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Abstract

In this thesis, the compressible flow inside a rectangular, porous channel is considered. A

Rayleigh-Janzen perturbation is applied to the inviscid, steady, two-dimensional, isentropic

flow equations. Closed form expressions are derived for the main properties of interest. The

results of the study are verified via numerical simulation, with laminar and turbulent models,

and with available experimental data. The critical point where the flow field reaches sonic

conditions is determined analytically. Our analysis captures the steepening of the velocity

profiles that has been reported in several studies using either computational or experimental

methods. Explicit design criteria are presented to quantify the effects of compressibility in

rockets and other two-dimensional injection-driven chambers. Compressibility effects on

motor performance are quantified through the use of ballistics calculations to determine the

performance of a motor.
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Chapter 1

Introduction

Flow modeling has been a vital part of fluid mechanics since its inception. Often the

governing equations required to define an engineering problem are so intricate that no

analytical solution is readily available. Through flow modeling it is possible to consider a

practical application and through judicious use of limiting assumptions and simplifications,

arrive at a solution that captures the essence of the problem and approximates the behavior

observed in experiments.

Fluid models also serve to further our understanding of specific aspects of fluid mechan-

ics. In an introductory course to viscous fluid flow,1 students beginning a study of viscosity

do not start with flow over an airfoil, but rather with flow between a fixed and a moving

plate. After this conceptual model is mastered, students graduate to more complex models

such as the flow between axially moving or rotating cylinders. In this way, evolving flow

models form the foundation of much of our understanding of fluid mechanics.

The development of flow models for practical problems follows the same evolution. First

a basic model is developed. As that first study is understood, more complete models are

built by relaxing assumptions and including effects previously neglected. As each successive

model becomes more realistic, so will the solution in its ability to predict experimental

results. This graduated increase in accuracy does not, however, come without cost. The

equations describing the more complete systems become more complex, the cost of solving
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them analytically or computationally increases, and the ability to extract physical meaning

from the solution diminishes. For these reasons, it is important to balance the accuracy of

a solution and its complexity.

The model of interest for this thesis is the steady, two-dimensional, inviscid, isentropic,

compressible flow of a fluid through a rectangular channel with mass injection through its

porous sidewalls. More specifically we are interested in the steady flow of a solid rocket

motor in a long, two-dimensional configuration. It is the aim of this thesis to extend

the present knowledge of this flow by accounting for the effects of compressibility on the

parameters of interest.

1.1 The Evolution of the Cartesian Flow Model

Just as the fluid mechanics student examines flow over a flat plate before graduating to

different models, understanding the first conceptual models for this type of channel may

be useful before solving the compressible analog. There are many benefits to studying the

previously published models. These allow the researcher to see past methods, which can

help to guide the approach to new problems. They also give a sense of what limitations

were faced in the past, and if it is possible to overcome them with newer technology or

methods.

1.1.1 Berman’s Solution

One of the first models detailing this type of fluid motion was put forth by Berman.2 He

found a steady, viscous, incompressible solution to the rectangular channel problem by

constraining the normal velocity of the fluid to be independent of axial position. A stream

function approach was employed to reduce the Navier-Stokes equations to the following

nonlinear, third order, ordinary differential equation:

R(f ′2 − ff ′′) + f ′′′ = k (1.1)
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Berman posits that when the injection velocity is small, the effects of the transverse flow

through the porous walls can be determined by a perturbation expansion using a Reynolds

number as a perturbation parameter. This insight comes from the fact that the solution

to the viscous Cartesian channel flow without permeable walls is the well known Poiseuille

flow described by

f ′′′ = k (1.2)

It is reasonable to conclude that the influence of the injection from the walls is a displacement

effect on the flow, a result of the term that is multiplied by the Reynolds number in Eq.

(1.1).

Berman’s solution is for a case of uniform suction, but the results for an injection case

are analogous. His solution is the first attempt to find the pressure field and velocity

profile information for all points in the flow. Berman observes that the velocity profile with

uniform suction is flatter than the traditional Poiseuille profile near the center-axis, while

being steeper near the walls. He also notes that the total pressure drop for a given length

of channel is higher when the walls are impermeable.

Berman’s study is invaluable since it sets the standard for investigations of this nature.

Not only is the study worthwhile as a mathematical exercise, but Berman translates the

mathematical solution into understandable physical terms. It is not enough to simply state

a solution to the equations of motion, it is necessary to interpret those results in physically

significant ways to further improve our understanding of flows through porous membranes.

1.1.2 Taylor’s Solution

The work of Sir Geoffrey Taylor3 is another landmark study in the modeling of internal flow

fields. Taylor examines the fluid flow in a wedge and in a cone with permeable walls. As in

Berman’s study, Taylor’s primary concern is toward the effect of suction applied through

the walls on the resulting flow field. Taylor also considers the limiting case as the angle of

the wedge or cone goes to zero, defining the effects of suction flow in a slab or cylindrical
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geometry. Taylor, like Berman, determines an incompressible, steady state solution to his

problem. However, Taylor’s solution differs from Berman’s in that it is an inviscid solution.

In addition to extending the permeable wall solution to multiple configurations, Taylor

uses a different method of solution. Rather than the differential approach of Berman, Taylor

solves an integral form of the continuity equation. He does this by modeling the permeable

walls as having resistance values which determine how easily the fluid could flow normal

through the wall. When applied to the limiting cases of the parallel plane and the cylinder,

Taylor finds that the axial velocity distribution is given by familiar cosine functions:

u

√

ρ

2S
= cos

πy

2b
for parallel planes (1.3)

u

√

ρ

2S
= cos

πy2

2b2
for cylinders (1.4)

where ρ is the density, S is the suction applied as determined by the resistance of the porous

sheet with units of pressure (Pa), u is the longitudinal velocity, and b is the height of the

chamber. It is also important to note that y varies from 0 to b. The establishment of the

cosine profiles is not Taylor’s only contribution to the permeable wall problem. He also

conducts experiments with both porous cylinders and cones in which convincing verifica-

tions of the velocity profiles are presented. These experiments illustrate the validity of the

normal injection approach for studying the permeable wall problem, and show that accurate

predictions for this type of motion are possible.

1.1.3 Aerospace Applications

The first application of the permeable walled flow to rocketry is achieved by Culick.4 Using

a differential stream function approach to the axisymmetric problem, he is able to solve the

vorticity equation in terms of the stream function. With an incompressible solution to the

stream function, Culick is then able to determine the other parameters of interest, velocity,

pressure distribution, etc. Culick’s motivation for determining the mean flow in a cylindrical

chamber is to further the understanding of the influence of the surface-injected mass flow
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on the mean flow in the chamber and on the acoustic waves present in the simulated rocket

motor.

Because Culick is the first to approach the problem from a rocketry standpoint, his

study forms the basis of further investigations of channel flows in aerospace applications.

Indeed, in this study we extend his incompressible stream function approach to account for

the compressibility of the flow. It will be shown that the leading order approximation is

Culick’s incompressible solution for the two-dimensional flow case.

Because Culick shows that Taylor’s analysis of the permeable walled channel gives a

reliable approximation to the core flow inside a solid rocket motor, further study of the

phenomenon is now possible. While Culick’s solution is inviscid, the normal injection con-

dition applied at the injection surface enables the fluid motion to retain critical features of

the real, complex, reactive flow field. To this date, Culick’s incompressible model remains

one of the most cited and utilized models in solid rocket theory. It has been repeatedly

considered by Traineau et al.,5 Apte and Yang,6 Najjar et al.,7 Balakrishnan et al.,8 Beddini

and Roberts,9 and many others. The justification for its ubiquitous use stems from two key

factors: the apparent suitability of non-reactive models to simulate the harsh environment

inside a real rocket motor and the validity of using a non-deformable permeable chamber

with non-regressing walls. The first factor may be attributed to propellant heat release

being confined to the relatively thin flame zone forming above the burning surface (Chu

et al.10). The second factor may be associated with the weak sensitivity of the streamline

curvature to the wall regression rate. As shown by Zhou and Majdalani11 the effects of

propellant regression are small in the operational range of most motors.

1.2 Motivation for Compressible Studies

The motivation for extending the solution to include compressibility has several reasons.

While there have been studies that attempt to determine the effects of compressibility in

solid rocket motors, none of these manage to capture the fully two-dimensional behavior
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in a closed form analysis. The most notable of these previous studies are analyses by

Traineau et al.,5 King,12 Flandro,13 Balakrishnan et al.,14 and Gany and Aharon.15 Most

are pseudo-one-dimensional or limited to numerical integral formulations; moreover, studies

with analytical solutions often bear more severe limitations or restrictions than those im-

posed in the present work. Evidently, if a compressible analog to the Taylor-Culick profile

can be found, then inviscid solutions would continue to be valuable to advance the theory

of internal, rotational, compressible, and even reactive flow. Secondly, with increases in

computational power and complexity in available solvers, more accurate and extensive ana-

lytical models become highly desirable to verify the efficacy of new computational methods.

Just as an analytical solution by itself is of limited value without experimental or numer-

ical confirmation, so do new computational codes require up-to-date analytical models for

verification. Next, an improved compressible model can provide the foundation for more

elaborate analysis. A compressible steady flow model can also help investigators to recast

the time-dependent flow models for rocket motors; the existing relations can support the

stationary and even traveling waves that are established in actual rocket motor operation,

and which may be affected by compressibility effects (Majdalani16). Finally, a compressible

Taylor representation could be applied to the nozzleless motor concept. As explained by

Gany and Aharon,15 the nozzleless motor gains in simplicity what it lacks in power. The

removal of the nozzle does lower the efficiency of the motor, but the cost savings gained

from eliminating what can be a complex nozzle assembly may make the nozzleless motor

an attractive, low cost alternative in some (ramboosting) applications.

1.3 Classification of Compressible Methods

With the motivation for the study clearly defined, one must determine a solution method-

ology. Many different approaches have been used in compressible flow theory. Different

approaches have different benefits and are applicable to certain sorts of problems. Flows

can be classified in a number of ways. Internal flows are bounded or partially bounded by

6



walls that contain the flow field. The primary interest in this type of flow is the effects of the

walls on the flow. External flows are concerned with a body surrounded by the flow field.

However the most important factor in determining a solution method is the dimensionality

of the motion. Most solutions are classified as either one-dimensional or multi-dimensional.

Often, as long as the dimensionality of the solution is consistent, it can be applied to internal

or external flows. As a result, we further examine the solution methods for one-dimensional

and multi-dimensional flows.

There are many numerical methods that can be applied to compressible flow theory.

For example, the method of characteristics, no longer in vogue, has been successfully ap-

plied to compressible flows, specifically to the design of supersonic nozzles.17 This method

is limited by the requirement that the entire flow is supersonic, which is not the case in

the slab rocket motor. The relaxation method is another finite difference method that can

capture both subsonic and supersonic mixed flows.18 In solid rocket research, Traineau et

al.5 solve the equations numerically using a two-dimensional integration of the Euler equa-

tions via a finite volume predictor-corrector method to compare with their experimental

and theoretical results. Vuillot and Avalon19 solve the two-dimensional, laminar, compress-

ible, unsteady Navier-Stokes equations to understand the effects of compressibility on the

acoustic boundary layers in solid motors. More recently, Wasistho et al.20 have conducted

numerical simulations in an attempt to quantify the effects of compressibility on the transi-

tion to turbulent flow. Today, commercial CFD codes can be used to explore compressible

flow problems with different solver methods. While these methods will generate a solution,

they are not chosen as the primary method of analysis for this study because they do not

provide closed form solutions. If no method is available to determine a closed form solution,

then the numerical methods provide a necessary resource. Therefore, in the sections that

follow we limit the discussion to analytical methods.

