
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-2-2003

A Global Preconditioning Method for the Euler Equations A Global Preconditioning Method for the Euler Equations

B. Gazi Yildirim

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Yildirim, B. Gazi, "A Global Preconditioning Method for the Euler Equations" (2003). Theses and
Dissertations. 150.
https://scholarsjunction.msstate.edu/td/150

This Graduate Thesis - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/150?utm_source=scholarsjunction.msstate.edu%2Ftd%2F150&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

A GLOBAL PRECONDITIONING METHOD FOR THE EULER EQUATIONS

By

B. Gazi Yildirim

A Thesis
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Master of Science

in Aerospace Engineering
in the Department of Aerospace Engineering

Mississippi State, Mississippi

December 2003

Copyright by

B. Gazi Yildirim

2003

A GLOBAL PRECONDITIONING METHOD FOR THE EULER EQUATIONS

By

B. Gazi Yildirim

Approved:

Pasquale Cinnella Z.U.A Warsi
Associate Professor of Professor Emeritus of Aerospace
Aerospace Engineering Engineering
(Director of Thesis) (Committee Member)

Jonathan Mark Janus
Associate Professor of
Aerospace Engineering
(Committee Member)

Pasquale Cinnella A. Wayne Bennett
Associate Professor of Dean of the Bagley College of Engineering
Aerospace Engineering
Graduate Coordinator

Name: B. Gazi Yildirim

Date of Degree: December 13, 2003

Institution: Mississippi State University

Major Field: Aerospace Engineering

Major Professor: Dr. Pasquale Cinnella

Title of Study: A GLOBAL PRECONDITIONING METHOD FOR THE EULER
EQUATIONS

Pages in Study: 102

Candidate for Degree of Master of Science

This study seeks to validate a recently introduced global preconditioning technique for

the Euler equations. Energy and enthalpy equations are nondimensionalized by means of

a reference enthalpy, resulting in increased numerical accuracy for low-speed flows. A cell-

based, finite volume formulation is used, with Roe flux difference splitting and both explicit

and implicit time integration schemes. A Newton-linearized iterative implicit algorithm

is implemented, with Symmetric Gauss-Seidel (LU/SGS) nested sub-iterations. This

choice allows one to retain time accuracy, and eliminates approximate factorization errors,

which become dominant at low speed flows. The linearized flux Jacobians are evaluated

by numerical differentiation. Higher-order discretization is constructed by means of the

MUSCL approach. Locally one-dimensional characteristic variable boundary conditions

are implemented at the farfield boundary. The preconditioned scheme is successfully

applied to the following traditional test cases used as benchmarks for local preconditioning

techniques: point disturbance, flow angle disturbance, and stagnation point arising from

the impingement of two identical jets. The flow over a symmetric airfoil and a convergent-

divergent nozzle are then simulated for arbitrary Mach numbers. The preconditioned scheme

greatly enhances accuracy and convergence rate for low-speed flows (all the way down to

M ≈ 10E − 4). Some preliminary tests of fully unsteady flows are also conducted.

ACKNOWLEDGMENTS

I am very grateful for Dr. Cinnella for his guidance. Whenever I had a problem, lost

my hope about the problem, his analytical approach was a great help. He also edited my

thesis meticulously. I would like to express my appreciation to Dr. Warsi for his support. I

especially thank Dr. Janus for his clear and complete instruction and his past works which

I exploited a lot.

Most importantly, I am indebted to my parents for supporting me in every moment,

and thank you to my sister also.

Thanks also to the Simcenter/MSU for providing the computing resources to make

this work possible. Of course, I have spent almost two years in Starkville. I made some

friends and have shared good times. Thanks for their help, support, and warm and sincere

relationships.

ii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

NOMENCLATURE . ix

CHAPTER

I. INTRODUCTION . 1

II. GOVERNING EQUATIONS . 5

2.1 Euler Equations . 5
2.2 Euler Equations in Vector Form . 6
2.3 Nondimensionalization . 7
2.4 Curvilinear Transformation . 9
2.5 Primitive Variable Formulation . 11

III. FLUX DIFFERENCE SPLITTING . 13

3.1 The Riemann Problem . 13
3.2 Roe Flux Formulation . 16

3.2.1 Roe average variables for the Euler Equations 19
3.3 Primitive Variable Flux Formulation . 19

IV. PRECONDITIONING . 22

4.1 Local Preconditioning Methods . 23
4.1.1 Advantages of Local Preconditioning . 24
4.1.2 Issues with Local Preconditioning . 24

4.2 Global Preconditioning . 25
4.3 Preconditioned Formulation in Primitive Variables 26

V. NUMERICAL SOLUTION . 28

5.1 Time-Linearized Implicit Scheme . 29
5.2 Newton Formulation . 30
5.3 Anderson-Thomas-Van Leer Reconstruction-Evolution Methods 33
5.4 Linearized Fluxes by Numerical Differentiation . 35

iii

CHAPTER Page

5.4.1 Complex Variable Approach . 36
5.5 Solution Algorithm . 36

VI. COMPUTATIONAL BOUNDARY CONDITIONS . 39

6.1 Characteristic Variables . 40
6.2 Characteristic Variable Boundary Conditions (CVBCs) 42
6.3 Subsonic Codirectional Flow . 43
6.4 Subsonic Contradirectional Flow . 45
6.5 Supersonic Flow . 46
6.6 Wall Boundary Conditions . 47

VII. RESULTS . 49

7.1 Test Cases for Preconditioning Schemes . 50
7.1.1 Point Disturbance Test . 50
7.1.2 Flow Angle Test . 51
7.1.3 Stagnation Point Test . 53

7.2 Steady-State, External Flows: Airfoil Tests . 54
7.2.1 Subsonic Flow . 57
7.2.2 Transonic Flow . 60
7.2.3 Supersonic Test Case . 69

7.3 Steady-State, Internal Flows: Nozzle Tests . 70
7.3.1 Subsonic Nozzle . 71
7.3.2 Nonisentropic Choked Nozzle . 72
7.3.3 Supersonic Nozzle . 76

7.4 Unsteady Case: Shock Tube Problem . 79

VIII. SUMMARY AND CONCLUDING REMARKS . 83

REFERENCES . 85

APPENDIX

A. CURVILINEAR TRANSFORMATION . 88

B. FLUX JACOBIANS . 95

C. EIGENVALUES AND EIGENVECTORS . 98

iv

LIST OF TABLES

TABLE Page
7.1 Lift/Drag Coefficients comparisons at M=0.85 and α = 1o 65

7.2 Drag Coefficients comparisons at M=1.2 and α = 0o . 70

v

LIST OF FIGURES

FIGURE Page
3.1 Structure of solution of the Riemann problem in the ξ − τ plane 14

5.1 High-order solution construction . 33

6.1 Characteristic lines in the ξ − τ plane . 42

6.2 Codirectional and Contradirectional Flow . 43

7.1 Original Scheme Convergence History for a given Pressure disturbance 51

7.2 Preconditioned Scheme Convergence History for given Pressure
disturbance . 52

7.3 Original Scheme Convergence History for flow angle test case 53

7.4 Preconditioned Scheme Convergence History for flow angle test case 54

7.5 Stagnation point—detailed view . 55

7.6 Stagnation point Convergence History for Original and Preconditioned
Scheme . 55

7.7 Coarser 177 × 33 C-grid for NACA0012 airfoil . 56

7.8 Finer 353 × 65 C-grid for NACA0012 airfoil . 57

7.9 Coefficient of Lift for various Mach Numbers from 1st Order Original
Scheme at Subsonic Flow . 58

7.10 Coefficient of Lift for various Mach Numbers from 1st Order
Preconditioned Scheme at Subsonic Flow . 59

7.11 First-Order Original Scheme Convergence History for various Mach
numbers at Subsonic Flow . 59

7.12 First-Order Preconditioned Scheme Convergence History for various
Mach numbers at Subsonic Flow . 60

7.13 Coefficient of Lift for various Mach Numbers from 2nd Order Original
Scheme at Subsonic Flow . 61

7.14 Coefficient of Lift for various Mach Numbers from 2nd Order
Preconditioned Scheme at Subsonic Flow . 61

vi

FIGURE Page

7.15 Second-Order Original Scheme Convergence History for various Mach
numbers at Subsonic Flow . 62

7.16 Second-Order Preconditioned Scheme Convergence History for various
Mach numbers at Subsonic Flow . 62

7.17 Coefficient of Lift for various Mach Numbers from 3rd Order Original
Scheme at Subsonic Flow . 63

7.18 Coefficient of Lift for various Mach Numbers from 3rd Order
Preconditioned Scheme at Subsonic Flow . 63

7.19 Third-Order Original Scheme Convergence History for various Mach
numbers at Subsonic Flow . 64

7.20 Third-Order Preconditioned Scheme Convergence History for various
Mach numbers at Subsonic Flow . 64

7.21 Pressure coefficient distribution over the transonic case at M∞ = 0.85
and α = 1, Original Scheme . 66

7.22 Pressure coefficient distribution over the transonic case at M∞ = 0.85
and α = 1, Preconditioned Scheme . 66

7.23 Detailed View of Pressure coefficient distribution over the transonic
case at M∞ = 0.85 and α = 1, Original Scheme . 67

7.24 Detailed View of Pressure coefficient distribution over the transonic
case at M∞ = 0.85 and α = 1, Preconditioned Scheme 67

7.25 First-Order Original and Preconditioned scheme Convergence Histories
for the transonic case (M∞ = 0.85 and α = 1o) . 68

7.26 Mach contour lines for the transonic case (M∞ = 0.85 and α = 1o) 68

7.27 First-Order scheme Convergence History for the supersonic case (M∞ =
1.2 and α = 0o) . 69

7.28 Mach contour lines for the supersonic case (M∞ = 1.2 and α = 0o) 70

7.29 Grid used for the Convergent-Divergent Nozzle (202 × 62) 71

7.30 Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
Mr = 0.001 . 73

7.31 Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
Mr = 0.01 . 73

7.32 Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
Mr = 0.1 . 73

vii

FIGURE Page

7.33 Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
Mr = 0.25 . 73

7.34 First-Order Scheme Convergence Histories for Subsonic Nozzle 74

7.35 First-Order Scheme Convergence Histories for Subsonic Nozzle 74

7.36 Second-Order Scheme Convergence Histories for Subsonic Nozzle 75

7.37 Second-Order Scheme Convergence Histories for Subsonic Nozzle 75

7.38 Mach contours for pe

po
= 0.89 . 76

7.39 Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
choked flow . 77

7.40 Convergence Histories for nonisentropic nozzle pe

po
= 0.75 77

7.41 Average Mach number distribution along convergent-divergent nozzle
for choked flow . 78

7.42 Mach contours for pe

po
= 0.75 . 78

7.43 Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
supersonic nozzle . 79

7.44 Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
supersonic nozzle . 80

7.45 Mach contours for pe

po
= 0.16 . 80

7.46 Grid for Shock Tube Problem (201 × 6) . 82

7.47 Mach contours for pe

po
= 0.75 . 82

viii

NOMENCLATURE

a, b, c, s flux Jacobians in primitive variable

aΓ, bΓ, cΓ, sΓ system matrix in preconditioned primitive formulation

c speed of sound

A,B,C,K flux Jacobians in conserved variable

Cp Specific heat at constant pressure

Cv Specific heat at constant volume

e specific energy

E total energy per unit volume

Ec Eckert number

f, g, h flux vectors (Cartesian coordinates)

F,G,H flux vectors in computational space

h perturbation

ht total specific enthalpy

J Jacobian of transformation

L length

M transformation matrix to primitive variable, Mach number

p pressure

q primitive variable vector (curvilinear coordinates)

Q conserved variable vector (curvilinear coordinates)

R gas constant

Rξ, Rη, Rζ , Rq, RQ eigenvectors

< steady residual, residual

<U unsteady residual

t physical time

T temperature

ix

u, v,w Cartesian velocity components

U, V,W velocity components in curvilinear coordinates

w primitive variable vector (Cartesian coordinates)

W conserved variable vector (Cartesian coordinates), characteristic variables

x, y, z Cartesian axes

α angle of attack

γ Specific heat ratios Cp/Cv

Γq global preconditioning matrix

∆τ time step

λ,Λk eigenvalue, eigenvalue matrix

ξ, η, ζ, k curvilinear axes

ρ density

τ computational time

Subscripts:

a approaching boundary

b boundary value

e exit condition

i, j, k location index

l leaving boundary

L,R left and right of an interface

o frozen value, stagnation condition

r reference quantity

∞ free stream quantity

Superscripts:

L,R left and right of an interface

m Newton iteration index

n time level index

x

p symmetric Gauss-Seidel iteration index

¯ dimensional quantities

˜ Roe averaged

′

differentiation

ˆ normalized metrics

Mathematical Operators:

Max maximum value

Min minimum value

Sgn sign function

∇· divergence

δ central difference operator

∆ difference

∇ gradient

· dot product

| | Absolute value, determinant

xi

CHAPTER I

INTRODUCTION

Any mutual motion between an object and a fluid will cause particles of the fluid to

collide with the object. A fluid moving around a body is governed by the three conservation

laws of mass, momentum, and energy. A large amount of practical applications occur in

continuous media and are governed by the Navier-Stokes (N-S) equations. determination

of flow properties around a body is highly desirable, in order to build and develop highly

efficient vehicles or devices. Unfortunately, solving the N-S equations analytically seems

impossible, except in some very simple problems. In many aerodynamics applications, the

exclusion of viscous terms is a fairly good approximation for solving flowfields. The flow

excluding viscous effects is called inviscid, and is governed by the Euler equations, which

are a subset of the N-S equations. Nonetheless, this simplification does not mean that the

Euler equations have analytical solutions for real world applications.

With the advent of high-speed computers, the solution of Euler and N-S equations has

relied on numerical methods. Since the N-S equations consist of the Euler equations plus

viscous and heat flux terms, the solution techniques for the Euler equations are equally

important for viscous problems.

Presently, numerical methods for hyperbolic equations have played a crucial role in

solving flow problems in an efficient and reliable manner. The hyperbolicity of Euler

equations is guaranteed in their unsteady form; however, steady state problems, which are

not fully hyperbolic, turn out to be solvable when using the unsteady form. Unfortunately,

this approach cannot be extended to incompressible flows, where density changes are

negligible. Modifications are necessary in order to remove ill-conditioned behavior for

numerical methods at low-speed flows: hence, the development of preconditioning methods.

