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Comparing Algorithms for Aggressive Driving
Event Detection Based on Vehicle Motion Data
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Abstract—Aggressive driving is one of the main causes of
fatal crashes. Correctly identifying aggressive driving events still
represents a challenge in the literature. Furthermore, datasets
available for testing the proposed approaches have some lim-
itations since they generally (a) include only a few types of
events, (b) contain data collected with only one device, and (c) are
generated in drives that did not fully consider the variety of road
characteristics and/or driving conditions. The main objective of
this work is to compare the performance of several state-of-the-
art algorithms for aggressive driving event detection (belonging
to anomaly detection-, threshold- and machine learning-based
categories) on multiple datasets containing sensors data collected
with different devices (black-boxes and smartphones), on differ-
ent vehicles and in different locations. A secondary objective
is to verify whether smartphones could replace black-boxes in
aggressive/non-aggressive classification tasks. To this aim, we
propose the AD2 (Aggressive Driving Detection) dataset, which
contains (i) data collected using multiple devices to evaluate their
influence on the algorithm performance, (ii) geographical data
useful to analyze the context in which the events occurred, (iii)
events recorded in different situations, and (iv) events generated
by traveling the same path with aggressive and non-aggressive
driving styles, in order to possibly separate the effects of driving
style from those of road characteristics. Our experimental results
highlighted the superiority of machine learning-based approaches
and underlined the ability of smartphones to ensure a level of
performance similar to that of black-boxes.

Index Terms—Driving behavior, classification, smartphone,
black-box, anomaly detection, threshold, machine learning

I. INTRODUCTION

According to WHO’s Global status report on road safety
2018, road traffic injuries are the leading killer of people aged
between 5 and 29 [1]. The majority of traffic accidents is
due to human factors, especially to aggressive driving [2].
Monitoring and logging of driving events proved to reduce
aggressive driving behaviors and, consequently, avoid 20%
of road traffic accidents [3]; this phenomenon is due to the
fact that the drivers acquire a better awareness of dangerous
maneuvers they perform [4]. A reduction of aggressive driving
behavior also results in a lowering of vehicle consumption
and gas emissions, as aggressive driving has been estimated
to increase fuel consumption by around 40% [5].

In the literature, several approaches have been exploited
to characterize driving behaviors. Traditional approaches are
based on questionnaires, in which drivers are asked to report
their reaction to common driving situations, or to provide some
information about their driving style. Although questionnaires
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proved to be able to detect, e.g., driving anger, which is one of
the most relevant predictors of aggressive driving behavior [6],
they rely on self-reported data and, hence, could be affected
by social desirability bias [7].

Another approach leverages driving simulators, in which
driving-related data are gathered in a controlled environment
[8]. A limitation of driving simulations lays in the fact that,
due to their artificial nature, they could elicit driving behaviors
that might differ from real-world ones. Furthermore, driving
simulators could be characterized by high installation costs.

A third approach consists in exploiting vehicle data gathered
in real driving conditions [9], [10], [11]. This approach, which
is known as a Naturalistic Driving Study, is the one that can
provide the most accurate and objective data [12].

Data from real drives can be collected in two main ways. A
first way is to rely on black-boxes/in-vehicle data recorders,
i.e., ad-hoc hardware installed on the vehicle able to collect
its acceleration (through Inertial Measurement Units, IMUs),
location and speed (through Global Positioning System, GPS),
and possibly gather additional information from the on-board
diagnostics (OBD). A second way, which gained increasing
attention in the last years, consists in relying on personal
mobile devices. The advantage of smartphones and similar
devices is that, thanks to the sensors they are already equipped
with, could be used in a way similar to black-boxes for
collecting motion data without additional cost for the drivers;
furthermore, they have access to communication networks
needed for data transfer (possibly with flat Internet plans) and
can even process data onboard, being equipped with processors
that are generally more powerful than those in black-boxes.

The market for black-boxes and smartphone applications
able to record and process driving-related data is growing and
could generate new revenue streams [13], especially in fields
like fleet management and insurance telematics.

The process of detecting a driver’s behavior is usually struc-
tured in three phases. First, sensors raw data are preprocessed
and cleaned to extract a denoised signal. Then, the signal is
used to detect and classify driving events; the classification
can be either binary (aggressive or non-aggressive event), or
multi-class, i.e., to identify whether the event was related to a
(an aggressive) braking maneuver, lane change, acceleration,
etc. Finally, detected/classified events are employed in the
computation of a kind of “score” for the driver, or used to
provide real-time or deferred feedback to it.

A considerable number of recent research works focused on
the classification of driving events, since correctly detecting
the type of events generated during a drive is the first step

Copyright ©2015 IEEE. Personal use of this material is permitted. However, permission to use this material for any other purposes must be obtained from
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to improve drivers’ safety, e.g., by issuing warnings or taking
appropriate countermeasures. This research field is relatively
new and no winning solutions have been found yet. One
of the causes is indeed the shortage of annotated datasets
created in real driving conditions. Another aspect that makes it
difficult to find “the” optimal solution is that the performance
of classification algorithms could be affected by many factors,
like the vehicle being considered, the device used for data
recording, the position of this device aboard the vehicle, the
characteristics of the driver, the driving environment, etc. [14]

With the aim to address these issues, in this paper we pro-
vide a comparison of several (14) state-of-the-art algorithms
for the binary classification of driving events, by testing them
on multiple datasets. The objective is manifold. Firstly, we
aim to determine to what extent differences in performance
could be attributed to the factors mentioned above. Secondly,
we intend to verify if smartphones, when used for data
recording, could lead to the same results in terms of algorithms
ability to discriminate between aggressive and non-aggressive
events. Thirdly, we provide the new AD2 (Aggressive Driving
Detection) dataset for driving events analysis, which has some
notable features as listed below.

• It contains data collected using multiple devices, namely
an Android smartphone and an AutoPi device (a config-
urable black-box connected to the OBD-II port, equipped
with motion sensors); for the same event two recordings
collected in the same conditions are available, to be pos-
sibly used for studying the device impact on performance.

• It provides, besides data collected by motion sensors,
geographical information on where the event occurred;
location data could be used to devise algorithms that
consider also road characteristics, the presence of traffic
lights, of roundabouts, etc.

• It describes events generated traveling a path designed to
include a variety of situations typical of everyday driving
like accelerating/braking close to traffic lights, traversing
roundabouts with a different radius/size, etc.

• It includes sensors readings related to events triggered by
driving the path twice, with both a non-aggressive and
an aggressive driving style; when comparing aggressive
to non-aggressive events, this information could help to
separate the effects due to the driving style from the
effects due to the road characteristics.

The rest of the paper is organized as follows: Section II
presents relevant works in the field of driving behavior and
driving event detection, recalls already existing public datasets,
and underlines the motivations behind this work. Section III
provides details on the compared algorithms, whereas Sec-
tion IV illustrates the adopted methodology. Section V dis-
cusses the datasets considered in the comparison, including the
newly created one. Section VI presents the results of the com-
parison, whereas Section VII discusses the main outcomes.
Finally, Section VIII provides the conclusions and suggests
directions for future work. As a side note, in the following we
will refer to aggressive events using the words “aggressive”,
but also “harsh”, “unsafe” and “sudden”, whereas the term
“non-aggressive” will be used to refer to safe driving events.

II. RELATED WORKS

As defined in [15], “a driving behavior refers to the high-
level global behavior, such as aggressive or conservative driv-
ing. Each global behavior consists of one or more underlying
specific styles. For example, an aggressive driver (global
behavior) may frequently overspeed or overtake (specific
styles)”. Driving events or maneuvers can be used to classify
a driving style [16]. In the literature, various approaches have
been proposed for detecting driving events and classifying
driving behaviors. A detailed overview of recent advances in
this field can be found in [9], [14] and [17].

Works proposed so far had several objectives, such as:
• detecting driver’s drowsiness or fatigue by exploiting

physiological data (e.g., electroencephalogram readings)
[18], [19], visual data (e.g., images of the driver’s face)
[20], or acceleration, speed, and brake pedal usage data,
among others [21], [22];

• supporting the driver in the identification of measures to
reduce fuel consumption [23];

• performing driver identification, e.g., to spot unauthorized
vehicle usages [24];

• detecting unsafe and potentially unsafe driving behaviors
to warn the driver [25] or calculate some metrics (e.g.,
for insurance purposes) [13], [26].

In the following, we will focus on this latter objective, i.e.,
the detection of unsafe driving behaviors and, in particular, of
aggressive driving events (which are the target of this paper),
by presenting relevant studies in this field, existing datasets,
and motivations for this work.

A. Detection of Aggressive Driving Events

In the literature, three main approaches have been explored
to classify driving events: anomaly detection-, threshold-, and
machine learning (ML) classifier-based methods.

