller number of blinks.

All in all, according to Figure 5.29, the correlation between self-estimated drowsiness level and
extracted features of eye movements based on the proposed algorithm seems to be strong enough
to assess drowsiness, especially since similar results were also achieved in previous studies (Dong
et al., 2011) (decreased blink amplitude and increased blink duration in the course of time).
Extracting other features and applying complex classification methods are the next steps toward
drowsiness detection based on eye movements which will be studied in Chapters 7 and 8.

Due to unsatisfactory results of the median filter-based method for both blinks and saccade
detection and their corresponding features, it will not be analyzed further in this work. In
addition, as mentioned before, the median filter-based method is unable to detect slow blinks.

5.4.2. Derivative-based method versus wavelet transform-based method

This section compares the rc and pc of the blinks detected by the derivative-based method
(Section 5.2) and continuous wavelet transform method (Section 5.3.2) for the 10 subjects under
study. We expect that for the awake phase, both algorithms perform similarly. On the contrary,
depending on the number of slow blinks during the drowsy phase, the wavelet transform method
is expected to outperform the derivative-based method.

Figure 5.30 shows the calculated rc and pc values for 10 subjects regarding both methods.
Subject S3 had no awake phase according to his kss values. These results are based on 20min
of labeled eog data per subject, i.e. 10min for each phase. First, for each subject, based on
the kss values, the awake and drowsy segments of the drive were defined. Afterwards, for each
phase, 10 1-min segments were randomly chosen for labeling and further evaluation. On average,
for the awake phase 263 and for the drowsy phase 453 blinks were labeled per subject.

As expected, during the awake phase, both methods are very similar in detection of fast blinks
(all rcs > 95%) and the differences are negligible. Interestingly, the good results of the wavelet
transform method are obtained at a cost of lower pc values which are the result of confusing
saccades combined with head rotation with blinks. For the drowsy phase, however, for most
of the subjects the wavelet method has detected more blinks, especially for subject S2. This
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Figure 5.30.: rc and pc of blink detection for the derivate based algorithm and the wavelet transform
method during the awake and drowsy phases

subject showed lots of slow blinks during the drowsy phase. The pc values of this phase are also
smaller after applying the wavelet transform method.

It should be mentioned that according to our observations during the experiments, slow blinks
might not occur for all subjects to the same extent during drowsiness. For some of our subjects,
almost no slow blinks occurred during the experiment, although the subjects experienced lots
of microsleeps. For these subjects, only the duration of the closed phase increased as shown in
Figure 3.4(b). The velocity of the opening and closing phases varied to a smaller extent. For
some other subjects, however, as shown in Figure 3.4(c), it was the velocity of the opening and
closing phases which varied severely due to drowsiness in comparison to the duration of the
closed phase. Therefore, depending on the characteristics of the blinks during the drowsy phase,
different detection approaches should be applied.

Conclusions

All in all, we conclude that if the application is limited to the detection of sharp blinks, where
saccades are considered noisy eye movements to be ignored, the median filter-based method is
an appropriate detection method to be applied to the eog or similar signals. As soon as the
vertical saccades should be recognized and distinguished from blinks, we suggest the usage of the
derivative-based approach. In addition, the derivative signal method is more robust against the
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duration of the event to be detected in comparison to the median filter-based method. Therefore,
for the detection of blinks, whose duration varies in the course of time, the median filter-based
method with a fixed window length is not suitable.

Further, it was shown to be possible to detect vertical saccades and blinks simultaneously in
vertical eog signals based on the derivative signal. In addition, a 3-means clustering algorithm is
recommended to distinguish between saccades and blinks in those applications where the data of
both awake and drowsy phases are available. This helps to prevent confusing a driver’s decreased
amplitude blinks with saccades or other eye movements. Moreover, blinks with long eye closure
and microsleep events, whose patterns deviate from those during the awake phase, were detected
and distinguished from saccades based on the statistical distribution of the amplitude. This
method is a reliable approach as long as the velocity of eye lid movements is larger than the
velocity of non-relevant phases of the eog signal.

We saw that slow blinks are also another issue, if the derivative signal is used for their detection.
In order to detect all fast and slow blinks simultaneously, we suggest the continuous wavelet
transform method. This method covers the detection of all types of blinks by selecting appro-
priate scaling values a. However, by applying the wavelet transform approach, smaller values
of the pc in both awake and drowsy phases are expected in comparison to the derivative-based
detection method as shown in Figures 5.30(c) and 5.30(d).

Online versus offline eye movement detection methods

Another aspect for comparing each of the studied methods with each other is whether they
can be implemented online to be evaluated directly during the experiment. This is the case for
the median filter-based method, which was implemented by simulink to be applied online. The
derivative-based method, however, has lots of parameters, which should be adjusted individually
based on the entire available data. The question is, how many events are needed for finding a
suitable threshold, e.g. for distinguishing between blinks and saccades (see Figure 5.4). To an-
swer this equation, we implemented the derivative-based detection algorithm online and updated
the mentioned threshold for each subject after detecting 20 new events. In other words, after
detecting 20 new events, the threshold was recalculated with respect to all available detected
events up to that instant of the time. Figure 5.31 shows two representative results of the found
online thresholds th2-means for subjects S36 and S39.

These two subjects were awake during the whole drive and did not suffer from lack of vigilance.
This information is based on the collected kss data and the offline video analysis of the drives.
The area of ±15µV tolerance around the true threshold, namely offline calculated th2-means,
is also shown in dashed lines. For subject S36, the first values of the found online thresholds
are not reliable, because they fluctuate to a large extent due to lack of available events in the
clusters, i.e. vertical saccades versus blinks. After detecting 160 events, the online calculated
th2-means is very close to the true offline th2-means. On the contrary, for subject S39, the online
th2-means does not fluctuate at the beginning, but starts with a large value and converges to the
offline th2-means after roughly 2000 events.

It will be explained in Section 7.2 that the number of blinks for humans is between 15 and 20
blinks per minute. If we consider 5 vertical saccades per minute as well on average, in total 25
events should be available for detection per minute. As a result, the found values of 160 and
2000 events correspond to about 6 and 80min of eog data or drive time, respectively.
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Figure 5.31.: Setting the threshold for distinguishing between blinks and vertical saccades in an online
implementation of the detection method

The detection algorithm based on the continuous wavelet transform method is indeed more
time-consuming for the online application, because several coefficients have to be calculated in
addition to the peak detection procedure. Therefore, among these methods, the derivative-based
eye movement detection method seems to detect events more precisely with regard to the time
needed by the algorithm in its online implementation.

Final applied algorithms for preprocessing of EOG signals and
eye movement detection

In previous sections, we studied three eye movement detection methods and discussed the
strengths and weaknesses of them in detail. In addition, due to the decomposition and re-
construction properties of dwt, two preprocessing steps for eog data were investigated. As
mentioned before, prior to applying any of the detection methods, first, we preprocessed all col-
lected eog data by applying noise and drift removal algorithms to them. These steps improve
the event detection procedure.
For the detection of fast eye movements, we applied the derivative-based algorithm explained in
Section 5.2. In order to overcome the shortcoming of the derivative-based algorithm in detection
of slow blinks, we combined the wavelet transform method with the detection algorithm based
on the derivative signal to improve the dr values. The reason is the smaller values of the pc
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in both awake and drowsy phases for the wavelet transform approach in comparison to the
derivative-based detection method. The combination has been performed such that only slow
blink events, which were detected in Xψ(30, b) and Xψ(100, b) were added to the detected events
based on the derivative signal. All events detected by Xψ(10, b) were considered to be fast eye
movements which were already detected using the derivative signal. In other words, a fast blink,
which was only detected using the wavelet transform, was discarded.



6. Blink behavior in distracted and
undistracted driving

Among different physiological symptoms for assessing driver drowsiness or inattention, drivers
eye movements, in particular blinks, are more associated with drowsiness (Hargutt, 2003; Schle-
icher et al., 2008; Dong et al., 2011). As an example, previous studies introduced increased blink
frequency as a measure related to drowsiness over time (Stern et al., 1994; Summala et al., 1999;
Sirevaag and Stern, 2000; Hargutt, 2003).
Can all blinks during driving be interpreted as drowsiness-related patterns? Or is the occurrence
of some blinks situation-dependent? Do all blinks during driving reflect the alertness of the driver
to the same extent? This chapter aims to answer these questions which describe the situation
dependency of the blink occurrence. If the occurrence of some blinks is situation-dependent,
then such blinks might (locally) affect the amount of correlation between the extracted blink
features and driver’s state of vigilance in warning systems. Therefore, they should be taken
out of consideration or handled differently for assessing driver drowsiness. Phases of visual or
cognitive distractions during data entering into the navigation system or during a mobile phone
conversation are examples of situation dependency of the blink occurrence. In this context,
Liang and Lee (2010) reported increased blink frequency in a driving simulator during cognitive
and combined cognitive and visual distraction.
In order to investigate the aforementioned questions, first, it is necessary to know which type
of blinks is relevant for drowsiness detection. As mentioned in Section 3.3, blinking occurs
either voluntarily or involuntarily, i.e. spontaneously and reflexively. Among all blinks, we
have mentioned that spontaneous blinks are the relevant blinks to be explored for drowsiness
detection.
In this chapter, we study the blink behavior of subjects who participated in the experiment
described in Section 4.2.2. These subjects performed the primary driving task and the visuomotor
or auditory secondary tasks. This means that they were instructed to experience fixed-position
gaze shifts, namely gaze shifts between pre-defined fixed positions. These gaze shifts were the
result of the visuomotor secondary task which represents visual distraction.
Evinger et al. (1994, page 342) stated based on Beideman and Stern (1977):

Gaze-evoked blinks rarely occur when making a saccade to a rear view mirror before
shifting lanes, but often accompany the saccade back to straight ahead position.

Inspired by this fact, it is also studied whether the occurrence of gaze shift-induced blinks is
direction-dependent.
Apart from the mentioned points, during undistracted driving, blinks mainly occur sponta-
neously or due to gaze shifts, e.g. during a look in the rear-view mirror. Moreover, we know
that the driver needs to scan the scene and the road ahead frequently to perform the driving
task properly. This raises a question: which gaze shifts (with respect to their amplitude) are
more probably accompanied by a blink during driving (without performing a secondary task)?
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This question will be investigated by following the experiment described in Section 4.3, in which
eye movements of drivers were collected by the eog in a driving simulator. In this experiment,
we specifically study the relationship between the amount of gaze shift and the blink occurrence.
The results of this chapter are taken from Ebrahim et al. (2013c). All blinks and saccades were
detected based on the algorithm described in Section 5.2 out of the eog signals.

6.1. Time-on-task analysis of the saccade rate during the
visuomotor task

In this section, it is studied whether the saccade rate (number of saccades per minute) during
the visuomotor secondary task changed over time, i.e. the four blocks of the experiment. For
investigation of the variable time-on-task, first, the number of all detected saccades out of the
H(n) signal during the visuomotor secondary task was calculated. As mentioned in Section
4.2.2, this task was repeated four times by each subject and each time for 3min. The saccade
rate was calculated during each block for each subject separately. Figure 6.1(a) shows the mean
and the standard deviation of the calculated values for each block over all subjects.
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Figure 6.1.: Saccade rate for the variable time-on-task (four blocks) for all subjects

By applying the analysis of variance (one-way repeated measures anova), explained in Appendix
D.5, it is examined whether the saccade rate has changed significantly over time. It should be
mentioned that all assumptions of the anova are fulfilled. They are as follows: independency1
and normality of observations (see Appendix D.2) and the homogeneity of their variances, i.e.
sphericity (see Appendix D.6). The corresponding H0 hypothesis states that the means of
different groups of measurements (blocks) are equal. Since the calculated p-value is 0.30 at
the confidence level of 95% (α = 0.05) with F3,75 = 1.24, the H0 hypothesis is not rejected
(0.30 > 0.05). Consequently, we cannot show the dependency of the numbers of gaze shifts
during the visuomotor task upon the variable time-on-task considering all subjects and all blocks.

6.2. Time-on-task analysis of the blink rate

Similar to the previous step, here we explore whether the blink rate (number of blinks per
minute) changed over time (four blocks) during the primary and secondary tasks separately.

1We suppose that the occurrence of an eye movement, e.g. a saccade, at a time instant is independent of the
occurrence of another saccade at a different instant.
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The calculated values by applying the anova for repeated measures are F3,75 = 1.05 with p-
value = 0.37 for the visuomotor task, F3,57 = 0.27 with p-value = 0.85 for the driving task and
F3,75 = 1.08 with p-value = 0.36 for the auditory task. According to the p-values, which are
all larger than α = 0.05, we cannot show that the difference between the means of blink rates
during four blocks are significant.

6.3. Saccades time-locked to blinks during the visuomotor task

This section studies the number of saccades time-locked to blinks, i.e. saccades occurring simul-
taneously with blinks (see Figure 3.5(c)), during the visuomotor task. A saccade was considered
as time-locked to a blink, if it overlapped a blink within at least 80% of its duration. Therefore,
all horizontal saccades and all blinks during the visuomotor task were first detected in H(n) and
V (n) signals, respectively. Then, the number of saccades accompanied by blinks (in percent)
was calculated as shown in Figure 6.2 for each subject and each block separately. On average
over all blocks, for 14 subjects (2, 4, 6, 7, 8, 10, 12, 13, 14, 16, 21, 22, 23, and 25) over 80%
of all saccades due to the visuomotor task were time-locked to blinks. For 9 subjects (1, 3, 5,
9, 15, 19, 20, 24 and 26) gaze shift-induced blinks accompanied from 50% to 75% of saccades.
Interestingly, the calculated percentage was less than 50% for only 3 subjects (11, 17 and 18).
All in all, for most of the subjects gaze shift induced the blink occurrence which is in agreement
with the statement of Records (1979).
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Figure 6.2.: Percentage of saccades time-locked to blinks for all subjects and all blocks during the visuo-
motor task

6.4. Direction-dependency of blinks time-locked to saccades

As mentioned at the beginning of this chapter, inspired by Evinger et al. (1994), Figure 6.3
shows whether the occurrence of gaze shift-induced blinks depended on the direction of the
saccade. On this account, we considered only saccades either towards the road or towards the
screen displaying the Landolt rings during the visuomotor task, i.e. saccades occurring between
fixed positions. The bars of this figure represent the number of saccades time-locked to blinks
(in percent) with respect to their direction. The results of all blocks were combined, because
the saccade rate was shown to be independent of the variable time-on-task. With the exception
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of subject S19, for all subjects the number of saccades time-locked to blinks was larger while
moving focus towards the road (average = 88%±16.7). However, for the other direction, namely
towards the screen, we found different behaviors (average = 61%± 31.1).
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Figure 6.3.: Percentage of saccades time-locked to blinks with respect to saccade direction averaged over
all blocks during the visuomotor task

In order to categorize the behaviors, the values of bars of Figure 6.3 are plotted versus each
other in Figure 6.4 (dark bars as the x-axis, light bars as the y-axis).
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Figure 6.4.: Scatter plot: number of saccades accompanied by blinks with respect to their direction during
the visuomotor task for all subjects. Ellipses show two clusters.

The red line in this plot refers to the y = x line and is plotted for a better understanding.
In fact, this line shows to what extent the number of saccades time-locked to blinks towards
the road deviated from that of the equivalent saccades towards the screen. The ellipses show
distinguishable clusters A and B. Cluster A contains 14 subjects, for whom, at least 65% of
saccades induced the occurrence of blinks in both directions. On average, 95%± 3.5 of saccades
towards the road and 85% ± 9.0 of saccades towards the screen were accompanied by blinks
for these subjects. Consequently, for this cluster, the occurrence of gaze shift-induced blinks
was less direction dependent. On the other hand, for the subjects of cluster B, the direction of
saccades seems to affect the occurrence of blinks to a greater extent. For this cluster, on average,
93% ± 3.4 of saccades towards the road were accompanied by a blink, while only 27% ± 15.4



6.5 Blink rate analysis during the secondary and primary tasks 95

of saccades towards the screen induced the occurrence of blinks. Therefore, in one direction
(towards the road), the blink occurrence was more dominant. For subjects S15, S17 and S18,
similar to cluster B, the saccades towards the road have induced more blinks than those towards
the screen. However, the number of induced blinks for these subjects was less in comparison to
that of the cluster B.

6.5. Blink rate analysis during the secondary and primary tasks

Here, it is studied whether performing secondary tasks affected the blink rate in comparison to
the driving task. In order to analyze this, for all subjects, all detected blinks during each of these
tasks were considered, independent of the fact of whether they were gaze shift-induced or not.
Left plots of Figures 6.5(a) and 6.5(b) show the scatter plots of blink rates for driving versus
visuomotor and auditory tasks with the correlation values of ρp = 0.32 (p-value < 0.001) and
ρp = 0.78 (p-value < 0.001), respectively. ρp denotes the Pearson correlation coefficient which
will be explained in Section 7.5. The closer the value of ρp to 1/0, the smaller/larger is the impact
of the corresponding secondary task on the blink rate. According to the calculated ρp values
and the scatter plots, it can be concluded that performing the visuomotor task affected the blink
behavior to a larger extent in comparison to the auditory task (0.32 < 0.78). Moreover, based
on the statistical test explained in Appendix D.4, the correlation between blink rate during the
auditory task and that of the driving task is significantly different from the correlation between
blink rate during the visuomotor task and that of the driving task.

Similar scatter plots for the subjects of clusters A and B are also shown in Figure 6.5, compar-
ing the blink rates during both the visuomotor (middle and right plots in Figure 6.5(a)) and
auditory tasks (middle and right plots in Figure 6.5(b)) versus the driving task. According to
the correlation values, it seems that for cluster B with direction-dependent gaze shift-induced
blinks, the blink rate was less affected during the visuomotor task in comparison to cluster A,
because the ρp values are larger than those of the cluster A.

Table 6.1 shows the results of applying anova for repeated measures to investigate the significant
differences of the blink rate between tasks. In fact the difference between blink rate during driving
task and each secondary task is studied. Overall, the mean of blink rate for visuomotor task is
significantly different from that of the driving task (p-value = 0.012 < α = 0.05). This is also
the case for the auditory versus driving task (p-value = 0.011 < α). Thus, the results state that
performing a secondary task (either visuomotor or auditory) affected the blink rate. According
to the values related to cluster B with direction-dependent gaze shift-induced blinks, we cannot
show that the blink rate changed significantly during the secondary tasks (p-value = 0.831 > α
and p-value = 0.800 > α). However, for cluster A, it is the opposite which means performing
both secondary tasks led to a significant variation of the blink rate in comparison to that of the
primary drive task.

Table 6.1.: Values of anova to assess the significant difference between means of blink rates for all tasks
visuomotor vs. drive auditory vs. drive
test statistic p-value test statistic p-value

all subjects, all blocks F1,25 = 7.26 0.012 F1,25 = 7.48 0.011
subjects of cluster A F1,13 = 14.35 0.002 F1,13 = 5.66 0.033
subjects of cluster B F1,7 = 0.05 0.831 F1,7 = 0.07 0.800
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Figure 6.5.: Scatter plots of blink rate for visuomotor vs. driving and auditory vs. driving task. Pearson
correlation coefficient (ρp) and the corresponding p-values are provided as well.

6.6. Impact of the visuomotor task on the blink behavior

In this section, it is studied how the blink behavior was affected during performing the visuomotor
task. Figure 6.6 shows what percentage of blinks during the visuomotor task was gaze shift-
induced on average over all blocks. In other words, after detecting all blinks in V (n) signal, only
those blinks time-locked to saccades of the H(n) signal were considered. On average, 91%±8.7 of
blinks occurred simultaneously with a gaze shift. Consequently, during the visuomotor task the
occurrence of spontaneous blinks was highly modulated by the gaze shift frequency. That means
the subjects either did not blink or blinked simultaneously during the gaze shifts. To put it
another way, the frequency of the gaze shifts during the visual distraction completely modulated
the occurrence of blinks. This fact is shown in the left scatter plot of Figure 6.7 where the blink
rate is plotted versus the saccade rate during the visuomotor task for all subjects. Middle and
right plots of this figure show the same values for clusters A and B, respectively. It can be seen
that the subjects of cluster A blinked as often as having gaze shifts. On the contrary, subjects
of cluster B experienced a larger number of gaze shifts in comparison to the blinks.

Figures 6.8 and 6.9 show two representative examples of the eog signals during the visuomotor
and driving task. In Figure 6.8(a) (subject S8), during the visuomotor task, not only the blink
frequency was completely modulated by the saccade frequency, but also the visual task led to the



6.7 Amount of gaze shift vs. the occurrence of gaze shift-induced blinks 97

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

20

40

60

80

100

Subjects

in
d
u
ce
d
b
li
n
k
[%

]
P
er
ce
n
ta
g
e
o
f
g
a
ze
-s
h
if
t

Figure 6.6.: Percentage of blinks time-locked to saccades for all subjects averaged over all blocks during
the visuomotor task
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Figure 6.7.: Scatter plot: blink rate versus saccade rate during the visuomotor task

increase in the number of blinks in comparison to the driving task (Figure 6.8(b)). This subject
belongs to the cluster A with direction-independent gaze shift-induced blinks. On the contrary,
for subject S1 from cluster B with direction-dependent gaze shift-induced blinks, the number
of blinks during the visuomotor task was decreased in comparison to that of the driving task
(Figures 6.9(a) and 6.9(b)). Overall, it is clear that during the visuomotor task, blink frequency
depended thoroughly on the saccade frequency.

6.7. Amount of gaze shift vs. the occurrence of gaze
shift-induced blinks

This section explores whether the occurrence of gaze shift-induced blinks was correlated with the
amount of the gaze shift. During the experiment in the driving simulator described in Section 4.3,
the subjects experienced gaze shifts between various positions without any instruction. In order
to show whether the occurrence of gaze shift-induced blinks was independent of the fact that
the subjects were instructed to have gaze shift (as in the previous experiment) and whether this
is positively/negatively correlated with the amount of gaze shift, all horizontal saccades during
the drive were studied. This analysis is performed for the first 12 subjects of the corresponding
experiment.

A single saccade, e.g. gaze shift of some degrees to the right, measured by eog occurs with
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Figure 6.8.: eog signals during the visuomotor and driving task for subject S8
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Figure 6.9.: eog signals during the visuomotor and driving task for subject S1

different ampem amplitudes in (5.4) from person to person. This measured value depends on
the skin type, its cleanliness, etc. Therefore, it is possible that gaze shifts and saccadic eye
movements of equal size are not detected for all subjects, because detected saccades with similar
amplitudes do not necessarily refer to the equal amount of gaze shift. To overcome this, only
horizontal saccades were considered whose amplitudes were equal or larger than that of a look at
the speedometer1. In fact, all glances at the speedometer out of the V (n) signal were extracted
as the minimum detectable gaze shift for each subject. Then one standard deviation of the mean

1The amount of gaze shifts during moving focus to the speedometer depends also on the body size. Such gaze
shifts are larger for a tall person with a large upper body part in comparison to a shorter person. Nevertheless,
we suppose that the difference between body sizes is negligible among our subjects.
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of them was used as the threshold for detecting saccades of the H(n) signal. Thus, the threshold
for the horizontal saccade detection was chosen individually based on the vertical saccades of
V (n), i.e. the amplitude of the glance at the speedometer. Figure 6.10 summarizes the explained
algorithm.

H(n)

V(n)  

Detecting glances at 

the speedometer             

(pure vertical saccade) 

(controlled by video)

Extracting 

saccadic 

amplitude

Calculating 

mean(ampem,v) – std(ampem,v)

Extracting 

potential 

horizontal 

saccades
yes

save as a horizontal saccade

no
discardampem,h ≥ th

ampem,v

th

Extracting 

saccadic 

amplitude

ampem,h

Figure 6.10.: Algorithm for determining the threshold of horizontal saccade detection

Figure 6.11 shows the histogram of the absolute amplitude of all horizontal saccades fulfilling
the criterion shown in Figure 6.10 for one of the subjects. It can be seen that small-amplitude
saccades (e.g. ampem < 200µV) occurred more often than the large-amplitude ones which refer
to the gaze shifts during the glances at the side or rear-view mirror (e.g. ampem > 300µV).
First, we need a threshold to distinguish between small and large-amplitude saccades. To this
end, the k-means clustering algorithm (k = 2) (see Appendix C) was applied to divide the
saccadic amplitude into two categories: small versus large-amplitude clusters. The threshold
dividing the clusters is shown in Figure 6.11 in solid line. For most of the subjects, the number
of saccades belonging to the small-amplitude cluster (Ns) was larger than that of the other cluster
(Nl) which makes the further analysis and the comparison of clusters difficult. Therefore, as the
second step, the numbers of occurrences of small and large-amplitude saccades were needed to
be balanced. Consequently, out of Ns numbers of saccades of small-amplitude cluster, Nl of them
were selected randomly. For subjects with Ns < Nl, the selection procedure was performed the
other way around (see Figure 6.12). Afterwards, the occurrence of gaze shift-induced blinks with
respect to the saccadic amplitude was studied. The selection of Nl out of Ns events (or vice versa)
was repeated at least 100 times for each subject separately to ensure the independency of the
result on the chosen saccades out of the small/large-amplitude cluster. Dark histograms of Figure
6.13 show the amplitude of the horizontal saccades of both clusters for the 100th iteration. The
solid line also indicates the border between the clusters. After balancing the number of events
in each cluster, it has been calculated how many of the saccades were accompanied by blinks.
The histograms of the amplitude of these saccades are shown in light color in Figure 6.13.
The scatter plot in Figure 6.14 quantifies the result of the histograms of Figure 6.13. The numbers
of small-amplitude saccades accompanied by blinks (x-axis) are plotted versus the same values
for large-amplitude saccades (y-axis) in percent averaged over 100 repetitions of selecting Ns
out of Nl (or vice versa). For all 12 subjects, the values are on the left side of the y = x line.
This implies that independent of the fact of whether the subjects were instructed to carry out a
visuomotor secondary task in addition to the driving task, they automatically blinked more often
during large-amplitude saccades in comparison to the small-amplitude ones. In other words, for
gaze shifts with larger amounts, the probability of a simultaneous blink occurrence was higher.
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To quantify whether the categorical data: “saccade amplitude: small/large” and “occurrence of
gaze shift-induced blink: yes/no” were independent or not, the contingency table (cross tabula-
tion) is studied. Table 6.2 shows the result for subject S1. By applying the Pearson’s chi-square
test (see Appendix D.8), it can be shown whether the observed categorical data were related
significantly to each other. Therefore, the H0 hypothesis is formulated as “there was no relation-
ship between two mentioned categories”. By considering the confidence level of 95% (α = 0.05),
for all subjects (except for subject S11), the p-values were always smaller than 0.001 which leads
to the rejection of the H0 hypothesis. Therefore, the amplitude of the gaze shift was responsible
for inducing a blink, so that the larger the amount of the gaze shift, the more probable was the
blink occurrence.

Summary

In this chapter, we discussed the occurrence of gaze shift-induced versus spontaneous blinks
in real road and simulated driving. It was shown that during a visuomotor secondary task
performed in a real road scenario comparable with the navigation system’s demand, gaze shifts
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Figure 6.14.: Scatter plot: number of saccades in percent time-locked to the blinks with respect to their
amplitude, i.e. small and large

induced the occurrence of blinks. This was also unrelated to the variable time-on-task. For 14
subjects out 26, the fact was independent of the gaze shift direction. On the other hand, for 8
subjects, the occurrence of blinks was more probable during the gaze shifts towards the road.
All in all, it seems that gaze shifts towards the road generally induce the occurrence of blinks to
a larger extent.

Comparing the blink rate during the secondary tasks and the driving task, it was shown that the
differences between the means were statically significant stating that performing a secondary task
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Table 6.2.: Contingency table: saccade amplitude versus occurrence of gaze shift-induced blinks, for sub-
ject S1, first selection procedure

amplitude of saccades
events small large total

occurrence of gaze shift-
induced blink

yes 151 321 472
no 228 58 286

total 379 379

(either visuomotor or auditory) affects the blink rate. Moreover, it was shown that the frequency
of the gaze shifts during the visual distraction modulated the occurrence of blinks. On the other
hand, results of the experiment in a driving simulator led to a positive correlation between the
amount of gaze shifts and the occurrence of blinks in the case of no secondary task. This means
that the larger the amount of the gaze shift, the higher is the probability of blink occurrence.
Consequently, this study suggests those who solely consider blink rate as a drowsiness indicator
to handle gaze shift-induced blinks differently to spontaneous ones, particularly if the driver is
visually or cognitively distracted.
As mentioned in Sections 4.2 and 4.3, except for the experiment, which was studied in this
chapter, all other experiences were designed such that no secondary tasks were allowed to be
performed during the driving task. Therefore, the number of gaze-shift induced blinks was much
smaller in comparison to the dominant number of the non-gaze shift induced blinks. However,
in real life, similar scenarios to our experiment with visuomotor secondary task occur very often,
e.g. while entering data into the navigation system. Therefore, the wrong interpretation of the
changed blink frequency due to gaze shifts should be avoided by the drowsiness warning system.
A possible solution for tackling this issue is to conditionally activate and deactivate the warning
system. If the driver starts operating the center console elements, as an example, the warning
system deactivates. Therefore, all induced blinks occurring due to gaze shifts between the center
console and the road ahead are disregarded. As soon as, the center console is not being operated,
the warning system reactivates and considers the detected blinks.



7. Extraction and evaluation of the eye
movement features

In chapter 5, we explained how to detect relevant eye movements to driver drowsiness, i.e. eye
blinks and saccades, out of the eog signals. Based on the detected events, in Chapter 6, we
investigated the relationship between the occurrence of the mentioned events. In this chapter,
first, two approaches for aggregating attributes and features of the detected events are introduced
and discussed. Our first aggregation approach is carried out with respect to collected kss values.
However, the second approach benefits from quick changes of drowsiness level in the course of
time. Since features based on physiological measures are highly individual and vary from one
subject to the next, we propose two baselining methods to deal with this issue. Afterwards,
it is explained which features might be of interest for describing the driver’s state of vigilance.
Some of the features have not been defined consistently in previous studies. In this work, by
considering all definitions, 19 well-defined features are introduced and extracted for each detected
event. To this account, this work is one of the most comprehensive studies on eye blink features
for in-vehicle applications and under real driving conditions. For well-known features, a detailed
literature review is provided and our findings regarding feature’s evolution due to drowsiness are
compared with those of other studies. In addition, it is shown whether the extracted features
change significantly shortly before the occurrence of the first safety-critical event in comparison
to the beginning of the drive. To this end, the lane-keeping based and eye movement-based
drowsiness detection methods are challenged. Afterwards, based on the correlation analysis, the
linear and non-linear relationship between each feature and driver drowsiness is studied. Since
the quality of driver observation cameras in detecting eye blinks will not be as high as that of the
eog, in the last section of this chapter, we investigates possible peak amplitude loss of features
for the case that camera replaces eog.

7.1. Preprocessing of eye movement features

Before introducing relevant features, here, we discuss feature aggregation approaches in order to
reduce the number of samples of the feature space which is the space containing all extracted
features. The reason is that drowsiness is a phenomenon which evolves over time. Therefore,
it is unlikely to observe distinguishable characteristic differences between, e.g., two successive
eye blinks. Consequently, for each feature a statistical measure, such as mean over a specific
time interval, is calculated. This approach was also used in several studies as listed in Table 7.1.
According to the table, the time interval for aggregating features varies from 1 s (Picot et al.,
2010) to 6min (Knipling and Wierwille, 1994) and the most frequently used statistical measure
is the mean. In this work, we only used the mean as it seems to be more informative regarding
the kss values. Analysis of other statistical measures is provided in Appendix F.1.
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Table 7.1.: Literature review of feature aggregation and the calculated statistic measure
Author aggregation window statistical measure

Knipling and Wierwille (1994) 6min mean
Morris and Miller (1996) task duration mean
Dinges and Grace (1998) 1min –
Caffier et al. (2003) – mean
Johns (2003) 1 to 6min –
Svensson (2004) 20 s for eeg –
Åkerstedt et al. (2005) 5min mean, standard deviation
Bergasa et al. (2006) 30 s mean
Ingre et al. (2006) 5min mean, standard deviation
Johns et al. (2007) 1min mean, standard deviation
Papadelis et al. (2007) 1min mean
Damousis and Tzovaras (2008) 20 s mean, sum, maximum
Schleicher et al. (2008) 5min mean, standard deviation, median
Hu and Zheng (2009) 20 s mean
Friedrichs and Yang (2010a) 0.5Hz mean, median, ewma, ewvar
Rosario et al. (2010) 20 s –
Picot et al. (2010) 1 s mean
Sommer and Golz (2010) 3min mean, standard deviation
Wei and Lu (2012) 8 s mean, maximum, minimum

7.1.1. KSS input-based feature aggregation

One of the methods applied for aggregating features is based on the kss inputs. As mentioned
in Section 2.2, the time interval around each kss input is expected to be to the largest extent
correlated with the true driver’s state of vigilance. Therefore, as the first aggregation method,
we calculated the mean value of each feature over the last 5min before a kss input, i.e. the
time interval of [tkss − 5 min, tkss]. tkss denotes the time instant at which the kss value was
collected. This is shown pictorially in Figure 7.1 for the 15-min time interval kss data collection.

Dies ist die Überschrift. Nur eine Zeile.

5

Figure 7.1.: kss input-based feature aggregation method

Clearly, an advantage of this method is that only parts of the drive, for which the self-rating
information is available, are analyzed further. However, a problem arises simultaneously by
applying this approach which is ignoring valuable and expensive data outside the mentioned
time interval, i.e. the intervals between kss inputs. In fact, the resulting number of available
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feature samples here depends on the number of times the kss data is collected. We mentioned
that kss data cannot be collected very frequently for the sake of monotonicity of the driving
condition. As a result, for each hour of driving, only a small number of kss values will be
available, namely only 4 values by collecting kss in 15-min intervals. Hence, this method is not
suitable, if small numbers of kss values are available. Overall, this method might lead to a set of
features which are not very informative due to lack of observation samples. Another drawback
of this method is its reliance on the collected kss values.
Schmidt et al. (2011) also used 5min before a kss input for evaluating the short-term effect of
verbal assessment of driver vigilance which is in agreement with our approach.
In this work, in total 391 kss values were recorded and correspondingly 391 5-min windows were
available for extracting features. Figure 7.2(a) shows the distribution of the relative frequency
for each kss value in percent, i.e. the number of occurrences for each kss value with respect to
the total number of available kss values. The numbers on the top of the bars denote the number
of counts.
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Figure 7.2.: Relative frequency of kss values for two feature aggregation methods

7.1.2. Drive time-based feature aggregation

Another approach for aggregating features is considering a 1-min interval independent of the kss
inputs similar to Dinges and Grace (1998), Johns et al. (2007) and Papadelis et al. (2007). This
method has several advantages. First of all, all parts of the drive are analyzed, without discarding
any data. Moreover, on the contrary to the previous approach, for one hour of driving, 60 feature
values are extracted. Consequently, by analysis of a larger amount of data, the resulting set of
features is more informative.
In this work, the average 1-min intervals with no overlap was considered beginning from the first
minute of driving and excluding noisy parts of the eog data. Figure 7.3 pictorially shows this
feature aggregation approach.
Non-overlapping windows make the extracted feature less statistically dependent in time1. Two
major drawbacks of this method are the underlying assumptions about the kss values. First,
similar to the previous approach, this method also strongly relies on the preciseness of the
subjective measure. Secondly, in order to have a corresponding kss value for each feature
extraction interval, we have assumed that a kss value remains unchanged between two successive

1In Chapter 6, we supposed that the occurrence of an eye movement, e.g. a blink, is independent of that of
the other blink in time. Other features of adjacent blinks, however, might be correlated with each other.
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Dies ist die Überschrift. Nur eine Zeile.

Figure 7.3.: Drive time-based feature aggregation method

kss inputs (see Figure 7.3). On this account, a preceding kss value was used up to the next
input. In other words, we have assigned a specific self-rating value to those parts of the drive
for which the subject did not rate his level of vigilance.
Comparison of Figures 7.3 and 7.1 reveals that each of the introduced approaches assigns a
different kss value to the time interval of [tkss − 5 min, tkss]. The first approach uses the
following kss value, while the second approach holds the preceding value up to the time instant
of the collection of a new kss value, namely tkss.
Similar to Figure 7.2(a), Figure 7.2(b) shows the relative frequency of kss values given the drive
time-based feature aggregation method. In total, 4021 samples are available for each extracted
feature which is equal to 4021min of driving (about 70h).

7.1.3. Feature baselining

Since biological measures like blink characteristics are highly individual and vary from one
subject to the next (Dong et al., 2011), a baselining method is applied to suppress irrelevant
characteristics for further analysis. Assuming that all subjects were awake at the beginning of
the drive, which is not always the case in real life though, the average over the first tbaseline min
of each feature (e.g. tbaseline = 5 or 10min) is used as the normalization factor for the rest of
that drive, namely

normalization factor = mean
(

feature
(
[t = 0, · · · , t = tbaseline]

))
. (7.1)

Therefore, for each sample xi of a feature we have

xi,baselined = {xi |xi ∈ feature}
normalization factor . (7.2)

In addition to (7.2), the standard score defined as

xi,z-score = {xi |xi ∈ feature} − µ
σ

(7.3)

can be explored as well, where µ and σ refer to the mean and standard deviation of the corre-
sponding feature calculated over the entire samples. Simon (2013) suggested considering µawake
and σawake which are calculated with respect to the awake phase of the drive, e.g. the first 20min
of the drive.
Among these methods, we obtained the highest correlation values between each of the baselined
features and kss values for the first approach with tbaseline = 10 min. Figures 7.4(a) and 7.4(b)
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show one of the extracted blink features (MOV will be defined in next section) versus kss values
before and after baselining, respectively. Obviously, the growing trend of this feature from kss
1 to 3 in Figure 7.4(a) is the result of individual differences in the values of this feature and is
consequently drowsiness-irrelevant. After baselining, the misleading trend is filtered out. Hence,
this preprocessing step of the extracted features has a crucial contribution towards improved
results for drowsiness detection, especially in the next step which is classification.
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Figure 7.4.: MOV feature before and after baselining

7.2. Eye blink features

This section introduces the extracted features in this work and discusses their association with
the driver drowsiness based on the kss values. Additionally, for each feature a comprehensive
literature review is provided to give insight into the features and to compare the findings of this
study with those of the previous studies. Some of these features were called similarly in previous
studies despite their different definitions. Here, we take all definitions into consideration for the
sake of completeness.
Table 7.2 lists 19 features extracted in this study for detected events shown in Figure 7.5. In
the following, these features are defined and it is explained how to calculate them. All plots
refer to drive time-based features.

• A: Blink amplitude is defined as the minimum of the rise amplitude A1 and the fall
amplitude A2, i.e. A = min(A1, A2), where

A1 = V (middle)− V (start) (7.4)
A2 = |V (end)− V (middle)|. (7.5)

Start, middle and end points of a blink are shown in Figure 7.5. This feature was also
defined earlier in Chapter 5 in (5.3) for event detection. There, it was clarified why the
minimum value of A1 and A2 was used.
The study by Morris and Miller (1996) on sleep-deprived pilots showed a significant drop
in blink amplitude along with increase of pilot errors. They related this phenomenon
to “a lower starting position of the eyelid” which leads to a reduced distance between
eyelids to be traveled. This feature was also acknowledged as the best single predictor
of the performance error in their study. Jammes et al. (2008), on the contrary, reported
increased amplitude of very long blinks based on visual inspection. Svensson (2004), who
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Table 7.2.: Extracted blink features
No. Feature Description
1 A Amplitude
2 E Energy
3 MCV Maximum closing velocity
4 MOV Maximum opening velocity
5 A/MCV Ratio between A and MCV
6 A/MOV Ratio between A and MOV
7 ACV Average closing velocity
8 AOV Average opening velocity
9 F Frequency
10 T Duration
11 Tc Closing duration
12 To Opening duration
13 Tcl,1 Closed duration (first definition)
14 Tcl,2 Closed duration (second definition)
15 Tro Delay of reopening
16 perclos Ratio between T and Tcl,2

17, 18 ,19 Tx Duration from x% of the rise amplitude to
x% of the fall amplitude (x = 50, 80, 90)

studied the relationship between A and the blink velocity, assumed that this feature evolves
linearly over drowsiness. The results showed the drop of this features due to drowsiness.

Figures F.2 and F.3 show the boxplots of normalized A, namely A
max(A) , versus kss values

for all subjects, except for the subject S2. For this subject all features are shown together
in Figure F.40. Moreover, Figure 7.6 shows all baselined drive time-based features and
their overall trend versus kss values regarding all subjects. According to these figures,
in our experiments, A has decreased for most of the subjects, as kss has increased (e.g.
subjects S1, S5, S13, S18 and S21). Nevertheless, for some subjects such as S4, S6 and S10,
an increasing trend of A is observable. This means that drowsiness led to blinks with larger
amplitude for these subjects as also reported by Jammes et al. (2008). The reason might be
that the subjects tried to keep themselves awake and to fight against drowsiness by opening
their eyelids to a larger degree. This results in larger blink amplitudes. Interestingly,
subjects with neither an increasing nor a decreasing trend in the evolution of A (S29, S41,
S40 and S43) have rated themselves mostly awake which is highly plausible.

