417 research outputs found

    Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    No full text
    International audienceThe response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated

    A Global Preconditioning Method for the Euler Equations

    Get PDF
    This study seeks to validate a recently introduced global preconditioning technique for the Euler equations. Energy and enthalpy equations are nondimensionalized by means of a reference enthalpy, resulting in increased numerical accuracy for low-speed flows. A cellbased, finite volume formulation is used, with Roe flux difference splitting and both explicit and implicit time integration schemes. A Newton-linearized iterative implicit algorithm is implemented, with Symmetric Gauss-Seidel (LU/SGS) nested sub-iterations. This choice allows one to retain time accuracy, and eliminates approximate factorization errors, which become dominant at low speed flows. The linearized flux Jacobians are evaluated by numerical differentiation. Higher-order discretization is constructed by means of the MUSCL approach. Locally one-dimensional characteristic variable boundary conditions are implemented at the farfield boundary. The preconditioned scheme is successfully applied to the following traditional test cases used as benchmarks for local preconditioning techniques: point disturbance, flow angle disturbance, and stagnation point arising from the impingement of two identical jets. The flow over a symmetric airfoil and a convergentdivergent nozzle are then simulated for arbitrary Mach numbers. The preconditioned scheme greatly enhances accuracy and convergence rate for low-speed flows (all the way down to M ≈ 10E − 4). Some preliminary tests of fully unsteady flows are also conducted

    On Compressible Gaseous Motions in Swirl Dominated Combustors

    Get PDF
    In this dissertation, a number of models are derived to describe swirling flows. Both generalized compressible Bragg-Hawthorne and vorticity-stream function frameworks are determined and left in a generic form suitable for describing a number of different scenarios. These systems are solved for the bidirectional vortex flowfield by means of a Rayleigh-Janzen perturbation, which expands the governing equations in terms of the Mach number squared. The resulting equations are solved to provide a semi-analytical solution after the evaluation of a handful of numerical integrals. These solutions further the understanding of compressible flow in swirl-combustors, as previous compressible studies are primarily experimental or numerical in nature. Additionally, an alternative swirl velocity model is discussed which uses the balancing of pressure and shear forces to arrive at a piecewise velocity model. The model is compared to experimental data using a method that enables the adjustment of laminar models to account for the effects of turbulence. A modified least-squares approach is developed to handle the movable boundary in the piecewise velocity formulation

    On the One-dimensional Stability of Viscous Strong Detonation Waves

    Full text link
    Building on Evans function techniques developed to study the stability of viscous shocks, we examine the stability of viscous strong detonation wave solutions of the reacting Navier-Stokes equations. The primary result, following the work of Alexander, Gardner & Jones and Gardner & Zumbrun, is the calculation of a stability index whose sign determines a necessary condition for spectral stability. We show that for an ideal gas this index can be evaluated in the ZND limit of vanishing dissipative effects. Moreover, when the heat of reaction is sufficiently small, we prove that strong detonations are spectrally stable provided the underlying shock is stable. Finally, for completeness, the stability index calculations for the nonreacting Navier-Stokes equations are includedComment: 66 pages, 7 figure

    Solution of low Mach number aeroacoustic flows using a Variational Multi-Scale finite element formulation of the compressible Navier–Stokes equations written in primitive variables

    Get PDF
    In this work we solve the compressible Navier–Stokes equations written in primitive variables in order to simulate low Mach number aeroacoustic flows. We develop a Variational Multi-Scale formulation to stabilize the finite element discretization by including the orthogonal, dynamic and non-linear subscales, together with an implicit scheme for advancing in time. Three additional features define the proposed numerical scheme: the splitting of the pressure and temperature variables into a relative and a reference part, the definition of the matrix of stabilization parameters in terms of a modified velocity that accounts for the local compressibility, and the approximation of the dynamic stabilization matrix for the time dependent subscales. We also include a weak imposition of implicit non-reflecting boundary conditions in order to overcome the challenges that arise in the aeroacoustic simulations at low compressibility regimes. The order of accuracy of the method is verified for two- and three-dimensional linear and quadratic elements using steady manufactured solutions. Several benchmark flow problems are studied, including transient examples and aeroacoustic applications.Peer ReviewedPostprint (author's final draft

    Diffusion-flame ignition by shock-wave impingement on a supersonic mixing layer

    Get PDF
    Ignition in a supersonic mixing layer interacting with an oblique shock wave is investigated analytically and numerically under conditions such that the post-shock flow remains supersonic. The study requires consideration of the structure of the post-shock ignition kernel that is found to exist around the point of maximum temperature, which may be located either near the edge of the mixing layer or in its interior, depending on the profiles of the fuel concentration, temperature and Mach number across the mixing layer. The ignition kernel displays a balance between the rates of chemical reaction and of post-shock flow expansion, including the acoustic interactions of the chemical heat release with the shock wave, leading to increased front curvature. The analysis, which adopts a one-step chemistry model with large activation energy, indicates that ignition develops as a fold bifurcation, the turning point in the diagram of the peak perturbation induced by the chemical reaction as a function of the Damköhler number providing the critical conditions for ignition. While an explicit formula for the critical Damköhler number for ignition is derived when ignition occurs in the interior of the mixing layer, under which condition the ignition kernel is narrow in the streamwise direction, numerical integration is required for determining ignition when it occurs at the edge, under which condition the kernel is no longer slender. Subsequent to ignition, for the Arrhenius chemistry addressed, the lead shock will rapidly be transformed into a thin detonation on the fuel side of the ignition kernel, and, under suitable conditions, a deflagration may extend far downstream, along with the diffusion flame that must separate the rich and lean reaction products. The results can be helpful in describing supersonic combustion for high-speed propulsion

    Compressible Flow in Slab Rocket Motors

    Get PDF
    In this thesis, the compressible flow inside a rectangular, porous channel is considered. A Rayleigh-Janzen perturbation is applied to the inviscid, steady, two-dimensional, isentropic flow equations. Closed form expressions are derived for the main properties of interest. The results of the study are verified via numerical simulation, with laminar and turbulent models, and with available experimental data. The critical point where the flow field reaches sonic conditions is determined analytically. Our analysis captures the steepening of the velocity profiles that has been reported in several studies using either computational or experimental methods. Explicit design criteria are presented to quantify the effects of compressibility in rockets and other two-dimensional injection-driven chambers. Compressibility effects on motor performance are quantified through the use of ballistics calculations to determine the performance of a motor
    • …
    corecore