Anomaly detection-based methods consider aggressive
events as events that deviate from a driver’s normal behavior.
Among anomaly detection-based methods (especially on time
series), a technique which has been frequently used is Dy-
namic Time Warping (DTW). DTW is a pattern recognition
approach that can identify similarities between two series even
when the elements in the considered patterns are not exactly
aligned with each other. This approach has been used, e.g., in
[27] to classify aggressive/non-aggressive turn, acceleration,
braking, and swerving events. Similarly, in [28], DTW has
been exploited to identify the type of driving events, which
have then been classified as safe or unsafe using Bayesian
inference. Even though DTW proved to be able to be effective
for comparing driving series, its dependency on predefined
event templates and threshold values makes it not easily
transferable to different datasets [29]. Other works proposed to
rely on different anomaly detection techniques. For instance,
in [30], the authors stressed the fact that aggressive driving
events are characterized by abnormal acceleration data and,
hence, can be considered as outliers; thus, they exploited
Gaussian Mixture Model (GMM), Partial Least Square Regres-
sion (PLSR), Discrete Wavelet Transform (DWT) and Support
Vector Regression (SVR) to detect them.
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Regarding threshold-based methods, fixed and variable
thresholds were exploited to detect abnormal events in several
works. In particular, in [31], a fixed threshold was applied
to longitudinal and lateral acceleration data to distinguish
between safe and unsafe acceleration, deceleration and lane
change events. Similarly, in [25], three threshold levels were
proposed to detect distracted and unsafe behaviors, including
unsafe lane drifting, lane weaving, acceleration, braking and
turns. The work in [32] focused on the detection of drunk
driving by applying a threshold to longitudinal/lateral accel-
eration in order to identify sudden changes in direction. The
authors of [33] and [34] proposed to adopt a variable threshold
that adapts to the traveling speed; they showed that relying
on a fixed threshold may not be the optimal solution, as
different driving speeds or road types could influence detection
performance. In fact, as pointed out also in [35], finding a
threshold that is able to provide good results under most
conditions is quite challenging, since its value is affected
by the location and characteristics of the sensors, the road
conditions, the traffic flow, etc. Instead of applying thresholds
on acceleration data, other works explored thresholding on the
jerk [36], [37]. The jerk is the second derivative of vehicle
speed (or the first derivative of vehicle acceleration), and
communicates how quickly the acceleration varies over time.
Hence, it could be a more suitable indicator to evaluate how
abrupt an acceleration/braking event is [36].

More recent studies focusing on the analysis of driving
behaviors leveraged ML-based classification method. For in-
stance, the work described in [38] used a ML-based system
based on several features extracted from accelerometer data.
After the identification of the best features, the authors applied
a Random Forest (RF) classifier, which was able to achieve
an accuracy of 95.5% in the task of distinguishing safe from
unsafe driving events. The authors of [39] addressed driving
on curvy roads, and proposed to rely on a Semisupervised
Support Machine to reduce the amount of required labeled data
(hence the labeling effort) for training a binary classifier. Their
system outperformed by about 10% Support Vector Machines
(SVM) when small portions of labeled data were available.
Rather than relying on a single ML method, in [40] it was
proposed to rely on an ensemble learning approach including
Decision Tree (DT), SVM, Multi-Layer Perceptron (MLP),
and K-Nearest Neighbors (K-NN) techniques to classify safe
and unsafe maneuvers, reaching an accuracy and a F-score of
about 94% and 93%, respectively.

ML-based techniques were also exploited to tackle related
tasks such as recognizing different driving maneuvers [41],
[42], [43], detecting drivers’ drowsiness [21], or classifying
the overall driver style as calm, normal or aggressive [44]. For
instance, the work presented in [42] exploited ML techniques
to recognize driving maneuvers such as lane changes, left/right
turns, and U-turns from accelerometer, gyroscope and magne-
tometer data. Different ML approaches were compared such
as MLP, SVM, RF, DT, Naı̈ve Bayes (NB) and Bayesian Net-
works (BNs), with RF and MLP generally achieving superior
performances [41], [45]. The authors of [46] performed a com-
parison of DT, RF, Artificial Neural Network (ANN), SVM,
K-NN, NB, and K-Star (K*) for the multi-class classification

of harsh events. Their findings underlined the superiority of
the K* algorithm.

The authors of [21] addressed a different task, i.e., the
detection of drivers’ drowsiness. In their work, they compared
K-NN, SVM, and ANN to detect drowsy driving on different
road segments, highlighting the superiority of SVM for this
task. In [30], algorithms belonging to the field of statistical
regression, time series analysis, and ML were compared; in
particular, the authors found that GMM and SVR achieved
better performance than DWT and PLSR.

The vast majority of the available works rely on classical
ML techniques after extracting a meaningful set of features
from accelerometer, gyroscope, and magnetometer data. The
most common features for driving event classification are
derived from the instant acceleration along the three axes
[38], [41]. The approach proposed in [41] derives a feature
vector for each time window by grouping time series samples
in short frames (e.g., one-second) and summarizing them
according to different functions. This approach is fast to
compute and effective in retaining the time series nature of
the raw sensor data. Other authors, however, proposed more
aggressive, and potentially more computationally demanding,
feature engineering. In [38], a variety of features including his-
togram features, correlation coefficients, threshold violations,
jerk profiles, and spectral information were extracted from the
accelerometer data and compared; according to the authors,
95.5% classification accuracy could be reached by including
the six best features. In [11], a second-order representation
of accelerometer data based on the Bag of Words approach
was presented, modeling time series of accelerometer readings
as they were text documents, grouping together contiguous
readings as words, and counting how many times a word
appears in a signal.

A completely different approach is offered by the use of
deep neural networks, such as Convolutional Neural Networks
(CNNs). Very few works have investigated the potential of
deep neural networks on this specific task. In a preliminary
study [43], a CNN trained on IMU and GPS data outperformed
conventional ML algorithms (e.g., RF, SVM, K-NN, Hidden
Markov Model – HMM); the authors, however, highlighted the
need for larger training sets for this type of models.

Finally, two works focused on comparing devices used to
collect data rather than algorithms used to process them [47],
[48]. Findings showed that data collection with smartphones
may be considered as reliable and accurate as data collection
with OBD-II devices [47], [48]. In some situations, however,
the smartphone could overestimate critical driving events,
especially when freely positioned in the vehicle [48].

B. Publicly Available Datasets

In the literature, several datasets have been proposed to
support the investigation of driving events and behaviors. In
the following, an overview of the publicly available datasets
at the time of writing this paper is provided. The overview
will focus on datasets that include data gathered in real-
driving sessions which, as said, can be regarded as the most
appropriate conditions to perform driving event identification.
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Some recent works also explored the use of simulators to
generate driving-related data, e.g., modeling aggressive driving
behaviors [49]. Indeed, simulators can be used to create
large and heterogeneous datasets [50], [51]; unfortunately,
simulations cannot recreate (yet) all nuances of real-world
data [49]. Given also the other limitations mentioned above,
simulated datasets were left out of the analysis.

One of the earliest datasets that considered real driving is the
100-Car Naturalistic Driving Study database [52]. This dataset
includes more than 40,000 hours of data gathered by 100
drivers over 12 months on around 2,000,000 vehicle miles. The
objective of the authors was to understand pre-crash causal and
contributing factors; hence, the dataset contains only events
related to near crashes, crashes and critical incidents.

The Public UAH-DriveSet is another real driving dataset
that includes around 500 minutes of driving data collected
from six different drivers and vehicles [53]. Drivers simulated
three different behaviors (normal, drowsy and aggressive) on
two types of roads (motorways and secondary roads). The
dataset contains raw GPS and accelerometer data, processed
data (recognized maneuvers and driving style estimates), as
well as video recordings. Although this dataset provides raw
motion data for the events, its limitation is that events were
detected by an application developed by the authors, rather
than independently recorded by an observer while driving;
thus, a ground truth is missing.

The authors of [45] proposed another dataset collected using
a smartphone app. The dataset contains data gathered by 20
volunteers driving three different cars driving for 8-minutes
in an urban context. The objective of the authors was to
provide an overall score for the driver rather than identifying
the events triggered during the driving session. Hence, the
dataset contains, together with IMU data (acquired at 2Hz),
the results of the Driving Anger Scale [54]. A limitation of
this dataset is the low sampling frequency.

Similarly to what done in [45], in 2015 the AXA insur-
ance company shared on Kaggle a dataset with over 50,000
anonymized trips [55]; the dataset was meant to support a
competition whose goal was to find the best ways to extract
a “telematic fingerprint” capable of distinguishing when a trip
was driven by a given driver. Although this dataset was one of
the largest ones to be shared publicly, it is no longer available
as it has been removed at the end of the competition.

Two datasets generated using a smartphone app were shared
in [41] and [11] (later referred to as Ferreira’s and Carlos’s,
respectively). Ferreira’s dataset contains 50 minutes of driving
data collected by two drivers on a single vehicle, including raw
data for roughly 70 events (harsh braking, harsh acceleration,
harsh cornering, harsh line change, and normal events), both
aggressive and non-aggressive, as well as raw data associated
with normal driving between the events. Carlos’s dataset
contains raw data gathered on two vehicles related to approx-
imately 750 events (harsh braking, harsh acceleration, harsh
cornering, harsh line change and normal events).

Lastly, a recent paper proposed a dataset created using a
Raspberry Pi minicomputer [46]. Data were collected on three
different vehicles by three drivers performing aggressive ma-
neuvers such as sudden turns, accelerations, and decelerations.

Since the goal was to classify aggressive behaviors, the dataset
only contains raw data related to harsh events.

C. Motivations Behind this Work

The above review clearly shows that the approaches adopted
so far for the binary and multi-class classification of driving
events are rather heterogeneous. This situation is summarized
in Table I, which also indicates that, when comparisons have
been performed, a few algorithms were considered, mainly
working on a single dataset collected using only one device.

The objective of our work is to address these limitations by
comparing a representative set of state-of-the-art algorithms,
testing them on multiple datasets, collected with different
devices, mounted on various vehicles driven in diverse lo-
cations, with the aim to identify which algorithms achieve
better performance in the majority of situations, as well as to
determine whether the characteristics of the devices used for
data acquisition actually impact on recognized events.