• E: Energy of a blink is defined as

E =
end∑

n=start

(
V (n)− V (start)

)2
. (7.6)

Clearly, the energy of a blink strongly depends on the recorded V (n) values. Therefore,
the energy of two blinks with completely similar forms might differ depending on the drift
existing in the V (n) signal. In Chapter 5, approaches were introduced to remove the drift
of the eog signals. Despite applying the drift removal step to all eog signals before event
detection, subtracting the amplitude of the start value, namely V (start), from all other
values counteract the negative effect of the drift in the calculation of E.
This feature was also used by Friedrichs and Yang (2010a). Picot et al. (2010) calculated E
only for the closing phase. In addition to the mentioned definition of E, another approach
is to calculate energy within different frequency bands of the eog similar to the analysis
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Figure 7.5.: V (n) and its derivative V ′(n) representing eye blinks in awake and drowsy phases with the
corresponding features
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Figure 7.6.: Boxplot of normalized drive time-based features combined for all subjects versus kss values
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of eeg. This was suggested by Wei and Lu (2012) who asserted that the ratio between
energy of low and high frequency bands of eog is more important for assessing the driver
vigilance than analyzing each frequency band separately. The reason is that unlike the
high frequency eyelid movements, the low frequency movements occur more often during
the drowsy phases.

Figures F.4 and F.5 show the relationship between this feature and kss values. Similar to
A, the overall trend of E for each individual subject is decreasing as drowsiness increases.
However, the overall trend in Figure 7.6 regarding all subjects does not show any spe-
cific trend. Nevertheless, the interquartile range and the difference between whiskers (see
Appendix B) increase along with the increase of kss values.

• MCV , MOV : Maximum closing/opening velocity is the maximum value of |V ′(n)| during
closing and opening phases as shown in Figures 7.5(c) and 7.5(d). In this work, we ex-
tracted these features out of the V ′(n) signal calculated by the Savitzky-Golay filter with
empirically selected parameters of 5 for the polynomial order and 13 for the frame size.

According to Hargutt (2003) and Holmqvist et al. (2011), the closing phase of the eyes
occurs much faster than the opening phase. In our data, this was also the case as shown
in Figure 7.7 which compares the distribution of the MCV with that of the MOV . These
features are shown in Figures F.6, F.7, F.8 and F.9 versus kss values. It can be seen that
the overall trends of the velocities are decreasing within increasing drowsiness, e.g. for
subjects S4, S5, S12, S13 and S15.
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Figure 7.7.: Histogram of MCV and MOV with the estimated (est.) distribution (dist.) curves

• A/MCV , A/MOV : Johns (2003) introduced the amplitude-velocity ratio calculated by
A

MCV as a feature positively correlated with drowsiness. The ratio for MOV was defined
similarly to this feature, because Johns and Tucker (2005) showed that it also increases
due to drowsiness. Johns et al. (2007) asserted that these two features are almost in the
same range for different subjects and, therefore, it is not necessary to “adjust them for
individuals”. Damousis and Tzovaras (2008) used the A/MCV feature as an input to their
fuzzy system for drowsiness detection.

Figures F.10, F.11, F.12 and F.13 show these features versus kss values. For drivers, who
felt drowsy at the end of the drive (kss ≥ 7), different trends are found. For subjects S4,
S6 and S10, as an example, these features increased, while for subjects S23 and S16 the
value of the features were almost stable during the drives. It can be seen that the range of
both features is almost the same considering all subjects which agrees with the statement
of Johns et al. (2007).
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• ACV , AOV : The average closing and opening velocities were calculated by A1
Tc

and A2
To

,
respectively. Tc and To refer to the closing and opening duration. For blinks of the drowsy
phase, the equivalent middle points were used, namely middle1 and middle2 as shown in
Figure 7.5(b). Figure 7.8 shows that in addition to the MCV , the average closing velocity
of the eyelids are also, in general, larger than their average opening velocity.
Figures F.14, F.17, F.16 and F.15 show these two features versus kss values. Similar
to the trends of MCV and MOV , these two features also, overall, have decreasing values
versus kss as also mentioned by Thorslund (2003). It should be mentioned that Thorslund
(2003) defined A

T as the half of the blink velocity which might not always be valid, because
it takes the duration of the closed phase of the blink into consideration as well. Damousis
and Tzovaras (2008) used the inverse of these two features together with other features in
a fuzzy logic-based system.
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Figure 7.8.: Histogram of ACV and AOV with estimated (est.) distribution (dist.) curves. The outliers
(values > 10 mV/s) are not shown.

• F : Blink frequency is defined as the number of blinks per minute (or another pre-defined
interval) which increases in earlier phase of drowsiness and decreases as drowsiness in-
creases, i.e. similar to the shape of an inverse U (Platho et al., 2013). Here, we calculated
F within 1-min intervals. This feature is also called blink rate and since its value only de-
pends on the detection of blinks (not the corresponding start and end points), it is referred
to as the easiest measurable blink feature (Holmqvist et al., 2011).
On average, human blink rates range from 15 to 20 per min regarding spontaneous blinks
(Records, 1979). This range decreases to 3 to 7 blinks per min during reading (Holmqvist
et al., 2011). As mentioned in Chapter 6, this feature varies differently, while performing a
secondary visuomotor task. According to Records (1979), the blink rate decreases as visual
attention increases. The reason is the prevention of information loss during eye closure
moments. Since in our drowsiness-related experiments, it was not allowed to perform any
secondary tasks, we suppose that none of the occurred blinks were task-related.
This feature is also highly dependent on the humidity of the vehicle interior. With the
air conditioning running or in a very dry condition, blink frequency might be different
(Friedrichs and Yang, 2010a). Friedrichs and Yang (2010a) also reported a large between-
subject variation of this feature. Moreover, Johns et al. (2007) believes that this feature is
“too task dependent and too subject-specific” to be considered for drowsiness detection. The
study by Hargutt (2003) also showed that this features is more correlated with information
processing and how demanding a task is (e.g. task duration and time-on-task). Regarding
these findings, some researchers have serious doubts about the usefulness of blinks and their
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corresponding features as a drowsiness indicator due to their variation and external stimuli
such as “road lighting, oncoming headlights, the air temperature and state of the ventilation
system” (according to Horne and Reyner (1996) cited by Liu et al., 2009). In a study by
Papadelis et al. (2007), also no significant difference of this feature between the awake
(the first 15min) and the drowsy (the last 15min) phases was found. Moreover, driving
time showed no significant interaction with F . Interestingly, right before a driving error,
however, F increased significantly in comparison to the beginning of the measurement.
Similarly, in a study on 60 subjects, blinks were measured at the beginning and end of
a working day (Caffier et al., 2003). Although no significant difference between alert
and drowsy phases was found, a slightly decreased blink rate during drowsy phase was
reported. However, these results contradict the findings of Morris and Miller (1996) about
the efficiency of F in a moving base-flight simulator with 10 sleep-deprived pilots.
Apart from the mentioned studies, which analyzed the interaction of F with drowsiness
separately, other studies showed that the combination of this feature with other features
leads to a satisfactory estimation of driver’s state of vigilance (Bergasa et al., 2006; Suzuki
et al., 2006; Friedrichs and Yang, 2010a).
Figures F.18 and F.19 show the boxplot of F versus kss values. By visual inspection of
the figures, it can be inferred that blink frequency has increased due to drowsiness for 8
subjects such as S3, S13 and S15. Nevertheless, it suffers from large individual differences.
For subjects S1 and S18, it has dropped, while for subjects S20, S21 and S22 it has not
changed significantly. The inverse U-form shape mentioned in Platho et al. (2013) is also
not found in our data set.

• T : Blink duration is the time interval between the start and the end point of a blink.
Clearly, the value of this feature depends on the considered start and end points of the
blink which are not defined consistently among researchers. Our definition of start and
end points of a blink is in agreement with the points chosen by Hu and Zheng (2009) and
Wei and Lu (2012). On the contrary, Schleicher et al. (2008), as an example, considered
the point at which the maximum velocity of the eye opening phase occurs as the end
point. Other works also used our 17th feature, namely T50, as the blink duration (Morris
and Miller, 1996; Thorslund, 2003; Johns, 2003; Åkerstedt et al., 2005; Ingre et al., 2006;
Damousis and Tzovaras, 2008; Picot et al., 2010; Friedrichs and Yang, 2010a).
Caffier et al. (2003) assumed 50ms as the shortest possible blink duration and blinks with
300 ms < T < 500 ms as the “long-closure blink duration”. In their study with 60 subjects,
they found a significant increase of the blink duration before (T = 192± 39 ms) and after
(T = 316 ± 62 ms) a usual working day using anova. Moreover, T was significantly
correlated with subjective self rating (Pearson correlation coefficient ρp = −0.358).
Figures F.20 and F.21 show the relationship between feature T and kss values. The overall
observed trend of T is an increasing one for drowsy subjects. For some subjects, however,
the trend of T is neutral, such as subjects S16, S17, S19, S20 and S21, although they rated
themselves as drowsy. Surprisingly, for subject S8 the trend is negative meaning that the
blinks were shorter as the subject felt drowsy. For awake subjects, the feature remained
almost stable.

• Tc, To: Duration of the closing and opening phases as shown in Figure 7.5. The distri-
butions of these two features are shown in Figure 7.9. In our experiments, on average
Tc = 120± 30 ms, while To = 247± 40 ms, i.e. closing time is about two times shorter than
the opening time. In the study by Caffier et al. (2003), To was called the reopening time
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and was shown to be highly correlated with T (ρp = 0.939), contrary to Tc (ρp = 0.310).
This is clearly due to the fact that To covers a larger part of T in comparison to Tc. In
their study, they found a 10% and 30% increase of Tc and To, respectively, before and
after a working day. However, these findings were not significant for all of their subjects.
Based on the weak correlation of Tc with the subjective self-rating, they had doubts on
the performance of Tc as a single measure for drowsiness detection. Moreover, they used
Tc < 150 ms as an additional criterion for blink detection. Damousis and Tzovaras (2008)
aggregated these features over 20-s time intervals in a study based on a fuzzy system.
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Figure 7.9.: Histogram of Tc and To with the estimated (est.) distribution (dist.) curves

Figures F.22, F.23, F.24 and F.25 show Tc and To versus kss values. The plots indicate
that overall, Tc increased while To varied differently during drowsiness. This agrees with
the overall boxplots shown in Figure 7.6. For S11 as an example (Figures F.22 and F.24),
despite the increasing trend of Tc, To has evolved constantly.

By assuming that drowsiness affects both features linearly, we fitted two lines to the scatter
plot of these baselined features versus kss values as shown in Figure 7.10. They show that
from kss = 1 to kss = 9, Tc increased up to 1.5 times, while To scaled to 1.1 times.
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Figure 7.10.: Best linear fit to all baselined feature values of Tc and To

• Tcl,1, Tcl,2: Closed duration is the time interval during which the eyes are closed. Two
definitions are used here. Tcl,1 is the time interval between the end of the closing phase
and the start of the opening phase. This definition is very similar to the plateau duration
defined by Friedrichs and Yang (2010a). Schleicher et al. (2008) called this feature “delay
of reopening”. The other definition is taken from Wei and Lu (2012) as Tcl,2 = Tcl,1 + To.
Caffier et al. (2003), however, introduced our 19th feature, namely T90, as the closed time.
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Figures F.26, F.27, F.28 and F.29 show both of the introduced features versus kss values.
It can be seen that during the awake phase, Tcl,1 did not change at all and remained the
same as one measured sample at 50Hz, i.e. 20ms. At kss ≥ 7, larger values of Tcl,1 were
measured e.g. for S10, S15 and S16.

Figure 7.11 shows how each element of the blink duration evolved due to drowsiness re-
garding all of our subjects. The top and bottom plots show the boxplot and the mean
values of Tc, Tcl,1 and To, respectively.
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Figure 7.11.: Comparison between Tc, Tcl,1 and To during the awake and drowsy phases of the drive for
all subjects

• Tro: Tro denotes the delay of reopening of the eye and is defined as the time interval
between the start of the opening phase and the point of maximum velocity during this
phase (Damousis and Tzovaras, 2008; Hu and Zheng, 2009) as shown in Figures 7.5(c) and
7.5(d). As also mentioned before, Schleicher et al. (2008) used the stopping point of this
feature as the end point of a detected blink.

Figures F.30, F.31 and 7.6 show that this feature increased during the drowsy phases of
the drive. The best linear fit to the values of this feature shown in Figure 7.12 indicates
an increase of 1.6 times due to drowsiness.

• perclos: As one of the most popular features for drowsiness detection, it was first intro-
duced by Knipling and Wierwille (1994) and refers to the proportion of time for which the
eyes are more than 80% closed (percentage of eye closure). This feature is originally a
camera-related feature and is usually calculated accumulatively over a pre-defined interval
between 1 and 5min (Sommer and Golz, 2010).

In this work, on the contrary to eye tracking cameras, this feature is calculated by duration-
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Figure 7.12.: Best linear fit to all baselined feature values of Tro

based features of eog (instead of amplitude-based ones) (Wei and Lu, 2012), i.e.

perclos = Tcl,2
T

. (7.7)

Another definition of perclos, which is mostly used given that the eye movement data is
collected by a camera (Li et al., 2011b; Horak, 2011), is as follows

perclos = T80
T20
× 100. (7.8)

Tx, x ∈ {20, 80} is our last feature and refers to the duration between following points:
from x% of the absolute rise amplitude |A1| to x% of the absolute fall amplitude |A2|.
In the following, the studies on the camera-based perclos are reviewed. Li et al. (2011b)
reported perclos feature as the best indicator of drowsiness. Sigari (2009), who also
studied a camera-based drowsiness detection method, suggested comparison of this feature
with a threshold for drowsiness detection as its increase is expected due to drowsiness. In
agreement with the previous study, Bergasa et al. (2006) and He et al. (2010) also reported
an increase of perclos during drowsiness in both driving simulator and real night drives.
“The perclos measure indicated accumulative eye closure duration over time, excluding
the time spent on normal eye blinks”, is the definition used by Bergasa et al. (2006, page
68) and (Rosario et al., 2010, page 283). Rosario et al. (2010) studied the combination
of perclos and eeg (power of θ-waves) aggregated over 20-s intervals. Based on the
high correlation found between them during drowsy driving, they suggested perclos as a
non-intrusive reliable ground truth. Bergasa et al. (2006), however, calculated the moving
average of perclos within 30-s windows. In their study, although perclos was the
best single feature among other studied features, by combining it with other features and
applying a fuzzy classifier to them even better results were achieved than considering it as
a single feature.
Picot et al. (2009) showed that perclos can be measured with a 200-Hz video camera
with the same accuracy as with the eog. In a later study, Picot et al. (2010) found
perclos as the best feature for drowsiness detection based on an experiment in a driving
simulator with 20 alert and sleep-deprived subjects who drove for 90min. By applying a
fuzzy logic-based fusion method, the true positive rate had a negligible increase, while the
false positive rate was improved up to 8%. Dinges and Grace (1998) also acknowledged this
feature for its correlation with vigilance and categorized following metrics as the perclos:
– perclos70 : proportion of time for which the eyes are more than 70% closed. This
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feature was used by Friedrichs and Yang (2010a) and Li et al. (2011b) as well.
– perclos80 : as mentioned at the beginning.
– eyemeas (em): mean square percentage of the eyelid closure rating.

Interestingly, Papadelis et al. (2007) considered “per minute averaged blink duration” as a
feature called both perclose and perclos in their work. It is not clear, if it denotes a new
feature other than the common perclos, or whether they presented their own definition
of it, since both notations were used in their work. In their study with 20 sleep-deprived
subjects during a real night drive, this feature increased significantly comparing the first
and the last 15min of the drive based on anova. Moreover, they reported its increase
shortly before a lane-based driving error.
In addition to the mentioned works, which found perclos as a very reliable drowsiness
measure, there are also some works which criticized it. Sommer and Golz (2010) believed
that perclos does not take the decreased average/maximum velocity of eye movements
(for both closing and opening phases) into consideration which is an observable consequence
of drowsiness. In addition, integrating this measure over a period makes it less dynamic
to temporary changes. They compared a camera-based perclos with a combination of
eeg and eog for drowsiness detection and found the former as less informative in terms
of a drowsiness indicator. In addition, the high local correlation, which they achieved
between perclos and kss, seemed to heavily depend on the length of the segment under
investigation.
Another disadvantage of this feature is that it correlates better with drowsiness at the
late phase in comparison to the earlier phases (Bergasa et al., 2006; Friedrichs and Yang,
2010a). In general, for those, whose eyes remain wide open despite severe drowsiness, this
feature is not a good solution.
Barr et al. (2005) reviewed and introduced drowsiness detection systems based on perclos.
Figures F.32 and F.33 show the relationship between kss and this feature. On the contrary
to the findings in other studies, which asserted an increase of perclos due to drowsiness,
in our experiments, we have found a drop of it. This might be due to the definition that
we have used for perclos and the fact that this feature was originally defined in the field
of camera-based drowsiness detection rather than eog.

• Tx, x ∈ {50, 80, 90}: Tx reflects the duration of the blink from x% of the absolute rise
amplitude |A1| to the x% of the absolute fall amplitude |A2| of the blink (see Figures
7.5(e) and 7.5(f)). As mentioned before, some studies used T50 as the feature reflecting the
duration of the blink (Morris and Miller, 1996; Thorslund, 2003; Johns, 2003; Åkerstedt
et al., 2005; Ingre et al., 2006; Damousis and Tzovaras, 2008; Picot et al., 2010; Friedrichs
and Yang, 2010a). Caffier et al. (2003) also introduced T90 as the closed time and showed
that it is correlated with T and increases due to drowsiness. T80 was also used by Hu and
Zheng (2009) together with other features as the input to the classifier system.
Morris and Miller (1996) found the combination of T50 with A and long closure rate,
defined as the number of closures longer than 500ms per minute, as the best 3-feature
combination for predicting pilot errors due to drowsiness. Damousis and Tzovaras (2008)
used an accumulated value of T50 over a 20-s window in a “fuzzy expert system” with
other features, but only for those eye blinks whose duration were longer than 0.2 s. In a
study by Anund (2009), the alteration of T50 for 17 sleep-deprived and non-sleep-deprived
subjects during free driving and car following situations was studied. In fact, a complex
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scenario was designed which forced the subjects to takeover. During all situations, T50
was always higher for sleep-deprived subjects, except for the takeover maneuvers which
remained similar for both groups. Ingre et al. (2006) studied the interaction between kss
and T50 and found large individual differences between T50 values. They asserted that this
is to a large extent “independent of subjective sleepiness”. This finding is in agreement with
that of Friedrichs and Yang (2010a) who also observed large between-subject variation in
T50 and consequently suggested applying a baselining step prior to its analysis.

Similar analysis to the one performed for Tc and To in Figure 7.10 was also performed for
T50 with the best linear fit of y = 0.083x + 0.69. This shows that in our study, overall,
T50 increased up to 1.95 times due to drowsiness. However, Åkerstedt et al. (2005), who
studied the influence of sleep deprivation due to night shift working on 10 subjects, found
up to 1.4 times increase of T50 after 120min of driving.

Figures showing the features T50, T80 and T90 versus kss are F.34, F.35, F.36, F.37, F.38
and F.39. It seems that all three features have similar increasing trends for each subject.
Moreover, if T50 has increased at higher kss values, T80 and T90 have also followed that
trend.

Figure 7.13 shows the scatter plot of T versus Tx, x ∈ {50, 80, 90} with the best lin-
ear fit which underscores the relationship between Tx and T . The calculated Pearson
correlation coefficients (will be defined in Section 7.5) between them are as follows1:
ρT,T50 = 0.90, ρT,T80 = 0.82, ρT,T90 = 0.81 (all p-values < 0.001). According to the ρp
values, these features are highly and significantly correlated with each other.

In addition to the features mentioned here, blink interval and the occurrence of blink flurries are
also mentioned in previous works as drowsiness indicator features. Wei and Lu (2012) defined the
blink interval as the time between two successive blinks. Blink flurries are at least three blinks
occurring within 1 s (Platho et al., 2013). It is clear that these features are highly correlated
with each other and with the blink frequency. Shorter blink time interval within 1min is the
result of increased number of blinks or the occurrence of flurries. Similarly, longer blink intervals
are the result of a lower blink frequency or the absence of blink flurries within a window.

We mentioned in Sections 7.1.1 and 7.1.2 that all features have been extracted within a pre-
defined time window (1min for drive time-based features and 5min for kss input based features).
As a result, the blink flurries (if they occur) might be either located within one window or might
totally be missed, if they are located on the window boundaries. In other words, flurries which
are distributed outside the window under investigation will be lost. Moreover, the blink interval
feature cannot be measured for the first and the last blinks of the feature extraction window.
Therefore, these two features are not explored in this work.

The 19 introduced features can be categorized in two groups: base versus non-base features.
We define base features as those whose values can be extracted directly from the measured eog
signal or its derivative. In other words, a clear property of base features is that they cannot
be calculated through a combination of other features, since they can only be measured. Here,
following features are categorized as base features: F , A (including A1 and A2), MOV , MCV ,
Tc, Tcl,1, To and Tro. We consider Tx, x ∈ {50, 80, 90} also as a base feature, although the value
of A1 and A2 are required for measuring Tx value. All other features, namely E, A/MCV ,
A/MOV , ACV , AOV , T , perclos and Tcl,2 are non-base features, because they are calculated
(not measured) using one or two base features. This categorization is of importance for the

1The index p of the Pearson correlation coefficient ρp is not shown.
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Figure 7.13.: Scatter plot of T versus Tx, x ∈ {50, 80, 90}. The red line shows the best linear fit with its
equation on the top of each plot.

implementation of an in-vehicle driver drowsiness detection system as a product for sale. In
fact, the measuring system, i.e. a driver observation camera, should be able to provide an image
quality which makes the extraction of base features with an acceptable precession technically
possible. If these features are of poor quality, the remaining non-base features will be even less
precise.

Table 7.3 summarizes the experimental setup of most of the works reviewed in this section. The
works, for which none of the information was provided, were excluded. According to this table,
drowsiness detection has mostly been explored under simulated driving. Only two studies were
conducted on real roads, namely Bergasa et al. (2006) and Friedrichs and Yang (2010b). Except
for the studies by Caffier et al. (2003) and Schleicher et al. (2008), all previous researches had
a smaller number of participants than ours in their experiments. It should be mentioned that
the study by Caffier et al. (2003) was not designed as a driving task. Another issue is the
participant’s state of vigilance prior to the start of the experiment. Although this information
was not provided in all studies, in most of them, sleep-deprived subjects were participated in
the experiments. This leads to an imbalanced data set in terms of availability of information
about different levels of driver drowsiness and vigilance. Section 8.1.5 will provide an in-depth
discussion about this issue. As a result, a larger number of subjects, considering both real and
simulated driving and including different levels of driver vigilance in the data set are the strength
points of the conducted experiments in this work.
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Table 7.3.: Literature review of the experiment setups. n. s.: not specified

Author nr. of real or sleep-deprived
subjects simulated driving subjects?

Knipling and Wierwille (1994) 12 simulated yes
Morris and Miller (1996) 10 simulated n. s.
Dinges and Grace (1998) 14 none yes
Caffier et al. (2003) 60 none no
Johns (2003) 12 simulated (only 4) yes
Thorslund (2003) 10 simulated no
Svensson (2004) 20 simulated yes
Åkerstedt et al. (2005) 10 simulated no
Johns and Tucker (2005) 5 n. s. n. s.
Bergasa et al. (2006) n. s. real n. s.
Suzuki et al. (2006) 21 simulated n. s.
Ingre et al. (2006) 10 simulated no
Johns et al. (2007) 8 simulated yes (not all)
Papadelis et al. (2007) 22 simulated yes
Damousis and Tzovaras (2008) 35 simulated n. s.
Jammes et al. (2008) 14 simulated n. s.
Schleicher et al. (2008) 129 simulated n. s.
Hu and Zheng (2009) 37 simulated yes
He et al. (2010) n. s. simulated n. s.
Friedrichs and Yang (2010a) 30 real no
Rosario et al. (2010) 20 simulated yes
Picot et al. (2010) 20 simulated yes
Sommer and Golz (2010) 16 simulated n. s.
Wei and Lu (2012) 5 n. s. n. s.

A literature review of all introduced features is listed in Table 7.4. This table shows which
features have been analyzed in different studies and which trends have been found for them with
respect to drowsiness.

7.3. Saccade features

Saccades were defined in Section 3.3 and were characterized as essential movements for per-
forming the driving task properly. The detection method of the saccades and the corresponding
start and end points were defined in Section 5.2 according to Figure 5.5. Many of the features
extracted for blinks can also be extracted similarly for saccades, such as frequency, amplitude,
duration, maximum and average velocity. In the following, we define these features based on
H(n):

• frequency or saccade rate: defined as the number of saccades which occur within a specified
time interval. In Chapter 6, we calculated this feature within the time interval of 1min.
As mentioned in Section 2.1.2 and shown in Figure 2.5, performing an auditory secondary
task, which is representative of a cognitive task, leads to a smaller number of horizontal
saccades. In other words, cognitive load shrinks the scanning scene which is in agreement
with the findings of Rantanen and Goldberg (1999).

• amplitude: this feature was defined in (5.4) as the difference between the amplitude H(n)
of the start and end points of a detected saccade. It also characterizes the amount of
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gaze shift. However, the contribution of the head rotation remains undetermined. On
the contrary to blink amplitude, which is affected by drowsiness, saccadic amplitude is a
function of the angular distance to be traveled towards any destination angle. As a result,
it cannot be a drowsiness indicator in the general case.

• duration: defined as the time difference between start and end points of a saccade in H(n).
Schleicher et al. (2008) found that the standard deviation of the saccade duration correlates
best with the video-labeled drowsiness in a driving simulator study.

• maximum velocity: similar toMCV andMOV , this feature is calculated using the deriva-
tive signal. Rowland et al. (2005) reported the drop of this feature due to sleep-deprivation.

• average velocity: defined as the ratio between amplitude and duration of a saccade.
Schleicher et al. (2008) believed that for the data collection and measurement of saccades, a
sampling rate between 500 and 1000Hz is required. Moreover, they stated that drowsy drivers
scan the scene ahead “unsystematically” in comparison to the awake ones. According to our
observations in the conducted experiments, the occurrence of saccades depends most of the time
directly on the surrounding events. Under highly monotonous driving conditions, saccades occur
seldom and irregularly, because almost nothing outside of the vehicle attracts driver’s attention.
Therefore, in this case, a smaller number of saccades is irrelevant to drowsiness. On the contrary,
under real driving conditions with high traffic density or on urban streets with lower vehicle
speed, the drivers scan the environment more frequently leading to a larger number of saccades
which is again independent of driver drowsiness. This emphasizes the fact that assessment of
frequency and amplitude of saccades make sense only if the events occurring outside of the
vehicle are to some extent quantifiable in terms of traffic density with sensors such as radars.
In addition, reproducible driving scenarios, which are only possible in the driving simulators,
are crucial for concluding conducted experiments. Therefore, real road experiments are not
suitable for assessing saccadic features due to varying traffic density for each subject. Here, the
experiment conducted in the driving simulator was designed to be monotone to accelerate driver
drowsiness. Hence, a low saccade rate, as an example, cannot necessarily be the consequence of
driver’s low vigilance. Apart from the mentioned points, saccades are very fast eye movements
and, as a result, a higher sampling frequency is needed for assessing their duration or velocity.
Considering all these accounts, in this work, the saccadic features are not studied.

7.4. Event-based analysis of eye blink features

In this section, the variation of the introduced features before the occurrence of an event, e.g. a
safety-critical one, is studied and compared with a reference condition. Afterwards, based on a
statistical test analysis, it is studied whether the variation of the corresponding feature, i.e. its
decrease or increase, is statistically significant or not. Such analyses provide information about
predictability of the safety-critical events based on the feature variation in the course of time.
As mentioned in Chapter 2, Schmidt et al. (2011) considered the moments of verbal assessment of
the driver’s state of vigilance as an event and compared the variation of blink duration during the
event with a baseline and with the time interval after the event. In other studies, a safety-critical
event was investigated instead, such as a lane departure, defined as one or two wheels outside
the lane marking, hitting the rumble strip (Papadelis et al., 2007; Anund et al., 2008) and eye
closures longer than 500ms (Schleicher et al., 2008). Afterwards, the variation of physiological
measures such as blink or eeg features were explored within the time interval shortly before
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the event occurrence in comparison to a baseline or to the time interval shortly after the event
occurrence.
In Sections 7.4.1 and 7.4.2, similarly, the moment of the first unintentional lane departure and
the first unintentional eye closure longer than 1 s are considered as safety-critical events and the
alteration of blink features shortly before their occurrences are studied.

7.4.1. Event 1: Lane departure

Here, a lane departure event was found by analyzing the lane lateral distance signal measured
by a multi-purpose camera system (Seekircher et al., 2009). This signal represented the distance
between the vehicle center and middle of the lane. Since, in real life, not all lane departures
are unintentional, an offline video labeling was performed additionally to validate detected lane
departure events. Figure 7.14 shows examples of intentional and unintentional lane departure
events.
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Figure 7.14.: Examples of intended (takeover maneuver) and unintended (lane departure) lane change
events visible in the vehicle’s lateral distance signal

Top plot of Figure 7.14(a) depicts four discontinuity moments which occurred due to the change
to a new reference lane marking by the camera (Ebrahim, 2011). The red asterisks show the
moment when the vehicle center passed the lane marking. These discontinuities were corrected
in the bottom plot. The first two lane changes show a representative example of a takeover
maneuver lasting for about 10 s. However, based on the offline video analysis, the third and the
forth asterisks represent an unintended lane departure due to drowsiness with the length of 2.5 s.
The durations are calculated at the time instant that 40% of the vehicle’s width crossed over
a lane marking. This threshold, i.e. 40% of the vehicle’s width, was found based on the 99th
percentile of all measured lateral distances, excluding takeover maneuver events1. On the other
hand, offline video analysis of the drives showed that most of the subjects did not interpret

1Two succeeding lane changes, which occurred within at least 4 s and the maximum gap of 10 s, were considered
as potential takeover maneuver and were consequently excluded for the threshold calculation. Moreover, the
participants were instructed to keep right as much as possible during the experiment in accordance with the
German official traffic regulations. Therefore, lane changes occurred always in pairs.
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crossing the lane marking within a certain limit as safety-critical, e.g. one tire over the lane
marking. This was evident, as their steering movements for correction were not large enough,
although they partly left the lane. In fact, the subjects steered with larger movements towards
the middle of the lane only after having reached a certain limit, not as soon as they slightly
crossed the lane marking with one tire. Since the width of a tire of the vehicle used in our
experiments (an S-Class) was 15% of the total vehicle width, a larger threshold was needed for
the definition of an unintended lane departure event. In addition to the given points, we were
looking for safety-critical lane departure events which did not occur frequently. For this reason,
the 99th percentile of all measured lateral distances is a representative value as the threshold
which is equivalent to the moment that about 40% of the vehicle crossed the lane marking. The
first time that the threshold was exceeded and validated by the offline video analysis has been
considered as a safety-critical lane departure event. Figure 7.14(b) also shows an example of
a lane departure, although no discontinuity is evident in the measured lateral distance signal.
Such lane departures were included in the detection of safety-critical lane departure events, if
they exceeded the mentioned threshold and were validated by the offline video analysis.

Figure 7.15 shows the mean value of ewvar (Friedrichs and Yang, 2010a) (see (4.5)) of the
lateral distance for each kss value regarding 25 subjects (S1 to S25) who drove in the driving
simulator. The parameter Nσ2 was set to 250 samples. The error bars refer to the standard
deviation of the ewvar values. The moments of intended lane changes were excluded for the
calculation of ewvar. It can be seen that the variance of lateral distance increased due to
drowsiness in our experiment which agrees with the studies mentioned in Section 2.1.1. Despite
the fact that some subjects have rated themselves as very drowsy, this feature does not follow
any trend for them (e.g. subjects S16, S21 and S23) or the trend is very week (subjects S6, S9,
S10, S13 and S17).

It is interesting to know at which subjective drowsiness level, i.e. kss, the first unintended
lane departure has occurred. These values are listed in Table 7.5. Two subjects are excluded,
because the offline video analysis was not possible for them. For subjects, who never left the
lane unintentionally with respect to our threshold, the maximum rated subjective drowsiness
levels are listed. This clarifies two points: 1) If the maximum kss value for these subjects is
smaller than 6, then the nonexistence of the unintentional lane departure is due to high driver
vigilance, 2) If the maximum kss value for these subjects is larger than 6, the nonexistence of
the unintentional lane departure shows that the calculated feature is either not meaningful to
assess their drowsiness level or these subjects overestimated their drowsiness level. According
to the listed values, the lane departure event occurred mostly at a time that the subject also
believed that he was drowsy (17 subjects). However, there are 6 subjects who never left the lane
according to our criteria, although they rated themselves as drowsy.

Table 7.5.: Left table: number of occurrences of kss values at the time of first unintended lane departure
and number of occurrences for the maximum value of kss, if no lane departure was detected.
Right table: confusion matrix.

KSS
awake drowsy

1 2 3 4 5 6 7 8 9

lane departure first 0 0 0 0 0 0 1 6 10
none 0 0 0 0 0 0 1 1 4

KSS
awake drowsy total

lane departure yes 0 17 17
no 0 6 6
total 0 23

Figure 7.16 shows the boxplots which compare the mean value of a feature within the first 5min
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Figure 7.15.: The mean of the ewvar of lateral distance versus kss values for 25 subjects who drove in
the driving simulator. The standard deviations are also shown.

of the drive1 with the 5-min interval before the lane departure for 23 subjects. Participants of
real road drives were not considered, because their collected data were mainly related to awake
driving. Therefore, no lane departure due to drowsiness occurred for them. For most of the
features, an increasing or a decreasing trend is apparent.

With a statistical test such as the paired-sample t-test (see Appendix D.1), it is possible to
show whether the difference between the means of the groups (i.e. the first 5min of the drive
and the last 5min before the event) are significantly different (Field, 2007). If the assumption
of this test is not fulfilled, i.e. normality of the difference between observations is not given,
the alternative non-parametric test, namely the Wilcoxon signed-rank test (see Appendix D.7) is
applied instead. The normality of the distribution of the difference between groups was analyzed
with the Lilliefors test (see Appendix D.2).

Table 7.6 summarizes the results of the mentioned tests including the test significance value which
is t0 for the paired-sample t-test or z0 for the Wilcoxon signed-rank test and the corresponding
p-values with respect to the significance level of 5%. The test significance value of the Wilcoxon
signed-rank test z0 indicates that the difference between the means of the corresponding feature
in both groups was not normally distributed. According to the results, except for E, all results
are statistically significant with p-value < 0.05. As a result, we conclude that A, MCV , MOV ,
ACV , AOV and perclos decreased significantly 5min before the lane departure in comparison
to the first 5min of the drives. On the contrary, A/MCV , A/MOV , F , T , Tc, To, Tcl,1, Tcl,2,

1As mentioned in Section 4.3, in the experiment conducted in the driving simulator, the very first 3min of
the drives were removed from the collected eog data sets, because it was considered as the phase that the eyes
needed to accommodate. Therefore, the first 5min, which is studied here, does not include this phase.



126 Extraction and evaluation of the eye movement features

0.5

1

1.5

E

0.5

0.75

1

MCV

0.5

0.75

1

MOV

1

1.3

1.6

A/MCV

b
as
el
in
ed

1

1.3

1.6

A/MOV

0.5

0.75

1

ACV

0.6

0.8

1

AOV

0.5

1.5

2.5

F

b
a
se
li
n
ed

1

1.3

1.6

T

1

1.5

2

Tc

1

1.1

1.2

To

2

4

6
Tcl,1

b
as
el
in
ed

1

1.25

1.5

Tcl,2

1

1.5

2

Tro

0.9

1

PERCLOS

1

2

3

T50

b
as
el
in
ed

1

2

3

T80

1

2

3

4
T90

0.8

1

A

b
as
el
in
ed

55

first
5 min.

before
event

first
5 min.

before
event

first
5 min.

before
event

first
5 min.

before
event

Figure 7.16.: The mean of all baselined features over the first and the last 5min before the first unintended
lane departure event for 23 subjects who drove in the driving simulator

Tro, T50, T80 and T90 increased significantly before the mentioned event.

Now, the question is whether the found trends of the features are the consequence of drowsiness
or rather time-on-task. To answer this question, a similar analysis was performed for 18 subjects
who drove under real road conditions for covering the eog data collection of the awake phase.
Since none of them experienced a lane departure event, the last 5min of the drive has been
compared to the first 5min. Almost all subjects rated their drowsiness level with a higher value
of kss at the end of the drive in comparison to the start of the driving. Nevertheless, overall,
none of them reported severe drowsiness.

Figure 7.17 shows the boxplots of all features for these subjects. Comparing this figure with
Figure 7.16, it can be concluded that first of all, larger overlap between the boxplots is evident.
Moreover, some features, such as T or Tc, show contradicting trends. Interestingly, the decreasing
trends of A, MCV , MOV , ACV and AOV are still visually distinguishable, comparing the first
and the last 5min of the drives. However, a larger decrease of these features has occurred in the
interval before the lane departure shown in Figure 7.16. Similar to Table 7.6, Table 7.7 shows
the statistical comparison of the mean values of the features shown in Figure 7.17. As can be
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Table 7.6.: Results of paired-sample t-test (t0) and Wilcoxon signed-rank test (z0) for all features shown
in Figure 7.16. Red color indicates non-significant features.

Feature test significance p-value
A t0 = 4.07 < 0.05
E z0 = -0.17 0.87
MCV t0 = 10.81 < 0.05
MOV t0 = 11.31 < 0.05
A/MCV t0 = -6.69 < 0.05
A/MOV t0 = -9.46 < 0.05
ACV t0 = 12.52 < 0.05
AOV t0 = 6.03 < 0.05
F t0 = -2.82 < 0.05
T z0 = -3.57 < 0.05
Tc t0 = -6.51 < 0.05
To t0 = -5.03 < 0.05
Tcl,1 t0 = -3.40 < 0.05
Tcl,2 z0 = -3.53 < 0.05
Tro z0 = -3.62 < 0.05
perclos t0 = 5.74 < 0.05
T50 t0 = -5.29 < 0.05
T80 t0 = -4.71 < 0.05
T90 z0 = -3.48 < 0.05

seen, the difference between the means of the first and the last 5min of the drives is for most
of the features non-significant (p-value > 0.05). However, the mentioned features related to the
amplitude of a blink, namely A, E, ACV , AOV , MCV and MOV , show a significant decrease.
This might be due to the fact that these features are subject to time-on-task to a larger extent
in comparison to the duration-based features. Considering these findings, we conclude that the
significant variation of features before the unintended lane departure event is mostly due to the
driver drowsiness.
We emphasize that the goal of comparing Figures 7.16 and 7.17 was to highlight the contri-
bution of drowsiness towards the changes in feature mean values before the occurrence of the
lane departure event. Studying the intrinsic difference between driving simulator and real road
conditions is outside the scope of this analysis and will be explored in the next chapter.

7.4.2. Event 2: Microsleep

Similar to the previous approach, an unintended eye closure longer than 1 s, called a microsleep,
was considered as a safety-critical event. We investigate this event due to the following reason.
In our driving simulator experiment, we observed that at the earlier phase of drowsiness some
subjects had longer eye closures, although they did not leave the lane. In other words, not all
long eye closures led to a lane departure, although their occurrence was the consequence of driver
drowsiness.
For the first 14 subjects, who participated in the driving simulator experiment, an additional
Dikablis glasses (Ergoneers GmbH, 2014) was used. It is an eye tracking measurement system
which provides a signal with either zero or non-zero values. Non-zero values of the signal are not
of interest in this work. However, zero values occur, if the eye-tracker does not detect the pupil.
The pupil will not be detected either due to an eye closure (both intentional and unintentional)
or due to technical problems. Hence, zero sequences lasting longer than 1 s refer to potential
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Figure 7.17.: The mean of all baselined features over the first and the last 5min of the drive for 18 subjects
who drove under real conditions

microsleep events. Since some long eye closures might have occurred intentionally or due to
technical problems, by offline video labeling, non-relevant events were discarded. At the end,
the first unintended eye closure lasting at least 1 s, namely a microsleep, was considered as a
safety-critical event. The microsleep event detection by the Dikablis glasses instead of the eog
makes this analysis independent of the event detection approach in this work.

