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Abstract

In this dissertation, a number of models are derived to describe swirling flows. Both

generalized compressible Bragg-Hawthorne and vorticity-stream function frameworks

are determined and left in a generic form suitable for describing a number of different

scenarios. These systems are solved for the bidirectional vortex flowfield by means of a

Rayleigh-Janzen perturbation, which expands the governing equations in terms of the

Mach number squared. The resulting equations are solved to provide a semi-analytical

solution after the evaluation of a handful of numerical integrals. These solutions further

the understanding of compressible flow in swirl-combustors, as previous compressible

studies are primarily experimental or numerical in nature. Additionally, an alternative

swirl velocity model is discussed which uses the balancing of pressure and shear forces

to arrive at a piecewise velocity model. The model is compared to experimental data

using a method that enables the adjustment of laminar models to account for the

effects of turbulence. A modified least-squares approach is developed to handle the

movable boundary in the piecewise velocity formulation.
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Chapter 1

Introduction

Fluid mechanics has a rich tradition of theoretical analysis. Leonardo da Vinci, in

addition to being an excellent experimentalist, also derived a one-dimensional, steady

form of the conservation of mass equation. Newton’s laws of motion form the basis

of modern fluid mechanics; his law of viscosity provides us with the moniker of

Newtonian for fluids behaving with a linear viscosity. Euler continued the tradition

with developments in both differential and integral forms of the equations of motion,

but perhaps his largest contribution was in codifying the notation that became the

standard in theoretical fluid mechanics.

These theoretical advancements did not exist in a vacuum. Indeed, many of the

early researchers in fluid mechanics were also accomplished experimentalists. From

Archimedes’ apocryphal ‘‘Eureka!’’ moment, explaining the principle of buoyancy and

the grand engineering marvel of Roman aqueducts, to the Wright brothers experiment

in heavier-than-air flight, experiment and theory have gone hand in hand to further

our understanding of fluids in the world around us.

Today, computational fluid mechanics have advanced to the point where it is

a viable addition to the researcher’s arsenal, rounding out the triumvirate of tools

available to engineers. This has been accomplished both through improvements in

algorithms and in available computing power. Codes that would have taken months to
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run only a few years ago can now be run on more inexpensive hardware in a fraction of

the time. Many of the advancements in this field are aimed at increasing the accuracy

and effective range of solutions, with the goal of reducing development costs for new

products through the reduction, or even elimination, of experiment.

In an ideal world, there would be a balance between these three tools. Theoretical

advancements would lead to new experiments and computations. A startling

experimental or computational result would entice theoreticians to try to formulate a

theory to explain such unexpected behavior. All three areas, synergistically growing

and aiding each other.

Unfortunately, this is not the case for current fluid mechanics research. Increasingly,

funding for theoretical work has been dwindling in recent years. Opportunities

for grants in many areas are now focused on computational efforts, with some

supplementing experimental research. In many cases, theoretical work is neglected

altogether.

The foremost reason for this decline is that the low-hanging fruit has been picked

from the tree. Many of the fundamental problems already have a sound theoretical

footing. Even more advanced problems, hypersonic aerodynamics for example, have a

library of theory to accompany experiment.

Secondly, the reduction in funding for theoretical research has led to fewer

researchers with the requisite tools to make contributions in what is admittedly

a challenging field. Not only is an understanding of fluid dynamics required, but

often advanced mathematical techniques are required to find solutions to modern

problems. The result is that many current theoretical studies are conducted by

applied mathematicians. This can cause a number of problems for engineers, as

applied mathematicians are often more concerned with the mathematical intricacies

rather than the solution itself. Additionally, articles in mathematical journals are

often not as accessible to engineers as differences in technical jargon and notation can

often raise the barrier to understanding.
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The intent of this dissertation is to make some small effort at evening the

advancements of theoretical fluid mechanics with those of numerical and experimental

results, specifically in the area of confined vortex dynamics.

1.1 Compressible Methods

Compressible flow analysis bridges the gap between aerodynamics and internal

ballistics. In aerodynamic flows, accurate prediction of velocities in the subsonic

regime are critical in predicting the performance of an airfoil. For internal flows,

stability analysis often uses an incompressible mean flow as the foundation of the

analysis. Incorporating compressibility effects into such research can provide new

insights into stability modeling along with more accurate results. Compressible

analysis also benefits CFD algorithm development directly as increasingly elaborate

frameworks allow developers to validate their codes with models incorporating similar

underlying assumptions, rather than relying on out of date equations that may neglect

key parameters. These analytical studies are also valuable in their own right, as they

advance the state of the art knowledge in fluid mechanics and provide insight into

practical applications of compressible flow.

1.1.1 One-Dimensional Models

Some of the first classical compressible studies are one-dimensional in nature. By

reducing the complexity in this manner, analytical closure to the flow field becomes

more manageable. One of the first works of this type is from Taylor (1910), in which

he solves an integral for a closed form solution for adiabatic flow. Later, von Mises

(1950) extends the solution to include heat conduction.

A number of popular compressible flow models fall under the category of one-

dimensional analysis. Rayleigh and Fanno flows for one-dimensional channel motions

are among the first subjects taught to students of compressible fluid mechanics

3



(Liepmann and Roshko, 2001). These models are often accurate for simple channel

flows, but for propulsive applications a more elaborate analysis is often required. In

the case of solid rocket motors, a one-dimensional analysis does not adequately capture

the injection process occurring at the wall. In liquid motors, two and three-dimensional

structures often play important roles in mixing and film cooling. For more advanced

motor concepts, such as swirl combustors, the multi-dimensionality is a feature of the

motor design and cannot be treated one-dimensionally.

1.1.2 Multi-Dimensional Techniques

One accepted approach in multi-dimensional flow fields is the small-perturbation

theory. Often associated with aerodynamics, this technique assumes that the changes

introduced by a slender body are relatively minor. The equations of interest are

perturbed using the small correction to the flow field as a perturbation parameter.

The archetypal example is still Ackeret’s flow over a wavy wall. While this is ideal for

slender bodies, it is not well-suited for the bidirectional vortex engine as there are no

small-disturbances, either in the flow or in the geometry, to exploit for linearization.

Along the same lines as small-perturbation theory, the Prandtl-Glauert expansion

method uses variances in the geometry as a perturbation parameter (Shapiro, 1953).

The segregated equations are then solved with traditional techniques to find the

overall solution. Kaplan (1943, 1944, 1946) successfully applies the procedure to a

number of external flows. For internal flows, Balakrishnan et al. (1991, 1992) utilize

Prandtl-Glauert in the context of rectangular and cylindrical solid rocket motors. The

method is ideal for the long, slender motor configurations considered in these studies,

as the aspect ratio makes a convenient perturbation parameter. The framework in

Balakrishnan et al. (1991, 1992) must be solved numerically, which limits the viability

in seeking an analytical closure, as the vortical equivalent would also likely resort

to numerics. Additionally, the length of a typical bidirectional vortex engine is not

4



sufficient to produce the requisite perturbation parameter. The combination of these

factors renders the Prandtl-Glauert method unsuitable for the present study.

In the hodograph method, a transform of the variables is introduced so that the

velocities behave as independent variables rather than the geometric coordinates.

This modification linearizes the stream function with respect to the velocities which

facilitates analytical closure. Tsien (1939) and von Kármán (1941) use the hodograph

plane to solve a number of external compressible flow problems. The popularity of the

technique has fallen since its height in the 40’s and 50’s, especially with the advent of

computational fluid mechanics, though it still has some proponents in airfoil design

(Cohen, 1984).

The transformation and solution in the hodograph plane can be a difficult

proposition. Even with the transformed solution in hand, reverting back to the

laboratory coordinates is even more challenging than the initial transformation. For

the internal flow in a swirl combustor, the combination of transformation issues as well

as adapting what is primarily a technique for external flows, reduces the attractiveness

of the hodograph technique for the present study.

The final method under consideration is the Rayleigh-Janzen perturbation method.

The procedure was developed independently by Janzen (1913) and Rayleigh (1916) to

solve subsonic compressible flows. Using an expansion in the Mach number squared,

the perturbed relations may be segregated into equations of the same order and then

solved sequentially to produce a compressible model. The leading order recovers the

incompressible solution, while subsequent higher-order terms capture the compressible

corrections.

The original study by Rayleigh (1916) examined the potential flow around a

right-circular cylinder. Also in the external flow category, Heaslet (1944) solves the

compressible motion about a cylinder with circulation. Barsony-Nagy et al. (1987)

uses the Rayleigh-Janzen expansion to study plane, steady flows containing potential

point vortices interacting with obstacles. In extending the method to rotational flows,

the studies by Moore and Pullin (1991, 1998) and Meiron et al. (2000) showcase the
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Figure 1.1: The (a) Hart-McClure and (b) Culick streamline profiles.

flexibility of the method in calculating the compressible analogs to vortex pairs, as

well as Hill’s and Stuart’s vortexes, respectively.

The Rayleigh-Janzen method is not limited to aerodynamic flows. Majdalani

(2007a) employs the expansion to calculate the flow field in a cylindrical tube and

Maicke and Majdalani (2008b) perform the same for a Cartesian channel flow. The

approach has even been extended to include potential channel flow by Maicke et al.

(2010) and later generalized by Saad et al. (2011) (see Figure 1.1). The ability of

this perturbation technique to accommodate a wide range of geometric configurations,

coupled with the subsonic speeds encountered in most propulsive applications all point

to the Rayleigh-Janzen technique as an effective means of describing the compressible

flow in a tangentially-driven combustor.

1.2 Experimental Correlation

Another challenge in developing analytical frameworks for engineering applications lies

in reconciling with experiment. Specifically, most analytical studies are developed for
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laminar conditions, whereas experiments frequently range into the turbulent regime.

In order to make useful predictions, additional effort is required to adjust the model

to match experimental conditions.

Empirically correlated relations are often employed in this capacity. In some cases,

data is simply fit to the best available function, without any rigorous mathematical

foundation. In other cases, certain key values in a derived framework are left

undetermined and are subsequently used to match the experimental configuration.

This type of algorithm is common in tornado and hurricane modeling where parameters

such as the peak wind velocity, or circulation of a storm cell, are required to fully

determine a solution. The drawback to this approach is that it is difficult to make

predictions, as there is no valid solution without experimental inputs.

The other accepted practice is to determine the framework from first principles and

then designate an experimental correction to one of the included laminar parameters.

This has the advantage of producing a fully-functional model for laminar conditions

while extending the range of validity to more physically realistic regimes after sufficient

data is collected. The experimental correction approach has been used successfully in a

number of vortex related studies, most notably by Rietema (1961) and by Kuo (1966).

A variation of this method will be used in Chapter 7 to correlate swirl velocities to

available experimental data.

1.3 Motivation

The motivation of this work is to provide an improved model for swirl-based combustors.

One of the target applications is the bidirectional vortex liquid rocket engine developed

by Orbital Technologies, depicted in Figure 1.2. The methodology detailed here may

also be applied to swirl-based gas turbines or hybrid rocket motors with uni-directional

or multi-directional axial velocities. To achieve this aim a framework is developed using

the compressible analog of the Bragg-Hawthorne equations. A second framework is also

developed using the vorticity-stream function approach (Majdalani, 2007a; Maicke and
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Figure 1.2: Concept sketch of the Vortex Combustion Cold-Wall Chamber (VCCWC)
by Chiaverini et al.

Majdalani, 2008b) that remains popular in propulsion circles. The resulting equations

are then solved with a semi-analytical approach to produce a closed form solution

containing a number of special functions evaluated through numerical integration.

In this dissertation, an alternate swirl velocity is developed through the balancing

of the pressure and shear stress terms near the core of the vortex. The results are

subsequently compared to both existing models and experimental data.

The remainder of this dissertation is structured as follows. Chapter 2 provides

background on vortex-related research and introduces several classical vortex models.

The derivations of the compressible framework and the constant shear stress swirl

model are presented in Chapter 3. In Chapter 4, the Rayleigh-Janzen perturbation

expansion is introduced along with the segregated compressible equations. Chapters 5

and 6 present the solutions to the compressible models and the alternate swirl velocity
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model, respectively. The results are presented in Chapter 7 and the closing remarks

are contained in Chapter 8.
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Chapter 2

Vortex Models

In this chapter a review of existing vortex models is conducted. First potential

applications are presented in both unbounded and confined domains, as well as the

experimental methods used to acquire data in these contexts. Next, a survey of the

classical analytical models is conducted, covering both uni- and multi-directional

classifications. The salient features of these models are discussed and some will be

incorporated into the models derived in Chapter 3.

2.1 Unbounded Vortex Studies

The first studies in swirling flows center on unbounded vortexes. As naturally occurring

flows are not likely to be confined, most of the research in this classification focuses

on weather-related phenomena. In a historical review, Vatistas (2009) investigates

Homer’s description of the tidal whirlpool, finding the description qualitatively accurate.

In this context, an inviscid model is often sufficient to capture the flow behavior as

the length scales are large enough for viscous effects to play a minor role.

Tornadoes, and to a lesser extent waterspouts, dust devils and fire whirls, constitute

one of the largest fields of study on unbounded swirl-driven flows (see Figure 2.1).

Accurately modeling these phenomena is a challenging endeavor as tornadoes form

quickly and unpredictably, so it is often difficult to acquire experimental data for
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(a) Tornado (b) Waterspout

Figure 2.1: Photographs of a (a) tornado and a (b) waterspout. Credit: National
Oceanic and Atmospheric Administration.

these violent storms. Generally speaking, a tornado consists of an inward radial and

an upward axial velocity coupled with strong swirl. In some cases, tornadoes may also

have a considerable downdraft near the centerline (Lewellen, 1993). As a consequence

of scarce experimental data during the formative stages of a tornado study, a number

of analytical frameworks have been appropriated to tornadoes including those by

Rankine (1858), Burgers (1948), Rott (1958), and Sullivan (1959). The details of

these classical studies will be presented in Section 2.3.

While there is significant interest in describing the tornado structure for its own

sake, these analytical studies are often used in compound models to predict damage

caused by these storms. For example, Holland et al. (2006) and Bech et al. (2009)

both use a Rankine vortex in their forest damage prediction models. In a similar

manner, Beck and Dotzek (2010) approach the inverse problem in categorizing tornado

velocities based on forest damage analysis. It stands to reason that improving the

baseline predictions will invariably lead to improvements in the composite frameworks

as well.

After tornadoes, hurricanes comprise the remainder of the bulk of naturally

occurring vortex research. Unlike tornadoes, which are difficult to predict and

extremely localized, hurricanes have a prolonged development time and are larger in

scale (see Figure 2.2). Despite these differences, a modified Rankine vortex stands
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(a) Hurricane Bud (b) Hurricane Irene

Figure 2.2: Satellite images of (a) Hurricane Bud and (b) Hurricane Irene. Credit:
NASA/GSFC/Jeff Schmaltz/MODIS Land Rapid Response Team.

as one of the first approximations for a hurricane description (Depperman, 1947).

Subsequent investigations have developed new relations including those by Holland

(1980) and Emanuel (1995). These models have an analytical basis, but require

empirically correlated parameters to achieve closure.

Most current research on hurricanes focuses less on the velocity profile and more on

the interactions with the environment. For example, Lindemer et al. (2010) conduct

a numerical simulation on the changes experienced by a barrier island from erosion

caused by the hurricane storm surge. There are a number of simulations of historical

hurricanes, which are used to validate existing computations (Moscatello et al., 2008;

Hogsett and Zhang, 2009).

Although tornadoes and hurricanes encompass a considerable percentage of active

research in unbounded vortexes, there are a number of other avenues for the exploration

of unbounded swirl-driven flows. In astronomy, Bruce (1961), and more recently

Königl (1986), examine stellar jets by means of vortex mechanics. Vortex models

can describe the features of distant galaxies, as the study by Afanas’ev and Fridman
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(1993) likens the galaxy Mrk 1040 with a vortex rotating in shallow water. Klein et al.

(2000) examine the role of vortex dynamics on the interaction of supernova remnants

with interstellar clouds through a lab-scale experiment and numerical simulation of

the nonlinear stability interactions.

Of primary interest in aerospace engineering, the vortexes shed by airfoils occupies

an important line of inquiry. The research in this area is primarily experimental, as

investigators examine the development, structure, and interactions of these vortexes.

In a series of papers, (Devenport et al., 1996, 1997) first examine the vortex shed by

a NACA 0012 half-wing and then the interaction between two such air-foils placed

tip to tip. There are a number of possible applications for such research including

aircraft spacing (Gerz et al., 2005), flow-separation control (Lin, 2002), and air-frame

noise reduction (Makiya et al., 2010).

2.2 Confined Vortex Studies

A wealth of literature exists on swirl-driven flows in confined spaces. Unlike their

unbounded brethren, the length scales in the confined vortex are necessarily smaller

and the interactions with the walls may require additional treatment. Much of the

early industrial vortex research is of the cyclone separator variety. For example,

cyclone separator efficiency drives the investigation by ter Linden (1949). Bloor

and Ingham (1987) have also introduced an incompressible formulation for a conical

separator in spherical coordinates. In addition to these practical applications, the

confined vortex possesses important academic value. As far as stability is concerned,

Rusak et al. (1998) describe the evolution of a perturbed vortex in a pipe in an attempt

to characterize axisymmetric breakdown. This work is further extended by Rusak and

Lee (2004) to include compressible vortices. The intention of these studies is to not

only characterize breakdown, but to also extend the mechanisms entailed in confined

vortex breakdown to a more general stability model.
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While only few analytical models have been proposed for describing the various

swirl-dominated solutions of a confined vortex, there exists a significant body of

literature devoted to experimental investigations. These studies can be roughly

separated depending on the methods employed in their data collection: probes, Laser

Doppler Velocimetry (LDV), and Particle Image Velocimetry (PIV).

Within the context of cyclone separators, the experimental study by Smith (1962b)

employs a glass tube filled with smoke particles to capture the general structure of

a confined swirling flow. Smith also utilizes a special slender probe stretched across

the chamber diameter to determine the magnitude and direction of the velocity in

the cyclone. This setup allows for the measurement of both the axial and tangential

components. In this case, the radial velocity is assumed small enough that it can be

inferred from continuity. In a companion paper, Smith (1962a) combines analytical

methods with experimental measurements to characterize the dynamics and possible

instabilities that occur in a separator.

In a later investigation into the behavior of cyclone chambers, Vatistas et al.

(1986) conduct a similar experiment in which a prismatic pitot tube captures the

velocity and pressure maps within a cyclonic chamber. These researchers compare

their findings to an experimentally correlated inviscid description, finding essentially

favorable agreement. Their study highlights a key realization in confined vortex

modeling, namely, that swirl variations in the axial direction are so small that they

may be ignored (see Reydon and Gauvin, 1981; Ogawa, 1984, among others). This

simplification is commonly employed in the analytical studies of vortices.

Furthermore, these studies provide early insights into the conditions arising in

a confined vortex; however, some deficiencies must be noted. Even with proper

calibration, the minimally intrusive probes can introduce disturbances into the flow,

and these, in turn, can lead to potentially misleading results. This is especially

important when investigating dynamic effects such as instability.

Improvements in technology give rise to increasingly sophisticated experimental

techniques that help to provide valuable information regarding confined swirl velocities
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without the intrusion invariably present with even the smallest probes. For instance,

LDV minimizes flow disruptions by seeding the fluid domain with particles followed by

using a focused laser to scatter light off those particles. The interference patterns are

then correlated to velocity measurements obtained in localized regions. Subsequently,

the corresponding sub-volumes are summed together to reconstruct the overall profile

of a given flow pattern.

Hoekstra et al. (1999) take an increasingly common approach of pairing a CFD

solution with LDV measurements to validate their proposed turbulence models. Their

experimental setup uses a back-scatter LDV to collect the axial and tangential profiles

in small volumes. These volumes are then combined and correlated to provide an

overall velocity profile. In this effort, however, the turbulent cross-correlation is found

to be problematic owing to the finite chamber wall thickness which, in itself, can cause

refraction and dissimilar distortion levels based on the spatial location within the

chamber. Without proper accounting for these optical disparities, a perfect correlation

between the acquired signal and the flow profile will be difficult to realize. The seeding

quality in the core region also proves to be an issue, as the natural motion in the

cyclone tends to separate particles from the flow.

Hu et al. (2005) conduct a similar study for industrial-size cyclone separators.

Whereas Hoekstra et al. (1999) focus on the separation section of the cyclone, Hu et al.

(2005) consider the full separator geometry including the inlet, hoppers, and other

supporting hardware. Moreover, their experimental investigation is accompanied by

a turbulent computational solution. In addition to verifying turbulent models, their

study aims at improving the prediction of cyclone efficiency.