Thus, similarly to [11], [21], [30], [41], [42], [43], [44]
and [46], we compare multiple approaches for event classifi-
cation with a specific focus on binary classification (safe/harsh
events). Our aim is to study objective ways to identify harsh
and safe driving events, which are the starting point to detect
whether a subject drives with an aggressive or a non-aggressive
driving style. However, differently than in the mentioned
works, we perform the comparison on multiple datasets,
including Ferreira’s [41], Carlos’s [11] and our AD2 dataset.
We excluded datasets that contained only events related to near
crashes, crashes and critical incidents [52] or aggressive events
[46], which did not include an independent ground truth [53]
or with a very low sampling rate (2Hz, compared to 50Hz of
most of the other works) [45]. Additionally, in the AD2 dataset
we include, for the same driving event, data collected using
an Android phone and an AutoPi OBD-II device. To the best
of our knowledge, only two studies compared events detected
using smartphone apps and OBD devices [47], [48], and in
both cases the comparison was limited to one algorithm.

Algorithms to include in the comparison were selected
from the initial set reported in Table I. In particular, for
anomaly detection-based approaches, we left out only DTW
(since no predefined event templates were available for the
considered datasets). Regarding threshold-based approaches,
we considered the application of thresholds on both accelera-
tion and jerk. As for ML-based approaches, we selected one
representative algorithm per family (selected algorithms are
depicted in italics): {ANN: MLP, CNN}, {SVM}, {DT, RF},
{BN, NB, HMM}, {K-NN, K*}. The final list includes the
following 14 algorithms: GMM, PLSR, DWT, SVR, threshold-
based approaches and jerk computation, MLP, CNN, SVM,
RF, BN, K-NN and K*.

III. DETAILS ON COMPARED ALGORITHMS

In the following, some background information on each
algorithm included in the comparison is reported.
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TABLE I: Algorithms reported in the literature. Superscript
numbers refer to the number of datasets used in a given work,
whereas letters refer to the device used to collect the data (S:
smartphone, H: ad-hoc device, C: car simulator, O: other).

Alg. Binary classif. Multi-class classif.
DTW [27]1(S), [28]1(S), [56]1(S)

GMM [10]1(O), [13]1(S),
[30]1(S), [38]1(O)

PLSR [30]1(S)

DWT [30]1(S), [45]1(S)

SVR [30]1(S)

Thresh.-
based

[32]1S, [33]1(S),
[34]1(S), [57]1(H)

[25]2(S,S), [31]1(S), [47]1(S,O),
[48]1(S,O), [58]1(S), [59]1(H), [60]1(S),
[61]1(S), [62]1(S)

Jerk [13]1(S), [36]1(O),
[37]1(O), [38]1(O),
[63]1(H)

MLP [16]1(H), [21]1(C),
[11]3(O,S,S), [40]1(S),
[44]1(S,O) , [64]1(S)

[11]3(O,S,S), [41]1(S), [16]1(H), [42]1(S),
[47]1(S,O) ,[46]1(H)

CNN [43]1(O)

SVM [21]1(C), [39]1(C),
[40]1(S), [44]1(S,O)

[35]1(S), [41]1(S), [43]1(O), [46]1(H),
[64]1(S),

RF [11]3(O,S,S),
[38]1(O), [44]1(S,O)

[11]3(O,S,S), [41]1(S), [43]1(O), [46]1(H),
[64]1(S)

DT [40]1(S) [28]1(S), [42]1(S), [47]1(S,O), [64]1(S)

BN [28]1(S), [41]1(S)

NB [11]3(O,S,S), [40]1(S) [11]3(O,S,S), [42]1(S), [46]1(H), [64]1(S)

HMM [28]1(S), [43]1(O)

K-NN [11]3(O,S,S), [21]1(C),
[40]1(S), [44]1(S,O)

[11]3(O,S,S), [27]1(S), [43]1(O), [46]1(H),
[56]1(S), [64]1(S)

K* [46]1(H)

A. Anomaly Detection-based Approaches

1) Gaussian Mixture Model: GMM is a probabilistic model
that exploits soft clustering techniques to assign items to
clusters. Some works proposed to exploit GMM to model
drivers [65] and detect aggressive driving behaviors [10], [38].
For instance, in [38], it was used to cluster driving events and
styles with the aim to spot aggressive ones. In [10], it was
exploited to model driving aggressiveness as a transformation
operating on driving signals, especially on speed as well as on
lateral and longitudinal accelerations.

As suggested in [30], we used GMM to cluster driving
events data, and detect aggressive events by comparing pre-
dicted acceleration values with the true ones. After clustering,
the distance (i.e., the fitting residual) of each data point with
respect to the classification center is computed. A high fitting
residual is likely to indicate an anomaly and thus, potentially,
a sudden change in the driver’s behavior.

2) Partial Least Squares Regression: PLSR is a statistical
method that could be seen as a Principal Component Analysis
(PCA) with regression. It performs two operations: first, it
reduces the predictors to a smaller set of uncorrelated com-
ponents; then, it carries out least squares regression on them
rather than on the original data. PLSR has been used for inci-
dent detection [66], modeling a traffic incident as an anomaly
characterized by an abrupt change in traffic parameters.

In our work, PLSR has been applied following the process
described in [30], in which it has been used to detect aggres-
sive driving. Thus, the algorithm has been first exploited to

predict, based on accelerometer data acquired at ti, sensors
readings at tj (with j > i); then, the distance between the
predicted values and the actual ones has been computed. Con-
siderable differences between the predicted and actual values
have been considered as indicators of aggressive driving.

3) Discrete Wavelet Transform: DWT is a technique that is
commonly used for signal/image compression and denoising.
Wavelets are particularly interesting as they have the capability
to detect anomalies of short duration [67]. Hence, some au-
thors proposed to exploit them to assess driving behaviors [30],
[45], or to investigate the correlation between road anomalies
and driving behavior [67]. Among the wavelet families, one
of the most common is the Daubechies wavelet (dbN), which
has been frequently used in the processing of accelerometer
data [45], [67]. In our work, we adopt dbN (in particular,
db4, as suggested in [30]) to detect aggressive driving. The
underlying assumption is that an abrupt change in acceleration
can be modelled as some noise applied to normal acceleration
data. In practice, the db4 wavelet has been used to decompose
accelerometer data. The decomposed signal S(t) is then split
in two complementary signals, a(t) (the approximation) and
d(t) (the detail). Then, the original signal is reconstructed by
the inverse wavelet transform after removing a(t) (i.e., setting
a(t) = 0) and keeping only the d(t) component. Finally, the
distance between the reconstructed and the original signal is
computed. Events characterized by a distance larger than a
predetermined threshold are marked as aggressive.

4) Support Vector Regression: SVR is the application of
SVM to regression. With respect to linear regression models,
which aim to minimize the sum of squared errors, SVR
introduces an additional hyperparameter which considers the
amount of error that is acceptable in the model. SVR has been
used to detect anomalies during driving. In particular, in [68],
it was used to forecast and estimate driver’s fatigue based on
electroencephalography data. Another work exploited SVR to
identify asymmetries in car-following, as well as its impact
on traffic flow evolution [69]. In our work, SVR is used, like
in [30], to predict sensor readings at tj based on readings at
ti. Events showing a distance between the prediction and the
actual value higher than a threshold are marked as aggressive.

B. Threshold-based Approaches

1) Thresholds on acceleration data: One of the simplest
approaches proposed so far to detect aggressive events is the
use of thresholds on acceleration data. When a sensor reading
exceeds a given threshold (just once, or several consecutive
times), a harsh event is identified. Since methods based on
thresholds are frequently adopted in black-boxes (due to their
low computational footprint), we decided to include them in
the comparison. There are many works in the literature that
rely on this approach, and proposed many different values for
acceleration thresholds. An overview of the most common
values is provided in Table II. In this work, we tested this
approach in two ways. The first way consists in computing the
Residual Sum of Squares (RSS), as suggested in [30], among
the sensor readings and zero at each instant; once the RSS
has been computed, the threshold that maximizes the F-score
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TABLE II: Overview of thresholds presented in literature.

Threshold Aggr. acceleration Aggr. braking Aggr. turn
0.1 [48] [48] [58]
0.15 [59] [59], [60]
0.25 [60] [32], [61]
0.28 [32], [61]
0.3 [58], [62] [62] [58], [62]
0.35 [57]
0.4 [25] [32], [61]
0.45 [57]
0.5 [31] [31], [58]

is determined (in the following, we will refer to this approach
as “RSS threshold”). The second way consists in “simply”
identifying aggressive events when sensors readings exceed a
given threshold (in the following, we will refer to this approach
as “simple threshold”); in this case, we experimented with all
the threshold values reported in Table II in order to determine
the one(s) providing the best results.

2) Jerk evaluation: As said, the jerk is the variation rate of
acceleration. When it comes to identifying aggressive events,
the jerk is an interesting measure to rely on, since it indicates
how quickly the acceleration changes over time. Various works
proposed to exploit it to detect aggressive driving [13], [38],
[63], [36], [37]. For this reason, we decided to include the jerk
in our comparison; in particular, events for which the jerk was
larger than a given threshold were considered as aggressive.

C. ML-based Classification Approaches

Seven well-known classifiers (MLP, CNN, SVM, RF, BN,
K-NN and K*) were considered in the analysis, including five
parametric classifiers (MLP, CNN, SVM, RF and BN) and
two non-parametric classifiers (K-NN and K*). All parametric
classifiers learn a decision function; its characteristics are
dependent on the specific classifier, which is trained on the
training set and then applied to the new unseen cases at
test time. Within the family of ANNs, we included two
shallow models: MLPs ([14], [41], [16], [24]) and CNNs [43].
Within the family of non-parametric classifiers, besides k-NN
we included also K*, due to its performance in recogniz-
ing aggressive/risky driving behaviors [46]. Both algorithms
identify the class of a target point by comparing it against
labeled samples in the training set, and selecting the k-nearest
neighbors in feature space. The main difference is that K*
exploits an entropy-based metric, rather than the classical
Euclidean metric, to compute the distance among data points.