Similar to the lane departure events, we want to know at which subjective drowsiness level, i.e.
kss, the first microsleep occurred. It is also possible that some subjects never closed their eyes
unintentionally for at least 1 s. For these subjects, it is interesting to know what their maximum
subjective drowsiness level was given that no microsleep was detected. Here, it also clarifies
whether nonexistence of a microsleep was the result of high driver vigilance or whether the
subjects overestimated their drowsiness level. These values are shown in Table 7.8. Interestingly,
it seems that two subjects have underestimated their drowsiness level by choosing kss = 4 and
5, although they unintentionally closed their eyes longer than 1 s. This was also validated by
the offline video analysis. Moreover, three subjects rated themselves as very drowsy, although
no eye closure longer than 1 s was detected in their data. On the contrary, nine subjects found
themselves drowsy during the occurrence of the first microsleep. There was no subject who rated
himself as awake during the entire drive given that no microsleep was detected.
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Table 7.7.: Results of paired-sample t-test (t0) and Wilcoxon signed-rank test (z0) shown in Figure 7.17.
Red color indicates non-significant features.

Feature test significance p-value
A t0 = 4.61 < 0.05
E t0 = 5.17 < 0.05
MCV t0 = 5.69 < 0.05
MOV t0 = 4.03 < 0.05
A/MCV z0 = -0.37 0.71
A/MOV t0 = -0.79 0.44
ACV t0 = 5.32 < 0.05
AOV t0 = 3.62 < 0.05
F t0 = 2.44 < 0.05
T t0 = 1.40 0.18
Tc t0 = 0.69 0.50
To t0 = 1.13 0.28
Tcl,1 z0 = -1.86 0.08
Tcl,2 t0 = 1.45 0.17
Tro t0 = -0.45 0.66
perclos t0 = 0.51 0.62
T50 t0 = -1.46 0.16
T80 t0 = -2.04 0.06
T90 t0 = -0.50 0.63

Table 7.8.: Left table: number of occurrences of kss values at the time of first microsleep and the number
of occurrences for the maximum value of kss, if no microsleep was detected. Right table:
confusion matrix.

KSS
awake drowsy

1 2 3 4 5 6 7 8 9

microsleep first 0 0 0 1 1 0 1 6 2
none 0 0 0 0 0 0 1 0 2

KSS
awake drowsy total

microsleep yes 2 9 11
no 0 3 3

total 2 12

Similar to Section 7.4.1, the mean value of the features within the first 5min of the drive is
compared with the 5-min interval before the occurrence of the microsleep event as shown in
Figure 7.18. It can be seen that the interquartile range of the boxplots (see Appendix B) for
most of the features are not overlapping, except for A, E, AOV and Tcl,1. Comparing plots of
this figure with those of Figure 7.16, it can be deduced that a lane departure occurs during later
phases of drowsiness. As an example, before a lane departure event, ACV decreased to 60% of
its magnitude at the beginning of the drive. However, before the first microsleep, it has only
dropped to 75% of its initial value. This is also the case forMCV , MOV and Tc. In general, the
comparison of both figures should be done with care, because different numbers of subjects were
considered for the event analyses. Apart from that on average, the first unintended microsleep
occurred after 110 ± 26 min of driving, while the first unintentional lane departure occurred
after 128 ± 40 min. These values agree with the conclusions made based on the alteration of
blink features. Moreover, the time difference between the occurrence of each safety-critical event
implies that driver physiological measures outperform the driver performance measures in early
prediction of the driver drowsiness.

Table 7.9 shows the results of the statistical tests. Most of the results are based on the Wilcoxon
signed-rank test which means that most of the differences between distributions were not nor-
mally distributed. Clearly, it is due to the small number of available samples for each feature.
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Figure 7.18.: The mean of all baselined features over the first and the last 5min before an unintended
microsleep for 11 subjects who drove in the driving simulator

Except for A and E, all features varied significantly in comparison to the beginning of the drive.

7.5. Correlation-based analysis of eye blink features

In this section, the relationship between extracted features is analyzed statistically. First, based
on the correlation analysis, it will be shown to what extent each feature correlates with the
kss values. This is done for both drive time-based and kss input-based features to show how
informative they are in terms of a drowsiness indicator. Moreover, it is also studied which
features are correlated with each other. Such analysis is, in general, important for knowing the
amount of redundant information available in the extracted feature set.

7.5.1. Case 1: correlation between a feature and KSS values

Since our goal is the detection of driver drowsiness, first of all, the relationship of each fea-
ture with the drowsiness is explored. The Pearson product-moment correlation coefficient and
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Table 7.9.: Results of paired-sample t-test (t0) and Wilcoxon signed-rank test (z0) for all features shown
in Figure 7.18. Red color indicates non-significant features.

Feature test significance p-value
A t0 = 1.15 0.26
E z0 = -1.07 0.28
MCV z0 = -5.74 < 0.05
MOV z0 = -5.32 < 0.05
A/MCV z0 = -6.45 < 0.05
A/MOV z0 = -6.45 < 0.05
ACV z0 = -5.99 < 0.05
AOV z0 = 3.91 < 0.05
F t0 = -7.01 < 0.05
T t0 = -6.01 < 0.05
Tc z0 = -6.45 < 0.05
To z0 = -5.06 < 0.05
Tcl,1 z0 = -2.30 < 0.05
Tcl,2 z0 = -4.55 < 0.05
Tro z0 = -6.32 < 0.05
perclos z0 = 7.09 < 0.05
T50 z0 = -5.86 < 0.05
T80 z0 = -5.81 < 0.05
T90 z0 = -5.76 < 0.05

Spearman’s rank correlation coefficient are two possibilities for quantifying the linear and non-
linear association between features and kss values, respectively. This analysis is also called
inter-correlation.

It should be mentioned that, in general, for stepwise and ordinal values like kss, the mentioned
coefficients are not necessarily an optimal evaluation method. The reason is that the values of a
feature might vary, even though their corresponding kss values do not change. This fact affects
the values of the correlation coefficients and their interpretation severely.

Pearson product-moment correlation coefficient

The Pearson product-moment correlation coefficient ρp(x,y), which quantifies the linear asso-
ciation between two vector variables x and y (Artusi et al., 2002; Field, 2007), is defined as
follows

ρp(x,y) = Cov(x,y)
σxσy

=

N∑
i=1

(xi − µx)(yi − µy)√
N∑
i=1

(xi − µx)2
N∑
i=1

(yi − µy)2

. (7.9)

Here, vectors x and y denote all N samples of a feature and the corresponding kss values.
Cov(x,y) refers to the covariance calculated for x and y. µ and σ correspond to the mean and
standard deviation of x and y, respectively. Values of 0 < ρp(x,y) ≤ 1 indicate that x and y
are positively correlated. Similarly, values of −1 ≤ ρp(x,y) < 0 denote a negative relationship
between the variables. If two variables do not relate linearly to each other, ρp(x,y) is close to
zero. The closer the value of ρp(x,y) to ±1, the stronger is the linear association between x and
y. Field (2007) categorizes the values of ρp as follows: small effect for ρp = ±0.1, medium effect
for ρp = ±0.3 and large effect for ρp = ±0.5. However, depending on the field of research and
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the issue being addressed, the value of ρp might be interpreted differently.
Based on a hypothesis test, namely the t-test, it is possible to analyze the significance of the
calculated ρp and to show whether ρp is significantly different from zero as explained in Appendix
D.3.

Spearman’s rank correlation coefficient

The Spearman’s rank correlation coefficient ρs quantifies the “general monotonicity of the un-
derlying relationship” between two variables (Artusi et al., 2002). This means, if one variable
increases, synchronously the other one increases or decreases. In this case, the Spearman’s rank
correlation coefficient has a high value independent of the existing or non-existing linear rela-
tionship between the variables. Therefore, Spearman’s rank correlation coefficient also quantifies
the amount of non-linear relationship between two variables. This is unlike the Pearson product-
moment correlation coefficient which quantifies to what extent an existing relationship is close
to a linear one.
Since the similarity between an arbitrary monotonic function and the underlying relationship
between variables is looked for, first, all samples of x and y are sorted descendingly. ρs(x,y) is
then calculated using the ranks of sorted values as follows

ρs(x,y) = 1−
6
N∑
i=1

(
rank(x)i − rank(y)i

)2
N(N2 − 1) , (7.10)

where rank(x)i and rank(y)i denote the i-th rank of x and y. (7.10) is valid as long as there are
no identical values in variables x and y. For identical rank values, called ties, the average of the
found rank is used (rank

tie
) and the calculation of ρs(x,y) is more complex as follows

ρs(x,y) =
N (N2−1)− 1

2

N1∑
i=1

(r3
x,i−rx,i)− 1

2

N2∑
i=1

(r3
y,i−ry,i)−6

N∑
i=1

(
rank

tie
(x)i−rank

tie
(y)i
)2

√(
N(N2−1)−

N1∑
i=1

(r3
x,i−rx,i)

)(
N(N2−1)−

N1∑
i=1

(r3
y,i−ry,i)

) . (7.11)

In the above equation, N1 and N2 denote the numbers of elements in x and y excluding their
duplicate values. rx,i and ry,i refer to the numbers of observations with identical ranks.
Similar to ρp, ρs can also be tested for showing its significant difference from zero. More details
is provided in Crawshaw and Chambers (2001).
In the following, the introduced correlation coefficients are calculated for kss input-based and
drive time-based features.

KSS input-based features: All baselined kss input-based features are shown in Figure 7.19
versus kss values. The features are baselined with respect to the average of the first two intervals
before a kss input. Spearman’s rank correlation coefficient ρs and Pearson correlation coefficients
ρp between these features and kss values are listed in Table 7.10. The values are sorted with
respect to |ρs|. As mentioned before, ρp shows the strength of the linear relationship between
features and kss values. However, drowsiness may also evolve non-linearly in the course of time
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Figure 7.19.: Boxplot of baselined kss input-based features for all subjects versus kss values
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which makes ρs a more suitable measure for studying the relationship between features and kss
values.

For all features, except for To, the calculated correlation coefficients are significantly different
from zero, i.e. p-value < 0.05. For most of the features |ρs| is also larger than |ρp| which
underlines the non-linear relationship between feature’s evolution and kss values. Furthermore,
the highest value of |ρp| and |ρs| occurs for different features. The features with the highest
amount of linear association with kss is ACV , while the highest |ρs| is achieved for Tc. The
negative signs show the inverse relationship between features and drowsiness. For example, the
drop of ACV occurred parallel with the increase of kss which means that the subjects closed
their eyes more slowly due to drowsiness (see Figure 7.19 for ACV ).

Table 7.10.: Sorted Spearman’s rank correlation coefficient ρs and Pearson correlation coefficient ρp be-
tween all kss input-based features and kss values (N = 391). All p-values were smaller than
0.05 except for red features.
Feature ρs ρp Feature ρs ρp

Tc 0.60 0.50 MOV -0.44 -0.41
A/MCV 0.57 0.48 A/MOV 0.44 0.40
ACV -0.56 -0.52 Tcl,2 0.40 0.35
T90 0.55 0.45 A -0.36 -0.29
perclos -0.53 -0.46 AOV -0.33 -0.27
T50 0.53 0.45 Tcl,1 0.26 0.28
MCV -0.53 -0.50 F 0.21 0.16
Tro 0.52 0.49 E 0.10 0.21
T80 0.50 0.43 To 0.06 0.05
T 0.45 0.40

Drive time-based features: Table 7.11 shows the sorted values of ρs and ρp correlation
coefficients between all drive time-based features and kss values. Here, also the values are sorted
with respect to |ρs|. All calculated correlation coefficients are significantly different from zero,
i.e. p-value < 0.05. Moreover, it can be seen that for most of the features we have |ρs| ≥ |ρp|.
This confirms that the relationship between drive time-based features and kss values is also to
a larger extent non-linear. In addition, the features have different rankings with respect to the
absolute values of ρs and ρp. As an example, with respect to |ρp|, A/MOV seems to be the
best feature correlated with kss with a linear association. However, Tro is the most correlated
with drowsiness based on |ρs|. Comparison of the correlation coefficient values in Tables 7.10
and 7.11 shows that the kss input-based features are more correlated with kss values. This is in
agreement with the hypothesis that kss values, in their best case, represent the driver’s vigilance
level within a short time interval prior to their collection. However, it should be mentioned that
larger values of |ρs| do not guarantee that the combination of these features with each other and
using all of them simultaneously for driver drowsiness detection yields better results. This will
be discussed in the next chapter.

7.5.2. Case 2: Correlation between features

In addition to the relevance of the extracted features to drowsiness and their informativity, it is
also important to know whether they are redundant or not. The amount of correlation between
features can be used to analyze the degree of redundancy. In general, highly correlated features
are not desired, since they may carry the same information which is already provided by the
other feature. The between-feature correlation analysis is also referred to as intra-correlation.
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Table 7.11.: Sorted Spearman’s rank correlation coefficient ρs and Pearson correlation coefficient ρp be-
tween all drive time-based features and kss values (N = 4021). All p-values were smaller
than 0.05.
Feature ρs ρp Feature ρs ρp

Tro 0.51 0.46 F 0.36 0.37
A/MOV 0.50 0.48 T50 0.36 0.35
Tc 0.50 0.45 perclos -0.33 -0.34
A/MCV 0.47 0.40 AOV -0.30 -0.28
MOV -0.43 -0.42 Tcl,1 0.26 0.26
ACV -0.43 -0.43 To 0.23 0.25
T90 0.42 0.39 A -0.23 -0.16
MCV -0.41 -0.41 E 0.11 0.19
T80 0.38 0.37 Tcl,2 0.06 0.21
T 0.37 0.35

In the following, the correlation analysis for kss input-based features and drive based-time
features are studied based on ρp. Figures F.41 and F.42 show this analysis based on |ρs|.

KSS input-based features: Figure 7.20 shows |ρp| calculated between kss input-based fea-
tures. The calculated |ρp| for feature pairs with the red × sign cannot be shown to be significantly
different from zero, because for these feature pairs we have p-value > 0.05. According to this
figure, for some feature pairs such as (ACV,MCV ), (AOV,MOV ), (Tc, A/MCV ), (Tcl,1, T ),
(T50, T ), (T80, T50), (T90, T50) and (T90, T80), we have |ρp| > 0.9 with p-value < 0.05. It is inter-
esting that all highly linearly correlated features carry the same kind of information, i.e. they
are all related either to the velocity or to the duration of a blink. For pairs, which are to a very
small amount linearly associated with each other, namely |ρp| < 0.1, we found p-value > 0.05
(red × sign in Figure 7.20). The very small amount of association, i.e. 0.1 < |ρp| < 0.2, between
pairs such as (F,A), (T50, A) and (F,MCV ) is also comprehensible and reasonable, since each
of these features has different underlying mechanism.

Drive time-based features: The absolute Pearson correlation coefficients between drive
time-based features are also shown in Figure 7.21. Similar to Figure 7.20, in this figure, fea-
ture pairs with p-value > 0.05 are also shown with a red × sign. Regardless of these pairs,
other pairs such as (F,MOV ), (F,ACV ), (F,AOV ), (T, F ), (To, AOV ), (To, ACV ), (Tcl,2, To),
(perclos, E), (T50, A) and (T80, A) are all to a very small amount linearly correlated with
each other, namely |ρp| < 0.1. As mentioned before, almost all of these features in pairs are
based on different underlying mechanism. Interestingly, the drive time-based feature pairs with
|ρp| > 0.9 are exactly the same as kss input-based feature pairs with |ρp| > 0.9, except for the
pair (Tc, A/MCV ). Thus, we conclude that the feature aggregation method has not affected the
redundancy of features.

7.6. Eye blink feature’s quality vs. sampling frequency

This section studies how sampling frequency of raw eog signals affects the quality of the ex-
tracted features. This analysis is important for evaluating the features extracted from the data
provided by the driver observation cameras rather than the eog. In this context, Picot et al.
(2009) studied the correlation between eog and a high frame rate camera.
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In the experiments conducted with the eog measuring system, a camera cannot be used simul-
taneously, since the attached electrodes around the eyes disturb the image processing task of the
camera. Therefore, we sampled eog signals down to 40Hz and 30Hz which is comparable to
the data of the driver observation cameras on the market. In fact, first, we artificially degraded
the quality of the raw signals and then extracted all features as before.
Figures 7.22 and 7.23 show scatter plots of all 40Hz and 30Hz features versus those of the 50Hz.
Best least square linear fits are also plotted. According to the plots, for most of the features a
smaller sampling frequency leads to smaller feature values. It is also clear that smaller sampling
frequency results in peak amplitude loss. This fact shows itself in amplitude-based features to a
larger extent, e.g. in MCV and MOV . Interestingly, T seems to be resistant to the reduction
of the sampling frequency up to 30Hz.
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Figure 7.22.: scatter plot: comparison of 50-Hz features with 40- and 30-Hz ones for the first 12 subjects
- part 1

Figure 7.24 compares AOV and MOV with respect to different sampling rates. As expected,
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Figure 7.23.: scatter plot: comparison of 50-Hz features with 40- and 30-Hz ones for the first 12 subjects
- part 2

for smaller sampling frequencies, MOV values are closer to the AOV values which is the result
of the peak amplitude loss.
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8. Driver state detection by machine
learning methods

On the contrary to previous chapter, where features were explored as separate and independent
source of information, in this chapter, we consider all extracted blink features of Chapter 7
together. To this end, we introduce machine learning and different state-of-the-art classifiers
applied to the features for driver drowsiness detection. Artificial neural network (ann), support
vector machine (svm) and k-nearest neighbors (k-nn) are the sophisticated classifiers used here.
In order to evaluate the classification results, different metrics are also introduced. In addition,
we consider different data division approaches to study the generalization aspects of the classi-
fiers. Further, the issue of imbalanced data set for all classifiers is addressed by balancing the
data sets. It is also investigated whether artificially balanced data sets can replace the expensive
and demanding data collection during the awake phase. After comparing all classifiers with each
other and suggesting an optimal classifier for driver drowsiness detection, the generalization of
the data collected in the driving simulator to real road conditions is scrutinized and two new
approaches are studied. Finally, we discuss approaches for feature dimension reduction in order
to address issues of an in-vehicle warning system.

8.1. Introduction to machine learning

Machine learning methods, as their name mentions, are the algorithms and rules which machines
like computers learn from some representative data with different attributes called features. By
applying these learned rules to unseen data, it is possible to automatically classify the data
based on its similarities with the seen data. In fact, machine learning methods are classification
tools which divide the feature space into different regions by means of decision boundaries. The
decision boundary is either a linear one (e.g. a line or a hyperplane) or non-linear depending on
the complexity of the problem.

Here, the goal is to classify driver state based on extracted eye blink features. In fact, the idea
is that it would be possible to learn drowsiness patterns in eye blink features and to use the
learned patterns for predicting driver drowsiness. Eskandarian et al. (2007), Liang et al. (2007),
Hu and Zheng (2009), Friedrichs and Yang (2010a,b) and Simon (2013) are examples of recent
studies carried out in the field of driver state classification, i.e. classifying vigilance, drowsiness
and attentiveness of the driver based on some physical or/and physiological features. A detailed
review is provided by Dong et al. (2011).

In this work, the machine learning method used for driver state classification is called a classifier.
Input of the classifier is the feature matrix F ∈ RD×N containing N feature vectors xn, with
n ∈ {1, · · · , N} as follows

F =
[
x1 x2 · · · xN

]
D×N

, (8.1)
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where N is the number of samples. xn ∈ RD represents the D-dimensional feature vector of the
n-th sample, namely xn =

[
x1,n x2,n · · · xD,n

]T
. Here, we have D = 19 features.

The output of the classifier is class c which corresponds to the driver state in this work. Therefore,
depending on the number of the available states, we are dealing with a 2-class (binary), a 3-
class or, in general, an m-class classification problem. The classes are defined in Section 8.1.1.
Depending on the availability of the class membership for the samples of the feature matrix
ahead to the classification step, two types of classification methods can be explored: supervised
versus unsupervised classification. In this work, only supervised classification is studied.

8.1.1. Supervised classification

Supervised classification is defined as a classification problem with available information about
class membership for each sample in the feature matrix. In our work, the kss inputs collected
during the experiments are the class labels. Therefore, for each sample n of the feature matrix
F, namely xn ∈ RD, there exists a corresponding discrete-valued class label cn. The total data
set S is then expressed as follows

S =
{

(x1, c1), (x2, c2), · · · , (xN , cN )
}
. (8.2)

The task of supervised classification begins with the division of the data set into two sets called
training and test sets. Based on the features and the corresponding classes belonging to the
training set Strain, the classifier is trained by learning rules. The complexity of these rules
depends on the complexity of the classifier and the relationship between features and classes.
Afterwards, the rules will be applied to the features of the test set Stest, which is unknown to the
classifier, in order to estimate the class of its samples. Finally, the performance of the classifier
is evaluated by comparing the estimated class ĉ with the true class c of each sample.
A typical phenomenon, whose occurrence severely affects the performance of the classifier during
the training step, is either overfitting or underfitting of the classifier to the training data set as
shown in Figure 8.1. The former occurs, if the learned rules are highly adapted and fitted to
the samples in the training set, such that all samples are classified correctly in the training set
(Figure 8.1(a)). This leads to a zero training error rate which is defined as the ratio of wrongly
classified samples during the training phase. However, this does not directly imply a low number
of errors also for the test set. In fact, as soon as a new sample of the test set is applied to the
classifier, it fails to classify the unseen data correctly. This is also called lack of generalization
for the classifier. The reason is that the classifier is fitted to the noise rather than the data
(Zamora, 2001). Therefore, a zero training error rate never guarantees a small test error rate.
Overall, the ultimate goal is to construct a general classifier which not only classifies training
data correctly, but also classifies new unseen data with the similar performance.
On the contrary to the overfitting, underfitting (Figure 8.1(b)) occurs, if the classifier is too
simple and even the training error rate is high. In fact, the classifier does not fit to the underlying
structure of the data. Obviously, it cannot be expected that such a classifier performs better
on unseen data. Consequently, as Figure 8.1(c) shows, a compromise, as a trade-off between
the mentioned phenomena, should be made. Therefore, sometimes even wrong classifications
in the training phase are acceptable. Finally, in spite of the existing training error rate, the
generalization aspect of the classifier improves, because the classification result of the unseen
test set improves.
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3

(a) overfit

3

(b) underfit

3

(c) trade-off

Figure 8.1.: Examples of three classification rules

KSS values as the classes

In this work, the kss values collected during the experiments are used as available labels for
the supervised classification task. As mentioned in Section 2.2, the self-estimation of drowsiness
during driving is highly subjective. Moreover, for each kss value, it is very probable that the
subjects compare their current state with the previous ones for a better self-rating. Hence,
depending on the preciseness of the first selected kss value, there might be a bias shift on
the other selected values until the end of the drive. Similar results concerning misjudgment
of drowsiness after three hours of continuous monotonous daytime driving were reported by
Schmidt et al. (2009). To this end, we suppressed the probable inaccuracy of the kss values by
grouping them together to form 2-class (binary) and 3-class (multi-class) problems as follows:

binary or 2-class: awake drowsy
kss values: 1 2 3 4 5 6 7 8 9

3-class: awake medium drowsy

We call these classes {awake, drowsy} for the binary case and {awake, medium, drowsy} in the
3-class case.

The distribution of the classes for the binary classification is awake = 55% versus drowsy = 45%
and for the 3-class case, awake = 41%, medium = 29% and drowsy = 30%, while considering
drive time-based features. For the kss input-based features, we also have awake = 46% versus
drowsy = 54%. Due to small number of available samples for kss input-based features, the
3-class case is not studied for them in this work. Figure 8.2 summarizes all class distributions
and shows that in all cases, we have balanced class distributions.

46%

54% 55%

45%

 

 

41%

29%

30%

 

 

awake
drowsy

awake
medium
drowsy

kss input-based features drive time-based features drive time-based features

Figure 8.2.: Distribution of classes for kss input-based and drive time-based features
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8.1.2. Metrics for evaluating the performance of classifiers

As also mentioned in Section 5.4, the performance of a binary classifier can be evaluated by a
confusion matrix shown in Table 8.1.

Table 8.1.: Confusion matrix of a binary classifier

predicted state ĉ

state awake drowsy

given state c
awake True Positive (tp) False Negative (fn)

drowsy False Positive (fp) True Negative (tn)

For each class (awake or drowsy), a detection rate dr is calculated based on Table 8.1 and the
values of tp, fp, tn and fn. The detection rates of classes are as follows

DRawake = TP
TP + FN

(8.3)

DRdrowsy = TN
TN + FP

. (8.4)

They are also called sensitivity and specificity which are equivalent to probabilities P (ĉ =
awake|c = awake) and P (ĉ = drowsy|c = drowsy). For the confusion matrix introduced in
section 5.4, tn is not defined and as a result (8.4) cannot be calculated. Therefore, there, preci-
sion and recall were defined instead. Conventionally, the metrics in (8.3) and (8.4) are referred
to as tpr and tnr, respectively. However, in this study, for a better readability of detection
performance results, we use the term dr which refers to both of these metrics.
Similarly, the rates of wrongly classified samples with respect to the number of available samples
in each class are

FNR = FN
FN + TP

= 1− DRawake =⇒ P (ĉ = drowsy|c = awake) (8.5)

FPR = FP
FP + TN

= 1− DRdrowsy =⇒ P (ĉ = awake|c = drowsy) , (8.6)

where fnr refers to the false negative rate or miss rate and fpr is the false positive rate and is
also called the false alarm rate. The term 1−dr is used in this work to refers to both fnr and
fpr regardless of the classes.
Moreover, we define an average dr (adr) as the average of both dr values, namely

ADR = DRawake + DRdrowsy

2 . (8.7)

Balanced accuracy is another notation of adr.
In addition to the above metrics, accuracy (acc) and its complementary, namely error rate (er),
are defined

ACC = TP + TN
TP + FP + TN + FN

=⇒ P (ĉ = c) (8.8)

ER = 1− ACC =⇒ P (ĉ 6= c) . (8.9)

For a multi-class problem with m classes and confusion matrix M = [Mi,j ]m×m, these metrics
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are calculated as follows (Kolo, 2011):

DRi = Mi,i
m∑
j=1

Mi,j

(8.10)

ADR = 1
m

m∑
i=1

DRi (8.11)

ACC =

m∑
i=1

Mi,i

m∑
i=1

m∑
j=1

Mi,j

, ER = 1− ACC , (8.12)

where i in DRi refers to the i-th class.

8.1.3. Subject-dependent classification

As mentioned before, in supervised classification, data division into training and test is performed
prior to the training of the classifier. Typically, training and test sets contain 80% and 20% of the
total samples in the feature matrix, respectively. In addition, the feature matrix is split in a way
that the class distributions of the training and test sets remain similar. To put it another way,
as an example, if 65% of the total samples in the feature matrix belong to the awake class, 65%
of the samples in the training and test sets also belong to this class. To keep the classification
results independent of the samples selected for each set, we have randomly split the samples 100
times into 80% and 20% sets and call it repeated random sub-sampling validation. Due to the
fact that samples of the training and test sets are randomly selected, both sets might contain
samples of a specific subject. Obviously, if samples of a subject are statistically dependent or
correlated, the classifier takes advantage of it and inflated classification results are expected.
Therefore, due to dependency of the classifier on the subjects in this type of data division, the
classification problem is called a subject-dependent (subj.-dep.) one. The final evaluation results
are the average of dr and fdr values over all permutations.

8.1.4. Subject-independent classification

Generally, the goal of all driver assistance systems is to be able to warn all drivers, even those
whose features are unknown to the warning system. Hence, another possibility for data division
of training and test sets is to sort them according to the subjects unlike the subject-dependent
case. In this type of data division, for the total number of s subjects, the classifier is trained
by samples of s − 1 subjects and tested on the samples of the s-th subject. By repeating this
procedure s times, all subjects appear one time in the test set. This method is similar to the
leave-one-out cross validation (Duda et al., 2012). Since the constructed classifier model is
fully independent of the subjects in the test set, we call it a subject-independent (subj.-indep.)
classification.

In subject-independent classification, due to a varying number of samples in the test sets, mis-
classified samples of each subject might be differently penalized, e.g. 1 misclassification out of 5
samples corresponds to the rate of 20%, while 1 out of 10 corresponds to the rate of 10%. Thus,
the dr and fdr values of different subjects cannot be directly compared with each other. On
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this account, the tp, fp, tn and fn values of all test sets are summed up to the overall dr and
fdr metrics.

At the first glance, it seems that subject-dependent data division is not needed to be taken into
consideration in our application for the sake of generality of the classification results. However, in
the following, it is explained why both subject-dependent and subject-independent data divisions
are studied in this work.

We mentioned in Section 7.2 that there exist subjects, for whom the evolution of feature values
due to drowsiness did not follow the overall trend found among the majority of participants.
This highly individual behavior is linked to the intrinsic nature of the physiological measures.
Clearly, if the data of these subjects is fed as the test set to the subject-independent classifier,
the result will not be satisfactory. The reason is that the training data is not representative of
the test data. Therefore, in order to cover individual differences to a very large extent, a data set
with a very large number of participants is needed. This, however, is not a feasible solution in
our application, because for the nighttime drowsy data collection, preparation of the participant
and performing the task takes about 4 hours. Hence, subject-dependent data division can be
considered as a rough estimation for the case that the training set is well enough representative
of the test set.

Another motivation is related to future intelligent vehicles. If future vehicles make user adapta-
tion possible, then each driver is a known user to the vehicle system. In other words, the driver
creates a user profile for himself and the vehicle saves the settings of this user to his profile, e.g.
seat setting, mirror settings, etc. Each time when the driver gets into the vehicle, he signs in
and the vehicle adapts all saved settings. This idea can be extended to the warning system as
well. Accordingly, the warning system is able to learn the user’s behavior and benefits from his
features for future use. This is similar to subject-dependent data division, because the user is
not thoroughly unknown to the warning system.

8.1.5. Imbalanced class distributions

A very important issue, which severely impacts the performance of a classifier, is the distribution
of the classes versus each other. In other words, it is crucial whether the class distributions are
balanced or imbalanced. We showed in Section 8.1.1 that we have balanced class distributions.
The reason that we study imbalanced data sets here is that it is not only a problem from the
theoretical point of view for the classifiers, but also for the warning systems which aim to prevent
car crashes due to driver drowsiness. He and Garcia (2009) reviewed and discussed the issue of
imbalanced data which is summarized here.

A data set is referred to as imbalanced, if the proportion of one class to the other class is within
the following orders: 100:1, 1000:1 or even larger. For 100:1, as an example, this means that
the classes are distributed such that in one of them 100 times more samples are available than
the other one. The class with the larger number of samples is called the majority class and the
other class with the smaller number of samples is referred to as the minority class. According
to Abdellaoui (2013), in the case of a multi-class problem, the class with the smallest number of
samples is the minority class, while all other classes are considered as the majority classes.

The phenomenon of imbalanced data is mostly highlighted in medical applications such as distin-
guishing between ill and healthy patients as minority and majority classes, respectively. There,
the wrong classification of an ill patient as a healthy one is much more crucial than the inverse
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case. In our application, similarly, a drowsy driver should always be warned, otherwise a car
crash is inevitable.
In general, for drowsiness detection in real life applications, most of the time, sleep-deprived or
already drowsy subjects are preferred to participate in the experiment. Therefore, the collected
data sets are dominant in the drowsy events. This is clearly due to two factors: cost and time.
A subject, who is almost awake and fit for performing the driving task during the experiment,
needs a longer time to feel drowsy which is not desirable. In spite of this fact, the state of an
awake subject should be classified correctly to the same extent that a drowsy subject is classified
as drowsy. In other words, not to warn an awake subject is also a part of the goals of driver
state classification. Therefore, experiments solely conducted with less awake subjects suffer from
imbalanced classes which also affects the classification task.
We mentioned in Chapter 4 that the driving simulator experiment (Section 4.3) and real road
experiment (Section 4.2.1) covered the data collection of drowsy and awake phases, respectively.
Therefore, in order to highlight the issue of imbalanced data set for less awake subjects, we
have only considered the kss input-based features collected in the driving simulator experiment
and removed features of the real road drives from the feature matrix. This led to a feature
matrix with 261 samples. We used 20% of this feature matrix for defining 100 test sets with
balanced binary classes. Hence, each test set contained 52 samples (26 samples for each class).
The remaining 209 samples of the training sets had the following imbalanced class distribution:
awake = 24% and drowsy = 76%. In the end, this imbalanced training set is used to train the
classifiers.
Although balanced class distributions are always desired, in most of the applications in real life,
it is not possible to collect such data especially due to high cost. Therefore, one solution to tackle
this problem is to artificially balance the data before applying a classifier to it based on some
known methods. These approaches are applied to the imbalanced training set as well to balance
the class distributions. In our case, it is the awake class which should be balanced artificially.
If for the unseen awake data, the performance of the classifier trained by artificially balanced
data is as good as that of the classifier trained by fully balanced data, then we can save time
and cost by choosing sleep-deprived and drowsy subjects for our experiments and balance the
class distributions afterwards artificially. Otherwise, conducting experiments for collecting the
awake samples similar to the drowsy ones is inevitable despite taking a lot of time and effort. In
Sections 8.2.3 and 8.3.7, this issue is studied.
In the following, two methods for artificially balancing the data set are introduced.

Random undersampling and oversampling

A very simple method for artificially balancing the class distribution is to randomly remove
samples of the majority class in order to have balanced class distributions. Clearly, the random
selection of samples to be removed should be repeated several times to guarantee that the
classification results do not depend on the respective selections of samples of the majority class.
As a very straight forward method, the random undersampling method has a disadvantage. Due
to randomly removing samples of the majority class, definitely, some valuable information for
the classifiers regarding this class might be removed which leads to poor classification results.
Moreover, for highly imbalanced data, a large number of samples have to be removed. The
undersampling method will be used as the solution for dealing with imbalanced data in Section
8.6.1.
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Similar to the undersampling method, an oversampling is performed to deal with the imbal-
anced data issue, such that randomly selected samples of the minority class are duplicated in
the data set. This method is motivated by the prevention of information loss of the undersam-
pling approach. However, outlier samples could be selected to be added to the data and poor
classification results are expected. Moreover, in general, an overfitting is inevitable, if multiple
instances of a sample are added to the data. Some classifiers even require unique samples for
training, like the classifier which will be explained in Section 8.3.

Synthetic minority oversampling technique

An alternative to the oversampling method explained before is the synthetic minority oversam-
pling technique (smote) introduced by Chawla et al. (2002). According to this algorithm, first
Nsmote is needed to be defined which indicates the number of samples to be added to the minor-
ity class. Afterwards, for each sample xi of the minority class (see Figure 8.3(a)), the k-nearest
neighbors (k-nn) are looked for. Figure 8.3(b) shows these neighbors for k = 3. Finally, by
randomly selecting one of the k-nearest neighbors x̌i, a new synthetic sample xnew is added to
the minority class by interpolation as follows

xnew = xi + (x̌i − xi) ζ , (8.13)

where ζ ∈ [0, 1] is a random number. xnew is shown in Figure 8.3(c). In fact, new samples
are generated with respect to the sample under investigation and some of its neighbors. In a
multi-class problem with m classes the smote is repeated m− 1 times to balance all classes.

(a) an imbalanced data set (b) k-nn (k = 3) for xi (c) a new synthetic sample

Figure 8.3.: Applying the smote to an imbalanced data set

As explained before, adding new samples to the data set might lead to overlapping samples
and consequently to the overfitting (He and Garcia, 2009). Moreover, depending on the classi-
fier being used, the location of the new samples might affect the performance of the classifier.
Therefore, it is recommended to apply data cleaning techniques afterwards. In fact, by remov-
ing some samples of the new data set, such cleaning techniques improve the separability of the
available clusters and, in turn, the classifier performance.
A typical data cleaning method, which usually follows the smote, is the Tomek links (Tomek,
1976). The Tomek links are the finite pair of samples to be removed and are defined as samples
belonging to different classes, but located the closest to each other. In other words, the cleaning
algorithm comprises finding and removing all Tomek link pairs, because either one of the samples
of the pair is noise or both of them are close to the borderline (He and Garcia, 2009).
Mathematically, a pair (xi, xj) with xi and xj belonging to different classes and dxi,xj as the
distance between them is considered a Tomek link, if there exists no sample xt of the opposite
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class satisfying dxi,xt < dxi,xj or dxj ,xt < dxi,xj . The algorithm ends, if the nearest neighbor of
each sample belongs to the same class. Figure 8.4 represents an example, where first, the smote
is applied to an imbalance data and then by removing the Tomek links, the clusters are easier
to distinguish. This methods will be applied to our imbalanced data set in Section 8.2.3.

(a) initial data set (b) data set after applying
smote

(c) detected tomek links (d) data set after removing
Tomek links

Figure 8.4.: Applying the smote and the Tomek link cleaning technique to an imbalanced data

8.2. Artificial neural network classifier

The background theory of the artificial neural network classifier presented here is a summary
taken from Jain et al. (1996), Zamora (2001), Uhlich (2006) and Duda et al. (2012) on this topic.

Inspired by the human nervous system and more specific the human brain, which is capable
not only to learn and to generalize rules, but also to perform parallel tasks, the artificial neural
network (ann) also consists of elements called neurons. As a machine learning method, it is also
capable to perform similar tasks. The first mathematical model of a simple neuron was originally
introduced by McCulloch and Pitts in 1943 (McCulloch and Pitts, 1943). Eskandarian et al.
(2007) and Friedrichs and Yang (2010a) also used this classifier for driver state classification.

Figure 8.5 shows the architecture of an ann with three main layers: input layer, hidden layer
and output layer. Since all connections are in one direction and there are also no feed-back loops
between neurons, this architecture is called a feed-forward network. This network is memoryless,
because the output to a specific input does not depend on the previous state of the network.
Another variant of the network architecture discussed in Duda et al. (2012) is the recurrent or
feed-back network.
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Figure 8.5.: Architecture of a feed-forward neural network with 3 inputs, 3 neurons in one hidden layer
and 2 outputs

The number of features and the number of classes determine the number of inputs and outputs,
respectively. Therefore, only the number of neurons and hidden layers are free parameters to
be selected. Considering too many neurons or hidden layers leads to the overfitting of the
network and consequently lack of generalization. On the contrary, too small numbers of them
prevent the network from learning rules adequately. The impact of the number of neurons on
the classification performance is discussed in the next sections.

8.2.1. Network’s architecture

As shown in Figure 8.6, the input layer sends the input values xi to the hidden layer without
processing them. The hidden layer neurons calculate the weighted sum of the inputs called net
activation (net). These calculated values are then fed to a non-linear activation function f(.)
whose outputs yj are the inputs to the next layer. Mathematically, we have

yj = f(netj) = f

(
D∑
i=1

w
(1)
ij xi + w

(1)
0j

)
, (8.14)

where index j refers to the j-th hidden neuron and w
(1)
ij corresponds to the input-to-hidden

neuron weights (see Figures 8.5 and 8.6).

Figure 8.6.: Mathematical representation of the input-to-hidden layer of a network

Similarly, the output layer also calculates the net activation and the final result corresponds to
the classifier output. Therefore, we have

zk = f(netk) = f

(
Nh∑
j=1

w
(2)
jk yj + w

(2)
0k

)
. (8.15)
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In the above equation, index k denotes the k-th output unit (see Figure 8.5). Nh denotes the
number of neurons in the hidden layer.

In the case of a multi-class classification problem with m classes, the class with the maximum
value of zk will be selected as the final classification result by the ann classifier as follows

ĉ = arg max
k = 1, · · · ,m

zk . (8.16)

The overall output of the introduced three-layer network in Figure 8.5 can be represented as

zk = f

(
Nh∑
j=0

w
(2)
jk f

( D∑
i=0

w
(1)
ij xi

))
, (8.17)

where zk is given as the function of the input xi by replacing (8.14) in (8.15) for yj and x0 =
y0 = 1. The generalization of (8.17) also allows considering other activation functions at the
output layer in comparison to the hidden layers.

The non-linear activation function can be either a hard threshold function such as the sign
function or a soft thresholding one such as the sigmoid function. The sigmoid function is
popular for having the following properties as shown in Figure 8.7 for the tangent sigmoid
f(net) = 2

1+e−2net − 1:

• It is non-linear.
• It saturates which bounds the possible output values.
• It is continuous and differentiable.