7



1.3.1 One-Dimensional Compressible Flows

One-dimensional flow is composed of flow in a single direction, with all derivatives per-

pendicular to the chosen direction vanishing. Taylor21 demonstrates that this type of flow

can be solved via closed form integration if the flow is adiabatic. A more general solution

allowing for heat conduction is provided by von Mises.22

More limited solutions have also been determined. The most basic of these models being

steady one-dimensional flow in a channel. Since the flow in such a channel is almost entirely

axial, this assumption often gives a good approximation of the realistic compressible flow in

such a configuration. Rayleigh and Fanno flows inside a channel are good examples of typical

one-dimensional, compressible solutions.23 For most channel flows, these solutions are good

representations. However, for the rocket motor case the injection of mass perpendicular to

the axial velocity makes the problem multi-dimensional and, as a result, more elaborate

methods are required.

Most one-dimensional models do not require special techniques once limiting assump-

tions are applied. This is the reason that they are so popular for modeling not only truly

one-dimensional flows, but also quasi-one-dimensional flows, where variations perpendicular

to the streamwise velocity are negligible.

1.3.2 Two-Dimensional Compressible Flows

Since the flow for the slab motor is two-dimensional, one would expect that two-dimensional

methods would yield the most promising avenues to address the problem. To that end,

we present a survey of different two-dimensional methods and a brief summary of their

advantages and disadvantages for handling the present problem.

The first solution method is that of the small perturbation theory. This method is most

often applied to external flows over slender bodies. Since the disturbances caused by the

body are small, one can use linearized equations to find an approximate solution to the

flow field. A classical example of this method is flow over a wavy wall shown by Ackeret.24

While the small perturbation theory works well for slender bodies subjected to external
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flows or for internal flows with slightly tapered walls, it is not appropriate for the present

study.

The hodograph method is another way to solve compressible flow problems.25 Here

one chooses the velocities as independent variables instead of the geometric coordinates

normally used. The benefit of this transformation is that with the change in variable,

the stream function becomes linear with respect to the velocity variables, and as a result

becomes more susceptible to solution. The equations in the hodograph plane are often

reducible using complex variable methods. Classic examples of hodograph theory include

work by Tsien26 and von Kármán27 who were primarily interested in external flows over

various body shapes. Cohen28 more recently used the hodograph technique in the design

of high-lift airfoils. The hodograph method can be a powerful method, but it also has

limitations attached to it. In the literature it is primarily used for external flows. It is

possible to adapt it to handle the internal flow in the present study, but the effort could be

prohibitive. A more acute problem is that while transformation to the hodograph plane can

facilitate a solution, it also makes translation back to the laboratory coordinates difficult.

This makes comparisons to other work in the rocket motor field a cumbersome proposition

as transformations back and forth between the hodograph and the laboratory coordinates

would be required.

The next method for consideration is the Prandtl-Glauert expansion.18 This method

uses an expansion based on a shape parameter present in the flow field of interest. The

velocities of interest are expanded in a series of the shape parameter. In this manner, one

substitutes the expanded variables back into the equations and then segregates them by

order of the shape parameter. These perturbed equations are then solved via traditional

methods to determine the solution to the flow field. In a series of NACA reports, Kaplan29–31

successfully applies the Prandtl-Glauert expansion to a number of different external flows.

In work more applicable to this study, a variation of this method was used by Balakr-

ishnan et al.14 to determine the flow field properties in a long, slender rocket motor. In

this work, Balakrishnan and his coworkers expand the governing equations in terms of the
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shape parameter h/a, where h is the height of the motor and a is the length. For long,

slender motors this parameter is small thus reducing the truncation error in Balakrishnan’s

approximate pseudo-two-dimensional approach. Applying this expansion to the governing

equations produces at the leading order,

∂

∂x

(

ρuxk
)

+
∂

∂y

(

ρvxk
)

= 0 (1.5)

ρu
∂u

∂x
+ ρv

∂u

∂y
= −∂p

∂x
(1.6)

∂p

∂y
= 0 (1.7)

and

ρu
∂

∂x

(

cpt+ 1
2u

2
)

+ ρv
∂

∂y

(

cpt+ 1
2u

2
)

= 0 (1.8)

where u and v are the axial and transverse velocities, ρ is the density, p is the pressure,

t is the temperature, cp denotes the specific heat at constant pressure, and k is zero for

two-dimensional flows and unity for the axisymmetric case. Note the approximation in the

transverse momentum equation. This set is then transformed by introducing the stream

function to produce the following

√

γ

γ − 1
=

∫ x

0

(

Ξ

X

)k [

P (Ξ)

P (X)

]
1

γ

{

1 −
[

P (X)

P (Ξ)

](γ−1)/γ
}−1/2

dΞ (1.9)

where Ξ is a nondimensional strained coordinate in the axial direction and γ is the ratio of

specific heats. Equation (1.9) is then integrated numerically to determine the pressure dis-

tribution with respect to X. With the pressure distribution determined, the other physical

properties can be determined by substitution back into the governing equations.

The Prandtl-Glauert expansion method is a valid method to use for the present study

but there are two concerns that arise from employing it. The first concern is that the solu-

tion is limited to long, slender motors since the perturbation expansion requires the shape

parameter to be small. For shorter motors it is possible that this method will deteriorate.
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The second concern is that the resulting equations from the shape expansion must be nu-

merically integrated to produce a solution. To find a closed-form solution, another method

must be employed.

The final method presented here is the Rayleigh-Janzen perturbation expansion. So

named after the work presented by Janzen32 and Rayleigh33 in solving compressible flows,

the Rayleigh-Janzen method requires one to expand the variables in a series of the Mach

number squared. In this manner, one substitutes the expanded variables back into the

equations and then segregates them by order of the Mach number. These perturbed equa-

tions can then be solved by traditional methods to determine the solution to the flow field.

Unlike the small perturbation linearization, the Rayleigh-Janzen method is suited for both

external flows and internal flows.

This technique is used by Flandro13 in the context of a compressible, internal burning,

solid rocket motor. However, Flandro uses the expansion to solve quasi-one-dimensional

forms of the governing equations; his solution is limited by its inability to satisfy the com-

pressible, first order, vorticity transport equation. More recently, the Rayleigh-Janzen ex-

pansion has been applied successfully by Majdalani34 to determine the compressible analog

to the Taylor-Culick flow field in a cylindrical geometry. While the Rayleigh-Janzen method

has been used to analyze other flow fields, notably the work on Hill’s spherical vortex by

Moore and Pullin35 and the Stuart vortex by Mieron et al.,36 it has not been widely applied

to multi-dimensional fluid motions, leaving open the possibility of using this approach in

other previously untreated internal flow problems.

Unlike the Prandtl-Glauert expansion, this method is not restricted by the size of the

motor, making it ideal for handling a wide range of aspect ratios. It does require that the

characteristic wall Mach number used in the expansion process to be small; for the range

of rocket motor operation a small wall Mach number is virtually assured. As a result,

the Rayleigh-Janzen method can render solutions that are valid over the entire range of

motor aspect ratios and operating conditions. For these reasons, it is chosen as the primary

method of analysis.
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What follows is our analysis of the compressible slab rocket motor. In Chapter 2 the

geometric model is defined and the limiting assumptions are introduced. Furthermore, the

governing equations for the flow field are derived and non-dimensionalized. Chapter 3 intro-

duces the Rayleigh-Janzen perturbation expansion and illustrates the solution methodology.

The results of the study are presented in Chapter 4, complete with comparisons to previ-

ous models and numerical and experimental verifications. Design criteria and performance

characteristics are also derived. Chapter 5 brings the study to its conclusion, summarizing

the results and discussing possible extensions and continuations based on this work.
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Chapter 2

Problem Definition

2.1 Geometry

To model the semi-infinite two-dimensional rocket motor flow field, i.e. the slab rocket

motor, a rectangular chamber of length L0 and half height of a is used. Ls is the sonic

length and is specified as the distance from the origin that fluid in the chamber must travel

to reach sonic conditions. The origin of the coordinate system describing the domain is

located on the vertical center of the headwall. The spatial variables x̄ and ȳ are defined as

the directions parallel and normal to the center-axis. The motor extends to infinity in the

z̄-axis direction. Taking advantage of symmetry, a solution can be obtained for the top half

of the geometry, namely 0 ≤ ȳ ≤ a and 0 ≤ x̄ ≤ L0, and mirrored across the center-axis.

Figure 2.1 depicts the solution domain for the slab motor.

Along the solid, porous sidewalls of the rocket, a uniform injection velocity of Uw is

imposed. While there are any number of factors that could affect the local velocity at the

propellant surface, density fluctuations, localized non-homogeneity of the propellant, and

erosive burning, to name a few, this constraint gives a reasonable approximation of the

injection mechanism at the propellant surface. The headwall of the motor is solid and inert,

giving a zero axial velocity boundary condition at the headwall.
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Figure 2.1: Porous channel with an inert headwall.

2.2 Derivation of the Governing Equations

A stream function approach is at the heart of the solution covered in this thesis. To facilitate

this approach, the following expressions relating the velocities and the stream function are

used. These are

ū =
1

ρ̄

∂ψ̄

∂ȳ
(2.1)

v̄ = −1

ρ̄

∂ψ̄

∂x̄
(2.2)

where the over-bar indicates dimensional variables.

2.2.1 Vorticity Equation

The vorticity equation is used to derive the main sets of governing equations in perturbation

variables for the flow. Recalling the definition of vorticity for two-dimensional Cartesian

flow, one has

Ω̄ = ∇̄ × Ū =

(

∂v̄

∂x̄
− ∂ū

∂ȳ

)

k̂ (2.3)
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where Ū = uî+vĵ. The stream function relations from Eqs. (2.1) and (2.2) are substituted

into Eq. (2.3) and expanded to give the following scalar equation

Ω̄ = −1

ρ̄

(

∂2ψ̄

∂x̄2
+
∂2ψ̄

∂ȳ2

)

− ∂ψ̄

∂x̄

∂

∂x̄

(

1

ρ̄

)

− ∂ψ̄

∂ȳ

∂

∂ȳ

(

1

ρ̄

)

(2.4)

Evaluating the derivative terms containing density produces

Ω̄ = −1

ρ̄

(

∂2ψ̄

∂x̄2
+
∂2ψ̄

∂ȳ2

)

+
1

ρ̄2

∂ψ̄

∂x̄

∂ρ̄

∂x̄
+

1

ρ̄2

∂ψ̄

∂ȳ

∂ρ̄

∂ȳ
(2.5)

Equation (2.5) is multiplied by −ρ̄, to isolate the stream function. The scalar equation is

further simplified by rewriting the last two terms using vector notation,

∂2ψ̄

∂x̄2
+
∂2ψ̄

∂ȳ2
=

1

ρ̄

(

∇̄ρ̄ · ∇̄ψ̄
)

− Ω̄ρ̄ (2.6)

Equation (2.6) is the coupled vorticity stream function equation used in this study.