As mentioned earlier, traditional compressible algorithms fail at low Mach numbers in

terms of accuracy and convergence. Attempts to correct this problem have resulted in

1

2

preconditioned schemes: the derivatives in the governing equations are modified by the

introduction of a preconditioning matrix. The scheme is local when the matrix depends on

local values of the flow, and global when it depends only a global (constant) reference values.

Recent investigations of existing local preconditioning schemes are presented in [1] [2] [3].

In subsonic flow, the results generated by compressible algorithms deteriorate as the Mach

number is reduced, mainly because there is a large disparity in convective and acoustic

parts of the system eigenvalues; moreover the compressible equations are improperly scaled

at low speed [4]. Preconditioning (either local or global) plays an important role in solving

these problems.

Local preconditioning is designed to remove the arising problems due to low Mach

numbers. The most two important benefits of preconditioning can be listed as: (1) balancing

the order of magnitude of convective and acoustic parts of the eigenvalues; and, (2) scaling

compressible equations properly for M → 0. In addition to that, local preconditioners can

provide some lesser important advantages which will be discussed shortly in this study. On

the other hand, local preconditioning schemes suffer for vanishing Mach number. This

problem has been attributed to (1) flow angle sensitivity [5], (2) eigenvector structure

[6], and (3) lack of symmetrizability of preconditioning equations [2]. All of the existing

preconditioners have been shown by Zaccanti [2] to be suffering in the vanishing Mach

number limit. To resolve this issue, the same author proposed a hybrid scheme, which

is combination of robust preconditioners (Turkel, Choi and Merkel) in low Mach number

region with Van-Leer-Roe in the remaining flowfield.

Recently, a new global preconditioner was introduced by Briley, Taylor and Whitfield

[7]. Unlike local preconditioning, this will change the governing equation globally.

Preconditioned methods are designed to solve the compressible equations, while preserving

accuracy and convergence behavior at low speeds. This new approach is inherently not

local, thus the deficiencies of local preconditioning should not be encountered here.

The purpose of this study is to implement, validate, and test the global preconditioner

and assess its performance. A characteristic-based finite volume upwind formulation with

flux difference splitting is used to discretize the governing equations. The introduction

3

of a new term in the time derivative will change characteristics of the equations, hence

face fluxes are in need to be modified in order to preserve accuracy at low Mach numbers

[8]. Changing the time derivative term in the equation does not cause any problem in a

steady-state problem, but it destroys time accuracy. In order to circumvent this problem,

a Discretized-Newton formulation with Lower-Upper Symmetric Gauss-Seidel (LU/SGS)

is chosen, because : (1) the Newton formulation takes into account unsteadiness; and

(2)introducing one more subiteration level is an alternative, efficient solving method for

the resulting linear system of equations, compared with approximate factorization (AF)

methods, and it can eliminate AF errors.

Characteristic variable boundary conditions (CVBCs) are the most logical and accurate

to impose on computational boundaries, and are crucial for successfully implementing

numerical algorithms. CVBCs were developed for farfield boundary conditions [9]. The

change of characteristic of the equations will results in a different set of eigenvectors, thus

having different characteristic variables. CVBCs are presented for the new scheme, and their

quality is shown by a comparison with other numerical results at the farfield boundaries.

Numerical experiments are conducted to assess the reliability and robustness of the

new global preconditioner. Traditionally, local preconditioning schemes are evaluating

using three test cases, namely point-disturbance, flow angle, and stagnation point tests.

These tests try to minimize boundary condition effects in order to observe the behavior

of preconditioned schemes [2]. In addition, the use of an explicit scheme is useful here, in

order to circumvent computation complexities present in implicit schemes.

The new scheme is applied to steady-state (internal and external), and unsteady

flowfields. External flows may have one or more stagnation points; therefore, external

flowfields are good examples to test the new preconditioning ability near stagnation

points. For airfoil tests, the code is applied to variable Mach numbers changing from

M = 0.001 to M = 1.2 (using a NACA 0012 airfoil). In order to show that the new scheme

is reliable and robust, the code should be applicable to a variety of flowfields. A nozzle

problem is an example of internal flow which does not have a stagnation point;however,

it may feature very low speeds locally. Thus it represents an excellent example of mixed

4

flow types. Several different flow conditions (subsonic and supersonic nozzle, shock in the

diffuser) can be achieved by changing the exit pressure. Lastly, a shock tube problem is

computed for various reference Mach numbers, as a simple test of the unsteady flow used

to see capabilities of the present approach .

CHAPTER II

GOVERNING EQUATIONS

The governing equations for fluid flows are based on conservation of mass, Newton’s

second law of motion, and the first law of thermodynamics.

Momentum and energy equations are complicated for real flows due to the presence of

viscosity, chemical reactions, thermal conduction, and gravity. In here, it is assumed that

all these influences are negligible(a reasonable assumption for many practical applications).

Also, it is necessary to introduce one equation of state, which represents the fact that the

local thermodynamic state is known when any two independent thermodynamics variables

are known.

2.1 Euler Equations

The three laws of conservation, plus an equation of state, constitute the Euler equations

(in a fixed coordinate system). The Euler equations can be written in the following form:

∂ρ̄

∂t̄
+ ∇ · ρ̄ū = 0, (2.1)

∂ρ̄ū

∂t̄
+ ∇ · ρ̄ūū + ∇p̄ = 0, (2.2)

∂Ē

∂t̄
+ ∇ · (Ē + p̄)ū = 0. (2.3)

Here , ρ̄ is density, p̄ is pressure, ū is velocity vector, Ē is total energy per unit volume,

defined as

Ē = ρ̄(
1

2
Ū2 + ē), (2.4)

and, Ū2 = ū2 + v̄2 + w̄2 is the square of the magnitude of vector velocity.

5

6

In the above, ē is the specific internal energy, given by a caloric equation of state,

ē = ē(ρ̄, p̄). (2.5)

Assuming an ideal gas, specific internal energy ē can be expressed in terms of pressure

p̄ and density ρ̄ as

ē =
p̄

(γ − 1)ρ̄
. (2.6)

For ideal gas, another important quantity: the speed of sound, c̄, is given as follows

c̄ =

√

γ
p̄

ρ̄
. (2.7)

2.2 Euler Equations in Vector Form

The system of equations is usually represented in vector form, in order to facilitate

analysis. For the Euler equations shown in section 2.1, expanding gradient and divergent

operators and collecting terms results in the vector form of the Euler equations. The final

result reads

∂W̄

∂t̄
+

∂f̄

∂x̄
+

∂ḡ

∂ȳ
+

∂h̄

∂z̄
= 0. (2.8)

where

W̄ =

ρ̄

ρ̄ū

ρ̄v̄

ρ̄w̄

Ē

, f̄ =

ρ̄ū

ρ̄ū2 + p̄

ρ̄ūv̄

ρ̄ūw̄

ρ̄ūh̄t

, ḡ =

ρ̄v̄

ρ̄ūv̄

ρ̄v̄2 + p̄

ρ̄v̄w̄

ρ̄v̄h̄t

, h̄ =

ρ̄w̄

ρ̄ūw̄

ρ̄v̄w̄

ρ̄w̄2 + p̄

ρ̄w̄h̄t

.

(2.9)

In here, h̄t is the total specific enthalpy, related to the dependent variables as follows

h̄t =
Ē + p̄

ρ̄
. (2.10)

7

In this dimensional form, W̄ is the solution vector for conservative variables, and f̄ , ḡ

, h̄ are flux vectors in Cartesian coordinates.

2.3 Nondimensionalization

Traditionally, fluid dynamics equations are cast into nondimensional form.

Nondimensionalization makes flow variables normalized, so that their values are likely to

fall in within reasonably small intervals. In dimensional form, the quantities may not be

of the same order of magnitude, and thus can create arithmetic computation errors. In

addition to that, the appropriate choice of nondimensional quantities can prevent the loss

of accuracy in total specific enthalpy and energy terms, due to low speeds. The following

reference quantities are proposed in [4]:

ρ =
ρ̄

ρr
, u =

ū

ur
, T =

T̄

Tr
, p =

p̄

ρru2
r

,

L =
L̄

Lr
, t =

t̄

Lr/ur
, et =

ēt
hr
, ht =

h̄t
hr
.

With the use of the above reference values, a nondimensional vector form of the Euler

equations is obtained, similar to equation (2.8):

∂W

∂t
+

∂f

∂x
+

∂g

∂y
+

∂h

∂z
= 0, (2.11)

The traditional way where non-dimensional expressions for w, f , g, h look the same as

those given in (2.11) with non-dimensional values used for all variables to nondimensionalize

the Euler equations is to use velocity as a reference value for nondimensionalization of energy

and enthalpy terms. In contrast to the traditional way, the reference enthalpy is chosen here

to nondimensionalize those terms.

The ratio of two different reference values is defined and named as the Eckert

number (which is a very significant dimensionless number in compressible flow [10]). The

introduction of the Eckert number changes slightly the nondimensional governing equations.

The Eckert number is defined as

Ec =
u2
r

hr
. (2.12)

8

The reference specific enthalpy, for calorically perfect gas, is written as

hr = CpTr. (2.13)

The expression of a Cp, for calorically perfect gas, is substituted into (2.13) to obtain hr as

function of Tr as follows

hr =
γ R Tr
γ − 1

. (2.14)

Now another useful relation for Eckert number is obtained by using Eq. (2.14) plus a

reference speed of sound relation, c2r = γRTr:

Ec = (γ − 1)M2
r . (2.15)

In here, Mr = ur/cr is a reference Mach number.

Now, non-dimensional total specific energy and enthalpy can be obtained in terms of

Eckert number and the reference Mach number. Starting from the well known relations for

dimensional total specific energy and enthalpy:

ēt =
p̄

(γ − 1)ρ̄
+

ū2 + v̄2 + w̄2

2
, (2.16)

h̄t = ēt +
p̄

ρ̄
, (2.17)

and dividing by the reference enthalpy hr , the nondimensional total specific energy and

enthalpy are obtained:

et = e + Ec φ, (2.18)

where

φ =
u2 + v2 + w2

2
, e =

p

ρ
M2
r .

9

In a similar way, nondimensional total specific energy ht can be found as

ht = et + Ec
p

ρ
. (2.19)

Another useful version of the dimensional equations (2.16) (2.17), introducing the speed

of sound, reads:

ēt =
Ū2

2
+

c̄2

γ (γ − 1)
, (2.20)

h̄t =
Ū2

2
+

c̄2

γ − 1
. (2.21)

In order to nondimensionalize this version of the equations, one follows the same

procedure. As a result, the nondimensional total specific energy and enthalpy can be written

as follows

et = M2
r

(

c2

γ
+ (γ − 1)

1

2
U2

)

, (2.22)

ht = M2
r

(

c2 + (γ − 1)
1

2
U2

)

, (2.23)

where U2 = u2 + v2 + w2.

Note that as Eckert number approaches zero, the thermodynamic relations become ht ≈

et ≈ e. This result is consistent with incompressible flow.

2.4 Curvilinear Transformation

In real world applications, geometries are too complex for rectangular grids: body-

fitted coordinates, requiring transformation from Cartesian to curvilinear coordinates, are

normally used. In contrast to Cartesian grids, curvilinear grids provide an excellent tool to

represent general body shapes. The use of curvilinear coordinates requires transforming the

governing equations to a somewhat more complicated version. The curvilinear coordinate

10

transformation can be expressed as follows:

τ = τ(t), (2.24a)

ξ = ξ(x, y, z, t), (2.24b)

η = η(x, y, z, t), (2.24c)

ζ = ζ(x, y, z, t). (2.24d)

The derivation of the transformed governing equations is given in detail in Appendix A.

A legitimate coordinate transformation results in the same vector form of the governing

equations

∂Q

∂τ
+

∂F

∂ξ
+

∂G

∂η
+

∂H

∂ζ
= 0. (2.25)

where

Q = J

ρ

ρu

ρv

ρw

E

, F = J

ρU

ρuU + ξxp

ρvU + ξyp

ρwU + ξzp

ρhtU − ξtp

,

G = J

ρV

ρuV + ηxp

ρvV + ηyp

ρwV + ηzp

ρhtV − ηtp

, H = J

ρW

ρuW + ζxp

ρvW + ζyp

ρwW + ζzp

ρhtW − ζtp

.

(2.26)

11

and

U = ξxu + ξyv + ξzw + ξt, (2.27a)

V = ηxu + ηyv + ηzw + ηt, (2.27b)

W = ζxu + ζyv + ζzw + ζt. (2.27c)

In addition to the above relations, the Jacobian of the transformation , J , and metrics

relations are given in Appendix A.

2.5 Primitive Variable Formulation

The choice of dependent variables is somewhat arbitrary for a conservative finite volume

scheme. In contrast to conserved variables, primitive or other sets of variables can be

chosen as alternatives. There are some advantages to using primitive variables, such as

easy implementation of boundary conditions. The use of primitive variables will be shown in

Cartesian coordinates, and can be easily extended to curvilinear coordinates. The modeling

equation (2.11) in a Cartesian frame can be written in the following form by introducing

primitive variables, w:

M
∂w

∂t
+

∂f

∂x
+

∂g

∂y
+

∂h

∂z
= 0. (2.28)

In here, M = ∂W/∂w is the transformation matrix, which can be written in generic form

as

M =

∂W1
∂w1

∂W1
∂w2

∂W1
∂w3

∂W1
∂w4

∂W1
∂w5

∂W2
∂w1

∂W2
∂w2

∂W2
∂w3

∂W2
∂w4

∂W2
∂w5

∂W3
∂w1

∂W3
∂w2

∂W3
∂w3

∂W3
∂w4

∂W3
∂w5

∂W4
∂w1

∂W4
∂w2

∂W4
∂w3

∂W4
∂w4

∂W4
∂w5

∂W5
∂w1

∂W5
∂w2

∂W5
∂w3

∂W5
∂w4

∂W5
∂w5

, (2.29)

Choosing w as w = {ρ, u, v, w, p}T , the conserved variables, {ρ , ρu , ρv , ρw , E}T

can be expressed in terms of primitive variables as follows

12

W =

w1

w1 w2

w1 w3

w1 w4

w5
Ec

(γ−1) + Ecw1
(w2

2+w2
3+w2

4)
2

. (2.30)

The elements of transformation matrix (2.29) can then be calculated by differentiating

conserved variables in respect to primitive ones. The final form of the transformation matrix

reads:

M =

1 0 0 0 0

u ρ 0 0 0

v 0 ρ 0 0

w 0 0 ρ 0

Ec φ Ec ρ u Ec ρ v Ec ρ w
Ec

(γ−1)

. (2.31)

The use of primitive variables in curvilinear coordinates may be extended to the

transformed governing equations. The final result reads:

M
∂q

∂τ
+

∂F

∂ξ
+

∂G

∂η
+

∂H

∂ζ
= 0. (2.32)

where q = J{ρ , u , v , w , p}T .