IV. METHODOLOGY

Fig. 1 reports an overview of the whole analysis process.
Four phases can be distinguished: Data acquisition, Data
transformation, Algorithms application and Evaluation. In the
following, details on each phase are reported.

A. Data Acquisition

The upper part of Fig. 1 depicts data acquisition. As said, in
this work, a new dataset has been created. Data were collected
using an Android smartphone (on the left) and an AutoPi

Translated
sensor
data

Translated
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Fig. 1: Overview of the whole analysis process.

OBD-II device (on the right). On the smartphone, accelerom-
eter, gyroscope, magnetometer and GPS sensors have been
used to collect motion data, which were translated to Earth
coordinates directly onboard. The AutoPi device recorded
accelerometer readings, latitude/longitude coordinates, as well
as speed and RPM data gathered through the OBD-II port.
Data acquired with this latter device were subsequently trans-
lated into Earth coordinates using a 10-second calibration
file (recorded when the vehicle was steady) by following the
approach in [70]. This approach corrects the axes orientation
by applying a quaternion rotation transformation to raw data. It
is worth remarking that, even though more data were collected,
for the sake of comparison, only accelerometer readings were
used in the analysis, as they are the common factor of the
other considered datasets.

B. Data Transformation

Acceleration data were transformed to remove noise using
a second-order Savitzky-Golay filter, with a time window of
one second, as suggested in [63]. For ML-based approaches
(MLP, CNN, SVM, RF, BN, KNN and K*) a feature vector
was built based on the process in [41].

In particular, a sliding window of ns seconds (encompassing
seconds from s0 to sw, with w = ns− 1) was defined.
Sensor data were then aggregated by computing the following
summarizing functions SFs over one-second long frames:
mean M , median MD, standard deviation SD and tendency
T , as reported in Eq. 1.

M0 = M(s0, sw); M1 = M(s1, sw); ...Mw = M(sw)

MD0 = MD(s0, sw);MD1 = MD(s1, sw); ...MDw = MD(sw)

SD0 = SD(s0, sw); SD1 = SD(s1, sw); ...SDw = SD(sw)

T0 =
M(s0)

M(sw)
; T1 =

M(s1)

M(sw)
; ...Tw−1 =

M(sw−1)

M(sw)
(1)
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Thus, each sliding window of ns seconds contained ns
features for each SF , with SF (si) summarizing sensors data
for second si, and SF (si, sj) summarizing data for seconds
from i to j. Summarizing data in Eq. 1 were separately
computed for all the three axes x, y, z and then concatenated
to form the final feature vector. As done in [41], feature vectors
were built for windows with different number of seconds (e.g.,
ns = 4, 5, 6, 7, 8); the aim was to verify which window size
was most suitable, as driving events had different lengths.

C. Algorithms Training and Assessment

The algorithms described in Section III were run on the
extracted features using the configurations given in Table III.

For anomaly detection-based approaches, the fitting resid-
ual between the original signal and the predicted one was
evaluated to identify whether the event should be classified
as aggressive or non-aggressive. In order to further reduce
the noise (which was already removed using the above-
mentioned process), the following steps were followed. First,
sliding windows of ns seconds were extracted, with ns =
{1, 4, 6, 8, 12, 16}.

The windows were built as in Eq. 2,

w0 = (s0, s1, ..., sns∗sr−1);

w1 = (s1, s2, ..., sns∗sr);

w2 = (s2, s3, ..., sns∗sr+1);

...

(2)

with sr being the sampling rate.
For each time window, the number of elements showing a

fitting residual higher than a threshold τ was computed and, if
it was larger than a predefined amount n, the whole window
was classified as aggressive, otherwise as non-aggressive.

Based on the above methodology, the GMM was applied as
follows: it received as input all the sensors readings/features
(i.e., denoised x, y and z values) and grouped them in k
clusters (with k varying as reported in Table III). Then, for
each data point, the RSS w.r.t. the cluster center was computed
as RSS = (γ − γ̂)2, where γ is the actual value, and γ̂ is
the predicted one [30]. The result was then compared with the
threshold τ . Similarly to GMM, the PLSR and SVR algorithms
took as input all the features, and were parametrized based on
previous work [30]. In this case, the number of components
nc was set to two [30], and the RSS was computed on the
difference between the values of sensors readings in the next
instant and the value predicted by the algorithm. For the DWT
approach, the db4 wavelet was instead applied to each axis
independently, as done in [30].

With regard to threshold-based approaches and, in partic-
ular, the “RSS threshold” approach, the RSS of the distance
between each sensor reading and zero was calculated. When
at least n elements in a window of ns seconds presented
a RSS value higher than a given threshold τ , the window
was classified as aggressive. This mechanism was applied to
both acceleration values and jerk. The values of ns and τ
were dynamically changed to find the ones maximizing the F-
score. For the , each data point related to x and y sensors
readings was labeled as aggressive when, for y readings

TABLE III: Configurations for the considered algorithms.

GMM k ∈ (1, 10)
PLSR Number of components nc = 2
SVR Radial basis kernel function, penalty C = 2
Thresh. Values reported in Table II
MLP one hidden layer with size H ∈ {(attribs +

classes)/2, 40, 30, 20, 10}
CNN Hyperparameters set as in [43]
SVM Polynomial and radial basis kernel functions; cost values C ∈

(25, 213.5); gamma values G ∈ (2−7.5, 2−1)
RF Number of iterations I ∈ {100, 200}, number of features to

randomly investigate K ∈ {log2(#predictors) + 1, 10, 15}
BN Search algorithms: K2, TAN, Repeated Hill Climber
K-NN Number of nearest neighbors K = {1, 3, 5, 7, 9}
K* Blend setting B = {10, 20, 30, 40}

(frontal accelerations), the acceleration was higher than a
threshold τaccel or lower than a threshold τbrak and when,
for x readings (lateral accelerations), the absolute value of
the acceleration was higher than a threshold τturn. We did
not consider z, as we did not find in the literature suitable
thresholds. The set of values experimented for the thresholds
is that reported Table II.

Lastly, for ML-based approaches the hyper-parameter con-
figuration was chosen experimentally, as well as taking into
account the results of [41] for MLP, SVM, RF and BN, and
[43] for the CNN. The most relevant hyper-parameters for each
algorithm were optimized experimentally using grid search.
Hyper-parameter configurations are reported in Table III.

D. Evaluation

Each algorithm configuration was evaluated on the binary
classification task by computing precision, recall and F-score
metrics. Metrics were calculated separately for the “aggres-
sive” and “non-aggressive” classes, and then the weighted
average was taken in order to account for the different number
of events per class.

Metrics were calculated on the entire dataset for threshold-
based algorithms, and using k-fold cross validation (with
k = 10) for those algorithms requiring a training phase.
Since events may have a different duration, each time window
belonging to the event was labeled as “aggressive” or “non-
aggressive”. If at least 50% of the time points belonging to
the window were related (in the ground truth) to an aggressive
event, the whole window was labeled as aggressive, otherwise
as non-aggressive. To minimize correlation between different
training samples, non-overlapping time windows were ex-
tracted from each dataset. In the case of consecutive short
events, it is possible that a given time window contains or
overlaps with more than one event. For use cases that require a
precise separation between close events, an alternative strategy
could be to exploit the time window for classifying only the
central time point. At inference time, when the window slides
by one frame at the time (stride set to 1), it is possible to obtain
a fine-grained frame-by-frame classification at the expenses of
higher computation times. For the purpose of evaluating the
ability of different ML algorithms to separate “aggressive” vs.
“non-aggressive” events, both approaches are viable.

The selected 14 algorithms were evaluated according to two
different experimental setups. The first setup focuses on the
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classification of labeled events as in previous work [41]. The
second setup includes all available acceleration data, includ-
ing those recorded during normal driving situations; since the
performance is evaluated on a continuous data stream, this type
of assessment more closely reflects a realistic scenario and
frames the task as truly a detection, rather than a classification,
task. This second set of experiments was performed only on
the Ferreira’s and AD2 datasets. To calculate the performance
metrics, the unlabeled portion of the data was split into non-
overlapping segments of duration equal to eight seconds, all
labeled as non-aggressive. Furthermore, we decided to limit
the range of ns values used for the Ferreira’s and Carlos’s
datasets (setting the maximum value to 8 and 4, respectively)
in order to reduce the overlap among subsequent events, as
the events included in these datasets are generally shorter than
such time intervals.

V. DATASETS

To test the different approaches, three datasets have been
exploited, whose characteristics are presented below.

A. AD2 Dataset

The AD2 dataset was collected during a driving session
performed in the city of Turin (Italy). The session lasted more
than two hours. The vehicle used was a 2007 Ford Fiesta, the
roads were paved with asphalt and dry, the weather was sunny,
and the level of traffic was medium-high. The car was driven
by a driver with 20 years of experience.

As said, data have been acquired using an Android app (a
modified version of the app presented in [41]) and an AutoPi
device. The app was installed on a Google Pixel 2 smartphone
(equipped with Android 11), which was placed on the anterior
car windshield using a suction-cup smartphone mount. The
smartphone orientation was vertical. The AutoPi device was
connected to the OBD-II port of the car and was installed using
velcro straps near the steering wheel, with an inclination with
respect to the ground of around 40 degrees.

The path followed during the driving session was composed
of several sub-paths, which were planned in advance in order
to represent as much as possible an everyday urban driving
scenario encompassing, among others, acceleration and brak-
ing events close to traffic lights, left/right turns with different
radius, and u-turns. Furthermore, we devoted particular atten-
tion at including in the sub-paths also roundabouts (of different
radius and with different number of lanes), an element which
is becoming more and more frequent in many cities.