2.2.2 Vorticity Transport

In order to solve Eq. (2.6), another equation relating vorticity and the stream function is

required. After some manipulation, the momentum equation provides the necessary form.

First, the general inviscid momentum equation is

ρ̄
DŪ

Dt̄
= ρ̄f̄ − ∇̄p̄ (2.7)

Expanding the substantial derivative in Eq. (2.7) results in

ρ̄

(

∂Ū

∂t̄
+ ∇̄Ū · Ū

2
− Ū × ∇̄ × Ū

)

= ρ̄f̄ − ∇̄p̄ (2.8)

Since the problem is defined as a steady flow problem, the time dependent term is dropped

from Eq. (2.8). Body forces are also neglected in the present study, so Eq. (2.8) can be
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further simplified by removing ρ̄f̄. One has

ρ̄

(

∇̄Ū · Ū
2

− Ū × ∇̄ × Ū

)

= −∇̄p̄ (2.9)

In order to find the necessary relation between vorticity and stream function, it is expedi-

tious to first divide by ρ̄ and then take the curl of both sides of Eq. (2.9). At the outset,

one gets

∇̄ ×
(

Ū × Ω̄
)

=
1

ρ̄2
∇̄ρ̄× ∇̄p̄ (2.10)

Equation (2.10) is the general, three-dimensional vorticity transport equation which pro-

vides the additional needed relationship between vorticity and stream function.

2.2.3 Momentum Equation

In order to determine the pressure in the chamber, the vector momentum equation is worked

into a more tractable form. Relating the pressure to the stream function, Eq. (2.9) becomes

ρ̄∇̄
{

1

2ρ̄2

[

(

∂ψ̄

∂ȳ

)2

+

(

∂ψ̄

∂x̄

)2
]}

+ ρ̄

(

+
1

ρ̄

∂ψ̄

∂x
Ω̄î+

1

ρ̄

∂ψ̄

∂y
Ω̄ĵ

)

= −∇̄p̄ (2.11)

after Eqs. (2.1) and (2.2) are substituted. Simplifying the equation and rewriting it in the

more compact, vector notation yields

ρ̄∇̄
[

1

2ρ̄2

(

∇̄ψ̄ · ∇̄ψ̄
)

]

+ Ω̄∇̄ψ̄ = −∇̄p̄ (2.12)

2.2.4 Isentropic Relations

To formulate a complete solution to this problem, more relations are needed to bring closure

to the thermodynamic properties. Pursuant to the assumptions and constraints of the

model, we can use the non-dimensional isentropic flow equations of a calorically perfect gas:

ρ = p
1

γ (2.13)
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and

T = p
γ−1

γ (2.14)

2.3 Boundary Conditions

With the problem domain established and the governing equations defined, it is important

to have a full understanding of the boundary conditions. Mathematically, the boundary

conditions are expressed as

v̄(x̄, 0) = 0 (2.15)

ū(x̄, a) = 0 (2.16)

v̄(x̄, a) = −Uw (2.17)

and

ū(0, ȳ) = 0 (2.18)

Physically, Eq. (2.15) is a condition of symmetry. This constraint restricts flow from going

across the center-plane of the chamber. Equation (2.16) represents no axial slip velocity and

Eq. (2.17) establishes the wall blowing velocity. The first condition is normally reserved

for viscous flows, but it is applied here successfully to ensure normal injection. The second

condition sets the uniform injection velocity specified at the sidewalls of the chamber, to

simulate the ejection of burning solid propellant gases. Finally, an inert headwall condition

is imposed using Eq. (2.18).
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2.4 Nondimensional Formulation

To facilitate the analysis, it is prudent to non-dimensionalize the variables of interest. A

standard methodology is employed, resulting in the following parameters:

x =
x̄

a
; y =

ȳ

a
;u =

ū

a0
; v =

v̄

a0
; p =

p̄

p0
;T =

T̄

T0
; ρ =

ρ̄

ρ0
;ψ =

ψ̄

a0ρ0a
; Ω =

Ω̄a

a0
;∇ = a∇̄

(2.19)

These relations can be substituted back into the governing equations and boundary con-

ditions to generalize the problem for all solution domains, rather than just one specific

case.

2.4.1 Nondimensional Governing Equations

Substitution of the nondimensional variables defined in Eq. (2.19) into Eq. (2.6) produces

a vorticity equation containing dimensionless variables with coefficients of dimensional pa-

rameters:

a0ρ0

a

(

∂2ψ

∂x2
+
∂2ψ

∂y2

)

=
a0ρ0

a

1

ρ
(∇ρ · ∇ψ) − a0ρ0

a
Ωρ (2.20)

Since each term in the equation has the same collection of dimensional parameters, it

is possible to divide through by the parameter to simplify the nondimensional vorticity

equation to

∂2ψ

∂x2
+
∂2ψ

∂y2
=

1

ρ
(∇ρ · ∇ψ) − Ωρ (2.21)

A similar substitution can be made to Eq. (2.10). One gets

a2
0

a2
[∇× (U × Ω)] =

p0

ρ0a2

(

1

ρ2
∇ρ×∇p

)

(2.22)

This result can be simplified by multiplying both sides of the equation by a2. Equation

(2.22) is further reduced by realizing that p0/ρ0 = a2
0/γ from the definition of the speed of
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sound in an ideal gas. The resulting simplified equation becomes

∇× (U × Ω) =
1

γρ2
∇ρ×∇p (2.23)

The momentum equation simplifies via the same procedure that produced Eq. (2.23). Sub-

stitution of the nondimensional relations defined in Eq. (2.19) into Eq. (2.12) yields

a2
0ρ0

a

{

ρ∇
[

1

2ρ2
(∇ψ · ∇ψ)

]

+ Ω∇ψ
}

=
p0

a
(−∇p) (2.24)

Equation (2.24) is simplified in the same manner as Eq. (2.22), namely by multiplying both

sides by a and applying the definition of the speed of sound in an ideal gas. The result of

this simplifcation is the finalized momentum equation.

ρ∇
[

1

2ρ2
(∇ψ · ∇ψ)

]

+ Ω∇ψ = −∇p
γ

(2.25)

The already non-dimensionalized isentropic relations in Eqs. (2.13) and (2.14) are not

repeated here.

2.4.2 Nondimensional Boundary Conditions

In order to solve the simplified equations from Section 2.4.1, the boundary conditions also

must have the same methodology applied to them. Using the non-dimensionalization scheme

given by Eq. (2.19), the boundary conditions set forth in Eqs. (2.15)-(2.18) become

v(x, 0) = 0 (2.26)

u(x, 1) = 0 (2.27)

v(x, 1) = −Mw (2.28)
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and

u(0, y) = 0 (2.29)

where Mw is the Mach number of the injected flow through the sidewall. With both the

governing equations and the boundary conditions in the more general, non-dimensional

form, the equations are ready to be solved.
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Chapter 3

Perturbation Solution

In order to solve the set of governing equations, a Rayleigh-Janzen perturbation is applied.

This requires the expansion of the primary flow variables in truncated series representations

as follows:

u(x, y) = Mwu0 +M3
wu1 +O(M5

w) ρ(x, y) = 1 +M2
wρ1 +M4

wρ2 +O(M6
w)

v(x, y) = Mwv0 +M3
wv1 +O(M5

w) p(x, y) = 1 +M2
wp1 +M4

wp2 +O(M6
w) (3.1)

ψ(x, y) = Mwψ0 +M3
wψ1 +O(M5

w) T (x, y) = 1 +M2
wT1 +M4

wT2 +O(M6
w)

Ω(x, y) = MwΩ0 +M3
wΩ1 +O(M5

w)

The perturbation expansions of Eq. (3.1) are substituted back into the governing equations

and then sorted by order of magnitude via standard perturbation methods.

3.1 Perturbation Expansions

Since the solution is in terms of the stream function, Eqs. (2.1) and (2.2) are used to relate

the velocity components to ψ. Substitution of the appropriate perturbation expansions

from Eq. (3.1) produces
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Mwu0 +M3
wu1 =

1

1 +M2
wρ1 +M4

wρ2

(

Mw
∂ψ0

∂y
+M3

w

∂ψ1

∂y

)

(3.2)

Then the following expansion is used to elevate the density terms from the denominator to

the numerator viz.

(1 +X)−α = 1 − αX +O
(

X2
)

(3.3)

Only the first two terms are kept to be consistent with the order of the perturbation solution.

Substitution of Eq. (3.3) back into Eq. (3.2) gives

Mwu0 +M3
wu1 =

(

1 −M2
wρ1 −M4

wρ1

)

(

Mw
∂ψ0

∂y
+M3

w

∂ψ1

∂y

)

(3.4)

Multiplying out the right hand side returns

Mwu0 +M3
wu1 = Mw

∂ψ0

∂y
+M3

w

∂ψ1

∂y
−M3

wρ1
∂ψ0

∂y
+O(M5

w) (3.5)

The equations are segregated by the order of Mw to give the leading and first order velocities

and stream functions:

O(Mw) : u0 =
∂ψ0

∂y
(3.6)

and

O(M3
w) : u1 =

∂ψ1

∂y
− ρ1

∂ψ0

∂y
(3.7)

The same approach can be applied to the crossflow velocity v to yield:

O(Mw) : v0 = −∂ψ0

∂x
(3.8)

and

O(M3
w) : v1 = ρ1

∂ψ0

∂x
− ∂ψ1

∂x
(3.9)
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3.1.1 Vorticity Equation Perturbation Expansion

Equation (2.21) is subjected to the same set of perturbation variables defined in Eq. (3.1).

One obtains

Mw
∂2ψ0

∂y2
+M3

w

∂2ψ1

∂y2
+Mw

∂2ψ0

∂x2
+M3

w

∂2ψ1

∂x2
=

1

1 +M2
wρ1 +M4

wρ2

(

M2
w∇ρ1 +M4

w∇ρ2

)

·
(

Mw∇ψ0 +M3
w∇ψ1

)

−
(

MwΩ0 +M3
wΩ1

) (

1 +M2
wρ1 +M4

wρ2

)

(3.10)

The series expansion in Eq. (3.3) is again used to eliminate the density terms in the

denominator. The resulting equation is multiplied out and truncated to O(M5
w) to get

Mw
∂2ψ0

∂y2
+M3

w

∂2ψ1

∂y2
+Mw

∂2ψ0

∂x2
+M3

w

∂2ψ1

∂x2
=

M3
w (∇ρ1 · ∇ψ0) −MwΩ0 −M3

w (Ω0ρ1 − Ω1) (3.11)

The terms of (3.11) are sorted by the wall Mach number such that

O(Mw) :
∂2ψ0

∂y2
+
∂2ψ0

∂x2
= −Ω0 (3.12)

and

O(M3
w) :

∂2ψ1

∂y2
+
∂2ψ1

∂x2
= ∇ρ1 · ∇ψ0 − Ω0ρ1 − Ω1 (3.13)

3.1.2 Vorticity Transport Equation Perturbation Expansion

Solving the leading order vorticity equation requires Eq. (2.23) to be subjected to the same

perturbation treatment. After substitution of Eq. (3.1), the vorticity transport equation

becomes

∇×
[(

MwU0 +M3
wU1

)

×
(

MwΩ0 +M3
wΩ1

)]

=

1

γ (1 +M2
wρ1 +M4

wρ2)
2

[

∇
(

1 +M2
wρ1 +M4

wρ2

)

×∇
(

1 +M2
wp1 +M4

wp2

)]

(3.14)
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Using the approximation from Eq. (3.3) allows one to expand Eq. (3.14) into

M2
w [∇× (U0 × Ω0)]+

M4
w [∇× (U0 × Ω1) + ∇× (U1 × Ω0)] = M4

w (∇ρ1 ×∇p1) +O(M6
w) (3.15)

Which upon segregation leads to the following two equations for vorticity transport

O(M2
w) : ∇× (U0 × Ω0) = 0 (3.16)

and

O(M4
w) : ∇× (U0 × Ω1) + ∇× (U1 × Ω0) = ∇ρ1 ×∇p1 (3.17)

3.1.3 Momentum Equation Perturbation Expansion

The momentum equation determines the pressure distribution throughout the chamber and

as such, it is subjected to the same expansion process by introducing the terms in Eq. (3.1).