It will be shown later that non-differentiable activation functions are, in general, not of interest.
Since f(.) is a non-linear function, ann is also a non-linear classifier and consequently can handle
complex rules between features and classes.
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Figure 8.7.: Sigmoid activation function

8.2.2. Training of the network

After calculating the final outputs z of the network, which in our work correspond to the driver
state, they are compared to the desired driver states c. Since these desired states are kss values
and are available, we are dealing with a supervised classification. Obviously, the goal is to
minimize the difference between the estimated and the true states, i.e. the error, as shown in
Figure 8.8. To this end, the training error J should be calculated in terms of mean squared
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26

Figure 8.8.: Supervised classification by the ann

error as follows
J = 1

2

m∑
i=1

(ci − zi)2 = 1
2
(
c− z

)T (c− z
)

given x . (8.18)

The error minimization goal is achieved by updating the weights and calculating the new outputs
several times. In fact, the network learns patterns of the training data, if weights are randomly
initialized at the beginning of the algorithm and are updated iteratively based on an error min-
imization criterion. This kind of iterative learning is called the back-propagation algorithm and
is performed by the gradient descent approach. In other words, the feed-forward property of
the network sends the inputs from the input layer to the output layer and the back-propagation
property updates the weights for achieving the most similar outputs to the desired ones. There-
fore, mathematically, the partial derivative of the error with respect to the weights is calculated
as follows

∆w = −η ∂J
∂w . (8.19)

The minus sign guarantees the reduction of error. η is called the learning rate and controls the
relative change in weights for optimizing the error (Duda et al., 2012). If it is set too high, the
final weights will be far from the optimal ones resulting in a poorly performing network. On the
other hand, a very small value of η yields a very time-consuming training process. In Appendix
G, it is explained how to train the network iteratively based on (8.19).
The iterative update rule for the τ -th iteration will be

w(τ + 1) = w(τ) + ∆w(τ) . (8.20)

The initial values of weights are set randomly at the beginning. Depending on the number of
samples available during the error minimization steps, different learning strategies are possible.
In this work, all samples are considered at the same time which is called batch learning.
In addition to the above simple back-propagation method, there exists a variety of algorithms
which differ in their speed for optimizing the error J and finding its global minimum instead
of trapping in a local minimum. These algorithm are referred to as second order methods such
as the conjugate gradient, Newton and Levenberg-Marquardt. They are all explained in detail
in Duda et al. (2012). Unlike the gradient descent, these methods avoid a zigzag path towards
the minimum. According to Zamora (2001), the conjugate gradient method is superior to the
gradient descent optimization method in having a non-constant moving step towards the gradient
in the negative direction. In other words, as long as the local or global minimum is not reached,
the error J always decreases at each iteration (Bishop, 2006). In this work, we used the scaled
conjugate gradient (Moller, 1993) due to its high optimization speed by requiring fewer iterations
in optimizing the error J . Moreover, this method uses an approximation which avoids the full
calculation of the Hessian in the conjugate gradient (Zamora, 2001).
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Practical issues

Priddy and Keller (2005) and Duda et al. (2012) provided some practical issues for improving
the training of the network which are summarized here.

• Scaling the features: Features, which are very different and far in their numerical values,
will be handled differently by the network during the training phase, as if one feature would
be more important than the other one. Duda et al. (2012) calls this phenomenon non-
uniform learning. There are some approaches to solve this problem. In this work, in
addition to the baselining step discussed in Section 7.1.3, we mapped the feature values
into a [−1, 1] range before feeding them to the ann classifier as follows

xnormalized = x−min (x)
max (x)−min (x)

(
maxtarget −mintarget

)
+ mintarget , (8.21)

where maxtarget = 1 and mintarget = −1. For other scaling functions see Priddy and Keller
(2005).

• Number of hidden layers: Both of the mentioned references stated that one hidden
layer is enough for learning any arbitrary function, given an enough number of neurons.
As a result, in this work, we only use one hidden layer. Adding a second hidden layer did
not improve the classification results.

• Number of neurons: There exist some rules of thumb for the selection of the number of
neurons. In this work, however, we have selected it based on the classification performance
for the training and test sets.

8.2.3. Classification results of subject-dependent data sets

This section discusses the classification results based on the ann classifier for the subject-
dependent data division. Moreover, results of different classification issues such as feature aggre-
gation types and imbalanced data sets are discussed. Here, we have applied a feed-forward ann
classifier with scaled conjugate gradient back-propagation algorithm for adjusting the weights
in one hidden layer. For hidden and output layers, the tangent sigmoid function similar to the
example in Figure 8.7 and the linear transfer function were used, respectively. The results were
generated using the Neural Network Toolbox™ R2010b of matlab.
In the following, it is shown that the most critical parameter of the ann classifier, which directly
impacts the classification performance, is the number of neurons Nh.

Results of KSS input-based features

In Section 7.1.1, we explained, how kss input-based features are extracted. These features
were applied to a binary subject-dependent ann classifier, while considering different numbers
of neurons. By considering 80% and 20% data division for the training and test sets, the sets
contained 312 and 79 samples, respectively.
The adr values for Nh = 2, 3, 4, 5 and 10 are shown in Figure 8.9 for both training and test sets.
The error bars indicate the standard deviation with respect to all 100 permutations for selecting
training and test sets. According to this figure, increasing Nh from 2 to 10 neurons improves
the classification results of the training set as adr increases. However, for the test set, the adr
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varies very slightly. Therefore, increasing the number of neurons does not improve the generality
of the network. The corresponding confusion matrix for Nh = 5, as an example, is shown in
Table 8.2. About 80% of the samples of each class are classified correctly. Overall, 3 ≤ Nh ≤ 5
seems to be a sufficient number of neurons for the classification of the kss input-based features.
Nh = 10 increases the complexity of the network without improving the results.
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Figure 8.9.: adr of the training and test sets of the binary subject-dependent ann classifier for different
numbers of neurons. Feature type: kss input-based features. Bars refer to the standard
deviation of permutations.

Table 8.2.: Confusion matrix of the binary subject-dependent ann classifier (Nh = 5). Feature type: kss
input-based features

predicted

driver state awake drowsy

given
awake 80.9% 19.1%

drowsy 19.0% 81.0%

Results of the drive time-based features

Drive time-based features were defined in Section 7.1.2. As mentioned before, on the one hand,
we expect to have poor classification results for these features due to the assumption that the
kss values do not change between two inputs. Moreover, we showed in previous chapter that the
correlation values of these features with kss values were lower in comparison to kss input-based
features. On the other hand, since a larger number of samples are available for the training task,
the classifier learns the rules based on more available information which clearly improves the
results.
Since, in total 4021 samples are available for drive time-based features as explained in Section
7.1.2, the training and test sets contain 3216 (80%) and 805 (20%) samples, respectively. Figure
8.10(a) depicts, how the variation of the number of neurons yields more precise classification
performance. The comparison of the results of drive time-based features in Figure 8.10(a) with
that of the kss input-based ones shown in Figure 8.9 indicates that our assumption about
constant kss values between successive kss inputs is justified. In fact, the larger number of
available samples in the feature matrix counteracts the possible impreciseness of the class labels.
The reason is that a larger amount of information is provided to the classifier for learning
the underlying relationship between kss and feature values. Again, we emphasize that higher
correlation values were found between kss input-based features and kss values. This, however,
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did not lead to better classification results for them. Moreover, the adr values shown in Figures
8.9 and 8.10(a) imply that for a larger number of samples in the feature matrix, a larger number
of neurons is needed. In fact, the number of neurons is directly linked to the complexity of
the training set. For kss input-based features, we saw that Nh ≤ 5 was a suitable value for
the number of neurons. However, for drive time-based features at least 10 neurons are needed.
From Nh = 10 to 25, despite better classification results for the training set, no improvement
for the test set is evident. In other words, increasing the number of neurons leads the classifier
to learn more complex rules which do not necessarily generalize the unseen data of the test set.
The confusion matrix for the network with Nh = 10 is shown in Table 8.3. The awake class is
detected much better in comparison to the case shown in Table 8.2 (87.9% vs. 80.9%) at a cost
of 3% drop in the dr value of the drowsy class (78.2% vs. 81.0%).
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Figure 8.10.: adr of the training and test sets of the binary and 3-class subject-dependent ann classifier
for different numbers of neurons. Feature type: drive time-based features. Bars refer to the
standard deviation of permutations.

Table 8.3.: Confusion matrices of the subject-dependent ann classifiers for 2-class (Nh = 10) and 3-class
(Nh = 20) cases. Feature type: drive time-based features

predicted
state awake drowsy

given
awake 87.9% 12.1%
drowsy 21.8% 78.2%

predicted
state awake medium drowsy
awake 84.2% 11.9% 3.9%

given medium 40.2% 42.8% 17.0%
drowsy 9.8% 17.2% 73.0%

Now, we consider a 3-class subject-dependent classification case with respect to the kss bound-
aries explained in section 8.1.1 for dividing kss values into 3 classes. adr values for this case
are shown in Figure 8.10(b). The values are not as good as those of the binary classification.
Similar to Figure 8.10(a), initially, increasing the number of neurons gives better results (higher
adr values) whereas from Nh = 20, due to overfitting, the test set results have not improved. As
mentioned before, in the 3-class classification problem, the classifier needs to learn more complex
rules which consequently requires a larger number of neurons in comparison to the previously
studied cases. Moreover, according to the confusion matrix for Nh = 20 shown in Table 8.3, as
expected, the medium class is mixed up with the awake class most of the time (40.2%), while it
is well distinguished from the drowsy class (17.0%). We showed in Figure 7.6 that the feature
boxplots corresponding to different kss values overlap each other to a large extent. As a result,
the ann classifier is also unable to find an acceptable rule for distinguishing them from each
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other, especially for the awake versus medium class.

Results of the imbalanced KSS input-based features

In previous sections, the feature matrix under investigation was based on almost equally dis-
tributed classes, i.e. balanced data sets. Now, we consider the imbalanced data set introduced
in Section 8.1.5 and resolve the consequences of imbalanced data issue. We mentioned that the
training set was constructed by considering kss input-based features collected in the driving sim-
ulator experiment and removing features of the real road drives from the initial feature matrix.
The new feature matrix with 261 samples was divided to a balanced test set with 26 samples
for each class and an imbalanced training set with 209 samples (24% awake and 76% drowsy
samples).
We trained an ann classifier with different numbers of neurons based on 100 imbalanced training
sets. The corresponding adr values are shown in Figure 8.11(a). Although we obtained adr
values of about 75% for test sets, this does not imply that both of the classes are similarly
classified correctly. This figure only shows that increasing the number of neurons does not
improve the adr value for the test set and even deteriorates it. The confusion matrix for Nh = 2
is shown in the left part of Table 8.4. As expected, unlike the drowsy class, the awake class is
classified close to random guessing due to lack of available information about it in the imbalanced
training set. This is in agreement with the statement of He and Garcia (2009) regarding the
drawbacks of an imbalanced data set.
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(b) balanced features by smote

Figure 8.11.: adr of the training and test sets of the binary subject-dependent ann classifier for different
numbers of neurons. Feature type: imbalanced and balanced by smote kss input-based
features of driving simulator experiment. Bars refer to the standard deviation of permuta-
tions.

Table 8.4.: Confusion matrices of the binary subject-dependent ann classifier for kss input-based features
of the driving simulator experiment. Left: imbalanced features (Nh = 2). Right: balanced
features by smote (Nh = 2)

predicted
state awake drowsy

given
awake 59.6% 40.4%
drowsy 9.0% 91.0%

predicted
state awake drowsy

given
awake 75.3% 24.7%
drowsy 16.1% 83.9%

In Section 8.1.5, we introduced two known methods for dealing with imbalanced data sets. The
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under-sampling method is not used here, because it results in a lower number of samples in
the feature matrix which was shown to degrade the ann classification results. Here, the smote
was applied by considering k = 5 neighbors for adding new samples to the training set. After
cleaning the new training set based on the Tomek link approach, we obtained nearly balanced
class distributions. The same balanced test sets as before were classified again based on the
retrained network with balanced classes. The results of calculated adr values are shown in
Figure 8.11(b). Interestingly, increasing the number of neurons does not improve the results in
this case either. The confusion matrix for Nh = 2 is shown in the right part of Table 8.4. The
comparison of the both confusion matrices, i.e. before and after applying the smote, indicates
that smote improved the classifier performance, such that the same awake samples of the test
sets were classified correctly up to 75.3% (Table 8.4, right) instead of only 59.6% (Table 8.4,
left). Clearly, this is obtained at a cost of 7% drop in the dr of the drowsy class (91.0% vs.
83.9%).
Now, the question is whether the retrained network based on the balanced data by smote
is able to classify unseen awake data correctly. In fact, the 75.3% dr for the awake class
generated by smote does not necessarily guarantee that true awake samples can be classified
to the same extent correctly. The word true emphasizes that smote adds artificially generated
awake samples to the training set, not the measured true ones. On this account, we applied the
removed samples of the real road experiment, which mainly belong to the awake class, as the
test set to the trained network based on the smote and driving simulator data. This clarifies
how close the artificial awake samples are to the true ones. If we obtain high dr values, then we
save time and cost by considering sleep-deprived and drowsy subjects for our experiments and
balance the class distributions afterwards artificially.
Figure 8.12 shows the adr values for the kss input-based features of the real road experiment.
It can be seen that increasing the number of neurons does not improve the classification results.
It only leads to a better dr value for one of the classes at a cost of worse dr value for the
other class as shown in Table 8.5 for two choices Nh = 3 and Nh = 10. The comparison of the
confusion matrices clarifies why adr values do not change in Figure 8.12. Increasing Nh from
2 to 10 improves the dr value of the drowsy class to the same extent that it degrades the dr
value of the awake class, namely about 3%.

2 3 4 5 10

46

50

54

58

Number of neurons

A
D
R

[%
]

 

 

2 3 4 5 10

45

50

55

60

Number of neurons

[%
]

 

 

ADR
AFDR

Figure 8.12.: adr of the kss input-based features for the real road experiment applied to the network
trained based on the smote. Bars refer to the standard deviation of permutations.

Regardless of the number of neurons, we conclude that adding artificial awake samples to the
imbalanced training set of the driving simulator data improves the classification result of this
class. Nevertheless, the retrained network results tend towards the awake class. The reason is
that the classifier failed to classify most of the unseen drowsy samples correctly. In other words,



158 Driver state detection by machine learning methods

Table 8.5.: Confusion matrices of the binary subject-dependent ann classifier for kss input-based features
of the real road experiment applied to the network trained based on the smote. Left: Nh = 3.
Right: Nh = 10.

predicted
state awake drowsy

given
awake 63.5% 36.5%
drowsy 61.8% 38.2%

predicted
state awake drowsy

given
awake 60.3% 39.7%
drowsy 58.9% 41.1%

the network is overfitted to the new samples added to the training set and does not generalize
to the unseen data.

Based on the findings in this part, we suggest the collection of both awake and drowsy data
during the experiment. The is due to the fact that artificially generated samples lead to overfitted
classifiers with the tendency towards the minority class and lack of generalization.

8.2.4. Classification results of the subject-independent data sets

This section studies a binary subject-independent ann classifier considering drive time-based
features of all conducted experiments. As explained in Section 8.1.4, here, with a total of 43
subjects, the network was trained with 42 subjects and tested on the remaining subject who was
excluded from the training set. The dr values are shown in Table 8.6 for Nh = 2. For other
values of Nh, the network was overfitted. The small number of neurons for subject-independent
data sets implies that the test set, namely the data of unseen subject, was to a large extent
different from other 42 subjects. Consequently, a small number of neurons avoids overfitting and
improves the generalization of the classifier.

Table 8.6.: Confusion matrix of the binary subject-independent ann classifier for drive time-based features
(Nh = 2)

predicted

driver state awake drowsy

given
awake 80.8% 19.2%

drowsy 37.4% 62.6%

Figure 8.13 compares these results with those of the subject-dependent case shown in Table
8.3. In this figure, dr refers to the dr of each class and 100% − dr denotes the fnr and fpr
as defined in (8.5) and (8.6). Clearly, the subject-dependent classifier performs better in the
detection of both classes than the subject-independent one, because it has seen similar samples
in the training set. As soon as totally new data is fed to the classifier, classification results
degrade for at least 7%. This shows that individual properties of the subjects were not filtered
out thoroughly during the baselining step discussed in Section 7.1.3. Moreover, since the dr of
the drowsy class decreased more severely (about 15%, from 78.2% to 62.6%) in comparison to
that of the awake class, we conclude that the effect of drowsiness represents different behaviors
in different subjects. In other words, feature samples of each subject have certain characteristics
which do not necessarily apply to all.
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Figure 8.13.: Comparing confusion matrix of the binary subject-dependent ann classifier with that of the
subject-independent

8.3. Support vector machine classifier

The background theory of this section is based on a summary from Cristianini and Shawe-Taylor
(2000), Schmieder (2009), Abe (2010), Duda et al. (2012) and Abdellaoui (2013).

Support vector machines (svm) introduced by Vladimir Vapnik (Cortes and Vapnik, 1995) is
another machine learning method with the capability of learning rules. In contrast to the ann
classifier which is sensitive to outliers and might suffer from getting trapped in multiple local
minima, the svm classifier is more robust to outliers with a unique solution (Olson and Delen,
2008; Yang, 2014). In addition, in applications with svm, overfitting seems no to be a major issue
(Olson and Delen, 2008). Hu and Zheng (2009) and Abdellaoui (2013) also used svm classifier
for driver state classification based on the blink features.

In the following sections, the basis of the svm classifier is briefly introduced and it is explained
how to train it by tuning the parameters.

8.3.1. Hard margin support vector machines

For a binary classification case with a linearly separable data set and class labels yi ∈ {1,−1} as
shown in Figure 8.14, the decision function is defined by the hyperplane H: wTx + b = 0, where
w and x refer to the weight and feature vectors, respectively. b denotes the bias. Therefore, the
classes can be distinguished from each other by the following inequality

yi
(
wTxi + b

)
≥ 1 . (8.22)

Generally, the distance between sample xi of the training set and the separating hyperplane is
called the margin γi as shown in Figure 8.14(a). It is defined as

γi =
yi
(
wTxi + b

)
‖w‖ , (8.23)

where ‖w‖ denotes the Euclidean norm of w. The goal of support vector machine classifier is
to find the hyperplane with the maximal margin for the training set among different possible
separating hyperplanes as shown in Figures 8.14(a) and 8.14(b). This hyperplane is called the
optimal separating hyperplane and is found by optimizing the value of γmin. γmin, which refers
to the minimum distance between the separating hyperplane and all samples of the data set in
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Figure 8.14.: Different separating hyperplanes

each class, is defined as follows
γmin = 1

‖w‖ . (8.24)

The largest value of γmin, called γopt, belongs to the optimal separating hyperplane and a classifier
based on it is called maximal margin classifier. Thus, the goal is to find γopt, i.e.

max
w,b

γmin =⇒min
w,b
‖w‖ (8.25)

subject to yi
(
wTxi + b

)
≥ 1 i = 1, · · · , N

which is equivalent to

max
w,b

γmin =⇒min
w,b

1
2 ‖w‖

2 (8.26)

subject to yi
(
wTxi + b

)
≥ 1 i = 1, · · · , N .

In addition to (8.26), which is called the primal form of the optimization problem, there exists
also an alternative dual form which in comparison to the primal form is much easier to solve. In
fact, in the primal form, it is difficult to handle the inequality constraint.

The dual form of the optimization problem of (8.26) is based on the Lagrangian function L as
follows

L(w, b,α) = 1
2 ‖w‖

2 −
N∑
i=1

αi
(
yi
(
wTxi + b

)
− 1

)
, (8.27)

where α =
[
α1 α2 · · · αN

]T
is the non-negative Lagrangian multipliers. For optimizing the

above equation, the extrema of L(w, b,α) should be calculated by differentiation with respect
to b and w. By substituting the differentiation results in (8.27), the dual problem is obtained as
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follows

max
α
Ld(α) =

N∑
i=1

αi −
1
2

N∑
i,j=1

αi αj yi yj xTi xj (8.28)

subject to
N∑
i=1

αi yi = 0 , αi ≥ 0 , i = 1, · · · , N

where Ld refers to the dual Lagrangian function. The above optimization is called hard margin
svm and is clearly independent of the weight vector w.

A main drawback of the above optimization problem for the maximal margin classifier based on
the hard margin is the requirement of a linearly separable data set. Clearly, such sets are not
always the case in real life data collection. Moreover, since the goal of such a classifier is to classify
the training data with no training error, it is inevitable to avoid overfitting. Consequently, low
generalization ability is expected. This issue will be addressed in the next section.

8.3.2. Soft margin support vector machines

Since in real-world application not all data sets are linearly separable, the hard margin svm
should be revised before applying it to linearly inseparable data sets. A possible solution is, on
the contrary to the previous approach, to tolerate misclassification of the training data to some
extent as shown in Figure 8.15. It should be mentioned that it is the data set which might be
linearly inseparable. The decision function is still a linear boundary.

final

Figure 8.15.: Example of a linearly inseparable data

This goal is achieved by defining the slack variables ξi ≥ 0 which modify (8.22) as follows

yi
(
wTxi + b

)
≥ 1− ξi . (8.29)

In the case of ξi = 0, xi is classified correctly1. For 0 < ξi < 1, xi is classified correctly and
is located within the selected margins, i.e. the selected margins are not the maximum ones
(see Figure 8.15). However, for ξi ≥ 1, xi is misclassified with respect to the selected optimal
hyperplane (see Figure 8.15).

The hyperplane based on this approach is called the soft margin hyperplane. Accordingly, the
classifier is called the soft margin svm. The primal form of the optimization problem in (8.26)

1xi is not necessarily located on the boundary.
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for finding this hyperplane is reformulated as follows

min
w,b,ξ

1
2 ‖w‖

2 + C

l

N∑
i=1

ξli (8.30)

subject to yi
(
wTxi + b

)
≥ 1− ξi , ξi ≥ 0 , i = 1, · · · , N

where ξ =
[
ξi ξ2 · · · ξN

]T
and the parameter C control the trade-off between minimizing the

number of misclassified samples and maximizing the margin. In fact, parameter C is responsible
for penalizing samples within the margin or those which are classified wrongly. l is usually 1 or 2
and accordingly the problem is called either L1-norm or L2-norm svm. Although the soft margin
solution does not suffer from the drawback of the hard margin in terms of linear separability of
the data set, its performance depends on the choice of parameter C.
Similar to (8.26), there also exists an alternative dual form for (8.30) whose derivation is provided
in Appendix H.2. For the L1-norm, we have

max
α
Ld(α) =

N∑
i=1

αi −
1
2

N∑
i,j=1

αi αj yi yj xTi xj (8.31)

subject to
N∑
i=1

αi yi = 0 , 0 ≤ αi ≤ C , i = 1, · · · , N .

In comparison to (8.28), now αi has an upper bound in (8.31). Moreover, ξi is not directly
involved in the dual form.
An important property in the resulting dual forms of the optimization problem for both hard
and soft margin svm ((8.28) and (8.31)) is that finding the optimal separating hyperplane never
directly depends on the isolated values of the training data, but only on the inner product of
the original feature vector xTi and xj . It will be shown in the next section, how we benefit from
this property.

8.3.3. Kernel trick

Although the previous section discussed the solution for handling linearly inseparable data sets,
the resulting optimal hyperplane might still suffer from lack of generalization depending on the
amount of non-linearity. We explained in Section 8.2 that ann classifier benefits from non-linear
transfer functions to deal with non-linearities. For svm, however, another approach addresses
this problem by analyzing the space RD on which the features are lying. The reason is that
the more complex the original space is, the more difficult it is to learn the underlying patterns.
This motivates mapping (7−→) the attributes to another space, called feature space F, of a higher
dimension by function Φ. As a result, the linear separation of a linearly inseparable data set
becomes possible. Mathematically, the mapping is denoted as follows

Φ: RD 7−→ F
x 7−→ Φ(x) . (8.32)

Figure 8.16 shows an example of such a mapping, where increasing the dimension of the original
space with linearly inseparable data set leads to a linear classification problem in the feature
space.



8.3 Support vector machine classifier 163

z1
z2

z 3

x1

x
2

separating
hyperplane

(a) original space

z1
z2

z 3

x1

x
2

separating
hyperplane

(b) feature space

Figure 8.16.: An example of feature mapping for a linearly inseparable data set

Since after mapping, Φ(x) contains linearly separable values, the linear decision function intro-
duced in (8.22) is reformulated as

H: wTΦ(xi) + b . (8.33)

Accordingly, in (8.28) and (8.31), the inner product of xTi xj is replaced by the kernel function
K(.), namely

K(xi,xj) = Φ(xi)T Φ(xj) . (8.34)

The advantage of the kernel function is that it allows the calculation of the inner product of
Φ(xi)T and Φ(xj) without explicitly calculating the mapped values. Moreover, the dimension of
the feature space does not play any role in the calculation of the kernel function. Consequently,
even a feature space with a very large dimension does not increase the computational complexity
of the classification problem. Other properties of the kernels are discussed in Cristianini and
Shawe-Taylor (2000) and Schmieder (2009).
Some well-known kernel functions are

• linear : K(xi,xj) = xTi xj
• polynomial: K(xi,xj) = (a+ xTi xj)d , d ∈ N , a ≥ 0

• radial basis function (rbf): K(xi,xj) = e−γ ‖xi−xj‖2 , γ > 0
• sigmoid: K(xi,xj) = tanh

(
κxTi xj + r

)
, κ > 0 , r < 0

As it is shown, some kernel functions have also a parameter which should be tuned in addition
to the parameter C of the svm classifier. For example, the parameter γ of the rbf kernel, is
responsible for controlling under and overfitting during the training phase (Asa and Weston,
2010).
In general, there is no known method which determines the type of the kernel function for a
specific application. Thus, depending on the characteristic of the data set, different kernels might
be appropriate or inappropriate. Since rbf kernel has only one parameter to be optimized, it is
usually the first choice (Chang and Lin, 2011).

8.3.4. Model construction

We mentioned in the previous section that the training phase of the svm classifier involves
optimization of two types of parameters: the parameter C for controlling the trade-off between
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the training error and the margin between classes and the kernel function parameter(s). Here,
we choose the rbf kernel which means the parameter pair (C, γ) must be optimized. A common
method for achieving this goal is applying the grid search method combined with the cross
validation as explained in the following.

Grid search

In general, the grid search method comprises searching for the optimal parameters guided by
a performance metric. For each parameter pair, a performance metric such as the accuracy
is calculated and the pair with the highest accuracy will be selected for constructing the svm
model. It should be noted that here, we use accuracy as the performance metric to guide the grid
search, because its classification results outperformed those of other metrics during the training
phase. By choosing the rbf kernel, first, the range of C and γ needs to be defined. Since finding
the best parameter pair is very time-consuming, the suggestion of Hsu et al. (2003) is adapted.
According to that, first a coarse grid search is applied to roughly find the best values of C and
γ, namely (C0, γ0), such that

(C0, γ0) = arg max
C,γ

acctrain
(
svm(C, γ)

)
(8.35)

C = 2xC , xC ∈
{
−5,−3, · · · , 15

}
(8.36)

γ = 2xγ , xγ ∈
{
−15,−13, · · · , 3

}
, (8.37)

where svm(C, γ) denotes the svm model constructed using parameters C and γ. acctrain refers
to the accuracy during the training phase. We suppose that (C0, γ0) are calculated based on
(xC0 , xγ0). Afterwards, a fine grid search is performed around (C0, γ0) to determine the optimal
parameter pair (Copt, γopt) based on a new range of values for xC and xγ as follows

(Copt, γopt) = arg max
C,γ

acctrain
(
svm(C, γ)

)
(8.38)

xC ∈
{
xC0 − 2, xC0 − 1.75, · · · , xC0 + 1.75, xC + 2

}
(8.39)

xγ ∈
{
xγ0 − 2, xγ0 − 1.75, · · · , xγ0 + 1.75, xγ0 + 2

}
. (8.40)

Unlike the coarse search, where the step sizes of xC and xγ are set to 2, in fine search, they are
set to 0.25. Figure 8.17 shows the results of the coarse and fine grid search with the highest
accuracy of 83.5% and 84.0%, respectively. The selected parameters are (C0, γ0) = (32, 2) and
(Copt, γopt) = (16, 2).

Cross validation

Cross validation is a method for avoiding overfitting during the training phase. As mentioned
in Section 8.1.1, prior to applying any classifier to the data set, a training and a test set are
constructed. The cross validation method splits the training set into two sets for a second time.
The first set of it is only used for the training, while the second one, called validation set Svalidation,
is considered as the test set (see Figure 8.18). Repeating this division step j times is called j-
fold cross validation which randomly divides the Ntrain samples of Strain into j subsets with the
length of Ntrain

j per subset. Each time, one of the j sets is used as Svalidation and the remaining
j − 1 sets are combined together as the new training set. Clearly, by repeating this procedure
j-times, all sets appear one time as the validation set. A performance metric on Svalidation is
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Figure 8.17.: An example of the grid search for finding (C0, γ0) and (Copt, γopt)

calculated each time. The overall performance of the training phase is the average over all j
calculated performance metrics. Figure 8.18 pictorially shows this method. If additionally the
samples of different classes are also equally distributed in the training and test sets, then the
method is called j-fold stratified cross validation. After constructing the final model, it will be
then applied to the initial test set which is totally new to the classifier.

35

… …

Figure 8.18.: j-fold cross validation method

8.3.5. Multi-class classification approaches

In order to extend the application of the svm classifier for covering multi-class cases, different
approaches exist which are reviewed in Abe (2010). Here, we only explain One-Against-One
and One-Against-All strategies. Both of these strategies decompose the original problem into
multiple binary sets and then apply the introduced svm classifier to them as explained in the
following.

One-Against-All

This approach decomposes the original m-class problem into m binary classification problems
where sample xi belongs either to class J ∈ {1, 2, · · · ,m} or does not belong to this class.
Clearly, a sample, which does not belong to class J , is the member of one of the other m − 1
classes. In order to cover all m classes, the decision function should be calculated m times.
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According to (8.33), for the J-th decision function, which classifies the J-th class, we have

wT
J Φ(xi) + bJ

{
≥ 1 xi belongs to class J
≤ −1 xi belongs to the remaining classes ,

where wT
J Φ(xi) + bJ = 0 is the optimal separating hyperplane. The above decision function

is a discrete one, since only its sign plays a role in the classification. A shortcoming of such a
decision function is that a sample might be unclassifiable as shown in Figure 8.19(a) with shaded
areas. In this figure, a sample is classified as belonging to class J , if wT

J Φ(xi) + bJ > 0 (shown
with an arrow). Clearly, a sample is unclassifiable,

• if it satisfies wT
J Φ(xi) + bJ > 0 for different classes or

• if it does not satisfy wT
J Φ(xi) + bJ > 0 for any class J .

Therefore, instead of a discrete decision function, a continuous one is used and the final predicted
class is the one which maximizes the decision function as follow

arg max
J = 1, · · · ,m

(
wT
JΦ(xi) + bJ

)
. (8.41)

In addition to the mentioned problem, another problem of the One-Against-All approach is that
the distribution of the classes in the training set is imbalanced. This is due to classifying samples
of one class against samples of all other classes. As an example, for five classes each with equal
numbers of samples, this approach leads to the class distribution of 20% versus 80% in the
training set. In Section 8.1.5, we discussed this issue.

(a) One-Agains-All (b) One-Agains-One

Figure 8.19.: An example of a 3-class classification with shaded areas as the unclassifiable. The ar-
rows show the positive sides of the hyperplanes. Decision functions for the One-Against-
All approach: H: wT

JΦ(xi) + bJ = 0, J = 1, 2, 3 and for the One-Against-One approach:
H: wT

IJ Φ(x) + bIJ = 0, I = 1, 2, 3, J = 1, 2, 3 and I 6= J .

One-Against-One

On the contrary to the previous approach, the One-Against-One approach decomposes the origi-
nal multi-class problem into K = m (m−1)

2 binary cases, wherem refers to the number of available
classes. By applying the svm classifier to these binary problems, a sample xi will be then clas-
sified for K times based on K decision functions as either the member of class I or class J ,
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where I 6= J . Consequently, this method performs the training phase with a fewer number of
samples, namely only with those belonging to the classes under investigation. On the contrary,
the One-Against-All method considers all samples together. By applying the conventional svm
classifier to the binary classes, we have

wT
IJ Φ(xi) + bIJ

{
≥ 1 xi belongs to class I
≤ −1 xi belongs to class J ,

where I = 1, 2, . . . ,m, J = 1, 2, . . . ,m, I 6= J and wT
IJ Φ(xi) + bIJ = 0 is the optimal separating

hyperplane. The final predicted class of sample xi corresponds to the class with the maximum
number of votes after K times classification as follows

arg max
I = 1, . . . ,m

m∑
J=1,I 6=J

sgn
(
wT
IJ Φ(xi) + bIJ

)
. (8.42)

In fact, a sample xi is classified as belonging to the I-th class, if the above equation is equal
to m − 1 for the I-th class and a value smaller than m − 1 for the other class. If for none of
the classes the value m− 1 is achieved, then xi is unclassifiable, because multiple classes satisfy
(8.42).

Figure 8.19(b) shows an example of an unclassifiable area for this method with shaded area. In
this figure, wT

IJ Φ(xi) + bIJ > 0 leads to the classification of xi as belonging to class I (shown
with arrows) and otherwise as belonging to class J . According to this figure, the advantage of
this method over the One-Against-All method in Figure 8.19(a) is that the unclassifiable area
for the current method is much smaller. Therefore, in this work, this approach is applied.

8.3.6. Dealing with imbalanced data

As mentioned in Section 8.1.5, an imbalanced data set degrades the classifier performance. For
the svm classifier with imbalanced data, the optimal hyperplane tends more towards the minority
class. The reason is that the more it gets closer to the samples of the minority class, the larger
is the number of correctly classified samples of the majority class in comparison to the number
of misclassified samples of the minority class. In other words, the classifier prefers to classify a
large number of samples of the majority class correctly without violating the margins instead of
violating the margins to correctly classify few samples of the minority class. As a result, most of
the unseen samples of the test set will automatically be classified as belonging to the majority
class due to the shifted optimal separating hyperplane.

We explained in Section 8.3.2 that the soft margin svm tolerates wrong classifications by applying
the parameter C in (8.30) which is also referred to as the misclassification cost. The second term
in (8.30) penalizes the errors of both classes equally, which is not desired, if the available data
set is imbalanced. Therefore, the following solution proposed by Veropoulos et al. (1999) is used
for the L1-norm svm which considers different values of C for each class, namely

C
N∑
i=1

ξi −→ C+
∑
i∈N+

ξi + C−
∑
i∈N−

ξi . (8.43)

In the above equation, N+ and N− refer to the number of samples in the majority and minority
classes, respectively. Similarly, C+ and C− refer to different misclassification costs for each class.
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Accordingly, the upper bound of αi in (8.31) also becomes

0 ≤ αi+ ≤ C+ , xi ∈ S+ (8.44)
0 ≤ αi− ≤ C− , xi ∈ S− . (8.45)

To reduce the negative effect of an imbalanced data set, misclassified samples of the minority
class must be penalized to a larger extent than those of the majority class, i.e. C+ < C−. Akbani
et al. (2004) empirically found good results by selecting the following ratio between C+ and C−

C−
C+

= N+
N−

=⇒ C− = C+
N+
N−

. (8.46)

Finally, this leads to

C− = C (8.47)

C+ = C
N−
N+

. (8.48)

However, Schmieder (2009) suggested following values

C− = C

2N−
(8.49)

C+ = C

2N+
. (8.50)

In this work, we use the ratio in (8.46).

8.3.7. Classification results of subject-dependent data sets

In this work, the soft margin svm classifier was applied using the libsvm library (Chang and
Lin, 2011). As mentioned before, this classifier has two parameters to be tuned: the kernel pa-
rameter(s) and the classification error weight C for controlling the trade-off between the training
error and the margin between classes. The rbf kernel was selected here because of its good clas-
sification results within the shortest simulation runtime. The γ parameter of the rbf and C were
optimized by the grid search method and the 5-fold cross-validation as explained in Section 8.3.4.
The range of C and γ were also defined according to (8.36) and (8.37). The performance metric
for guiding the search algorithm was the accuracy as defined in (8.8), because its classification
results outperformed those of other metrics during the training phase.

Results of the KSS input-based features

As mentioned before, the balanced test and training sets were defined by 100 permutations.
Due to this fact, 100 binary svm models were trained with the parameters shown in Figure 8.20
regarding the kss input-based features with balanced class distributions. The corresponding
training and test accuracies are also shown in this figure. The confusion matrix, which is calcu-
lated based on the average over all permutations, is also shown in Table 8.7. It can be seen that
both classes are classified with very close dr values. The comparison of these results with those
of the ann classifier in Table 8.2 indicates that the svm classifier has achieved slightly better dr
values, although the differences are only about 4%.
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Figure 8.20.: Boxplot of C, γ, training and test accuracies for the balanced and imbalanced 2-class subject-
dependent classification with the svm for all 100 permutations. Feature type: kss input-
based features

Table 8.7.: Confusion matrix of the binary subject-dependent svm classifier. Feature type: kss input-
based features

predicted

driver state awake drowsy

given
awake 84.2% 15.8%

drowsy 16.4% 83.6%

Results of the drive time-based features

Similar to the ann classifier, 2-class and 3-class svm classifiers with drive time-based features
were trained. We expect to achieve better results in comparison to the results of the kss input-
based features due to having a feature matrix with a larger number of samples and a larger
amount of information.

Figure 8.21 shows the trained parameters C and γ for both subject-dependent svm classifiers.
Comparing these parameters with those of the kss input-based features does not reveal a large
difference between them. Moreover, the parameters of the 2- and 3-class cases are also not
very far from each other. Therefore, we conclude that in spite of different feature aggregation
approaches, the optimization parameters do not differ to a large extent. The corresponding
confusion matrices are also shown in Table 8.8. Similar to the ann classifier, using drive time-
based features improves the dr of the awake class by about 5% (89.0% vs. 84.2%). However, the
dr of the drowsy class drops to a larger extent, namely by about 6% from 83.6% to 77.6%. The
comparison of the performance of the svm with that of the ann in Table 8.3 indicates that for
both binary and 3-class cases, the type of the classifier did not affect the classification results. As
an example, the medium class is also confused with the awake class by the svm classifier. This
finding emphasizes two facts. First, the class labels might be imprecise. As a result, regardless
of the type of the classifiers applied to the features, some classes are not distinguishable such
as awake versus medium class. Second, the features might not be informative enough for our
task which limits the result improvement. Consequently, both classifiers performed similarly.
Besides the mentioned points, we also conclude that the underlying driver state information in
the extracted features is interpreted similarly by both classifiers. Since this is valid independent
of the classifiers’ type, we consider it as the strong point of the features.



170 Driver state detection by machine learning methods

0

10

20

30

40

2 3

Copt

classes

0

1

2

3

4

2 3

γopt

classes

70

75

80

85

90

95

2 3

training set

[%
]

classes

70

75

80

85

90

95

2 3

test set

[%
]

classes

Figure 8.21.: Boxplot of C, γ, training and test accuracies for the 2-class and 3-class subject-dependent
classification with the svm for all 100 permutations. Feature type: drive time-based features

Table 8.8.: Confusion matrices of the subject-dependent svm classifiers for the 2-class and 3-class cases.
Feature type: drive time-based features

predicted
state awake drowsy

given
awake 89.0% 11.0%
drowsy 22.4% 77.6%

predicted
state awake medium drowsy
awake 85.3% 9.8% 4.9%

given medium 40.2% 41.7% 18.1%
drowsy 10.5% 14.9% 74.6%

Results of the imbalanced KSS input-based features

In this section, we study whether the svm classifier is sensitive to the distribution of classes in
the training set. Therefore, similar to Section 8.2.3, we fed imbalanced kss input-based features
of the driving simulator experiment to the binary subject-dependent svm classifier. The values of
C, γ and the corresponding accuracies are depicted in Figure 8.20. Interestingly, in comparison
to balanced case, the value of C has a larger range. The calculated confusion matrix is shown on
the left part of Table 8.9. The awake class is classified less correctly (63.0%) in comparison to
the drowsy class (93.7%) which underscores the tendency of the classifier towards the majority
class, namely the drowsy class. We explained in Section 8.3.6 that this happens due to equally
penalizing the misclassified samples of both classes during the training phase. There, we also
mentioned that this problem can be solved by considering different misclassification costs for each
class. According to (8.46), we need the ratio between the number of samples in the minority
and majority classes which were N− = 50 and N+ = 159. The confusion matrix of the binary
subject-dependent svm classifier with different misclassification costs is shown in the right part
of Table 8.9.
Table 8.9.: Confusion matrices of the binary subject-dependent svm classifiers for kss input-based fea-

tures of driving simulator experiment. Left: imbalanced features, right: balanced features by
considering different misclassification costs

predicted
state awake drowsy

given
awake 63.0% 37.0%
drowsy 6.3% 93.7%

predicted
state awake drowsy

given
awake 73.3% 26.7%
drowsy 7.5% 92.5%

According to the listed values, the classification of the awake class improves by about 10%.
However, the dr value of the drowsy class decreases by about 1%. This is unlike the ann
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classifier where the dr of the awake class improved to a larger extent by reducing the dr of the
drowsy class (see Table 8.4). As a result, the ann classifier was more sensitive to imbalanced
data set.

Overall, both classifiers perform almost similarly in detection of the awake class. However, the
svm outperforms the ann in the detection of the drowsy class by about 8%. This might be due
to the fact that different solutions for handling the imbalanced data were applied. In fact, totally
different training sets were fed to these classifiers. The ann classifier was trained with the new
artificially generated awake samples based on the smote, while the svm classifier received only
the same imbalanced training set. In other words, the ann classifier was retrained by changing
the input values and not the structure of the training phase. On the contrary, the svm classifier
was retrained by the fixed input samples and a new structure of the training phase, i.e. different
misclassification costs. In addition, the smote is a general approach which is independent of
the classifier type. However, the approach used for the svm directly affects the classifier itself.
Consequently, it has yielded better classification results.