Along similar lines, an investigation into the turbulent kinetic energy of a confined

vortex is reported in a forward scatter LDV study by Yan et al. (2000). In this

work, data collected at a wide range of Reynolds numbers is used to validate their

empirically derived solutions. These particular models rely on scaling laws to reduce

the problem’s dependence in each case to one or two key parameters, and these tend

to involve some combination of the inlet flow rate and the contraction ratio.
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PIV is another minimally intrusive technique that will be discussed in the remainder

of this chapter. Much like LDV, PIV employs particle seeding to collect velocity

measurements. The primary difference between the two techniques stands in the

data acquisition. Whereas LDV relies on two focused beams to generate interference

patterns, PIV uses optics to create a laser sheet that illuminates a plane in the

chamber. High-speed cameras are then utilized to capture images of the illuminated

particles at two closely spaced intervals such that a net profile may be deduced from

the cross-correlation of these images.

By way of comparison, both PIV and LDV methods are used by Sousa (2008) to

determine the velocity field that accompanies vortex breakdown in a closed container.

Sousa finds that accurate measurements may be acquired using either method; he also

reports several challenges associated with PIV techniques. The fully three-dimensional

nature of the flow field can lead to a decrease in correlation accuracy as seed particles

move normal to the light sheet. Sousa accounts for this factor by shortening the

duration between laser pulses and by slightly thickening the laser sheet to increase

the chances that the particles of interest will remain in the area of investigation.

In the spirit of improvement, Zhang and Hugo (2006) use a stereoscopic PIV

setup to investigate the vortex motion in a pipe. Stereoscopic PIV captures the fully

three-dimensional flow field; however, it requires an additional high speed camera

with more elaborate calibration to ensure that both cameras will target the same area.

This obviously leads to an increase in post-experimental processing as the images from

two cameras have to be analyzed for each exposure, effectively doubling the amount

of data acquired. Finally, Zhang and Hugo (2006) implement an improved calibration

technique to reduce the optical distortion caused by refraction through the fluid and

the curved chamber wall.

Cyclonic motions are also of interest in propulsive applications. For example, in

hybrid rocket motors, this flow field is of interest primarily for increasing the oxidizer

residence time as a means to improve the combustion performance. The benefits to this
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type of motion have been applied by Knuth et al. (1996) in the context of a standard,

cylindrical grain, while Rice et al. (2001) examine an end-burning configuration.

Liquid fueled combustors may also benefit from a swirl based design. In a

unidirectional configuration, Anacleto et al. (2003) demonstrate a reduction in NOx

emissions when a lean mixture is used. Vortex flows may also used to stabilize flames

in small-scale combustors (Wu et al., 2007). The motivation for this dissertation

follows from a bidirectional variant of the swirl combustor, namely the VCCWC

developed by Chiaverini et al. (2002).

2.3 Classical Vortex Models

When classifying analytical vortexes, the models may be split into unidirectional and

multi-directional categories. Unidirectional models have an axial velocity in a single

direction. Multi-directional vortexes have a reversing axial character. Tornadoes and

cyclone separators are the most common physical manifestations of this latter type of

behavior.

2.3.1 Unidirectional Models

Many of the first analytical models fall under the realm of unidirectional vortexes.

One of the first efforts to capture such a flow analytically come from Rankine (1858),

who developed a piecewise solution with a radial dependence. His normalized solution

may be written as

v̄

v̄max

=


r̄

δc
r̄ ≤ δc

δc
r̄

r > δc

or v =

r r ≤ 1

r−1 r > 1

(2.1)

Here the over-bars denote a dimensional variable. The δc term represents the core

distance, in this case, the distance from the centerline to the peak velocity. The core
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distance is also sometimes referred to as the vortex strength, as a larger core radius

will result in a higher peak for the Rankine profile. The inner domain consists of a

forced core, behaving as a solid-body rotation, while the outer vortex varies with the

inverse of the radius. Rankine focuses only on the tangential motion, neglecting the

axial and radial components, though other velocities may be superimposed to form

a complete model. In practice, the core distance and the maximum value must be

known a priori and cannot be derived from first principles. This usually manifests in

fitting to empirical data, either from experiment or simulation.

Owing to its simplicity, Rankine’s model is often used as a first approximation or

baseline during new development (see Bertato et al., 2003; Mallen et al., 2005). The

simplicity is not without a cost, as the model is not differentiable at the matching

point (see Figure 2.3), which may be undesirable during further calculations.

The Lamb-Oseen relation incorporates a time-dependent decay of the vortex motion

(Wendt, 2001). This makes the model, derived from the axisymmetric, incompressible

Navier-Stokes equations, particularly suitable for capturing the behavior of wing-tip

vortices. The dimensional representation of its swirl velocity may be expressed as

v̄(r̄, t̄) =
Γ

2πr̄

[
1− exp

(
− r̄

2

δ2

)]
(2.2)
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Figure 2.3: Normalized Rankine swirl velocity.
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Here Γ refers to the circulation and δ = 2
√
νt̄, to the characteristic radius which is

dependent on time, t̄, and the kinematic viscosity, ν. Equation (2.2) begins as a

potential vortex, behaving as 1/r̄ away from the centerline before smoothly switching

to a linear dependence on r̄ in the forced core evolving around r̄ = 0. As time elapses,

the vortex decays exponentially. The swirl profile of the Lamb-Oseen equation is

highlighted in Figure 2.4.

The Burgers-Rott vortex (Burgers, 1948; Rott, 1958) is similar in form to the

Lamb-Oseen profile with two notable exceptions. First, rather than a time-dependent

decay, the exponential function here is governed by the suction strength, S, which is

either determined empirically or through the boundary conditions, depending on the

study. Secondly, Burgers-Rott possesses well-defined relations for the axial and radial

velocities. It can be written as

v̄(r̄) =
Γ

2πr̄

[
1− exp

(
− r̄

2

δ2

)]
ū(r̄) = −Sr̄; w̄(z̄) = 2Sz̄ (2.3)

where δ =
√

2ν/S. The presence of an axial velocity and a suction parameter has

proven useful in applications related to the modeling of thunderstorms. The Burgers-

Rott and Lamb-Oseen descriptions feature the inner, forced core which smoothly
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Figure 2.4: Lamb-Oseen swirl velocity.
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transitions to the 1/r outer, free vortex. The primary difference between Burgers-

Rott and Lamb-Oseen lies in the transition shape between these two features. The

Lamb-Oseen vortex has a wider transition whereas the Burgers-Rott profile narrows

for similar input values (see Figure 2.5).

While the swirl velocity exhibits a similar composition to the Lamb-Oseen vortex,

the Burgers-Rott is the first description with off-swirl velocities. To fully characterize

this field, the streamlines are plotted in Figure 2.6. In the first figure, the r − θ plane

captures the coupling between the swirl and radial velocities. The flow field has an

inwardly spiraling character along with an axial velocity that increases with z.

2.3.2 Bidirectional Solutions

In what concerns bidirectional behavior, Sullivan (1959) provides an unbounded

bipolar solution to the Navier–Stokes equations. For an essentially two-celled vortex,

Sullivan’s inner region exhibits a descending axial velocity coupled with an outward

radial motion. Conversely, the outer cell flows inwardly and up. The model itself can
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Figure 2.5: Burgers-Rott swirl velocity.
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(a) Polar Streamlines

(b) Axial Streamlines

Figure 2.6: The (a) polar and (b) axial streamlines for the Burgers-Rott vortex.
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be written in an integral representation using


v̄(r̄) =

Γ

2πr̄

1

H(∞)
H

(
r̄2

δ2

)
; δ =

√
2ν/S

H(x) =

∫ x

0

ef(t)dt; f(t) = −t+ 3

∫ t

0

(
1− e−y

) dy

y

(2.4)

As before, S denotes the suction strength and ν, the kinematic viscosity. The

corresponding axial and radial components may be expressed as

w̄(r̄, z̄) = 2Sz̄

[
1− 3 exp

(
− r̄

2

δ2

)]
; ū(r̄) = −Sr̄ +

6ν

r̄

[
1− exp

(
− r̄

2

δ2

)]
(2.5)

It is the combination of axial and radial velocities that makes Sullivan a suitable

candidate for tornadoes (Wu, 1986) and hurricanes (Nolan and Farrell, 1999). Figure

2.7 shows the two-cell structure described by the Sullivan model. The inner region

consists of a downward moving, outwardly spiraling cell. The outer portion moves

axially upwards while spiraling towards the vortex center. In these cases, the Sullivan

model tends to over-predict the maximum swirl; like the Rankine vortex, an empirical

correlation often modifies the Sullivan profile.

Instead of developing a general model for vortex motions, as in the previous

examples, Kuo (1966) formulates a two-celled framework for the express purpose of

characterizing tornadoes. His model couples a doubly perturbed expansion with a

similarity solution which accounts for temperature differentials in the tornado. In

creating the framework, Kuo assumes an unstable stratification layer of height, h,

determined by the atmospheric conditions, and a reference swirl velocity of U . In

keeping with the earlier studies, Majdalani (2012) presents a normalized form which

may be written as

v =
δc
r̄

K(4.42r̄2/δ2c )

K(4.42)
(2.6)
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(a) Polar Streamlines

(b) Axial Streamlines

Figure 2.7: The (a) polar and (b) axial streamlines for the two-celled Sullivan (1959)
vortex.
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Here δc = 4.21
√
νh/U and K may be defined as

K(x) =

∫ x

0

ef(t)dt; f(t) = −t+ 2

∫ t

0

(1− e−y)dy

y
(2.7)

The off-swirl velocity components are

u = 6.65κ∞

{
−2.21r +

1

r

[
1− exp

(
−4.42r2

)]}
(2.8)

v = 29.41κ∞z
[
1− 2 exp

(
−4.42r2

)]
(2.9)

where κ∞ = ν/Γ∞, which behaves as an off-swirl parameter with the kinematic

viscosity divided by the far-field circulation. The streamline plots for Kuo are

featured in Figure 2.8. The structure is reminiscent of the two-celled Sullivan vortex

with an inner downdraft and an outer updraft. The radial profile also follows a similar

trend with a positive radial velocity in the core region that switches polarity to a

negative value in the outer cell.

A comparison of the above-mentioned swirl velocities is presented in Figure 2.9.

In all cases, the equations are normalized such that their peak velocities occur at

a dimensionless radius of one. This is accomplished by dividing the radius by δc,

which is the distance from the axis of rotation to the point where the maximum swirl

occurs. Traditionally, a diameter of 2δc may be used to define the forced viscous core

thickness. While all of the models capture similar trends, there remains a significant

amount of variability in the profiles. The Rankine solution displays an abrupt change

in behavior at the peak. The remaining profiles exhibit smooth contours, with the

Sullivan profile concentrating the swirl velocity to a narrower region than that of

Burgers-Rott. Although not depicted, the Lamb-Oseen profile becomes identical to

that of Burgers-Rott when neglecting time dependence.

In work related to cyclone separators, a study by Bloor and Ingham (1987) leads to

one of the most frequently cited models. The resulting inviscid solution arises in the

context of a conical cyclone. Bloor and Ingham solve the Bragg-Hawthorne equation
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(a) Polar Streamlines

(b) Axial Streamlines

Figure 2.8: The (a) polar and (b) axial streamlines for the Kuo (1966) vortex.

25



0 1 2 3 4 5
0

0 . 5

1
 

m a x( )
u

u
�

�

r / � c

 R a n k i n e  ( 1 8 5 8 )
 B u r g e r s - R o t t  ( 1 9 4 8 )
 S u l l i v a n  ( 1 9 5 9 )

   
Figure 2.9: A comparison of selected swirl velocity models, normalized so that the
peak velocity occurs at r = 1.

in spherical coordinates to the extent of producing a stream function of the form

ψ =
σr2

2
(λ− ln Φ− Φ cscφ) (2.10)

Here Φ ≡ tan(φ/2) and λ ≡ ln[tan(α/2)]. Equation (2.10) translates into the following

components

uR = πσ[(λ− ln Φ) cosφ− 1] (2.11)

uφ = −πσ[(λ− ln Φ) sinφ− Φ] (2.12)

uθ = (1/r)
√

1 + π2σ2r2(λ− ln Φ− Φ cscφ) (2.13)

Here U and W stand for the average swirl and axial velocities at the entrance (see

Figure 2.10), α represents the cyclone taper angle, and σ refers to the dimensionless

swirl parameter described by

σ =
πU

W
(2.14)

Equations (2.10)–(2.14) constitute an improvement on previous work (Bloor and

Ingham, 1973), where use of the Polhausen technique leads to a solution insensitive to

injection conditions. It should also be noted that (2.10)–(2.14) represent a corrected

form of the Bloor–Ingham solution according to Barber and Majdalani (2009).
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Figure 2.10: Bloor-Ingham solution domain and geometry.

Moving beyond the Bloor–Ingham approximation, Vyas and Majdalani (2006)

introduce a bidirectional model with a reversing axial character. Their complex-

lamellar solution, which constitutes the basis for the upcoming analysis, seeks to

describe the bulk gaseous motion in the Vortex Combustion Cold-Wall Chamber

(VCCWC) developed by Chiaverini et al. (2002). In this swirl-driven engine, the

tangential motion of the oxidizer insulates the sidewalls against thermal loading, thus

leading to a substantial reduction in engine weight. The swirling motion also has a

mitigating impact on pressure oscillations in the chamber as shown by Batterson and

Majdalani (2011a,b). The mathematical character of this application is described in

the following chapter.
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Chapter 3

Framework Derivations

In this chapter, the confined vortex frameworks are derived. The first model uses

the vorticity-stream function approach, a mainstay of the propulsion community as

evidenced by the work of Culick (1966), Vyas and Majdalani (2006), and Maicke

and Majdalani (2008b). Second, the compressible Bragg-Hawthorne equations are

derived. These relations are not as popular in the propulsion community, but have

been successfully employed in the modeling of cyclone separators (see Bloor and

Ingham, 1987). The Bragg-Hawthorne relations may be considered a super-set of the

vorticity-stream function approach, as with careful consideration, one may recover a

form similar to the vorticity-stream function framework. Finally, the constant shear

stress model is briefly introduced. These equations provide the groundwork for the

remainder of the study.

3.1 Bidirectional Vortex Model

The bidirectional vortex engine may be represented as a right circular cylinder with

radius a and length L0 as shown in Figure 3.1. The coordinate system is fixed at the

center of the inert headwall, and the chamber is partially open at the base with a

radius of b. The radial and axial coordinates are denoted by r̄ and z̄. Fluid is injected

with tangential velocity U at the aft end. The injectant develops an axial velocity
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tangential injection

r

z

L =L /a

= b/a

outer annular vortex

inner core vortex

0

Figure 3.1: Schematic of the idealized bidirectional vortex chamber

and spirals up towards the headwall. When the flow reaches the headwall, it reverses

axial direction and spirals back down the center of the chamber until it exits out

the partially open base. The geometric parameters of interest are the aspect ratio

L = L0/a and the open radius fraction β = b/a. In designing a experiment, β is often

set to the location of the mantle which is defined as the location of zero axial velocity.

By accounting for this key flow field feature, recirculation regions in the exit plane

are minimized as the flow passing through the open fraction remains unidirectional.

The bidirectional vortex flow field differs from traditional industrial cyclones in that

it only has one outlet for the fluid to exit the chamber, rather than the two (one at

the head end and one at the bottom) common in cyclone separators.

Physically, the flow field originates with tangential fluid injection at the base.

Due to practical constraints, the entering fluid is not purely tangential, but will

inevitably have some axial and radial components. As the chamber begins to fill,

particle collisions with the side and endwalls promote the axial and radial velocity

components. A portion of the fluid will exit through the open fraction at the base,

while the remainder will continue to spiral up towards the headwall. In the vicinity of

the headwall, collisions will again influence the axial velocity such that the direction

of the flow is reversed. At this point the flow begins is decent in the inner region of

the chamber, until finally exiting through the open fraction at the base.
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Mathematically, the bidirectional vortex may be modeled with the ensuing

boundary conditions

r̄ = a, z̄ = L0, v̄ = U Tangential injection at base (3.1)

r̄ = 0, ∀z̄, v̄ = 0 Forced vortex core (3.2)

z̄ = 0, ∀r̄, w̄ = 0 Impervious headwall (3.3)

r̄ = 0, ∀z̄, ū = 0 No flow across centerline (3.4)

r̄ = a, ∀z̄, ū = 0 Impervious sidewall (3.5)∫ b

0

2πρw̄(r̄, L0)r̄dr̄ = ¯̇mi Axial outflow matching tangential source (3.6)

3.2 Normalization

Before introducing the frameworks, it is beneficial to convert the governing equations

to non-dimensional form. The normalization relations are

z =
z̄

a
; r =

r̄

a
; ∇ = a∇̄; β =

b

a
(3.7)

u =
ū

U
; v =

v̄

U
; w =

w̄

U
; Ω =

aΩ̄

U
; ψ =

ψ̄

ρ0Ua2
; H =

H̄

U2
(3.8)

p =
p̄

p0
; ρ =

ρ̄

ρ0
; Q =

Q̄

Ua2
=
Ai
a2

; ṁ =
¯̇m

ρ0Ua2
(3.9)

where (z, r) represent the two primary spatial coordinates and b, the chamber exit

radius. In (3.8), (u, v, w) denote the radial, azimuthal, and axial velocities, whereas Ω,

ψ, and H are the vorticity, stream function and stagnation enthalpy, respectively. As

usual, (p, ρ) are the standard thermodynamic properties; and Q represents the mass

flow rate. In (3.7), all spatial coordinates are normalized by the chamber radius, a.

Similarly, the wall-tangential injection velocity, U , normalizes the velocity variables,

and the thermodynamic variables are divided by their respective reference value.
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The vorticity-stream function and the Bragg-Hawthorne approaches both originate

from the fundamental equations of fluid mechanics. For this reason, the conservation

equations are first normalized and then used to derive the respective frameworks.

3.2.1 Conservation of Mass and Energy

The conservation of mass for steady, compressible flow is

∇̄ ·
(
ρ̄Ū
)

= 0 (3.10)

Substituting the values from (3.7)–(3.9) gives

ρ0U

a
∇ · (ρU) = 0 (3.11)

Dividing by the constants turns (3.11) into

∇ · (ρU) = 0 (3.12)

Normalizing the energy equation follows the same procedure. Beginning with the

expression

∇ ·
(
ρ̄H̄Ū

)
= 0 (3.13)

Substituting the normalized variables produces a collection of constants (ρ0U
3/a)

which can simply be divided out, as the right-hand side is zero.

3.2.2 Conservation of Momentum and Stagnation Enthalpy

The conservation of momentum for steady, compressible flow is

Ū · ∇Ū = −∇p̄
ρ̄

(3.14)
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Introducing the non-dimensional forms of the variables produces

U2

a
U · ∇U =

p0
ρ0a

(
−∇p̄

ρ̄

)
(3.15)

This is further simplified by introducing the speed of sound via p0/ρ0 = c20/γ, which

yields

U · ∇U =
c20
γU2

(
−∇p̄

ρ̄

)
(3.16)

or, more appropriately

U · ∇U = − ∇p
γM2ρ

(3.17)

Where M is the reference Mach number later used in the perturbation analysis.

The stagnation enthalpy is normalized in a similar manner to the momentum

relation as it has analogous units, so it is not fully reproduced here. The dimensional

form for the stagnation enthalpy for an ideal gas is

H̄ =
1

2
(Ū · Ū) +

γ

γ − 1

p̄

ρ̄
(3.18)

Dividing the velocity constants through and introducing the speed of sound where the

pressure/density ratio appears results in a 1/(γM2) multiplying the thermodynamic

terms as in (3.17).

The normalized equations facilitate comparisons across multiple trials and isolate

control parameters, such as the Mach number or Reynolds number, which may guide

experimental investigations. For the rest of this dissertation, the equations provided

are in non-dimensional form unless explicitly stated.

3.2.3 Boundary Conditions

Before developing the dimensionless compressible systems, it is advantageous to recast

the boundary conditions from (3.1)–(3.6) to the same non-dimensional format. Using
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the same relations from (3.7)–(3.9), the boundary conditions are restructured to

v(1, L) = U Tangential injection at base (3.19)

v(0, z) = 0 Forced vortex core (3.20)

w(r, 0) = 0 Impervious headwall (3.21)

u(0, z) = 0 No flow across centerline (3.22)

u(1, z) = 0 Impervious sidewall (3.23)

ṁi = 2π

∫ β

0

ρw(r, L)rdr Axial outflow matching tangential source (3.24)

3.3 Vorticity-Stream Function Framework

The vorticity-stream function framework is a simplification of the Navier-Stokes

equations that exploits symmetry in a reduction to a two-dimensional form via the

stream function. The name originates from the relationship between the vorticity

and the stream function that makes this possible. The incompressible version of this

framework has been successfully employed in modeling solid rocket motors as depicted

in Figure 3.2 (see Culick, 1966). The equations have also been used by Vyas and

Majdalani (2006) to describe the bidirectional vortex rocket engine. The framework

is extended to compressible conditions through coupling with the definition for the

compressible stream function. This has been successfully done by Majdalani (2007a)

r
z

Figure 3.2: Schematic of a cylindrical rocket motor with streamlines.
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for the cylindrical solid rocket motor and by Maicke and Majdalani (2008b) for the

Cartesian geometry.