CHAPTER III

FLUX DIFFERENCE SPLITTING

Typical solution methods for conservation laws can be divided into two categories: flux

approach and wave approach. The flux approach deals with only flux, whereas the wave

approach models the flux and waves. In contrast to the flux approach, the wave approaches

is more accurate but expensive [11].

Wave approaches are mainly split up into two subcategories: flux vector splitting, and

reconstruction-evolution approaches. With flux vector splitting, one simply attempts to

divide the flux into negative and positive components, by using various methods which are

available in the literature. The reconstruction approach calculates the solution over the cell

by an appropriate averaging procedure, then advancing to the next time step. This method

is usually called flux difference splitting when the time evolution uses Roe’s approximate

Riemann solver [11].

3.1 The Riemann Problem

A hyperbolic conservation law with discontinuous piecewise constant data as initial

conditions known as a Riemann problem. The Riemann problem remains important for

solving fluid dynamics equations, because the governing equations include discontinuous

solutions. A one-dimensional hyperbolic conservation law is written as

∂Q

∂t
+A

∂Q

∂x
= 0. (3.1)

with initial discontinuous (constant) data set:

Q(x, 0) =

QL, x < 0,

QR, x > 0.
(3.2)

13

14

-

6

b
b

b
b

b
b

b
b

b
b

b
b

b
b

b
b

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

J
J

J
J

J
J

J
J

J
J

JJ

B
B

B
B

B
B
B

B
B
B

B
BB

�
�
�
�
�
�
�
�
�
�
�
��

�
�

�
�

�
�

�
�

�
�

�
�

�
�

"
"

"
"

"
"

"
"

"
"

"
"

"
"

"
"

ξ

τ

τ1

x = 0x < 0 x > 0

λ1

λ2
λ3 λi λm−1

λm

Figure 3.1: Structure of solution of the Riemann problem in the ξ − τ plane

The governing equation (3.1) and the above initial data form the Riemann problem. The

flux Jacobian A has real and distinct eigenvalues, because it is assumed that the system is

strictly hyperbolic. Its eigenvalues are ordered as follows

λ1 < λ2 < < λm.

The solution of the Riemann problem for constant coefficient system is explicitly known,

and is very useful as a starting point for solving the nonlinear Riemann problem. The

hyperbolic equations create a time-marching problem. In the following, it will be convenient

to show the structure of the solution of the Riemann problem in the x − t plane (see Fig.

(3.1)).

Introducing right eigenvectors R of the constant flux Jacobians, A, into Eq. (3.1) and

defining characteristic variables as W = R−1Q, the system can be written as m scalar

Riemann problems:

∂Wi

∂t
+ λi

∂Wi

∂x
= 0. (3.3)

15

The solution is obtained for each scalar Riemann problem as follows

Wi(x, t) = W 0
i (x− λit) =

αi, x− λit < 0,

βi, x− λit > 0.
(3.4)

The constants αi and βi are initial data for the characteristic variables. The

characteristic variables can be easily converted to dependent variables using right

eigenvectors, as Q = RW , and the general solution of the Riemann problem becomes

Q(x, t) =

m
∑

i

W 0
i (x− λit)R

(i). (3.5)

The general solution can be written in different form by introducing p which is maximum

index such as the condition x− λit > 0 is satisfied and using the equation (3.4) results:

Q(x, t) =

p
∑

i=1

βiR
(i) +

m
∑

i=p+1

αiR
(i). (3.6)

The solution can be now found at the next time step, τ1, as seen in Fig. (3.1). As an

illustration, the solution between waves is given in detail:

x

t
< λ1 (p = 0) Q(x, t) = QL = α1R

(1) + α2R
(3) + ...+ αm−1R

(m−1) + αmR
(m), (3.7a)

λ1 <
x

t
< λ2 (p = 1) Q(x, t) = β1R

(1) + α2R
(3) + ...+ αm−1R

(m−1) + αmR
(m), (3.7b)

.........

λm−1 <
x

t
< λm(p = m− 1)Q(x, t) = β1R

(1) + β2R
(2) + ...+ βm−1R

(m−1) + αmR
(m),(3.7c)

λm <
x

t
(p = m) Q(x, t) = QR = β1R

(1) + β2R
(3) + ...+ βm−1R

(m−1) + βmR
(m). (3.7d)

The jump in Q across all the waves can be stated as

4Q = QR −QL =

m
∑

i=1

α̃iR
(i), (3.8)

16

where α̃i is called strength of the wave.

α̃i = βi − αi. (3.9)

The jump in Q is useful for solving the Riemann problem. The Riemann problem is

investigated by Le Veque [12] and most recently by Toro [13]

3.2 Roe Flux Formulation

An effective approximate Riemann solver is proposed by Roe [14]. The Roe flux

difference splitting algorithm employs an approximate solution for the Riemann problem in

order to develop a formula for the numerical flux. A significant amount of work is eliminated

if a linear approximation of the exact Riemann problem can be used. The one dimensional

conservation-law equation (3.1) can be used to illustrate an procedure, where A = ∂f/∂Q,

is called the flux Jacobian.

Roe [14] attempted to solve an approximate Riemann problem instead of the exact one

in Eq. (3.1) by replacing the true Jacobian matrix A with a constant Jacobian matrix

Ã = Ã(QL, QR). The Roe-averaged matrix Ã is a function of the left state QL and the

right state QR, which should be chosen so that a solution of the linear Riemann problem

becomes an approximate solution of the nonlinear Riemann problem. Then, the original

nonlinear equation is replaced by the (approximate) linear Riemann problem, as follows

∂Q

∂t
+ Ã

∂Q

∂x
= 0. (3.10)

The linear Riemann problem was solved in the previous section. If we use the result of

Eqs. (3.8) and (3.4), the solution Qi+ 1
2
(x/t) can be evaluated in one of the following form:

Qi+ 1
2
(x/t) = QL +

∑

λi<0

α̃iR̃
(i), (3.11)

or

Qi+ 1
2
(x/t) = QR −

∑

λi>0

α̃iR̃
(i), (3.12)

17

where i+ 1
2 denotes face.

The above solution can be obtained provided that a reasonable approximate Jacobian

matrix Ã is determined. The choice of a legitimate Roe-averaged matrix Ã depends on the

following conditions, proposed by Roe : in [14]

(i) It constitues a linear mapping from the vector space Q to the vector space f .

(ii) As QL −QR → Q Ã(QL, QR) → A(Q) where A = ∂f/∂Q.

(iii) For any QL , QR , Ã(QL, QR) · (QL −QR) = fL − fR.

(iv) The eigenvectors of Ã are linearly independent.

The conditions (i) and (iv) are simply the hyperbolicity requirements. This implies that

the Roe matrix Ã is required to have real eigenvalues, λ̃i = λ̃i(QL, QR) and a complete set

of linearly independent right eigenvectors, R̃(i) , corresponding to λ̃i. Property (ii) ensures

consistency with the conservation laws.

The approximate Riemann problem can be interpreted as a modified conservation law:

∂Q

∂t
+
∂f̃(Q̃)

∂x
= 0, (3.13)

where f̃ = ÃQ is the modified flux.

In order to be conservative, (see [12]), the modified equation flux must be related to the

original Riemann problem flux, as follows

f̃(QR) − f̃(QL) = f(QR) − f(QL). (3.14)

Integrating the approximate solution, Qi+ 1
2
(0), in control a volume results in a numerical

flux formulation [12] [13] as:

fi+ 1
2

= f̃(Qi+ 1
2
(0)) + f(QR) − f̃(QR). (3.15)

Using f̃ = ÃQ, one gets the following numerical flux expression:

fi+ 1
2

= ÃQi+ 1
2
(0) + f(QR) − ÃQR. (3.16)

18

The use of Eq. (3.12) allows us to write numerical flux in the following form:

fi+ 1
2

= f(QR) − Ã
∑

λ̃i>0

α̃iR̃
(i) = f(QR) −

m
∑

i=1

λ̃+
i α̃iR̃

(i). (3.17)

Alternatively, numerical flux can be evaluated by using the relation (3.14) and Eq. (3.11)

as:

fi+ 1
2

= f(QL) + Ã
∑

λ̃i<0

α̃iR̃
(i) = f(QL) +

m
∑

i=1

λ̃−i α̃iR̃
(i), (3.18)

where λ̃−i and λ̃+
i are negative and positive eigenvalues, respectively. The third kind of

expression for numerical flux can be obtained by averaging Eqs. (3.17) and (3.18), as

follows:

fi+ 1
2

=
1

2

[

f(QR) + f(QL) −
m
∑

i=1

|λ̃i|α̃iR̃(i)
]

. (3.19)

Recall that the jump in Q across all the waves was given in Eq. (3.8). Then, the numerical

flux takes the following form, (see [15] for details):

fi+ 1
2

=
1

2

[

f(QR) + f(QL) − |Ã|4Q
]

, (3.20)

where

4Q = QR −QL,

|Ã| = Ã+ − Ã− = R̃|Λ̃|R̃−1,

with Λ̃ = diag(|λ̃1|, |λ̃2|,, |λ̃m|).

In a practical application, the true Jacobian matrix, thus its eigenvectors, can easily be

obtained for any hyperbolic system. The numerical flux is readily evaluated once dependent

variables are replaced with the corresponding Roe average variables in the true Jacobian

matrix, A, and its eigenvectors, R, according to Eq. (3.20). The remaining problem is to

determine suitable Roe average variables via constructing the Roe average matrix, Ã.

19

3.2.1 Roe average variables for the Euler Equations

Constructing a matrix Ã which satisfies the conditions mentioned is difficult, mostly due

to requirement (iii): the obvious candidates Ã = 1
2(AL + AR) or Ã = A(1

2(QL + QR))

do not meet this condition.

However, a solution can be found, and results in Ã having the same functional form as

true Jacobian, A, with

ũ =

√
ρL uL +

√
ρR uR√

ρL +
√
ρR

, (3.21a)

h̃t =

√
ρL htL +

√
ρR htR√

ρL +
√
ρR

, (3.21b)

ẽt =

√
ρL etL +

√
ρR etR√

ρL +
√
ρR

. (3.21c)

Note that ũ and either h̃t or ẽt are the only two variables that appear in Ã. In addition, a

Roe averaged density variable can be introduced for convenience, as

ρ̃ =
√
ρLρR. (3.22)

The Roe average speed of sound can be found by using either equations (3.21b) and (2.23)

or (3.21c) and (2.22), with Eq. (3.21a)

c̃2 =
(γ − 1)h̃t

Ec
− γ − 1

2
ũ2 or c̃2 =

γ(γ − 1)

Ec
ẽt − γ (γ − 1)

2
ũ2. (3.23)

Moreover, using the speed of sound relation c2 = pγ/ρ leads one to define the average

pressure as

p̃ =
ρ̃ c̃2

γ
. (3.24)

3.3 Primitive Variable Flux Formulation

The interface fluxes were evaluated in section 3.2 by means of conserved variables. The

use of the primitive variable transformation, M = ∂Q/∂q, allows one to write Eq. (3.1) in

20

a primitive variable formulation for conservation laws, as follows

M
∂q

∂x
+ A M

∂q

∂t
= 0. (3.25)

Multiplying Eq. (3.25) by M−1 and defining a = M−1AM gives a primitive variable

formulation for conservation laws, as follows

∂q

∂t
+ a

∂q

∂x
= 0. (3.26)

In particular, the two matrices, a and A , are said to be similar because they satisfy the

relation a = M−1AM . The matrix M is the transformation matrix, and the relationship

between a and A is called a similarity transformation. The important point here is that

similar matrices have the same eigenvalues. Similarity matrices have the property that if

RQ is an eigenvector of A, then Rq = M−1RQ is the eigenvector of a corresponding to that

same eigenvalue. The following steps prove the statement above:

[A] {RQ} = λ {RQ},

[M]−1 [A] {RQ} = λ [M]−1 {RQ},

[M]−1 [A] [M] [M]−1{RQ} = λ [M]−1 {RQ}, (3.27)

[a] [M]−1 {RQ} = λ [M]−1{RQ},

[a]{Rq} = λ {Rq}.

In the above, λ is an eigenvalue of matrix [a] (as well as [A]), and {Rq} = [M]−1{RQ} is

the eigenvector of [a] corresponding to the eigenvalue λ.

The matrix A is diagonalizable, due to hyperbolicity as A = RQΛR−1
Q . The use of the

similarity transformation property allows to write the Jacobian matrix A as follows

A = M Rq Λ R−1
q M−1. (3.28)

21

In addition to the above relation, an approximation to 4Q can be made in terms of 4q as

M =
∂Q

∂q
; M 4q ∼= 4Q. (3.29)

Note that the relationship in Eq. (3.29) is exact when one uses Roe averages for the matrix

M (M̃4q = 4Q). The relation (3.28) and approximation of 4Q in (3.29) allow to use the

same numerical flux form Eq.(3.20) for primitive variables. Eq.(3.20) can now be rewritten

as follows:

fi + 1
2

=
1

2
(fL + fR) − 1

2
|Ã| M̃4q. (3.30)

The following relation is easily written from Eq.(3.28)

|Ã| M̃ = (M̃ R̃q |Λ̃| R̃−1
q M̃−1)M̃,

= M̃(R̃q |Λ̃| R̃−1
q) = M̃ |ã|, (3.31)

where |ã| = R̃q |Λ̃| R̃−1
q .