In order to know whether the newly trained svm also classifies unseen awake samples correctly,
we applied the features of the real road drives to it. According to the corresponding confusion
matrix shown in Table 8.10, both of the classes are detected completely randomly, i.e. dr
values are close to 50%. Consequently, similar to the ann (compare with Table 8.5), an svm
classifier retrained with different misclassification costs is also still unable to classify unseen
awake samples. It even fails to classify drowsy samples correctly. In fact, the new classifier is
overfitted and is far from a generalized model. Therefore, we conclude that even by applying
the svm classifier and its approach for handling imbalanced classes, the collection of both awake
and drowsy data during the experiment is essential.

Table 8.10.: Confusion matrix of the binary subject-dependent svm classifier for kss input-based features
of the real road experiment applied to the model trained by considering different misclassifi-
cation costs

predicted

driver state awake drowsy

given
awake 44.4% 55.6%

drowsy 47.6% 52.4%

8.3.8. Classification results of the subject-independent data sets

Similar to Section 8.2.4, we also studied the svm while considering the subject-independent
classification approach. The confusion matrix shown in Table 8.11 does not differ from that of
the ann classifier listed in Table 8.6. Therefore, the type of the classifier seems not to be an
issue for solving the problem of unseen data given the drive time-based features. However, Figure
8.22, which compares Table 8.11 with the similar confusion matrix for the subject-dependent
classification by the svm (Table 8.8), indicates that classification of the awake class is less
problematic (10% drop of the dr from 89.0% to 79.5%). On the contrary, for the drowsy class,
the dr decreases more severely (16%, from 77.6% to 61.5%).
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Table 8.11.: Confusion matrix of the binary subject-independent svm classifier for drive time-based fea-
tures

predicted

driver state awake drowsy

given
awake 79.5% 20.5%

drowsy 38.5% 61.5%
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Figure 8.22.: Comparing confusion matrix of the binary subject-dependent svm classifier with that of the
subject-independent

8.4. k-nearest neighbors classifier

The classifiers, which were studied in Sections 8.2 and 8.3, are both based on complex ideas and
optimization solutions. The ann classifier works based on neurons and hidden layers and the
svm looks for the optimal separating hyperplane. In this section, another classifier based on a
very simple idea, namely nearest neighbors, is studied to show how complex a classier is required
to be in our application.

8.4.1. Background theory

The k-nearest neighbor classifier is a nonparametric classification method which does not need
any information about the underlying distribution of the data set. It is also very famous for its
simplicity. As its name shows, this classifier determines the class of each sample depending on
the majority class of the k nearest adjacent samples. According to Cover and Hart (1967), the
number of k should not be set very large, otherwise outliers of other classes influence the true
class. Moreover, by selecting odd numbers of k ambiguous decisions are avoided. However, the
special case of k = 1 should not be chosen. It is subject to high amount of noise and unreliable
results, because it always leads to overfitting.
This method strongly depends on the distance between the sample under investigation and
samples of the training set. Thus, different metrics are defined for calculating it such as the
general metric of Minkowski Lp(x,y)

Lp(x,y) =
(

N∑
i=1
|xi − yi|p

) 1
p

. (8.51)

In the case of p = 1, (8.51) is called Manhattan distance or L1-norm and for p = 2, it is the
conventional Euclidean distance or the L2-norm. As mentioned in Duda et al. (2012), a main
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drawback of the Euclidean distance is its sensitivity to the features’ scaling, i.e. a large disparity
in the range of features. This fact underlines the importance of feature normalization prior to
the classification. Another alternative distance metric, which does not suffer from the mentioned
problem, is the Mahalanobis distance defined as

Lmaha(x,y) =
√

(x− y)T S−1 (x− y), (8.52)

where S refers to the covariance matrix. In addition, a linear transformation of x does not affect
the value of Lmaha (Yang, 2014).

8.4.2. Classification results of the subject-dependent data sets

Similar to other classifiers, in this section, we study the k-nn classifier under subject-dependent
and subject-independent, 2-class and 3-class cases and finally its sensitivity to the imbalanced
data.

Results of the KSS input-based features

Here, we study the performance of the k-nn classifier with regard to the kss input-based features
for different values of k, namely k = 3, 5, 7 and 9. The Mahalanobis distance was used as the
distance metric for finding the nearest neighbors. Figure 8.23 shows the calculated adr values.
The results seem very similar for all values of k with the maximum adr achieved at k = 5. The
confusion matrix for k = 5 is also listed in Table 8.12. In comparison to the ann classifier (Table
8.2), this classifier detects the awake class by about 2% better (83.2% vs. 80.9%) which makes
it comparable with the svm classifier (83.2% vs. 84.2%) (Table 8.7). In detection of the drowsy
class, however, the svm classifier is superior to both of them (svm: 83.6%, ann: 81.0% and
k-nn: 79.7%). Overall, these results show that relying on the class of the nearest neighbors is a
good solution for defining the class of the sample under investigation given the kss input-based
features.
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Figure 8.23.: adr of the test sets of the binary subject-dependent k-nn classifier for different numbers of
neighbors. Feature type: kss input-based features. Bars refer to the standard deviation of
permutations.

Results of the drive time-based features

The drive time-based features were also fed into the k-nn classifier for the binary and 3-class
cases. The corresponding values of the adr are shown in Figure 8.24. For both binary and 3-class
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Table 8.12.: Confusion matrix of the binary subject-dependent k-nn classifier for k = 5. Feature type:
kss input-based features

predicted

driver state awake drowsy

given
awake 83.2% 16.8%

drowsy 20.3% 79.7%

cases, increasing the number of nearest neighbors k slightly improves the classification results.
The confusion matrices for k = 7 are also listed in Table 8.13. In comparison to the results for
the kss input-based features in Table 8.12, the dr value for the awake class increases by about
3% (86.8% vs. 83.2%), while the detection of the drowsy class shows no improvement (79.2%
vs. 79.7%). Comparison of the binary k-nn classifier with the binary ann and svm classifiers
regarding drive time-based features indicates that, overall, all classifiers perform similarly and
the difference between the dr values of each class is only about 2%.
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Figure 8.24.: adr of the 2-class and 3-class subject-dependent k-nn classifier for different numbers of
neighbors. Feature type: drive time-based features. Bars refer to the standard deviation of
permutations.

Table 8.13.: Confusion matrices of the subject-dependent k-nn classifier (k = 7) for the 2-class and 3-class
cases. Feature type: drive time-based features.

predicted
state awake drowsy

given
awake 86.8% 13.2%
drowsy 20.8% 79.2%

predicted
state awake medium drowsy
awake 82.0% 14.4% 3.6%

given medium 36.8% 47.6% 15.6%
drowsy 11.0% 19.5% 69.5%

For the 3-class case, the detection of the medium class slightly improves in comparison to that
of the ann and svm classifiers (k-nn: 47.6%, ann: 42.8% and svm: 41.7%). However, this is
followed by the degradation of the dr value for the awake and drowsy classes by this classifier.

Results of the imbalanced KSS input-based features

The sensitivity of the k-nn classifier to an imbalanced training set based on the kss input-based
features is studied in this section. According to Figure 8.25, increasing the number of nearest
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neighbors k from 3 to 7 slightly improves the dr values. However, k = 9 yields similar results
to k = 7. The confusion matrix for k = 7 is listed in Table 8.14. Similar to the ann and svm
classifiers (Tables 8.4 and 8.9), this classifier also fails to classify the samples of the minority
class as correct as the samples of the majority class with about 30% difference between dr values
of each class (60.2% vs. 89.2%).
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Figure 8.25.: adr of the test sets of the binary subject-dependent k-nn classifier for different numbers of
neighbors. Feature type: imbalanced kss input-based features of driving simulator experi-
ment. Bars refer to the standard deviation of permutations.

Table 8.14.: Confusion matrix of the binary subject-dependent k-nn classifier (k = 7). Feature type:
imbalanced kss input-based features of driving simulator experiment

predicted

driver state awake drowsy

given
awake 60.2% 39.8

drowsy 10.8% 89.2%

8.4.3. Classification results of the subject-independent data sets

The results of the subject-independent classification for the binary k-nn classifier based on
drive time-based features are shown in Table 8.15 for k = 9. We showed in Sections 8.2.4
and 8.3.8 that the performance of the ann and svm classifiers degraded in the case of subject-
independent classification. Nevertheless, the drowsy class was classified by them up to 61%
correctly. However, it seems that the k-nn classifier is less suitable for the classification of
unseen data in comparison to the other classifiers due to the smaller dr value for the drowsy
class (57.4%). By varying the number of k, the results do not improve.

Table 8.15.: Confusion matrix of the binary subject-independent k-nn classifier for drive time-based fea-
tures (k = 9)

predicted

driver state awake drowsy

given
awake 80.0% 20.0%

drowsy 42.6% 57.4%

Figure 8.26 compares the metrics of the confusion matrix for the subject-dependent and subject-
independent k-nn classifiers. It can be seen that the dr of the drowsy class drops by about 22%
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from 79.2% to 57.4%. For the awake class, however, the dr decreases only by about 7% from
86.8% to 80.0%.
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Figure 8.26.: Comparing confusion matrix of the binary subject-dependent k-nn classifier with that of
the subject-independent

8.5. Comparison of the supervised classifiers for driver state
classification

In previous sections, three classifiers were introduced and their classification results were dis-
cussed. In this section, we review them in terms of different aspects such as the performance,
subject-dependent versus subject-independent classification, simulation runtime, etc.
Figure 8.27 summarizes the confusion matrices of all binary classifiers for the subject-dependent
and subject-independent classifications given the drive time-based features. In this figure, all
dr and 100% − dr values as listed in a confusion matrix are provided. 100% − drawake and
100% − drdrowsy correspond to the fpr and fnr values, respectively. Overall, none of the
classifiers outperforms the other ones. If a classifier detects one class with a higher dr value,
it is usually at a cost of degraded classification result for the other class. As an example, the
binary subject-dependent k-nn classifier classifies the drowsy class slightly better than the svm
and ann classifiers, while it achieves the smallest value of the dr for the classification of the
awake class among other classifiers. Therefore, it seems that any of the classifiers can be applied
to the drive time-based features for the subject-dependent classification.
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Figure 8.27.: Comparing confusion matrices of the binary ann, svm and k-nn classifiers for the subject-
dependent and subject-independent classifications. Feature type: drive time-based features

Regarding subject-independent classification, the performance of all classifiers degrade as ex-
pected. The k-nn method also seems not to be a suitable classifier for a data set with large
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between-subject differences due to its poorer performance in the classification of the drowsy
class. The ann and svm classifiers interpret the features in a similar way in this case. Neverthe-
less, a more effective feature baselining method might improve the results of subject-independent
classification.
For the 3-class classification, all confusion matrices are summarized in Figure 8.28. All in all,
the dr values of all classes and all classifiers are not as good as those of the binary cases. The
svm and ann classifiers detect awake and drowsy classes with higher dr values in comparison
to the k-nn classifier. However, the medium class is best detected by the k-nn.
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Figure 8.28.: Comparing confusion matrices of the 3-class ann, svm and k-nn classifiers for the subject-
dependent classification. Feature type: drive time-based features

Since the performance of a supervised classifier is highly influenced by the preciseness of the
labels, all results provided here also fully depend on the accuracy of the collected kss values.
Apart from that, in this study, all binary classifiers perform well with the adr of 82% which is
32% better than random guessing. It is, hence, concluded that apart from the informativeness of
the features, the subjects were also able to properly distinguish between awake and drowsy states
leading to accurate labels. Therefore, for the 3-class problem also all classifiers seldom confuse
the awake and drowsy classes with each other, while the medium class is more often misclassified
by all of them, especially as the awake class. This might be due to the fact that the transition
from the awake to the medium state was not very distinguishable for the subjects themselves
and, consequently, they interpreted their states inconsistently. Nevertheless, an average dr of
66% for the 3-class classification is still twice more effective than a random classifier.
Figure 8.29 shows all results for the kss input-based features. The first three bars from the
top compare the dr values for the balanced case where all features of all experiments, namely
real road and driving simulator experiments, were included in the training and test sets. All
classifiers perform almost similarly. svm achieves the maximum dr values for both of classes.
It should be mentioned that the number of samples for kss input-based features are about 10
times smaller than that of the drive time-based ones. Hence, comparing the classification results
based on each feature aggregation method should be done with care. Taking the large difference
between the number of samples in the training sets into consideration, the classification results
of the kss input-based features are even more satisfactory. In fact, the smaller dr values for the
kss input-based features do not necessarily imply that these features are not as informative as
the drive time-based features. Nevertheless, adding a larger number of samples to the training
sets of kss input-based features might improve the results.
Regarding imbalanced training sets, also shown in Figure 8.29, we conclude that the svm classifier
with the standard misclassification cost is more robust against imbalanced distributions of the
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Figure 8.29.: Comparing confusion matrices of the binary subject-dependent ann, svm and k-nn classifiers
for different kss input-based features

classes, since it achieves the highest values of the dr for both classes among other classifiers.
By applying two methods, we tried to improve the imbalance issue of the training set, namely
smote and different misclassification costs. The former was combined with the ann classifier
and we artificially added new samples to the minority class. The latter, however, took properties
of the svm classifier into account. For both methods, the classification results improve, but the
svm classifier is superior to the ann in this case. This might be due to the fact that the smote
solves the imbalanced data problem regardless of the classifier, while different misclassification
costs approach solves this problem by directly manipulating the classifier itself.

Although we could solve the problem with the lack of awake samples in the training sets, the
resulting classifiers are still inefficient in classifying unseen awake samples. The ann classifier
classifies these samples up to about 63% correctly at a cost of misclassifying most of the unseen
drowsy samples. The svm, however, performs not better than random guessing. Therefore, it
can be inferred that both of the methods lead to overfitted classifiers, such that they cannot be
generalized to other unseen data. This occurred despite the approaches which we applied during
the training phase, such as the cross validation, to avoid overfitting. This finding might also be
related to the overall difference between driving simulator and real driving conditions.

As mentioned before, these results confirm that for driver state classification, always two types
of events should be available in the training sets, namely both awake and drowsy events. In fact,
a warning system, which always warns all drowsy subjects correctly, is not necessarily a reliable
system, if it is unable not to warn awake subjects. On this account, in this study, part of the
data set was collected during the night as the drowsy data and the other part during the day as
the awake data, because we showed that they cannot be artificially substituted in the data set
in the case of imbalanced class distributions.

In addition to the classification performance, classifiers can also be compared with each other
in terms of the simulation runtime for achieving the mentioned results. All of the results in this
work were generated by matlab. The k-nn classifier is the fastest, with the runtime of less
than 10 s for classifying drive time-based features. The runtime for the ann classifier depends
highly on the selected number of neurons. On average, training a network with Nh = 2 neurons
is very fast (< 1 min), while for Nh = 10, it takes about 5min. The highest runtime is needed
by the svm with about 45min. All of these runtime durations are based on one iteration out
of 100 permutations given the drive time-based feature. Considering both the performance of
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the classifier, namely all achieved results, and the computational complexity factor, the ann
classifier is the best solution for the driver state classification based on blink features in this
work.

8.6. Features of the driving simulator versus real road driving

As mentioned before, due to safety concerns, driving simulators are required for data collection
with higher drowsy-related characteristics. However, this makes the collected data less applicable
for the comparison with real driving conditions. In this context, Hallvig et al. (2013) reported
longer blink duration in the driving simulator compared to real driving and believes that due
to safety aspects of driving simulators higher level of drowsiness is generally achieved in them.
Philip et al. (2005), who also compared real driving with driving in simulators, reported slower
reaction time and higher kss values in the driving simulator. Therefore, all good classification
results based on driving simulator data might suffer from the fact that very deep phases of
drowsiness are included in the data set which sharpens the discrimination of classes. In general,
under real driving conditions, drowsiness should be detected at a time that the warning of
the corresponding assistance system can still be perceived by the driver for a timely correcting
reaction.

To address the mentioned issues, two approaches are considered here. The first approach gen-
eralizes the driving simulator to real driving conditions by discarding very drowsy parts of the
drives. Unlike the first approach, the second approach uses all valuable features collected in
both driving simulator and under real driving conditions to investigate whether unseen drowsy
data collected under real driving conditions can be classified correctly.

8.6.1. Generalization of the simulator data to real road driving

In this section, we want to investigate, if driver drowsiness in the driving simulator is represen-
tative of the same effect under real driving conditions. To this end, we removed all parts of the
drives after the first KSS = 9 or after the second KSS = 8 from the data set. This procedure is
referred to as the generalization of simulator to real driving (gsrd). The reason that we applied
these conditions to the data is that as mentioned in Section 4.2.3, exactly these rules have been
followed for collecting drowsy data on the real road.

The new feature matrix contains 3070 samples of all 19 drive time-based features (19 × 3070)
based on real road and driving simulator experiments. After removing approximately 950 sam-
ples from the drowsy class, the classes are distributed as awake = 72% and drowsy = 28%. As
we discussed in previous sections, imbalanced class distributions degrade the performance of the
classifiers. Therefore, we randomly undersampled the features, i.e. repeatedly removing random
samples of the majority class to obtain balanced distributed classes (50% vs. 50%) as explained
in Section 8.1.5. The ann, svm and k-nn classifiers were again applied to the new feature
matrix including both subject-dependent and subject-independent data sets, but only for the
binary case. The kss input-based features were not studied due to a smaller number of available
samples after removing the samples of the drowsy class according to the above procedure.
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Results of the ANN classifier

Figure 8.30 depicts the adr values for different numbers of neurons of the gsrd subject-
dependent ann classifier. The comparison of this figure with Figure 8.10(a) indicates that
for all values of Nh the adr of the test sets decreases by approximately 4–7% with slightly
larger standard deviation values. Moreover, increasing the number of neurons Nh from 10 to 25
only improves the adr of the training set. The corresponding values of the confusion matrix
for Nh = 10 are shown in Figure 8.31. The dr value for the awake class is more affected in
comparison to Figure 8.27 (about 10% drop from 87.9% to 78.4%).
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Figure 8.30.: adr of the training and test sets of the binary subject-dependent ann classifier for different
numbers of neurons based on gsrd case. Feature type: drive time-based features. Bars
refer to the standard deviation of permutations.
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Figure 8.31.: Comparing confusion matrices of the binary ann (Nh = 10), svm and k-nn (k = 7) classifiers
for the subject-dependent and subject-independent classifications of the gsrd case. Feature
type: drive time-based features.

Figure 8.31 also shows the result of the subject-independent classification which should be cau-
tiously compared with the corresponding results in Figure 8.27. In gsrd, only parts of the drowsy
phase per subject were removed, leading to smaller numbers of drowsy samples and smaller values
of FP+TN. In the worst case, if tp, fp and fn values of the confusion matrix remain unchanged
after applying the gsrd procedure, the decreased number of tn results in extremely increased
fpr in (8.6) (or 100%− dr) as occurred here. Surprisingly, for the subject-independent case, it
is still the correct classification of the drowsy class which is more problematic (dr of the drowsy
class < dr of the awake class). Despite this fact, applying the gsrd procedure degrades the
classification of the awake class to a larger extent, i.e. 10% drop of the dr value from 80.0% to
70.4%.
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Results of the SVM classifier

The parameters for training the svm classifier under the gsrd case are shown in Figure 8.32.
These parameters are slightly different from those shown in Figure 8.21. In particular, the
interquartile ranges are larger for the gsrd case. The accuracy of the test sets also decreases
by about 6%. Figure 8.31 also depicts the results of subject-dependent and subject-independent
classifications of the gsrd for the svm. Similar to the results of the ann classifier, these results
are not as good as the previous results shown in Figure 8.27, with a 5% drop of the adr for
the subject-dependent case (from 83.3% to 78.1%) which is mostly due to 8% degradation in
the correct classification of the awake class (from 89.0% to 80.6%). For the subject-independent
case, a similar explanation holds.
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Figure 8.32.: Boxplot of C, γ, training and test accuracies for the 2-class subject-dependent classification
of the gsrd case with svm for all 100 permutations. Feature type: drive time-based features

Results of the k-NN classifier

The results for different numbers of neighbors k under the gsrd procedure are shown in Figure
8.33. In comparison to Figure 8.24(a), the gsrd procedure impairs all metrics by approximately
6%. The metrics of the confusion matrices for both classes under subject-dependent and subject-
independent cases are also shown in Figure 8.31. By comparison with the corresponding dr
values of the ann and svm classifiers, the k-nn subject-dependent classifier classifies the drowsy
class with the highest dr value (k-nn: 79.4%, svm: 75.7% and ann: 75.0%), although it is not
the best classifier for classification of the awake class. As a subject-independent classifier, k-nn
has the poorest performance with the lowest dr values for both classes. Therefore, the k-nn
classifier is the least suitable classifier, if the unseen data differs a lot from the training set.

Conclusion

Considering the results of the gsrd approach provided by all classifiers for the subject-dependent
data division, removing samples from the very drowsy parts of the drive degrades the performance
of the classifiers. Nevertheless, it is still possible to correctly detect both classes over 70%.
An interesting finding is that regardless of the data division type, namely subject-dependent
versus subject-independent, the removed drowsy samples are crucial not only for the correct
classification of the drowsy samples, but also for the correct classification of the awake samples.
The dr value of the drowsy class by the subject-independent k-nn classifier, as an example,
varies only 2% (57.4% vs. 55.1%), while for the awake class, it drops by about 15% (80% vs.
65.7%).
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Figure 8.33.: adr of the 2-class subject-dependent k-nn classifier of the gsrd case for different numbers
of neighbors. Feature type: kss input-based features. Bars refer to the standard deviation
of permutations.

8.6.2. Classification of drop-outs under real road driving conditions

On the contrary to the previous approach, where parts of the drowsy data were removed, here,
we used the entire feature matrix based on all conducted experiments as the training set. This set
was then fed to the ann, svm and k-nn classifiers. For the test set we used new unseen data which
was collected nighttime under real driving conditions as explained in Section 4.2.3. This test set
comprised solely the data from subjects who aborted the real driving experiment due to severe
drowsiness according to their own subjective assessment or that of the investigator. Simon et al.
(2011) called such subjects “drop-outs” and believed that this condition is the “most objective
fatigue criterion available”. They also found a larger variation of the eeg features for these
subjects in comparison to non-drop-outs who completed the experiment to the end. Following
the plausible idea of Simon et al. (2011), we used the data of the drop-outs participated in our
experiment as the test set and repeated the classification task by the trained network or model
which is, in fact, a subject-independent case.

Figure 8.34 shows the resulting confusion matrices for the ann, svm and k-nn classifiers. The
parameters of the classifiers are Nh = 10 for the ann, C = 90.5 and γ = 1.4 for the svm
and k = 7 for the k-nn. These parameters lead to the best classification results compared to
other parameter values. It seems that overall, the ann classifier outperforms other classifiers.
In classifying the awake class, all of the classifiers perform similarly, while the drowsy class is
classified more correctly by the ann classifier.
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Figure 8.34.: Comparing confusion matrices of the binary subject-independent ann (Nh = 10), svm (C =
90.5, γ = 1.4) and k-nn (k = 7) classifiers for unseen real road drives of drop-outs. Feature
type: drive time-based features.
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For drive time-based features, all classifiers achieve an accuracy of about 70%. Therefore, we
conclude that the collected drowsy events in the driving simulator are not far from reality. The
remaining 30% wrong classifications in each group might occur due to the followings:

• Getting drowsy in the driving simulator is in some unknown senses different from getting
drowsy under real driving conditions. As a result, the drowsy events collected in the driving
simulator do not represent all drowsy events of the real drives.

• Large between-subject differences in blink features leads to individual characteristics in
different subjects which might be sorted out by including more subjects in the training set
in the future.

8.7. Feature dimension reduction

In the previous sections, we discussed the classification results with regard to 19 features in
the feature matrix. Regardless of the performance of the classifiers, it is not clear which single
feature or which feature subset has more contribution in generating the results. The reason is
that features were applied all together to the classifier in order to complement each other. In this
section, we explore whether all of the 19 features are needed or whether it is possible to reduce
the feature matrix dimension and achieve the same results with a smaller number of features.
This is an important issue for in-vehicle warning systems as we explain in the following.

Imagine that the quality of an extracted feature or a feature subset deteriorates as soon as the
eog is replaced with a driver observation camera due to image processing problems and lower
frame rate. If we show that the existence of this feature or this feature subset is not crucial for
having a reliable driver state classification, then the degraded feature quality is not an issue any
more. Apart from that, for most of in-vehicle systems, processing time and memory storage are
serious concerns. Consequently, a feature matrix with a reduced dimensionality is desired and
preferred.

The application of feature dimension reduction is also motivated by the curse of dimensionality
which requires the number of unknown parameters of a classifier to be at least 5 to 10 times
less than the number of samples available in the training set (Yang, 2014). In other words, by
increasing the dimension of the feature matrix, the number of training samples should increase
exponentially, otherwise overfitting is inevitable (Bishop, 2006). This point plays an important
role in applications with small numbers of available training samples in comparison to the number
of extracted features. Therefore, this is not an issue in this work. Feature dimension reduction
also helps to avoid redundancy by keeping the most uncorrelated features for further analysis.

According to Yang (2014), there exist two types of approaches for reducing the dimension of
the feature matrix. The first method, called feature selection, selects a subset of features with
the desired dimension D̆ out of available D features, where D̆ < D. On the contrary, the
feature transform method transforms the features either linearly or non-linearly to reduce D.
Both of these methods are guided either by a classifier-dependent metric, e.g. accuracy of the
classification result or by a classifier-independent criterion such as the correlation. The former,
which uses the learning algorithm itself, is a wrapper approach discussed in Sections 8.7.1 and
8.7.2. The latter is a filter approach which is based on the intrinsic properties of the data and
is discussed in Section 8.7.3.
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8.7.1. Sequential floating forward selection

Sequential floating forward selection (sffs), a feature selection method introduced by Pudil
et al. (1994), is a combination of both sequential forward selection (sfs) and sequential backward
selection (sbs). The former achieves the desired number of features by adding the best feature
combination to an empty feature set, while the latter achieves this goal by removing the worst
feature combination from the full feature set. According to Pudil et al. (1994), both of these
feature selection methods suffer from wrong decisions, called nesting effect, during adding or
removing a feature. This is due to the fact that no correction steps are considered in their
algorithms. Hence, combining these methods with each other results in a more dynamic feature
selection method. Based on the considered criterion for evaluating the selected features (e.g.
classification performance), inclusion and exclusion steps are then applied. In other words, after
adding a new feature, some backward steps are performed as long as the new subset outperforms
the previous one. If this is not the case, the backward step is disregarded.

In the following, the algorithm is clarified by a numerical example. The mathematical notation
of the sffs algorithm is taken from Lugger (2011).

We consider the original feature setM with 7 features, namelyM = {y1, y2, y3, y4, y5, y6, y7}
and the desired number of features D̆ = 4. The sffs algorithm starts with an empty feature set
Yk = ∅, k = 0 and selects the best single feature as follows

yi = arg max
y ∈M\Yk

J(Yk ∪ y) (8.53)

Yk+1 = Yk ∪ yi
k = k + 1,

e.g. Y1 = {y4}. J denotes the performance function. Then the remaining 6 features will be
added to Y1 separately and the best pair is selected based on the criterion in (8.53) with k = 1,
e.g. Y2 = {y4, y2} out of Y1 ∪ y = {y4, y1}, {y4, y2}, · · · , {y4, y7}. This forward step is repeated
for the third time leading to the best 3-feature combination, e.g. Y3 = {y4, y2, y7}. Now, the
backward step is applied for controlling the redundancy in the new feature set (Uhlich, 2006). If a
recently added feature contains similar information, which was already taken into consideration,
it can then be excluded. Consequently, the sffs algorithm analyzes the following subsets of the
current 3-element feature set: {Y3 \ y, y ∈ Y3} = {y2, y7}, {y4, y7}, {y4, y2} and selects the best
subset, e.g. yj = 4,Y3 \ yj = {y2, y7}, where yj is defined as

yj = arg max
y ∈Yk

J(Yk \ y). (8.54)

If the performance of this new subset, namely Y3 \ yj = {y2, y7}, is better than that of Y3 =
{y4, y2, y7}, then y4 is excluded. This leads to the new definition of Y2, i.e. Y2 = {y2, y7}.
Mathematically, we have

if J(Yk \ yj) > J(Yk−1), Yk−1 = Yk \ yj , repeat (8.54) with k = k − 1. (8.55)

Otherwise, a new feature will be added to the current feature set based on (8.53) as follows

if J(Yk \ yj) ≤ J(Yk−1), repeat (8.53) (8.56)

By these steps, the sffs algorithm looks for the best feature combination. Hence, a feature,
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which does not improve the performance of the current feature combination, is then discarded
similar to y4 in our example. This is valid regardless of the previous good results provided by
that feature. Clearly, sffs is a classification-dependent feature selection method.
We applied the sffs algorithm combined with the ann classifier (Nh = 10) to select the best
10-feature combination out of 19 (D = 19 and D̆ = 10) drive time-based features. Accuracy
was used to guide inclusion/exclusion steps of this algorithm as shown in Figure 8.35. Selected
features in each of the 10 steps are listed in Table 8.16. At the first glance, it seems that 4 features
are enough for the driver state classification task, since increasing the number of features does
not improve the classification accuracy. The right part of Table 8.17 shows the confusion matrix
for the best selected 4 features by the ann classifier (Nh = 10). A similar confusion matrix
with the full 19 features (Table 8.3) is also shown on the left of Table 8.17. Comparison of the
dr values in both cases indicates that the detection of the awake class is apparently possible
with only 4 features with the same performance as that of the 19 features (87.3% vs. 87.9%).
However, the remaining 15 features are responsible for improving the dr value of the drowsy
class by about 4% (74.3% vs. 78.2%). In other words, the 4% increase of the dr for the drowsy
class underscores the fact that some of the underlying information in the feature space can be
covered only if more than the 4 mentioned features are included in the feature space.
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Figure 8.35.: The ann classification accuracy of the best selected features by the sffs algorithm from 1
to 10-feature combination. Feature type: drive time-based features.

Table 8.16.: Best selected feature combination set by the sffs and ann classifier from 1 to 10 features.
Feature type: drive time-based features
D̆ selected features accuracy
1 T50 72.4%
2 T50 F 76.6%
3 E F MCV 79.4%
4 E F MCV A 80.0%
5 E F MCV A Tro 80.2%
6 E F MCV A Tro perclos 80.1%
7 E F MCV A Tro perclos ACV 80.2%
8 E F MCV A Tro perclos ACV To 80.2%
9 E F MCV A Tro AOV ACV To MOV 80.3%
10 E F MCV A Tro AOV ACV To MOV Tcl,2 80.4%

Additionally, we applied the trained ann classifier with 4 features to the unseen features of the
drop-outs introduced in Section 8.6.2. This helps to investigate the generalization aspect of the
classifier based on 4 features for unseen data. Right part of Table 8.18 shows the confusion matrix
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Table 8.17.: Confusion matrices of the binary subject-dependent ann classifier (Nh = 10) for drive time-
based features. Left: classification with 19 features. Right: classification with 4 features

predicted
state awake drowsy

given
awake 87.9% 12.1%
drowsy 21.8% 78.2%

predicted
state awake drowsy

given
awake 87.3% 12.7%
drowsy 25.7% 74.3%

for the binary subject-independent ann classifier for drive time-based features of drop-outs with
D̆ = 4 and Nh = 10. On the left part of this table, the confusion matrix of the corresponding
subjects with 19 features (shown in Figure 8.34) is listed. Interestingly, the dr of the awake class
improves by about 5% (from 71.3% to 77.0%) after removing 15 features from the data set. For
the drowsy class, however, the dr drops by about 7% (from 72.4% to 65.2%). This emphasizes
the role of other features for the correct classification of the drowsy unseen data.

Table 8.18.: Confusion matrices of the binary subject-dependent ann classifier (Nh = 10) for drive time-
based features of drop-outs. Left: classification with 19 features. Right: classification with 4
features

predicted
state awake drowsy

given
awake 71.3% 28.7%
drowsy 27.6% 72.4%

predicted
state awake drowsy

given
awake 77.0% 23.0%
drowsy 34.8% 65.2%

The 4 selected features are E,F,MCV and A, with the Spearman’s correlation coefficient cal-
culated between them and kss values as listed in Table 7.11: 0.11, 0.36,−0.41 and −0.23. As
mentioned before, it is the complementary property of a feature which determines its contribu-
tion to the classification task, not its efficiency and informativity as a single feature. Moreover,
according to Table 7.21, except for the feature pair (A,MCV ), which is linearly up to 0.78
correlated with each other, for other pairs we have ρp < 0.5. As a result, the low correlation of
the features with each other seems to positively impact their complementary properties.

8.7.2. Margin influence analysis

Margin influence analysis (mia) (Li et al., 2011a) is a feature selection method especially de-
signed for the svm classifier. As mentioned in Section 8.3, the performance of the svm classifier
thoroughly depends on the size of the margin between classes. Consequently, svm models with
larger margins are expected to perform better in classification. Regarding this fact, Li et al.
(2011a) suggested the mia method which evaluates a feature based on its contribution to and
influence on the classifier’s margin. In other words, a feature is considered as informative, if its
consideration leads to an svm model with a larger margin.
According to Li et al. (2011a), the mia algorithm includes the following steps:

1. Define the number of features D̆ to be sampled by the Monte Carlo sampling (mcs)
(Lemieux, 2009) which is equivalent to the desired dimensionality of the feature matrix.

2. By applying Nmcs Monte Carlo sampling, select D̆ features randomly out of all existing D
features in each sampling (e.g. Nmcs = 10000 (Li et al., 2011a)). This leads to Nmcs subsets
each containing D̆ features.

3. Train an svm for all Nmcs feature subsets which results in Nmcs margins.
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4. For a specific feature i, find all subsets Ai which include this feature and all subsets Bi
which exclude it.

5. Compute the mean value of margins in subsets Ai and Bi, namely γAi and γBi .
6. Define feature i as informative based on the difference between the computed mean values,

namely ∆γi = γAi − γBi , as follows
• ∆γi > 0: feature i is informative and increases the margin of the svm classifier.
• ∆γi ≤ 0: feature i is not considered informative and consequently will decrease the

margin of the svm classifier.
7. Remove all features not considered informative.
8. Determine whether informative features lead to a significant increase of the margin by

applying the Mann-Whitney U test (Field, 2007) and analyzing the calculated p-value as
follows

• p-value ≤ α: feature i significantly increases the margin and is informative.
• p-value > α: feature i does not increase the margin significantly.

According to Field (2007), the Mann-Whitney U test is a non-parametric test for comparing
mean values.
Table 8.19 shows the calculated ∆γ values for each drive time-based feature with D̆ = 4. The
corresponding p-value of the Mann-Whitney U test is also shown. It can be seen that except forA,
MOV , A/MCV , A/MOV , ACV , AOV , F , To and Tc1,1 with ∆γ > 0, the other features cannot
be proved informative. According to the p-values, only A/MCV has passed the significance test
at α = 0.05. In comparison to the features selected by the sffs combined with the ann classifier,
only A was selected as an informative feature also by the mia and the svm classifier.

Table 8.19.: Values of ∆γ calculated based on the mia method for drive time-based features (D̆ = 4)
Feature ∆γ p-value Feature ∆γ p-value
A 0.002 0.24 Tc -0.000 1.31
E -0.002 1.78 To 0.001 0.84
MCV -0.001 1.88 Tcl,1 0.005 0.12
MOV 0.002 0.65 Tcl,2 -0.008 1.00
A/MCV 0.006 < 0.001 Tro -0.002 1.99
A/MOV 0.003 0.55 perclos -0.002 1.24
ACV 0.000 0.71 T50 -0.001 1.69
AOV 0.003 0.07 T80 -0.004 1.09
F 0.003 0.08 T90 -0.007 1.00
T -0.002 1.13

Overall, this method is a very time-consuming approach, depending on the number of features D̆
to be selected. We showed in Section 8.5 that the svm is a difficult classifier in terms of runtime.
Moreover, for a feature matrix with small dimensions, e.g. D̆ ≤ 5 instead of D = 19, it is more
time-consuming to construct and train an optimized model. Therefore, in this respect, the mia
approach is impractical.

8.7.3. Correlation-based feature selection

Another feature selection method introduced by Hall (1999) is the correlation-based feature selec-
tion (cfs). This method is, on the contrary to the previous approaches, a classifier-independent
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feature selection method. According to Hall (1999), the term correlation used in the name of
the method does not necessarily refer to the classical linear correlation. It should be interpreted
as any measure quantifying the amount of relationship and dependency between two features.
The cfs method first generates subsets R of features with kcfs numbers of features in each
subset out of all available D features. As an example, for D = 19 and kcfs = 3 in our study, this
corresponds to 3-feature combination subsets of all 19 features, namely 969 subsets. Afterwards,
the subsets are ranked based on the following evaluation metric MR for a subset R

MR = kcfs rcf√
kcfs + kcfs (kcfs − 1) rff

, (8.57)

where rcf and rff denote the average correlation (in its general meaning) between classes and fea-
tures, i.e. inter-correlation, and between features, i.e. intra-correlation. Obviously, considering
both correlations in the evaluation function (8.57) covers both redundancy and relevance issues
of features simultaneously.
Calculating MR for all 2D − 1 feature combination subsets makes this method, however, very
time-consuming for very large values of D. Hall (1999) suggested forward or backward selection
search instead where a feature is added only if any improvement is seen. Moreover, he studied
the so-called relief (Kira and Rendell, 1992a,b) and the minimum description length (mdl)
(Rissanen, 1978) as a correlation measure. In a later study (Hall, 2000), however, he suggested
the Pearson correlation coefficient for continuous attributes.
Table 8.20 shows the results of the cfs method for different numbers of drive time-based features
in a subset using the Pearson correlation coefficient for calculating rcf and rff. For each value
of kcfs, the best feature subset based on the maximum value of MR is listed. Similarly, Table
8.21 shows the MR values using the Spearman’s rank correlation coefficient as a measure of
relevance and dependency of features. The features, which are shown in red, were selected by
both Pearson and Spearman’s rank correlation coefficients.

Table 8.20.: Best selected drive time-based features based on the cfs method and Pearson correlation
coefficient (Red features were also selected by the Spearman’s rank correlation coefficient in
Table 8.21.)

kcfs selected features MR

1 A/MOV 0.478
2 F ACV 0.553
3 F MOV Tro 0.595
4 F MOV Tro Tc 0.594
5 F MOV A/MOV perclos T90 0.592
6 F MOV A/MOV perclos T90 Tro 0.589
7 F MOV A/MOV perclos T90 Tro MCV 0.584
8 F MOV A/MOV perclos T90 Tro MCV T 0.575
9 F MOV A/MOV perclos T90 Tro MCV To ACV 0.570
10 F MOV A/MOV perclos T90 Tro MCV To ACV T80 0.565

The calculated MR values for both correlation coefficients are shown in Figure 8.36. According
to this figure, the MR values for kcfs = 2 to 5 are almost the same, regarding both correlation
coefficients. From kcfs = 6, however, the values deviate from each other to a larger extent. This
might be due to the non-linear relationship between features and kss labels, since MR values
using Spearman’s rank correlation coefficient are larger. In general, cfs with both correlation
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coefficients selects almost the same feature sets, except for Tcl,2 and T90 which were selected only
by one of the correlation coefficients repeatedly.

Table 8.21.: Best selected drive time-based features based on the cfs method and Spearman’s rank cor-
relation coefficient (Red features were selected by the Pearson correlation coefficient in Table
8.20.)

kcfs selected features MR

1 Tro 0.510
2 F ACV 0.546
3 F MOV Tro 0.589
4 F MOV perclos T 0.595
5 F MOV perclos A/MOV Tcl,2 0.602
6 F MOV perclos A/MOV Tcl,2 Tro 0.610
7 F MOV perclos A/MOV Tcl,2 Tro ACV 0.602
8 F MOV perclos A/MOV Tcl,2 Tro T MCV 0.599
9 F MOV perclos A/MOV Tcl,2 Tro T MCV ACV 0.589
10 F MOV perclos A/MOV Tcl,2 Tro T MCV ACV Tc 0.583
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Figure 8.36.: MR values of the best 10-feature combinations calculated based on the Pearson and Spear-
man’s rank correlation coefficients

In order to be able to compare the results of the cfs with those of the sffs method, we applied
a binary subject-dependent ann classifier with Nh = 10 to kcfs = 4 drive time-based features
selected using both Pearson and Spearman’s rank correlation coefficients. The corresponding
confusion matrices are shown in Table 8.22. Comparing these results with those of the sffs
method (Table 8.17) indicates degraded classification results for the drowsy class by at least 4%
(70.2% and 68.6% vs. 74.3%). Overall, the selected feature combination by the filter approach
is different from the subset selected by the sffs method as a wrapper approach. The results of
the sffs approach outperform those of the cfs clearly due to the fact that in the sffs approach,
the classifier is directly involved in the selection of the best 4-feature combination. As a result, a
poor performance for all classifier-independent methods can be expected due to their generality
or underfitting.
Regardless of the value of kcfs, Tables 8.23 and 8.24 show the best 10-feature combinations with
respect to MR out of all possible combinations for both correlation coefficients. Interestingly,
the cfs method based on the Pearson correlation coefficient selected on average 4 features.
However, the Spearman’s rank correlation coefficient achieved the highest score by selecting 6
features on average. F and MOV are the only features which were selected in all sets of best
feature combinations regarding MR. Other selected feature subsets differ to some extent.
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Table 8.22.: Confusion matrices of the binary subject-dependent ann classifier (Nh = 10) for drive time-
based features and kcfs = 4. Left: Pearson correlation coefficient. Right: Spearman’s rank
correlation.

predicted
state awake drowsy

given
awake 85.2% 14.8%
drowsy 29.8% 70.2%

predicted
state awake drowsy

given
awake 86.5% 13.5%
drowsy 31.4% 68.6%

The only feature, which was selected by all of the introduced methods, is F . Hence, we conclude
that F is a feature which, on the one hand, is associated with the kss values and on the other
hand, it is to a lesser extent correlated with other features. In addition, since it was also selected
by the sffs, it has a strong complementary property.