Each sub-path was traversed twice, a first time with a non-
aggressive driving style, a second time with an aggressive
driving style. This choice was made to collect data on driving
events with the two styles under the same or at least very sim-
ilar (road, weather, and traffic) conditions. The path traveled
to reach the sub-path locations was generally traversed with a
non-aggressive driving style even though, occasionally, some
aggressive events were triggered (mainly harsh acceleration
and braking events, due to traffic conditions). The events
generated during the non-aggressive or the aggressive driving
were labeled accordingly (safe or harsh). For each event, an

Fig. 2: Example of recorded driving events (green “A” marker
: acceleration, orange “R” marker : right turn, pink “L” marker
: left turn, “U” purple marker : u-turn, transparent marker :
non-aggressive event, opaque marker : aggressive event, red
line : path traveled by the vehicle).

independent observer on board of the vehicle recorded its start
and end timestamps to generate the ground truth, together
with a label identifying the event type. It is worth remarking
that, similarly to other datasets such as the Ferreira’s and
the Carlos’ ones, the labels assigned to events contained in
the AD2 dataset are strongly influenced by the subjectivity
of the driver/evaluator. In particular, when asked to travel
the path with an aggressive driving style, the driver adopted
a driving style that subjectively seemed aggressive (to the
driver), still respecting everyone’s safety. Nonetheless, data
collected (and labels assigned) by other more/less experienced
drivers could be different than those collected in the AD2

dataset. A discussion on how to increase the objectivity of
collected data is provided in Section VII.

Fig. 2 depicts a subset of the recorded events. Latitude and
longitude data recorded at the start time of each event have
been used to draw markers on the map. The map shows non-
aggressive/aggressive acceleration and right/left/u-turn events.

Table IV reports the number and type (label) of recorded
events. The set of event types considered in this dataset was
based on that used in [26] and [41], which was enlarged to
include u-turns and events in roundabouts. In total, 135 (48
aggressive, 87 non-aggressive) events were recorded using the
Android app, 126 (46 aggressive, 80 non-aggressive) by the
AutoPi device. This difference was due to the late startup of
the latter device after engine start. Additionally, the dataset
includes 124 minutes of normal driving, which are not labeled.

As said, the Android application collected accelerometer,
gyroscope, magnetometer and GPS data. For the AutoPi
device, accelerometer and GPS data provided by the device
sensors were recorded (the device was not equipped with
gyroscope and magnetometer); this device also enabled the
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TABLE IV: Events recorded in the AD2 dataset.

Smartphone AutoPi
Event type Aggr. Non-aggr. Aggr. Non-aggr.
Acceleration 7 12 7 11
Braking 10 20 10 20
Lane change 4 4
Left turn 9 11 8 10
Left turn in roundabout 1 4 1 3
Right turn 8 15 7 13
Right turn in roundabout 2 5 2 4
Straight roundabout 4 8 4 8
U-turn 5 6 5 5
U-turn in roundabout 2 2 2 2
Total 48 87 46 80

TABLE V: Events recorded in Ferreira’s and Carlos’ datasets.

Event type Ferreira’s Carlos’s
Aggressive braking 12 150
Aggressive acceleration 12 146
Aggressive turns 11 left, 11 right 149
Aggressive lane changes 4 left, 5 right 149
Non-aggressive event 14 148
Total 69 742

recording of speed and RPM data, retrieved from the OBD-II
port. The sampling rate was 1Hz for GPS, speed and RPM,
50Hz for the other sensors. It shall be recalled, though, that for
the comparison we only used accelerometer data. The created
dataset is publicly available at http://tiny.cc/1tsxtz.

Fig. 3a and 3b show some sample plots for acceleration
data (reported on the y axis) recorded using the Android
app for a non-aggressive u-turn event and an aggressive u-
turn event recorded in the same location. Fig. 3c and 3d
show acceleration data for the same events recorded using the
AutoPi device. A visual comparison clearly shows similarities
between the acceleration curves of the two devices, with larger
acceleration values (as expected) for aggressive events.

B. Ferreira’s Dataset

This dataset contains accelerometer, gyroscope and magne-
tometer data gathered through an Android app during four car
trips of around 13 minutes each [41]. The driving sessions
were carried out on a 2011 Honda Civic by two experienced
drivers on sunny days and on dry roads paved with asphalt.
The phone was mounted on the car windshield by means of
a car mount. The sampling rate varied between 50Hz and
100Hz depending on the sensor. Ferreira’s dataset contains 69
events, 55 aggressive and 14 non-aggressive. Table V (second
column) reports an overview of events recorded in this dataset.
In particular, this dataset contains sensors data acquired during
the entire duration of the driving sessions, i.e., both data
related to relevant (i.e., labeled) safe/harsh events, as well
as data related to events not considered as relevant from the
driver’s perspective (events typical of everyday driving situa-
tions, which could be generally regarded as non-aggressive).

C. Carlos’s Dataset

The authors of this dataset [11] gathered acceleration data
related to aggressive and non-aggressive events using again
an Android app on two vehicles, namely, a Honda Accord

and a Nissan Altima. Around 40 minutes of events were
collected. The smartphone was freely positioned in the vehicle,
in the driver’s door lower compartment or in the cup holder,
depending on the vehicle. The sampling rate was 50Hz.
Table V (third column) reports an overview of the events
recorded in this dataset. Differently than with the Ferreira’s
and our dataset, the Carlos’s dataset only contains relevant
events occurred during the driving session rather than data
for the whole driving session; hence, it does not completely
reflect an everyday driving situation in which a high number
of non-aggressive events are generally present.

VI. EXPERIMENTAL RESULTS

The first set of experiments evaluated the classification
performance on labeled aggressive vs. non-aggressive events.
Table VI reports the best results achieved by each algorithm
(the corresponding configurations that provided the best per-
formance are given in Table VII). Within anomaly detection-
based approaches, GMM outperformed the other methods
(PLSR, db4, and SVR) on all the datasets. The db4 algorithm
almost matched GMM performance, especially on Carlos’s and
AD2 Smartphone dataset. The ranking among GMM, PLSR
and db4 is in line with previous findings [30]. The optimal
value for ns depends on the dataset, with shorter windows
for Ferreira’s (ns = 1) and Carlos’s (ns = 4), and longer
windows for AD2 especially using db4. This difference can be
explained by the fact that our dataset contains also roundabout
and u-turn events, which are generally characterized by a
longer duration compared to, e.g., acceleration or turn events.

With threshold-based approaches, the “simple threshold”
method was not able to provide good results for binary
classification for any of the thresholds presented in the liter-
ature (F-score ranging between 0.62 and 0.67). Furthermore,
as reported in Table VII, if for the Ferreira’s and Carlos’s
dataset a low threshold (0.1g for harsh acceleration, braking
and turns) was selected as the best configuration, our dataset
required generally higher thresholds (0.25– 0.35g). The best
configurations of ns reflect the considerations made above, as
a high value was required on our dataset, whereas on Ferreira’s
and Carlos’s datasets lower values worked better.

When it comes to ML-based approaches, the algorithm that
achieved, on average, the best results is SVM. Then, four
algorithms provided results just slightly worse than SVM, i.e.,
CNN, RF, MLP and K-NN. When applied to the Carlos’s
dataset, these four algorithms had mostly the same perfor-
mance (F-score of 0.98). CNN showed the second highest
performance on Ferreira’s, Carlos’s, and the part of the AD2

dataset collected with the smartphone, whereas had lower
performance on data gathered using the AutoPi device. RF had
better performance than the remaining algorithms, especially
on the AutoPi part of our dataset, on which it achieved the
second highest F-score, and on the Android part (it ranked
third), whereas it performed slightly worse than MLP and
K-NN on the Ferreira’s dataset. On this dataset, MLP and
K-NN had better performance than RF. MLP was the fourth
algorithm in terms of performance, as it achieved the same
results of K-NN on the Ferreira’s, Carlos’s and smartphone

http://tiny.cc/1tsxtz
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(a) (b)

(c) (d)

Fig. 3: Acceleration data related to a non-aggressive (a, c) and an aggressive u-turn event (b, d) acquired using the Android
app (a, b) and the AutoPi device (c, d). The vertical lines represent the start and end time of the event, respectively.

TABLE VI: Metrics related to the evaluated datasets, computed on acceleration data related to labeled events.

Ferreira’s Carlos’s AD2 smart. AD2 AutoPi Average
Algorithm F-Sc. Prec. Rec. F-Sc. Prec. Rec. F-Sc. Prec. Rec. F-Sc. Prec. Rec. F-Sc. Prec. Rec.
GMM 0.81 0.81 0.82 0.95 0.95 0.95 0.77 0.84 0.73 0.85 0.88 0.82 0.85 0.87 0.83
PLSR 0.73 0.71 0.77 0.91 0.91 0.91 0.65 0.67 0.65 0.65 0.65 0.65 0.74 0.73 0.75
db4 0.76 0.76 0.76 0.94 0.94 0.94 0.76 0.78 0.75 0.77 0.80 0.75 0.81 0.82 0.80
SVR 0.74 0.75 0.73 0.81 0.82 0.84 0.54 0.56 0.53 0.55 0.54 0.57 0.66 0.67 0.67
RSS thresh. 0.81 0.79 0.83 0.95 0.95 0.95 0.74 0.73 0.75 0.79 0.79 0.79 0.82 0.82 0.83
Simple thresh. 0.66 0.68 0.75 0.62 0.74 0.70 0.67 0.68 0.66 0.66 0.68 0.65 0.65 0.70 0.69
Jerk 0.76 0.74 0.81 0.92 0.92 0.93 0.78 0.79 0.78 0.87 0.87 0.87 0.84 0.83 0.85
MLP 0.96 0.96 0.96 0.98 0.98 0.98 0.82 0.82 0.82 0.82 0.82 0.82 0.89 0.90 0.89
CNN 0.97 0.98 0.96 0.98 0.98 0.98 0.84 0.85 0.84 0.81 0.84 0.81 0.90 0.91 0.90
SVM 0.97 0.97 0.97 0.99 0.99 0.99 0.87 0.87 0.87 0.88 0.88 0.88 0.93 0.93 0.93
RF 0.94 0.95 0.94 0.98 0.98 0.98 0.83 0.84 0.83 0.85 0.85 0.85 0.90 0.90 0.90
BN 0.91 0.91 0.91 0.96 0.96 0.96 0.78 0.78 0.78 0.78 0.79 0.79 0.86 0.86 0.86
K-NN 0.96 0.96 0.96 0.98 0.98 0.98 0.82 0.83 0.82 0.80 0.81 0.81 0.89 0.90 0.89
K* 0.92 0.93 0.92 0.91 0.92 0.90 0.72 0.73 0.74 0.74 0.74 0.74 0.82 0.83 0.83

part of our dataset, whereas it performed slightly better than
K-NN on the AutoPi part. K-NN ranked fifth, still presenting
good performance. The performances of BN and K* were
largely lower than those achieved by the first five algorithms
(average F-score of 0.86 and 0.81, respectively).