The primitive variable numerical flux can then be cast in the following form:

fi + 1
2

=
1

2
(fL + fR) − 1

2
M̃ |ã| 4q. (3.32)

As it is pointed out in [7], the traditional way of constructing RQ usually uses the relation

RQ = MRq . This primitive flux formulation is slightly simpler than the Roe flux

formulation in conservative variables.

CHAPTER IV

PRECONDITIONING

The steady-state Euler equations are classified as elliptic in a subsonic flowfield and

hyperbolic in supersonic regions. In order to overcome the difficulties with the mixed nature

of the equations, the unsteady form is typically used for solving either unsteady or steady

flowfields. In this case, hyperbolicity is guaranteed for all Mach numbers. Over the years,

hyperbolic PDE solvers for fluid dynamics equations have been successfully developed and

validated at medium to high Mach numbers. Applications for low-speed flows that are still

compressible (i.e. combustion problems) have lagged behind, however. Moreover, attempts

to extend compressible algorithms to low-speed problems (M∞ < 0.1) and reach a unified

approach have met some difficulties.

For compressible flow, the pressure term is a thermodynamic variable, which should

depend only on local instantaneous values of density and internal energy. For incompressible

flow, pressure is no longer a thermodynamic variable, and only depends on the velocity field

[16]. Unlike the coupled compressible Euler equations, the incompressible equations drop

the time derivative in the continuity equation and leave pressure only in the momentum

equations. This is the main difficulty for solving incompressible equations. Traditionally,

these uncoupled equations are solved by iterative methods [17] [18]. The pressure term

can be obtained by taking the divergence of the momentum equations. The solution of

the velocity field from the momentum equations is checked based on whether it satisfies a

divergent-free condition. If it does not satisfy this condition, some corrections on pressure

terms are made until the continuity equation is satisfied. These type of solutions are called

pressure-correction methods and are expensive, due to the need of for a divergent-free

velocity field. Another main approach, known as artificial compressibility, is to add pressure

time derivative to the continuity equation, and couple the continuity and momentum

equations[19]. The system becomes hyperbolic, and a time-marching scheme can be applied.

22

23

The unmodified unsteady Euler equations are singular as the Mach number approaches

zero. At first, it was attempted to reformulate these equations in a nonsingular low

Mach number formulation (see Briley, McDonald and Shamroth [4]). Later, Turkel [20]

introduced a pressure time derivative to the momentum equation, extending Chorin’s idea.

If these equations are written in vector form, this is equivalent to introducing a matrix that

premultiplies time derivatives. This opened a new approach for solving incompressible flow,

which evolved into preconditioning methods.

The preconditioned methods have gained popularity over other methods designed for

incompressible flow. A variety of flowfields are not purely incompressible or compressible,

but of mixed types. Therefore, an arbitrary Mach number formulation is highly desirable.

4.1 Local Preconditioning Methods

Traditional compressible codes fail at low Mach number in terms of accuracy and

convergence. In very low speed flows, the hyperbolic system will have a large disparity

among eigenvalues, which causes serious problems in time-marching schemes. The time

step size is limited by the propagation of the fastest acoustic wave (u ± c), whereas the

propagation of errors leaving the domain is restricted by the slowest wave, which is the

entropy wave u in low-speed flows. Therefore, the ratio of the fastest and slowest eigenvalues

(called the condition number) eventually governs the convergence rate [21]. One is forced

to use a very small time step size, which makes the equation slow to convergence for time-

marching schemes (either explicit or implicit). It is worth mentioning that approximate

factorization (AF) errors become dominant at low Mach numbers in implicit schemes [22].

As accuracy is concerned, improperly scaled compressible equations can not represent

well the virtually incompressible behavior at low speeds[4]. In order to see that, modified

equation for the discretized algorithm can be used to show unevenly matched terms are

present as M → 0 (see [23], [5], [2]).

Local preconditioning is introduced to the time derivatives in order to alter the

characteristics of the system of equations, thus equalizing eigenvalues The change does

not effect the steady-state solution, only the convergence rate; however, it destroys time

24

accuracy for a time-dependent problem. This drawback can be circumvented in several

ways. The first remedy is to use dual-time stepping (introducing a pseudo time derivative

into the governing equations). This method has inner iteration in pseudo time, whereas the

outer loop is advancing in physical time [24]. The other choice is a Newton formulation,

adding preconditioning to the numerical terms, while converging to an unsteady residual

which has the physical time term. The latter approach is taken as the solution method in

this study.

4.1.1 Advantages of Local Preconditioning

Local preconditioning is designed to alleviate the problems due to low Mach numbers.

The most important benefit of preconditioning is the removal of the stiffness, obtained

by balancing the eigenvalues. As already mentioned, the condition number governing the

convergence rate becomes larger as M → 0. A preconditioner attempts to accelerate the

convergence rate, but it also helps with accuracy preservation at low Mach numbers: local

preconditioning properly scales compressible equations for M → 0. A modified equation

analysis proves that the order of magnitude of the elements in the equations is matched,

including artificial viscosity elements, as M → 0 [23].

Local preconditioning makes the Euler equations behave as a set of scalar equations,

which is true also for the discretized equation. This property facilitates applying other

acceleration techniques for low Mach number flows, such as multi-grid and residual

smoothing [5]. Another use for preconditioning is to decouple the unsteady Euler equations,

which is impossible to do in their original form. This will allow one to develop truly multi-

dimensional discretizations [2] [5].

4.1.2 Issues with Local Preconditioning

Local preconditioning comes with some disadvantages. The various preconditioners yield

the same optimal condition number. Nonetheless, numerical performance appears to be

varying, somewhat distinctively [5]. Darmofal and Schmid [6] prove that the orthogonality

of eigenvectors of a preconditioned system is crucial for the determination of transient

amplification of errors, which may lead to an instability problem at the stagnation point.

25

Preconditioning is sensitive at the stagnation point, where flow is highly deflected and

decelerated. Lee [5] attributed this instability to flow angle sensitivity and nearly parallel

eigenvector of preconditioned equations. Note that the original equations do not suffer from

the above problems. Another problem is the vorticity production near the stagnation point.

The vorticity equation is obtained from the momentum equation: it results in vorticity being

only convected, without production, destruction, or diffusion, in incompressible flows. In

spite of that, preconditioned formulations may introduce some extra terms, which result in

production and diffusion of vorticity.

Benefits and problems of local preconditioning have been briefly mentioned here. More

detailed analysis is found in the Ph.D theses [2] and [5]. It is hard to have a local

preconditioner which has all the advantages and overcomes all the problems at the same

time. The perfect preconditioning algorithm seems impossible to find due to conflicts

between the many required criteria. Detailed work by Zaccanti [25] shows that there is

no ideal local preconditioning method.

4.2 Global Preconditioning

The use of global preconditioning, which adds a diagonal matrix to the isoenergic

equations, was first put forward by Briley, McDonald and Shamroth [4]. In contrast to local

preconditioning, global preconditioners are based on reference values, which are problem-

dependent but are consistent throughout the flowfield. Recently, a constant preconditioning

matrix was added to the full Navier-Stokes (N-S) equations by Briley, Taylor, and Whitfield

[7].

The design of global preconditioning is based solely on rescaling the eigenvalues, reducing

their disparity. Despite the fact that it is based on this sole criteria, the new global

preconditioning, which is positive-symmetric and has zero elements except on the main

diagonal, emerged as a reliable tool. The simple structure of the preconditioned matrix

makes it simple to implement. Moreover, this new global preconditioner does not alter

the momentum equations, thus it has no vorticity production or diffusion, but does have

rotational invariance.

26

4.3 Preconditioned Formulation in Primitive Variables

The new preconditioning matrix is incorporated into the governing equations, cast in

primitive variable form. Introducing preconditioning alters the time derivatives and changes

the characteristic of the system of equations. The preconditioned matrix for 3-D problems

is defined as follows:

Γq = Diag (1 , 1 , 1 , 1 , β), (4.1)

where β = Min(1,M2
r) and Mr is the reference Mach number (already encountered when

introducing non-dimensionalization).

The matrix Γq is introduced into the-one dimensional primitive variable formulation, as

follows

M Γ−1
q

∂q

∂τ
+

∂F

∂ξ
= 0. (4.2)

The above equation can be written as follows, after introducing the system matrix a (a =

M−1AM).

M Γ−1
q

∂q

∂τ
+ M a

∂q

∂ξ
= 0. (4.3)

If Eq.(4.3) is multiplied by M−1 and Γq , successively, it takes the following form

∂q

∂τ
+ aΓ

∂q

∂ξ
= 0, (4.4)

where the preconditioned system matrix aΓ = Γq a is introduced . The three-dimensional

matrices are introduced in Appendix B.

The flux formula that is consistent with the preconditioned formulation shown above

was derived by [7]. The final result in three-dimension reads:

K(•) + 1
2

=
1

2
(KL + KR) − 1

2
M̃ Γ−1

q |s̃Γ| 4q, (4.5)

where

K = F , sΓ = a for (•) = i,

K = G , sΓ = b for (•) = j,

27

K = H , sΓ = c for (•) = k.

In this formulation, there is a need to calculate eigenvalues and eigenvectors of the matrix

sΓ, in order to develop characteristic-based flux approximations. All necessary information

for building interface fluxes are given in Appendices B and C.

CHAPTER V

NUMERICAL SOLUTION

Implicit numerical solution algorithms for the Euler equations fall largely into two

categories: noniterative and iterative methods. The noniterative methods are primarily

designed to solve steady-state cases, whereas iterative methods are used for both unsteady

and steady-state flows. Incidentally, the main reason for using implicit algorithms is to

widen stability constraints and improve convergence rates when compared with explicit

schemes. Noniterative methods tend to factor out the system of equations, so that efficient

direct matrix solvers can be applicable to each factor; on the other hand , the iterative

approach consists of solving linearized implicit approximations iteratively at each time

step. Subiterations can be incorporated into the schemes to eliminate factorization and

linearization errors. Originally, iterative methods were applied for steady-state solutions.

Nonetheless, they turn out to be an efficient approach for unsteady flows as well, because

unsteady terms contribute to diagonal dominance [26]. The possible linearization strategies

used for iterative implicit schemes can be divided into two main groups: (1) time

linearization and (2) Newton-linearization [26]. A Newton scheme naturally accounts for

unsteadiness in the residual, and is thus used in the present study.

One motivation of this work was to develop a single algorithm for arbitrary flow speeds.

The choice of a Newton-linearized preconditioned scheme serves this purpose. Within the

Newton algorithm, a nested subiteration eliminates the approximate factorization error

when Symmetric Gauss-Seidel relaxation (LU/SGS) is used. As expected, the approximate

factorization error starts dominating the unpreconditoned scheme at low Mach numbers

and has an adverse effect on the convergence rate (this is the main mechanism responsible

for slow convergence rate [22]).

Linearizing the scheme requires computing the flux Jacobian matrices. The analytical

expression for flux Jacobians is extremely difficult to obtain, especially for three dimensional

28

29

flux-difference algorithms. Instead, numerical calculation of the flux Jacobians is used in

this study.

5.1 Time-Linearized Implicit Scheme

As already mentioned, noniterative schemes are primarily used for steady-state flows.

A time-linearized implicit scheme is summarized in this section, in order to highlight

similarities and differences with the Newton-linearized formulation that is used in this study.

The ultimate objective is to solve the following equation.

M Γ−1
q

4qn
4τ + δiF + δiG + δiH = 0, (5.1)

where 4τ is the time step, plus:

4qn = qn+1 − qn,

δiF = Fi + 1
2
,j,k − Fi − 1

2
,j,k,

δiG = Gi,j + 1
2
,k − Gi,j − 1

2
,k,

δiH = Hi,j,k + 1
2

− Hi,j,k − 1
2
.

In the above, a first-order discretization of the time derivative has been used for simplicity.

An implicit scheme for the equation (5.1) can be written as

M Γ−1
q

4qn
4τ + δiF

n+1 + δjG
n+1 + δkH

n+1 = 0. (5.2)

The fluxes, F (qn+1) , G(qn+1) , H(qn+1) can be linearized around qn as

qn+1 = qn + 4qn,

F (qn + 4qn) ≈ F (qn) +

(

∂F

∂q

)n

4qn = F + A4qn,

G(qn + 4qn) ≈ G(qn) +

(

∂G

∂q

)n

4qn = G + B4qn,

H(qn + 4qn) ≈ H(qn) +

(

∂H

∂q

)n

4qn = H + C4qn.

30

A direct substitution of above linearization into the equation (5.1) results in

MΓ−1
q 4qn = −4τ [δi(F

n + A 4qn) + δj(G
n + B 4qn) + δk(H

n + C 4qn)] . (5.3)

Rearranging the above equation, one obtains,

[

M
Γ−1
q

4τ + δiA + δjB + δkC

]

4qn = −<n, (5.4)

where

<n = δiF
n + δjG

n + δkH
n.

<n is the steady-state residual term. Numerous solution techniques for equation (5.4) are

available in the literature [26] [17].

5.2 Newton Formulation

The main deficiency of the residual term appearing in Eq.(5.4) is that it does not contain

the time derivative, therefore, it can not represent unsteady cases. Alternatively, a Newton

formulation can be developed to solve Eq.(5.2) directly [27]. The Newton formulation has

the undesirable feature of being computationally more expensive, however, it can be used

for both steady and unsteady cases.

Newton’s method can be developed for one-dimensional cases and extended to multi-

dimensional cases readily. For simplicity, in the following the Newton formulation is going

to be developed for first-order time integration in the one-dimensional case. The 1-D version

of the equation (5.2) can be written as a non-linear equation for the variable qn+1, as follows

F(qn+1) = M Γ−1
q

qn+1
i − qni

4τ + Fi + 1
2
(qn+1) − Fi − 1

2
(qn+1) = 0, (5.5)

where

Fi + 1
2
(qn+1) = Fi + 1

2
(qn+1
i , qn+1

i+1), (5.6)

Fi − 1
2
(qn+1) = Fi − 1

2
(qn+1
i−1 , q

n+1
i), (5.7)

31

and a first-order space discretization as used for the time being. From equations (5.6) and

(5.7), it is concluded that

F(qn+1) = F(qn+1
i−1 , q

n+1
i , qn+1

i+1). (5.8)

In order to obtain the Newton formulation, F(qn+1,m+1) should be expanded in a Taylor

series about qn+1,m to first order terms, where m is Newton iteration index:

F
(

qn+1,m+1
)

= F(qn+1,m) +

(

∂F
∂qn+1

i−1

)

m

4qn+1,m
i−1 +

(

∂F
∂qn+1

i

)

m

4qn+1,m
i +

(

∂F
∂qn+1

i+1

)

m

4qn+1,m
i+1 + O[

(

4qn+1,m
)2

], (5.9)

where

4qn+1,m = qn+1,m+1 − qn+1,m.