Table 8.23.: Best selected drive time-based features based on the cfs method using the Pearson correlation
coefficient regardless of the number of features

rank selected features MR

1 F MOV Tro 0.5945
2 F MOV Tc Tro 0.5935
3 F ACV A/MOV Tro 0.5926
4 F MCV A/MOV Tro 0.5926
5 F MOV A/MOV perclos T90 0.5923
6 F MOV A/MOV perclos Tro 0.5914
7 F MOV Tc 0.5910
8 F MOV T90 Tro 0.5905
9 F MOV A/MOV perclos T80 0.5905
10 F MOV A/MOV Tro 0.5903

Table 8.24.: Best selected drive time-based features based on the cfs method using the Spearman’s rank
correlation coefficient regardless of the number of features

rank selected features MR

1 F A/MOV Tcl,2 Tro perclos MOV 0.6103
2 F A/MOV Tcl,2 Tro perclos MCV 0.6026
3 F A/MOV Tcl,2 Tro perclos ACV 0.6023
4 F A/MOV Tcl,2 MOV perclos 0.6022
5 F A/MOV Tcl,2 Tro perclos MOV ACV 0.6021
6 F A/MOV Tcl,2 Tro perclos AOV 0.6019
7 F A/MOV Tcl,2 Tro perclos MOV MCV 0.6014
8 F A/MOV Tcl,2 Tro ACV MOV 0.6011
9 F A/MOV Tcl,2 Tro perclos MOV T 0.6003
10 F A/MOV Tcl,2 Tro MOV 0.6002



9. Summary, conclusion and future work

9.1. Summary and conclusion

Timely detection of a drowsy driver and warning him to make him aware of his low vigilance
state plays an important role in improving the traffic safety. In this work, we addressed driver
state classification based on blink features collected by the electrooculography as a reference
measurement system.
In Chapter 1, we discussed different terminologies for defining drowsiness along with defining
driver distraction and inattention. We also reviewed drowsiness countermeasures during driving
such as conversing, rumble strips, etc. which, however, do not have a long-lasting effect on the
vigilance. This chapter also provided an overview of drowsiness detection systems on the market.
Chapter 2 discussed objective and subjective methods for measuring driver state. The objective
measures are either driving performance measures which monitor the driver indirectly based on
the lane keeping behavior or steering wheel movements or a fusion of them. We reviewed that
such measures suffer from external factors such as the quality of the lane marking, road condition,
etc. In addition, their efficiency is restricted to the situations that the driver performance is
not improved by other assistance systems. We also introduced driver physiological measures
which are the result of direct monitoring of the driver, such as eeg, ecg, etc. We proposed the
idea of removing phases of the driver, where the driver is visually distracted, to improve the
association between an eeg-based measure and the drowsiness. At the end of this chapter, we
also introduced different subjective measures and the concerns about their interpretation and
reliability.
In Chapter 3, the human visual system was introduced. There, we mentioned the concepts
of what and where which describe the visual attention. Further, the structure of the human
eye and relevant types of eye movements during driving were defined. We also categorized eye
movements into two groups with regard to their velocity, namely slow and fast eye movements,
and showed that blinks can belong to both of these groups depending on the driver’s vigilance
state.
The robustness and reliability of the eog measuring system for collecting eye movements during
driving was tested in a pilot study in Chapter 4. There, we studied the relationship between
driver eye movements and different real driving scenarios independent of driver’s vigilance state
in a fully controlled experiment conducted on a proving ground. All in all, it can be concluded
that ground excitation and large amplitude bumps add an extra pattern to the eog signals.
On the other hand, monitoring driver eye movements seems to be undisturbed by a single
small amplitude bump. Moreover, it is clear that the inevitable sawtooth pattern due to curve
negotiation is not related to the driver’s inattention or drowsiness. Therefore, we suggested the
exclusion of tortuous road sections for further investigation of driver eye movements.
Since the capability of the eog as a robust and reliable reference measuring system for eye
movement monitoring even under real driving conditions was acknowledged by the pilot study, we
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conducted daytime and nighttime experiments under real road and simulated driving conditions
using eog to collect eye movement data for the rest of this work as described in Chapter 4.
In chapter 5, we addressed the detection approaches of blinks and saccades in the raw eog
signals. We showed that the median filter-based method as the most conventional blink detection
approach was only suitable for the detection of blinks during the awake phase of driving. As
soon as, the shape of blinks changed due to drowsiness, this method either missed an event or
detected only part of it. In addition, we showed that the median filter-based method was not
suitable for detecting saccades and slow eye movements. As a result, we proposed a method
based on the derivative of the eog signal for detecting saccades in addition to the blinks. It
was shown how to detect vertical saccades and blinks simultaneously in vertical eog signal.
In addition, a 3-means clustering algorithm was recommended to distinguish between saccades
and blinks in those applications where the data of both awake and drowsy phases are available.
This helped to prevent confusing a driver’s decreased amplitude blinks with saccades or other
eye movements. Moreover, blinks with long eye closure and microsleep events, whose patterns
deviated from those during the awake phase, were detected and distinguished from saccades
based on the statistical distribution of the amplitude. This method, however, was shown to
perform poorly in the detection of slow eye movements. Therefore, we introduced the wavelet
transform method which was superior to the Fourier transform in providing time localization
information. In addition to the continuous wavelet transform for detection of both fast and slow
eye movements, we applied the discrete wavelet transform as a suitable method for preprocessing
of the eog signal, namely drift and noise removal. Finally, comparison of the detection methods
showed that the proposed derivative-based algorithm outperformed the method based on median
filtering in detection of fast eye movements. Although the wavelet transform method performed
best in the correct detection of both fast and slow eye movements, it suffered from high false
detection rates. Consequently, we combined its detected events with those of the derivate-based
algorithm to balance false detections.
In Chapter 6, we studied blinking behavior under distracted and undistracted driving. In the
first experiment, during which the subjects performed a secondary visuomotor task in addition
to the driving task, we showed that saccades and gaze shifts induced the occurrence of blinks.
However, we observed two different behaviors among subjects, direction dependent and direction-
independent gaze shift-induced blinks. For the former group, performing the secondary task
(either visuomotor or auditory) did not alter the blink rate in comparison to the undistracted
driving. However, for the latter, the blink rate changed to a large extent due to distraction.
In addition, we showed that visual distraction led to a blinking time interval synchronous with
the occurrence of the gaze shift. In a second experiment, during which the subjects were not
distracted, the results represented that the amount of gaze shift was positively correlated with
the occurrence of a simultaneous blink, i.e. the higher the amplitude of the gaze shift, the larger
was the probability of the blink occurrence. Based on these results, we suggested those, who
consider blink rate as an indicator of drowsiness, to handle gaze shift-induced blinks differently
to spontaneous ones, particularly if the driver is visually or cognitively distracted. In fact, since
such blinks are situation-dependent, they locally change the blinking behavior, especially the
blink frequency.
Based on the detected events of Chapter 5, in Chapter 7, we extracted 19 different features for
each event. These features were aggregated by considering two strategies, namely kss input-
based and drive time-based approaches. Unlike the latter, the former sacrificed the available
number of samples for more reliable class labels. In addition, feature baselining was addressed
to improve the classification results in Chapter 8. Further, in this chapter, based on the scatter
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plots and correlation coefficients between features and kss values, we showed whether features
were positively or negatively associated with the driver state. Interestingly, for some of the
features, such as the blink amplitude, different trends were observed. Thus, we conclude that
a warning system, which relies only on a single feature for its decision strategy, is prone to
high false alarm rates. This chapter also discussed the variation of each feature shortly before
the occurrence of the first safety-critical event, namely a lane departure and a microsleep, in
comparison to the beginning of the drive. The results showed an important finding regarding
driving performance measures. For the lane departure event, overall, a larger variation of the
features shortly before the event was found in comparison to the microsleep event. This proves
for our data set that a drowsy driver experiences a microsleep event without necessarily departing
the lane or degraded driving performance measures. In other words, this finding acknowledges
the fact that lane departure might be related to a deeper drowsiness phase in comparison to
the microsleep. As a result, from this aspect, driver physiological measures are superior to
driving performance measures for the early driver drowsiness detection. Finally, in this chapter
we degraded the sampling frequency of the raw eog signal to make it similar to the raw signal
provided by the driver observation cameras on the market. The goal was to study the effect of
sampling frequency on the feature quality. According to the results, we conclude that velocity-
based features are at high risk of quality degradation.
Finally, in Chapter 8, we classified the driver state by three classifiers, namely ann, svm and
k-nn classifiers based on the extracted features in Chapter 7. The feature matrix was divided
either by a subject-dependent or a subject-independent approach. We also addressed the issue
of imbalanced data based on classifier-dependent approach. According to the results, for the
binary subject-dependent classification, all classifiers performed similarly regarding drive time-
based features. This was also valid for binary subject-independent classifiers. In the binary
subject-dependent case, we obtained at least about 80% correctly classified samples in each
class regardless of the selected classifier. The binary subject-independent classifiers, however,
performed poorly in the classification of drowsy samples. In fact, the classification of unseen
drowsy samples seems to be more challenging. In the 3-class classification, the ann and svm
classifiers performed poorer in the detection of the medium class in comparison to the k-nn. We
believe that this is due to imprecise class labels and that the subjects were not good at rating
medium levels of drowsiness.
For kss input-based features, we achieved slightly better classification results by the binary svm
classifier in comparison to the ann and k-nn. The high detection rate of both classes (each
around 80%) by this aggregation approach also underlines that in self-rating, subjects most
likely take the time interval shortly before the kss inquiry into account when rating themselves.
For imbalanced class distributions, it was shown that all classifiers performed poorly to the same
extent in the classification of the minority class. We solved the issue of imbalanced data with two
approaches. The first one, as a classifier-independent method, was the smote which artificially
generated additional samples similar to those of the minority class. We combined it with the
ann classifier and obtained improved classification results. The retrained ann, however, was
not applicable to unseen data. For the svm classifier, we applied a classifier-dependent approach
where the misclassification cost was tuned with respect to the number of samples in the minority
and majority classes. Again, despite improved results with imbalanced data, the constructed
model was poor on unseen data. Therefore, we conclude that imbalanced class distributions in
the task of driver state classification do not lead to a generalized classifier and should never be
considered as a substitution for the minority class data collection. In other words, the results
of driver state classification are reliable only if the features of both awake and drowsy phases of
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the drive are collected under similar circumstances and are included in the feature matrix in a
balanced manner.
Chapter 8 also discussed the generalization aspects of the data collected in the driving simulator
to the real road conditions. There, we showed that by removing very drowsy parts of the
drive, which can only be collected in simulated driving, still both classes were detectable to
70% given the subject-dependent binary classification with drive time-based features. As soon
as the subject-independent data division was applied, the results degraded. The k-nn classifier
was most affected due to dominant within-subject differences. We also applied the unseen
features of the drop-out subjects, who aborted the real nighttime driving experiment due to
severe drowsiness, to all classifiers. They were classified with acceptable results given the drive
time-based features (accuracy = 70%). Therefore, we conclude that the drowsiness behavior
in the driving simulator is to an acceptable extent representative of the same behavior on the
real road. Overall, the between-subject differences also have a significant contribution on the
degradation of the classification results.
Finally, we discussed approaches for feature dimension reduction in order to address the issues of
an in-vehicle warning system. According to the sffs method fused with the ann classifier, four
features were determined to be sufficient. The trained ann classifier, however, did not perform
as good as a classifier trained with all 19 features in the detection of the drowsy class. As a
result, we conclude that for the correct detection of the drowsy class, which seems overall to be
more challenging, more than four features are needed.

9.2. Perspective of future work

We showed that blink features based on the eog are a promising approach for the driver state
detection. Nevertheless, in this section, we suggest possible directions for the future work.
The first issue is the eog as a reference measuring system which should be substituted with a
driver observation camera for having an in-vehicle warning system based on eye movements. It
should be investigated, if similar results can be achieved by the camera even with low frame rates.
Since cameras also measure the eyelid gap, an improvement of classification results is expected
despite degraded quality for some features. In addition, after replacing eog with camera, new
problems arise which degrade the eye tracking process due to other factors. Examples of such
issues are varying light conditions and reflections arising from wearing glasses.
In this work, we used 1min of the eog data for aggregating features. It is required to investigate
how the variation of this time interval improves or degrades the relationship between features
and driver state.
A third issue is concerned with the poor detection rate results of the medium class in the 3-
class classification as shown in Chapter 8. In future, it should be scrutinized whether imprecise
self-rating by subjects is responsible for poor classification results or whether the eye movement
features themselves cannot reflect the evolution of drowsiness at a lower level.
The forth issue is the fusion of the introduced blink features with other features such as the
saccade features or features based on the driving performance measures. Moreover, features like
traffic density or monotony, time of day and time-on-task can be integrated to contribute to the
classification task. Further, the combination of saccade occurrence with the traffic density as
a new feature appears to be promising for driver state classification in terms of the short term
variation or detection of the driver distraction.
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Finally, the similarity of findings of this work and its extension to autonomous car driving needs
to studied. In partially automated driving, it is assumed that the vehicle performs steering and
lane keeping activities, while being fully observed by the driver for a timely intervention. In this
case, in addition to driver drowsiness, the level of driver attention or distraction is indeed crucial.
In highly automated driving, driver distraction and attention detection is even more essential,
because the driver is allowed to be distracted by turning his attention to other activities. In
complex situations, however, the driver must still be able to take over the driving task after
receiving a warning. Therefore, on top of the blink behavior studied in distracted driving in this
work, new features such as the gaze direction and proper gaze shifts to the road ahead should
be extracted and explored. Moreover, new experiments and analyses should be conducted to
quantify the amount of workload for investigation of driver distraction and attention detection.





A. Derivation of sawtooth occurrence
frequency during curve negotiation

Figure A.1 geometrically represents the scenario during which the vehicle (subject) moves from
position A to B while tracking tpA and tpB, successively.
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Figure A.1.: Geometrical representation of tracking two successive tps during a curve negotiation

According to both plots of Figure 4.8, the measured time interval ∆tm between successive saw-
tooth patterns is very short (on average < 1 s). Thus, it can be assumed that the vehicle’s lateral
distance d to the inner curve lane marking in Figure A.1 remains constant during tracking two
successive tps, namely tpA and tpB. We assumed d = 1.5 m. For the same reason, we consid-
ered the radius r of the curve and the distance p between subject and the momentary tp to be
constant.

Since the longitudinal acceleration is assumed negligible during tracking two successive tps, ∆tc
can be calculated from the velocity v and the displacement Γ between A and B as follows

∆tc = Γ

v
= (r + d) ∆ψ

v
, (A.1)

where ∆ψ is the yaw angle corresponding to the displacement Γ . r has been calculated out of
road curvature κ (κ = 1/r) which is a function of measured v and yaw angle rate ψ̇ (κ = ψ̇/v).
Since ψ̇ was not equal for all subjects, the calculated value of κ and consequently r will be
different for the left curve of Figure 4.1. Therefore, r is assumed to be the mean over all
calculated radii for all subjects which corresponds to 52m.

Based on our assumptions and the geometrical modeling of Figure A.1, the unknown value of
angular displacement of subject’s position ∆ψ leads to the angular displacement of the eyes δ.
According to Figure A.1, the angular displacement of eyes δ is as follows

δ = arctan
(

h

p− a

)
, (A.2)
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where

h = r − r cos(∆ψ) (A.3)
a = r sin(∆ψ) (A.4)

and the distance p between the driver and the momentary tp is

p = const. = r tanϕ = r tan
(

arccos
( r

r + d

))
. (A.5)

By substituting (A.3), (A.4) and (A.5) in (A.2), the angular displacement of eyes δ can be
described as a function of yaw angle ∆ψ as the following

δ = arctan
( 1− cos(∆ψ)

tanϕ− sin(∆ψ)

)
. (A.6)

∆ψ can be derived from (A.6) by knowing δ. Then, ∆tc can be approximated using the calculated
∆ψ in (A.1).



B. Description of a boxplot

Figure B.1 shows the information included in the boxplot representation. In this work, all
boxplots are shown for w = 1.5.
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Figure B.1.: Description of a boxplot representation





C. k-means clustering

The material is taken from Bishop (2006).
The k-means clustering method aims to assign samples of a data set to different groups or
clusters. Therefore, N samples of a matrix X with D dimensions are assigned to a given number
of clusters k. As a rule, the samples assigned to a cluster have a small inter-sample distance
in comparison to the samples outside a cluster. We define µi, where i ∈ {1, · · · , k}, as the
center of k clusters. The rule, which assigns samples of X to a specific cluster, is based on the
minimization of sum of squares of the distances between a sample xn, where n ∈ {1, · · · , N},
and the nearest µi. For each sample xn, we define the binary value rni ∈ {1, 0}. It shows which
cluster i the sample xn is assigned to. If xn is assigned to the i-th cluster, then we have rni = 1
and rnj = 0, where i 6= j. The cost function, called distortion measure, for guiding the cluster
assignment is defined as follows

J =
N∑
n=1

k∑
i=1

rni ‖xn − µi‖2 . (C.1)

The goal is to minimize J with respect to rni and µi. This goal is achieved in an iterative manner
comprising the following two successive steps:

• Step 1: minimizing J with respect to rni, while µi is held fixed.
• Step 2: minimizing J with respect to µi, while rni is held fixed.

These steps correspond to the Expectation Maximization (em) algorithm such that step 1 and
2 refer to the expectation (e) and maximization (m) step, respectively.
In step 1, where µi is held fixed, the relationship between J and rni in (C.1) is a linear one.
Therefore, by assigning the sample xn to the nearest cluster i, J is minimized. Mathematically,
we have

rni =
{

1 if i = arg min
j
‖xn − µj‖2

0 otherwise.
(C.2)

In step 2, however, with rni held fixed, the relationship between J and µi in (C.1) is quadratic.
Therefore, for minimizing J , the derivative of J with respect to µi is set to zero as follows

2
N∑
n=1

rni (xn − µi) = 0 =⇒ µi =
∑N
n=1 rni xn∑N
n=1 rni

. (C.3)

The denominator in previous equation denotes the number of samples assigned to the i-th cluster.
Therefore, according to (C.3), the center of the i-the cluster µi is defined as the mean of all
samples xn assigned to that cluster. To this account, the method is called k-means clustering.
The aforementioned steps are repeated as long as the assignment of samples to clusters changes
or a maximum number of iterations is reached. Since after each iteration, J is minimized,
the cost function definitely converges. A drawback of the k-means clustering, however, is that



202 k-means clustering

it might wrongly converge to a local minimum of J instead of the global one. Moreover, as
we mentioned, this method uses the squared Euclidean distance for quantifying the amount
of dissimilarity between samples and µi. Consequently, the Euclidean distance between all N
samples and all cluster centers have to be calculated which leads to a slow convergence of this
method. For further optimization ideas with respect to the convergence rate of the k-means
clustering see Bishop (2006).
Obviously, before performing step 1, µi have to be initialized and the chosen initial values have
a direct impact on the convergence rate of the algorithm. Bishop (2006) suggests setting µi
randomly to a subset of k samples of X.



D. Statistical tests

The material provided here are taken from Gosling (1995), Montgomery and Runger (2006) and
Field (2007).

D.1. Paired-sample t-test

The Paired-sample t-test or dependent t-test is a suitable test for comparing the mean of two
groups, if the samples are measured as pairs. In other words, the samples should be collected
under “homogeneous conditions” (Montgomery and Runger, 2006). Mathematically, the pairs
are (x1,i, x2,i) with i = 1, 2, · · · , N samples. In the case that the test is applied to the samples
collected in an experiment with different participants, similar participant should have been
participated in both groups. This means that samples x1,i and x2,i belong to one participant,
otherwise pooled t-test or independent t-test should be applied. Moreover, the results of the
t-test are reliable, if its assumption is fulfilled which is the normal distribution of samples. Since
t-test analyzes the difference between groups, i.e. ∆x = x1 − x2, the samples of ∆x should be
normally distributed.

The hypotheses of the test are as follows:

H0: µ1 = µ2

H1: µ1 6= µ2 ,

where µ1 and µ2 refer to the average of x1 and x2, respectively.

The test statistic is found as follows
t0 = µ∆x

σ∆x√
N

, (D.1)

where µ∆x and σ∆x denote the mean and the standard deviation of the difference values in ∆x.
The decision about the rejection of H0 is made based on the value of the confidence level α and
the degrees of freedom ν, where ν = N − 1. The critical value of the test, namely tα,ν , is found
in the table of the Student’s t-distribution in statistic books such as Montgomery and Runger
(2006). Consequently, we have

reject H0: if |t0| > tα,ν =⇒ µ1 differs significantly from µ2.
fail to reject H0: if |t0| ≤ tα,ν .

The results can also be reported by the p-value based on the Student’s t cumulative distribution
function. Accordingly, p-values < α yields the rejection of H0.
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D.2. Normal distribution test: Lilliefors test

In order to know whether the distribution of the data under investigation is normal, Lilliefors
test is applied which is a goodness of fit test. This test determines the normality of the current
data based on fitting a normal distribution to it and evaluating the difference between them.
Therefore, for data x with N values, the hypotheses are defined as follows

H0: x is normally distributed.
H1: x is not normally distributed.

First, the empirical cumulative distribution function F̂N (x) of x is calculated as follows

F̂N (x) = number of samples in x ≤ x
N

. (D.2)

The goal is to assess the agreement between F̂N (x) and the theoretical distribution function F (x).
F (x) is normally distributed with regard to the mean and standard deviation of x, namely µ
and σ. As a result, the standard values of x are needed as follows

z = x− µ
σ

. (D.3)

The test statistic is defined as

t0 = max
(∣∣F (z)− F̂N (z)

∣∣) . (D.4)

By comparing t0 with tN,α denoting the critical value of the test, it can be decided whether to
reject the H0 or not, i.e.

reject H0: if t0 > tN,α =⇒ x is not normally distributed.
fail to reject H0: if t0 ≤ tN,α ,

where α is the confidence level. The values of tN,α are listed in Gosling (1995).

D.3. Test of significance for the Pearson correlation coefficient

Based on a hypothesis test, namely the t-test, it is possible to show whether the Pearson product-
moment correlation coefficient ρp between two variables is significantly different from zero. If
ρp = 0, then we conclude that there is no linear relationship between the variables under inves-
tigation. Therefore, the hypotheses are defined as follows

H0: ρp = 0 =⇒ There is no linear relationship between variables.
H1: ρp 6= 0 .

According to Field (2007), the test static tρp with N − 2 degrees of freedom for N samples of
the variables is calculated as follows

tρp = ρp

√
N − 2
1− ρp2 . (D.5)
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By comparing tρp with tα,ν , which denotes the critical value of the test based on the Student’s
t-distribution for ν = N − 2 degrees of freedom, it can be decided whether to reject the H0 or
not, i.e.

reject H0: if |tρp | > tα,ν =⇒ ρp 6= 0 and ρp is significantly different from zero.
fail to reject H0: if |tρp | ≤ tα,ν ,

where α is the confidence level. The values of tα,ν are listed in Gosling (1995).

Accordingly, based on the calculated tρp value, the p-value of the test can be reported as well.
p-value < α also yields the rejection of H0.

D.4. Comparison of two Pearson correlation coefficients

According to Field (2007), based on the t-statistic, it is possible to assess whether two Pearson
correlation coefficients are significantly different from each other or not. Mathematically, three
variables are available, namely x,y and z, and the relationship between two pairs, namely
ρp(x,y) and ρp(z,y), are of interest. For the ease of notation, we replace ρp(x,y) with ρxy,
since just the Pearson correlation coefficient is studied here.

The hypotheses of the test are as follows

H0: ρxy is not different from ρzy. (D.6)
H1: ρxy is different from ρzy. (D.7)

The test significance is calculated as follows

tdifference = (ρxy − ρzy)
√

(N − 3)(1 + ρxz)
2
(
1− ρ2

xy − ρ2
xz − ρ2

zy + 2 ρxy ρzy ρxz
) . (D.8)

By comparing the value of tdifference with the critical test value provided in the table of t-
distribution for ν = N − 3 degrees of freedom and the confidence level of α, namely tα,ν ,
following decisions are made, which are similar to the paired-sample t-test in Appendix D.1,

reject H0: if |tdifference| > tα,ν =⇒ ρxy differs significantly from ρzy.
fail to reject H0: if |tdifference| ≤ tα,ν .

The result can also be reported by the p-value based on the Student’s t cumulative distribution
function. Accordingly, p-values < α yields the rejection of H0.

D.5. One-way repeated measures ANOVA

The analysis of variance (anova) is a technique for comparing means of different groups. If
the measurements of the groups are related to different participants, it is then called one-way
independent anova. If, however, similar participants are available, i.e. several measurements for
each subject, then one-way repeated measures anova is used instead. This method concentrates
on the within-subject differences and is, in fact, an extension of the paired-sample t-test explained
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in Appendix D.1. On the contrary, one-way independent anova focuses on the between-group
differences.

Before applying the anova for repeated measurements, following assumptions are required to
be fulfilled:

• Normally distributed group differences.

• Sphericity, which is equivalent to the homogeneity of the variance. The variances of
group differences should almost be the same. According to Field (2007), by applying
the Mauchly’s test, this assumption can be checked.

• Independent samples.

For a data set with G groups and N subjects, which fulfills all aforementioned assumptions, the
hypotheses of the anova are as follows

H0: µ1 = µ2 = · · · = µG

H1: at least one µ is different from the other ones.

µi refers to the mean of the i-th group. It is clear that, in the case ofH1, the test does not provide
information about the group or groups with different mean values. For the ease of notation, we
consider the data set listed in Table D.1.

Groups
Subjects 1 2 · · · G mean

1 x11 x12 · · · x1G x̄1
2 x21 x22 · · · x2G x̄2
... ...

...
...

...
...

N xN1 xN2 · · · xNG x̄N
mean µ1 µ2 · · · µG µ̄

Table D.1.: Typical data set of one-way anova

First, the groups variability, called SSbetween, is calculated as the summed square of the deviation
of the group mean µi from the overall mean µ̄ of the data set

SSbetween =
G∑
i=1

N(µi − µ̄)2 . (D.9)

The next step is the calculation of within-subject variation called SSwithin

SSwithin =
G∑
j=1

N∑
i=1

(xij − µj)2 . (D.10)

In the case of repeated measurements, each subject must also be considered separately. There-
fore, the summed square of the deviation of the subject’s mean x̄i from the overall mean µ̄ is
needed, i.e.

SSsubjects =
N∑
i=1

G(x̄i − µ̄)2 . (D.11)
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x̄i refers to the mean of the samples for the i-th subject, namely

x̄i = 1
G

G∑
j=1

xij . (D.12)

SSwithin also includes SSsubjects. Hence, the error is defined as follows

SSerror = SSwithin − SSsubjects . (D.13)

Now, the means of sum of squares are calculated by considering the degrees of freedom ν1 and
ν2 as follows

MSbetween = SSbetween
ν1

(D.14)

MSerror = SSerror
ν2

(D.15)

ν1 = G− 1 (D.16)
ν2 = (N − 1)(G− 1) . (D.17)

Finally, the test statistic F0 is calculated as

F0 = MSbetween
MSerror

. (D.18)

By comparing F0 with the critical value of F -distribution with respect to ν1 and ν2, namely
Fα,ν1,ν2 , following decision is made:

reject H0: if F0 > Fα,ν1,ν2 =⇒ At least one µ is significantly different.
fail to reject H0: if F0 ≤ Fα,ν1,ν2 .

α refers to the confidence level.

D.6. Homogeneity of variance: Levene’s test

The homogeneity of variance is an assumption of the anova which investigates whether the
variance and the spread of values in each group are in the same range or not. This is done based
on the Levene’s test. We use the same notation as in Appendix D.5.

The hypotheses of the test are as follows:

H0: σ2
1 = σ2

2 = · · · = σ2
G

H1: at least one σ2 is different from the other ones.

σ2
i denotes the variance of the i-th group.
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We define the following variables

zij = |xij − µj |

µzj = 1
N

N∑
i=1

zij

µz = 1
N G

N∑
i=1

G∑
j=1

zij .

Based on these definitions the test statistic is defined which is equivalent to applying one-way
anova to zij with i going from 1 to N samples and j going from 1 to G groups. Therefore, we
have

F0 = G (N − 1)
G− 1

G∑
j=1

N (µzj − µz)2

G∑
j=1

N∑
i=1

(zij − µzj )2
. (D.19)

The critical value of the test and the conditions for rejecting/not rejecting H0 are similar to the
one-way repeated measures anova with the degrees of freedom ν1 and ν2

ν1 = G− 1 (D.20)
ν2 = G (N − 1) . (D.21)

Therefore, we have

reject H0: if F0 > Fα,ν1,ν2 =⇒ At least one σ2 is significantly different.
fail to reject H0: if F0 ≤ Fα,ν1,ν2 .

α refers to the confidence level.

D.7. Wilcoxon signed-rank test

As a non-parametric statistical test, the Wilcoxon signed-rank test analyzes whether the means
of two paired samples are significantly different from each other. This test is mainly applied,
if the assumption of the paired-sample t-test explained in Appendix D.1, namely the normal
distribution of samples, is violated. This assumption Therefore, it is important to have similar
participants in both groups, since this test studies within-subject differences.

For the paired samples (x1,i, x2,i) with i = 1, 2, · · · , N and the corresponding mean values of µ1
and µ2, H0 and H1 hypotheses are as follows:

H0: µ1 = µ2

H1: µ1 6= µ2 .

Test procedure:

1. Rank the absolute value of the difference between pairs |∆xi|, where ∆xi = x1,i − x2,i, in
the ascending order.
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2. Give each rank the same sign as the corresponding ∆xi. For samples with similar difference
values, the average of the ranks should be considered.

3. Find W = min(W+,W−), where W+ and W− denote the sum of positive and negative
ranks, respectively, while considering the absolute value of each rank in the summation.

4. Calculate the following mean and variance values, namely W and VW ,

W = N(N + 1)
4

VW =

√
N(N + 1)(2N + 1)

24 .

5. Calculate the z-score of W
z0 = W −W

VW
. (D.22)

6. The test result is as follows

reject H0: if |z0| > w∗α =⇒ µ1 differs significantly from µ2.
fail to reject H0: if |z0| ≤ w∗α .

w∗α with α as the confidence level is the critical value of the test which is listed in statistic books
such as in Montgomery and Runger (2006).
Alternatively, the p-value of the test can be calculated based on the normal cumulative distri-
bution function. Thus, H0 is rejected, if p-value < α.

D.8. Pearson’s chi-square test

The Pearson’s chi-square test is a statistical test for analyzing the relationship between observed
categorical data with respect to the chi-squared (χ2) distribution. If the categories interact
which other, then we conclude that they are dependent, because the occurrence of one event
leads to the occurrence of the other one. Categorical data can be represented by the contingency
table which summarizes the scores with respect to their membership in each category, as shown
in Table D.2 for two categories.

Table D.2.: Contingency table with two categories
condition A

events yes no total

condition B yes x11 x12 x11 + x12

no x21 x22 x21 + x22

total x11 + x21 x12 + x22 N

The test hypotheses are as follows

H0: The observed samples are statistically independent.
H1: The observed samples are statistically dependent.
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The test statistic χ2
0 is calculated as follows

χ2
0 =

r∑
i=1

c∑
j=1

(xij − Eij)2

Eij
, (D.23)

where xij is the observation summarized in Table D.2 with c columns and r rows. Eij denotes the
expected frequency for each member of the contingency table under the independency assumption
and is calculated as

Eij =

( c∑
k=1

xik
)( r∑

q=1
xqj
)

N
. (D.24)

N refers to the total number of scores.
By comparing χ2

0 with the critical value χ2
α,ν with ν = (r − 1)(c − 1) degrees of freedom and

confidence level of α, it is decided whether to reject the H0 as follows

reject H0: if χ2
0 > χ2

α,ν =⇒ Events occur independently.
fail to reject H0: if χ2

0 ≤ χ2
α,ν .

The result can also be reported by the p-value based on the χ2 cumulative distribution function.
Accordingly, p-values < α yields the rejection of H0.



E. Mother wavelets

Figure E.1 shows the scaling and wavelet functions of Haar and db4.
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Figure E.1.: Scaling and wavelet functions of two mother wavelets





F. Additional results

F.1. Analysis of statistical measures of features

Figure F.1 shows the Spearman’s rank correlation coefficient ρs between the statistical metrics
of 18 drive time-based features and kss values. Since frequency F is not affected by different
metrics, it is not included. In addition to the mean, which was used in this work, following
statistical metrics were calculated: standard deviation (std), median, minimum (min), maximum
(max), range, defined as max−min, and root mean square (rms), namely

rms =

√√√√ 1
n

n∑
i=1

x2
i , (F.1)

where n denotes the number of events in an extraction window. All of these metrics were
calculated for the events detected within an extraction window. Moreover, they were baselined
afterwards to filter out individual differences. The missing bars could not be calculated. ρs
values were not significant (p-value > 0.001) for: std, max and range for A, range for MCV and
AOV and min for T80.

−0.4

−0.2

0   

0.2 

0.4 

0.6 

A E

M
C
V

M
O
V

A
/M

C
V

A
/M

O
V

A
C
V

A
O
V T T
c

T
o

T
c
l,
1

T
c
l,
2

T
r
o

P
E
R
C
L
O
S

T
5
0

T
8
0

T
9
0

ρ
s

 

 

mean std median min max range rms

Figure F.1.: Comparison of Spearman’s rank correlation coefficient between statistical metrics of features
and kss values. Feature type: drive time-based features

Interestingly, some of the metrics are associated with drowsiness in different directions. As an
example, perclos is positively correlated with the kss regarding std and rms, while for the
mean and min, ρs values are negative.
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Overall, mean, median and rms are more consistent in terms of trends of all features in com-
parison to other metrics.

F.2. Boxplot of drive time-based features versus KSS values

Following figures show boxplots of drive time-based features versus kss values for 42 subjects
separately. For subject S2, which is not included in the following figures, all features are shown
together in Figure F.40.

• A: Figures F.2 and F.3
• E: Figures F.4 and F.5
• MCV : Figures F.6 and F.7
• MOV : Figures F.8 and F.9
• A/MCV : Figures F.10 and F.11
• A/MOV : Figures F.12 and F.13
• ACV : Figures F.14 and F.15
• AOV : Figures F.16 and F.17
• F : Figures F.18 and F.19
• T : Figures F.20 and F.21
• Tc: Figures F.22 and F.23
• To: Figures F.24 and F.25
• Tcl,1: Figures F.26 and F.27
• Tcl,2: Figures F.28 and F.29
• Tro: Figures F.30 and F.31
• perclos: Figures F.32 and F.33
• T50: Figures F.34 and F.35
• T80: Figures F.36 and F.37
• T90: Figures F.38 and F.39
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Figure F.2.: Boxplot of normalized feature A versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of A [µV] for each subject.
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Figure F.3.: Boxplot of normalized feature A versus kss for subjects S23 to S43. The values on the bottom
left show the maximum of A [µV] for each subject.
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Figure F.5.: Boxplot of normalized feature E versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of E [(mV)2] for each subject.
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Figure F.6.: Boxplot of normalized feature MCV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of MCV [mV/s] for each subject.
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Figure F.7.: Boxplot of normalized feature MCV [mV/s] versus kss for subjects S23 to S43. The values
on the bottom left show the maximum of MCV for each subject.
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Figure F.8.: Boxplot of normalized feature MOV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of MOV [mV/s] for each subject.
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Figure F.9.: Boxplot of normalized feature MOV versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of MOV [mV/s] for each subject.
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Figure F.10.: Boxplot of normalized feature A/MCV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of A/MCV [s] for each subject.
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Figure F.11.: Boxplot of normalized feature A/MCV versus kss for subjects S23 to S43. The values on
the bottom left show the maximum of A/MCV [s] for each subject.
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Figure F.12.: Boxplot of normalized feature A/MOV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of A/MOV [s] for each subject.
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Figure F.13.: Boxplot of normalized feature A/MOV versus kss for subjects S23 to S43. The values on
the bottom left show the maximum of A/MOV [s] for each subject.
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Figure F.14.: Boxplot of normalized feature ACV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of ACV [mV/s] for each subject.
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Figure F.15.: Boxplot of normalized feature ACV versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of ACV [mV/s] for each subject.
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Figure F.16.: Boxplot of normalized feature AOV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of AOV [mV/s] for each subject.
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Figure F.17.: Boxplot of normalized feature AOV versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of AOV [mV/s] for each subject.
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Figure F.18.: Boxplot of normalized feature F versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of F [1/min] for each subject.
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Figure F.19.: Boxplot of normalized feature F versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of F [1/min] for each subject.
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Figure F.20.: Boxplot of normalized feature T versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of T [s] for each subject.
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Figure F.21.: Boxplot of normalized feature T versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of T [s] for each subject.
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Figure F.22.: Boxplot of normalized feature Tc versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of Tc [ms] for each subject.
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Figure F.23.: Boxplot of normalized feature Tc versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of Tc [ms] for each subject.
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Figure F.24.: Boxplot of normalized feature To versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of To [ms] for each subject.
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Figure F.25.: Boxplot of normalized feature To versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of To [ms] for each subject.
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Figure F.26.: Boxplot of normalized feature Tcl,1 versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of Tcl,1 [ms] for each subject.
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Figure F.27.: Boxplot of normalized feature Tcl,1 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of Tcl,1 [ms] for each subject.
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Figure F.28.: Boxplot of normalized feature Tcl,2 versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of Tcl,2 [ms] for each subject.
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Figure F.29.: Boxplot of normalized feature Tcl,2 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of Tcl,2 [ms] for each subject.
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Figure F.30.: Boxplot of normalized feature Tro versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of Tro [ms] for each subject.
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Figure F.31.: Boxplot of normalized feature Tro versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of Tro [ms] for each subject.
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Figure F.32.: Boxplot of normalized feature perclos versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of perclos for each subject.
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Figure F.33.: Boxplot of normalized feature perclos versus kss for subjects S23 to S43. The values on
the bottom left show the maximum of perclos for each subject.
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Figure F.34.: Boxplot of normalized feature T50 versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of T50 [ms] for each subject.



248 Additional results

216

S24

279

S25

120

S27

128

S28

289

S30

154

S31

102

S33

107

S34

0.25

0.5

0.75

1

290

S23
N
or
m
al
iz
ed

T
5
0

0.25

0.5

0.75

1

100

S26

N
or
m
al
iz
ed

T
5
0

0.25

0.5

0.75

1

157

S29

N
or
m
al
iz
ed

T
5
0

0.25

0.5

0.75

1

165

S32

N
or
m
al
iz
ed

T
5
0

0.25

0.5

0.75

1

129

S35

N
or
m
al
iz
ed

T
5
0

0.25

0.5

0.75

1

132

S38

N
or
m
al
iz
ed

T
5
0

1 2 3 4 5 6 7 8 9

0.25

0.5

0.75

1

KSS

114

S41

N
or
m
al
iz
ed

T
5
0

115

S36

157

S39

1 2 3 4 5 6 7 8 9
KSS

163

S42

85

S37

101

S40

1 2 3 4 5 6 7 8 9
KSS

143

S43

Figure F.35.: Boxplot of normalized feature T50 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of T50 [ms] for each subject.
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Figure F.36.: Boxplot of normalized feature T80 versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of T80 [ms] for each subject.
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Figure F.37.: Boxplot of normalized feature T80 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of T80 [ms] for each subject.
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Figure F.38.: Boxplot of normalized feature T90 versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of T90 [ms] for each subject.
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Figure F.39.: Boxplot of normalized feature T90 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of T90 [ms] for each subject.
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Figure F.40.: Boxplot of normalized features versus kss values for subject S2. The maximum value of
each feature is shown on the bottom left of plots.
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F.3. Correlation between features using the Spearman’s rank
correlation coefficient

Figures F.41 and F.42 show the association between features for kss input-based features and
drive time-based features with respect to the absolute value of the Spearman’s rank correlation
coefficient |ρs|. The p-value for feature pairs with the red × were all larger than 0.05.
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Figure F.41.: Absolute values of the Spearman’s rank correlation coefficient |ρs| calculated between kss
input-based features
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Figure F.42.: Absolute values of the Spearman’s rank correlation coefficient |ρs| calculated between drive
time-based features





G. Gradient descent approach for training
the ANN

In the following, it is explained how gradient descent is used for training the ann. It is clear
that the gradient descent approach in (8.19) should be calculated for the weights of each layer
separately. Therefore, for the weights of hidden-to-output layer we have

∂J

∂w
(2)
jk

= ∂J

∂netk

∂netk

∂w
(2)
jk

. (G.1)

The last term can be easily calculated out of netk definition in (8.15) which gives yj . For the
first term, the chain rule is applied as follows

∂J

∂netk
= ∂J

∂zk

∂zk
∂netk

= −(ck − zk)f ′(netk) . (G.2)

− ∂J
∂netk

is also called sensitivity (ϑk) and denotes the changes of the training error J with respect
to the net activation.