In this section, the compressible vorticity-stream function (CVS) framework is

presented. The derivation differs slightly from previous studies in that it retains both

the compressible flow terms and the azimuthal velocity that is vital to the modeling

of confined vortex flows. Previous studies include one extension or the other, but not

both together.

3.3.1 Vorticity Equation

The derivation of the primary equation stems from the vorticity definition. Recalling

that for cylindrical coordinates the vorticity is

Ω = ∇×U =
1

r

[
∂w

∂θ
− ∂(rv)

∂z

]
êr −

(
∂w

∂r
− ∂u

∂z

)
êθ +

1

r

[
∂(rv)

∂r
− ∂u

∂θ

]
êz (3.25)

Even though the bidirectional vortex has a swirl velocity, it remains axisymmetric in

nature; thus the azimuthal derivatives are eliminated. Furthermore, it is common in

confined vortex flows to remove any axial dependence from the swirl velocity. These

axioms reduce (3.25) to

Ω = −
(
∂w

∂r
− ∂u

∂z

)
êθ +

1

r

[
∂(rv)

∂r

]
êz (3.26)

Equation (3.26) yields two separate, non-coupled vector components. The equation in

the azimuthal direction forms the basis for the stream function relation, whereas the

axial element reflects the swirl velocity decoupling from the axial and radial velocities.

Before returning to the azimuthal vorticity, the compressible stream function

definitions are required, namely,

u = − 1

ρr

∂ψ

∂z
; w =

1

ρr

∂ψ

∂r
(3.27)
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Substituting (3.27) back into the azimuthal vorticity expression gives

Ωθ = − ∂

∂r

(
1

ρr

∂ψ

∂r

)
− ∂

∂z

(
1

ρr

∂ψ

∂z

)
(3.28)

Expanding the derivatives yields

Ωθ =
1

rρ2
∂ρ

∂z

∂ψ

∂z
− 1

ρz

∂2ψ

∂z2
− 1

ρr

∂2ψ

∂r2
+

1

ρr2
∂ψ

∂r
+

1

ρ2r

∂ρ

∂r

∂ψ

∂r
(3.29)

Multiplying through by rρ2 and collecting terms provides

ρD2ψ + rρ2Ωθ =
∂ρ

∂z

∂ψ

∂z
+
∂ρ

∂r

∂ψ

∂r
(3.30)

where

D2 ≡ ∂2

∂r2
− 1

r

∂

∂r
+

∂2

∂z2
(3.31)

The right-hand side of (3.30) can be further simplified through the use of vector

notation, viz.

ρD2ψ + rρ2Ωθ = ∇ρ · ∇ψ (3.32)

Equation (3.32) is the final form of the vorticity-stream function equation.

3.3.2 Vorticity Transport Equation

To solve (3.32), an additional closure relation is required to connect the vorticity to

the stream function, thus eliminating the Ωθ term on the left hand side. To that end,

the momentum definition from (3.17) is expanded for cylindrical coordinates. The

equation becomes
∇(U ·U )

2
−U ×∇×U = − ∇p

γM2ρ
(3.33)

Using the vorticity definition and taking the cross product of (3.33) gives

∇× (U ×Ω) =
1

γM2ρ2
∇ρ · ∇p (3.34)
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Equation (3.34) provides the required closure by relating the vorticity to the stream

function by way of the velocity terms.

3.3.3 Momentum Equation

To close the vorticity-stream function model, the pressure and density are required

at each order. The pressure is calculated from the momentum, while the density is

extracted from the isentropic relations. Starting with the compressible momentum,

(3.17), and expanding the equation into its vector constituents, the radial momentum

equation becomes

u
∂u

∂r
− v2

r
+ w

∂u

∂z
= − 1

γM2ρ

∂p

∂r
(3.35)

and the axial pressure may be found from

w
∂w

∂z
+ u

∂w

∂r
= − 1

γM2ρ

∂p

∂z
(3.36)

The remaining thermodynamic variables may be determined from the isentropic

relations. For the density and the pressure, these are

ρ = p1/γ (3.37)

T = p1−1/γ (3.38)

3.4 Compressible Bragg-Hawthorne Framework

The original model developed by Bragg and Hawthorne (1950) is used to analyze

incompressible vortex flows. Bloor and Ingham (1987) employ a variation of this

technique in spherical coordinates to analyze the flow in an industrial cyclone (see

Figure 3.3). Their framework employs a set of simplifications to reduce the Navier-

Stokes equations to a stream function form. The result is a set of relations dependent

on the stream function, stagnation enthalpy, and circulation. An investigator may
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Figure 3.3: Schematic of an industrial cyclone.

specify the latter two to values appropriate to the problem. In this section, the

traditional Bragg-Hawthorne approach is extended to account for compressibility.

3.4.1 Bragg-Hawthorne Stream Function Equation

The definition of the stagnation enthalpy for a perfect gas is

H =
1

2
(u · u) +

1

M2 (γ − 1)

p

ρ
(3.39)

Before deriving the compressible Bragg-Hawthorne (CBH) equation, the stagnation

enthalpy and circulation must be written in terms of the stream function. The general

form of the energy equation may be expressed as

∇ · (ρHU ) = 0 (3.40)

One may expand the dot product to produce

∇ (ρH) ·U + ρH (∇ ·U) = 0 (3.41)
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The conservation of mass is expanded in a similar manner to provide

∇ ·U = −∇ρ ·U
ρ

(3.42)

Substituting (3.42) back into (3.41) gives

∇ (ρH) ·U −H (∇ρ ·U) = 0 (3.43)

Expanding the first term leads to

ρ (∇H ·U) +H (∇ρ ·U)−H (∇ρ ·U) = 0 (3.44)

The last two terms are equal in magnitude but opposite in sign. This leaves

∇H ·U = 0 (3.45)

Equation (3.45) proves that H only varies perpendicularly to the velocity; thus, H

may be written in terms of the stream function,

H = H(ψ) (3.46)

With the stagnation enthalpy in hand, the expanded azimuthal component of

(3.33) may be revisited. Invoking axisymmetry reduces the θ-momentum equation to

u
∂v

∂r
+ w

∂v

∂z
+
uv

r
= 0 (3.47)

Multiplying (3.47) by r reproduces the material derivative of B ≡ rv such that

ru
∂v

∂r
+ rw

∂v

∂z
+ uv =

D(rv)

Dt
=

DB

Dt
= 0 (3.48)
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A vanishing material derivative confirms that B must remain invariant along

streamlines, and so B = B(ψ).

With H and Γ in stream function form, they prove useful in simplifying the

momentum equation. This is facilitated by the isentropic relation, namely,

p = Kργ (3.49)

where K denotes a general constant. At this juncture, one may recognize that matching

the momentum given by (3.33) requires a pressure gradient divided by the density.

To that end, (3.49) is manipulated to provide

∇
(
p

ρ

)
= K∇ργ−1 (3.50)

To separate ∇p from the other terms, the following relation is introduced

ρt = ργ (3.51)

Equation (3.50) becomes

∇
(
p

ρ

)
= K∇ρ

1− 1
γ

t (3.52)

Further chain rule differentiation isolates ρt to give

∇
(
p

ρ

)
= K

(
1− 1

γ

)
ρ
− 1
γ

t ∇ρt (3.53)

Reverting back to the original density renders

∇
(
p

ρ

)
= K

(
γ − 1

γ

)
ρ−1∇ργ (3.54)

Finally, substituting (3.49) back into (3.54) yields

γ

γ − 1
∇
(
p

ρ

)
=
∇p
ρ

(3.55)
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This expression matches its counterpart on the right-hand side of (3.17).

After substituting (3.55) into the compressible momentum equation (3.17), one

may employ the vector identity, U · ∇U = 1
2
∇U 2 −U ×Ω, to obtain

∇(U ·U)

2
+

1

M2 (γ − 1)
∇
(
p

ρ

)
−U ×Ω = 0 (3.56)

The first two terms correspond to the gradient of the stagnation enthalpy, or

∇H = U ×Ω (3.57)

To eliminate the vorticity, the right-hand side of (3.57) may be expanded in terms of

the velocity viz.

u×Ω =

{
v

r

[
∂ (rv)

∂r
− ∂u

∂θ

]
+ w

(
∂w

∂r
− ∂u

∂z

)}
êr

−
{
u

r

[
∂ (rv)

∂r
− ∂u

∂θ

]
− w

r

[
∂w

∂θ
− ∂ (rv)

∂z

]}
êθ

+

{
−u
(
∂w

∂r
− ∂u

∂z

)
− v

r

[
∂w

∂θ
− ∂ (rv)

∂z

]}
êz (3.58)

As with the vorticity-stream function, the axial component of (3.57) can be segregated

after imposing the axisymmetry condition to produce

∂H

∂z
= −u

(
∂w

∂r
− ∂u

∂z

)
+ v

∂v

∂z
(3.59)

Next, the velocities may be eliminated in favor of the stream function via (3.27) such

that
∂H

∂z
=

1

ρr

∂ψ

∂z

∂

∂z

(
1

ρr

∂ψ

∂z

)
+

1

ρr

∂ψ

∂z

∂

∂r

(
1

ρr

∂ψ

∂r

)
+ v

∂v

∂z
(3.60)

At this stage, expanding the derivatives and factoring the angular momentum gives

∂H

∂z
=

1

ρ2r2
∂ψ

∂z

(
∂2ψ

∂z2
− 1

ρ

∂ψ

∂z

∂ρ

∂z
+
∂2ψ

∂r2
− 1

ρ

∂ψ

∂r

∂ρ

∂r
− 1

r

∂ψ

∂r

)
+

Γ

r2
∂Γ

∂z
(3.61)
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Further application of the chain rule to the H and Γ terms generates

∂H

∂ψ

∂ψ

∂z
=

1

ρ2r2
∂ψ

∂z

(
∂2ψ

∂z2
− 1

ρ

∂ψ

∂z

∂ρ

∂z
+
∂2ψ

∂r2
− 1

ρ

∂ψ

∂r

∂ρ

∂r
− 1

r

∂ψ

∂r

)
+

Γ

r2
∂Γ

∂ψ

∂ψ

∂z
(3.62)

which collapses into

r2
∂H

∂ψ
− Γ

∂Γ

∂ψ
=

1

ρ2

(
∂2ψ

∂z2
− 1

ρ

∂ψ

∂z

∂ρ

∂z
+
∂2ψ

∂r2
− 1

ρ

∂ψ

∂r

∂ρ

∂r
− 1

r

∂ψ

∂r

)
(3.63)

Taking advantage of vector notation and introducing the D2 operator defined in (3.31),

one arrives at the compact form,

D2ψ + ρ2
(

Γ
∂Γ

∂ψ
− r2∂H

∂ψ

)
=

1

ρ
∇ρ · ∇ψ (3.64)

It may be instructive to note that only B, H, and their derivatives with respect to

ψ appear in (3.64). Therefore, given the general dependence of these quantities on

the stream function, some freedom exists in the manner by which suitable forms of H

and B may be specified. It is this flexibility that sets the Bragg-Hawthorne technique

apart, particularly as a versatile and promising framework that can help to unravel

multiple solutions for the same geometry and physical model. More detail on this

point will be furnished in Section 4.2.

3.4.2 Compressible Energy Relation

The compressible Bragg-Hawthorne relation requires a density expression for closure.

The stagnation enthalpy definition, (3.39), is a likely candidate. Rewriting it to

include the stream function definitions from (3.27) yields

H − Γ2

r2
=

1

2ρ2r2

[(
∂ψ

∂z

)2

+

(
∂ψ

∂r

)2
]

+
1

M2 (γ − 1)

p

ρ
(3.65)
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But p = ργ, which eliminates the pressure term and provides an equation for the

density

H − Γ2

r2
=

1

2ρ2r2

[(
∂ψ

∂z

)2

+

(
∂ψ

∂r

)2
]

+
1

M2 (γ − 1)
ργ−1 (3.66)

Equation (3.66) and (3.64) are the basis for the solutions in the following chapters.

3.5 Constant Shear Stress Model

The constant shear stress model provides a piecewise swirl velocity solution that

may be used to model confined vortex motions. The basis for the model is that a

free vortex of the 1/r type develops away from the core of the vortex; in contrast,

equilibrium is maintained near the core between the shear and pressure terms. This

balance leads to a model that remains valid for both laminar and turbulent conditions.

It is important to note that this is not a turbulent model as there are no unsteady

effects included, but rather a mean velocity model that can be used as a base flow for

turbulent regimes.

The justification for this model can be seen mathematically from the conservation

of momentum, namely

(U · ∇)U = −∇p+∇ · τ (3.67)

At the centerline, the azimuthal velocity goes to zero, which leaves the pressure and

shear stress terms remaining to balance each other. The flow under consideration for

this dissertation has a zero tangential pressure gradient, therefore the shear stress

in the tangential direction may be assumed to be constant. The equation for the

dominant shear stress can be written as:

τrθ = ε

[
1

r

∂u

∂θ
+ r

∂

∂r

(v
r

)]
(3.68)
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where ε is the viscous parameter 1/Re. Since the flow is axisymmetric, the θ derivative

is eliminated and the resulting equation becomes

ε

(
∂v

∂r
− v

r

)
= C1 (3.69)

The traditional forced vortex model can be recovered by setting the constant equal to

zero, but the model developed here will retain the general constant.
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Chapter 4

The Rayleigh-Janzen Perturbation

Expansion

In seeking analytical approximations to the two coupled density-stream function

relations, the Rayleigh-Janzen expansion may be used to linearize the ensuing system

of equations. A similar technique is employed to model the compressible Taylor flow

in porous channels driven by wall-normal injection (Maicke and Majdalani, 2008b).

As done before, the principal variables of interest may be expanded in terms of the

Mach number squared using:

u = u0 +M2
0u1 +O(M4

0 ) ψ = ψ0 +M2
0ψ1 +O(M4

0 )

v = v0 +M2
0 v1 +O(M4

0 ) B = B0 +M2
0B1 +O(M4

0 )

w = w0 +M2
0w1 +O(M4

0 ) H = H0 +M2
0H1 +O(M4

0 ) (4.1)

Ωθ = Ω0 +M2
0Ω1 +O(M4

0 ) ρ = 1 +M2
0ρ1 +M4

0ρ2 +O(M6
0 )

p = 1 +M2
0p1 +M4

0p2 +O(M6
0 ) T = 1 +M2

0T1 +M4
0T2 +O(M6

0 )

These expanded variables may be substituted back into the stream function and

density expressions to produce a set of relations that may be solved sequentially.
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As both the Bragg-Hawthorne and the vorticity-stream function approaches rely

on the stream function substitution, it is beneficial to expand the velocity-stream

function definition. Expanding (3.27) produces

(u0 +M2
0u1) = − 1

(1 +M2
0ρ1 +M4

0ρ2)r

∂(ψ0 +M2
0ψ1)

∂z
(4.2)

(w0 +M2
0w1) =

1

(1 +M2
0ρ1 +M4

0ρ2)r

∂(ψ0 +M2
0ψ1)

∂r
(4.3)

After collecting terms of O(1) and O(M2
0 ) and simplifying, the radial velocity may be

written as

O(1) : u0 = −1

r

∂ψ0

∂z
(4.4)

O(M2
0 ) : u1 =

ρ1
r

∂ψ0

∂z
− 1

r

∂ψ1

∂z
(4.5)

Likewise, the axial velocity may be expressed as

O(1) : w0 =
1

r

∂ψ0

∂r
(4.6)

O(M2
0 ) : w1 =

1

r

∂ψ1

∂r
− ρ1

r

∂ψ0

∂r
(4.7)

With these expanded velocity definitions, it is possible to rewrite the boundary

conditions to accommodate the system of equations at each order. To be consistent

with perturbation theory, the boundary conditions at the leading order must provide a

complete solution to the system. The boundary conditions at subsequent orders revert

to null values, so that they do not unduly influence the boundaries. For example, the

impervious headwall condition may be systematically perturbed to generate

O(1) : w0(r, 0) =
1

r

∂ψ0

∂r
= 0 (4.8)

O(M2
0 ) : w1(r, 0) =

1

r

∂ψ1

∂r
− ρ1

r

∂ψ0

∂r
= 0 (4.9)
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Likewise, the radial centerline condition correlates to

O(1) : u0(0, z) = −1

r

ψ0

∂z
= 0 (4.10)

O(M2
0 ) : u1(0, z) =

ρ1
r

∂ψ0

∂z
− 1

r

∂ψ1

∂z
= 0 (4.11)

When separated, the impervious sidewall condition yields

O(1) : u0(1, z) = −1

r

ψ0

∂z
= 0 (4.12)

O(M2
0 ) : u1(1, z) =

ρ1
r

∂ψ0

∂z
− 1

r

∂ψ1

∂z
= 0 (4.13)

Finally, the mass conservation condition in segregated form leads to

Q̇i = 2π

∫ β

0

∂ψ0

∂r
(r, L)dr or ψ0(β, L)− ψ0(0, L) = Q̇i (4.14)

0 = 2π

∫ β

0

∂ψ1

∂r
(r, L)dr or ψ1(β, L)− ψ1(0, L) = 0 (4.15)

4.1 Expanded Bragg-Hawthorne Equations

A Rayleigh-Janzen series expansion of the compressible Bragg-Hawthorne equation

renders

(1 +M2
0ρ1 +M4

0ρ2)D
2(ψ0 +M2

0ψ1 +M4
0ψ2) + (1 +M2

0ρ1 +M4
0ρ2)

3

×
[
(B0 +M2

0B1 +M4
0B2)

d

dψ
(B0 +M2

0B1 +M4
0B2)

−r2 d

dψ
(H0 +M2

0H1 +M4
0H2)

]
= ∇(1 +M2

0ρ1 +M4
0ρ2) · ∇(ψ0 +M2

0ψ1 +M4
0ψ2) (4.16)
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Collecting leading and first-order quantities in M2
0 enables us to identify:

O(1) : D2ψ0 +B0
dB0

dψ
− r2dH0

dψ
= 0 (4.17)

O(M2
0 ) : D2ψ1 +B1

dB1

dψ
− r2dH1

dψ
=
∂ρ1
∂z

∂ψ0

∂z
+
∂ρ1
∂r

∂ψ0

∂r

− ρ1
[
D2ψ0 + 3

(
B0

dB0

dψ
− r2dH0

dψ

)]
(4.18)

Consistent with conventional perturbation theory, the leading order reduces to the

traditional incompressible Bragg-Hawthorne equation. The first-order correction,

however, contains the O(M2
0 ) compressible contribution. At first order, its left-hand

side mirrors the leading-order operator while the terms on the right-hand side give

rise to a non-homogeneous partial differential equation (PDE).

The same procedure may be straightforwardly applied to the stagnation enthalpy

in (3.66). We find

(1 +M2
0ρ1 +M4

0ρ2)
2

[
(H0 +M2

0H1 +M4
0H2)−

(B0 +M2
0B1 +M4

0B2)
2

2r2

]
=

1

2r2

{[
∂(ψ0 +M2

0ψ1 +M4
0ψ2)

∂z

]2
+

[
∂(ψ0 +M2

0ψ1 +M4
0ψ2)

∂r

]2}
+

1

M2
0 (γ − 1)

(1 +M2
0ρ1 +M4

0ρ2)
γ+1 (4.19)

As usual, by segregating terms of the same order, one recovers

O(1) : H0 −
B2

0

2r2
=

1

2r2

[(
∂ψ0

∂r

)2

+

(
∂ψ0

∂z

)2
]

+
γ + 1

γ − 1
ρ1 (4.20)

O(M2
0 ) : 2ρ1

(
H0 −

B0

2r2

)
+H1 −

B0B1

2r2
=

1

2r2

[
∂ψ0

∂r

∂ψ1

∂r
+
∂ψ0

∂z

∂ψ1

∂z

]
+
γ + 1

γ − 1

(
ρ2 + γρ21

)
(4.21)

When (4.17) is used to solve for ψ0, substitution into (4.20) directly unravels the

density correction, ρ1. With the density in hand, the right-hand side of (4.18) is
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fully determined and the resulting non-homogeneous PDE may be solved for the first

compressible stream function correction. In principle, this sequence may be repeated

until a satisfactory truncation error is reached. In practice, the procedure will enable us

to extract closed-form expressions for the leading and first-order corrections. However,

it should be remarked that the solution complexity grows rapidly to the extent that a

compressible approximation at the second order or beyond may require considerable

effort. Nonetheless, in view of the typical size of M2
0 , the first-order compressible

correction will be sufficiently accurate to convey the bulk compressibility effects. This

is especially true for swirl-dominated flows such as those arising in the context of a

bidirectional vortex engine in which the reference Mach number remains smaller than

unity.