Note that the current 4 operator is different from the one used in conjunction with time

linearization. The goal of the Newton iteration is to make equation (5.9) zero, therefore the

following equation is obtained

(

∂F
∂qn+1

i−1

)

m

4qn+1,m
i−1 +

(

∂F
∂qn+1

i

)

m

4qn+1,m
i +

(

∂F
∂qn+1

i+1

)

m

4qn+1,m
i+1 = −F(qn+1,m).(5.10)

Using equations (5.5), (5.6), and (5.7), one can build the derivatives with respect to

dependent variables, as follows

∂F
∂qn+1

i−1

= −
∂Fi− 1

2

∂qn+1
i−1

= −F ′
i− 1

2
,i−1

,

∂F
∂qn+1

i

=
M Γ−1

q

4τ +
∂Fi+ 1

2

∂qn+1
i

−
∂Fi− 1

2

∂qn+1
i

=
M Γ−1

q

4τ + F ′
i+ 1

2
,i
− F ′

i− 1
2
,i
, (5.11)

∂F
∂qn+1

i+1

=
∂Fi− 1

2

∂qn+1
i+1

= F ′
i+ 1

2
,i+1

,

32

where the subscriptm has been dropped from the derivation, for simplicity. Equation (5.10)

then reads:

−F ′
i− 1

2
4qn+1,m

i−1 +

(

MΓ−1
q

4τ + F ′
i+ 1

2
− F ′

i− 1
2

)

4qn+1,m
i + F ′

i+ 1
2
4qn+1,m

i+1

= −
[

M
(qn+1,m
i − qni)

4τ + δiF (qn+1,m)

]

. (5.12)

In a similar way, a three dimensional form can be obtained, as follows:

−F ′
i− 1

2
,i−1

4qn+1,m
i−1,j,k −G′

j− 1
2
,j−1

4qn+1,m
i,j−1,k −H ′

k− 1
2
,k−1

4qn+1,m
i,j,k−1

+

(

MΓ−1
q

4τ + F ′
i+ 1

2
,i

+G′
j+ 1

2
,j

+H ′
k+ 1

2
,k
− F ′

i− 1
2
,i
−G′

j− 1
2
,j
−H ′

k− 1
2
,k

)

4qn+1,m
i,j,k

+F ′
i+ 1

2
,i+1

4qn+1,m
i+1,j,k +G′

j+ 1
2
,j+1

4qn+1,m
i,j+1,k +H ′

k+ 1
2
,k−1

4qn+1,m
i,j,k+1 = −<n+1,m

U , (5.13)

where the unsteady residual has been introduced:

<n+1,m
U =

[

M
qn+1,m
i,j,k − qni,j,k

4τ + δiF (qn+1,m) + δjG(qn+1,m) + δkH(qn+1,m)

]

.

As it is seen in the above equation, the residual, <n+1,m
U in Eq. (5.13) contains the time

derivative terms, unlike Eq. (5.4), so, this formulation can accommodate unsteady cases

as well as steady problems. Incidentally, this algorithm gives rise to a heptagonal solution

matrix (band width of seven).

Thus for, the Newton formulation has just developed using a first-order space

discretization. When a higher-order formulation is developed, it is obvious that the band

width of the solution matrix will increase in proportion to the number of elements used to

construct the numerical fluxes. On the other hand, using higher-order flux in the residual

with a first-order Newton formulation on the left-hand side causes stability problems,

because Jacobians are not evaluated correctly. Alternatively, differentiating fluxes with

respect to left, qL , and right, qR , states rather than cell values i, i + 1, i − 1 achieves

high-order formulation without the above problems [27]. The construction of high-order

left and right states is detailed next.

33

. - x

6
q

�
�

�
�

�
�

�
�...

...

..

�
�

�
�

@
@

@
@

...

...

..

i-1 i i+1 i+2 i-1 i i+1 i+2

@
@

@

R

qL
i+ 1

2

�����
)

qR
i+ 1

2

@
@

@

R

qL
i+ 1

2

�����
)

qR
i+ 1

2

Figure 5.1: High-order solution construction

5.3 Anderson-Thomas-Van Leer Reconstruction-Evolution Methods

Two popular methods are available for creating high-order schemes, namely: flux

averaging and solution averaging techniques. These approaches are investigated in [11].

In this study, the latter one will be used: the solution vector q is averaged, then the fluxes

are evaluated. A second and third-order reconstruction can be written in single formulation,

by introducing a parameter, ψ, as follows

qL
i+ 1

2
= qi +

1 + ψ

4
(qi+1 − qi) +

1 − ψ

4
(qi − qi−1), (5.14)

qR
i+ 1

2
= qi+1 − 1 + ψ

4
(qi+1 − qi) − 1 − ψ

4
(qi+2 − qi+1). (5.15)

Equations (5.14) and (5.15) are leftward-biased and rightward-biased, respectively, for ψ ≤

1, and the following values are typically used:

ψ = −1 Second-order accurate scheme

ψ = 1
3 Third-order accurate scheme.

For consistency, the reconstructed solution qL
i+ 1

2

and qR
i+ 1

2

should vary between qi and

qi+1. However, as seen in Fig. (5.1), where two possible configurations of a solution are

shown, new maxima and minima can be created by the above formulas (see the case on

34

the right). This undesired inconsistency can be overcome if the following inequalities are

satisfied:

qi ≤ qL
i+ 1

2
≤ qi+1 and qi ≤ qR

i+ 1
2
≤ qi+1. (5.16)

By using equations (5.14) and (5.15), one can prove that qL
i+ 1

2

will lie between qi and qi+1

if qi+1 − qi and qi − qi−1 have the same sign and

|qi − qi−1| ≤ 3 − ψ

1 − ψ
|qi+1 − qi|. (5.17)

In a similar way, the condition for qR
i+ 1

2

is that qi+2 − qi+1 and qi+1 − qi have the same sign

and

|qi+2 − qi+1| ≤ 3 − ψ

1 − ψ
|qi+1 − qi|. (5.18)

In order to satisfy these requirements, limiters are introduced in the extrapolation

formulas. High order schemes without limiters can easily be subject to stability problems.

The limiter based on the previous discussion is called the minmod limiter. Various other

limiters are available in the literature. The following high-orderer construction of the

solution can be created with the minmod limiter.

qL
i+ 1

2
= qi +

1 + ψ

4
minmod[qi+1 − qi , b (qi − qi−1)]

+
1 − ψ

4
minmod[qi − qi−1 , b (qi+1 − qi)], (5.19)

qR
i+ 1

2
= qi+1 − 1 + ψ

4
minmod[qi+1 − qi , b (qi+2 − qi+1)]

− 1 − ψ

4
minmod[qi+2 − qi+1 , b (qi+1 − qi)], (5.20)

where

1 ≤ b ≤ 3 − ψ

1 − ψ
. (5.21)

Typically, the b value is taken as 3−ψ
1−ψ . The function minmod(x, y) can be written in the

following form:

minmod(x, y) = Sgn(x) Max
{

0 , Min[|x|, y Sgn(x)]
}

. (5.22)

35

5.4 Linearized Fluxes by Numerical Differentiation

The Newton formulation shown in Eq.(5.13) requires the evaluation of numerical fluxes.

Analytical derivation of flux Jacobians is extremely involved for multidimensional cases.

Instead, numerical differentiation is employed to evaluate them. The use of numerical

differentiation with Newton’s method is usually named the Discretized-Newton Iteration

method. Numerical flux Jacobians in the ξ direction are written as

Â+
i =

∂Fi+ 1
2

∂qL
i+ 1

2

, Â−
i =

∂Fi− 1
2

∂qR
i− 1

2

. (5.23)

Finite differences are used to evaluate numerical Jacobians. For the kth column of the Â+

Jacobian matrix, for example

Â+
i =

Fi+ 1
2
(qR
i+ 1

2

, qL
i+ 1

2

+ hek) − Fi+ 1
2
(qR
i+ 1

2

, qL
i+ 1

2

)

h
. (5.24)

In here , ek is the kth unit vector and the perturbation can be selected as h ≈

√
machine zero.

For the three dimensional Newton formulation, B̂+, B̂−, Ĉ+, Ĉ− are introduced in a

similar way:

B̂+
j =

∂Gj+ 1
2

∂qL
j+ 1

2

, B̂−
j =

∂Gj− 1
2

∂qL
j− 1

2

, Ĉ+
k =

∂Ki+ 1
2

∂qL
k+ 1

2

, Ĉ−
k =

∂Ki− 1
2

∂qL
k− 1

2

. (5.25)

The three dimensional form of the Newton formulation will be the same as in Eq. (5.13)

using left , qL, and right, qR, states rather than cell values i, i+ 1, i− 1 for the face fluxes

(e.g. F
′

i− 1
2
,i−1

becomes Â+
i−1, etc).

In equation (5.24) above, a vector representation was given for the finite difference

calculation. In general, flux Jacobians are calculated column by column for a given

perturbation to the dependent variables, in order to lower the cost of evaluation.

36

5.4.1 Complex Variable Approach

A complex variable approach is an alternative way to calculate derivative of real

functions [28]. The flux function is expanded in a Taylor series using complex perturbations,

as follows

K(q + ih) = K(q) + i h
∂K

∂q
− h2

2!

∂2K

∂q2
− i h3

3!

∂3K

∂q3
+ . . . (5.26)

Then, using the imaginary part of the equation (5.26) gives the flux Jacobian, as follows

∂K

∂q
=

Im[K(q + i h)]

h
+ O(h2). (5.27)

In contrast to first-order accuracy in the finite difference method, complex variable

differentiation has second order accuracy. This approach is traditionally is used when high-

order accuracy and step size selection are crucial. Moreover, finite difference methods are

prone to roundoff errors when using very small step sizes. In contrast to finite differences,

the complex variable method does not involve any roundoff error, thus it is insensitive to

step size. The use of complex variables provides a high-order numerical Jacobian which uses

very small perturbation with easy modifications in the existing codes. The disadvantage

of complex variable approach is the increase in runtime. Newman [28] reported that the

runtime can be on the order of three times at of the original solver.

5.5 Solution Algorithm

After the unsteady residual is discretized, and the flux Jacobian matrices are evaluated,

following the procedure outlined, one is left with the following system of linear equations:

−Â+
i−14q

n+1,m
i−1,j,k − B̂+

j−14q
n+1,m
i,j−1,k − Ĉ+

k−14q
n+1,m
i,j,k−1 +

(

M Γ−1
q

4τ +

Â+
i − Â−

i + B̂+
j − B̂−

j + Ĉ+
k − Ĉ−

k

)

4qn+1,m
i,j,k + Â−

i+14q
n+1,m
i+1,j,k +

B̂−
j+14q

n+1,m
i,j+1,k + Ĉ−

k+14q
n+1,m
i,j,k+1 = −<n+1,m

U . (5.28)

37

The above system produces a large sparse matrix with a bandwidth of seven. Next,

iterative solution techniques are used for this system. As discussed before, iterative solution

methods are needed to solve the above equation if one wants to eliminate approximate

factorization error. The large sparse matrix of equation (5.28) can be written as follows:

[

L + D + U
] {

4qi,j,k
}

= −
{

<i,j,k
}

. (5.29)

In the above, the Â+ , B̂+ , Ĉ+ terms contribute to the lower (L) and diagonal (D) matrices,

and the Â− , B̂− , Ĉ− appear on the upper (U) and diagonal matrices.

Symmetric Gauss-Seidel iterations can be used to perform a forward and backward sweep

through the computational scheme. In sweeping, the points behind i, j, k are known, but

the definition of ‘behind’ changes, depending on whether the sweep is forward or backward.

For clarification purposes, the full algorithm is given here as follows:

Forward sweep

Li−1,j,k 4q(2p−1)
i−1,j,k + Li,j−1,k 4q(2p−1)

i,j−1,k + Li,j,k−1 4q(2p−1)
i,j,k−1 + Di,j,k 4q(2p−1)

i,j,k +

Ui+1,j,k 4q(2p−2)
i+1,j,k + Ui,j+1,k 4q(2p−2)

i,j+1,k + Ui,j,k+1 4q(2p−2)
i,j,k+1 = −<i,j,k. (5.30)

Rearranging the above equation for solution 4qi,j,k

{

4q(2p−1)
i,j,k

}

=
[

Di,j,k

]−1
{

−<i,j,k − Li−1,j,k 4q(2p−1)
i−1,j,k − Li,j−1,k 4q(2p−1)

i,j−1,k −

Li,j,k−1 4q(2p−1)
i,j,k−1 − Ui+1,j,k 4q(2p−2)

i+1,j,k − Ui,j+1,k 4q(2p−2)
i,j+1,k −

Ui,j,k+1 4q(2p−2)
i,j,k+1

}

. (5.31)

38

In similar way, the backward sweep becomes

{

4q(2p)i,j,k

}

=
[

Di,j,k

]−1
{

−<i,j,k − Li−1,j,k 4q(2p−1)
i−1,j,k − Li,j−1,k 4q(2p−1)

i,j−1,k −

Li,j,k−1 4q(2p−1)
i,j,k−1 − Ui+1,j,k 4q(2p)i+1,j,k − Ui,j+1,k 4q(2p)i,j+1,k −

Ui,j,k+1 4q(2p)i,j,k+1

}

. (5.32)

Here, p = 1, 2, 3, . . . is the subiteration counter.

Note that the general solution method is iterative but the solution
{

4qi,j,k
}

is attained by

direct methods at i, j, k points. More details can be found in [27].