As illustrated in Table VII, in the case of ML-based
algorithms, higher ns values consistently yielded the best
results. This finding is rather interesting, especially for Fer-
reira’s dataset, on which lower ns values were optimal for
anomaly detection-based approaches. This behavior highlights
how summarizing data on larger windows can improve per-
formance, as speculated in [41].

The second set of experiments, for which results are given
in Table VIII, evaluated detection performance on the en-
tire dataset. Concerning anomaly detection-based approaches,
GMM again yielded, on average, the best F-score (0.81).
Similarly, db4 was the second-best algorithm in terms of
performance, followed by PLSR and SVR. The best configura-
tions, reported in Table IX, are very similar to those obtained
on the labeled dataset (in Table VII). On Ferreira’s dataset low
ns values still provided the best results.

With respect to threshold-based approaches, thresholds on
jerk and on acceleration data RSS outperformed again the
simple application of thresholds presented in literature. The
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TABLE VII: Best configurations (labeled events).

Algor. Ferreira’s Carlos’s AD2 smart. AD2 AutoPi
GMM ns=1, k=1 ns=4, k=1 ns=4, k=8 ns=16, k=2
PLSR ns=1 ns=4 ns=8 ns=6
db4 ns=4 ns=4 ns=16 ns=16
SVR ns=1 ns=4 ns=16 ns=1
RSS
thresh.

ns=4 ns=4 ns=4 ns=8

Simple
thresh.

τaccel=0.1g,
τbrak=0.1g,
τturn=0.1g

τaccel=0.1g,
τbrak=0.1g,
τturn=0.1g

τaccel=0.1g,
τbrak=0.25g,
τturn=0.3g

τaccel=0.3g,
τbrak=0.35g,
τturn=0.1g

Jerk ns=1 ns=4 ns=6 ns=12
MLP ns=8,

H=20
ns=4,
H=40

ns=8,
H=40

ns=8, H=a

CNN ns=7 ns=4 ns=7 ns=5
SVM ns=8,

C=7.5,
G=-1.5

ns=4,
C=3.5,
G=-1.5

ns=8, C=7,
G=-5.5

ns=8,
C=3.5,
G=-3

RF ns=8,
I=100,
K=10

ns=4,
I=200,
K=10

ns=7,
I=200,
K=10

ns=8,
I=200,
K=10

BN ns=7, K2 ns=4, K2 ns=7, TAN ns=6, TAN
K-NN ns=8, K=3 ns=4, K=5 ns=8, K=3 ns=8, K=3
K* ns=8, B=10 ns=4, B=40 ns=8, B=40 ns=8, B=30

jerk provides slightly better results on AD2 smartphone data,
and RSS-based thresholding works better on the Ferreira’s
dataset and on the AD2 AutoPi device data.

With regard to ML-based approaches, all tested algorithms
showed similarly good performance, with a F-score ranging
between 0.96 and 0.98. SVM was ranked first, followed by
MLP, RF, K-NN, CNN and BN. The lowest ranking was
obtained by K*. Still considering ML-based approaches, it
shall be noticed that the best ns value did not generally differ
from that chosen in the first evaluation phase.

ML-based techniques achieve higher performance as they
are able to capture complex, non-linear relationships between
different features. To gain further insights on the importance
of each feature, a univariate analysis was performed on the
complete AD2 AutoPi dataset. Let us recall that, for a window
of length ns seconds, 12 × ns features are computed by ag-
gregating frontal (x), lateral (y) and vertical (z) accelerations
using different SFs (mean, median, standard deviation and
trend). The discriminative power of each individual feature
was assessed by computing the ANOVA F-score between the
type of driving event and the feature itself. Based on the score,
each feature is then ranked from 1.0 (most important) to 0.0
(least important), as reported in Fig. 4a. The distribution of
the feature values for time windows labeled aggressive or
non-aggressive (normal) is further illustrated by the boxplots
in Fig. 4b; for the sake of clarity, the features obtained by
each SF are averaged over the entire time window, but similar
trends are observed also at the level of each individual feature.
Local variations in the acceleration, especially along the lateral
axis, are the most discriminative features, as they are probably
associated with aggressive turns and lane changes; lateral
accelerations characterize the majority of aggressive events
in the AD2 dataset, i.e., left/right turns, roundabouts and U-
turns. The mean and median accelerations are, when taken in
isolation, less informative, except for the vertical axis, which is
probably associated with aggressive braking and acceleration
events. When considering only the labelled portion of the
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Fig. 4: Results of the univariate analysis of the features
extracted from the AD2 AutoPi dataset. Frontal, lateral and
vertical acceleration are separately aggregated every second
using different SFs (mean, media, standard deviation and
tendency). (a) Feature importance, from highest (1.0) to lowest
rank (0.0) based on ANOVA F-score. (b) Feature distribution
(box-plot) for each axis and SF, aggregated over the entire
time window.

dataset, the feature ranking was slightly different, with the
“frontal standard deviation” and “vertical median” features
ranked lower than “vertical standard deviation”. This result
suggests that it is important to account for all driving situations
in order to achieve a robust classification.

To complement the evaluation, we also measured the com-
putation time of each technique. In particular, the measurement
was performed on both a 2018 MacBook Pro with a 2,7 GHz
Intel Core i7 CPU and 16 GB RAM, and a Raspberry Pi 3 (this
latter device was chosen to mimic the hardware of the AutoPi
exploited for the data collection). Table X reports the average
computation time per ns (in milliseconds) and the standard
deviation for the selected algorithms. The average computation
time was calculated as follows: first, the time required by
each algorithm, in its best configuration, was determined.
Then, this value was divided by ns, and the normalized
values computed for each dataset were used to obtain the
average time and the standard deviation. From the table, it
is possible to notice that GMM, db4, “RSS threshold” and
“simple threshold” have the lowest computation time per ns
on both the devices, followed by PLSR, SVR and JERK. ML-
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TABLE VIII: Metrics related to the evaluated datasets, computed on all acceleration data included in the dataset.

Ferreira’s AD2 smart. AD2 AutoPi Average
Algorithm F-Sc. Prec. Rec. F-Sc. Prec. Rec. F-Sc. Prec. Rec. F-Sc. Prec. Rec.
GMM 0.81 0.81 0.81 0.77 0.84 0.73 0.85 0.88 0.82 0.81 0.84 0.79
PLSR 0.80 0.84 0.78 0.64 0.65 0.62 0.65 0.63 0.68 0.70 0.71 0.69
db4 0.81 0.82 0.80 0.74 0.72 0.76 0.71 0.69 0.74 0.75 0.74 0.77
SVR 0.74 0.75 0.73 0.54 0.56 0.53 0.55 0.54 0.57 0.61 0.62 0.61
RSS thresh. 0.81 0.81 0.81 0.74 0.70 0.81 0.81 0.80 0.82 0.79 0.77 0.82
Simple thresh. 0.72 0.69 0.75 0.69 0.76 0.65 0.71 0.69 0.73 0.71 0.71 0.71
Jerk 0.78 0.78 0.77 0.78 0.86 0.74 0.79 0.77 0.80 0.78 0.80 0.77
MLP 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.97 0.98
CNN 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.98 0.97 0.97 0.97
SVM 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
RF 0.97 0.98 0.98 0.97 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
BN 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97 0.97
K-NN 0.98 0.98 0.98 0.97 0.97 0.98 0.97 0.97 0.98 0.97 0.97 0.98
K* 0.97 0.97 0.97 0.97 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.97

TABLE IX: Best configurations (all events).

Algor. Ferreira’s AD2 smart. AD2 AutoPi
GMM ns=1, k=1 ns=4, k=8 ns=16, k=2
PLSR ns=4 ns=16 ns=4
db4 ns=4 ns=12 ns=12
SVR ns=1 ns=16 ns=1
RSS
thresh.

ns=1 ns=4 ns=16

Simple
thresh.