4.2 Selecting B and H

Modeling the bidirectional vortex, or any other motion for that matter, begins with

the selection of suitable forms for B and H. To facilitate analytical closure, several

test functions may be considered, specifically

B
dB

dψ
= constant B =

√
B0ψ +B1 (4.22)

B
dB

dψ
= ψ B =

√
B0ψ2 +B1 (4.23)

dH

dψ
= constant H = H0ψ +H1 (4.24)

dH

dψ
= ψ H = H0ψ

2 +H1 (4.25)

Although the number of candidate functions may be limitless, the selections above

lead to linear relations that increase the likelihood of producing explicit analytical

formulations. Higher-order polynomial relations may require a numerical treatment

of the density-stream function equations. For example, the (original) incompressible

model of the bidirectional vortex by Vyas and Majdalani (2006) may be recovered

48



by setting B = 1 and dH/dψ = −C2
nψ, where Cn is a constant. To make further

headway in illustrating this procedure, one may attempt to follow Bloor and Ingham

(1987) or Majdalani (2009) by specifying B and H such that

dH

dψ
= 0; B =

√
B2

0ψ
2 +B2

1 ;
dB

dψ
=

2B2
0ψ

2
√
B2

0ψ
2 +B2

1

(4.26)

Interestingly, it turns out that, in the compressible case, these declarations prove

insufficient to reproduce a congruent first-order system. The source of this disparity

may be traced back to the right-hand side of (4.18) where third-order multiples of

the stream function emerge. As per (4.20), the density correction contains ψ2
0 terms,

and these are multiplied by another ψ0 during final book-keeping. To compensate

for these additional powers of ψ during the application of the boundary conditions, a

modification of (4.26) is warranted. This may be accomplished by taking

dH

dψ
= 0; B =

√
B2

0ψ
2 +B2

1 +M2
0

(
B2

2ψ
2 + 1

2
B2

3ψ
4
)
;

dB

dψ
=

B2
0ψ +M2

0 (B2
2ψ +B2

3ψ
3)√

B2
0ψ

2 +B2
1 +M2

0

(
B2

2ψ
2 + 1

2
B2

3ψ
4
) (4.27)

It may be instructive to remark that the reference Mach number, M0, remains invariant

under steady-state flow conditions. At the outset, its inclusion in the fundamental

definition ofB does not violate in any way the stream function constraint. Furthermore,

realizing that B and dB/dψ appear only as a product, their combined contribution

may be expanded as:

B
dB

dψ
= B2

0ψ +M2
0

(
B2

2ψ +B2
3ψ

3
)

(4.28)

From an asymptotic standpoint, (4.28) does not entail a loss of generality. It is

obtained by expanding the angular momentum and its derivative to the appropriate

truncation order before substituting the outcome into the stream function relation.
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The next step is to insert the perturbed form of ψ and write:

B
dB

dψ
= B2

0

(
ψ0 +M2

0ψ1 +M4
0ψ

2
)

+M2
0

[
B2

2

(
ψ0 +M2

0ψ1 +M4
0ψ

2
)

+B2
3

(
ψ0 +M2

0ψ1 +M4
0ψ

2
)3]

(4.29)

4.3 Bragg-Hawthorne Framework

By gathering O(M2
0 ) in B dB/dψ, one retrieves

B
dB

dψ
= B2

0ψ0 +M2
0

(
B2

0ψ1 +B2
2ψ0 +B2

3ψ
3
0

)
+O(M4

0 ) (4.30)

Inserting these contributions back into (4.17) and (4.18) gives rise to a congruent

set of linearized Bragg-Hawthorne equations at the first two successive perturbation

orders, namely,

O(1) : D2ψ0 +B2
0ψ0 = 0 (4.31)

O(M2
0 ) : D2ψ1 +B0ψ1 =

∂ρ1
∂z

∂ψ0

∂z

+
∂ρ1
∂r

∂ψ0

∂r
− ρ1

(
D2ψ0 + 3B2

0ψ0

)
−B2

2ψ0 −B2
3ψ

3
0 (4.32)

Equation (4.32) can be further simplified by realizing that the left-hand side of (4.31)

partially appears on its right-hand side. This permits reducing (4.32) into

D2ψ1 +B0ψ1 =
∂ρ1
∂z

∂ψ0

∂z
+
∂ρ1
∂r

∂ψ0

∂r
− 2ρ1B

2
0ψ0 −B2

2ψ0 −B2
3ψ

3
0 (4.33)
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accuracy
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equations

B(ψ), H(ψ)

ψ0

ψ1

ρ1

YesNo

Figure 4.1: Flowchart for the density-stream function formulation needed to obtain
a compressible Bragg-Hawthorne solution.

Similar substitutions may be implemented in the density relation to unravel

O(1) :
γ + 1

γ − 1
ρ1 = − 1

2r2

[(
∂ψ0

∂r

)2

+

(
∂ψ0

∂z

)2

+B2
0ψ

2
0

]
(4.34)

O(M2
0 ) :

γ + 1

γ − 1

(
ρ2 + γρ21

)
= −B

2
0ψ0

r2
(ψ0ρ1 + ψ1)

− 1

2r2

[
∂ψ0

∂r

∂ψ1

∂r
+
∂ψ0

∂z

∂ψ1

∂z
+B2

2ψ
2
0 +B2

3ψ
4
0

]
(4.35)

In seeking a compressible mean flow approximation, the procedure consists of solving

(4.31), (4.34), (4.32), and (4.35) in this staggered sequence. A flowchart describing

this process is given as Figure 4.1. In Chapter 5, the bidirectional vortex flow field

will be used as a test case.
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4.4 Expanded VS Equations

The vorticity-stream function model may be expanded in a similar manner to that

presented in Section 4.1. Beginning with the vorticity transport equation, one has

∇×
[
(U0 +M2

0U1)× (Ω0 +M2
0Ω1)

]
=

1

γM2
0 (1 +M2

0ρ1 +M4
0ρ2)

2
∇(1 +M2

0ρ1 +M4
0ρ2) · ∇(1 +M2

0p1 +M4
0p2) (4.36)

After collecting like orders of M0, (4.36) may be written as the following pair of

equations

O(1) : ∇× (U0 ×Ω0) = 0 (4.37)

O(M2
0 ) : ∇× (U0 ×Ω1) +∇× (U1 ×Ω0) = −∇ρ1 ×∇p1

γ
(4.38)

Then the stream function may be expanded as

D2(ψ0 +M2
0ψ1) + r(1 +M2

0ρ1 +M4
0ρ2)(Ω0 +M2

0Ω1) =

1

1 +M2
0ρ1 +M4

0ρ2
∇(1 +M2

0ρ1 +M4
0ρ2) · ∇(ψ0 +M2

0ψ1) (4.39)

As before, (4.39) may be segregated into

O(1) : D2ψ0 + rΩ0 = 0 (4.40)

O(M2
0 ) : D2ψ1 + rΩ1 = ∇ρ1 · ∇ψ0 − rΩ0ρ1 (4.41)

Unlike the Bragg-Hawthorne framework, the vorticity-stream function approach

requires expansion of the conservation of momentum, (3.17), which may be

manipulated to yield

(U0 +M2
0U1) · ∇(U0 +M2

0U1) = − ∇(1 +M2
0p1 +M4

0p2)

γM2(1 +M2
0ρ1 +M4

0ρ2)
(4.42)
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When separating the leading and first-order equations, it is also beneficial to expand

the general vector relations into their scalar components. The segregated radial

momentum equation becomes

O(M2
0 ) : −1

γ

∂p1
∂r

= u0
∂u0
∂r

+ w0
∂u0
∂z
− v20

r
(4.43)

O(M4
0 ) : −1

γ

∂p2
∂r

= ρ1

(
u0
∂u0
∂r

+ w0
∂u0
∂z
− v20

r

)
+
∂(u0u1)

∂r
+ w0

∂u1
∂z

+ w1
∂u0
∂z

(4.44)

The corresponding axial momentum relation may be retrieved as

O(M2
0 ) : −1

γ

∂p1
∂z

= w0
∂w0

∂z
+ u0

∂w0

∂r
(4.45)

O(M4
0 ) : −1

γ

∂p2
∂z

= ρ1

(
w0
∂w0

∂z
+ u0

∂w0

∂r

)
+
∂(w0w1)

∂z
+ u0

∂w1

∂r
+ u1

∂w0

∂r
(4.46)

In order to assess the compressible correction in (4.41) the density must be determined.

Because the framework employs an isentropic assumption, the thermodynamic

variables may be connected through

O(M2
0 ) : ρ1 =

p1
γ

(4.47)

O(M4
0 ) : ρ2 =

p2
γ

+
1− γ
2γ2

p21 (4.48)

and

O(M2
0 ) : T1 =

γ − 1

γ
p1 (4.49)

O(M4
0 ) : T2 =

γ − 1

γ
p2 +

γ − 1

2γ2
p21 (4.50)

The solution algorithm for this system varies from the one outlined in Figure

4.1. For the vorticity-stream function approach, the vorticity transport equation is

first solved to connect the vorticity to the stream function. This definition is then

substituted into the stream function to provide a solvable relation. After the stream
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Figure 4.2: Flowchart for the methodology needed to obtain a compressible vorticity-
stream function solution.

function is known, the axial and radial momentum relations are solved to determine

the pressure distribution at that order. The isentropic equations are then used to

deduce the remaining thermodynamic variables. If the solution requires additional

accuracy, then the process is repeated at the next highest order. The method is

depicted graphically in Figure 4.2.
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Chapter 5

Perturbation Solution

In this chapter, the perturbation solutions for the Bragg-Hawthorne and vorticity-

stream function frameworks are presented. The solutions are solved via the

methodology introduced in Figures 4.1 and 4.2, respectively. In both cases, the

leading-order is known as they reproduce the incompressible studies. For the

sake of completeness the leading-order for each model is presented in its entirety.

Compressibility effects are introduced at the first order, and as such it is sometimes

referred to as the compressible correction. For values relevant to propulsive

applications, a single correction will invariably capture the bulk of the high speed

effects; as such, higher order corrections are rarely needed.

5.1 Perturbed Bragg-Hawthorne Solution

5.1.1 Leading-Order CBH General Solution

The leading-order stream function must be consistent with the incompressible solution

for the same problem. In this spirit, (4.31) may be treated with separation of variables

(Majdalani, 2009). Assuming ψ0 = f(r)g(z), (4.31) becomes

−g
′′

g
=

1

f

(
f ′′ − 1

r
f ′ +B2

0f

)
= ν2 (5.1)
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where ν2 can be positive, negative or zero. Depending on the value chosen for ν2,

three possibilities may be conceived, namely,

ψ0 =



r (C1z + C2) [C3J1(B0r) + C4Y1(B0r)] ; ν2 = 0

r [C1 sin(νz) + C2 cos(νz)]

×
[
C3J1(r

√
B2

0 − ν2) + C4Y1(r
√
B2

0 − ν2)
]

; B2
0 > ν2

r [C1 sinh(νz) + C2 cosh(νz)]

×
[
C3J1(r

√
B2

0 + ν2) + C4Y1(r
√
B2

0 + ν2)
]

; B2
0 < ν2

(5.2)

In reality, the last two variations prove to be equivalent as one can be reproduced from

the other by simply replacing ν with ±iν. When accounting for the imaginary part,

the hyperbolic functions reduce to their regular trigonometric counterparts and the

Bessel function arguments become identical as the imaginary ν2 switches its sign. For

brevity, the axially linear case is provided as a vehicle for developing a compressible

approximation.

5.1.2 Leading-Order CBH Boundary Conditions

To satisfy the centerline boundary conditions for all values of z, one sets C4 = 0

everywhere. Furthermore, applying (4.8) leads to

∂ψ0(r, 0)

∂r
= C2B0C3J0(B0r) = 0 (5.3)

Since equating either C3 or B0 to zero leads to a trivial outcome, one must take

C2 = 0. Substituting the resultant stream function back into the sidewall boundary

condition produces

∂ψ0(1, z)

∂z
= C3J1(B0)×

C1; ν2 = 0

C1ν cos(νz); ν2 6= 0

(5.4)
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For (5.4) to be true ∀z, B0 must be a root of the Bessel function of the first kind, or

B0 = λn;n = 1, 2, . . . (5.5)

Increments in n will effectively trigger an increasing number of axial reversals in the

flow, specifically n reversals. In practice, only an odd number of reversals will be

applicable and so, to recover the standard bidirectional vortex model (Majdalani,

2009), the analysis is restricted to the n = 1 case.

At this juncture, the only remaining term is the lumped constant C1C3 that must

be determined by matching the inflow and outflow mass fluxes. At the leading order,

this may be written as

2π

∫ β

0

u · n r dr = 2π

∫ β

0

w(r, L) r dr = Qi (5.6)

From the mass balance in (5.6) one deduces

C1C3 ≡ κ =
Qi

2πβLJ1(λ0β)
(5.7)

The parameter κ is essentially an off-swirl parameter, sometimes called the inflow

parameter. Large values of κ imply a weakly swirling flow. For the bidirectional

vortex application, values of κ are in the range of 0.1 to 0.001. This leaves the final

stream function form as

ψ0 = κrJ1(λ0r)×

z; ν2 = 0

sin(νz); ν2 6= 0

(5.8)

As to be expected from a leading-order asymptotic approximation, (5.8) reproduces

the incompressible Beltramian solutions obtained by Majdalani (2009) in a right-

cylindrical cyclone. With the stream function being fully determined, the density

may be retrieved from (4.34) following a straightforward substitution. After some
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simplifications, the density may be extracted as:

ρ1 = −A
2
0(γ − 1)

2(γ + 1)

{
J2
1 (rλ0) + z2λ20

[
J2
0 (rλ0) + J2

1 (rλ0)
]}

(5.9)

Equation (5.9) is quite illuminating. In fact, it confirms the need for higher powers

of ψ within the fundamental definition of B in (4.27). Clearly, Bessel functions

that are elevated to the second power appear thrice in the density. These, in turn,

multiply a single Bessel function in (4.32), the first-order stream function relation.

In seeking appropriate candidate functions for the particular solution, terms that

may be expressed in multiples of three Bessel functions must be attempted. This

step is prompted by the requirement to write B in terms of ψ at the basis of the

Bragg-Hawthorne procedure.

5.1.3 First-Order CBH General Solution

The first-order correction follows a similar roadmap, albeit with increased complexity.

Instead of a homogeneous equation, a particular solution must be determined in such

a way to accommodate the terms appearing on the right-hand side of (4.32). For

the spatially linear case, suitable substitutions of ψ0 and ρ1 lead to the first-order,

compressible Bragg-Hawthorne equation, namely,

D2ψ1 +B2
0ψ1 =

γ − 1

γ + 1
A3

0λ0zJ1(rλ0)
(
J0(rλ0)J1(rλ0)− 2λ0rJ

2
0 (rλ0)

+z2λ20
{
J0(rλ0)J1(rλ0) + rλ0

[
J2
0 (rλ0) + J2

1 (rλ0)
]})

−B2A0rzJ1(rλ0)−B3A
3
0r

3z3J3
1 (rλ0) (5.10)

Rather than a standard separation of variables approach, an ansatz is employed that

is guided by the non-homogeneous terms. Recognizing that both z and z3 appear in

(5.10), ψ1 becomes

ψ1 = zRa + z3Rb (5.11)
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By virtue of (5.11), the single PDE gives rise to two ODEs that may be written as

z3 : R′′b −
1

r
R′b + λ20Rb =

γ − 1

γ + 1
A3

0λ
3
0J1(rλ0)

{
J0(rλ0)J1(rλ0) + rλ0

[
J2
0 (rλ0) + J2

1 (rλ0)
]}

−B3A
3
0r

3J3
1 (rλ0) (5.12)

and

z : R′′a −
1

r
R′a + λ20Ra + 6Rb =

γ − 1

γ + 1
A3

0λ0J1(rλ0) [J0(rλ0)J1(rλ0)− 2λ0rJ1(rλ0)]−B2A0rJ1(rλ0) (5.13)

Our next step is to first solve (5.12), being a sole function of Rb. The ensuing solution

may be then substituted back into (5.13) to produce Ra, and with it, a complete

compressible correction.

The solution to (5.12) is exacerbated by its dependence on J3
0 and J3

1 terms.

While Bessel function integrals remain straightforward to evaluate in closed form,

integrals for multiplicative Bessel functions can be elusive. In lieu of a completely

analytical closure, the correction becomes limited to a semi-analytical expression

that requires the numerical evaluation of a handful of integrals. To overcome this

difficulty, the integrals themselves will be isolated and specified as functions that may

be differentiated or integrated at will, so that the boundary conditions can still be

determined analytically. In essence, these new integrals may be viewed as special

functions that enable us to retain the analytical character of the formulation. After
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some effort, the z3 multiplier is found to be

Rb = rJ1 (rλ0)

[
π

2
A3

0

(
γ − 1

γ + 1
λ30

∫ r

1

J1 (λ0r1)Y1 (λ0r1)

×
{
−λ0r1

[
J2
0 (λ0r1) + J2

1 (λ0r1)
]
− J0 (λ0r1) J1 (λ0r1)

}
dr1

+B3

∫ r

1

r31J
3
1 (λ0r1)Y1 (λ0r1) dr1

)
+ A1a

]
+ rY1 (rλ0)

[
π

2
A3

0

(
γ − 1

γ + 1
λ30

∫ r

1

J2
1 (λ0r2)

×
{
J0 (λ0r2) J1 (λ0r2) + λ0r2

[
J2
0 (λ0r2) + J2

1 (λ0r2)
]}

dr2

+B3

∫ r

1

−r32J4
1 (λ0r2) dr2

)
+ A1b

]
(5.14)

Here A1a and A1b are integration constants while r1 and r2 represent variable

substitutions in the radial integrals. In treating the integrals as functions, (5.14)

may be re-written as

Rb = rJ1 (rλ0)

[
π

2
A3

0

(
γ − 1

γ + 1
λ30I1 +B3I2

)
+ A1a

]
+ rY1 (rλ0)

[
π

2
A3

0

(
γ − 1

γ + 1
λ30I3 +B3I4

)
+ A1b

]
(5.15)

where In represents the nth integral in the first-order relation. For the reader’s

convenience, these are defined in Appendix A.
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The z multiplier may be obtained along similar lines. Inserting (5.15) into (5.13)

yields

Ra = rJ1 (rλ0)

[
π

2
A0

(
γ − 1

γ + 1
A2

0λ0

∫ r

1

J1 (λ0r1)Y1 (λ0r1)

×
{

2λ0r1J
2
0 (λ0r1)− J0 (λ0r1) J1 (λ0r1)

}
dr1

+B2

∫ r

1

r1J1 (λ0r1)Y1 (λ0r1) dr1

)
+ 3π

∫ r

1

Y1 (λ0r1)Rb(r1)dr1 + A1c

]
+ rY1 (rλ0)

[
π

2
A0

(
γ − 1

γ + 1
A2

0λ0

∫ r

1

J2
1 (λ0r2)

×
{
J0 (λ0r2) J1 (λ0r2)− 2λ0r2J

2
0 (λ0r2)

}
dr2 +B2

∫ r

1

−r2J2
1 (λ0r2) dr2

)
−3π

∫ r

1

J1 (λ0r2)Rb(r2)dr2 + A1d

]
(5.16)

Here too, the same notation for the special integrals may be used to turn (5.16) into

Ra = rJ1 (rλ0)

[
π

2
A0

(
γ − 1

γ + 1
A2

0λ0I5 +B2I6
)

+ 3πI7 + A1c

]
+ rY1 (rλ0)

[
π

2
A0

(
γ − 1

γ + 1
A2

0λ0I8 +B2I9
)
− 3πI10 + A1d

]
(5.17)

By substituting (5.15) and (5.17) back into (5.11), one arrives at the general

compressible correction. What remains to be established is a coherent set of boundary

conditions and this aspect will be discussed next.