The combination of forward and backward sweeping is called Lower-Upper Block

Symmetric Gauss-Seidel (LU/SGS) relaxation. It is a very effective method. Experience

shows that three or four full sweeps are sufficient to obtain a converged solution.

LU/SGS are subiterations nested within the Newton method. At convergence of the

LU/SGS sweep one has an exact solution for qn+1,m+1 in Eq. (5.28). At convergence of

the Newton iteration, one has a time-accurate solution for qn+1. In steady-state problem,

the time step can be large enough that time accuracy loses meaning, but the steady-state

solution can be found with very few Newton steps (in pseudo-time).

CHAPTER VI

COMPUTATIONAL BOUNDARY CONDITIONS

Boundary conditions play a very important role in the solution of practical flow

problems. Flowfields governed by the same fluid equations differ from each other because of

boundary conditions. Computational boundary conditions must be originated from physical

boundary conditions: the correctness of boundary conditions has a large effect on the quality

of the overall solution. Ill-posed boundary conditions can create a vicious cycle, where

exchange of wrong information between interior domain and boundary can eventually lead

to inaccurate results or loss of stability.

In this study, inviscid flows are of concern. Two types of boundary conditions are often

used in aerodynamic applications: wall and farfield boundaries. The physical fact for wall

boundary conditions is that the normal component of velocity to the surface is zero at the

wall. As it is pointed out by Swafford [29], the interior domain requires more information at

boundaries than the physics provides in the finite volume formulation. In a wall boundary

condition, the physics tells one only about the velocity , but a numerical scheme still requires

more information: the Ghost Cell approach is useful to overcome these problems. Ghost-

cell methods come with the advantage of easy implementation and no alteration of the

algorithm near boundaries, but they also have the disadvantage of requiring large amounts

of memory usage in multidimensional problems [11]. The ghost cells are duplicated from

the first one or two rows of cells within the domain, and this allows for the construction of

high-order flux extrapolations, and boundary conditions.

As for farfield boundary conditions, specifying characteristic variables is a natural

and appropriate way to implement boundary conditions. Characteristic-variable boundary

conditions have been derived under a locally one-dimensional assumption, following the

approach of Janus [9]. However, the introduction of the preconditioning matrix changes the

characteristics of the hyperbolic equations, and results in new characteristic variables.

39

40

6.1 Characteristic Variables

The existence of independent eigenvectors for the flux Jacobians makes it possible

to define a new set of dependent variables and decouple the hyperbolic conservation

one-dimensional law. This property is the basis for establishing characteristic boundary

conditions. The governing equation, Eq. (4.4), can be written in three dimensional space

as follows:

∂q

∂τ
+ aΓ

∂q

∂ξ
+ bΓ

∂q

∂η
+ cΓ

∂q

∂ζ
= 0. (6.1)

The Jacobians matrices aΓ , bΓ , and cΓ can be diagonalized due to hyperbolicity.

A general expression for the Jacobians in all directions can then be written, as sΓ =

RkΛkR
−1
k (where k = ξ , k = η , k = ζ corresponds aΓ , bΓ , cΓ , respectively).

Using the above results, and multiplying equation (6.1) by R−1
ξ , for example, yields:

R−1
ξ

∂q

∂τ
+ Λξ R

−1
ξ

∂q

∂ξ
+ R−1

ξ RηΛηR
−1
η

∂q

∂η
+ R−1

ξ RζΛζR
−1
ζ

∂q

∂ζ
= 0. (6.2)

Assuming locally frozen eigenvectors and interpreting the last two terms a source term

Sη,ζ , one gets

∂Wξ

∂ξ
+ Λξ

∂Wξ

∂ξ
+ Sη,ζ = 0, (6.3)

where Wξ = R−1
ξ q is the characteristic variable vector.

In a similar way, Eq. (6.1) can be multiplied by R−1
η and R−1

ζ , assumed locally constant.

The above result can be generalized as

∂Wk

∂τ
+ Λk

∂Wk

∂k
+ Sm,n = 0, (6.4)

where k , m , n are ξ, η, ζ, with the constraint k 6= m 6= n.

Neglecting the source terms Sm,n will facilitate to the use of characteristic variables as

a farfield boundary conditions. Introducing a total derivative for Wk, as follows, one has

dWk

dτ
=

∂Wk

∂τ

∂τ

∂τ
+

∂Wk

∂k

∂k

∂τ
=

∂Wk

∂τ
+ Λk

∂Wk

∂k
= 0. (6.5)

41

From the above, it is obvious that the system of equations is decoupled, Wk =const,

and that Λk defines the characteristic direction ∂k/∂τ = λk. Each characteristic variable is

associated with one specific eigenvalue, and it is constant along characteristic lines which

correspond to the eigenvalues in a hyperbolic system. Characteristic variables can be

constructed as

Wk = R−1
k,oq. (6.6)

Here, R−1
k,o is the locally constant inverse of the right eigenvector. The subscript ”o”

denotes frozen [9] value of dependent variables. Those values can be taken from the first

cell inside or outside the computational domain, or as arithmetic averages of those cells.

The use of eigenvectors and the solution vector q = J
{

ρ, u, v, w, P
}T

which is detailed

in Appendix A and Appendix C, results in a characteristic variable vector, as follows

Wk = J

ρk̂x + (−wk̂y + vk̂z) − k̂xΩ

ρk̂y + (wk̂x − uk̂z) − k̂yΩ

ρk̂z + (−vk̂x + uk̂y) − k̂zΩ

P
ρoσ̂o

+
Φ̂(σ̂o+θ̂k,oβ

−)
2 σ̂o

P
ρoσ̂o

− Φ̂(σ̂o−θ̂k,oβ
−)

2 σ̂o

, (6.7)

where

Ω =
P + 2ρo(uk̂x + vk̂y + k̂z)θ̂k,oβ

−

c2o β
,

Φ̂ = uk̂x + vk̂y + wk̂z .

Recall from Appendix C that θ̂k,o = uo k̂x+vo k̂y+wo k̂z+k̂t and σ̂o =
[

(θ̂k,o β
−)2+β c2o

]
1
2
.

These characteristic variables are constant along characteristic lines, which correspond

to the eigenvalues

λ1 = θk; λ2 = θk; λ3 = θk; λ4 = θk β
+ + σ; λ5 = θk β

+ − σ. (6.8)

42

-

6

�
�
�
�
�
�
�
�
��

B
B

B
B

B
B
B

B
BB

�
�

�
�

�
�

�
�

�

ξ

τ

τ1

ξ = ξboundaryOutside Domain Inside Domain

dτ
dξ = 1

λ3

dτ
dξ = 1

λ1

dτ
dξ = 1

λ2

w3
ξ w1

ξ w2
ξ

Figure 6.1: Characteristic lines in the ξ − τ plane

6.2 Characteristic Variable Boundary Conditions (CVBCs)

The CVBCs are going to be developed under a locally one-dimensional assumption

(neglecting the source term Sm,n in Eq. (6.4), as already mentioned). Characteristic

variables Wk are constant along the characteristic lines. A representation of characteristic

lines is given for illustration purpose in Fig. (6.1)

In Fig. (6.1), one piece of information comes from the inside domain and two other

pieces from the outside domain (this is consistent with subsonic flow). Figure (6.2) shows

how information propagates, and the importance of flow-grid orientation, in subsonic flow.

Codirectional Contradirectional

λk,1,2,3 > 0;
(

W 1,2,3
k

)

a
=
(

W 1,2,3
k

)

b
, λk,1,2,3 < 0;

(

W 1,2,3
k

)

a
=
(

W 1,2,3
k

)

b
,

λk,4 > 0;
(

W 4
k

)

a
=
(

W 4
k

)

b
, λk,4 > 0;

(

W 4
k

)

l
=
(

W 4
k

)

b
, (6.9)

λk,5 < 0;
(

W 5
k

)

l
=
(

W 5
k

)

b
, λk,5 < 0;

(

W 5
k

)

a
=
(

W 5
k

)

b
.

Here, ’a’ and ’l’ refer to the approaching and leaving boundary, respectively. The sign

of the eigenvalues depends on flow-grid orientation as well as the flow regime. Codirectional

43

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

s

a
s

b
s

l
s

a
s

b
s

l

-k increasing -k decreasing

FLOW FLOW

Figure 6.2: Codirectional and Contradirectional Flow

flow (in increasing direction of k) and Contradirectional flow (in decreasing direction of k),

are the terms used for these two cases, see Janus [9].

6.3 Subsonic Codirectional Flow

In subsonic flow, four of the eigenvalues have the same sign, and one opposite. So, four

pieces of information come from the same direction, in contrast to one that comes from the

opposite direction. As mentioned before, codirectional flow is aligned with the direction of

increasing k, which means that four of the eigenvalues are positive:

λ1 , λ2 , λ3 , λ4 ≥ 0 and λ5 ≤ 0.

44

Using the characteristic variables in Eq. (6.7), results in the following system of equations:

[

J

(

ρk̂x + (−wk̂y + vk̂z) − k̂xΩ

)]

a

=

[

J

(

ρk̂x + (−wk̂y + vk̂z) − k̂xΩ

)]

b

,(6.10a)

[

J

(

ρk̂y + (wk̂x − uk̂z) − k̂yΩ

)]

a

=

[

J

(

ρk̂y + (wk̂x − uk̂z) − k̂yΩ

)]

b

, (6.10b)

[

J

(

ρk̂z + (−vk̂x + uk̂y) − k̂zΩ

)]

a

=

[

J

(

ρk̂z + (−vk̂x + uk̂y) − k̂zΩ

)]

b

,(6.10c)

[

J

(

P

ρoσ̂o
+

Φ̂(σ̂o + θ̂k,oβ
−)

2 σ̂o

)]

a

=

[

J

(

P

ρoσ̂o
+

Φ̂(σ̂o + θ̂k,oβ
−)

2 σ̂o

)]

b

, (6.10d)

[

J

(

P

ρoσ̂o
− Φ̂(σ̂o − θ̂k,oβ

−)

2 σ̂o

)]

l

=

[

J

(

P

ρoσ̂o
− Φ̂(σ̂o − θ̂k,oβ

−)

2 σ̂o

)]

b

. (6.10e)

In the ghost cell technique, boundary cells use the same metric information as ghost

cells, therefore Jacobians cancel out in Eqs. (6.10). Then, the boundary values Pb , ρb, ub

, vb , wb are obtained as follows:

Pb =
1

2

{

Pa + Pl + ρoσ̂o

[

k̂x(ua − ul) + k̂y(va − vl) + k̂z(wa − wl)
]

}

−

(Pa − Pb)

2σ̂o
θ̂k,oβ

− − ρo[k̂x(ua − ub) + k̂y(va − vb) + k̂z(wa − wl)]

2 σ̂o
(θ̂k,oβ

−)2,(6.11)

ρb = ρa +
(Pb − Pa)(σ̂o − θ̂k,oβ

−)

βc2o(σ̂o + θ̂k,oβ−)
, (6.12)

ub = ua + k̂x
(Pa − Pb)

ρo(σ̂o + θ̂k,oβ−)
, (6.13)

vb = va + k̂y
(Pa − Pb)

ρo(σ̂o + θ̂k,oβ−)
, (6.14)

wb = wa + k̂z
(Pa − Pb)

ρo(σ̂o + θ̂k,oβ−)
. (6.15)

In the above, ‘a’ and ‘b’ should be interpreted according to whether the flow is leaving or

entering the boundary.

45

6.4 Subsonic Contradirectional Flow

In contrast to the previous section, contradirectional flow is in the direction of decreasing

k. It is easily seen that the first eigenvalue are then negative. Now the signs of eigenvalues

is the following:

λ1 , λ2 , λ3 , λ5 ≤ 0 and λ4 ≥ 0

Using the characteristic variables, (in Eq. (6.7)) results in the following system of equations:

[

J

(

ρk̂x + (−wk̂y + vk̂z) − k̂xΩ

)]

a

=

[

J

(

ρk̂x + (−wk̂y + vk̂z) − k̂xΩ

)]

b

,(6.16a)

[

J

(

ρk̂y + (wk̂x − uk̂z) − k̂yΩ

)]

a

=

[

J

(

ρk̂y + (wk̂x − uk̂z) − k̂yΩ

)]

b

, (6.16b)

[

J

(

ρk̂z + (−vk̂x + uk̂y) − k̂zΩ

)]

a

=

[

J

(

ρk̂z + (−vk̂x + uk̂y) − k̂zΩ

)]

b

,(6.16c)

[

J

(

P

ρoσ̂o
+

Φ̂(σ̂o + θ̂k,oβ
−)

2σ̂o

)]

l

=

[

J

(

P

ρoσ̂o
+

Φ̂(σ̂o + θ̂k,oβ
−)

2σ̂o

)]

b

, (6.16d)

[

J

(

P

ρoσ̂o
− Φ̂(σ̂o − θ̂k,oβ

−)

2σ̂o

)]

a

=

[

J

(

P

ρoσ̂o
− Φ̂(σ̂o − θ̂k,oβ

−)

2σ̂o

)]

b

. (6.16e)

Solving this system yields

Pb =
1

2

{

Pa + Pl − ρoσ̂o

[

k̂x(ua − ul) + k̂y(va − vl) + k̂z(wa − wl)
]

}

+

(Pa − Pb)

2σ̂o
θ̂k,oβ

− +
ρo[k̂x(ua − ub) + k̂y(va − vb) + k̂z(wa − wl)]

2σ̂o
(θ̂k,oβ

−)2,(6.17)

ρb = ρa +
(Pb − Pa)(σ̂o + θ̂k,oβ

−)

βc2o(σ̂o − θ̂k,oβ−)
, (6.18)

ub = ua − k̂x
(Pa − Pb)

ρo(σ̂o − θ̂k,oβ−)
, (6.19)

vb = va − k̂y
(Pa − Pb)

ρo(σ̂o − θ̂k,oβ−)
, (6.20)

wb = wa − k̂z
(Pa − Pb)

ρo(σ̂o − θ̂k,oβ−)
. (6.21)

46

There is a lot of similarity between the contradirectional and codirectional results. These

results can be combined under one formulation by using the sign value of the first eigenvalue,

as follows

Pb =
1

2

{

Pa + Pl + sgn(λ1
k)ρoσ̂o

[

k̂x(ua − ul) + k̂y(va − vl) + k̂z(wa − wl)
]

}

+

−sgn(λ1
k)

(Pa − Pl)

2 σ̂o
θ̂k,oβ

− +

−sgn(λ1
k)
ρo[k̂x(ua − ub) + k̂y(va − vb) + k̂z(wa − wl)]

2 σ̂o
(θ̂k,oβ

−)2, (6.22)

ρb = ρa +
(Pb − Pa)(σ̂o − sgn(λ1

k)θ̂k,oβ
−)

βc2o(σ̂o + sgn(λ1
k)θ̂k,oβ

−)
, (6.23)

ub = ua + sgn(λ1
k)k̂x

(Pa − Pb)

ρo(σ̂o + sgn(λ1
k)θ̂k,oβ

−)
, (6.24)

vb = va + sgn(λ1
k)k̂y

(Pa − Pb)

ρo(σ̂o + sgn(λ1
k)θ̂k,oβ

−)
, (6.25)

wb = wa + sgn(λ1
k)k̂z

(Pa − Pb)

ρo(σ̂o + sgn(λ1
k)θ̂k,oβ

−)
. (6.26)

The relations are generalized for subsonic flow (either contradirectional or codirectional).