τaccel=0.15g,
τbrak=0.15g,
τturn=0.1g

τaccel=0.25g,
τbrak=0.25g,
τturn=0.3g

τaccel=0.3g,
τbrak=0.3g,
τturn=0.1g

Jerk ns=4 ns=6 ns=6
MLP ns=8, H=30 ns=8, H=40 ns=8, H=40
CNN ns=8 ns=6 ns=8
SVM ns=8,C=3.5,G=-3 ns=8,C=5.5,G=-5 ns=8,C=3,G=-3
RF ns=8,I=200,K=15 ns=8,I=200,K=15 ns=7,I=100,K=15
BN ns=8, K2 ns=8, K2 ns=5, K2
K-NN ns=8, K=1 ns=8, K=3 ns=8, K=3
K* ns=8, B=40 ns=8, B=20 ns=8, B=40

TABLE X: Computation time per ns (in milliseconds)

MacBook Pro Raspberry Pi
Algorithm Average Std. dev. Average Std. dev.
GMM 0.5 0.3 2.8 2.5
PLSR 5.4 4.9 46.1 42.8
db4 0.5 0.3 3.7 2.6
SVR 1.2 0.9 49.5 59.0
JERK 5.6 5.4 47.2 37.6
RSS thresh. 0.7 1.3 6.3 11.8
Simple thresh. 1.4 0.4 3.9 2.5
MLP 7.6 0.4 93.4 2.6
CNN 8.3 0.8 99.6 6.7
SVM 7.8 0.5 95.5 4.1
RF 7.7 0.4 94.9 4.3
BN 7.6 0.5 93.4 2.2
K-NN 9.1 1.4 117.4 33.6
K* 123.2 80.8 1538.8 1081.7

based approaches, instead, show higher computation times,
with all of them, except K-NN and K*, being very similar.
Not surprisingly, instance-based classifiers are the slowest
ones, as their complexity grows with the data. It must be
said, though, that feature extraction and data preprocessing
are the most computationally expensive steps for ML-based
techniques, accounting for around 83% of the overall time
(83.1% on the MacBook Pro and 83.2% on the Raspberry
Pi). For anomaly detection-based methods, the above steps

account for 39.8% (MacBook Pro) and 45.3% (Raspberry Pi)
of the overall time, whereas for threshold-based methods, they
account for 41.4% (MacBook Pro) and 53.5% (Raspberry Pi).
Data reported in Table X show that, on the Raspberry Pi (the
device with the most limited resources) real-time processing
can be achieved only for a subset of the tested algorithms. In
fact, since generally the optimal configuration for the selected
algorithms requires a ns value higher than 1 second, the
average time should be multiplied several times (generally,
8 times, but in some cases even 16 times). By taking into
account this aspect, it appears that only GMM, db4, “RSS
threshold” and “simple threshold” (when run using the best
configuration hyperparameters) can complete the computation
in less than 0.2 seconds. The remaining algorithms show an
execution time between 0.2 and 1 second, with the exception
of K*, which could require even more than 10 seconds.

VII. REMARKS

Overall, our results confirmed the superiority of ML-based
approaches with respect to the other proposed algorithms [14].

Anomaly-based algorithms did not perform better than
threshold-based technique in most datasets and in both sets of
experiments. Among the evaluated algorithms, GMM usually
achieved the best performance, especially when trained and
tested only on labeled events.

In all experiments, threshold-based techniques achieved
lower results that the other techniques. Among the selected
techniques, “RSS threshold” improved the results compared
to a simple thresholding on Ferreira’s and Carlos’s datasets,
whereas for our dataset better performance was reached using
the jerk. This kind of approach should be extended, e.g., taking
into account additional factors such as the amount of time
sensors readings that are above a threshold or the number of
such readings over that threshold in a given time window.

Our results confirm previous findings that the threshold
value is influenced by the position and characteristics of the
sensor, the type of the vehicle, as well as the road and traffic
conditions, among others [35]. Higher thresholds required on
the AD2 dataset were probably due to the type of vehicle
and traffic conditions. Different vehicles could generate high
accelerations values for some non-aggressive events, thus
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making approaches considering the smoothness or abruptness
of an event perform better than a punctual thresholding.

As far as ML-based techniques are concerned, the best
results were generally obtained by the SVM and RF tech-
niques. This is inline with previous literature, and can be
attributed to the ability of these techniques to model non-linear
relationships and to the fact that they are generally robust w.r.t.
high number of input features and data imbalance. A potential
advantage of RF over SVMs is their higher interpretability, as
they permit to compute the importance of individual features
[38]. Non-parametric approaches like k-NN were ranked lower
than parametric approaches and, in addition, are computation-
ally expensive at inference time, as highlighted in Table X.
Both sets of experiments highlighted how summarizing data
on larger windows can improve algorithms performance, as
speculated in [41]. However, a larger window also results in a
higher computational cost for ML-based techniques, since the
cost of feature extraction is roughly an order of magnitude
larger than that of the actual classification step. In this work,
we evaluated all algorithms on the entire feature set for ease
of comparison; however, feature selection techniques should
be considered to further reduce the computational cost at
inference time, given that a subset of the features (namely,
those related to local variations in acceleration) appear to be
strongly related to class separability.

Overall, we observed that ML algorithms provided better
results when applied to the whole set of data. However,
these results should be interpreted with caution keeping in
mind that the different datasets have different levels of data
imbalance. In fact, while AD2 contains a similar number of
labelled aggressive and non-aggressive events, Ferreira’s and
Carlos’s datasets are heavily skewed towards the aggressive
class; in turn, when including normal driving data, all datasets
become heavily skewed towards the non-aggressive class. This
outcome entails that absolute performance values cannot be
directly compared across datasets; nonetheless, it should be
noticed that the relative ranking of the different algorithms
is quite stable across datasets. It should also be remarked
that ML-based predictions may become skewed towards the
majority class when trained on highly imbalanced datasets,
whereas threshold- and anomaly detection-based techniques
may be more robust in this respect.

In this work, we evaluated only shallow neural networks,
including both MLP and CNNs. In the future, it would be
interesting to evaluate, both in terms of performance and com-
putational burden, deep neural networks capable of processing
directly the raw data stream, bypassing the need for feature en-
gineering. These techniques, however, would certainly require
the collection of large-scale datasets for training.

A potential limitation of our experiments, and the literature
at large, is the number of drivers, and driving conditions,
involved in the data acquisition. This is true for both threshold-
based and ML-based approaches, which parameters are influ-
enced by many factors including type of vehicle, character-
istics of the sensor, and road conditions. In our study, the
optimal hyper-parameters varied among different datasets, but
the more general question of whether ML-based algorithms
would generalize to new unseen scenarios, sensors, and/or

drivers is not yet fully answered. More work is needed to
understand, e.g., when/how often the ML models should be
retrained.

Furthermore, even though our dataset contains events col-
lected by driving twice the same path, we did not use this
information (i.e., GPS data) to fine-tune the hyper-parameters.
We do believe that GPS data, together with cartographic
information could improve event classification. In particular,
as soon as a high number of drivers travel a given path,
ad-hoc models for a specific GPS location could be built.
Alternatively, GPS and cartographic data could be used to
identify, at a higher level, if sensors data related to an event
have been gathered in a roundabout, on a highway, etc., and
apply the corresponding model.

Both sets of experiments showed that the Android smart-
phone and the AutoPi device allow to achieve, overall sim-
ilar performance levels. This result confirms the possibility
to exploit smartphones as black-boxes, as previously spec-
ulated, e.g., in [47], especially when ML-based approaches
are used. With regard to anomaly detection- and threshold-
based approaches, some differences between the two devices
appear. More specifically, when executed on data acquired
using the AutoPi device, the algorithms showed, in some
cases, better performance. In this respect, it must be recalled
that ML-based approaches relied on statistical (summarized)
data over a window of readings, whereas anomaly detection-
and threshold-based approaches exploited denoised punctual
readings. In this view, the fact that during our drives the
smartphone was anchored with a suction-cup phone mount
(hence, not as firmly as the AutoPi device) could have added
additional vibrations not filtered by the denoising process, but
filtered when computing the statistical window summaries.

Calculated execution times show that ML-based approaches,
when ran on low-resources devices, require between 0.2 and 1
second. In case results need to be provided in a shorter time,
algorithms such as GMM, db4, “RSS threshold” and “simple
threshold” should be preferred.

Finally, as mentioned in Section V-A, similarly to Ferreira’s
and Carlos’ datasets, the way events were labeled in the dataset
suffer from subjectivity of the driver/observer. A possible
way to increase the objectivity of collected data is to involve
more drivers in the collection phase. In particular, the drivers
could drive on multiple paths, or serve as evaluators of other
drivers’ events. Video recordings could be used as well, as
the same travel could be shown multiple time to different
evaluators. Another way to build a more objective dataset is
to collect sensors data recorded before accidents in which the
driver has been considered as responsible for. However, this
approach would ignore those events that were harsh, but did
not lead to an accident. Finally, an objective dataset could be
built also with simulated data, such as SUMO, Simulation of
Urban Mobility (SUMO) [71]. However, as reported in [49],
simulations are not (yet) able to recreate all nuances of real-
world data.

VIII. CONCLUSIONS AND FUTURE WORK

Aggressive driving behaviors are the leading cause of traffic
accidents [2]. Devising approaches capable of detecting them
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becomes crucial to increase the safety of drivers, pedestrians
and (motor)cyclists [72]. With the aim to foster research in
this field, in this paper we carried out a comparison of 14
state-of-the-art algorithms for the classification of (aggressive
and non-aggressive) driving events. In particular, we tested the
algorithms ability to classify aggressive and non-aggressive
events by applying them on two datasets available in the liter-
ature and on a new dataset specifically created to this purpose.
The latter dataset contains events generated by traveling twice
the same path with a different driving style, as well as events
generated in a variety of situations (e.g., close to traffic lights,
in roundabouts, u-turns, etc.), making the analysis more robust
and more representative of everyday conditions. Moreover,
since it also contains data acquired simultaneously using an
Android smartphone and an AutoPi device connected to the
OBD-II port, a comparison between smartphones and black-
box like devices on the said task was also performed.

In the comparison, three classes of algorithms have been
considered: anomaly detection-, threshold- and ML-based. Ex-
perimental results show that ML-based approaches were able
to achieve the best performance (especially SVM, followed
by RF, CNN, and MLP), with a higher computation time;
they also outlined the ability of smartphones to support the
identification of aggressive events with performance levels
similar to those of black-boxes. Low-resource devices, which
may not be capable of running ML models onboard or lack
a suitable connection for sending acquired data to a remote
processing service, could adopt “traditional” threshold-based
approaches, with considerably worse performance; in this case,
“RSS threshold”, GMM and db4 should be preferred.