After the substitutions are made, Eq. (2.25) becomes

−∇
(

1 +M2
wp1 +M4

wp2

)

γ
=

(

1 +M2
wρ1 +M4

wρ2

)

·∇
{

1

2 (1 +M2
wρ1 +M4

wρ2)
2

[

∇
(

Mwψ0 +M3
wψ1

)

· ∇
(

Mwψ0 +M3
wψ1

)]

}

+
(

MwΩ0 +M3
wΩ1

)

∇
(

Mwψ0 +M3
wψ1

)

(3.18)

Next Eq. (3.3) is used to simplify the density terms by elevating them to the numerator.

The resulting equation is multiplied out to yield

−M
2
w∇p1 +M4

w∇p2

γ
=

M2
w

{

∇
[

1

2
(∇ψ0 · ∇ψ0)

]

− Ω0∇ψ0

}

+M4
w

{

∇ [(∇ψ0 · ∇ψ1) − ρ1 (∇ψ0 · ∇ψ0)] + ρ1∇
(∇ψ0 · ∇ψ0

2

)}

+M4
w (Ω0∇ψ1 + Ω1∇ψ0) (3.19)
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The result is then arranged into relationships for the first and second order pressure terms:

O(M2
w) : −∇p1

γ
= ∇

(∇ψ0 · ∇ψ0

2

)

+ Ω0∇ψ0 (3.20)

and

O(M4
w) : −∇p2

γ
= ∇ [(∇ψ0 · ∇ψ1) − ρ1 (∇ψ0 · ∇ψ0)]

+ρ1∇
(∇ψ0 · ∇ψ0

2

)

+ Ω0∇ψ1 + Ω1∇ψ0 (3.21)

3.1.4 Isentropic Relation Perturbation Expansion

To bring closure to the solution, the isentropic relations in Eqs. (2.13) and (2.14) are

perturbed using the Rayleigh-Janzen expansions from Eq. (3.1). One finds

1 +M2
wρ1 +M4

wρ2 =
(

1 +M2
wp1 +M4

wp2

)
1

γ (3.22)

Again expanding the right hand side, Eq. (3.22) becomes

1 +M2
wρ1 +M4

wρ2 = 1 +
1

γ

(

M2
wp1 +M4

wp2

)

+
(1/γ − 1)

2γ
M4

wp
2
1 +O(M6

w) (3.23)

Segregating the equations by order up to O
(

M4
w

)

provides the two equations

O(M2
w) : ρ1 =

p1

γ
(3.24)

and

O(M4
w) : ρ2 =

p2

γ
+

1 − γ

2γ2
p2
1 (3.25)

The temperature equation follows the same procedure, starting with the substitution of

1 +M2
wT1 +M4

wT2 =
(

1 +M2
wp1 +M4

wp2

)

γ−1

γ (3.26)
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Following the same expansion procedure as before yields

1 +M2
wT1 +M4

wT2 = 1 +
γ − 1

γ

(

1 +M2
wp1 +M4

wp2

)

+
1 − γ

2γ2
M4

wp
2
1 +O(M6

w) (3.27)

This equation is then separated by order to provide the first and second order temperature

terms:

O(M2
w) : T1 =

γ − 1

γ
p1 (3.28)

and

O(M4
w) : T2 =

γ − 1

γ
p2 +

1 − γ

2γ2
p2
1 (3.29)

3.1.5 Boundary Condition Expansion

The final step in the perturbation expansion process is to ensure the boundary conditions

are consistent with the perturbation variables of the solution. As expected with normal per-

turbation expansions, the leading order boundary conditions resulting from the expansion

become

v0(x, 0) = 0 (3.30)

u0(x, 1) = 0 (3.31)

v0(x, 1) = −1 (3.32)

and

u0(0, y) = 0 (3.33)

First, since the governing equation is written in terms of the stream function, it is convenient

to rewrite these leading order boundary conditions in terms of the stream function

∂ψ0(x, 0)

∂x
= 0 (3.34)

∂ψ0(x, 1)

∂y
= 0 (3.35)
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∂ψ0(x, 1)

∂x
= 1 (3.36)

and

∂ψ0(0, y)

∂y
= 0 (3.37)

Second, since the boundary conditions must be satisfied by the leading order terms

for the solution to be valid, the set of boundary conditions used to determine the higher

order approximations must be homogeneous. For illustration, the first order homogeneous

boundary conditions are shown here:

v1(x, 0) = 0 (3.38)

u1(x, 1) = 0 (3.39)

v1(x, 1) = 0 (3.40)

and

u1(0, y) = 0 (3.41)

Equations (3.7) and (3.9) are then substituted into the boundary conditions to give the

finalized boundary conditions for the first order approximation:

ρ1
∂ψ0(x, 0)

∂x
− ∂ψ1(x, 0)

∂x
= 0 (3.42)

∂ψ1(x, 1)

∂y
− ρ1

∂ψ0(x, 1)

∂y
= 0 (3.43)

ρ1
∂ψ0(x, 1)

∂x
− ∂ψ1(x, 1)

∂x
= 0 (3.44)

and

∂ψ1(0, y)

∂y
− ρ1

∂ψ0(0, y)

∂y
= 0 (3.45)

27



3.2 Leading Order Solution

The solution methodology that is adapted to the present problem is carried out as follows:

First, solve the leading order vorticity equation for the stream function. After the leading

order stream function is known, substitute it into the first order momentum and isentropic

relations to determine the rest of the variables of interest. However, to solve Eq. (3.12), a

relationship between vorticity and the stream function must first be determined. To that

end, Eq. (3.16) is examined to provide such a relation.

3.2.1 Leading Order Vorticty Transport Solution

Equation (3.16) is expanded from its more compact vector notation in 2-D cartesian coor-

dinates, using the definition of the cross product and curl operations to obtain

∂

∂x
(u0Ω0) +

∂

∂y
(v0Ω0) = 0 (3.46)

To find a relationship between the stream function and the vorticity, Eqs. (3.6) and (3.8)

are substituted to get

∂

∂x

(

∂ψ0

∂y
Ω0

)

+
∂

∂y

(

−∂ψ0

∂x
Ω0

)

= 0 (3.47)

Properly evaluating the derivatives leads to a scalar equation for the vorticity component

in the k̂ direction, specifically,

∂ψ0

∂y

∂Ω0

∂x
+ Ω0

∂2ψ0

∂x∂y
− ∂ψ0

∂x

∂Ω0

∂y
− Ω0

∂2ψ0

∂x∂y
= 0 (3.48)

and so

∂ψ0

∂y

∂Ω0

∂x
=
∂ψ0

∂x

∂Ω0

∂y
(3.49)

Equation (3.49) is satisfied when

Ω0 = F (ψ0) (3.50)
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where F is any continuous function of ψ0 with a first order analytic derivative. One such

solution that is commonly used in the analysis of rocket motors is

Ω0 = C2ψ0 (3.51)

where C2 is an appropriate constant whose value must be obtained in the course of the

solution.

3.2.2 Leading Order Vorticity Solution

With Eq. (3.51) providing the necessary link between vorticity and the stream function, Eq.

(3.12) is solved for the stream function. The stream function is then used to determine the

leading order quantities of all parameters of interest. It is interesting to note that because

the Rayleigh-Janzen expansion is used, the leading order part recovers the incompressible

solution to the slab rocket motor. With this in mind, Eq. (3.51) is substituted into Eq.

(3.12) such that

∂2ψ0

∂y2
+
∂2ψ0

∂x2
+ C2ψ0 = 0 (3.52)

This equation is easily separable assuming that

ψ0 = f(x)g(y) (3.53)

Substitution of Eq. (3.53) back into Eq. (3.52) yields the separated equations

g′′

g
+ C2 =

f ′′

f
= λ2 (3.54)

For the solid rocket motor, the only physically feasible choice is λ = 0. For this case, the

solution takes the form of

ψ0 = (C1x+ C2) [C3 sin(Cy) + C4 cos(Cy)] (3.55)
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To facilitate the application of the boundary conditions, Eq. (3.55) is differentiated with

respect to x to get

C1C3 sin(Cy) + C1C4 cos(Cy) (3.56)

and with respect to y to find

(C1x+ C2) [CC3 cos(Cy) − CC4 sin(Cy)] (3.57)

These allow direct application of the boundary conditions.

Equation (3.34) is first applied by evaluating Eq. (3.56) at (x, 0):

C1C4 = 0 (3.58)

To determine which constant must vanish, Eq. (3.36) is invoked to find

C1C3 sin(C) = 1 (3.59)

One deduces that C1, C3, and C cannot be equal to zero, as this would make satisfying the

boundary condition impossible. This reduces Eq. (3.58) to C4 = 0. C2 is determined by

administering Eq. (3.37) such that

CC2C3 cos(Cy) = 0 (3.60)

Since it has already been determined that C3 and C could not equal zero, the only solution

that allows this boundary condition to be satisfied for all values of y is C2 = 0. Equation

(3.35) is used to determine the constant C. Hence,

CC1C3x cos(C) = 0 (3.61)
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To satisfy both this boundary condition and the one specified in Eq. (3.59), one must set

cos(C) = 0. For the cosine term to vanish, it is necessary that C = π
2 , leaving the constants

C1 and C3 yet to be determined. However, C1 and C3 can now be lumped together into a

single constant because they always appear multiplying each other in the solution. Using

Eq. (3.59) yields that C1C3 = 1, which fully determines Eq. (3.55) to be

ψ0 = x sin
(πy

2

)

(3.62)

This result is the two-dimensional analog to the axisymmetric result obtained by Culick.4

3.2.3 First Order Thermodynamic Variables

Determining the first order pressure is a straightforward process once the leading order

stream function is known. The first step is to remove the vorticity term from the equation

by substituting the relation from Eq. (3.51):

− ∇p1

γ
= ∇

(∇ψ0 · ∇ψ0

2

)

+
π2

4
ψ0∇ψ0 (3.63)

It is possible to further simplify Eq. (3.63) via the identity ψ0∇ψ0 = 1
2∇ψ2

0, hence

− ∇p1

γ
= ∇

(∇ψ0 · ∇ψ0

2
+
π2

8
ψ2

0

)

(3.64)

This equation may be directly integrated with ψ0 from Eq. (3.62) substituted, to eliminate

the ψ0 terms, thus formulating the first order pressure purely in terms of the geometry of

the solution domain.