The final equation for updating weights of the hidden-to-output layer is

∆w(2)
jk = η (ck − zk) f ′(netk) yj = η ϑk yj . (G.3)

For the input-to-hidden layer, similarly, the chain rule is applied to (8.19) as follows

∂J

∂w
(1)
ij

= ∂J

∂yj

∂yj
∂netj

∂netj

∂w
(1)
ij

, (G.4)

where the first term is calculated as

∂J

∂yj
= ∂J

∂zk

∂zk
∂yj

= ∂J

∂zk

∂zk
∂netk

∂netk
∂yj

= −
m∑
k=1

(ck − zk)f ′(netk)︸ ︷︷ ︸
ϑk

w
(2)
jk . (G.5)

The other terms in (G.4) are calculated based on (8.14), namely ∂yj
∂netj

= f ′(netj) and ∂netj

∂w
(1)
ij

= xi.
Similar to the ϑk, ϑj is also defined as

ϑj ≡ f ′(netj)
m∑
k=1

w
(2)
jk ϑk , (G.6)
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which links the sensitivity at a hidden layer to that of the output layer. Similar to (G.3), the
learning rule of the input-to-hidden layer is

∆w(1)
ij = η xi f

′(netj)
m∑
k=1

w
(2)
jk ϑk = η xi ϑj . (G.7)

Now it is clear, why this algorithm is called back-propagation. The reason is that it calculates
the error and propagates it back as sensitivities ϑk from output to the hidden layer in order to
learn the weights of the input to hidden layer. In other words, the error at a specific layer can
be calculated, only if the error at the next layer is available.



H. On the understanding of the dual form
of the optimization problem

H.1. Karush-Kuhn-Tucker theorem

For a better understanding of the Karush-Kuhn-Tucker theorem, following definitions should be
reviewed first according to Chiang (2007) and Schmieder (2009):

• Convex set: a set C is a convex set, if the line connecting any two points in C also lies in
C (see Figure H.1), i.e.(

θ x1 + (1− θ) x2
)
∈ C ∀x1, x2 ∈ C , ∀θ ∈ [0, 1] (H.1)

24

(a) convex

24

(b) nonconvex

Figure H.1.: Examples of convex and non-convex sets

• Convex function: a function is referred to as a convex function, if the value of the function
between any two points of it is smaller than the linear interpolation of these points (see
Figure H.2). Mathematically, we have, f : Rn 7−→ R is a convex function, if C = domf is
a convex set and

f
(
θ x1 + (1− θ)x2

)
≤ θ f(x1) + (1− θ) f(x2) ∀x1, x2 ∈ C , ∀θ ∈ [0, 1] . (H.2)

domf denotes the domain of the function f .

29

Figure H.2.: An example of a convex function

• Affine function: an affine function is both convex and concave. A function f is concave, if
−f is convex.
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Theorem (Karush-Kuhn-Tucker Theorem (Cristianini and Shawe-Taylor, 2000))
Given an optimization problem with convex domain Ω ⊆ Rn,

minimise f(w), w ∈ Ω
subject to gi(w) ≤ 0, i = 1, . . . , k,

hi(w) = 0, i = 1, . . . ,m,

with f ∈ C1 convex and gi, hi affine, the necessary and sufficient conditions for a normal point
w∗ to be an optimum are the existence of α∗,β∗ such that

∂L(w∗,α∗,β∗)
∂w = 0,

∂L(w∗,α∗,β∗)
∂β = 0,

α∗i gi(w∗) = 0, i = 1, . . . , k,
gi(w∗) ≤ 0, i = 1, . . . , k,

α∗i ≥ 0, i = 1, . . . , k.

L denotes the Lagrangian function defined in (8.27).

H.2. Extraction of the dual problem for the soft margin
classifier

Similar to the linearly separable data set, the Lagrangian function for the L1-norm case of the
soft margin svm can be defined base on Lagrangian multipliers αi and βi

L(w, b, ξ,α,β) = 1
2 ‖w‖

2 + C
N∑
i=1

ξi −
N∑
i=1

αi
(
yi
(
wTxi + b

)
− 1 + ξi

)
−

N∑
i=1

βi ξi , (H.3)

where α =
[
α1 α2 · · · αN

]T
and β =

[
β1 β2 · · · βN

]T
. The conditions of the kkt, which

should be fulfilled, are as follows

∂L(w, b, ξ,α,β)
∂w = 0 =⇒ w =

N∑
i=1

αi yi xi (H.4)

∂L(w, b, ξ,α,β)
∂b

= 0 =⇒
N∑
i=1

αi yi = 0 . (H.5)

∂L(w, b, ξ,α,β)
∂ξ

= 0 =⇒ αi + βi = C , i = 1, · · · , N . (H.6)

αi
(
yi
(
wTxi + b

)
− 1 + ξi

)
= 0 , i = 1, · · · , N (H.7)

βi ξi = 0 , i = 1, · · · , N (H.8)
αi ≥ 0 , βi ≥ 0 , ξi ≥ 0 , i = 1, · · · , N . (H.9)

Based on the above equations three cases may happen
• αi = 0 =⇒ ξi = 0. As mentioned in Section 8.3.2, this corresponds to the correct classifi-

cation of xi.
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• 0 < αi < C =⇒ yi
(
wTxi + b

)
+ ξi = 1 and ξi = 0, which leads to yi

(
wTxi + b

)
= 1 and

xi is consequently support vector.
• αi = C =⇒ yi

(
wTxi + b

)
+ ξi = 0 and ξi ≥ 0, which means that xi is support vector.

Depending on the value of ξi, xi might be misclassified (see Section 8.3.2).





List of figures

1.1 The evolution of number of killed and injured persons in traffic accidents of Germany . . 1
1.2 The evolution of number of vehicle accidents due to driver drowsiness and the number of

injured persons involved in them . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 A typical steering event detected by the Attention Assist as a drowsiness-related steering

wheel movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.4 Tool chain of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 32-electrode arrangement of eeg (excluding 4 electrodes for eye movement data collection) 17
2.2 ActiCAP measurement system for eeg recording by Brain Products GmbH . . . . . . . . 17
2.3 eeg signals showing α-bursts with closed eyes versus open eyes . . . . . . . . . . . . . . . 18
2.4 Frequency components of the α-bursts by applying the Fourier transform to the wave of

the O2 electrode shown in Figure 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.5 Sensitivity of the asr to auditory and visuomotor secondary tasks and the corresponding

number of horizontal saccades . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 asr with different control signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 asr before and recalculated after applying the control signal . . . . . . . . . . . . . . . . 22
2.8 eog electrodes attached around the eyes for collecting horizontal and vertical eye move-

ment data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.9 An example of the drift in the collected eog data (vertical component) . . . . . . . . . . 25

3.1 Structure of the human eye while transmitting the ray of light . . . . . . . . . . . . . . . 32
3.2 Eye muscles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 Different categories of eye movements based on their velocity . . . . . . . . . . . . . . . . 32
3.4 Representative examples of blinks measured by the vertical (V (n)) and horizontal (H(n))

components of the eog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 H(n) and V (n) representing different types of saccades due to horizontal, vertical and

diagonal eye movements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Selected tracks of the Applus+ idiada proving ground . . . . . . . . . . . . . . . . . . . 38
4.2 H(n) and V (n) of subject S2 for baseline P1 of track 1 . . . . . . . . . . . . . . . . . . . 40
4.3 H(n) and V (n) of subject S2 for baseline of track 2 . . . . . . . . . . . . . . . . . . . . . 40
4.4 Spectrogram and power spectral density (psd) of 20 s of V (n) of subject S4 for track 1

and track 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.5 Boxplot of the values listed in Table 4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.6 Detected large amplitude bumps based on the ewvar of wheel speed sensor data . . . . 42
4.7 V (n) of subject S2 and S6 for small (top plot) and large (bottom plot) amplitude bumps

of track 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 H(n) of subject S8 for track 4, top/bottom: right/left curve . . . . . . . . . . . . . . . . 44
4.9 Calculated sawtooth occurrence time period ∆tc versus curve radius r for δ = 4◦, 6◦, 10◦ 45
4.10 Daytime experiment’s route, about 130 km . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11 One block of daytime real road experiment with secondary tasks . . . . . . . . . . . . . . 48
4.12 In-vehicle setup of the daytime experiment with secondary tasks . . . . . . . . . . . . . . 49
4.13 Nighttime experiment’s route, about 450 km . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Drift removal by applying a median filter to V (n) to improve blink detection. Top: awake
phase, bottom: drowsy phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Information loss of slow blinks by median filter method . . . . . . . . . . . . . . . . . . . 54



264 List of figures

5.3 V (n) and its derivative V ′(n) representing eye blinks during the awake phase . . . . . . . 56
5.4 Normalized histogram of all detected potential blinks and their clustering thresholds by

the k-means clustering method for 11 subjects . . . . . . . . . . . . . . . . . . . . . . . . 57
5.5 Simultaneous detection of saccades by eye blink detection algorithm . . . . . . . . . . . . 57
5.6 Normalized histogram of all detected potential saccades and blinks with long eye closure.

Their clustering thresholds are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7 Possible combinations of two vertical saccades in V (n) . . . . . . . . . . . . . . . . . . . 59
5.8 Flow chart of the derivate-based method for blink detection . . . . . . . . . . . . . . . . . 60
5.9 The impact of window length Lwin on the efficiency of the stft . . . . . . . . . . . . . . 63
5.10 Examples of typical mother wavelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.11 Scaling and translation of the mother wavelet with varying a and b . . . . . . . . . . . . 64
5.12 Scalogram of the cwt for x(t) signal shown in Figure 5.9, top plot: 1 ≤ a ≤ 256, bottom

plot: 1 ≤ a ≤ 20 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.13 Scalograms of the cwt with different mother wavelets for V (n) signal of the awake phase

(left plots) and the drowsy phase (right plots) of the drive . . . . . . . . . . . . . . . . . 66
5.14 cwt with different mother wavelets for V (n) signal of the awake phase (left plots) and

the drowsy phase (right plots) of the drive with a = 5, 10 and 15 . . . . . . . . . . . . . . 68
5.15 Comparison of Xψ(a, b) with the Haar wavelet at a = 5, 10, 15, 30 and 100 with the negative

of the derivative of the eog signal −V ′(n) for the awake and drowsy phases of the drive . 69
5.16 Comparison of cwt at a = 10, 30 and 100 for the detection of fast (the first 20 s) and slow

(the last 20 s) blinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.17 Detected and accepted peaks at different scales of Xψ(a, b) signals . . . . . . . . . . . . . 70
5.18 Flow chart of the cwt-based method for blink detection . . . . . . . . . . . . . . . . . . 72
5.19 Schematic of spaces spanned by scaling and wavelet functions . . . . . . . . . . . . . . . 74
5.20 J-stage decomposition tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.21 Three-stage decomposition of the eog signal during the awake phase by db4 wavelet . . 77
5.22 Three-stage decomposition of the eog signal during the drowsy phase by db4 wavelet . . 78
5.23 J-stage reconstruction tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.24 Example 1: denoising of the eog signal by removing different coefficients during the

reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.25 Example 2: denoising of the eog signal by removing different coefficients during the

reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.26 Scatter plot: ε1(n) versus ε2(n) shown in Figure 5.25 . . . . . . . . . . . . . . . . . . . . 82
5.27 Two examples of drift removal with the wavelet decomposition and reconstruction for

awake (top) and drowsy (bottom) phases of V (n) . . . . . . . . . . . . . . . . . . . . . . 83
5.28 rc and pc of vertical saccade and blink detections for the derivative-based algorithm and

the median filter-based method during the awake and drowsy phases . . . . . . . . . . . . 84
5.29 Average duration (first row), amplitude (second row) and number of blinks (third row)

versus self-estimated drowsiness level for subjects S15, S16 and S18 based on the derivative-
based algorithm and the median filter-based method . . . . . . . . . . . . . . . . . . . . . 85

5.30 rc and pc of blink detection for the derivate based algorithm and the wavelet transform
method during the awake and drowsy phases . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.31 Setting the threshold for distinguishing between blinks and vertical saccades in an online
implementation of the detection method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.1 Saccade rate for the variable time-on-task (four blocks) for all subjects . . . . . . . . . . 92
6.2 Percentage of saccades time-locked to blinks for all subjects and all blocks during the

visuomotor task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Percentage of saccades time-locked to blinks with respect to saccade direction averaged

over all blocks during the visuomotor task . . . . . . . . . . . . . . . . . . . . . . . . . . 94
6.4 Scatter plot: number of saccades accompanied by blinks with respect to their direction

during the visuomotor task for all subjects. Ellipses show two clusters. . . . . . . . . . . 94
6.5 Scatter plots of blink rate for visuomotor vs. driving and auditory vs. driving task.

Pearson correlation coefficient (ρp) and the corresponding p-values are provided as well. 96



List of figures 265

6.6 Percentage of blinks time-locked to saccades for all subjects averaged over all blocks during
the visuomotor task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Scatter plot: blink rate versus saccade rate during the visuomotor task . . . . . . . . . . 97
6.8 eog signals during the visuomotor and driving task for subject S8 . . . . . . . . . . . . . 98
6.9 eog signals during the visuomotor and driving task for subject S1 . . . . . . . . . . . . . 98
6.10 Algorithm for determining the threshold of horizontal saccade detection . . . . . . . . . . 99
6.11 Histogram: absolute amplitude of saccades out of H(n) signal for subject S1 . . . . . . . 100
6.12 The algorithm for balancing the number of small (Ns) and large-amplitude (Nl) saccades 100
6.13 Normalized histogram: amplitude of all horizontal saccades (dark bars) and those accom-

panied by blinks (light bars) for 12 subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.14 Scatter plot: number of saccades in percent time-locked to the blinks with respect to their

amplitude, i.e. small and large . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1 kss input-based feature aggregation method . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2 Relative frequency of kss values for two feature aggregation methods . . . . . . . . . . . 105
7.3 Drive time-based feature aggregation method . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 MOV feature before and after baselining . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
7.5 V (n) and its derivative V ′(n) representing eye blinks in awake and drowsy phases with

the corresponding features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
7.6 Boxplot of normalized drive time-based features combined for all subjects versus kss values110
7.7 Histogram of MCV and MOV with the estimated (est.) distribution (dist.) curves . . . 111
7.8 Histogram of ACV and AOV with estimated (est.) distribution (dist.) curves. The

outliers (values > 10 mV/s) are not shown. . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.9 Histogram of Tc and To with the estimated (est.) distribution (dist.) curves . . . . . . . 114
7.10 Best linear fit to all baselined feature values of Tc and To . . . . . . . . . . . . . . . . . . 114
7.11 Comparison between Tc, Tcl,1 and To during the awake and drowsy phases of the drive for

all subjects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.12 Best linear fit to all baselined feature values of Tro . . . . . . . . . . . . . . . . . . . . . . 116
7.13 Scatter plot of T versus Tx, x ∈ {50, 80, 90}. The red line shows the best linear fit with

its equation on the top of each plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.14 Examples of intended (takeover maneuver) and unintended (lane departure) lane change

events visible in the vehicle’s lateral distance signal . . . . . . . . . . . . . . . . . . . . . 123
7.15 The mean of the ewvar of lateral distance versus kss values for 25 subjects who drove in

the driving simulator. The standard deviations are also shown. . . . . . . . . . . . . . . . 125
7.16 The mean of all baselined features over the first and the last 5min before the first unin-

tended lane departure event for 23 subjects who drove in the driving simulator . . . . . . 126
7.17 The mean of all baselined features over the first and the last 5min of the drive for 18

subjects who drove under real conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
7.18 The mean of all baselined features over the first and the last 5min before an unintended

microsleep for 11 subjects who drove in the driving simulator . . . . . . . . . . . . . . . . 130
7.19 Boxplot of baselined kss input-based features for all subjects versus kss values . . . . . . 133
7.20 Absolute values of Pearson correlation coefficient calculated between kss input-based fea-

tures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.21 Absolute values of the Pearson correlation coefficient calculated between drive time-based

features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
7.22 scatter plot: comparison of 50-Hz features with 40- and 30-Hz ones for the first 12 subjects

- part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.23 scatter plot: comparison of 50-Hz features with 40- and 30-Hz ones for the first 12 subjects

- part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
7.24 Scatter plot: comparing AOV and MOV extracted based on 30, 40 and 50Hz sampling

rate. The lines indicate the best linear fits. . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.1 Examples of three classification rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
8.2 Distribution of classes for kss input-based and drive time-based features . . . . . . . . . 143



266 List of figures

8.3 Applying the smote to an imbalanced data set . . . . . . . . . . . . . . . . . . . . . . . . 148
8.4 Applying the smote and the Tomek link cleaning technique to an imbalanced data . . . 149
8.5 Architecture of a feed-forward neural network with 3 inputs, 3 neurons in one hidden layer

and 2 outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
8.6 Mathematical representation of the input-to-hidden layer of a network . . . . . . . . . . . 150
8.7 Sigmoid activation function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
8.8 Supervised classification by the ann . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
8.9 adr of the training and test sets of the binary subject-dependent ann classifier for different

numbers of neurons. Feature type: kss input-based features. Bars refer to the standard
deviation of permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8.10 adr of the training and test sets of the binary and 3-class subject-dependent ann classifier
for different numbers of neurons. Feature type: drive time-based features. Bars refer to
the standard deviation of permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

8.11 adr of the training and test sets of the binary subject-dependent ann classifier for different
numbers of neurons. Feature type: imbalanced and balanced by smote kss input-based
features of driving simulator experiment. Bars refer to the standard deviation of permu-
tations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.12 adr of the kss input-based features for the real road experiment applied to the network
trained based on the smote. Bars refer to the standard deviation of permutations. . . . 157

8.13 Comparing confusion matrix of the binary subject-dependent ann classifier with that of
the subject-independent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

8.14 Different separating hyperplanes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
8.15 Example of a linearly inseparable data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
8.16 An example of feature mapping for a linearly inseparable data set . . . . . . . . . . . . . 163
8.17 An example of the grid search for finding (C0, γ0) and (Copt, γopt) . . . . . . . . . . . . . 165
8.18 j-fold cross validation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
8.19 An example of a 3-class classification with shaded areas as the unclassifiable. The arrows

show the positive sides of the hyperplanes. Decision functions for the One-Against-All
approach: H: wT

JΦ(xi) + bJ = 0, J = 1, 2, 3 and for the One-Against-One approach:
H: wT

IJ Φ(x) + bIJ = 0, I = 1, 2, 3, J = 1, 2, 3 and I 6= J . . . . . . . . . . . . . . . . . . 166
8.20 Boxplot of C, γ, training and test accuracies for the balanced and imbalanced 2-class

subject-dependent classification with the svm for all 100 permutations. Feature type: kss
input-based features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.21 Boxplot of C, γ, training and test accuracies for the 2-class and 3-class subject-dependent
classification with the svm for all 100 permutations. Feature type: drive time-based features170

8.22 Comparing confusion matrix of the binary subject-dependent svm classifier with that of
the subject-independent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.23 adr of the test sets of the binary subject-dependent k-nn classifier for different numbers
of neighbors. Feature type: kss input-based features. Bars refer to the standard deviation
of permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

8.24 adr of the 2-class and 3-class subject-dependent k-nn classifier for different numbers of
neighbors. Feature type: drive time-based features. Bars refer to the standard deviation
of permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.25 adr of the test sets of the binary subject-dependent k-nn classifier for different numbers
of neighbors. Feature type: imbalanced kss input-based features of driving simulator
experiment. Bars refer to the standard deviation of permutations. . . . . . . . . . . . . . 175

8.26 Comparing confusion matrix of the binary subject-dependent k-nn classifier with that of
the subject-independent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

8.27 Comparing confusion matrices of the binary ann, svm and k-nn classifiers for the subject-
dependent and subject-independent classifications. Feature type: drive time-based features 176

8.28 Comparing confusion matrices of the 3-class ann, svm and k-nn classifiers for the subject-
dependent classification. Feature type: drive time-based features . . . . . . . . . . . . . . 177

8.29 Comparing confusion matrices of the binary subject-dependent ann, svm and k-nn clas-
sifiers for different kss input-based features . . . . . . . . . . . . . . . . . . . . . . . . . . 178



List of figures 267

8.30 adr of the training and test sets of the binary subject-dependent ann classifier for different
numbers of neurons based on gsrd case. Feature type: drive time-based features. Bars
refer to the standard deviation of permutations. . . . . . . . . . . . . . . . . . . . . . . . 180

8.31 Comparing confusion matrices of the binary ann (Nh = 10), svm and k-nn (k = 7)
classifiers for the subject-dependent and subject-independent classifications of the gsrd
case. Feature type: drive time-based features. . . . . . . . . . . . . . . . . . . . . . . . . 180

8.32 Boxplot of C, γ, training and test accuracies for the 2-class subject-dependent classification
of the gsrd case with svm for all 100 permutations. Feature type: drive time-based features181

8.33 adr of the 2-class subject-dependent k-nn classifier of the gsrd case for different numbers
of neighbors. Feature type: kss input-based features. Bars refer to the standard deviation
of permutations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.34 Comparing confusion matrices of the binary subject-independent ann (Nh = 10), svm
(C = 90.5, γ = 1.4) and k-nn (k = 7) classifiers for unseen real road drives of drop-outs.
Feature type: drive time-based features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

8.35 The ann classification accuracy of the best selected features by the sffs algorithm from
1 to 10-feature combination. Feature type: drive time-based features. . . . . . . . . . . . 185

8.36 MR values of the best 10-feature combinations calculated based on the Pearson and Spear-
man’s rank correlation coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

A.1 Geometrical representation of tracking two successive tps during a curve negotiation . . 197

B.1 Description of a boxplot representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

E.1 Scaling and wavelet functions of two mother wavelets . . . . . . . . . . . . . . . . . . . . 211

F.1 Comparison of Spearman’s rank correlation coefficient between statistical metrics of fea-
tures and kss values. Feature type: drive time-based features . . . . . . . . . . . . . . . . 213

F.2 Boxplot of normalized feature A versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of A [µV] for each subject. . . . . . . . 215

F.3 Boxplot of normalized feature A versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of A [µV] for each subject. . . . . . . . . . . . . . . . . . 216

F.4 Boxplot of normalized feature E versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of E [(mV)2] for each subject. . . . . . 217

F.5 Boxplot of normalized feature E versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of E [(mV)2] for each subject. . . . . . . . . . . . . . . . 218

F.6 Boxplot of normalized feature MCV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of MCV [mV/s] for each subject. 219

F.7 Boxplot of normalized featureMCV [mV/s] versus kss for subjects S23 to S43. The values
on the bottom left show the maximum of MCV for each subject. . . . . . . . . . . . . . 220

F.8 Boxplot of normalized feature MOV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of MOV [mV/s] for each subject. 221

F.9 Boxplot of normalized feature MOV versus kss for subjects S23 to S43. The values on
the bottom left show the maximum of MOV [mV/s] for each subject. . . . . . . . . . . . 222

F.10 Boxplot of normalized feature A/MCV versus kss for subjects S1 to S22 (except for
subject S2). The values on the bottom left show the maximum of A/MCV [s] for each
subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

F.11 Boxplot of normalized feature A/MCV versus kss for subjects S23 to S43. The values on
the bottom left show the maximum of A/MCV [s] for each subject. . . . . . . . . . . . . 224

F.12 Boxplot of normalized feature A/MOV versus kss for subjects S1 to S22 (except for
subject S2). The values on the bottom left show the maximum of A/MOV [s] for each
subject. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225

F.13 Boxplot of normalized feature A/MOV versus kss for subjects S23 to S43. The values on
the bottom left show the maximum of A/MOV [s] for each subject. . . . . . . . . . . . . 226

F.14 Boxplot of normalized feature ACV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of ACV [mV/s] for each subject. 227



268 List of figures

F.15 Boxplot of normalized feature ACV versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of ACV [mV/s] for each subject. . . . . . . . . . . . . . . 228

F.16 Boxplot of normalized feature AOV versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of AOV [mV/s] for each subject. 229

F.17 Boxplot of normalized feature AOV versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of AOV [mV/s] for each subject. . . . . . . . . . . . . . . 230

F.18 Boxplot of normalized feature F versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of F [1/min] for each subject. . . . . . 231

F.19 Boxplot of normalized feature F versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of F [1/min] for each subject. . . . . . . . . . . . . . . . 232

F.20 Boxplot of normalized feature T versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of T [s] for each subject. . . . . . . . . 233

F.21 Boxplot of normalized feature T versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of T [s] for each subject. . . . . . . . . . . . . . . . . . . 234

F.22 Boxplot of normalized feature Tc versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of Tc [ms] for each subject. . . . . . . 235

F.23 Boxplot of normalized feature Tc versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of Tc [ms] for each subject. . . . . . . . . . . . . . . . . . 236

F.24 Boxplot of normalized feature To versus kss for subjects S1 to S22 (except for subject S2).
The values on the bottom left show the maximum of To [ms] for each subject. . . . . . . 237

F.25 Boxplot of normalized feature To versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of To [ms] for each subject. . . . . . . . . . . . . . . . . . 238

F.26 Boxplot of normalized feature Tcl,1 versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of Tcl,1 [ms] for each subject. . . 239

F.27 Boxplot of normalized feature Tcl,1 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of Tcl,1 [ms] for each subject. . . . . . . . . . . . . . . . . 240

F.28 Boxplot of normalized feature Tcl,2 versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of Tcl,2 [ms] for each subject. . . 241

F.29 Boxplot of normalized feature Tcl,2 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of Tcl,2 [ms] for each subject. . . . . . . . . . . . . . . . . 242

F.30 Boxplot of normalized feature Tro versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of Tro [ms] for each subject. . . . 243

F.31 Boxplot of normalized feature Tro versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of Tro [ms] for each subject. . . . . . . . . . . . . . . . . 244

F.32 Boxplot of normalized feature perclos versus kss for subjects S1 to S22 (except for
subject S2). The values on the bottom left show the maximum of perclos for each subject.245

F.33 Boxplot of normalized feature perclos versus kss for subjects S23 to S43. The values on
the bottom left show the maximum of perclos for each subject. . . . . . . . . . . . . . . 246

F.34 Boxplot of normalized feature T50 versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of T50 [ms] for each subject. . . . 247

F.35 Boxplot of normalized feature T50 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of T50 [ms] for each subject. . . . . . . . . . . . . . . . . 248

F.36 Boxplot of normalized feature T80 versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of T80 [ms] for each subject. . . . 249

F.37 Boxplot of normalized feature T80 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of T80 [ms] for each subject. . . . . . . . . . . . . . . . . 250

F.38 Boxplot of normalized feature T90 versus kss for subjects S1 to S22 (except for subject
S2). The values on the bottom left show the maximum of T90 [ms] for each subject. . . . 251

F.39 Boxplot of normalized feature T90 versus kss for subjects S23 to S43. The values on the
bottom left show the maximum of T90 [ms] for each subject. . . . . . . . . . . . . . . . . 252

F.40 Boxplot of normalized features versus kss values for subject S2. The maximum value of
each feature is shown on the bottom left of plots. . . . . . . . . . . . . . . . . . . . . . . 253

F.41 Absolute values of the Spearman’s rank correlation coefficient |ρs| calculated between kss
input-based features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254



List of figures 269

F.42 Absolute values of the Spearman’s rank correlation coefficient |ρs| calculated between drive
time-based features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255

H.1 Examples of convex and non-convex sets . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
H.2 An example of a convex function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259





List of tables

2.1 Karolinska Sleepiness Scale (kss) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Literature review of the length of time intervals between successive kss inputs . . . . . . 28
2.3 Stanford Sleepiness Scale (sss) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Means of moving standard deviations of H(n) for all rounds (R) and parts (P) of track 1
and track 2, for all subjects (excluding subject S3) . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Summary of experiments studied in this work . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 confusion matrix: events of video labeling versus those of the proposed detection methods 83

6.1 Values of anova to assess the significant difference between means of blink rates for all
tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Contingency table: saccade amplitude versus occurrence of gaze shift-induced blinks, for
subject S1, first selection procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7.1 Literature review of feature aggregation and the calculated statistic measure . . . . . . . 104
7.2 Extracted blink features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.3 Literature review of the experiment setups. n. s.: not specified . . . . . . . . . . . . . . . 120
7.4 Literature review of the features introduced in this work. Trends versus drowsiness are

either pos.: positive or neg.: negative. n. s.: the feature was studied without its trend
being specified. * reduced vigilance, ** before a driving error, *** based on another end point
for blinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Left table: number of occurrences of kss values at the time of first unintended lane
departure and number of occurrences for the maximum value of kss, if no lane departure
was detected. Right table: confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.6 Results of paired-sample t-test (t0) and Wilcoxon signed-rank test (z0) for all features
shown in Figure 7.16. Red color indicates non-significant features. . . . . . . . . . . . . . 127

7.7 Results of paired-sample t-test (t0) and Wilcoxon signed-rank test (z0) shown in Figure
7.17. Red color indicates non-significant features. . . . . . . . . . . . . . . . . . . . . . . 129

7.8 Left table: number of occurrences of kss values at the time of first microsleep and the
number of occurrences for the maximum value of kss, if no microsleep was detected. Right
table: confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.9 Results of paired-sample t-test (t0) and Wilcoxon signed-rank test (z0) for all features
shown in Figure 7.18. Red color indicates non-significant features. . . . . . . . . . . . . . 131

7.10 Sorted Spearman’s rank correlation coefficient ρs and Pearson correlation coefficient ρp
between all kss input-based features and kss values (N = 391). All p-values were smaller
than 0.05 except for red features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.11 Sorted Spearman’s rank correlation coefficient ρs and Pearson correlation coefficient ρp
between all drive time-based features and kss values (N = 4021). All p-values were smaller
than 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

8.1 Confusion matrix of a binary classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2 Confusion matrix of the binary subject-dependent ann classifier (Nh = 5). Feature type:

kss input-based features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
8.3 Confusion matrices of the subject-dependent ann classifiers for 2-class (Nh = 10) and

3-class (Nh = 20) cases. Feature type: drive time-based features . . . . . . . . . . . . . . 155



272 List of tables

8.4 Confusion matrices of the binary subject-dependent ann classifier for kss input-based
features of the driving simulator experiment. Left: imbalanced features (Nh = 2). Right:
balanced features by smote (Nh = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

8.5 Confusion matrices of the binary subject-dependent ann classifier for kss input-based
features of the real road experiment applied to the network trained based on the smote.
Left: Nh = 3. Right: Nh = 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.6 Confusion matrix of the binary subject-independent ann classifier for drive time-based
features (Nh = 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

8.7 Confusion matrix of the binary subject-dependent svm classifier. Feature type: kss input-
based features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

8.8 Confusion matrices of the subject-dependent svm classifiers for the 2-class and 3-class
cases. Feature type: drive time-based features . . . . . . . . . . . . . . . . . . . . . . . . 170

8.9 Confusion matrices of the binary subject-dependent svm classifiers for kss input-based
features of driving simulator experiment. Left: imbalanced features, right: balanced
features by considering different misclassification costs . . . . . . . . . . . . . . . . . . . . 170

8.10 Confusion matrix of the binary subject-dependent svm classifier for kss input-based fea-
tures of the real road experiment applied to the model trained by considering different
misclassification costs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

8.11 Confusion matrix of the binary subject-independent svm classifier for drive time-based
features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

8.12 Confusion matrix of the binary subject-dependent k-nn classifier for k = 5. Feature type:
kss input-based features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

8.13 Confusion matrices of the subject-dependent k-nn classifier (k = 7) for the 2-class and
3-class cases. Feature type: drive time-based features. . . . . . . . . . . . . . . . . . . . . 174

8.14 Confusion matrix of the binary subject-dependent k-nn classifier (k = 7). Feature type:
imbalanced kss input-based features of driving simulator experiment . . . . . . . . . . . 175

8.15 Confusion matrix of the binary subject-independent k-nn classifier for drive time-based
features (k = 9) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

8.16 Best selected feature combination set by the sffs and ann classifier from 1 to 10 features.
Feature type: drive time-based features . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.17 Confusion matrices of the binary subject-dependent ann classifier (Nh = 10) for drive
time-based features. Left: classification with 19 features. Right: classification with 4
features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.18 Confusion matrices of the binary subject-dependent ann classifier (Nh = 10) for drive time-
based features of drop-outs. Left: classification with 19 features. Right: classification with
4 features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

8.19 Values of ∆γ calculated based on the mia method for drive time-based features (D̆ = 4) . 187
8.20 Best selected drive time-based features based on the cfs method and Pearson correlation

coefficient (Red features were also selected by the Spearman’s rank correlation coefficient
in Table 8.21.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

8.21 Best selected drive time-based features based on the cfs method and Spearman’s rank
correlation coefficient (Red features were selected by the Pearson correlation coefficient in
Table 8.20.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.22 Confusion matrices of the binary subject-dependent ann classifier (Nh = 10) for drive time-
based features and kcfs = 4. Left: Pearson correlation coefficient. Right: Spearman’s rank
correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.23 Best selected drive time-based features based on the cfs method using the Pearson cor-
relation coefficient regardless of the number of features . . . . . . . . . . . . . . . . . . . 190

8.24 Best selected drive time-based features based on the cfs method using the Spearman’s
rank correlation coefficient regardless of the number of features . . . . . . . . . . . . . . . 190

D.1 Typical data set of one-way anova . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
D.2 Contingency table with two categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209



Bibliography

Abdellaoui, A. (2013). Driver state classification based on eye movements by support vector machine.
Master’s thesis, University of Stuttgart.

Abe, S. (2010). Support Vector Machines for Pattern Classification. Advances in Computer Vision and
Pattern Recognition. Springer.

Addison, P. S. (2010). The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications
in Science, Engineering, Medicine and Finance. Taylor & Francis.

Akbani, R., Kwek, S., and Japkowicz, N. (2004). Applying support vector machines to imbalanced
datasets. In Boulicaut, J.-F., Esposito, F., Giannotti, F., and Pedreschi, D., editors, Machine
Learning: ECML 2004, volume 3201 of Lecture Notes in Computer Science, pages 39–50. Springer
Berlin Heidelberg.

Åkerstedt, T. and Gillberg, M. (1990). Subjective and objective sleepiness in the active individual. The
International journal of neuroscience, 52(1-2):29–37.

Åkerstedt, T., Peters, B., Anund, A., and Kecklund, G. (2005). Impaired alertness and performance
driving home from the night shift: a driving simulator study. Journal of sleep research, 14(1):17–20.

Anund, A. (2009). Sleepiness at the wheel. PhD thesis, Karolinska Institutet, Stockholm.
Anund, A., Kecklund, G., Vadeby, A., Hjälmdahl, M., and Åkerstedt, T. (2008). The alerting effect

of hitting a rumble strip - a simulator study with sleepy drivers. Accident Analysis & Prevention,
40(6):1970 – 1976.

Applus+ IDIADA (2014). [Online; accessed 15-October-2014] http://www.applusidiada.com/en/.
Arnedt, J. T., Geddes, M. A. C., and MacLean, A. W. (2005). Comparative sensitivity of a simulated driv-

ing task to self-report, physiological, and other performance measures during prolonged wakefulness.
Journal of Psychosomatic Research, 58(1):61 – 71.

Artusi, R., Verderio, P., and Marubini, E. (2002). Bravais-pearson and spearman correlation coefficients:
meaning, test of hypothesis and confidence interval. International Journal of Biological Markers,
17(2):148–151.

Asa, B. and Weston, J. (2010). A user’s guide to support vector machines. In Carugo, O. and Eisenhaber,
F., editors, Data Mining Techniques for the Life Sciences, volume 609 of Methods in Molecular
Biology, pages 223–239. Humana Press.

Authié, C. N. and Mestre, D. R. (2011). Optokinetic nystagmus is elicited by curvilinear optic flow during
high speed curve driving. Vision Research, 51(16):1791 – 1800.

Baranski, J. V. (2007). Fatigue, sleep loss, and confidence in judgment. Journal of Experimental Psy-
chology: Applied, 13(4):182–196.

Barea, R., Boquete, L., Ortega, S., López, E., and Rodríguez-Ascariz, J. M. (2012). EOG-based eye move-
ments codification for human computer interaction. Expert Systems with Applications, 39(3):2677 –
2683.

Barr, L., Howarth, H., Popkin, S., and Carroll, R. J. (2005). A review and evaluation of emerging
driver fatigue detection measures and technologies. In Proceedings of the International Conference
on Fatigue Management in Transportation Operations, Seattle, USA.

Bartula, M., Tigges, T., and Muehlsteff, J. (2013). Camera-based system for contactless monitoring of res-
piration. In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International
Conference of the IEEE, pages 2672–2675.

http://www.applusidiada.com/en/


274 BIBLIOGRAPHY

Beideman, L. R. and Stern, J. A. (1977). Aspects of the eye blink during simulated driving as a function
of alcohol. Human Factors, 19:73–77.

Belz, S. M., Robinson, G. S., and Casali, J. G. (2004). Temporal separation and self-rating of alertness
as indicators of driver fatigue in commercial motor vehicle operators. Human Factors: The Journal
of the Human Factors and Ergonomics Society, 46(1):154–169.

Bergasa, L., Nuevo, J., Sotelo, M., Barea, R., and Lopez, M. E. (2006). Real-time system for monitoring
driver vigilance. Intelligent Transportation Systems, IEEE Transactions on, 7(1):63–77.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Information Science and Statistics.
Springer.

Bouchner, P., Piekník, R., Novotny, S., Pekny, J., Hajny, M., and Borzová, C. (2006). Fatigue of car
drivers-detection and classification based on the experiments on car simulators. In 6th WEEAS In-
ternational Conference on Simulation, Modeling and Optimization, pages 727–732, Lisbon, Portugal.

Brain Products GmbH (2009). Selecting a suitable EEG recording cap - tutorial. [Online; accessed
14-August-2014] http://www.brainproducts.com/downloads.php?kid=8.

Brown, T., Lee, J., Schwarz, C., Fiorentino, D., and McDonald, A. (2014). Assessing the feasibility
of vehicle-based sensors to detect drowsy driving. Technical report, National Advanced Driving
Simulator, The University of Iowa.

Bulling, A., Ward, J., Gellersen, H., and Troster, G. (2011). Eye movement analysis for activity recogni-
tion using electrooculography. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
33(4):741–753.

Burrus, C. S., Gopinath, R. A., and Guo, H. (1998). Introduction to wavelets and wavelet transforms: a
primer. Prentice Hall.

Caffier, P. P., Erdmann, U., and Ullsperger, P. (2003). Experimental evaluation of eye-blink parameters
as a drowsiness measure. European Journal of Applied Physiology, 89(3-4):319–325.

Chang, C. C. and Lin, C. J. (2011). LIBSVM: A library for support vector machines. ACM Transactions
on Intelligent Systems and Technology, 2:27:1–27:27. Software available at http://www.csie.ntu.
edu.tw/~cjlin/libsvm.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002). Smote: Synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357.

Chiang, C. (2007). Optimization of Communication Systems, Lecture 1B: Convex Sets and Convex Func-
tions. Electrical Engineering Department, Princeton University. [Online; accessed 07-July-2014]
https://www.princeton.edu/~chiangm/ele539l1b.pdf.

Chua, E. C., Tan, W., Yeo, S., Lau, P., Lee, I., Mien, I. H., Puvanendran, K., and Gooley, J. (2012).
Heart rate variability can be used to estimate sleepiness-related decrements in psychomotor vigilance
during total sleep deprivation. Sleep, 35(3):325–334.