In the above, ’a’ and ’l’ is a kind of arbitrary position, depending on whether flow is entering

or leaving the domain. In practical applications, the determination of what is ’a’ and ’l’ is

automated for robustness.

6.5 Supersonic Flow

In supersonic flow, all eigenvalues have the same sign, so there is also no need to

distinguish between codirectional and contradirectional flow. The characteristic equations

47

become:

[

J

(

ρk̂x + (−wk̂y + vk̂z) − k̂xΩ

)]

a

=

[

J

(

ρk̂x + (−wk̂y + vk̂z) − k̂xΩ

)]

b

,(6.27a)

[

J

(

ρk̂y + (wk̂x − uk̂z) − k̂yΩ

)]

a

=

[

J

(

ρk̂y + (wk̂x − uk̂z) − k̂yΩ

)]

b

, (6.27b)

[

J

(

ρk̂z + (−vk̂x + uk̂y) − k̂zΩ

)]

a

=

[

J

(

ρk̂z + (−vk̂x + uk̂y) − k̂zΩ

)]

b

,(6.27c)

[

J

(

P

ρoσ̂o
+

Φ̂(σ̂o + θ̂k,oβ
−)

2 σ̂o

)]

a

=

[

J

(

P

ρoσ̂o
+

Φ̂(σ̂o + θ̂k,oβ
−)

2 σ̂o

)]

b

, (6.27d)

[

J

(

P

ρoσ̂o
− Φ̂(σ̂o − θ̂k,oβ

−)

2 σ̂o

)]

a

=

[

J

(

P

ρoσ̂o
− Φ̂(σ̂o − θ̂k,oβ

−)

2 σ̂o

)]

b

. (6.27e)

The solution of the above system is as follows

pb = pa, ρb = ρa, ub = ua, vb = va, wb = wa.

These results should have been expected, due to the physics of supersonic flows.

6.6 Wall Boundary Conditions

According to inviscid flow theory, the flow is tangent to a solid surface. As already

mentioned, a finite volume formulation requires more information than what physics can

provide. Typically, zero-pressure gradient and constant enthalpy are used for obtaining

pressure and density. Adjustments for improved inviscid boundary conditions have also

proposed [30], which account for wall curvature effects, and result in slightly more

complicated boundary conditions.

In the computational domain, contravariant velocity components can be written as

U = θξ = ξt + uξx + vξy + wξz,

V = θη = ηt + uηx + vηy + wηz, (6.28)

W = θζ = ζt + uζx + vζy + wζz.

In the above, the values U , V , W are taken from the interior of the domain, and

are known. Normal velocity is zero at the wall. If applied to a surface η, this conditions

48

becomes:

ξt + uξx + vξy + wξz = U,

ηt + uηx + vηy + wηz = 0, (6.29)

ζt + uζx + vζy + wζz = W.

The solution of equations (6.29) yields

u = J
{

ζz (ηy (U − ξt) + ηtξy) − ζy (Uηz − ηzξt + ηtξz) + (W − ζt) (ηzξy − ηyξz)
}

,(6.30)

v = J
{

ζz (ηx (U − ξt) + ηtξx) − ζx (Uηz − ηzξt + ηtξz) + (W − ζt) (ηzξx − ηxξz)
}

,(6.31)

w = J
{

ζy (ηx (U − ξt) + ηtξx) − ζx (ηy (U − ξt) + ηtξy) + (W − ζt) (ηyξx − ηxξy)
}

,(6.32)

where J = ∂(x,y,z)
∂(ξ,η,ζ) = [xξ (yηzζ − zηyζ) + yξ (zηxζ − xηzζ) + zξ (xηyζ − yηxζ)] is the Jacobian

of the inverse coordinate transformation.

Imposing a zero pressure gradient by setting ∂p/∂n = 0, is equivalent to the statement

that the pressure is constant in the normal direction to surface. Then, the computational

boundary value for pressure is taken from the first cell inside the domain. For a solid η

surface, this becomes:

Pb = Pi,1,k. (6.33)

In order to find density, it can be assumed that the freestream total enthalpy is constant

along the body surface

ht∞ = htbody
= et + Ec

p

ρ
. (6.34)

Computational boundary density can then be found as

ρb =
γEcPb

(γ − 1)(ht∞ − Ecφb)
. (6.35)

Note that φb and Pb have been found from the previous results.

CHAPTER VII

RESULTS

In this study, a computer code was implemented for solving the two-dimensional Euler

equations. The code uses a finite volume formulation with the Roe flux difference splitting

method, and can be applied to structured grids. Both explicit and implicit time integrations

are employed. The Newton method is used for the linearization in the implicit scheme, with

a symmetric Gauss-Seidel (LU/SGS) algorithm used for the solution of the linear equations.

CVBCs and tangency conditions are implemented in the code for far-field and wall boundary,

respectively.

A number of applications are performed to test the robustness of the preconditioning

method, and its implementation. The first set of test cases is considered necessary to

analyze preconditioning schemes. In order to reach a reliable conclusion, these test cases

are designed to minimize boundary condition effects and to exclude the complexity of an

implicit solver. These preliminary test cases are: (1) point disturbance, (2) flow angle

sensitivity, and (3) stagnation point. The first one is considered a somewhat realistic case,

because a wide range of linear and nonlinear waves is generated by the disturbance. The

latter two test cases are closely related to possible instability at a stagnation point [5].

The next two sets of test cases involve steady-state and unsteady flows, respectively.

The steady-state cases include both external and internal flows: an airfoil and a convergent-

divergent nozzle, respectively. The symmetric airfoil NACA 0012 was chosen for this study.

In particular, low Mach number flows are investigated in terms of accuracy and convergence

rates. Moreover, the same airfoil is investigated at transonic speed to compare convergence

rates for preconditioned and original schemes. Lastly, a supersonic case is also examined

in order to test all range of Mach numbers. The other steady-state case is chosen to be

an internal flow in a convergent-divergent (C-D) nozzle. This test case attempts to asses

robustness and reliability in the code for internal flow application with a wide range of Mach

49

50

numbers. As for unsteady test cases, a shock tube problem is investigated for different

reference Mach numbers.

7.1 Test Cases for Preconditioning Schemes

Several test cases involving both the original and preconditioned schemes are used to

test reliability and capability of the new preconditioning method. The first test case is

used to measure the ability to damp a pressure disturbance introduced into the domain.

The second one is to observe the sensitivity of the preconditioner to a given flow angle

disturbance. In the last test case, the preconditioner is studied at a stagnation point. This

case is thought to be mandatory before a preconditioning scheme can be applied to any

realistic configuration; however, a few local preconditioners will yield poor results here, or

fail to converge altogether[2].

7.1.1 Point Disturbance Test

The first test case is applied to both the original and the preconditioned schemes. A

given pressure disturbance, which is taken as 0.1M2
∞p∞, is introduced at the center of a

10 × 10 uniform grid. It will generate both linear and non-linear waves, thus representing

a somewhat realistic case.

Boundary conditions are set as a uniform flow, which is not allowed to change. This

will minimize boundary effects on the solution, and allow to examine convergence behavior

safely. Furthermore, an explicit time-integration scheme is used, which will facilitate the

analysis and be consistent with Zaccanti’s results [2].

The explicit scheme is run for 3000 time steps with a CFL=0.3. In Fig.(7.1), the

convergence history is given for the original scheme. As expected, the convergence of

the original scheme tends to get slower at low Mach numbers. Two reasons have been

identified for this behavior: (1) a large condition number (the ratio of the largest and

smallest eigenvalues), and (2) and improperly scaled compressible equations, which can not

represent well virtually incompressible behavior at low speeds [4]. The convergence behavior

is similar in the case of high Mach numbers , and it deteriorates when the Mach number

approaches zero.

51

0 600 1200 1800 2400 3000

Number of time steps

−15

−12

−9

−6

−3

0

L
o

g
[R

el
at

iv
e

R
es

id
u

al
]

Original Scheme

M=0.9

M=0.7

M=0.5

M=0.3

M=0.1

M=0.01

M=0.001

Figure 7.1: Original Scheme Convergence History for a given Pressure disturbance

The same case is run for the preconditioned scheme under the same conditions. The

convergence history is presented in Fig.(7.2). One of the purposes of preconditioning is

to make convergence Mach-number independent at low speed. The preconditioned scheme

successfully achieves this objective, as seen in Fig.(7.2), although round-off errors appear to

preclude convergence to machine zero for very low Mach numbers. The test conditions are

taken from those of Zaccanti [2], and these results show that a new global preconditioning

is not converging as fast as others. The number of iterations required to reach the same

magnitude of residual reduction is approximately three times higher than most of the

available preconditioned schemes. Note that the choice of local time stepping may vary

slightly different implementations.

7.1.2 Flow Angle Test

The second test case may also be considered as a disturbance test: the velocity vector

of the center cell is deviated from the uniform field. Deflected flows are usually encountered

near the stagnation point in a realistic case, and are considered a possible reason for

52

0 600 1200 1800 2400 3000

Number of time steps

−15

−12

−9

−6

−3

0

L
o

g
[R

el
at

iv
e

R
es

id
u

al
]

Preconditioned Scheme

M=0.9

M=0.7

M=0.5

M=0.3

M=0.1

M=0.01

M=0.001

Figure 7.2: Preconditioned Scheme Convergence History for given Pressure disturbance

instability [5]. In traditional analysis, a preconditioning matrix may be written for any

flow angle. In general, the preconditioning matrices are a function of flow angle and Mach

number. As the Mach number approaches to zero, the preconditioning matrix can become

sensitive to the flow angle. In order to remove this ill-conditioned situation, the flow

dependence should be removed completely or alleviated to some extent [5]. Fortunately,

the new global preconditioning is completely independent of flow angle, so the scheme

should be able to recover from any disturbance all the way to the maximum deflection

angle of 180o. The maximum tolerated flow angle in the center cell is tested for various

CFL numbers with a 10×10 square grid, at a fixedM = 0.1. Again, boundary conditions are

consistent with a uniform flow and are not allowed to be changed. Convergence histories are

given in Figs. (7.3) and (7.4) for both schemes for completeness. However, the traditional

success criterion here is the value of the maximum perturbed angle tolerated by the scheme,

regardless of convergence speed. The maximum perturbed angle is given as 180o for the new

preconditioned scheme, which successfully passes the convergence test for all CFL numbers.

53

0 200 400 600 800 1000

Number of Time Steps

−10

−8

−6

−4

−2

0

L
o

g
[R

el
at

iv
e

R
es

id
u

al
]

Original Scheme

CFL=0.1

CFL=0.2

CFL=0.3

CFL=0.4

CFL=0.5

Figure 7.3: Original Scheme Convergence History for flow angle test case

According to Zaccanti’s results [2], the Chorin/Turkel preconditioner is the only one to be

as robust for the same conditions.

7.1.3 Stagnation Point Test

This last preliminary test case attempts to measure the ability of a preconditioning

scheme to compute a stagnation point. Two identical jets moving in opposite directions

are set to impinge in the middle of the computational domain, creating a stagnation point.

The boundary conditions are set to the initial conditions, and are not allowed to change.

The Mach number is set to 0.1 in a 22 × 23 uniform grid. The CFL number used for

the solution is set to CFL = 0.4. The flow meets at a cell face in the middle of the

domain. This makes the Roe-averaged velocity zero, and the flow deflection angle large at

the face where the stagnation point resides, which is considered the worst-case scenario for a

preconditioner. Some local preconditioners will not be able to deal with the aforementioned

problems without some modifications of the scheme [25][5]. A detailed view of the simulation

54

0 200 400 600 800 1000

Number of Time Steps

−15

−12

−9

−6

−3

0

L
o

g
[R

el
at

iv
e

R
es

id
u

al
]

Preconditioned Scheme

CFL=0.1

CFL=0.2

CFL=0.3

CFL=0.4

CFL=0.5

Figure 7.4: Preconditioned Scheme Convergence History for flow angle test case

results is given in Fig. (7.5). The new scheme captures the stagnation point perfectly, as

does the original unpreconditioned one.

Convergence histories are given in Figs.(7.6) for both schemes, and agree with previous

results [2]. In addition to giving accurate results, convergence is better at low Mach numbers

when using the preconditioner.

7.2 Steady-State, External Flows: Airfoil Tests

In this section, comparisons of predictions from both original and preconditioned

schemes for a NACA 0012 airfoil are presented, for a large range of Mach numbers. The

preconditioned scheme is designed to make compressible algorithms usable at low Mach

numbers, so that a single algorithm for all flow regimes can be employed. Consequently,

subsonic, transonic, and supersonic cases are presented and compared for original and

preconditioned schemes.