− p1

γ
=

1

2

[

sin2
(πy

2

)

+
π2x2

4
cos2

(πy

2

)

]

+
π2x2

8
sin2

(πy

2

)

(3.65)

31



From Eq. (3.65), by rearranging the equation for p1 and using trigonometry identities, the

final answer for the first order pressure is found to be

p1 = −γ
2

[

sin2
(πy

2

)

+
π2x2

4

]

(3.66)

Determining the first order density and temperature is also straightforward, requiring

only the substitution of Eq. (3.66) into Eqs. (3.24) and (3.28) respectively. One obtains

ρ1 = −1

2

[

sin2
(πy

2

)

+
π2x2

4

]

(3.67)

and

T1 =
1 − γ

2

[

sin2
(πy

2

)

+
π2x2

4

]

(3.68)

This result follows from the isentropic path functions that relate the thermodynamic vari-

ables. Polytropic equation of state models may improve the accuracy of the overall flow

model but for the first attempt at a compressible solution, the isentropic relations are

deemed satisfactory to bring closure to the solution.

3.3 First Order Solution

The first order solution procedure follows the same general outline as the leading order’s.

It requires that the vorticity transport equation be first solved, followed by solution of the

vorticity stream function equation, and then the isentropic equations are introduced to

bring closure to the thermodynamic variables. While this sounds easily extensible, the first

order equations will be seen to present greater challenges than the leading order equations:

the latter are simply the incompressible equations for the slab rocket flow. It is not until

the first order corrections are found, that the effects of compressibility on the flow field can

be determined.
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3.3.1 First Order Vorticity Transport Solution

As in the case for the leading order solution, the vorticity transport equation is first used to

determine the relationship between vorticity and stream function. To that end, Eq. (3.17)

is examined to derive this relationship. The first simplification is that p1 and ρ1 differ only

by a constant, γ. The result of this is that the right hand side of Eq. (3.17) vanishes since

the evaluation of the cross product between two colinear vectors is zero. This simplifies the

equation to

∇× (U0 × Ω1) + ∇× (U1 × Ω0) = 0 (3.69)

The vector operations are then expanded to find

∂

∂x
(u0Ω1 + u1Ω0) +

∂

∂y
(v0Ω1 + v1Ω0) = 0 (3.70)

To get the desired relationship between the first order vorticity and the stream function,

Eqs. (3.6)−(3.9) and Eq. (3.51) may be substituted; one gets

∂

∂x

[

∂ψ0

∂y
Ω1 +

(

∂ψ1

∂y
− ρ1

∂ψ0

∂y

)

π2

4
ψ0

]

+
∂

∂y

[

−∂ψ0

∂x
Ω1 +

(

ρ1
∂ψ0

∂x
− ∂ψ1

∂x

)

π2

4
ψ0

]

= 0 (3.71)

The derivatives may be evaluated and the expanded equation simplified after cancellation

of some of the terms to give

∂Ω1

∂x

∂ψ0

∂y
− ∂Ω1

∂y

∂ψ0

∂x
=
π2

4

[

ψ0

(

∂ρ1

∂x

∂ψ0

∂y
− ∂ρ1

∂y

∂ψ0

∂x

)

+
∂ψ1

∂x

∂ψ0

∂y
− ∂ψ1

∂y

∂ψ0

∂x

]

(3.72)

At first glance this equation appears intractable. The method of determining a relation

without fully solving the equation is not practical. However, further simplification is possible

if one realizes that the first order vorticity is an extension of the leading order term. It is

not enough to let Ω1 = π2

4 ψ1 as this expression does not satisfy Eq. (3.69). To make the
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proper simplification one lets

Ω1 =
π2

4
ψ1 + Ωc (3.73)

where Ωc is an additional correction function required to satisfy the governing equation.

When Eq. (3.73) is substituted back into Eq. (3.72) the following simplified equation

results

∂Ωc

∂x

∂ψ0

∂y
− ∂Ωc

∂y

∂ψ0

∂x
=
π2

4
ψ0

(

∂ρ1

∂x

∂ψ0

∂y
− ∂ρ1

∂y

∂ψ0

∂x

)

(3.74)

Since ρ1 has been previously determined, and ψ0 is known, this equation can be solved by

integration to yield:

Ωc = ±π
2x

32

[

π2x2 sin
(πy

2

)

+ 4 sin2
(πy

2

)]

+ f(ψ0) (3.75)

where f is an as-yet specified function of the stream function. This function will be used

later to ensure that the first order equation is able to satisfy all of the requisite boundary

conditions.

3.3.2 First Order Vorticity Solution

With the addition of Eq. (3.75), it is possible to then examine Eq. (3.13). Substitution of

Eqs. (3.51), (3.62), (3.67), and (3.75) into Eq. (3.13) gives

∂2ψ1

∂y2
+
∂2ψ1

∂x2
+
π2

4
ψ1 =

∇
{

−1

2

[

sin2
(πy

2

)

+
π2x2

4

]}

· ∇
[

x sin
(πy

2

)]

+
π2

8

[

sin2
(πy

2

)

+
π2x2

4

]

− π2x

32

[

π2x2 sin
(πy

2

)

+ 4 sin2
(πy

2

)]

+ f(ψ0) (3.76)

After expansion of the vector operator and taking the dot-products, and with the trigono-

metric simplification, the single scalar equation results

∂2ψ1

∂y2
+
∂2ψ1

∂x2
+
π2

4
ψ1 = −π

2x

4
sin

(πy

2

)

[

cos (πy) + 1 − π2x2

4

]

− f(ψ0) (3.77)
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Equation (3.77) uses the negative root of the vorticity correction function. The negative

root is selected because it is the only root that will satisfy the boundary conditions, as will

be shown later. Since f(ψ0) is used to satisfy the boundary conditions, it is required that

the f(ψ0) term obeys a mathematical form consistent with the other term of the right hand

side. To this end, f(ψ0) is defined as

f(ψ0) = A1x sin
(πy

2

)

+A2x
3 sin3

(πy

2

)

(3.78)

where A1 and A2 are constants to be determined. To simplify bookkeeping in the remainder

of the text, we let η ≡ 1
2πy. Next, a general solution is assumed,

ψ1(x, η) = xG(η) + x3H(η) (3.79)

This general solution is the result of substituting multiple trial functions into the governing

equations and testing to see if the function could provide a valid solution that satisfies

the governing equations. In retrospect, this particular choice makes sense as it mirrors the

extension of the leading order solution. Substitution of this form for ψ1 back into Eq. (3.77)

gives

π2

4

[

x
(

G′′ +G
)

+ x3
(

H ′′ +H
)]

+ 6xH =

−π
2x

4
sin

(πy

2

)

[

cos (πy) + 1 − π2x2

4

]

+A1x sin η +A2x
3 sin3 η (3.80)

where the primed quantities represent derivatives with respect to η. Equation (3.80) is

further simplified by grouping all terms in powers of x. One gets

x3

[

π2

4

(

H ′′ +H − π2

4
sin η

)

−A1 sin3 η

]

+x

[

π2

4

(

G′′ +G+ sin η + cos 2η sin η
)

+ 6h−A2 sin η

]

= 0 (3.81)
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In order for Eq. (3.81) to be true for all values of x, the bracketed quantites multiplying

both the x3 and x terms must vanish. The partial differential equation can now be written

as two ordinary differential equations:

H ′′ +H =
π2

4
sin η +A1 sin3 η (3.82)

and

G′′ +G =
4

π2
(A2 sin η − 6h) − sin η − cos 2η sin η (3.83)

Note that Eq. (3.82) is written only in terms of H, so it can be solved first to determine h

and subsequent substitution into Eq. (3.83) brings closure to that equation.

The solution for Eq. (3.82) follows a similar procedure to that of the separated variable

equation, Eq. (3.54). The only complication is that the equation is nonhomogeneous, so a

particular solution must be obtained in addition to a general solution. The solution for Eq.

(3.82) is found to be

H = C1 cos η + C2 sin η

+
π2

16
(cos η sin 2η − 2η cos η − sin η − cos 2η sin η)

+
A1

8π2
(cos 4η sin η + 8 cos η sin 2η − 12η cos η − 4 cos 2η sin η − cos η sin 4η) (3.84)

where C1 and C2 are two more constants that must be determined. This solution is then

substituted to the right hand side of Eq. (3.83) so that all of the nonhomogeneous terms

are determined. The solution to Eq. (3.82) is determined identically to Eq. (3.83) with the
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differences due to the additional nonhomogeneous terms. One finds

G = C3 cos η + C4 sin η

+
A1

16π4
[144

(

η cos η + η cos η cos 2η + η2 sin η + η sin η sin 2η
)

+156 cos 2η sin η − 132 cos η sin 2η + 6 (cos 4η sin η − cos η sin 4η)]

+
A2

π2
[cos η sin 2η − 2η cos η − cos 2η sin η]

−6C1

π2
[cos η cos 2η + 2η sin η + sin η sin 2η]

+
6C2

π2
[cos 2η sin η + 2η cos η − cos η sin 2η]

+
1

16
[12

(

η cos η cos 2η + η2 sin η + η sin η sin 2η
)

+ 10 cos 2η sin η

−6 cos η sin 2η + 4η cos η + cos 4η sin η − cos η sin 4η] (3.85)

Thus, two arbitrary constants of integration, C3 and C4 are added to the solution, giving a

total of six arbitrary constants that need to be determined. The relationships for h and g

can be substituted back into (3.79) to yield

ψ1 =
x

16π4
(−2 cos η{12A1η(π

2x2 − 12)

+π2[16A2η + π4x2η + 48(C1 − 2ηC2) − 8π2(η + x2C1 + C3)]}

+4 sin η{3A1[π
2x2 + 12(η2 − 1)] + π2[4A2 − 24(2ηC1 + C2)

+π2(−2 + 3η2 + 4x2C2 + 4C4)]} + sin 3η[π4 + 2A1(π
2x2 + 3)]) (3.86)

While Eq. (3.86) does not appear to be the elegant solution one hopes for, there is po-

tential for simplification from administering the boundary conditions. Despite the presence

of additional unknowns, these follow the same agendum as the leading order coefficients.