5.1.4 First-Order CBH Boundary Conditions

Compared to the leading order, the boundary conditions at the first order change

slightly. In fact, ensuring that the compressible correction does not unduly influence

the solution warrants homogeneous constraints. Because the boundary conditions are

written in terms of the velocity, it is useful to revisit the expanded velocity-stream
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function relationship. At the first order, the velocities can be written as

u1 =
ρ1
r

∂ψ0

∂z
− 1

r

∂ψ1

∂z
(5.18)

w1 =
1

r

∂ψ1

∂r
− ρ1

r

∂ψ0

∂r
(5.19)

To avoid lengthy stream function expressions, the general expansion of (5.18) and

(5.19) are omitted. Instead, each boundary condition is examined individually. For

the centerline condition, one has

u1(0, z) = −3z2Y1 (0)

{
π

2
κ3
[
γ − 1

γ + 1
λ30I3(0) +B3I4(0)

]
+ A1b

}
+ Y1 (0)

[
π

2

γ − 1

γ + 1
κ3λ0I8(0) +

π

2
κB2I9(0)− 3πI10(0) + A1d

]
= 0 (5.20)

In actuality, (5.20) gives rise to two distinct equalities that are needed to permit the

radial velocity to vanish for all values of z. To this end, coefficients multiplying z2 and

those of O(1) must vanish independently. For the z2 terms, the following is recovered

π

2
A3

0

[
γ − 1

γ + 1
λ30I3(0) +B3I4(0)

]
+ A1b = 0 (5.21)

and, for the z0 coefficient,

π

2

γ − 1

γ + 1
A3

0λ0I8(0) +
π

2
A0B2I9(0)− 3πI10(0) + A1d = 0 (5.22)

The sidewall boundary condition also separates into a pair of constraints. The

resulting relation for the z2 expression becomes

π

2
A3

0

[
γ − 1

γ + 1
λ30I3(1) +B3I4(1)

]
+ A1b = 0 (5.23)
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and, similarly, at O(1) one retrieves

π

2

γ − 1

γ + 1
A3

0λ0I8(1) +
π

2
A0B2I9(1)− 3πI10(1) + A1d = 0 (5.24)

Realizing that the integrals I8(1), I9(0), I3(1), and I4(1) vanish identically, A1b and

A1c may be fully determined from

A1b = 0; A1d = 3πI10(0)− π

2

γ − 1

γ + 1
κ3λ0I8(0) (5.25)

With A1b and A1d in hand, the B2 and B3 constants may be deduced from (5.21) and

(5.22). The resulting constants return

B2 =
2 [3πI10(1)− A1d]

πκI9(1)
(5.26)

B3 = −λ30
γ − 1

γ + 1

I3(0)

I4(0)
(5.27)

Finally, the expanded mass balance condition may be expressed as

2π

∫ β

0

[ρ1w0(r, L) + w1(r, L)] r dr = 0 (5.28)

The detailed form of the above expression is prohibitively long and, as such, of minimal

interest to the reader. However, the remaining integral may be easily handled using

symbolic programming. The evaluation of (5.28) completes the first-order analysis

from which all other flow parameters may be derived.

5.2 Perturbed VS Solution

5.2.1 Leading-Order VS Solution

As previously mentioned, the leading-order reproduces the incompressible solution of

Vyas and Majdalani (2006) and Majdalani and Chiaverini (2009). The leading-order
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vorticity transport equation, (4.37) can be coupled with the stream function definitions

in (3.27) to relate the vorticity to the stream function. The expanded equation may

be written as

−∂ψ0

∂z

∂

∂r

(
Ω0

r

)
+
∂ψ0

∂r

∂

∂z

(
Ω0

r

)
= 0 (5.29)

It may be readily verified that the above will be satisfied if the vorticity is written in

the form

Ω0 = rF [ψ0(r, z)] (5.30)

Here F is an arbitrary function of the stream function. While the potential candidates

using this arbitrary definition are infinite, in practice it is difficult to solve the resulting

formulations unless a linear behavior is implied. In that vein, the vorticity may be

taken as

Ω0 = C2rψ0 (5.31)

With (5.31) in hand, it is now possible to write (4.40) solely in terms of the stream

function. The resulting expression reduces to

D2ψ0 + C2r2ψ0 = 0 (5.32)

Equation (5.32) may be solved via multiplicative separation of variables. By setting,

ψ0 = f(r)g(z) one retrieves

−1

g

d2g

dz2
=

1

f

(
d2f

dr2
− 1

r

df

dr
+ C2r2f

)
= ±λ2 (5.33)

As obtained with the Bragg-Hawthorne outcome of Section 5.1.1, the separated

equation here produces three solutions corresponding to positive, negative and null

separation constants. Unlike the previous framework, only the zero separation constant

produces a physically meaningful model. At the leading order, one reaps,

ψ0 = (C1z + C2)

[
C3 sin

(
Cr2

2

)
+ C4 cos

(
Cr2

2

)]
(5.34)
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5.2.2 Leading-Order VS Boundary Conditions

Through the application of the constraints in (4.8), (4.10), (4.12), and (4.14), the

general constants may be determined. First, the impervious headwall condition in

(4.8) gives

w0(r, 0) = C2C

[
C3 cos

(
Cr2

2

)
− C4 sin

(
Cr2

2

)]
= 0 (5.35)

This forces C2 = 0 (setting C = 0 is not an option because it removes the radial

dependence from the problem, which is not physical). With the first constant

determined, the radial centerline condition may be applied viz.

u0(0, z) = −C1 [C3 sin(0) + C4 cos(0)] = 0 (5.36)

Since C1 = 0 produces a null solution, the only remaining choice is for C4 = 0. The

impervious sidewall condition leaves

u0(1, z) = −C1C3 sin(
C

2
) = 0 (5.37)

As C1 or C3 cannot simultaneously vanish without reducing the expression to a trivial

solution, the expression for the separation constant, C/2, must contain the zeros of

the sine function. The full expression for the separation constant may be expressed as

C = 2π (5.38)

The present description is only concerned with the first zero, n = 1, which contains

one flow field reversal. In reality, subsequent zeros will increase the number of axial

reversals observed in the model. For the bidirectional vortex engine, only odd zeros

make practical sense as the flow enters and exits near the base. For even zeros, the

flow enters at the base and exits at the head end.
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The remaining constants, C1 and C3 may be lumped together and then determined

from the final boundary condition, the conservation condition on the axial outflow:

2πC1C3L sin(πβ2) = Qi (5.39)

or

κ =
Qi

2πL sin(πβ2)
(5.40)

The end result is a stream function representation of the bidirectional vortex, namely,

ψ0 = κz sin(πr2) (5.41)

In writing the subsequent expressions, the lumped constant, κ, is retained for the

sake of brevity. Using the stream function definitions, the component velocities in the

radial and axial directions are

u0 = −κ
r

sin(πr2) (5.42)

w0 = 2κz cos(πr2) (5.43)

5.2.3 Centerline Swirl Correction

Though the vorticity-stream function model is inviscid, the compressible corrections

require a non-singular density near the centerline. To overcome this deficiency, the

original work by Vyas and Majdalani (2006) must be augmented by a correction to the

swirl velocity. The details of this procedure may be found in Majdalani and Chiaverini

(2009), but the relevant correction is reproduced here for the sake of completeness.

When considering the singular behavior of the swirl velocity at the centerline, it is

clear that a limiting process must exist to prevent an infinitely large value at r = 0.

The most physically meaningful phenomenon is to include viscous effects in the core

region. To that end, the retention of the viscous terms in the tangential momentum
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equation produces

u
∂v

∂r
+
uv

r
=

1

Re

∂

∂r

[
1

r

∂(rv)

∂r

]
(5.44)

This expression assumes an axial independence of the swirl velocity, an observation

that has been verified experimentally. For this investigation, values of Re are typically

on the order of 105, thus the viscous tangential momentum equation can be perturbed

in 1/Re. To simplify (5.44), a change in variable of the form ξ = rv is introduced,

simplifying (5.44) to

ε
d

dr

(
1

r

dξ

dr

)
− u

r

dξ

dr
= 0 (5.45)

A further simplification is possible by introducing η = πr2 and substituting u from

the leading-order stream function such that

ε

κ

d2ξ

dη
+

sin η

2η

dξ

dη
= 0 (5.46)

In keeping with traditional boundary layer theory, a slowly varying scale is introduced

as

s ≡ η

δ(ε)
(5.47)

which transforms (5.46) to

ε

κδ2
d2ξ

ds
+

sin(δs)

2δ2s

dξ

ds
= 0 (5.48)

As the boundary layer correction is focused on the near core region, the small angle

expansion for the sine term may be employed to further reduce (5.48). Simultaneously,

a balance between the convective and diffusive terms is necessary near the core. Such

a balance is found when δ ∼ ε/κ, or,

d2ξi

ds2
+

1

2

dξi

ds
= 0 (5.49)
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where the superscript i denotes the inner solution. At the centerline, the swirl velocity

must go to zero and the inner scale must smoothly adapt to the outer, inviscid solution.

The resulting one-term approximation to (5.49) takes the form

ξi = C0 exp

(
−1

2
s

)
+ C1 (5.50)

From the swirl velocity centerline condition, one gets C1 = 0; the remaining constant

may be determined from Prandtl’s matching principle. After matching and returning

to the original laboratory coordinates, the composite solution may be written as

v0 '
1

r

[
1− exp(−1

4
V r2)

]
(5.51)

Here V is a dimensionless parameter called the vortex Reynolds number. The

parameter emerges naturally from the analysis of the core correction and may be

defined as

V ≡ 1

εσl
=
Re

σ

a

L
=
ρUAi
µL

=
ṁi

µL
(5.52)

Clearly, V behaves much like the traditional Reynolds number with some slight

adjustments for the nature of the confined vortex, through the incorporation of the

swirl velocity and aspect ratio. This parameter is responsible for the size and shape of

the core swirl velocity region. Larger values of V will result in larger swirl velocity

maxima, as well as moving the core region closer to the centerline of the chamber. In

Section 6.2, V forms the basis of the correlations of the piecewise swirl velocity model

with the preceding solution as well as with experiment.

5.2.4 Leading-Order VS Thermodynamics

Before advancing to the first order, the pressure and density must be determined from

the momentum and isentropic relations. To this end, the radial and axial momentum

equations may be integrated independently and then carefully combined to provide the

complete pressure, after removing overlapping parts. For the radial pressure gradient,

68



one gets

1

γ

∂p1
∂r

=
κ

r
sin(πr2)

[
2πκ cos(πr2)− 1

r2
sin(πr2)

]
+

[
1− exp(−1

4
V r2)

]2
r3

(5.53)

Similarly, the axial equation returns

−1

γ

∂p1
∂z

= 4κ2z (5.54)

The combined solution to (5.53) and (5.54) may be expressed as

p1 = −2(πκz)2γ

+
γ

4

{
2− 2r−2

[
1 + exp

(
−1

2
V r2

)
− 2 exp

(
1

4
V r2

)
+ κ sin2(πr2)

]
+V

[
Ei

(
−1

2
V

)
− Ei

(
−1

4
V

)
+ Ei

(
−1

4
V r2

)
− Ei

(
−1

2
V r2

)]}
(5.55)

The density and temperature follow from (5.55). The ensuing expressions are

identical in form, but vary only by a multiplicative constant in γ, namely 1/γ for ρ1

and 1− 1/γ for T1.

5.2.5 First-Order VS Vorticity Transport

In order to determine the compressible correction, the first-order vorticity transport

equation must be solved to determine the relationship between the vorticity and the

stream function. It is not enough to assume the same relationship as the leading order,

namely that Ω1 = 4π2rψ1, as this does not satisfy the vorticity transport equation.

Instead, (4.38) is examined to derive the full relation. The right-hand side may be

neglected, being the cross-product of co-linear vectors. Expanding the vector operators

in the θ-direction for (4.38) gives

∂

∂r
(u0Ω1 + u1Ω0) +

∂

∂z
(w0Ω1 + w1Ω0) = 0 (5.56)
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To relate ψ to Ω, the velocities may be eliminated in favor of the stream function,

namely,

∂

∂r

[
−1

r

∂ψ0

∂z
Ω1 +

(
ρ1
r

∂ψ0

∂z
− 1

r

∂ψ1

∂z

)
4π2rψ0

]
+

∂

∂z

[
1

r

∂ψ0

∂r
Ω1 +

(
1

r

∂ψ1

∂r
− ρ1

r

∂ψ0

∂r

)
4π2rψ0

]
= 0 (5.57)

In order to solve for Ω1, (5.57) may be expanded and simplified. One finds

∂ψ0

∂z

(
Ω1

r
− ∂Ω1

∂r

)
+
∂ψ0

∂r

∂Ω1

∂z
=

− 4π2r

[
ψ0

(
∂ρ1
∂r

∂ψ0

∂z
− ∂ρ1

∂z

∂ψ0

∂r

)
− ∂ψ1

∂z

∂ψ0

∂r
+
∂ψ0

∂z

∂ψ1

∂r

]
(5.58)

While Ω1 = 4π2rψ1 is not completely correct, it leads to appreciable simplifications.

One can then posit the following relation

Ω1 = 4π2rψ1 + Ω1c (5.59)

where Ωc is a corrective function that allows Ω1 to satisfy the first-order vorticity

transport equation. Substituting (5.59) back into (5.58) provides

∂ψ0

∂z

(
∂Ω1c

∂r
− Ω1c

r

)
− ∂ψ0

∂r

∂Ω1c

∂z
= 4π2rψ0

(
∂ρ1
∂r

∂ψ0

∂z
− ∂ρ1

∂z

∂ψ0

∂r

)
(5.60)

whence

Ω1c = rf(ψ0) +
π2zκ sin(πr2)

r

(
4 exp

(
−r

2V

4

)
− 2 exp

(
−r

2V

2

)
+r2V

[
Ei

(
−r

2V

4

)
− Ei

(
−r

2V

2

)]
− 2

{
1 + κ2

[
4π2r2z2 + sin2(πr2)

]})
(5.61)

where f(ψ0) is a yet to be determined function that will be used to satisfy the vorticity

equation.
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5.2.6 First-Order VS Stream Function Solution

Once Ω1 is fully determined, (4.41) may be solved. To facilitate a solution, the stream

function may be rewritten as

ψ1 = z3G(r) + zH(r) (5.62)

f(ψ0) = A1z sin(πr2) + A2z
3 sin3(πr2) (5.63)

These relationships are deduced from previous experience (Majdalani, 2007a; Maicke

and Majdalani, 2008b) and from the structure of the vorticity equation. Using (5.62),

the second order partial differential equation in (4.41) is broken down into two second

order ODEs. These are

G′′− G′

r
+ 4π2r2G =

3

4
A2r

2 sin
(
πr2
)
− 1

4
A2r

2 sin
(
3πr2

)
+ 16π4κ3r2 sin

(
πr2
)

(5.64)

and

H ′′ − H ′

r
+ 4π2r2H =

πκ3 cos (3πr2)

2r2
+ 2π2κ3 sin

(
πr2
)

+ 2π2κ3 sin
(
3πr2

)
− 4π2κ sin

(
πr2
)
− πκr−2 cos

(
πr2
) [

2 + 1
2
κ2 + 2e−

1
4
r2V

(
e−

1
4
r2V − 2

)]
+ 2π2r2κ sin

(
πr2
)
− π2r2κV sin

(
πr2
) [

Ei
(
−1

4
V
)
− Ei

(
−1

2
V
)

+2Ei
(
−1

2
r2V

)
− 2Ei

(
−1

4
r2V

)]
+ 4π2κe−

r2V
4 sin

(
πr2
)

(2− e−
r2V
4 )

+ 6G− A1r
2 sin

(
πr2
)

(5.65)

These two coupled ODEs are then solved in succession to determine the first-order

compressible correction to the stream function. The six constants are determined by

applying the boundary conditions from (4.11), (4.13), and (4.15). It should be noted

that each boundary condition actually supplies two equations. This stems from the

requirement that each boundary condition must be satisfied for all values of z. The
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procedure mirrors the first-order Bragg-Hawthorne analysis and hence will not be

repeated here.

After applying the boundary conditions, the fully determined stream function may

be written as

ψ1 = −1

3
π2z3κ3 sin

(
πr2
) [

cos
(
2πr2

)
− 1
]

+
1

8
πzκ

(
κ2 sin

(
πr2
) [
−2Si

(
2πr2

)
+ Si

(
4πr2

)
− Si(2π) + 2Si(π)

]
+ cos

(
πr2
){

4e−
1
4
r2V

(
2− e−

1
4
r2V

)
−
(
r2 − 1

) [
γ
(
3κ2 − 4

)
− 4
]

+ κ2
{
r2 [2Ci(2π)− Ci(4π)] + 2γ

(
r2 − 1

)}
− 2

(
V r2 + 2

)
Ei
(
−1

2
r2V

)
+ 2(V r2 + 4)Ei

(
−1

4
r2V

)
+ κ2

[
8 ln(2)

(
r2 − 1

)
− 2Ci

(
2πr2

)
+ Ci

(
4πr2

)]
+2
(
κ2 − 4

)
ln(r)−

(
r2 − 1

) [
κ2 ln(256π) + ln

(
4096

V 4

)]})
(5.66)
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Chapter 6

Constant Shear Stress Solution

This chapter departs from the Rayleigh-Janzen approach and instead focuses on

modeling the swirl velocity in the core region of the confined vortex. At the outset,

using the simple relation in (3.69) from Chapter 3, a solution for the swirl velocity

that is valid for both laminar and turbulent regimes will be determined. In the first

section, the general solution will be presented, while in the second, the emphasis will

be shifted to a matching technique linking the radius to the vortex Reynolds number.

6.1 Constant Shear Stress (CSS) Solution

The constant shear stress solution hinges on the supposition that the pressure and

shear stress forces must balance near the core. The mathematical expression of that

principle is found in (3.69), reproduced here for the readers convenience

ε

(
∂v

∂r
− v

r

)
= C1 (6.1)

Upon integration, the expression for v(i) becomes

v(i) = r

[
C1

ε
ln(r) + C2

]
(6.2)
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where the superscripted (i) denotes an inner solution, valid near the core of the vortex.

It may be interesting to note that each of the two undetermined constants, C1 and

C2, has a clear physical meaning: while the first relates to the swirl strength of the

velocity component generating the stress, the second corresponds to the swirl strength

of a flow undergoing solid-body rotation. The two undetermined constants can be

manipulated to match the inner solution with the outer, free vortex expression at

their intersection point. This is achieved via equating the velocity and its derivative

to the outer vortex at a specific matching radius. Since the matching radius is not

known a priori, it must be carefully specified. For the moment, the matching point X

is yet to be determined. The equation to match the velocities at X is

X
C1

ε
ln(X) +XC2 =

1

X
(6.3)

Equation (6.3) is simply matching the inner solution from (6.2) to the outer, free

vortex solution. The same procedure is used on the derivatives to provide

C1

ε
[1 + ln(X)] + C2 =

1

X2
(6.4)

After solving (6.3) and (6.4) for C1 and C2 and substituting back into (6.2), the result

may be expressed as

v =


r
X2

[
1− ln

(
r2

X2

)]
; r ≤ X

1
r
; r > X

(6.5)

In what follows, this combined-vortex model is referred to as the constant shear

model. The incontrovertible analogy with Rankine’s laminar model is evident. Using

a unified notation, Rankine’s combined vortex may be similarly represented by

v =

r/X; r ≤ X

X/r; r > X

(6.6)

74



Here X = U/v̄(aX) is the point where the inner vortex line intersects with the sloping

tail of the outer vortex. This location also defines Rankine’s maximum swirl velocity

vmax = v̄(aX). In contrast to the constant shear solution which predicts constant

shear throughout the core region, Rankine’s model predicts constant vorticity for

r ≤ X.

Given that the inner core velocity is bounded at the centerline, a companion

pressure may be obtained that does not exhibit the inviscid singularity of its predecessor

(see Vyas and Majdalani, 2006). From the conservation of momentum, the axially

and radially integrated pressures become

p− p(1, 0) = −
∫ r

1

(
ur
∂ur
∂r̄

+ uz
∂ur
∂z
− u2θ

r

)
dr (6.7)

and

p− p(1, 0) = −
∫ z

0

(
ur
∂uz
∂r̄

+ uz
∂uz
∂z

)
dz (6.8)

Integration and combination of these equations provides the pressure distribution

∆p =


1

2κ4r2

(
r4
{

5 + ln
(
r4

X4

) [
ln
(
r
X

)
− 2
]}
− κ2X4 sin2(πr2)

)
−κ2

[
4π2z + sin2(πr2)

2r2

]
+K1; r ≤ X

− 1
2r2

[
1 + κ2 sin2(πr2)

]
− κ2

[
4π2z + sin2(πr2)

2r2

]
+K2 r > X

(6.9)

where ∆p = p− p(1, 0). The constant K1 can be determined by setting the piecewise

parts equal at r = X, while K2 can be calculated by securing the boundary condition

at the outer radius of the headwall:
p(1, 0) = −1

2
+K2 = 0,

p(X, 0) = K1 + 3X−2 = K2,

or


K1 =

1

2
− 3X−2,

K2 =
1

2
,

(6.10)
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Hence the piecewise pressure distribution can be displayed as

∆p =


1

2κ4r2

(
r4
{

5 + ln
(
r4

X4

) [
ln
(
r
X

)
− 2
]}
− κ2X4 sin2(πr2)

)
+1

2
− 3

X2 − κ2
[
4π2z + sin2(πr2)

2r2

]
; r ≤ X

1
2
− 1

2r2

[
1 + κ2 sin2(πr2)

]
− κ2

[
4π2z + sin2(πr2)

2r2

]
; r > X

(6.11)

6.2 Correlation with V

To illustrate the ability of the constant shear solution to embody different patterns,

the present model is matched to the laminar core boundary layer model derived by

Vyas and Majdalani (2006). For a portable solution, the swirl velocity calculated

from the present work must approximate key features connected with the boundary

layer model. For a simple demonstration of the matching paradigm, it is possible

to implement the notion that swirl velocities from the laminar and constant shear

models must exhibit the same maxima. This enables us to compare the principal

flow attributes and gain insight into how the matching radius varies with the vortex

Reynolds number.