Future work could consider two aspects, i.e., a) how data
are collected, and b) how data are processed. Concerning data
collection, research efforts should be devoted to create large-
scale datasets, gathering data from a high number of different
drivers. In the creation of the datasets, the ratio between
aggressive and non-aggressive events should be carefully
calibrated, in order to better reflect actual driving situations.
Particular attention should be also paid at improving the
objectivity of collected data, e.g., by involving multiple eval-
uators. Regarding data processing, a more thorough analysis
of the impact of data imbalance should be performed, e.g.,
by evaluating the performance of the different algorithms
considered in this study on the new large-scale datasets. Such
datasets could also be used to further validate the findings
of this paper, focusing in particular on the impact that larger
windows could have on ML algorithms performance. Other
research activities could be devoted to investigate to what
extent considering additional data about the driving context
(e.g., on the vehicle type, on road characteristics, on weather
and traffic conditions, on the driver, etc.) could improve the
detection ability of the available algorithms, or could impact
their ability to generalize to novel scenarios. Furthermore, it
may be interesting to study whether hyper-parameters could
be fine-tuned or algorithms performance could be enhanced
by leveraging information on events collected on paths that
have been traveled multiple times, i.e., removing/mitigating the
impact of road features. Finally, efforts should be devoted to
expand the comparison to different types of features, as well as

considering algorithms that do not require explicit feature en-
gineering, such as deep neural networks, and could benefit of
the availability of large-scale datasets. Furthermore, exploring
combinations of ML- and threshold-based approaches could
help to fine-tune, and further improve, classification results,
while reducing the overall computational footprint.
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“Comparing state-of-the-art and emerging augmented reality interfaces
for autonomous vehicle-to-pedestrian communication,” IEEE Trans. Veh.
Technol., vol. 70, no. 2, pp. 1157–1168, 2021.

[52] V. L. Neale, T. A. Dingus, S. G. Klauer, J. Sudweeks, and M. Goodman,
“An overview of the 100-car naturalistic study and findings,” in Proc.
19th Int. Technical Conf. on the Enhanced Safety of Vehicles, 2005.

[53] E. Romera, L. M. Bergasa, and R. Arroyo, “Need data for driver
behaviour analysis? presenting the public uah-driveset,” in Proc. 19th
IEEE Int. Conf. on Intell. Transp. Syst., 2016, pp. 387–392.

[54] J. L. Deffenbacher, E. R. Oetting, and R. S. Lynch, “Development of a
driving anger scale,” Psychol. Reports, vol. 74, no. 1, pp. 83–91, 1994.

[55] AXA. Driver telematics analysis – Use telematic data to identify
a driver signature. [Online]. Available: https://www.kaggle.com/c/
axa-driver-telematics-analysis

[56] A. H. Ali, A. Atia, and M.-S. M. Mostafa, “Recognizing driving behavior
and road anomaly using smartphone sensors,” International Journal of
Ambient Computing and Intelligence, vol. 8, no. 3, pp. 22–37, 2017.

[57] A. S. Zeeman and M. J. Booysen, “Combining speed and acceleration
to detect reckless driving in the informal public transport industry,” in
Proc. 16th Int. IEEE Conf. on Intell. Transp. Syst., 2013, pp. 756–761.

[58] Y. Li, F. Xue, L. Feng, and Z. Qu, “A driving behavior detection
system based on a smartphone’s built-in sensor,” International Journal
of Communication Systems, vol. 30, no. 8, p. e3178, 2017.

[59] K. C. Baldwin, D. D. Duncan, and S. K. West, “The driver monitor
system: A means of assessing driver performance,” Johns Hopkins APL
Technical Digest, vol. 25, no. 3, pp. 269–277, 2004.

[60] T. Osafune, T. Takahashi, N. Kiyama, T. Sobue, H. Yamaguchi, and
T. Higashino, “Analysis of accident risks from driving behaviors,” Int.
J. of Intell. Transp. Syst. Research, vol. 15, no. 3, pp. 192–202, 2017.

[61] M. A. Ylizaliturri-Salcedo, M. Tentori, and J. A. Garcia-Macias, “De-
tecting aggressive driving behavior with participatory sensing,” in Proc.
Int. Conf. on Ubiquitous Comp. and Ambient Intell., 2015, pp. 249–261.

[62] S. Chigurupati, S. Polavarapu, Y. Kancherla, and A. K. Nikhath, “Inte-
grated computing system for measuring driver safety index,” Int. J. of
Emerging Technology and Advanced Engineering, vol. 2, no. 6, 2012.

[63] F. Feng, S. Bao, J. R. Sayer, C. Flannagan, M. Manser, and R. Wun-
derlich, “Can vehicle longitudinal jerk be used to identify aggressive
drivers? An examination using naturalistic driving data,” Accident Anal-
ysis & Prevention, vol. 104, pp. 125–136, 2017.

[64] B. Bose, J. Dutta, S. Ghosh, P. Pramanick, and S. Roy, “Smartphone
based system for real-time aggressive driving detection and marking rash
driving-prone areas,” in Proc. Workshop Program of the 19th Int. Conf.
on Distributed Comp. and Networking, 2018, pp. 1–6.

[65] W. Wang, J. Xi, and J. K. Hedrick, “A learning-based personalized
driver model using bounded generalized gaussian mixture models,” IEEE
Trans. Veh. Technol., vol. 68, no. 12, pp. 11 679–11 690, 2019.

[66] W. Wang, S. Chen, and G. Qu, “Incident detection algorithm based
on partial least squares regression,” Transportation Research Part C:
Emerging Technologies, vol. 16, no. 1, pp. 54–70, 2008.

[67] S.-R. G. Christopoulos, S. Kanarachos, and A. Chroneos, “Learning
driver braking behavior using smartphones, neural networks and the
sliding correlation coefficient: Road anomaly case study,” IEEE Trans.
on Int. Transportation Systems, vol. 20, no. 1, pp. 65–74, 2018.

[68] Y.-T. Liu, Y.-Y. Lin, S.-L. Wu, C.-H. Chuang, M. Prasad, and C.-T.
Lin, “EEG-based driving fatigue prediction system using functional-link-

https://www.kaggle.com/c/axa-driver-telematics-analysis
https://www.kaggle.com/c/axa-driver-telematics-analysis


IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. XX, XXX 2021 16

based fuzzy neural network,” in Proc. International Joint Conference on
Neural Networks, 2014, pp. 4109–4113.

[69] D. Wei and H. Liu, “Analysis of asymmetric driving behavior using a
self-learning approach,” Transportation Research Part B: Methodologi-
cal, vol. 47, pp. 1–14, 2013.

[70] M. D. Tundo, E. Lemaire, and N. Baddour, “Correcting smartphone ori-
entation for accelerometer-based analysis,” in Proc. IEEE International
Symposium on Medical Measurements and Appl., 2013, pp. 58–62.

[71] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–
simulation of urban mobility: an overview,” in Proc. 3rd Int. Conf. on
Advances in System Simulation. ThinkMind, 2011.

[72] J. Wang, J. Liu, and N. Kato, “Networking and communications in
autonomous driving: A survey,” IEEE Communications Surveys &
Tutorials, vol. 21, no. 2, pp. 1243–1274, 2018.

Valentina Gatteschi (M’19-SM’19) is an assistant
professor at the Department of Control and Com-
puter Engineering of Politecnico di Torino, Italy,
where she received her B.Sc. and M.Sc. degrees
in management engineering and her Ph.D. degree
in computer engineering in 2005, 2008 and 2013,
respectively. Her research interests include intelli-
gent systems, semantic computing and blockchain
technology.

Alberto Cannavò received the B.Sc. degree from
University of Messina, Italy, in 2013. Then, he
received the M.Sc. and the Ph.D. degrees in com-
puter engineering from Politecnico di Torino, Italy,
in 2015 and 2020, respectively. Currently, he is a
postdoctoral fellow at the Department of Control
and Computer Engineering of Politecnico di Torino.
His fields of interest include computer graphics and
human-machine interaction.

Fabrizio Lamberti (M’02-SM’14) is a full pro-
fessor at the Department of Control and Computer
Engineering of Politecnico di Torino, Italy, where
he has the responsibility for the VR@POLITO hub.
His research interests encompass computer graph-
ics, HMI, and intelligent computing. He serves
as Associate Editor for several journals including
IEEE Transactions on Computers, IEEE Transac-
tions on Consumer Technologies, and IEEE Trans-
actions on Learning Technologies. More information
at https://staff.polito.it/fabrizio.lamberti.

Lia Morra (M’17-SM’19) is an assistant professor
at the Department of Control and Computer Engi-
neering of Politecnico di Torino, Italy. Previously,
she was with im3D (Turin, Italy), where she served
as Chief Scientific Officer from 2014 to 2017 de-
veloping artificial intelligence systems for medical
image interpretation. Her main research interests are
computer vision, pattern recognition, and machine
learning.

Paolo Montuschi (M’90-SM’07-F’14) is a full pro-
fessor and Rector’s Delegate for IT Systems at
Politecnico di Torino, Italy. His research interests
include computer arithmetic, computer graphics, and
intelligent systems. He is an IEEE Fellow, a life
member of the International Academy of Sciences
in Turin, and of IEEE Eta Kappa Nu. He serves
as the Editor-in-Chief of the IEEE Transactions on
Emerging Topics in Computing and the 2020-21
Chair of the IEEE TAB/ARC. More information at
http://staff.polito.it/paolo.montuschi.