One first examines the no flow across the symmetry plane from Eq. (3.42), recalling that

it is evaluated at (x, 0),

− 6C1

π2
+ C3 + 3x2C1 = 0 (3.87)
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In order for this equation to be true for all values of x the coefficient multiplying the x2

term must vanish. Thus,

C1 = 0 (3.88)

One may also set ψ = 0 along the symmetry plane, and also across the headwall. At the

onset, both ψ0 and ψ1 must vanish at the origin. Hence,

C3 = 0 (3.89)

Revisiting Eq. (3.43) with the reduced number of terms, we have

x3

16π4

(

6A1π
4 +

π8

2

)

+
x

16π4

[

−72A1π
2 + 8A2π

4 − 4π6 + 4

(

18A1π
2 +

3π6

2

)

− 48π4C2

]

= 0 (3.90)

This equation in turn may be separated into two equations, such that Eq. (3.90) holds for

all values of x, for which

A1 = −π
4

12
(3.91)

and

8A2π
4 + 2π6 − 48π4C2 = 0 (3.92)

Leaving Eq. (3.92) momentarily, it is advantageous to apply the boundary condition from

Eq. (3.44),

x2

(

3C2 −
π2

32

)

+ C4 +
23

32
+
A2

π2
− 6C2

π2
= 0 (3.93)

This equation can then be segregated into a requirement consisting of

C2 =
π2

96
(3.94)

and

C4 +
21

32
+
A2

π2
= 0 (3.95)
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Solving Eqs. (3.92) and (3.95) simultaneously determines the final two constants

A2 = −3π2

16
(3.96)

C4 = −15

32
(3.97)

Substitution of the constants back into Eq. (3.86) and reverting back to the natural coor-

dinate y gives the simplified result that

ψ1 = − x

48
sin

(πy

2

)

{

π2x2 [3 + cos (πy)] + 3 [7 − cos (πy)]
}

(3.98)

3.3.3 Second Order Thermodynamic Variables

In order to determine the second order pressure term, one may expand the vector equation

presented in Eq. (3.21) into two scalar equations:

∂p2

∂x
= −γ ∂

∂x

{

∂ψ0

∂x

∂ψ1

∂x
+
∂ψ0

∂y

∂ψ1

∂y
− ρ1

[

(

∂ψ0

∂x

)2

+

(

∂ψ0

∂y

)2
]}

+γ

{

1

2
ρ1

∂

∂x

[

(

∂ψ0

∂x

)2

+

(

∂ψ0

∂y

)2
]

+ Ω0
∂ψ1

∂x
+ Ω1

∂ψ0

∂x

}

(3.99)

and

∂p2

∂x
= −γ ∂

∂y

{

∂ψ0

∂x

∂ψ1

∂x
+
∂ψ0

∂y

∂ψ1

∂y
− ρ1

[

(

∂ψ0

∂x

)2

+

(

∂ψ0

∂y

)2
]}

+γ

{

1

2
ρ1

∂

∂y

[

(

∂ψ0

∂x

)2

+

(

∂ψ0

∂y

)2
]

+ Ω0
∂ψ1

∂y
+ Ω1

∂ψ0

∂y

}

(3.100)

Equations (3.99) and (3.100) may be integrated, yielding

p2 =
γπ2x2

128
(13 − cos 2πy) − γπ4x4

384
+ f1(y) (3.101)
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and

p2 = − γ

16

(

cosπy + cos2 πy
)

− γπ2x2

64
cos2 πy + f2(x) (3.102)

in x and y respectively. After examining the two solutions and applying the trigonometric

identity, cos 2a = 2 cos2 a−1, it is possible to combine Eqs. (3.101) and (3.102) to determine

the solution to the second order. One gets

p2 = − γ

16

(

cosπy + cos2 πy
)

+
γπ2x2

64
(7 − cos2 πy) − γπ4x4

384
(3.103)

Determining the second order density term is simply a matter of substituting the pres-

sure terms from Eqs. (3.66) and (3.103) back into Eq. (3.25). One extracts

ρ2 =
1

32

[

1 − γ + 2(γ − 2) cosπy − (γ + 1) cos2 πy
]

+
π2x2

64

[

9 − 2γ + 2(γ − 1) cosπy − cos2 πy
]

+
π4x4

384
(2 − 3γ) (3.104)

Similarly the second order temperature becomes

T2 =
1 − γ

192

[

6(1 + 3 cos2 πy) + 3π2x2(−5 − 2 cosπy + cos2 πy) + 2π4x4
]

(3.105)

after similar substitutions.
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Chapter 4

Results and Discussion

Having obtained the closed form relations for the compressible slab motor it is necessary

that these expressions be used to clearly illustrate the effects of compressibility on the

motor flow field, performance, and design criteria. In order to fully appreciate the physics

of the flow that the mathematical treatment captures, one must first verify and validate the

relationships presented here to ensure that they make physical sense. In this spirit, both

a numerical and an experimental verification program are applied to the present study to

verify the relationships uncovered in the previous sections.

4.1 Critical Length Calculation

To facilitate comparisons to past results both analytical and experimental, it is convenient

to normalize the axial distance by the critical length of the motor. The critical length of

a motor is defined as the distance, measured from the head end to where the flow reaches

a sonic condition. For ease of calculation, the maximum axial velocity will be used to

calculate the critical length, because this will be the first point in the flow that reaches a

sonic condition along the center-axis. Obtaining the axial velocity and temperature at the
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center-axis from the stream function yields:

uc = u(x, 0) = Mw

(πx

2

)

−M3
w

πx

48

(

9 − π2x2
)

(4.1)

and

Tc = T (x, 0) = 1 +M2
w

γ − 1

8

(

π2x2
)

−M4
w

γ − 1

96

(

12 − 9π2x2 + π4x4
)

(4.2)

One can retain all terms in the expanded velocities and temperatures to recover an

accurate expression of the choke length:

Mw
πx

2
−M3

w

πxM3
w

96

(

18 − 2πx2
)

=
√

1 −M2
w

(γ − 1)

8
π2x2 −M4

w

(γ − 1)

96
(12 − 9π2x2 + π4x4) (4.3)

The equation of interest is a cubic equation with large coefficients,

M6
wπ

6

2304
x6 +

M4
wπ

4

384

[

4(γ + 1) − 3M2
w

]

x4

+
M2

wπ
2

256

[

32 (γ + 1) − 24 (γ + 1)M2
w + 9M4

w

]

x2 +
M4

w (γ − 1)

8
− 1 = 0 (4.4)

which has the real, positive root

x(2)
s =

1

πMw

√

√

√

√

9M4
w + 6M2

w

[

φ
1

3 − 4(γ + 1)
]

+ φ
2

3 − 8φ
1

3 (γ + 1) + 32(2γ2 + γ − 1)

φ
1

3

(4.5)

where φ is

φ =

−[36M4
w(γ − 7) − 288M2

w(γ2 − γ − 2) + 128(4γ3 + 3γ2 − 6γ − 14)]

+12[−64M4
w(11γ4 + 85γ3 + 63γ2 − 76γ − 137)

+4608M2
w(γ4 + 2γ3 + γ2 − 3γ − 3)

−1024(3γ4 + 14γ3 + 6γ2 − 18γ − 22)]
1

2 (4.6)
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Equation (4.5) is only weakly dependent on the Mach number under the radical, so to that

end one can find a more manageable approximate expression for the sonic length. Namely,

x(2)
sa =

1

πMw

√

√

√

√

φ
2

3
a − 8φ

1

3
a (γ + 1) + 32(2γ2 + γ − 1)

φ
1

3
a

(4.7)

where

φa = −[128(4γ3 + 3γ2 − 6γ − 14)] + 12
√

−1024(3γ4 + 14γ3 + 6γ2 − 18γ − 22) (4.8)

Equation (4.7) is accurate to the third decimal place when compared to the similar full

expression of the sonic length for most injection Mach numbers for rocket applications. For

a comparison of the various orders of accuracy of the critical length, the reader is referred

to the Appendix.

4.2 Computational Verification of the Analytical Solution

In order to ensure that the perturbation expansion is valid, a numerical verification is

performed. Version 6.1 of the Fluent R© computational fluid dynamics (CFD) solver provides

a segregated, two-dimensional, double precision, compressible solver that is used to provide

the numerical comparisons. Laminar flow and Spalart-Allmaras models are used to account

for viscosity effects in the CFD calculations. A rectangular geometry with a half height of

1 cm and a length of 45 cm is chosen to model the slab geometry since this matches the

conditions of Traineau.5 The solver provides data for the same top half of the slab motor

as the analytical solution, which can be mirrored across the center-axis. A uniform mass

injection is imposed on the sidewalls of 13 kg m−2 s−1, providing a close approximation

of the constant velocity injection used in the perturbation analysis. The injection gas is

assumed to be air with an injection temperature of 260 K, molecular weight of 29 kg kmol−1,

dynamic viscosity of 1.66 × 10−5 kg m−1 s−1, and a ratio of specific heats of 1.4.
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4.2.1 Thermodynamic Properties

The first verification provides the thermodynamic properties along the symmetry plane of

the chamber, namely, the pressure and temperature. These parameters are chosen for their

ease of calculation both numerically and analytically, as well as for their ability to provide

comparisons along the entire length of the simulated motor.

Figure 4.1(a) compares the center-plane pressure profiles obtained using γ = 1.4. All

of the analytical and computational models agree near the headwall of the chamber. Ex-

amining the solution presented here, good agreement is observed near the headwall, with

deviations from the numerical simulation appearing as the flow progresses to the aft end. It

is interesting to note that the present solution more closely matches the Spalart-Allmaras

model than the laminar flow model. This can be attributed to the quasi-viscous nature of

the flow, driven by the normal injection condition at the walls. Even though the present

solution is inviscid, it can approximate some features of weakly sheared viscous flow. Had

a viscous model been used, one would have expected the deviation of pressures at the aft

end to be further reduced.

The temperature comparison in Figure 4.1(b) presents a slightly different contrast. As

in the pressure comparison, the agreement at the headwall of the chamber is excellent since

the head end Mach number is very small, but the compressibility effects on temperature

become more visible as the flow progresses past the halfway point in the motor. The solution

obtained in the present study approaches the numerical solutions as the flow nears the exit

of the motor. The present analysis more closely follows the laminar numerical model, than

the more elaborate turbulent model. This is not unexpected and can be accounted for by

two causes. The first is that while the normal injection condition at the walls provides

a quasi-viscous behavior, it does not account for any thermal effects that a viscous flow

may introduce. Thus, the present analytical model would be expected to under-predict the

center-axis temperature. The second cause is that the energy model used to determine the

temperature, namely isentropic flow, is restrictive. Relaxing the isentropic condition would

no doubt lead to a more accurate prediction of the center-axis temperature.
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Figure 4.1: Computational verification of the center-axis pressures and temperatures.

4.2.2 Velocity Verification

It is also of interest to compare the predicted velocity profiles at various points in the

motor chamber. Since high velocities can lead to changes in motor performance, it is im-

portant that these variations are correctly accounted for. In order to get good comparisons

throughout the motor, comparisons are made for the center-axis velocities.

The center-axis comparison in Figure 4.2 shows some interesting features and generally

good agreement with the numerical results. The present work matches well early in the

chamber, but falls below the numerical predictions near the end of the chamber. This dif-

ference can be accounted for by the lack of viscous effects in our formulation. While it is

true with the normal injection condition that some aspects of the solution may approximate

a viscous model, the effect of the normal injection is decreasing as the flow moves down-

stream and toward the center-axis. The result is an inviscid centerline flow with a slightly

different shape than one accounting for viscosity. If the viscous losses were accounted for,

the center-axis velocity would trend toward closer agreement with the numerical results.

4.3 Theoretical and Experimental Comparisons

Flow in a rectangular channel has been a topic studied in a number of different applications

and as a result there is a wealth of theoretical and experimental data available to make

comparisons against. Even in the relatively narrow application of the slab rocket motor,
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Figure 4.2: Comparison of predicted center-axis velocity with numerical results.

studies by Traineau et. al.5 and Gany and Aharon15 provide both theoretical and experi-

mental results. In the interest of clarity, Taylor’s incompressible solution for the slab may

also be used as a benchmark.