Čolić, A., Marques, O., and Furht, B. (2014). Driver Drowsiness Detection. Springer.
Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3):273–297.
Cover, T. and Hart, P. (1967). Nearest neighbor pattern classification. Information Theory, IEEE

Transactions on, 13(1):21–27.
Crawshaw, J. and Chambers, J. (2001). A Concise Course in Advanced Level Statistics: With Worked

Examples. Nelson Thornes.
Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other

Kernel-based Learning Methods. Cambridge University Press.
Daimler AG (2008). Hightech report 02. Technical report.
Daimler AG (2014a). Attention Assist. [Online; accessed 24-August-2014] http://www.daimler.com/

dccom/0-5-1210218-1-1210332-1-0-0-1210228-0-0-135-0-0-0-0-0-0-0-0.html.

http://www.brainproducts.com/downloads.php?kid=8
http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm
https://www.princeton.edu/~chiangm/ele539l1b.pdf
http://www.daimler.com/dccom/0-5-1210218-1-1210332-1-0-0-1210228-0-0-135-0-0-0-0-0-0-0-0.html
http://www.daimler.com/dccom/0-5-1210218-1-1210332-1-0-0-1210228-0-0-135-0-0-0-0-0-0-0-0.html


BIBLIOGRAPHY 275

Daimler AG (2014b). DISTRONIC PLUS with Steering Assist. [Online; accessed 22-January-2015]
http://www.daimler.com/dccom/0-5-1210218-1-1210321-1-0-0-1210228-0-0-135-0-0-0-0-
0-0-0-0.html.

Damousis, I. G. and Tzovaras, D. (2008). Fuzzy fusion of eyelid activity indicators for hypovigilance-
related accident prediction. Intelligent Transportation Systems, IEEE Transactions on, 9(3):491
–500.

DESTATIS (2013a). Unfallentwicklung auf Deutschen Sraßen. [Online; accessed
20-November-2014] https://www.destatis.de/DE/Publikationen/Thematisch/
TransportVerkehr/Verkehrsunfaelle/PK_Unfallentwicklung_PDF.pdf;jsessionid=
6C80F60C49D0724AACAFAD373BC163C7.cae2?__blob=publicationFile.

DESTATIS (2013b). Verkehrsunfälle-Zeitreihen 2012. [Online; accessed 23-March-2014] https:
//www.destatis.de/DE/Publikationen/Thematisch/TransportVerkehr/Verkehrsunfaelle/
VerkehrsunfaelleZeitreihen.html.

Dinges, D. F. and Grace, R. (1998). PERCLOS: A valid psychophysiological measure of alertness as
assessed by psychomotor vigilance. Technical Report Tech. Rep. FHWA-MCRT-98-006, Federal
Highway Administration. Office of motor carriers.

Dong, Y., Hu, Z., Uchimura, K., and Murayama, N. (2011). Driver inattention monitoring system for
intelligent vehicles: A review. Intelligent Transportation Systems, IEEE Transactions on, 12(2):596
–614.

Duchowski, A. (2007). Eye Tracking Methodology: Theory and Practice. Springer.
Duda, R. O., Hart, P. E., and Stork, D. G. (2012). Pattern Classification. Wiley.
Dukas, R. (1998). Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision

Making. Cognitive Ecology: The Evolutionary Ecology of Information Processing and Decision
Making. University of Chicago Press.

Dureman, E. I. and Bodéén, C. (1972). Fatigue in simulated car driving. Ergonomics, 15(3):299–308.
Ebrahim, P. (2011). Drowsiness detection using lane data - event-based and driver model approaches.

Master’s thesis, University of Stuttgart.
Ebrahim, P., Stolzmann, W., and Yang, B. (2013a). Eye movement detection for assessing driver drowsi-

ness by electrooculography. In Systems, Man, and Cybernetics (SMC), 2013 IEEE International
Conference on, pages 4142–4148.

Ebrahim, P., Stolzmann, W., and Yang, B. (2013b). Road dependent driver eye movements under
real driving conditions by electrooculography. In Communications, Signal Processing, and their
Applications (ICCSPA), 2013 1st International Conference on, pages 1–6.

Ebrahim, P., Stolzmann, W., and Yang, B. (2013c). Spontaneous vs. gaze shift-induced blinks for assessing
driver drowsiness/inattention by electrooculography. In Driver Distraction and Inattention, 2013 3rd
International Conference on.

Eoh, H. J., Chung, M. K., and Kim, S. (2005). Electroencephalographic study of drowsiness in simulated
driving with sleep deprivation. International Journal of Industrial Ergonomics, 35(4):307 – 320.

Ergoneers GmbH (2014). Eye-tracking glasses - Dikablis essential. [Online; accessed 30-September-
2014] http://www.ergoneers.com/wp-content/uploads/2014/09/Dikablis-Essential-Eye-
Tracking-Glasses.pdf.

Eskandarian, A., Sayed, R., Delaigue, P., Blum, J., and Mortazavi, A. (2007). Advanced driver fatigue
research. Technical report, Center for Intelligent Systems Research (CISR) , School of Engineering
and Applied Science, The George Washington University.

Evinger, C., Manning, K., Pellegrini, J., Basso, M., Powers, A., and Sibony, P. (1994). Not looking while
leaping: the linkage of blinking and saccadic gaze shifts. Experimental Brain Research, 100(2):337–
344.

http://www.daimler.com/dccom/0-5-1210218-1-1210321-1-0-0-1210228-0-0-135-0-0-0-0-0-0-0-0.html
http://www.daimler.com/dccom/0-5-1210218-1-1210321-1-0-0-1210228-0-0-135-0-0-0-0-0-0-0-0.html
https://www.destatis.de/DE/Publikationen/Thematisch/TransportVerkehr/Verkehrsunfaelle/PK_Unfallentwicklung_PDF.pdf;jsessionid=6C80F60C49D0724AACAFAD373BC163C7.cae2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/TransportVerkehr/Verkehrsunfaelle/PK_Unfallentwicklung_PDF.pdf;jsessionid=6C80F60C49D0724AACAFAD373BC163C7.cae2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/TransportVerkehr/Verkehrsunfaelle/PK_Unfallentwicklung_PDF.pdf;jsessionid=6C80F60C49D0724AACAFAD373BC163C7.cae2?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/TransportVerkehr/Verkehrsunfaelle/VerkehrsunfaelleZeitreihen.html
https://www.destatis.de/DE/Publikationen/Thematisch/TransportVerkehr/Verkehrsunfaelle/VerkehrsunfaelleZeitreihen.html
https://www.destatis.de/DE/Publikationen/Thematisch/TransportVerkehr/Verkehrsunfaelle/VerkehrsunfaelleZeitreihen.html
http://www.ergoneers.com/wp-content/uploads/2014/09/Dikablis-Essential-Eye-Tracking-Glasses.pdf
http://www.ergoneers.com/wp-content/uploads/2014/09/Dikablis-Essential-Eye-Tracking-Glasses.pdf


276 BIBLIOGRAPHY

Fairclough, S. H. and Gilleade, K. (2014). Advances in Physiological Computing. Human–Computer
Interaction Series. Springer London, Limited.

Field, A. (2007). Discovering Statistics Using SPSS. Introducing Statistical Methods Series. SAGE
Publications.

Ford Motor Company (2010). Ford technology news brief. [Online; accessed 25-August-2014] http:
//technology.fordmedia.eu/documents/newsletter/FordTechnologyNewsletter082010.pdf.

Friedrichs, F., Hermannstädter, P., and Yang, B. (2011). Consideration of influences on driver state
classification. In 2nd International Conference on Driver Distraction and Inattention.

Friedrichs, F., Miksch, M., and Yang, B. (2010). Estimation of lane data-based features by odometric
vehicle data for driver state monitoring. In Intelligent Transportation Systems (ITSC), 2010 13th
International IEEE Conference on, pages 611–616.

Friedrichs, F. and Yang, B. (2010a). Camera-based drowsiness reference for driver state classification
under real driving conditions. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 101 –106.

Friedrichs, F. and Yang, B. (2010b). Drowsiness monitoring by steering and lane data based features
under real driving conditions. In 18th European Signal Processing Conference (EUPISCO).

Fürsich, A. (2009). Klassifikation des fahrerzustandes mit hidden markov modellen und bayes-netzen.
Master’s thesis, University of Stuttgart.

Gault, T. R. and Farag, A. A. (2013). A fully automatic method to extract the heart rate from thermal
video. In Computer Vision and Pattern Recognition Workshops (CVPRW), 2013 IEEE Conference
on, pages 336–341.

Gershon, P., Shinar, D., Oron-Gilad, T., Parmet, Y., and Ronen, A. (2011). Usage and perceived effec-
tiveness of fatigue countermeasures for professional and nonprofessional drivers. Accident Analysis
& Prevention, 43(3):797 – 803.

Gosling, J. (1995). Introductory Statistics. Quicksmart University Guides Series. Pascal Press.
Hall, M. A. (1999). Correlation-based Feature Selection for Machine Learning. PhD thesis, University of

Waikato, Department of computer science.
Hall, M. A. (2000). Correlation-based feature selection for discrete and numeric class machine learning.

In ICML, pages 359–366.
Hallvig, D., Anund, A., Fors, C., Kecklund, G., Karlsson, J. G., Wahde, M., and Åkerstedt, T. (2013).

Sleepy driving on the real road and in the simulator-a comparison. Accident Analysis & Prevention,
50:44 – 50.

Hammoud, R. I. (2008). Passive Eye Monitoring: Algorithms, Applications and Experiments, chapter 14,
page 315. Signals and Communication Technology. Springer London, Limited.

Hargutt, V. (2003). Das Lidschlussverhalten als Indikator für Aufmerksamkeits- und Müdigkeitsprozesse
bei Arbeitshandlungen. Fortschritt-Berichte VDI.: Biotechnik, Medizintechnik. VDI-Verlag.

He, H. and Garcia, E. A. (2009). Learning from imbalanced data. Knowledge and Data Engineering,
IEEE Transactions on, 21(9):1263–1284.

He, H., Pang, C., and Li, Q. (2010). Driver fatigue monitoring method based on multi-information
fusion. In Image and Signal Processing (CISP), 2010 3rd International Congress on, volume 1,
pages 110–113.

Hermannstädter, P. and Yang, B. (2013). Driver distraction assessment using driver modeling. In Systems,
Man, and Cybernetics (SMC), 2013 IEEE International Conference on, pages 3693–3698.

Hirshkowitz, M. (2013). Fatigue, sleepiness, and safety: Definitions, assessment, methodology. Sleep
Medicine Clinics, 8(2):183 – 189.

Hoddes, E., Zarcone, V., Smythe, H., Phillips, R., and Dement, W. C. (1973). Quantification of sleepiness:
A new approach. Psychophysiology, 10(4):431–436.

http://technology.fordmedia.eu/documents/newsletter/FordTechnologyNewsletter082010.pdf
http://technology.fordmedia.eu/documents/newsletter/FordTechnologyNewsletter082010.pdf


BIBLIOGRAPHY 277

Hoel, J., Jaffard, M., and Van Elslande, P. (2010). Attentional competition between tasks and its impli-
cations. In European Conference on Human Centred Design for Intelligent Transport Systems.

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka, H., and van de Weijer, J. (2011).
Eye Tracking: A comprehensive guide to methods and measures. OUP Oxford.

Horak, K. (2011). Fatigue features based on eye tracking for driver inattention system. In Telecommuni-
cations and Signal Processing (TSP), 2011 34th International Conference on, pages 593–597.

Horne, J. A. and Reyner, L. A. (1996). Counteracting driver sleepiness: effects of napping, caffeine, and
placebo. Psychophysiology, 33(3):306–309.

Hsu, C. W., Chang, C. C., and Lin, C. J. (2003). A practical guide to support vector classification. [Online;
accessed 10-April-2015] http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.

Hu, S. and Zheng, G. (2009). Driver drowsiness detection with eyelid related parameters by support
vector machine. Expert Systems with Applications, 36(4):7651 – 7658.

Huang, R., Chang, S., Hsiao, Y., Shih, T., Lee, S., Ting, H., and Lai, C. (2012). Strong correlation
of sleep onset between EOG and EEG sleep stage 1 and 2. In Computer, Consumer and Control
(IS3C), 2012 International Symposium on, pages 614–617.

Ingre, M., ÅKerstedt, T., Peters, B., Anund, A., and Kecklund, G. (2006). Subjective sleepiness, simulated
driving performance and blink duration: examining individual differences. Journal of Sleep Research,
15(1):47–53.

ISO 15007 (2013). Road vehicles - Measurement of driver visual behavior with respect to transport
information and control systems - Part 1: Definitions and parameters. ISO 15007-1:2013.

Jain, A. K., Mao, J., and Mohiuddin, K. M. (1996). Artificial neural networks: a tutorial. Computer,
29(3):31–44.

James, W. (1981). The Principles of Psychology (Vol. I). Cambridge, MA: Harvard University Press.
(see: James, W., The Principles of Psychology, H. Holt and Co., New York, 1890.).

Jammes, B., Sharabty, H., and Esteve, D. (2008). Automatic EOG analysis: A first step toward automatic
drowsiness scoring during wake-sleep transitions. Somnologie - Schlafforschung und Schlafmedizin,
12(3):227–232.

Johns, M., Tucker, A., Chapman, R., Crowley, K., and Michael, N. (2007). Monitoring eye and eyelid
movements by infrared reflectance oculography to measure drowsiness in drivers. Somnologie -
Schlafforschung und Schlafmedizin, 11(4):234–242.

Johns, M. W. (1991). A new method for measuring daytime sleepiness: the epworth sleepiness scale.
Sleep, 14(6):540–545.

Johns, M. W. (2003). The amplitude-velocity ratio of blinks: a new method for monitoring drowsiness.
Sleep, 26:A51.

Johns, M. W. and Tucker, A. J. (2005). The amplitude-velocity ratios of eyelid movements during blinks:
changes with drowsiness. Sleep, 28:A122.

Jürgensohn, T., Neculau, M., and Willumeit, H. P. (1991). Visual scanning pattern in curve negotiation.
Vision in Vehicles III, pages 171–178.

Kadambe, S., Murray, R., and Boudreaux-Bartels, G. F. (1999). Wavelet transform-based QRS complex
detector. Biomedical Engineering, IEEE Transactions on, 46(7):838–848.

Kaida, K., Takahashi, M., Åkerstedt, T., Nakata, A., Otsuka, Y., Haratani, T., and Fukasawa, K.
(2006). Validation of the karolinska sleepiness scale against performance and EEG variables. Clinical
Neurophysiology, 117(7):1574 – 1581.

Kandil, F. I., Rotter, A., and Lappe, M. (2010). Car drivers attend to different gaze targets when
negotiating closed vs. open bends. Journal of Vision, 10(4):24.1–11.

Kecklund, G. and Åkerstedt, T. (1993). Sleepiness in long distance truck driving: an ambulatory EEG
study of night driving. Ergonomics, 36(9):1007–1017.

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf


278 BIBLIOGRAPHY

Keller, W. (2004). Wavelets in Geodesy and Geodynamics. Walter de Gruyter.
Kincses, W. E., Hahn, S., Schrauf, M., and Schmidt, E. A. (2008). Measuring driver’s mental workload

using EEG. ATZ worldwide, 110(3):12–17.
Kira, K. and Rendell, L. A. (1992a). The feature selection problem: Traditional methods and a new

algorithm. In Proceedings of AAAI.
Kira, K. and Rendell, L. A. (1992b). A practical approach to feature selection. In Proceedings of the ninth

international workshop on Machine learning, pages 249–256. Morgan Kaufmann Publishers Inc.
Kircher, A., Uddman, M., and Sandin, J. (2002). Vehicle control and drowsiness. Technical report,

Swedish National Road and Transport Research Institute.
Klauer, S. G., Dingus, T. A., Neale, V. L., Sudweeks, J. D., and Ramsey, D. J. (2006). The impact of driver

inattention on near-crash/crash risk: An analysis using the 100-car naturalistic driving study data.
Technical Report DOT HS 810 594, Virginia Tech Transportation Institute, 3500 Transportation
Research Plaza (0536) Blacksburg, Virginia 24061.

Knipling, R. R. and Wierwille, W. W. (1994). Vehicle-based drowsy driver detection: Current status and
future prospects. In Moving Toward Deployment. Proceedings of the IVHS America Annual Meeting.
2 Volumes, number Volume 1.

Kolo, B. (2011). Binary and Multiclass Classification. Weatherford Press.
Kranjec, J., Beguš, S., Geršak, G., and Drnovšek, J. (2014). Non-contact heart rate and heart rate

variability measurements: A review. Biomedical Signal Processing and Control, 13(0):102 – 112.
Krupiński, R. and Mazurek, P. (2010). Convergence improving in evolution-based technique for estimation

and separation of electrooculography and blinking signals. In Piętka, E. and Kawa, J., editors,
Information Technologies in Biomedicine, volume 69 of Advances in Intelligent and Soft Computing,
pages 293–302. Springer Berlin Heidelberg.

Kumar, D. and Poole, E. (2002). Classification of EOG for human computer interface. In Engineering in
Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical
Engineering Society EMBS/BMES Conference, 2002. Proceedings of the Second Joint, volume 1,
pages 64 – 67.

Lal., S. K. L. (2001). The psychophysiology of driver fatigue/drowsiness : electroencephalography, electro-
oculogram, electrocardiogram and psychological effects. PhD thesis, University of Technology, Sydney.
Faculty of Science.

Land, M. F. and Lee, D. N. (1994). Where we look when we steer. Nature, 369:742 – 744.
Leigh, R. J. and Zee, D. S. (1999). The Neurology of Eye Movements, chapter 4. Contemporary Neurology

Series. Oxford University Press.
Lemieux, C. (2009). Monte Carlo and Quasi-Monte Carlo Sampling. Springer Series in Statistics. Springer.
Li, H. D., Liang, Y. Z., Xu, Q. S., Cao, D. S., B., T. B., Deng, B. C., and Lin, C. C. (2011a). Recipe

for uncovering predictive genes using support vector machines based on model population analysis.
Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8(6):1633–1641.

Li, L., Xie, M., and Dong, H. (2011b). A method of driving fatigue detection based on eye location.
In Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on,
pages 480–484.

Liang, Y. and Lee, J. D. (2010). Combining cognitive and visual distraction: Less than the sum of its
parts. Accident Analysis & Prevention, 42(3):881 – 890.

Liang, Y., Reyes, M. L., and Lee, J. D. (2007). Real-time detection of driver cognitive distraction using
support vector machines. Intelligent Transportation Systems, IEEE Transactions on, 8(2):340–350.

Liu, C. C., Hosking, S. G., and Lenné, M. G. (2009). Predicting driver drowsiness using vehicle measures:
Recent insights and future challenges. Journal of Safety Research, 40(4):239–245.



BIBLIOGRAPHY 279

Lugger, M. (2011). Mehrstufige Klassifikation paralinguistischer Eigenschaften aus Sprachsignalen mit
Hilfe neuartiger Merkmale. PhD thesis, University of Stuttgart.

Magosso, E., Provini, F., Montagna, P., and Ursino, M. (2006). A wavelet based method for automatic
detection of slow eye movements: A pilot study. Medical Engineering & Physics, 28(9):860 – 875.

Mallat, S. (2009). A wavelet tour of signal processing: the sparse way. Academic Press Elsevier, Amster-
dam; Heidelberg [u.a.], 3. ed. edition.

Martínez, M., Soria, E., Magdalena, R., Serrano, A., Martín, J., and Vila, J. (2008). Comparative study
of several fir median hybrid filters for blink noise removal in electrooculograms. WSEAS Trans. Sig.
Proc., 4(3):53–59.

May, J. F. (2011). Chapter 21 - driver fatigue. In Porter, B. E., editor, Handbook of Traffic Psychology,
pages 287 – 297. Academic Press, San Diego.

McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The
bulletin of mathematical biophysics, 5(4):115–133.

Moller, H. J., Kayumov, L., Bulmash, E. L., Nhan, J., and Shapiro, C. M. (2006). Simulator performance,
microsleep episodes, and subjective sleepiness: normative data using convergent methodologies to
assess driver drowsiness. Journal of Psychosomatic Research, 61(3):335 – 342.

Moller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks,
6(4):525 – 533.

Monk, T. H. (1989). A visual analogue scale technique to measure global vigor and affect. Psychiatry
Research, 27(1):89–99.

Montgomery, D. C. and Runger, G. C. (2006). Applied statistics and probability for engineers. Wiley.
Morris, T. L. and Miller, J. C. (1996). Electrooculographic and performance indices of fatigue during

simulated flight. Biological Psychology, 42(3):343 – 360.
NHTSA (1998). Drowsy driving and automobile crashes. Technical report, National Highway Traffic

Safety Administration.
Niedermeyer, E. and da Silva, F. L. D. (2005). Electroencephalography: Basic Principles, Clinical Appli-

cations, and Related Fields. LWW Doody’s all reviewed collection. Lippincott Williams & Wilkins.
Niemann, H. (2003). Klassifikation von Mustern.
Nunez, P. L. and Srinivasan, R. (2006). Electric Fields of the Brain: The Neurophysics of EEG. Oxford

University Press.
O’Hanlon, J. F. (1972). Heart rate variability: a new index of driver alertness/fatigue. Technical report,

SAE Technical Paper.
O’Hanlon, J. F. and Kelley, G. R. (1977). Comparison of performance and physiological changes between

drivers who perform well and poorly during prolonged vehicular operation. In Mackie, R., editor,
Vigilance, volume 3 of NATO Conference Series, pages 87–109. Springer US.

Olson, D. L. and Delen, D. (2008). Advanced Data Mining Techniques. Springer.
Otmani, S., Pebayle, T., Roge, J., and Muzet, A. (2005). Effect of driving duration and partial sleep

deprivation on subsequent alertness and performance of car drivers. Physiology & Behavior, 84(5):715
– 724.

Oxford (2014). Oxford dictionaries. [Online; accessed 11-August-2014] http://www.
oxforddictionaries.com/definition/english/distraction.

Papadelis, C., Chen, Z., Kourtidou-Papadeli, C., Bamidis, P. D., Chouvarda, I., Bekiaris, E., and Maglav-
eras, N. (2007). Monitoring sleepiness with on-board electrophysiological recordings for preventing
sleep-deprived traffic accidents. Clinical Neurophysiology, 118(9):1906 – 1922.

Pettitt, M., Burnett, G., and Stevens, A. (2005). Defining driver distraction. In Proceedings of the 12th
ITS World Congress, San Francisco, USA, ITS America.

http://www.oxforddictionaries.com/definition/english/distraction
http://www.oxforddictionaries.com/definition/english/distraction


280 BIBLIOGRAPHY

Philip, P., Sagaspe, P., Taillard, J., Valtat, C., Moore, N., ÅKerstedt, T., Charles, A., and Bloulac, B.
(2005). Fatigue, sleepiness, and performance in simulated versus real driving conditions. Sleep, 28
(12):1511–1516.

Picot, A., Caplier, A., and Charbonnier, S. (2009). Comparison between EOG and high frame rate camera
for drowsiness detection. In Applications of Computer Vision (WACV), 2009 Workshop on, pages
1–6.

Picot, A., Charbonnier, S., and Caplier, A. (2010). Drowsiness detection based on visual signs: blinking
analysis based on high frame rate video. In Instrumentation and Measurement Technology Conference
(I2MTC), 2010 IEEE, pages 801–804.

Pilutti, T. and Ulsoy, A. G. (1999). Identification of driver state for lane-keeping tasks. IEEE Transactions
on Systems, Man, and Cybernetics, Part A, 29(5):486–502.

Pimenta, P. A. D. M. (2011). Driver drowsiness classification based on lane and steering behavior. Master’s
thesis, University of Stuttgart.

Platho, C., Pietrek, A., and Kolrep, H. (2013). Erfassung der Fahrermüdigkeit. Berichte der Bundesanstalt
für Straßenwesen. Unterreihe Fahrzeugtechnik, F 89.

Poularikas, A. D. (2009). Transforms and Applications Handbook, Third Edition. Electrical Engineering
Handbook. Taylor & Francis.

Priddy, K. L. and Keller, P. E. (2005). Artificial Neural Networks: An Introduction. Tutorial Text Series.
SPIE Press.

Pudil, P., Ferri, F. J., Novovičoá, J., and Kittler, J. (1994). Floating search methods for feature selection
with nonmonotonic criterion functions. In Pattern Recognition, 1994. Vol. 2-Conference B: Com-
puter Vision &amp; Image Processing., Proceedings of the 12th IAPR International. Conference on,
volume 2, pages 279–283. IEEE.

Rantanen, E. M. and Goldberg, J. H. (1999). The effect of mental workload on the visual field size and
shape. Ergonomics, 42(6):816–834. PMID: 10340026.

Records, R. E. (1979). Physiology of the human eye and visual system. Harper & Row.
Reddy, M. S., Narasimha, B., Suresh, E., and Rao, K. (2010). Analysis of EOG signals using wavelet

transform for detecting eye blinks. In Wireless Communications and Signal Processing (WCSP),
2010 International Conference on, pages 1–4.

Regan, M. A., Hallett, C., and Gordon, C. P. (2011). Driver distraction and driver inattention: Definition,
relationship and taxonomy. Accident Analysis & Prevention, 43(5):1771 – 1781.

Riemersma, J. B. J., Sanders, A. F., Wildervanck, C., and Gaillard, A. W. (1977). Performance decrement
during prolonged night driving. In Mackie, R., editor, Vigilance, volume 3 of NATO Conference
Series, pages 41–58. Springer US.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5):465 – 471.
Rosario, H. D., Solaz, J., Rodrguez, N., and Bergasa, L. M. (2010). Controlled inducement and measure-

ment of drowsiness in a driving simulator. IET Intelligent Transport Systems, 4 (4):280–288.
Rowland, L. M., Thomas, M. L., Thorne, D. R., Sing, H. C., Krichmar, J. L., Davis, H. Q., Balwinski,

S. M., Peters, R. D., Kloeppel-Wagner, E., Redmond, D. P., Alicandri, E., and Belenky, G. (2005).
Oculomotor responses during partial and total sleep deprivation. Aviation, space, and environmental
medicine, 76(7):C104–C113.

Royal, D. (2003). Volume I: Findings. national survey of distracted and drowsy driving. attitudes and
behavior: 2002 (vol. 1. findings). Technical Report DOT HS 809 566, U.S. Department of Trans-
portation National Highway Traffic Safety Administration (NHTSA), Washington.

Santillán-Guzmán, A. (2014). Digital Enhancement of EEG/MEG signals. PhD thesis, University of Kiel.
Saroj, K. L. L. and Craig, A. (2001). A critical review of the psychophysiology of driver fatigue. Biological

Psychology, 55(3):173 – 194.



BIBLIOGRAPHY 281

Sağlam, M., Lehnen, N., and Glasauer, S. (2011). Optimal control of natural eye-head movements
minimizes the impact of noise. The Journal of Neuroscience, 31(45):16185–16193.

Savitzky, A. and Golay, M. J. E. (1964). Smoothing and differentiation of data by simplified least squares
procedure. Anal. Chem. (1964), pages 1627–1639.

Schleicher, R., Galley, N., Briest, S., and Galley, L. (2008). Blinks and saccades as indicators of fatigue
in sleepiness warnings: looking tired? Ergonomics, 51(7):982–1010.

Schmidt, E. A., Schrauf, M., Simon, M., Buchner, A., and Kincses, W. E. (2011). The short-term
effect of verbally assessing drivers’ state on vigilance indices during monotonous daytime driving.
Transportation Research Part F: Traffic Psychology and Behaviour, 14(3):251 – 260.

Schmidt, E. A., Schrauf, M., Simon, M., Fritzsche, M., Buchner, A., and Kincses, W. E. (2009). Drivers’
misjudgment of vigilance state during prolonged monotonous daytime driving. Accident Analysis &
Prevention, 41(5):1087 – 1093.

Schmieder, F. (2009). Support vector machine in emotion in recognition. Master’s thesis, University of
Stuttgart.

Seekircher, J., Woltermann, B., Gern, A., Janssen, R., Mehren, D., and Lallinger, M. (2009). Das Auto
lernt sehen - kamerabasierte Assistenzsysteme. ATZextra, 14(1):64–71.

Shahid, A., Wilkinson, K., Marcu, S., and Shapiro, C. M. (2012a). Epworth sleepiness scale (ESS). In
Shahid, A., Wilkinson, K., Marcu, S., and Shapiro, C. M., editors, STOP, THAT and One Hundred
Other Sleep Scales, pages 149–151. Springer New York.

Shahid, A., Wilkinson, K., Marcu, S., and Shapiro, C. M. (2012b). Karolinska sleepiness scale (KSS). In
Shahid, A., Wilkinson, K., Marcu, S., and Shapiro, C. M., editors, STOP, THAT and One Hundred
Other Sleep Scales, pages 209–210. Springer New York.

Shahid, A., Wilkinson, K., Marcu, S., and Shapiro, C. M. (2012c). Stanford sleepiness scale (SSS). In
Shahid, A., Wilkinson, K., Marcu, S., and Shapiro, C. M., editors, STOP, THAT and One Hundred
Other Sleep Scales, pages 369–370. Springer New York.

Sigari, M. H. (2009). Driver hypo-vigilance detection based on eyelid behavior. In Advances in Pattern
Recognition, 2009. ICAPR ’09. Seventh International Conference on, pages 426–429.

Simon, M. (2013). Neurophysiologische Analyse des kognitiven Fahrerzustandes. PhD thesis, Eberhard
Karls University of Tübingen.

Simon, M., Schmidt, E. A., Kincses, W. E., Fritzsche, M., Bruns, A., Aufmuth, C., Bogdan, M., R., W.,
and Schrauf, M. (2011). EEG alpha spindle measures as indicators of driver fatigue under real traffic
conditions. Clinical Neurophysiology, 122(6):1168 – 1178.

Sirevaag, E. J. and Stern, J. A. (2000). Ocular measures of fatigue and cognitive factors. Engineering
Psychophysiology: Issues and Applications., R. Backs & W. Boucsein (eds.), L. Erlbaum Associates
Press, New Jersey.

Skipper, J. H. and Wierwille, W. W. (1986). Drowsy driver detection using discriminant analysis. Human
Factors: The Journal of the Human Factors and Ergonomics Society, 28(5):527–540.

Soman, K. P., Ramachandran, K. I., and Resmi, N. G. (2010). Insight Into Wavelets : from Theory to
Practice. PHI Learning.

Sommer, D. and Golz, M. (2010). Evaluation of perclos based current fatigue monitoring technologies.
In Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of
the IEEE, pages 4456–4459.

Sonnleitner, A., Simon, M., Kincses, W. E., Buchner, A., and Schrauf, M. (2012). Alpha spindles as
neurophysiological correlates indicating attentional shift in a simulated driving task. International
Journal of Psychophysiology, 83(1):110 – 118.

Sonnleitner, A., Simon, M., Kincses, W. E., and Schrauf, M. (2011). Assessing driver state - neurophysi-
ological correlates of attentional shift during real road. In 2nd International Conference on Driver
Distraction and Inattention.



282 BIBLIOGRAPHY

Stern, J. A., Boyer, D., and Schroeder, D. (1994). Blink rate: a possible measure of fatigue. Human
Factors: The Journal of the Human Factors and Ergonomics Society, 36:285–297.

Stern, J. A., Walrath, L. C., and Goldstein, R. (1984). The endogenous eyeblink. Psychophysiology,
21(1):22–33.

Stern, R. M., Ray, W. J., and Quigley, K. S. (2001). Psychophysiological Recording. Oxford University
Press.

Straube, A. and Büttner, U. (2007). Neuro-ophthalmology: Neuronal Control of Eye Movements. Devel-
opments in ophthalmology. Karger.

Summala, H., Häkkänen, H., Mikkola, T., and Sinkkonen, J. (1999). Task effects on fatigue symptoms in
overnight driving. Ergonomics, 42(6):798–806. PMID: 10340025.

Suzuki, M., Yamamoto, N., Yamamoto, O., Nakano, T., and Yamamoto, S. (2006). Measurement of
driver’s consciousness by image processing -a method for presuming driver’s drowsiness by eye-
blinks coping with individual differences -. In Systems, Man and Cybernetics, 2006. SMC ’06. IEEE
International Conference on, volume 4, pages 2891–2896.

Svensson, U. (2004). Blink behavior based drowsiness detection method development and validation.
Master’s thesis, Linköpig University.

Tefft, B. C. (2014). Prevalence of motor vehicle crashes involving drowsy drivers, United States, 2009 –
2013 (November 2014). Technical report, AAA Foundation for Traffic Safety.

Thiffault, P. and Bergeron, J. (2003). Monotony of road environment and driver fatigue: a simulator
study. Accident Analysis & Prevention, 35(3):381–391.

Thorslund, B. (2003). Electrooculogram analysis and development of a system for defining stages of
drowsiness. Master’s thesis, Linköpig University.

Tinati, M. A. and Mozaffary, B. (2006). A wavelet packets approach to electrocardiograph baseline drift
cancellation. International Journal of Biomedical Imaging, pages 1–9.

Tomek, I. (1976). Two modifications of CNN. Systems, Man and Cybernetics, IEEE Transactions on,
SMC-6(11):769–772.

Tran, Y., Wijesuriya, N., Tarvainen, M., Karjalainen, P., and Craig, A. (2009). The relationship between
spectral changes in heart rate variability and fatigue. Journal of Psychophysiology, 23(3):143–151.

Uhlich, S. (2006). Emotion recognition of speech signals. Master’s thesis, University of Stuttgart.
Veropoulos, K., Campbell, C., and Cristianini, N. (1999). Controlling the sensitivity of support vector

machines. In Proceedings of the International Joint Conference on Artificial Intelligence, pages
55–60.

Verwey, W. B. and Zaidel, D. M. (2000). Predicting drowsiness accidents from personal attributes, eye
blinks and ongoing driving behaviour. Personality and Individual Differences, 28(1):123–142.

ViaMichelin (2014). Michelin. [Online; accessed 26-August-2014] http://www.viamichelin.de/web/
Karten-Stadtplan.

Volkswagen AG (2014). Fatigue Detection. [Online; accessed 20-November-2014] http:
//www.volkswagen.com.au/en/technology_and_service/technical-glossary/fatigue-
detection.html.

Volvo Group (2014). Driver Alert control. [Online; accessed 24-August-2014] http://www.volvocars.
com/de/sales-services/service/specialsales/Pages/techniklexikon-d.aspx.

von Helmholtz, H. (1925). Treatise on Physiological Optics. Volume III: The Perceptions of Vision. The
Optical Society of America.

Wallén Warner, H., Ljung Aust, M., Sandin, J., Johansson, E., and Björklund, G. (2008). Manual for
DREAM 3.0, driving reliability and error analysis method. Technical report, Deliverable D5.6 of the
EU FP6 project SafetyNet, TREN-04-FP6TRSI2.395465/506723.

http://www.viamichelin.de/web/Karten-Stadtplan
http://www.viamichelin.de/web/Karten-Stadtplan
http://www.volkswagen.com.au/en/technology_and_service/technical-glossary/fatigue-detection.html
http://www.volkswagen.com.au/en/technology_and_service/technical-glossary/fatigue-detection.html
http://www.volkswagen.com.au/en/technology_and_service/technical-glossary/fatigue-detection.html
http://www.volvocars.com/de/sales-services/service/specialsales/Pages/techniklexikon-d.aspx
http://www.volvocars.com/de/sales-services/service/specialsales/Pages/techniklexikon-d.aspx


BIBLIOGRAPHY 283

Wei, Z. and Lu, B. (2012). Online vigilance analysis based on electrooculography. In Neural Networks
(IJCNN), The 2012 International Joint Conference on, pages 1 –7.

Wigh, F. (2007). Detection of driver unawareness based on long- and short-term analysis of driver lane
keeping. Master’s thesis, Linköpings University.

Williamson, A., Friswell, R., Olivier, J., and Grzebieta, R. (2014). Are drivers aware of sleepiness and
increasing crash risk while driving? Accident Analysis & Prevention, 70(0):225 – 234.

Yang, B. (2014). Detection and pattern recognition. Slides to the lecture.
Young, L. and Sheena, D. (1975). Survey of eye movement recording methods. Behavior Research Methods,

7:397–429.
Young, R. K. (1993). Wavelet Theory and Its Applications. Kluwer international series in engineering

and computer science: VLSI, computer architecture, and digital signal processing. Springer US.
Zamora, M. E. (2001). The study of the sleep and vigilance Electroencephalogram using neural network

methods. PhD thesis, University of Oxford.
Zeeb, E. (2010). Daimler’s new full-scale, high-dynamic driving simulator – a technical overview. In

Conference Proc. Driving Simulator Conference Europe, Paris.
Zulley, J. and Popp, R. (2012). Müdigkeit im Straßenverkehr. [Online; accessed 04-April-2013] http:

//www.adac.de/_mmm/pdf/vm_muedigkeit_im_strassenverkehr_flyer_48789.pdf.

http://www.adac.de/_mmm/pdf/vm_muedigkeit_im_strassenverkehr_flyer_48789.pdf
http://www.adac.de/_mmm/pdf/vm_muedigkeit_im_strassenverkehr_flyer_48789.pdf

	Notation and abbreviations
	Zusammenfassung
	Abstract
	Introduction
	Problem statement and motivation
	Definition of drowsiness and inattention
	Countermeasures against drowsiness during driving
	Driver drowsiness detection systems on the market
	Thesis outline
	Goals and new contributions of the thesis

	Driver state measurement
	Objective driver state measures
	Driving performance measures
	Driver physiological measures

	Subjective estimation of the drowsiness

	Human visual system
	Visual attention
	Structure of the human eye
	Types of eye movements

	In-vehicle usage of electrooculography and conducted experiments
	Eye movement measurement during driving - a pilot study
	Material
	Test tracks
	Comparing baselines of track 1 and track 2
	Bumps and eye movements: related or unrelated?
	Patterns of eye movements due to road curvature

	Real road experiments
	Daytime driving with no secondary tasks
	Daytime driving with secondary tasks
	Nighttime driving with no secondary tasks

	Nighttime driving experiment in the driving simulator

	Eye movement event detection methods
	Eye movement detection using the median filter-based method
	Eye movement detection using the derivative-based method
	Eye movement detection using the wavelet transform-based method
	Discrete Fourier transform
	Continuous wavelet transform
	Discrete wavelet transform

	Comparison of event detection methods
	Median filter-based versus derivative-based method
	Derivative-based method versus wavelet transform-based method


	Blink behavior in distracted and undistracted driving
	Time-on-task analysis of the saccade rate during the visuomotor task
	Time-on-task analysis of the blink rate
	Saccades time-locked to blinks during the visuomotor task
	Direction-dependency of blinks time-locked to saccades
	Blink rate analysis during the secondary and primary tasks
	Impact of the visuomotor task on the blink behavior
	Amount of gaze shift vs. the occurrence of gaze shift-induced blinks

	Extraction and evaluation of the eye movement features
	Preprocessing of eye movement features
	KSS input-based feature aggregation
	Drive time-based feature aggregation
	Feature baselining

	Eye blink features
	Saccade features
	Event-based analysis of eye blink features
	Event 1: Lane departure
	Event 2: Microsleep

	Correlation-based analysis of eye blink features
	Case 1: Correlation between a feature and KSS values
	Case 2: Correlation between features

	Eye blink feature's quality vs. sampling frequency

	Driver state detection by machine learning methods
	Introduction to machine learning
	Supervised classification
	Metrics for evaluating the performance of classifiers
	Subject-dependent classification
	Subject-independent classification
	Imbalanced class distributions

	Artificial neural network classifier
	Network's architecture
	Training of the network
	Classification results of subject-dependent data sets
	Classification results of the subject-independent data sets

	Support vector machine classifier
	Hard margin support vector machines
	Soft margin support vector machines
	Kernel trick
	Model construction
	Multi-class classification approaches
	Dealing with imbalanced data
	Classification results of subject-dependent data sets
	Classification results of the subject-independent data sets

	k-nearest neighbors classifier
	Background theory
	Classification results of the subject-dependent data sets
	Classification results of the subject-independent data sets

	Comparison of the supervised classifiers for driver state classification
	Features of the driving simulator versus real road driving
	Generalization of the simulator data to real road driving
	Classification of drop-outs under real road driving conditions

	Feature dimension reduction
	Sequential floating forward selection
	Margin influence analysis
	Correlation-based feature selection


	Summary, conclusion and future work
	Summary and conclusion
	Perspective of future work

	Derivation of sawtooth occurrence frequency during curve negotiation
	Description of a boxplot
	k-means clustering
	Statistical test
	Paired-sample t-test
	Normal distribution test: Lilliefors test
	Test of significance for the Pearson correlation coefficient
	Comparison of two Pearson correlation coefficients
	One-way repeated measures ANOVA
	Homogeneity of variance: Levene's test
	Wilcoxon signed-rank test
	Pearson's chi-square test

	Mother wavelets
	Additional results
	Analysis of statistical measures of features
	Boxplot of drive time-based features versus KSS values
	Correlation between features using the Spearman's rank correlation coefficient

	Gradient descent approach for training the ANN
	On the understanding of the dual form of the optimization problem
	Karush-Kuhn-Tucker theorem
	Extraction of the dual problem for the soft margin classifier

	List of figures
	List of tables
	Bibliography