While the inner part of the piecewise velocity yields

dv

dr

∣∣∣∣
r=rmax

= 0 or rmax =
X√
e

(6.12)

the laminar model projects

rmax =

√
2

V

[
−1− 2pln

(
−1,−1

2
e−

1
2

)]
' 2.24√

V
. (6.13)

These positions can be substituted back into their respective equations and then

equated identically. One gets

2

Xe1/2
= 1− e

1
2
+pln

(
−1,− 1

2
e−

1
2

)√√√√ −V

2
[
1 + 2pln

(
−1,−1

2
e−

1
2

)] (6.14)
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Equation (6.14) may be solved for X as a function of V directly from

X =
2√
eV

√
−2
[
1 + 2pln

(
−1,−1

2
e−

1
2

)]
1− exp

[
1
2

+ pln
(
−1,−1

2
e−

1
2

)] ' 3.80√
V

(6.15)

This matching radius X permits the piecewise velocity to capture the same peak

velocity that the laminar boundary-layer solution projects as a function of V .

A comparison of the different swirl velocity models at three vortex Reynolds

numbers is presented in Figure 6.1. While the free vortex is invariant with respect

to V , both the present study and the laminar boundary layer model capture the

increasing velocity peaks and their translation towards the centerline with successive

increases in V . Note that the two models match identically at the point of the highest

velocity, owing to the imposed matching treatment. They also behave rather similarly

elsewhere in the domain, with the constant shear model decreasing from the peak

velocity more slowly, owing to its wider profile. This behavior is consistent with

observations of turbulent vortices.

Figure 6.2 compares the pressure distributions of the two models at two vortex

Reynolds numbers. The radial pressure gradient is slightly higher in the case of the

constant shear model, especially in the core region. This behavior can be accounted

for by the slightly increased velocity anticipated from the piecewise model near the

centerline. Except for these differences, the piecewise model seems to faithfully

capture the general shape of the radial pressure distribution. For the pressure drop,

the constant shear pressure starts slightly higher, but then quickly diminishes to match

the laminar core approximation. It should be noted that the constant shear solution

offers one degree of freedom that can be adjusted to suit a particular application.

For example, should accurate prediction of the pressure stand as the most valuable

requirement for a specific situation, then the matching radius could be adjusted to

best fit the experimental pressure data near the core. A similar paradigm is used in

modeling large atmospheric flows where only pressure-related measurements may be

77



0
2
4
6
8

1 0

 

 l a m i n a r  c o r e
 c o n s t a n t  s h e a r
 f r e e  o u t e r  v o r t e x

  

v

(a) V = 100

0
2
4
6
8

1 0

 

  (b) V = 500

0 0 . 2 0 . 4 0 . 6 0 . 8 1
0
2
4
6
8

1 0

 

r
(c) V = 1000

Figure 6.1: Peak-matched swirl velocities at (a) V = 100, (b) V = 500, and (c)
V = 1000 for the constant shear and laminar core models.
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Figure 6.2: The (a) radial pressure gradient and (b) pressure drop for the peak-
matched constant shear and laminar core models.

available (Trapp, 2000). As affirmed by Alekseenko et al. (1999), the swirl velocity core

may be reconstructed in the absence of vortex breakdown using pressure measurements

alone.

Before concluding this comparison, it may be instructive to examine the behavior

of shear and vorticity near the axis of rotation. In the view of the shear stress being a

quintessential contributor in the derivation of the constant shear approximation, the

present result is compared to the laminar core solution by Majdalani and Chiaverini

(2009). The latter is given by

τrθ = −2εr−2
[
1−

(
1 +

V r2

4

)
e−

V r2

4

]
(6.16)

Since only amendments to the swirl velocity are considered here, the affected member

of the shear stress tensor is τrθ. Recalling the general form from (3.68) and after

substitution, one retrieves

τrθ = εr
∂

∂r

(uθ
r

)
=

−
2ε
X2 ; r ≤ X

− 2ε
r2

; r > X

(6.17)
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Figure 6.3: The (a) shear stress and (b) vorticity for the constant shear and laminar
core models.

For the vorticity, one finds

Ωz =
1

r

∂ (ruθ)

∂r
=

−
4
X2 ln

(
r
X

)
r ≤ X

0 r > X

(6.18)

The resultant curves are plotted in Figure 6.3 and compared with the results of the

laminar core treatment, namely, to Ωz = 1
2
V exp(1

4
V r2). In both parts of Figure 6.3,

a good agreement between the models is attained in the outer vortex region. Closer

to the core, a deviation is manifested as a result of the constant shear stress model

becoming uniform. The constant core value of the absolute shear |τrθ| is slightly lower

than the maximum laminar core value. Aside from this disparity near the centerline,

the constant shear and laminar core curves are concurrent elsewhere in the domain.

The vorticity prescribed by the piecewise model is seen to mimic the laminar core

curve. However, unlike the laminar model that smoothly tapers off in the vicinity of

the core, the constant shear vorticity does not approach a constant as r → 0.

By comparing the combined-vortex representation to the laminar core model, two

key observations may be drawn. The first consists of the ability of the shear stress

model to mimic the features seen in the laminar core without a viscous perturbation

near the centerline. By avoiding such analysis, the swirl velocity no longer depends
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on the existence of a first-order radial velocity and small parameter expansions. The

outcome is a model that captures the core behavior while requiring less overhead.

The second benefit of a laminar core analogy is the development of a relation such as

(6.15). This analytical expression linking the vortex Reynolds number to the matching

radius X will later prove instrumental for properly interpreting experimental case

studies in Chapter 7.
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Chapter 7

Results

This chapter begins with a discussion of the compressible frameworks and the results

from the analytical study. The velocity, density, and pressure profiles are presented

as well as the variation in the mantle location. The sensitivity of the present work

to the swirl parameter, κ is discussed as a mitigating factor on compressibility. The

chapter closes with a discussion of the constant shear stress model and techniques to

ensure that the analytical models presented here can accurately predict experimental

results. The CSS and the laminar core approach are correlated with the experimental

results found by Rom (2006) and found to accurately capture the velocity profiles for

a range of experimental vortex Reynolds numbers.

7.1 Compressible Results

7.1.1 Velocity Profiles

Pursuant to the stream function determination, the compressible motion may be

characterized in all three spatial directions. To avoid unnecessary collisions and

potential recirculation, the open fraction at the base, β, may be conveniently equated

to the dimensionless mantle radius with the effect of allowing the outgoing stream

to exit the chamber unobstructed. Following Majdalani (2009), κ = 1 is used to
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provide a magnified view of the variables of interest without suffering the incumbent

reduction in accuracy that can accompany substantial increases in the reference Mach

number. To facilitate comparisons relative to previous studies (Vyas and Majdalani,

2006; Majdalani, 2009; Majdalani and Chiaverini, 2009; Batterson and Majdalani,

2010a), the aspect ratio is taken to be l = 4/3, while typical values of γ = 1.2 and

1.4 are assigned to the ratio of specific heats. As for the injection Mach number, the

analysis is anchored around M0 = 0.1 and 0.2, being two commonly used values in

propulsive applications.

Thus motivated by the need to characterize the VCCWC bulk flow field, the axial

velocity, w, is considered first as it drives engine performance after expansion. In

Figure 7.1a the axial profile is considered at the chamber exit, z = l, for reference

Mach numbers of 0.1 (blue) and 0.2 (red), and for γ = 1.2 (dashed), and 1.4 (dotted).

At M0 = 0.1, the compressible contribution seems to induce a minor though still

visible variation in the profile; however, by increasing the injection speed to M0 = 0.2,

a substantially more appreciable effect is realized. These profiles also display a

sensitivity to variations in γ. Clearly, increasing γ leads to a flattening in the inner

vortex region. Similarly, along with the growth in the injection Mach number, the

axial velocity exhibits a steepening effect. When this occurs, the polarity transition

that accompanies mantle formation acquires a blunter slope as w crosses the radial axis

vertically. This finding is consistent with the axial steepening observed in compressible

models of solid rocket motors (SRMs) (see Balakrishnan et al., 1992; Majdalani, 2007a;

Maicke and Majdalani, 2008b; Saad and Majdalani, 2010; Akiki and Majdalani, 2012).

In contrast to the aforementioned studies, it appears that no net-amplification of

the axial velocity may be noted, aside from a reshaping of the profile itself. As the

conservation constraint at the exit must be completely satisfied at the leading order,

the resulting mass exiting the chamber at the first order must be self-canceling when

integrated over the flow cross-section. This requirement compels the contour to morph

without affecting the overall mass flux. As for the compressible contribution, w1,

depicted in Figure 7.1b, it is featured for the two representative values of γ. Based
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on the CBH framework, the first-order correction will be more pronounced at higher

values of γ, ∀M0. Additionally, it can be seen that the compressible contribution

will vanish at two distinct points, namely, r = 0.2 and 0.75. These sites derive their

location from the mass balance relation which, when applied to the compressible

correction, will warrant the existence of two polarity switches in the axial velocity to

produce a zero net flux.

Finally in Figure 7.1c, the compressible axial profile for the complex-lamellar

(CL) is presented. The profile is akin to the Bragg-Hawthorne profile in that it

exhibits a similar maximum amplification near the mantle. The mantle location is

slightly different, owing to the sinusoidal nature of the CL model versus the Bessel

function nature of the CBH. There are three significant departures from Figure 7.1a.

First, the amplification of the profile is uniform at the exit; second, the magnitude

shift at the exit is less significant; and finally there is no γ dependence. These

discrepancies may be attributed to the fundamental differences between the models.

For the first two issues, the application of boundary conditions is slightly different

for the CL case. The conservation of mass boundary condition, while conceptually

the same, is implemented in a different manner owing to the density profiles being

different. The result is a mantle location that does not vary as widely when extended

to compressible conditions. Furthermore, the resulting axial profile displays rather

uniform magnification at the exit. The CL independence from γ stems from the

difference between the two approaches considered. Whereas the density is determined

directly in the Bragg-Hawthorne approach, it is a two step process in the CL model.

First the momentum equation is solved for the pressure, and then the isentropic

relation is used to find the density. Because the pressure has only a single γ and

the ρ1 definition divides out that γ, the resulting compressible expression becomes

independent of the ratio of specific heats.

By virtue of continuity and momentum balances, elements of the steepening

mechanism observed in w are transferred to the radial velocity, u, as shown in Figure

7.2a. For small deviations from the incompressible state where M0 = 0, the solution
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Figure 7.1: The CBH (a) axial velocity, (b) compressible correction and CVS (c)
axial velocity profiles.

seems to be fairly well guided by the unperturbed profile. In this case, the effect

of compression causes a spatial shifting of the peak magnitude in u towards r = 1.

As the Mach number is further increased to M0 = 0.2, the outward shift in peak

amplitudes is accompanied by a more visible increase in umax beyond its incompressible

counterpart. This particular amplification of u in the vicinity of the mantle can be so

pronounced that it must be offset by an appropriate attenuation in the core region.

The corresponding shift in u that is experienced near the centerline causes the radial

profile to switch polarity while returning to r = 0. Mathematically, because the radial

velocity is written as a z derivative of the stream function, it will be strongly influenced

by the reversing nature imposed by the conservation principle in the exit plane. Here

too, the compressible radial contribution vanishes at r = 0.55 as clearly depicted in

Figure 7.2b. Even for κ = 1, the total radial velocity remains significantly smaller

than the axial or tangential velocities, and this may be attributed to the sidewalls
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Figure 7.2: The swirl normalized CBH (a) radial velocity, (b) compressible correction,
and CVS (c) radial velocity profiles.

being non-injecting. Nonetheless, the compressible correction itself becomes of the

same order in both axial and radial directions, hence leading to a proportionately

larger effect on the radial velocity. This behavior will be reversed, however, when

κ is reduced in a manner to mitigate the actual compressible contribution. Further

discussion of this phenomenon appears in Section 7.1.4.

The behavior of the CL radial velocity in Figure 7.2c exhibits similar trends. The

velocity is slightly diminished near the core and augmented near the peak, which also

shifts toward the wall. The boost to the peak radial velocity is significantly larger

than the CBH, but the fact that the general trends are very similar, despite their

fundamental differences, is reassuring. In both cases, the actual increase in the radial

velocity is virtually negligible once realistic values of κ are introduced.

The third, and most prominent component of the compressible velocity is illustrated

in Figure 7.3a for the same two Mach numbers and ratios of specific heats. In

86



0 0 . 2 0 . 4 0 . 6 0 . 8 1
0
2
4
6
8

1 0
1 2

 M 0  =  0 . 1 ,  �  =  1 . 4
 M 0  =  0 . 2 ,  �  =  1 . 2
 M 0  =  0 . 2 ,  �  =  1 . 4

 I n c o m p r e s s i b l e
 M 0  =  0 . 1 ,  �  =  1 . 2

 

r

v

(a) Total swirl velocity (CBH)

0 0 . 2 0 . 4 0 . 6 0 . 8 1
- 1 5 0
- 1 0 0
- 5 0

0
5 0

1 0 0

 

v 1

r
(b) Compressible swirl correction (CBH)

Figure 7.3: The κ normalized CBH (a) swirl velocity, (b) compressible correction,
and CVS (c) swirl velocity.

comparison to u and w, the behavior of the swirl velocity v seems to mimic that of

its radial counterpart; its profile is pushed closer to the sidewall with each additional

growth in M0 and γ. Here too, the maximum swirling speed is augmented with

subsequent increases in the Mach number or the specific heats ratio. In Figure 7.3b,

only the compressible correction is featured for γ = 1.2 and 1.4. In both cases, the

compressible correction vanishes at r = 0.5. A closer look at v1 reveals that its

shape resembles the radial profile, except for being strictly positive for 0 < r < 1.

Mathematically, differences in magnitudes between u and v may be attributed to the

reduced z dependence of the radial velocity. When examining the velocity-stream

function definition for u in (3.27), the order of the z terms is reduced by the derivative

operator, while v retains the full z dependence through its relation to B in (4.27).

Unlike the axial and radial components, the CL vortex requires an incompressible

tangential velocity. This may seem counter-intuitive, but is a direct result of the

mathematical formulation. The inviscid tangential momentum equation, used in the

decoupling of the three velocity components, has no possible compressible correction

as the leading and first-order equations are identical. Since the compressible correction

cannot influence the behavior at the boundaries, the boundary condition for the swirl

velocity must be zero. For this particular set of circumstances, this results in the

compressible swirl correction being reduced to zero as well.

87



7.1.2 Mantle Variation

One interesting feature of the compressible solution stems from its mantle gaining

an axial dependence that cannot be accounted for by the incompressible study. At

the leading order, the mantle maintains a constant radial position for all values of

z at approximately r = 0.627. In the compressible case, the mantle location gains

a z dependence that is clearly illustrated in Figure 7.4 for several representative

Mach numbers and values of γ. Accordingly, the mantle is seen to shift outwardly

to a value of 0.639 in the proximity of the headwall (z = 0). Then as the fluid

travels towards the exit plane, the mantle continues to slide outwardly, almost linearly

in z, until reaching 0.681 at z = l. Such behavior appears to be consistent with

previous theoretical findings based on an entirely different compressible flow approach

(Maicke and Majdalani, 2008a). At first glance, the linear character of the mantle

translation away from the headwall may be viewed as somewhat perplexing because

of the solution’s explicit dependence on z3. However, in this situation, the low aspect

ratio of l = 4/3 may be responsible for the linear behavior up to the exit plane. In

longer chambers, it is likely for the linear behavior to become superseded by a cubic

dependence, especially in the presence of sufficiently large reference Mach numbers.

The CL mantle (see Figure 7.4c) has a different base location, owing to the

sinusoidal nature of the incompressible solution. By analogy with the Bragg-Hawthorne

solution, the polarity switch for the axial velocity remains invariant with length for

the incompressible description and both compressible corrections indicate an outward

shift. The striking difference between the frameworks lies in the nature of the axial

dependence. The CL has a less appreciable shift and the direction is inverted with

respect to the CBH. This behavior may be attributed to the dissimilar natures of

the models, specifically in the boundary conditions. The axial velocity experiences

a uniform amplification, which when coupled with the density function, requires a

smaller shift in the mantle location for the same amount of mass to exit the chamber.

The inversion of the profile shape may be attributed to the ad hoc method with
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Figure 7.4: The variation of the mantle location for the CBH at (a) M0 = 0.1, (b)
M0 = 0.2, and (c) the CVS solutions.

which the swirl velocity is handled. The pressure and the density depend on the

swirl profile, and since these models have disparate swirl velocities, their resulting

density distributions, and by extension their compressible velocities, have differing

characteristics as well. The reversal of the mantle profile shape is one such difference.

In what concerns experimental evidence, Smith (1962a,b) reports two antithetical

outcomes, one in which the mantle slides inwardly, towards the centerline, as the

distance from the headwall is increased, and one expanding outwardly, towards the

sidewall. Like the compressible bidirectional vortex, Smith’s experimental apparatus

consists of a right circular cylinder with tangential injection near the base and an

impervious headwall. Unlike the models presented here, Smith uses logarithmic-spiral

blades to induce the swirl flow field, which also imparts an axial velocity component.

He also has a submerged vortex finder at the base of the chamber, rather than the flat

open fraction in the present model. Without further scrutiny, it may only be possible
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to speculate over the factors leading to mantle variability. For example, it may be

conceivable for viscous effects to compete with compressibility to the extent of one

overpowering the other in a given configuration. It is more likely, however, that the

geometric design of the inlet and outlet arrangements influence the stable position

of the mantle interface between the inner and outer regions (Akiki and Majdalani,

2010, 2011). The presence of a protrusion into the flow, such as the submerged vortex

finder appearing in Smith’s experiments, may have an appreciable bearing on the final

mantle location.

7.1.3 Thermodynamic Quantities

In the compressible Bragg-Hawthorne framework, all thermodynamic quantities may

be restored from the density. In view of the isentropic relation used at the basis

of the density-stream function formulation, the pressure and temperature may be

straightforwardly deduced from the density. With this in mind, retrieving and

characterizing the compressible density correction is paramount to the determination

and analysis of the corresponding pressure and temperature fields. Both p1 and T1

differ from ρ1 by a constant multiplier, namely,

p1 = γρ1 and T1 = (γ − 1)ρ1 (7.1)

In Figure 7.5, density variations are shown in the exit plane for the two

representative injection Mach numbers of M0 = 0.1 and 0.2, using κ = 1 and a

set of increasing values of γ = 1.1, 1.2, ..., 1.5. As it may be surmised from the graphs,

the density appears to be sensitive to both variations in the Mach number and the

specific heats ratio. However, the sensitivity to γ is amplified substantially when the

Mach number is incremented from 0.1 to 0.2. This may be attributed to the former

being closer to the leading-order benchmark than the latter. In any event, as the

Mach number and γ are augmented, the normalized density undergoes successive

decreases throughout the chamber, with the most significant depreciation occurring
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Figure 7.5: The density distribution at (a) M0 = 0.1 and (b) M0 = 0.2 for the CBH
model.

along the centerline. It is this particular drop in density that drives, in part, the

variation in the axial velocity correction at the first order through its contribution to

the mass conservation requirement at z = l.

As for the pressure companion, similar trends are depicted in Figure 7.6, where the

dimensionless pressure distribution is displayed for the same representative quantities

used to analyze the density. Here too, the largest depreciation in the pressure is

realized near the centerline, and this effect is accentuated at higher values of M0

or γ. In the M0 = 0.2 case, the compressible correction causes the pressure near

the centerline to drop precipitously, leading to low suction conditions that become

even more pronounced with successive increases in M0 or γ. At this point, it may

be useful to recall that, for the cyclonic motion to be stable, the upward streaming

of the incoming fluid through a siphoning process is necessary to avoid premature

short-circuiting or early spillage. It can hence be seen that suction conditions near the

centerline can be beneficial to the proper and stable formation of a bidirectional vortex.

In consequence, one may conclude that increasing the injection Mach number or the

ratio of specific heats will enhance the suction level in the core region, a condition

that can lead to a more stable cyclonic flow field.
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Figure 7.6: The pressure distribution at (a) M0 = 0.1 and (b) M0 = 0.2 for the CBH
model.

7.1.4 Sensitivity to κ

Up to this point, the foregoing solutions have been evaluated for a unit κ. This

convention has enabled us to amplify the effects of compressibility to the extent of

better isolating and capturing the specific features associated with each variable of

interest. Realistically speaking, it is possible for κ to take on smaller values, and these

will lead to a reduction in the compressible axial and radial speeds alongside their

compressible counterparts relative to the tangential velocity. From this perspective,

the sensitivity of the compressible approximation to variations in κ can be essential

to explore.