4.3.1 Pressure Comparison

A baseline for comparison is the pressure distribution along the center-axis of the mo-

tor, shown in Figure 4.3. Traineau presents both a one-dimensional, and a pseudo-two-

dimensional analysis using a stream tube analysis, and also a set of experimental data

to compare to the theory. The results here are somewhat surprising. The one-dimensional

model appears to closely match the experimental data for the center-axis pressure. Traineau

notes the same, along with reasons why the two-dimensional numerical simulation under-

predicts the experimental data. It is possible that the introduction of viscous effects would

lower the axial gradient, thus explaining the two-dimensional results from Traineau being

lower than the observed experimental data. However, it does not completely explain why

the one-dimensional model matches the center-axis pressure prediction so well, while being

less accurate for other variables of interest. It is speculated that the effects of viscosity

cancel in the one-dimensional model since the flow is injected along the center-axis. If this

is the case, one would expect the relaxing of the inviscid condition to produce a shift down
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Figure 4.3: Comparison of center-axis pressures to former studies.

in the center-axis pressure, bringing the predicted pressure in line with experimental results.

4.3.2 Velocity Comparison

To assess compressibility effects on velocity profiles at varying locations in the motor, our

solution will be compared to data from Traineau’s experimental and computational study.

This enables us to not only track the evolution predicted by the present model, but also

to establish a comparison grounded in reality with the experimental results. Traineau’s

measurements are taken at various locations which, when normalized by the length of the

motor, occur at approximately twenty percent increments of the total length beginning with

forty percent.

The agreement of the asymptotic formulation with the experimental data, now shown

in Figure 4.4, is encouraging. In all locations, the compressible model presented here more

closely agrees with the experimental data than the incompressible model. Near the headwall

of the motor both the incompressible and compressible models bear close resemblance to

the experimental data, confirming that some length is required for the flow to develop to

the point where compressibility effects become non-negligible.

The axial velocity profiles evolve as the flow progresses through the motor. Near the

headwall, the flow is nearly incompressible, following the sinusoidal profile predicted by
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Figure 4.4: Comparison of axial velocities at various motor locations.

Taylor. The incompressible Taylor velocity is invariant in Figure 4.4 because of the normal-

ization used. However, as the flow travels further downstream, the velocity profile steepens,

thus indicating that greater shearing action is being experienced in the viscous solutions, in

addition to the displacement effect which characterizes the inviscid flow. This steepening

is found in both the experimental data and the computational verification of Traineau. It

has been posited previously by Balakrishnan et al.14 that the steepening effects could be

attributed to compressibility or turbulent viscous effects. Using the present model as a

guide, one may see that at least a portion of the steepening effect can be attributed to

the correct accounting for compressibility. While the agreement between the present model

and the experimental data is not perfect, one would expect that properly accounting for

viscosity and possible turbulent effects would further steepen the axial velocity profile, thus

bringing it closer to agreement with the experimental measurements.

Since the work of Balakrishnan et al.8 is still the most widely cited compressible study

of rocket motors, a comparison to the present inquiry is made in Figure 4.5. Figure 4.5(a)
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Figure 4.5: Axial velocity comparison with Balakrishnan et al..

depicts the velocity profile at x/Ls = 0.4, before the effects of compressibility become

dominant. Here, the velocity profiles of the incompressible baseline, the present work, and

the Balakrishnan numerical study are all in close agreement. In Figure 4.5(b), the flow

nears the sonic length at x/Ls = 0.8 and compressibility effects become more pronounced.

The present analysis shows good agreement with the results of Balakrishnan’s study. While

the present thesis slightly underpredicts the Balakrishnan work, it has the benefit of being

a closed form, analytical solution, whereas Balakrishnan must integrate numerically to

produce similar results.

4.4 Streamlines

The behavior of the streamlines is illustrated in Figure 4.6. The solid lines depict the in-

compressible streamlines and the dotted lines show the effects of compressibility. When

compressibility effects are accounted for, the streamlines turn more rapidly, providing a

steeper profile. As the injection velocity is increased, the behavior becomes more pro-

nounced, and deviations from the incompressible condition are observed earlier in the flow.

As the injection Mach number is increased, the motor length required for the flow to reach

sonic conditions is decreased. This behavior is reflective of a strong correlation between the

critical motor length and the injection Mach number as alluded to in Sec. 4.1.
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Figure 4.6: The effects of compressibility on the streamlines of a slab rocket motor.

The streamline plots also show the effects of compressibility as the flow progresses

through the motor. Near the headwall, the effects of compressibility are relatively neg-

ligible, a behavior that has been previously observed in the numerical simulation. As the

fluid travels toward the aft end and increases in speed, compressibility effects become more

pronounced. Using the streamline plot as a guide, it is possible to calculate the axial lo-

cation where the magnification of the velocity by compressibility becomes so large that it

must be taken into account.

4.5 Compressible Design Criterion

This leads to an important question that every motor designer must ask: Do I need to worry

about compressibility effects in my design or can I safely work with an incompressible model?

In an attempt to answer this question, one may look at a set of criteria for measuring the

effects of compressibility. The first criterion is the compressibility ratio,

χc =
u(0, z)

u0(0, z)
(4.9)

This is simply the ratio between the compressible and incompressible velocities. It represents

the amplification of the center-axis velocity at a given location in the motor.
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It is possible to obtain an analytical expression for the compressible amplification via

substitution of Eqs. (3.1), (3.6), and (3.7) back into Eq. (4.9). These yield

χc = 1 +
1

24
M2

w

(

π2x2 − 9
)

(4.10)

One way for a motor designer to effectively make use of the formulation in Eq. (4.10) is to

introduce an acceptable difference, here labeled ǫ. If a designer knows that a compressible-

incompressible velocity difference of up to 5% is acceptable, he may let χc = 1 + ǫ. With

this substitution and subsequent simplifcation, Eq. (4.10) becomes

xǫ =

√

24ǫ

M2
wπ

2
+

9

π2
(4.11)

This gives an expression for the location in the motor where this level of difference of ǫ first

occurs. However, for a designer looking to get a reasonable approximation, the 9/π2 may

be ignored because the first term in the equation dominates for typical values expected in

rocket design; one is left with

xǫ =
2
√

6ǫ

Mwπ
(4.12)

Conversely, if the geometry of the motor is fixed, the designer can get a rough approximation

of the maximum injection Mach number by rearranging the equation to yield 2
√

6ǫ/(πx).

Since calculations of this type often degrade in the vicinity of the nozzle, it is common

practice for a designer to specify that an error can be acceptable if it is limited to a small

fraction of the motor length near the nozzle. To adjust for this, one may introduce x =

(1 − z)L where z is the fraction of the motor length where the error is acceptable (the last

1
8 for example), and L = L0/a is the aspect ratio of the motor. This substitution yields the

critical value

M∗
w =

2
√

6ǫ

π(1 − z)L
(4.13)

For example, if a designer decides that for a motor with a 0.1 m radius and 4 m length, a

velocity difference of 10% is allowable in the last 1/8 of the motor, he can directly apply
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Eq. (4.13) as follows:

M∗
w =

2
√

6(0.10)

π(1 − 0.125)40
= 0.0141 (4.14)

So for this hypothetical motor, an injection Mach number of 0.0141 constitutes the maxi-

mum injection condition that the motor can have and still be modeled effectively with an

incompressible model. Since this value is on the high side for most motors, an incompressible

model will, for all intents and purposes, be acceptable for this motor.

The validity of these criteria are easily verifiable. The compressibility criteria set forth

in Eqs. (4.12) and (4.13) are used to select the stream function plots shown in Figure 4.6.

This is accomplished by allowing a five percent deviation in the last eighth of the motor. In

Figure 4.6(a), a designer is well advised to absorb the extra complexity of the compressible

model in favor of the more accurate flow field prediction. Just from a cursory examination

of the streamlines, one may see significant deviations from the incompressible flow model

almost immediately. In the second, less extreme case shown in Figure 4.6(b) the effects of

compressibility are seen to be relatively negligible. Steepening of the streamlines is observed,

but not in any degree that would alarm a potential designer.

4.6 Internal Ballistics

One of the advantages of the present approach is that because the primary variables are

known at any position in the motor, it is possible to calculate secondary performance

characteristics. More so than velocity profiles or streamline plots, these ballistics terms are

at the heart of practical rocket analysis. To facilitate a practical use of this analysis, we

determine some of the critical ballistics parameters with full analytical expressions.

4.6.1 Mass Flow Rate

First an expression for the total mass flowrate at any given cross-section is determined.

For the steady case analyzed here, the general expression for the total mass flow rate in
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non-dimensional terms is

ṁ =

∫

ρu dA = 2w

∫ 1

0
ρu dy (4.15)

where w = w̄/a. Substitution of the relations for ρ and u and completing the integra-

tion produces a lengthy equation, which however is easily programmable. A more compact

approximate expression is presented here, after multiplying by the proper dimensional con-

stants to ensure correct units. This equation is accurate to three decimal places for the

range of operation for most motors.

ṁ =
a0ρ0a

2

2304
Mwwx(M

2
wπ

2x2 + 12)
[

M4
wπ

4x4(2 − 3γ) − 48M2
wπ

2x2 + 384
]

+O(M5
w) (4.16)

4.6.2 Thrust Force

In order to continue with the ballistics study the thrust force generated by the rocket motor

must be determined. The thrust force for a given motor length can be expressed as

F =

∫

ρu2 dA = 2w

∫ 1

0
ρu2 dy (4.17)

which after substitution, integration, and dimensionalization becomes

F =
a2

0a
2ρ0

1536
M2

wπ
2x2w(

29

4608
M4

wπ
4x4 +

7

48
M2

wπ
2x2 + 1)

·
[

M4
wπ

4x4(2 − 3γ) − 48M2
wπ

2x2 + 384
]

+O(M5
w) (4.18)

Equation (4.18) is also an approximate expression for the thrust force, accurate to four

significant digits.

4.6.3 Specific Impulse

Even as approximate expressions, Eqs. (4.16) and (4.18) are slightly cumbersome to handle.

However, when the thrust force is divided by the mass flux and the standard acceleration
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of gravity at sea level, one can determine the specific impulse in units of seconds.

Is =
F

ṁg0
=

a0

3072g0
Mwπ

2x(M2
wπ

2x2 + 12)−1

·(29M4
wπ

4x4 + 672M2
wπ

2x2 + 4608) +O(M5
w) (4.19)

This provides a ballistics criterion that is independent of the motor cross-section.

While a compact solution, Eq. (4.19) is a longer relation than its incompressible coun-

terpart. If compressiblity effects are ignored the specific impulse becomes

(Is)inc =
π2a0

8g0
Mwx (4.20)

A comparison of the two terms over the length of a typical motor is presented in Figure 4.7.

The first case presented is for the cold flow injection of air that has been used by Traineau

for previous comparisons. A second, hot flow case is shown for a motor of similar size to

cover a more realistic range of values for the specific impulse. Near the headwall, both the

compressible and incompressible specific impulses follow the same linear relationship. Once

the flow nears the midpoint of the chamber, the compressible expression diverges as the

nonlinear terms in Eq. (4.19) begin to dominate. Equation (4.20) maintains its linearity for

the entire length of the motor. The shape of the specific impulse axial distributions are the

same for both cases. This is easily explained by the common dependence on a0. In both

the incompressible and compressible relationships, the speed of sound appears as a scaling

parameter, multiplying both expressions equally. Therefore, for motors of similar injection

speed and size, the speed of sound is the sole determining characteristic for increasing

specific impulse performance.

It is also of interest to note that, if by scaling the length of the chamber by the sonic

length, the specific impulse curve for a given value of the speed of sound will be the same

for any variety of motor. For example, Figure 4.7 is generated using values based on

Traineau’s experimental case with a Ls = 45.5. If one is to use a lower value for injection,

say Mw = 0.0034 which requires Ls = 153.78, creation of a similar plot will produce curves
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Figure 4.7: The specific impulse for a) a0 = 323 m/s and b) a0 = 1500 m/s.

that are identical to Figure 4.7 despite the fact that the injection Mach number is much

smaller.

4.6.4 Characteristic Velocity

Another figure of merit is the characteristic velocity, c∗. The characteristic velocity is a

comparative measure of propellant and combustion system performance. Because c∗ is in-

dependent of the nozzle performance, it is ideal for evaluating nozzleless rocket performance.

Sutton and Biblarz37 define c∗ as

c∗ =
pcAt

ṁ
(4.21)

where pc is the combustion chamber pressure, At is the throat area of the nozzle, and ṁ

is the mass flowrate through the motor. Because our analysis is not limited by a constant

pressure throughout the combustion chamber, an average value of the chamber pressure will

be calculated by integrating the pressure of the volume of the chamber and then dividing

by the volume via

pc =

∫

pdV

V
=
p0

L

∫ 1

0

∫ L

0
p dxdy (4.22)

where L is the nondimensional length of the motor, normalized by the half-height. After

evaluation, Eq. 4.22 becomes

pc = p0

[

1 −M2
wγ

(

1

4
+
π2

24
L2 +

1

32
M2

w − 13π2

384
L2M2

w +
π4

1920
L4M2

w

)]

(4.23)
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The result from Eq. (4.23) fully determines the right hand side of Eq. (4.21). After

substitution one gets

c∗ =
12a0

[

−1920/γ + 80M2
w

(

6 + L2π2
)

+M4
w

(

60 − 65L2π2 + L4π4
)]

5LMw (12 + L2M2
wπ

2) [−384 + 48L2M2
wπ

2 + L4M4
wπ

4 (3γ − 2)]
(4.24)

Figure 4.8 depicts the characteristic velocity for motors of varying length. The expression

in Eq. (4.24) is singular at the origin. This is not surprising since the expression is very

dependent on the length of the motor. For extremely small values of motor length, the

denominator of Eq. (4.24) approaches zero and the result is an infinite characteristic velocity

for a motor of zero length. When the length of the motor increases to the normal range

of aspect ratios, the values of the characteristic velocity will quickly fall in line with the

normal range of values expected for solid rocket motor operation.37 The shape of the

plot in Figure 4.8 suggests that while smaller chambers may be more efficient, not much

efficiency is lost in longer motors since the curve approaches a fixed value as the length

of the motor extends. However, with the longer motor one expects the increased thrust

produced by the increased mass injection to result in a more powerful motor, offsetting the

loss in characteristic velocity.

4.6.5 Thrust Coefficient

The final performance measure presented here is the thrust coefficient. Since the thrust

coefficient is typically used as a measure of nozzle performance, its value in the nozzleless

chamber application is limited, but it is included here for the sake of completeness. The

relationship for the thrust coefficient is given by the following relation

Cf =
F

PcAt
(4.25)
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The parameters of Eq. (4.25) have been completely determined previously in this section.

Substitution of the known quantities produces

Cf = 5π2M2
wL

2
(

29π4M4
wL

4 + 672π2M2
wL

2 + 4608
)

×
[

(3γ − 2)π4M4
wL

4 + 48π2M2
wL

2 − 384
]

36864 [−1920/γ + 80M2
w (π2L2 + 6) +M4

w (π4L4 − 65π2L2 + 60)]
(4.26)

The changes in the thrust coefficient for increasing motor length are shown in Figure 4.9.

The curve starts at the origin which makes physical sense since motors of zero length should

produce zero thrust and similarly zero thrust coefficient. As the motor length increases,

so does the thrust coefficient. At the sonic length of the motor, Cf = 0.5047. While the

exponential trend for increasing motor length is somewhat alarming, once the motor reaches

the sonic length, the flow would choke and the thrust coefficient would be limited by its

value at the sonic length of the nozzleless motor. This limiting effect prevents one from

having to examine the case of an infinite thrust coefficient, which has no physical basis. For

a typical rocket motor, values of the thrust coefficient vary from 0.8 to 1.9.37 The difference

between the observed values and those found in Figure 4.9 can be attributed to the absence

of a nozzle in the present study. The expansion of the supersonic gases from the nozzle can

greatly increase the thrust force, and as a result the thrust coefficient increases accordingly.
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The value of nozzleless performance characteristics on their own is limited. Currently

nozzleless motors are not used in many applications, and as a result the demand for per-

formance calculations for these motors is small. While the performance characteristics

presented here are of varying degrees of usefulness to a nozzleless motor, all of the measures

are good for comparison purposes with conventional, nozzled rocket motors. Many of the

characteristics such as thrust, specific impulse, and thrust coefficient are heavily depen-

dent on the nozzle configuration, but having a nozzleless analog can help determine exactly

what portion of each characteristic is dependent on the nozzle design and what is reliant on

the chamber design or combustion process. For the characteristics that are less dependent

on the nozzle, these analytical expressions for the performance can be used to estimate the

characteristics of the conventional motor and ensure that proper instrumentation is selected

for testing.
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Chapter 5

Conclusions

The Rayleigh-Janzen perturbation approach presented here yields a compact, closed form

solution for compressible, inviscid flow in a two-dimensional geometry; when applied to a

slab rocket flow field, results are found to be in good agreement with both computation

and experiment. The closed form expressions for the variables of interest help to further

the understanding of compressibility effects on the flow field of a solid rocket motor, where

previously only one-dimensional, pseudo-two-dimensional, numerical, or experimental find-

ings were available. When exact expressions are too cumbersome for analysis, approximate

expressions have been provided. Practical relations and ballistics characteristics are also

presented to aid in the design of both regular and nozzleless rockets.

The present study shows good agreement with both numerical and experimental studies.

Variations from the numerical predictions in pressure can be accounted for by the neglect

of viscosity. The underpredicted temperature field is not subject to viscosity but varies

according to isentropic relationships. Velocity comparisons made throughout the chamber

show good agreement with other experimental and numerical results. The compressible

profiles capture the steepening behavior predicted by Balakrishnan et al.,14 a feature that

is now captured analytically.

To improve the predictive capability of this model, more effects should be included in

the analysis. Incorporating viscous effects into the model is a natural extension for this
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work. The normal injection boundary condition captures some traits of viscous behavior;

however without accounting for viscosity throughout the flow, one expects the temperature

distribution to underpredict experimental values. Allowing for viscosity, and the energy

transfer associated with it, may bring the temperature in line with experimental prediction.

The isentropic condition applied in this study is another restrictive condition that could be

relaxed in favor of a more complete energy analysis. Instead of relying on the isentropic

relations between pressure and the other thermodynamic variables, a more complete energy

equation could be substituted to provide a more realistic model, particularly, an energy

equation with a distributed heat source to simulate combustion effects.

The work presented in this thesis is valuable to the analysis of slab rocket motors and

other rectangular channel flows. However, perhaps of greater value is that this study may

serve as a proof of concept for studying internal, compressible flows in other geometries.

The study could be extended to arbitrary geometries in both the two-dimensional and the

axisymmetric case. It is also possible to extend the general analysis to other sorts of flows.

One may use a similar approach to find a compressible analog for vortex motions such as

those presented by Vyas et al.38–40

60



Bibliography

61



Bibliography

[1] White, F. M., Viscous Fluid Flow , McGraw Hill, 2nd ed., 1991.

[2] Berman, A. S., “Laminar Flow in Channels with Porous Walls,” Journal of Applied

Physics, Vol. 24, No. 9, 1953, pp. 1232–1235.

[3] Taylor, G. I., “Fluid Flow in Regions Bounded by Porous Surfaces,” Proceedings of the

Royal Society, London, Series A, Vol. 234, No. 1199, 1956, pp. 456–475.

[4] Culick, F. E. C., “Rotational Axisymmetric Mean Flow and Damping of Acoustic

Waves in a Solid Propellant Rocket,” AIAA Journal , Vol. 4, No. 8, 1966, pp. 1462–

1464.

[5] Traineau, J.-C., Hervat, P., and Kuentamann, P., “Cold-Flow Simulation of a Two-

Dimensional Nozzleless Solid Rocket Motor,” AIAA Joint Propulsion Conference, No.

86-1447, Huntsville, Alabama, June 1986.

[6] Apte, S. and Yang, V., “Unsteady Flow Evolution in a Porous Chamber with Surface

Mass Injection. Part I: Free oscillation,” AIAA Journal , Vol. 39, No. 8, 2001, pp. 1577–

1586.

[7] Najjar, F. M., Haselbacher, A., Ferry, J. P., Wasistho, B., Balachandar, S., and Moser,

R., “Large-scale Multiphase Large-eddy Simulation of Flows in Solid-rocket Motors,”

AIAA Computational Fluid Dynamics Conference, No. 2003-3700, Orlando, FL, June

2003.

62
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Appendix

Lower Order Critical Length Calculations

It is possible to determine the critical length of the motor to increasing degrees of accuracy

by comparing results with fewer terms to results with all of the terms included. For a

simple, rough approximation of the choke length, only the leading order terms are retained

to give the expression

Mw
πx

2
=

√

1 −M2
w

(γ − 1)

8
π2x2 (5.1)

Squaring both sides and collecting terms

π2M2
w

8
(γ + 1)x2 = 1 (5.2)

Finally, solving for x and keeping only the positive root gives the the expression for the

leading order critical length

xs =
2
√

2

Mwπ
√
γ + 1

(5.3)

Only the positive root for the choke length makes physical sense for determining the sonic

length.

To illustrate how expensive the increase in accuracy is in terms of equation complexity,

we retain the second order velocity terms to yield

Mw
πx

2
−M3

w

πx

96

(

18 − 2πx2
)

=

√

1 −M2
w

(

(γ − 1)

8
π2x2

)

(5.4)
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A similar procedure is used, squaring both sides of Eq. (5.4). With the addition of the

second order velocity, the solution becomes more complex.

M6
wπ

6

2304
x6 +

M4
wπ

4

384
(8 − 3M2

w)x4 +
M2

wπ
2

256

[

32 (γ + 1) − 48M2
w + 9M4

w

]

x2 − 1 = 0 (5.5)

The complexity of the equation for the sonic length goes up from a simple quadratic to a

cubic equation. Solving Eq. (5.5) and selecting the real, positive root gives the following

solution

x(1)
s =

1

πMw

√

√

√

√

9M4
w + 6M2

w(β
1

3 − 8) + β
2
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3 − 96γ + 160
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1

3

(5.6)

where β is

β = 32
[

4(18γ − 5) + 9M2
w(1 − 3γ) + 6

√

2(9M2
w(−4γ2 − 3γ + 5) + 2(6γ3 + 6γ2 + 30γ − 25)

]

(5.7)

It is interesting to note that while Eq. (5.6) is dependent on the Mach number, it is only

weakly so. An approximate expression for the choke length, neglecting terms higher than

O(M2
w), can be written as

x(1)
sa =

1

πMw

√

√

√

√

β
2

3
a − 16β

1

3
a + 160 − 96γ

β
1

3
a

(5.8)

where βa is equal to

βa = 128
(

18γ − 5 + 3
√

6γ3 + 6γ2 + 30γ − 25
)

(5.9)

The more compact, approximate expression for the choke length is accurate to three decimal

places when compared to the full expression, for the range of injection Mach numbers

common to slab rocket motor applications.
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