To study this sensitivity, the axial profile is re-examined at z = l, γ = 1.4, and

both M0 = 0.1 and 0.2. This is accomplished over a range of κ extending from

0.125 to 0.75 as depicted in Figure 7.7. It may be safely argued that the remaining

dynamic and thermodynamic quantities will exhibit similar trends by virtue of their

sensitivity to the swirl parameter κ being analogous to that of the axial velocity. As

clearly illustrated on these graphs, decreasing κ leads to a corresponding drop in

both compressible and incompressible axial velocities. The compressible contributions

diminish even more rapidly, owing to their cubic dependence on κ, to the extent of

approaching the incompressible approximation. Conversely, increasing the injection

Mach number to 0.2 or higher stands to offset the effect of decreasing κ.
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Figure 7.7: The sensitivity of the axial velocity to changes in κ at (a) M0 = 0.1 and
(b) M0 = 0.2 for the CBH model.

At small κ, the axial and radial velocities, which can directly absorb the effects

of compression in the absence of restrictions in the z and r directions, become

overwhelmingly dominated by the tangential motion. Their overall magnitudes

become small relative to v. The latter cannot experience compression in the tangential

direction without violating the condition of axisymmetry. Its sensitivity to density

variations can only be realized through its spatial dependence on the first-order

stream function, and this association is commensurate with the size of both κ and M0.

Naturally, this coupling weakens at decreasing values of κ which, physically, implies

the existence of higher levels of swirl and, therefore, stronger tendency to promote

an axisymmetric distribution of flow field properties. So while higher orders of swirl

increase the resistance to compression in the tangential direction, higher injection

Mach numbers serve to counterbalance this effect, with the overall motion being

controlled almost exclusively by these two contending factors. This behavior seems

to support the tradition of relying on incompressible models for mean flow Mach

numbers below 0.3, irrespective of the flow detail.
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7.2 Constant Shear Stress Model

In Section 6.2, the constant shear stress model was correlated to the CL vortex of

Majdalani and Chiaverini (2009). As a result of this initial correlation, a relationship

linking the vortex Reynolds number and the matching radius was found, such that the

peak velocities were matched. While useful as a proof of concept, a more practical use

of the CSS model is to correlate the matching radius with experimental data. In what

follows, the vortex Reynolds number relationship is modified to fit data published

by Rom (2006). In the same vein, a modification to the laminar core model is also

derived to facilitate comparison to experiment. Both of these adjustments employ an

effective viscosity to adjust essentially laminar, non-turbulent, models to better agree

with a turbulent experiment.

7.2.1 Experimentally Correlated Model

One of the chief attributes of the piecewise formulation stems from its display of a

single degree of freedom that can be adjusted to minimize the error in its prediction.

For example, knowing that the laminar boundary layer treatment can over-predict the

velocity distribution near the core when the flow is turbulent, an empirically-based

correction is necessary (e.g., when V = 104 the laminar model predicts (uθ)max = 32,

an overestimated value). One avenue to evaluate this correction is through a least-

squares analysis that enables us to determine the optimal matching radius that best

fits the data. If a sufficient number of experiments are used, one could then deduce a

relationship between the vortex Reynolds number and the matching location. Another

possible approach is to introduce an effective vortex Reynolds number that can be

correlated to its experimental counterpart. Given the increased turbulent viscosity

observed in laboratory tests, the measured Reynolds number could thus be converted

into a smaller effective equivalent that would be suitably retrofitted into the laminar

solution. We explore both of these methods via the experimental data obtained by

Rom (2006).
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Figure 7.8: Schematic of experimental apparatus used by Rom (2006).

To set the stage, Rom’s apparatus, shown in Figure 7.8, is equipped with particle

image velocimetry (PIV) and a smoke generator that is capable of producing 0.2 mm

seed particles. Particle images are captured by a LaVision Flowmaster 3 camera and

cross-correlated to provide the swirl velocity at three axial locations in the cylindrical

quartz chamber. To create different test environments, a modular chamber is used to

alter the aspect ratio. Four tangentially located inlets in the base plate provide an

injection method consistent with the boundary conditions outlined in (2.7). Given

an operating pressure of 275 kPa for the chamber, variable inlets provide injection

pressure drops that range from 10 to 30 percent of the chamber pressure. A summary

of the conditions for each trial are provided in Table 7.1. While the constant shear

model may be applicable to other experiments and numerical simulations, results

available in the literature are seldom correlated with the vortex Reynolds number.

While the experimental study by Rom (2006) most closely matches the model

derived here, the reported data would benefit from the introduction of uncertainty
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Table 7.1: Available configurations for experimental trials.

(a) Geometric configurations

Length Aspect Ratio Axial Loc.
(cm) (z/L)

3.56 2.80 0.5

0.2
6.10 4.80 0.5

0.7

0.2
8.64 6.80 0.5

0.7

0.2
11.2 8.82 0.5

0.7

(b) Injector configurations

∆p Port Dia. Aggregate Inj.
(% of pc) (cm) Area (cm2)

10 0.605 2.299
20 0.500 1.571
30 0.442 1.228

quantification in the component measurements and in the PIV correlations. Such

an accounting would improve the predictive capability of the present analysis. The

methods presented here for correlating the analytical models to experiment retain

their usefulness, and the addition of higher fidelity experimental data will enhance

their attractiveness.

To help partially account for the lack of error quantification, an adjustment is

made to V so that the resulting curve fits enclose rather than split the experimental

data. The reason for such an adjustment lies with the increased drag on the particles

in the core region, and the inherent separation mechanism that such a swirling flow

provides. The actual fluid velocity in the core region should be universally greater

than the experimentally determined velocity from the PIV measurements. Further

details on this adjustment are presented in the following section.

7.2.2 Piecewise Least-Squares Regression

The piecewise least-squares code contains several distinct components. The first

element is a rewrite of the standard least-squares technique in a manner to incorporate
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Figure 7.9: Flowchart of the piecewise least-squares algorithm.

the piecewise nature into the derivative calculations. The function returns the

optimized parameter, in this case the matching radius, X. The second function is

simply a truncation function that adjusts the data set to reflect the new optimization

parameter. Finally, a control function loops over the data set, calling the least-squares

function and comparing the new radius to the previous trial, X, until a satisfactory

tolerance is reached, in this instance 0.0001. For the reader’s convenience, a flow

chart detailing the numerical procedure is provided in Figure 7.9.

This iterative procedure is necessary because of the nature of this particular

piecewise solution. For most piecewise equations, a standard least-squares algorithm is

sufficient. However, for the constant shear stress equation, the optimization parameter

coincides with the matching radius that determines the boundary between the inner

and outer solutions. As a result, the optimization space changes every time that a

new radius is calculated. The iterative approach continues to calculate new values of

X until the difference between successive radii falls below a user-specified tolerance.

Since the data comprises a limited set of discrete points, convergence is rapid. The

final radius is checked against neighboring values to ensure optimization.

Using a modified least-squares method similar to that employed by Vatistas (2006),

one may analyze Rom’s data and seek to determine the matching radius that minimizes

the error between theory and experiment. Realizing that the radii calculated by this

method vary with the vortex Reynolds number, the dependence on V is embedded
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using a theoretically based relation similar in form to (6.15).

X =
X0√
Vt

(7.2)

where Vt is the turbulent vortex Reynolds number based on the molecular viscosity µ.

In (7.2) the matching radius X is connected to the vortex Reynolds number through

a yet to be determined constant. Because X only appears in the core region (r < X),

the optimization procedure focuses on the points inside the matching radius, especially

that the error outside of this region is invariant with respect to X. This permits

the least-squares methodology to optimize the solution in the crucially important

core region. Table 7.2 contains the available test cases, of which the first three are

selected for the least-squares analysis. We also hold three trials in reserve, so that

the validity of the relationship in (7.2) may be tested with independent data. While

each set exhibits a slightly different matching radius, the values for X0 appear to be

in relatively good agreement (i.e. 50.7, 49.6 and 49.0 for turbulent vortex Reynolds

numbers of Vt = 23, 29 and 41×103, respectively). This agreement lends support to

the foregoing assumptions and enables us to seek a weighted average for X0. We get

X =
50√
Vt

(7.3)

By the way of confirmation, the same constant, X0 ' 50, is obtained when the method

of least-squares is applied to the entire collection of data, thus sweeping over the three

sets simultaneously with the role of Vt being fully factored in.

We also compare a modified CL profile to both the data and to the CSS model.

To this end, the CL profile is modified by an estimated turbulent eddy viscosity

that reduces the experimental vortex Reynolds number to a value that conforms to

the data. Following Faler and Leibovich (1978) or Escudier et al. (1980), one may
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Table 7.2: Operational parameters for Rom’s PIV experiments.

Parameter Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

∆p̄ (kPa) 27.6 55.2 82.8 55.2 27.6 55.2
L 2.4 2.4 4.4 3.4 4.4 4.4
U (m/s) 68.73 77.72 89.61 88.78 74.81 88.31
σ = a2/Ai 2.81 4.10 5.26 4.10 2.81 4.10
κ = 1/(2πσL) 0.0239 0.0164 0.0069 0.0114 0.0129 0.0088
V = ṁi/(L0µ) 41000 29000 23000 25000 23000 18000

introduce the eddy viscosity ratio

`t =
µt
µ

=
νt
ν

(7.4)

This enables us to determine `t empirically from a standard least-squares analysis. As

shown in Table 7.3, for each Vt a corresponding `t is found. Then based on the same

three cases and 879 points, minimizing the least-squares error yields

`t = 151.8 where V =
Vt
`t

=
Q̄i

L0νt
=

ṁi

L0µt
(7.5)

It is reassuring to note, within experimental uncertainty, the constancy of the eddy

viscosity ratio over the range of Reynolds numbers considered. Physically, the

adjustment in (7.5) leads to a vortex Reynolds number calculation based on the

turbulent viscosity. Substitution into (5.51) enables us to express the modified

laminar core solution in the form

uθ =
1

r

[
1− exp

(
−V r

2

4

)]
(7.6)

∇p = − 1

2r2

{
1 +

1

2
κ2
[
8π2r2z2 + 1− cos(2πr2)

]
+e−

1
2
V r2 − 2e−

1
4
V r2 +

1

2
V r2

[
Ei(−1

2
V r2)− Ei(−1

4
V r2)

]}
(7.7)
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Table 7.3: Least-squares parameters for laminar core and constant shear stress
frameworks.

Vt X0 X 50/
√
Vt `t

41000 49.04 0.243 0.230 150.3
29000 49.63 0.267 0.262 154.1
23000 50.67 0.314 0.288 151.0

Table 7.4: Statistical parameters for the regression of the laminar and constant shear
stress models.

Vt
41000 29000 23000

rcc σe ∆Et% rcc σe ∆Et% rcc σe ∆Et%

lam. core 0.887 0.592 4.91 0.962 0.276 1.47 0.870 0.391 3.45
CSS 0.900 0.558 4.36 0.968 0.253 1.23 0.880 0.376 3.19

To objectively compare the accuracy, several statistical parameters are calculated

(see Table 7.4). By comparing correlation coefficients, rcc, standard errors, σe and

total relative errors, ∆Et, the constant shear-based model seems to provide a slightly

better fit to the data than the modified laminar distribution. The standard and total

relative errors are calculated from

σe =
1√
n− 1

√√√√ n∑
i=1

[ûθ(ri)− uθ(ri)]2 (7.8)

and

∆Et =
n∑
i=1

[ûθ(ri)− uθ(ri)]2/
n∑
i=1

û2θ(ri) (7.9)

where n and ûθ denote the number of data points and the measured velocity at ri, the

radius of the ith data point. The standard error of the estimate quantifies the spread

of data about the regression line, much like the standard deviation that measures

the spread about a mean value. As shown in Table 7.4, the total relative error falls

under 3.19, 1.23, and 4.36 percent for the three cases associated with the constant
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shear approach. The corresponding experimental correlation coefficients are 0.880,

0.968 and 0.900, respectively. When the modified laminar core technique is used, the

relative errors slightly increase to 3.45, 1.47, and 4.91 percent, with an equally minute

reduction in rcc.

The least-squares fits are depicted graphically in Figure 7.10. The measurements

collected in each trial correspond to the data acquired at three axial locations,

specifically at z = 0.2, 0.5, and 0.7. The data agrees well in the outer vortex

region, however in the core region the matching is less appreciable. It is clear that

near the centerline, the velocity begins to deviate from the maximum theoretical

values projected by the analytical models. Of equal concern is the scatter and scarcity

of data in the core region. Contrary to the large number of closely packed data points

in the outer region, fewer and more scattered data points appear near the core. This

trend may be attributed to increased drag on seed particles in the peak-swirl region

and to the natural tendency for separation of particles due to centrifugal entrainment.

To adjust for this behavior, an adjustment is made to the calculation of the vortex

Reynolds number such that the effective value of V is increased to provide a curve

that is larger in magnitude which captures the anticipated fluid motion more closely.

The values for V in cases 1-3 in Table 7.2 are increased from 41, 29, and 23×103 to 47,

36, and 30×103 respectively. These adjustments increase the peak velocity magnitude

such that the analytical models enclose the majority of the data points. Using the

adjustments to V as the basis for an error estimation, lumped errors of 15, 20, and 23

percent are calculated for the least-squares trials. In a similar manner, the values of V

for cases 4-6 are raised from 25, 23, and 18×103 to 29, 28, and 22×103 with resultant

errors of 14, 18, and 18 percent, respectively.

Using (7.3) and (7.5), a comparison is drawn in Figures 7.11 and 7.12 between

the two empirical models and the experimental spread. On one hand, Figure 7.11

displays the collection of data that was used in the least-squares analysis leading to the

determination of the eddy viscosity ratio and the empirically based matching radius X.

On the other hand, Figure 7.12 compares the solutions to the reserve data-sets that
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Figure 7.10: The least-squares regression of the experimental data for (a) V = 41000,
(b) V = 29000, and (c) V = 23000.
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Figure 7.11: Increased vortex Reynolds number fit with experimental data for (a)
V = 47000, (b) V = 36000, and (c) V = 30000.
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Figure 7.12: Increased vortex Reynolds number fit with experimental data for (a)
V = 29000, (b) V = 27000, and (c) V = 22000.
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are not used in the calculations, but are rather saved for the sole purpose of testing the

accuracy at various Reynolds numbers. While both frameworks capture the essential

features, the constant shear-based model shows a broader bell-shaped contour than

the narrower laminar profile. The adjusted fit behaves as anticipated, transforming

the models to effective maxima for the slower, PIV velocity measurements. Ideally, a

data set with increased fidelity and more consistent error quantification will make this

post hoc adjustment unnecessary. Interestingly, the reduced fidelity in the core region

is also depicted in the Reynolds shear-stress model data and laser Doppler velocimetry

(LDV) measurements taken by Hu et al. (2005). Their LDV data acquisition system

also deteriorates inwardly, past the point of maximum swirl.

7.2.3 Pressure Distribution

A comparison with the experimental pressure data is presented in Figure 7.13. The

data are obtained using the apparatus described in the previous section and the

first three cases defined in Table 7.2. Instead of seeding the flow for the purpose

of PIV acquisition, a modified end cap is substituted with pressure taps located at

non-dimensional radial intervals of 0.15, with the exception of two additional taps

being placed near the wall at r = 0.9 and 0.967. For simplicity, the measurements

are normalized by their values at the sidewall. As depicted in Figure 7.13, direct

comparison with the CSS model reflects substantial agreement in the outer region

leading to the sidewall. As the data approaches the centerline, the model continues to

mimic the general shape of the experimental distribution, although the measurements

are seen to fall below the theoretical prediction. This trend may be attributed, in

part, to the incompressible character of the approximation.

In two recent investigations by Majdalani (2007a) and Maicke and Majdalani

(2008b), accounting for compressibility effects was shown to reduce the pressure near

the core with successive increases in flow speed. This behavior is further confirmed by

Vatistas and Aboelkassem (2006) in a similar study of industrial cyclones.

105



0
0 . 2
0 . 4
0 . 6
0 . 8

1

r e f

p
p
∆

∆

 c o n s t a n t  s h e a r
 e x p e r i m e n t

(a) V = 47000

0
0 . 2
0 . 4
0 . 6
0 . 8

1

r e f

p
p
∆

∆

(b) V = 36000

0 0 . 2 0 . 4 0 . 6 0 . 8 1
0

0 . 2
0 . 4
0 . 6
0 . 8

1

r e f

p
p
∆

∆

r
(c) V = 30000

Figure 7.13: The CSS model compared to the experimental pressure data for (a)
V = 47000, (b) V = 36000, and (c) V = 30000 at the headwall.
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7.2.4 Limitations

Clearly, the models presented here are not unique as other reconciliatory schemes

may be derived. The CSS model swirl overshoot and location must be thoroughly

interrogated for validity via comparisons with experimental and robust computational

predictions. Another model that may be pursued consists of calculating the matching

radius such that the integrated shear stress associated with the constant shear

approximation can be made to match the corresponding value predicted by the laminar

core solution. At the outset, the surface areas under the τrθ curves in Figure 6.3 may

be matched. Whether such a scheme could produce a more accurate approximation

will remain a matter of conjecture until such time when the model is compared with

a sufficiently large collection of measurements and numerical predictions that are

focused on parametric variations in the vortex Reynolds numbers. In similar fashion,

the pressure distribution could be taken to be the target function. As alluded to

earlier, one may attempt to match pressure profiles such as those arising in Figure 6.2

to the observed patterns. In short, the matching radius could be adjusted in a variety

of ways to best reproduce laboratory or numerical experiments.

Finally, it must be borne in mind that with the full onset of turbulence, the

expressions presented here may retain their predictive capability albeit at the expense

of some loss in accuracy. Despite the presence of a nearly laminar core flow, the

outer, annular motion may no longer remain irrotational. Turbulence has the ability

to attract the surrounding irrotational fluid through frictional effects, specifically

through entrainment Kundu and Cohen (2002). While the source of entrainment

may be attributed to viscous shear in laminar flows, it is mostly inertial in turbulent

flows. In fact, the entrainment rate under turbulent conditions can far exceed any

effects that are attributable to fluid friction. When the laminar core is affected by

the turbulent outer flow, the resulting fluid is turbularized by the introduction of

small viscous eddies that can be formed at the interface between the rotational and

irrotational regions. In the bidirectional vortex chamber, the turbulent annulus can
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therefore entrain the core fluid to the extent of causing further departures from the

newly established solutions. When these turbulent effects occur, one may expect to

see higher swirl velocities from the peak region to the wall.
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Chapter 8

Summary

In this dissertation, three separate models are presented for the advancement of

modeling high-speed flows in swirl combustors. First, an important though often

overlooked framework in fluid mechanics is revisited, namely, a differential technique

that is based on the Bragg-Hawthorne equation. Second, the vorticity-stream function

approach, popular in propulsive circles, is extended to account for compressibility.

Finally, a constant shear stress model is developed to correlate the theoretical swirl

velocities that occur to experimental conditions.

8.1 Compressible Frameworks

This Bragg-Hawthorne technique was originally developed to facilitate the modeling

of axisymmetric, bathtub-like vortices with intense rotation along their primary axes.

The equation itself proceeds from a vorticity-stream function transformation of Euler’s

inviscid equations into a single, second-order PDE with two principal functions: B,

the tangential angular momentum, and H, the stagnation enthalpy or pressure head.

In past research, this equation has been explored in a multitude of physical settings,

mainly in the treatment of helical structures exhibiting strong axisymmetries, such as

those in cyclone separators or turbine compressors. However, these studies have been

limited in scope to inviscid and incompressible conditions.
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The vorticity-stream function approach was popularized in the study of solid

rocket motor internal ballistics. A combination of the vorticity and vorticity transport

equations relates the tangential vorticity to the stream function by means of a

generalized function. Like the traditional Bragg-Hawthorne framework, this technique

is usually limited to incompressible studies, though recent works by Majdalani (2007a)

and Maicke and Majdalani (2008b) have extended it to compressible conditions.

This work is primarily motivated by a propulsion related study, namely, by the

need to describe the internal gas dynamics within a self-cooled thrust chamber wherein

the propellant is compelled to follow a cyclonic flow path. At the outset, the effort

is split into two main areas, first, at developing viable mathematical frameworks

and, second, at using these frameworks to obtain compressible, inviscid, steady-state

approximations for a cylindrical cyclone. In the first part, the focus is on producing the

compressible analog of the Bragg-Hawthorne and vorticity-stream function approaches

by deriving, under isentropic flow conditions, the compressible form of the these

equations. By making use of the isentropic pressure-density relation, the stagnation

enthalpy expression (in the case of the CBH) and the momentum equation (for

the CVS) are employed to achieve the desired closure and, as such, establish the

foundation for a well-posed paradigm relating the stream function and density. This

effort gives rise to a pair of general CBH frameworks in the form of a density-stream

function formulation with the freedom to select B and H or, in the case of the CVS,

a relationship satisfying vorticity transport, that allows the investigator to satisfy

the requisite boundary conditions. Despite the ability to solve the resulting PDEs by

computer, the equations are linearized and then solved asymptotically for the wide class

of problems in which a reference Mach number, M0, could be designated as a primary

perturbation parameter. Thus, using the Rayleigh-Janzen perturbation technique,

the compressible frameworks are expanded asymptotically and linearized into several

coupled PDEs of increasing order in M2
0 . In theory, the expanded equations could be

retrieved to any desired order, which grants this approach the ability to achieve an

arbitrary level of precision. More importantly perhaps, the strategy provides a clear
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roadmap for producing analytical approximations to a wide range of fluid motions in

which density variations may be appreciable.

As the current model is a cold flow analysis, the isentropic assumption provides a

sound basis for an initial compressible flow model. For the CBH model, the purely

inviscid solution meshes well with the reversible conditions. Employing the isentropic

form in the CVS must be handled with more care. While the bulk of the solution is

inviscid, the compressible correction requires a viscous-type boundary layer for the

swirl velocity. In this case, the isentropic solution presented here should be thought

of as a first approximation, with subsequent studies supplementing the original effort

with additional boundary layer calculations at the wall and headwall and relaxing

the isentropic assumption to account for both these additions and potential hot flow

analyses.

In this second part, the relatively untested framework is applied to a specific

profile of the confined bidirectional vortex. For this purpose, the so-called linear

Beltramian and complex-lamellar models are considered to approximate the cyclonic

flow field arising in the context of a swirl-driven, VCCWC thrust chamber. These

particular models have been shown to exhibit features that are appropriate of laboratory

experiments and numerical simulations of the VCCWC prototype and of similarly

configured cyclone separators. It has also been derived directly from the incompressible

form of the Bragg-Hawthorne equation in cylindrical coordinates.

As may be characteristic of any new approach, the actual application is met by

several obstacles that are systematically identified and then overcome. In this case, the

proper specification of the auxiliary functions (B and H in the CBH and the vorticity

in the CVS) proves to be essential in achieving a valid expansion. Furthermore, it

must be realized that the choices leading to an incompressible solution cannot be

employed in the compressible framework without judicious modification. Although

the incompressible guess function may provide a suitable seed or leading-order start

of an expansion, it must be carefully amended by terms that stem from the particular

solutions of the non-homogeneous PDEs. Along similar lines, ensuring a non-singular

111



density profile along the centerline is found to be vital in securing a solvable set of

equations. In the CBH framework this is directly attributable to the selection of B

and H, while in the CVS, a viscous correction is added to the swirl velocity to provide

a physically realistic compressible solution. The present work provides guidelines for

choosing B, H, and Ω along with potentially useful series expansions in terms of the

reference Mach number.

Thus given a well-balanced procedure, the next challenge stands in resolving the

boundary conditions appropriately. This aspect is rather straightforward, especially

that the conventional constraints associated with the bidirectional vortex appear

(and are hence secured) at the leading order. In consequence, corrections of order

one and higher inherit strictly homogeneous conditions. When these conditions are

systematically used to supplement the linearized density-stream function PDEs at

each asymptotic level, a perturbation approximation of increasing accuracy can be

achieved by solving the resulting sets of equations in ascending order. The remaining

effort is facilitated by taking into account the one-way coupling that exists between

the principal PDEs at successive orders. This enables us to solve for one function

exclusively before substituting its outcome into the other. The analysis is also simplified

by lumping analytically intractable integrals into special functions that can be carried

conveniently throughout the derivation. Isolating these integrals not only reduces the

algebra involved, but also permits the direct evaluation of boundary conditions and,

as such, the attainment of a closed-form approximation. Finally, in view of the size of

M0, a first-order correction is sufficient to capture the bulk effects of fluid dilatation.

The characterization of the compressible Beltramian motion leads to quite

interesting and rich patterns. In summary, increasing either the injection Mach

number or, to a lesser extent, the ratio of specific heats, will trigger a steepening

effect with respect to the incompressible flow analog. This steepening mechanism is

accompanied by a sharp density expansion near the axis of rotation and an outward

shifting of the mantle interface which separates the outer and inner vortex regions.

At the outset, the annular region through which the incoming stream is funneled into
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the chamber undergoes a constriction in its cross-sectional area. This pinching of the

outer vortex is akin to the behavior exhibited by the annular region of the Vortex

Injection Hybrid Rocket Engine (VIHRE) as a reaction to increasing the burning rate

along its sidewall (Knuth et al., 1996; Majdalani, 2007b). Despite the model being

incompressible, augmenting the injection mass flow rate within the outer annulus

(by virtue of distributed mass addition along the sidewall) forces the mantle to slide

outwardly. This outward movement is needed to increase the radius of the inner

vortex in such a way to permit more mass to exit the chamber. In the compressible

case, a similar mechanism is observed and this may be attributed to the density

stratification that is induced by fluid compression in conjunction with the presence of

strong radial gradients; these give rise to a higher density fluid in the outer vortex

and a markedly lower density within the chamber core. Clearly, increasing the fluid

density in the annular region is somewhat equivalent to increasing the mass flux

locally. Both actions lead to a widening of the outlet section, an outward shifting

of the mantle, and a corresponding redistribution of the velocity profiles. While a

similar steepening due to compressibility has been noted in SRM internal ballistics (see

Balakrishnan et al., 1992; Majdalani, 2007a; Maicke and Majdalani, 2008b; Saad and

Majdalani, 2010; Akiki and Majdalani, 2012), the flattening of the Beltramian core

profile remains spatially restricted; it follows a redistribution that enables the motion

to still satisfy the conservation condition imposed at the inflow-outflow boundary in

the exit plane.

In addition to the steepening caused by successive increases in the Mach number,

the present study shows that higher values of M0 lead to lower pressures in the core

region. These, in turn, can promote a stronger siphoning process through which a

more effective flow streaming towards the headwall is promoted along with a more

stable development of cyclonic motion. Finally, the sensitivity analysis seems to reveal

a trade-off between the injection Mach number and the inflow swirl parameter κ. Due

to the inability of an axisymmetric flow field to experience density variations in the θ

direction, lower values of κ can suppress the effects of fluid compression by reducing
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the relative contributions of the axial and radial velocities. This behavior appears

to be inline with the findings of the CVS model, which requires an incompressible

swirl velocity, and has its compressible effects further mitigated with the lowering of

κ. Such would be the outcome unless κ is offset by a sufficiently large Mach number.

In closing, the study presented here is not meant to be a comprehensive investigation

of the compressible Bragg-Hawthorne equations. Our framework seems to be viable

for a wide range of problems encompassing both confined and unconfined vortex flows.

In the case of the bidirectional vortex, other candidate functions for B and H may

be chosen to the extent of producing alternate models for the VCCWC internal flow

field. While the present analysis focuses on the spatially linear solution to the stream

function equation, it can be suitably extended to the axially trigonometric, nonlinear

Beltramian case.

8.2 Constant Shear Stress Swirl Velocity

The constant shear stress model developed here extracts the near core velocity

before matching it to the outer, inviscid solution, which is mainly irrotational. The

approximation exhibits one degree of freedom in the matching radius that may be

used to anchor the solution to a given flow. The matching algorithm is enhanced

through the introduction of V , the vortex Reynolds number, by way of the laminar

core solution of Majdalani and Chiaverini (2009). To facilitate comparison to the

experimental data, a modified least-squares algorithm is developed to account for the

moving boundary during the CSS optimization process.

Both the constant shear stress model and the laminar core model make use of

an effective eddy viscosity to accurately represent the experimental data provided

by Rom (2006). The effective viscosity is determined by a least-squares fit of both

models to the experimental data. In the case of the CSS model, the data may be used

directly in determining the matching radius, whereas in the laminar core model, the

effective vortex Reynolds number is calculated instead. Based on available data, a
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correlation constant of X0 ' 50 is obtained, which allows the CSS model to match the

experimental results over a wide range of V . Similarly, an enhanced eddy viscosity

ratio of `t ' 152, leads to good agreement between the laminar core model and

experimental data. Both of these values are found to be invariant over the values of

V that are considered with errors in the range of 15-25 percent.

8.3 Future Work

The Bragg-Hawthorne framework developed in this dissertation remains general enough

to be employed in a wide variety of both swirl and non-swirl driven applications.

For example, it should be possible to use the present framework to redevelop a

compressible flow model for a solid rocket motor in cylindrical coordinates reminiscent

of the vorticity-stream function solution of Majdalani (2007a). Additionally, it may

be possible to revisit some of the classical vortex models presented in Chapter 2 and

extend the original works to account for compressibility. Also of interest are alternate

means of specifying the B and H parameters in the model. While the approach

outlined in this dissertation provides one means of achieving an analytically tractable

model, an alternate specification of these terms may also lead to new analytical

solutions. Of particular interest are new specifications for B, which would imply a

different swirl velocity profile than the one presented here.

The bidirectional vortex flow field has a number of avenues for further investigation.

The experimental data from Rom (2006) has proven instrumental in the formulation

and validation of the models in this dissertation. However, the original experiment was

carried out prior to a number of the advances in confined vortex modeling. Specifically,

Rom’s study did not actively pursue or correlate data to the vortex Reynolds number,

as it was unavailable when the study occurred. A new experiment fully characterizing

a wide range of V would be instrumental in validating both the general models and

the effective viscosity correlations developed in Chapter 6.
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Since Rom’s study only focused on the swirl velocity profile, additional studies

incorporating stereoscopic PIV that could capture the fully three-dimensional character

of the flow field would be invaluable. Such a data set would provide both verification

of the compressible frameworks in their entirety, but also help in guiding the analysis

of specific features, such as the variability of the mantle location presented in Section

7.1.2. With a modular test bed, the open fraction could be varied in an update to

Smith (1962a,b) that would help to isolate the processes that causes such a shift.

Numerical models of the bidirectional vortex flow field have also been relatively

scarce in the literature. Future numerical examinations could center around two

separate approaches. In the first, a fully three-dimensional model would be explored

using either commercial or custom CFD software. This line of inquiry remains the

most arduous, as the full solution requires a compromise between realistic model

and mesh generation and a solvable result. The value of such a comprehensive

model would be much the same as a revisiting of the classical vortex experiments,

providing both validation and additional data for any empirical correlations. In the

second, a numerical solution to the reduced-order models would also be of a significant

benefit. While the asymptotic approximations, both the compressible corrections

presented here and the viscous corrections by Majdalani and co-workers (see Majdalani

and Chiaverini, 2009; Batterson and Majdalani, 2010a,b,c,d), are well-behaved and

match the existing experimental and numerical data available, a numerical solution

to these frameworks would be worthwhile. The pseudo-spectral method adopted by

Batterson and Majdalani (2011a,b) in their investigation of the biglobal instability of

the bidirectional vortex may be modified to solve the PDEs of each framework.

116



Bibliography

117



Bibliography
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Summary of Equations
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A.1 Integral Definitions

The integrals in Table A.1 appear in Section 5.1.3 during the solution of the

compressible correction to the Bragg-Hawthorne formulation of the bidirectional

vortex.

Table A.1: Operational parameters for the PIV experiments.

I Definition

I1(r)
∫ r
1
J1 (λ0r1)Y1 (λ0r1) {−λ0r1 [J2

0 (λ0r1) + J2
1 (λ0r1)]− J0 (λ0r1) J1 (λ0r1)} dr1

I2(r)
∫ r
1
r31J

3
1 (λ0r1)Y1 (λ0r1) dr1

I3(r)
∫ r
1
J2
1 (λ0r2) {J0 (λ0r2) J1 (λ0r2) + λ0r2 [J2

0 (λ0r2) + J2
1 (λ0r2)]} dr2

I4(r)
∫ r
1
−r32J4

1 (λ0r2) dr2

I5(r)
∫ r
1
J1 (λ0r1)Y1 (λ0r1) {2λ0r1J2

0 (λ0r1)− J0 (λ0r1) J1 (λ0r1)} dr1

I6(r)
∫ r
1
r1J1 (λ0r1)Y1 (λ0r1) dr1

I7(r)
∫ r
1
Y1 (λ0r1)Rb(r1)dr1

I8(r)
∫ r
1
J2
1 (λ0r2) {J0 (λ0r2) J1 (λ0r2)− 2λ0r2J

2
0 (λ0r2)} dr2

I9(r)
∫ r
1
−r2J2

1 (λ0r2) dr2

I10(r)
∫ r
1
J1 (λ0r2)Rb(r2)dr2

A.2 Summary of Derived Equations

A.2.1 Dimensional Governing Equations

Conservation of Mass: Original Citation (3.10)

∇̄ ·
(
ρ̄Ū
)

= 0 (A.1)
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Conservation of Energy: Original Citation (3.13)

∇ ·
(
ρ̄H̄Ū

)
= 0 (A.2)

Conservation of Momentum: Original Citation (3.14)

Ū · ∇Ū = −∇p̄
ρ̄

(A.3)

Stagnation Enthalpy: Original Citation (3.18)

H̄ =
1

2
(Ū · Ū) +

γ

γ − 1

p̄

ρ̄
(A.4)

A.2.2 Normalization Equations

Spatial Normalization: Original Citation (3.7)

z =
z̄

a
; r =

r̄

a
; ∇ = a∇̄; β =

b

a
(A.5)

Velocity Normalization: Original Citation (3.8)

u =
ū

U
; v =

v̄

U
; w =

w̄

U
; Ω =

aΩ̄

U
; ψ =

ψ̄

ρ0Ua2
; H =

H̄

U2
(A.6)

Thermodynamic Normalization: Original Citation (3.9)

p =
p̄

p0
; ρ =

ρ̄

ρ0
; Q =

Q̄

Ua2
=
Ai
a2

; ṁ =
¯̇m

ρ0Ua2
(A.7)

A.2.3 Normalized Governing Equations

Conservation of Mass: Original Citation (3.12)

∇ · (ρU) = 0 (A.8)
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Conservation of Energy: Original Citation (3.40)

∇ · (ρHU ) = 0 (A.9)

Conservation of Momentum: Original Citation (3.17)

U · ∇U = − ∇p
γM2ρ

(A.10)

Stagnation Enthalpy: Original Citation (3.39)

H =
1

2
(u · u) +

1

M2 (γ − 1)

p

ρ
(A.11)

A.2.4 Vorticity-Stream Function General Form

Stream Function Equation: Original Citation (3.32)

ρD2ψ + rρ2Ωθ = ∇ρ · ∇ψ (A.12)

Vorticity Transport Equation: Original Citation (3.34)

∇× (U ×Ω) =
1

γM2ρ2
∇ρ · ∇p (A.13)

Radial Momentum Equation: Original Citation (3.35)

u
∂u

∂r
− v2

r
+ w

∂u

∂z
= − 1

γM2ρ

∂p

∂r
(A.14)

Axial Momentum Equation: Original Citation (3.36)

w
∂w

∂z
+ u

∂w

∂r
= − 1

γM2ρ

∂p

∂z
(A.15)
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Isentropic Equations: Original Citations (3.37) and (3.38)

ρ = p1/γ (A.16)

T = p1−1/γ (A.17)

A.2.5 Bragg-Hawthorne General Form

Stream Function Equation: Original Citation (3.64)

D2ψ + ρ2
(

Γ
∂Γ

∂ψ
− r2∂H

∂ψ

)
=

1

ρ
∇ρ · ∇ψ (A.18)

Density Equation: Original Citation (3.66)

H − Γ2

r2
=

1

2ρ2r2

[(
∂ψ

∂z

)2

+

(
∂ψ

∂r

)2
]

+
1

M2 (γ − 1)
ργ−1 (A.19)

A.2.6 Perturbed Vorticity-Stream Equations

Leading-Order Stream Function Equation: Original Citation (4.40)

D2ψ0 + rΩ0 = 0 (A.20)

First-Order Stream Function Equation: Original Citation (4.41)

D2ψ1 + rΩ1 = ∇ρ1 · ∇ψ0 − rΩ0ρ1 (A.21)

Leading-Order Vorticity Transport Equation: Original Citation (4.37)

∇× (U0 ×Ω0) = 0 (A.22)
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First-Order Vorticity Transport Equation: Original Citation (4.38)

∇× (U0 ×Ω1) +∇× (U1 ×Ω0) = −∇ρ1 ×∇p1
γ

(A.23)

Leading-Order Radial Momentum Equation: Original Citation (4.43)

−1

γ

∂p1
∂r

= u0
∂u0
∂r

+ w0
∂u0
∂z
− v20

r
(A.24)

First-Order Radial Momentum Equation: Original Citation (4.44)

−1

γ

∂p2
∂r

= ρ1

(
u0
∂u0
∂r

+ w0
∂u0
∂z
− v20

r

)
+
∂(u0u1)

∂r
+ w0

∂u1
∂z

+ w1
∂u0
∂z

(A.25)

Leading-Order Axial Momentum Equation: Original Citation (4.45)

−1

γ

∂p1
∂z

= w0
∂w0

∂z
+ u0

∂w0

∂r
(A.26)

First-Order Axial Momentum Equation: Original Citation (4.46)

−1

γ

∂p2
∂z

= ρ1

(
w0
∂w0

∂z
+ u0

∂w0

∂r

)
+
∂(w0w1)

∂z
+ u0

∂w1

∂r
+ u1

∂w0

∂r
(A.27)

A.2.7 Perturbed Bragg-Hawthorne Equations

Leading-Order Stream Function Equation: Original Citation (4.17)

D2ψ0 +B0
dB0

dψ
− r2dH0

dψ
= 0 (A.28)

First-Order Stream Function Equation: Original Citation (4.18)

D2ψ1 +B1
dB1

dψ
− r2dH1

dψ
=
∂ρ1
∂z

∂ψ0

∂z
+
∂ρ1
∂r

∂ψ0

∂r

− ρ1
[
D2ψ0 + 3

(
B0

dB0

dψ
− r2dH0

dψ

)]
(A.29)
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Leading-Order Density Equation: Original Citation (4.20)

H0 −
B2

0

2r2
=

1

2r2

[(
∂ψ0

∂r

)2

+

(
∂ψ0

∂z

)2
]

+
γ + 1

γ − 1
ρ1 (A.30)

First-Order Density Equation: Original Citation (4.21)

2ρ1

(
H0 −

B0

2r2

)
+H1 −

B0B1

2r2
=

1

2r2

[
∂ψ0

∂r

∂ψ1

∂r
+
∂ψ0

∂z

∂ψ1

∂z

]
+
γ + 1

γ − 1

(
ρ2 + γρ21

)
(A.31)
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Appendix B

Piecewise Least Squares Code

This first function calculates the matching radius using a least squares regression. The

quantity in Sum[] is the derivative of the expression of interest. Findroot is used to

solve the nonlinear equation and is given a starting value of 0.25 (an approximation

of the matching radius). Here l is the data set being compared to the theory and ω is

the injection swirl velocity. For normalized cases, this can be set to 1.

MatchCalc [ l , ω ] :=

Module [{ i , pos = Length [ l ]} ,

FindRoot [

Sum[ ( ( 2 ω l [ [ i , 1 ] ] ) / βˆ3 − ( 2 ω l [ [ i , 1 ] ]

(1 − 2 Log [ l [ [ i , 1 ] ] /β ] ) ) /β ˆ3)

( (ω l [ [ i , 1 ] ] (1 − 2 Log [ l [ [ i , 1 ] ] /β ] ) ) /βˆ2 −

l [ [ i , 2 ] ] ) , { i , pos } ] == 0 , {β , 0 . 2 5 } ] [ [ 1 , 2 ] ] ]

The next function calculates the truncated data set based on a matching radius

found from the previous function. Here n2 is the newly truncated data set.

TruncList [ l , ω ] :=

Module [{ i , tRad , n2} ,

n2 = {} ;

tRad = MatchCalc [ l , ω ] ;
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For [ i = 1 , l [ [ i , 1 ] ] < tRad , i ++, AppendTo [ n2 , l [ [ i ] ] ] ] ;

n2 ]

Finally, PiecewiseLeastSquares is the function that combines the previous

subroutines and contains the iteration and tolerance logic. The final output will

be the matching radius for the piecewise function that conforms to the input tolerance.

Here tol is the input tolerance used in the convergence calculation and val and val2

are placeholder lists used to hold the truncated data from this step and the previous

step.

P iecewi seLeastSquares [ l , t o l , ω ] :=

Module [{ val , val2 , t L i s t } ,

t L i s t = TruncList [ l , ω ] ;

va l = MatchCalc [ l , ω ] ;

va l2 = MatchCalc [ TruncList [ l , ω ] , ω ] ;

While [ va l − va l2 > to l ,

t L i s t = TruncList [ tL i s t , ω ] ; { va l = val2 ,

va l2 = MatchCalc [ tL i s t , ω ] } ] ;

MatchCalc [ tL i s t , ω ] ]
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