In subsonic cases, the NACA 0012 airfoil cases are run on a coarse grid (177 × 33 cells,

with 112 cells on the airfoil) shown in Fig.(7.7), with a CFL number of CFL = 100. The

55

Figure 7.5: Stagnation point—detailed view

0 500 1000 1500 2000 2500 3000

Number of Time Steps

−15

−12

−9

−6

−3

0

L
o

g
[R

el
at

iv
e

R
es

id
u

al
]

Precond. Scheme

Original Scheme

Figure 7.6: Stagnation point Convergence History for Original and Preconditioned Scheme

56

Figure 7.7: Coarser 177 × 33 C-grid for NACA0012 airfoil

implicit scheme is used, with 3 Newton iteration loops per time step and 4 LU/SGS iterative

sweeps, on average. The numerical flux Jacobian matrix is computed twice per time step,

which is considered sufficient even when using higher numbers of Newton iterations. Note

that this test case is steady, so time accuracy is not required. The boundary conditions

used are those already discussed: CVBCs at the farfield (located at a distance of 40 chord

lengths away from the airfoil), and tangency at the wall, for all flow regimes.

In transonic and supersonic cases, a finer grid (353 × 65 cells, with 224 cells on the

airfoil) given in Fig.(7.8) is used to achieve better accuracy of the solution. The use of

high-order space discretization and the formation of strong shocks, may cause instability at

the very beginning of the calculations. This can be fixed by using good initial values, or

employing a lower CFL number and first-order space discretization at the early steps. Here,

it is preferred to use a lower CFL number, while keeping the order of scheme the same, at

the beginning of computation.

57

Figure 7.8: Finer 353 × 65 C-grid for NACA0012 airfoil

7.2.1 Subsonic Flow

For subsonic flow, test cases are run for various Mach numbers, ranging from 0.001 to

0.5, with a 2o angle of attack. The original scheme experiences convergence difficulties, but

eventually it does converge. However, the unpreconditioned compressible algorithm yields

inaccurate results at very low Mach numbers (note that none of the previous test cases was

designed to expose this problem). It is well known from classical thin airfoil theory for

low-speed flow that the coefficient of lift is proportional to angle of attack, according to the

Prandtl-Glauert relation Cl = 2πα/
√

1 −M2
∞. This is a simple result that can be used to

compare the predictions of the numerical schemes.

In Figs.(7.9) and (7.10), plots of coefficient of lift versus number of iterations are shown

for variable Mach numbers for the first-order schemes. The prediction from the original

scheme in Figs.(7.9) differ greatly from the theoretical results at M = 0.01. In practice,

it is seen that the solution starts deteriorating at M = 0.1. The residual convergence plot

of Fig.(7.11) shows a deterioration in the number of cycles it takes to obtain the (wrong)

solution at low Mach numbers.

58

0 10 20 30 40 50 60 70 80 90 100

Number of Time Steps

0.1

0.13

0.16

0.19

0.22

0.25
Co

ef
fe

ci
en

t o
f L

ift
Original Scheme

M=0.5, Cl=0.246171

M=0.3, Cl=0.225586

M=0.1, Cl=0.230125

M=0.01, Cl=0.532206

Figure 7.9: Coefficient of Lift for various Mach Numbers from 1st Order Original Scheme
at Subsonic Flow

The use of the preconditioning scheme greatly improves the solution, especially at very

low Mach numbers. In Fig.(7.10), lift coefficients reach accurate values, consistent with

those predicted by the theory. The convergence is independent of Mach number, as seen in

Fig.(7.12), consistently with what was already seen in the point disturbance test case for

low Mach numbers.

The same cases are run for second and third-order schemes, with the minmod limiter.

As it is shown in Figs. (7.13), the coefficient of lift is more accurate than that in Fig.

(7.9) at M = 0.1 for the original scheme. This is in line with the expectation that high

order schemes are more accurate. As seen in Figs.(7.14), the preconditioned scheme also

improves the solution at low Mach number. In contrast to Fig. (7.15), the second-order

preconditioned scheme convergence given in Figs. (7.16) is seen to be independent of Mach

number. As for third-order results, shown in Fig. (7.17), accuracy is better than the first-

order scheme at M = 0.1. Very accurate results are recovered when using preconditioning

schemes at low Mach numbers, as seen in Fig. (7.18). Convergence histories given in Figs.

(7.19) and (7.20) follows the the same pattern as those of the second-order scheme. The

59

0 10 20 30 40 50 60 70 80 90 100

Number of Time Steps

0.1

0.13

0.16

0.19

0.22

0.25
Co

ef
fe

ci
en

t o
f L

ift
Preconditioned Scheme

M=0.5, Cl=0.239767

M=0.3, Cl=0.217076

M=0.1, Cl=0.208405

M=0.01, Cl=0.207420

M=0.001, Cl=0.207410

Figure 7.10: Coefficient of Lift for various Mach Numbers from 1st Order Preconditioned
Scheme at Subsonic Flow

0 100 200 300 400 500

Number of Time Steps

−15

−12

−9

−6

−3

0

Lo
g[

Re
la

tiv
e

Re
si

du
al

]

Original Scheme

M=0.5

M=0.3

M=0.1

M=0.01

M=0.001

Figure 7.11: First-Order Original Scheme Convergence History for various Mach numbers
at Subsonic Flow

60

0 100 200 300 400 500

Number of Time Steps

−15

−12

−9

−6

−3

0
Lo

g[
Re

la
tiv

e
Re

si
du

al
]

Preconditioned Scheme

M=0.5

M=0.3

M=0.1

M=0.01

M=0.001

Figure 7.12: First-Order Preconditioned Scheme Convergence History for various Mach
numbers at Subsonic Flow

high-order convergence histories are not able to go down to machine zero. Remarkably, the

coefficient of lifts are leveled to the correct values after only few iterations. Traditionally,

limiters such as minmod are blamed for this kind of behavior.

7.2.2 Transonic Flow

The next test case involves the same NACA 0012, at transonic speed. A finer grid

(353 × 65 cells), is used for the numerical solution at M∞ = 0.85 and α = 1o, due to

presence of a strong shock on the upper surface and a relatively weaker shock on the lower

surface. As already mentioned, high-order space discretization and the presence of shocks

require the use of lower CFL numbers in the initial phase. Eventually, first and high-order

schemes run with CFL=100 and CFL=30, respectively, after using a lower CFL for a few

iterations at the very beginning.

The present results are compared to those from the AGARD test cases [31]. In particular,

shock location, coefficient of lift and drag, and Mach contour lines will be compared. It is

easily seen that large gradient occurs at the shock location (see Figs. (7.21) and (7.22), and

61

0 10 20 30 40 50 60 70 80 90 100

Number of Time Steps

0.1

0.14

0.18

0.22

0.26

0.3
Co

ef
fe

ci
en

t o
f L

ift
Original Scheme

M=0.5, Cl=0.271444

M=0.3, Cl=0.241730

M=0.1, Cl=0.223208

M=0.01, Cl=0.147021

Figure 7.13: Coefficient of Lift for various Mach Numbers from 2nd Order Original Scheme
at Subsonic Flow

0 10 20 30 40 50 60 70 80 90 100

Number of Time Steps

0.1

0.14

0.18

0.22

0.26

0.3

Co
ef

fe
ci

en
t o

f L
ift

Preconditioned Scheme

M=0.5, Cl=0.268221

M=0.3, Cl=0.239169

M=0.1, Cl=0.228111

M=0.01, Cl=0.226854

M=0.001, Cl=0.226841

Figure 7.14: Coefficient of Lift for various Mach Numbers from 2nd Order Preconditioned
Scheme at Subsonic Flow

62

0 100 200 300 400 500

Number of Time Steps

−3

−2.4

−1.8

−1.2

−0.6

0
Lo

g[
Re

la
tiv

e
Re

si
du

al
]

Original Scheme

M=0.5

M=0.3

M=0.1

M=0.01

Figure 7.15: Second-Order Original Scheme Convergence History for various Mach numbers
at Subsonic Flow

0 100 200 300 400 500

Number of Time Steps

−3

−2.4

−1.8

−1.2

−0.6

0

Lo
g[

Re
la

tiv
e

Re
si

du
al

]

Preconditioned Scheme

M=0.5

M=0.3

M=0.1

M=0.01

M=0.001

Figure 7.16: Second-Order Preconditioned Scheme Convergence History for various Mach
numbers at Subsonic Flow

63

0 10 20 30 40 50 60 70 80 90 100

Number of Time steps

0.1

0.14

0.18

0.22

0.26

0.3
Co

ef
fe

ci
en

t o
f L

ift
Original Scheme

M=0.5, Cl=0.273577

M=0.3, Cl=0.242295

M=0.1, Cl=0.225944

M=0.01, Cl=0.162689

Figure 7.17: Coefficient of Lift for various Mach Numbers from 3rd Order Original Scheme
at Subsonic Flow

0 10 20 30 40 50 60 70 80 90 100

Number of Time Steps

0.1

0.14

0.18

0.22

0.26

0.3

Co
ef

fe
ci

en
t o

f L
ift

Preconditioned Scheme

M=0.5, Cl=0.269580

M=0.3, Cl=0.240626

M=0.1, Cl=0.229659

M=0.01, Cl=0.228542

M=0.001, Cl=0.228450

Figure 7.18: Coefficient of Lift for various Mach Numbers from 3rd Order Preconditioned
Scheme at Subsonic Flow

64

0 100 200 300 400 500

Number of Time Steps

−3

−2.4

−1.8

−1.2

−0.6

0
Lo

g[
Re

la
tiv

e
Re

si
du

al
]

Original Scheme

M=0.5

M=0.3

M=0.1

M=0.01

Figure 7.19: Third-Order Original Scheme Convergence History for various Mach numbers
at Subsonic Flow

0 100 200 300 400 500

Number of Time Steps

−3

−2.4

−1.8

−1.2

−0.6

0

Lo
g[

Re
la

tiv
e

Re
si

du
al

]

Preconditioned Scheme

M=0.5

M=0.3

M=0.1

M=0.01

M=0.001

Figure 7.20: Third-Order Preconditioned Scheme Convergence History for various Mach
numbers at Subsonic Flow

65

Table 7.1: Lift/Drag Coefficients comparisons at M=0.85 and α = 1o

Cl Cd
Original Scheme 1st Order 0.3271 0.0689

2nd Order 0.3600 0.0588

3rd Order 0.3604 0.0586

Preconditioned Scheme 1st Order 0.3230 0.0680

2nd Order 0.3636 0.0592

3rd Order 0.3599 0.0588

AGARD Test Cases 0.330 ∼ 0.3889 0.0464 ∼ 0.0590

the detailed view in Figs. (7.23) and (7.24)), and the results are in excellent agreement with

those of AGARD. As seen in the detailed plots, higher-order schemes managed to capture

the shock location better, and this will be shown to lead to more accurate results.

Integrating the pressure distribution in the flow and normal to flow directions results

in lift and drag forces for this inviscid flow. The AGARD inviscid test cases are run for

different mesh sizes and grid types, and different farfield locations. Lift/Drag comparisons

of various order discretizations are given in Table (7.1). The values in the present study

fall within the AGARD range for the high-order discretization. One should notice that

first-order results are also reasonable, and they improve when using finer grid. As a final

comparison, Mach contour lines are given in Fig.(7.26), and are in good agreement with the

AGARD results.

For this study, convergence criteria are based on the behavior of the maximum residual

and convergence rate suffers when using limiters in high-order schemes. A plot of the

residual for the first order scheme is shown in Fig. (7.25) The convergence behavior for both

original and preconditioned algorithms is virtually the same. It is worth mentioning that

there is relatively minor gain occurring in transonic flow when using the preconditioned

algorithm. Unlike first-order schemes, convergence rate for high-order discretizations

shows some oscillatory, limit-cycle behavior. Second-order scheme converge three orders

of magnitude 10−3 but third-order algorithms only convergence one order of magnitude.

Incidentally, preconditioned high-order scheme has helped to reduce the magnitude of the

limit-cycles.

66

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Pr
es

su
re

 C
oe

ffi
ci

en
t

Original Scheme

First Order Scheme

Second Order Scheme

Third Order Scheme

Figure 7.21: Pressure coefficient distribution over the transonic case at M∞ = 0.85 and
α = 1, Original Scheme

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Pr
es

su
re

 C
oe

ffi
ci

en
t

Preconditioned Scheme

First Order Scheme

Second Order Scheme

Third Order Scheme

Figure 7.22: Pressure coefficient distribution over the transonic case at M∞ = 0.85 and
α = 1, Preconditioned Scheme

67

0.5 0.6 0.7 0.8 0.9 1

x/c

−0.5

0

0.5

1

1.5

Pr
es

su
re

 C
oe

ffi
ci

en
t

Original Scheme

First Order Scheme

Second Order Scheme

Third Order Scheme

Figure 7.23: Detailed View of Pressure coefficient distribution over the transonic case at
M∞ = 0.85 and α = 1, Original Scheme

0.4 0.5 0.6 0.7 0.8 0.9 1

x/c

−0.5

0

0.5

1

1.5

Pr
es

su
re

 C
oe

ffi
ci

en
t

Preconditioned Scheme

First Order Scheme

Second Order Scheme

Third Order Scheme

Figure 7.24: Detailed View of Pressure coefficient distribution over the transonic case at
M∞ = 0.85 and α = 1, Preconditioned Scheme

68

0 100 200 300 400 500

Number of Time Steps

−15

−12

−9

−6

−3

0

Lo
g[

R
el

at
iv

e
R

es
id

ua
l]

Precond. Scheme

Original Scheme

Figure 7.25: First-Order Original and Preconditioned scheme Convergence Histories for the
transonic case (M∞ = 0.85 and α = 1o)

0.55

0.60

0.7
0

0.75

0.7
5

0.7
5

0.75

0.80

0.80

0.80

0.8
0

0.85

0.850.8
5

0.85

0.85

0.8
5

0.85

0.90

0.90

0.90

0.9
0

0.90 0. 90

0.9
0

0.9
5

0.95

0.95

0.9
5

0.9
5

0.9
5

1.00

1.00

1.0
0

1.0
0

1.05

1.0
5

1.0
5

1.0
5

1.10

1.1
0

1.1
0

1.15

1.15

1.15

1.1
5

1.20

1.20

1.2
01.25 1.2

5

1.30

1.35

Figure 7.26: Mach contour lines for the transonic case (M∞ = 0.85 and α = 1o)

69

0 100 200 300 400 500

Number of Time Steps

−15

−12

−9

−6

−3

0
Lo

g[
R

el
at

iv
e

R
es

id
ua

l]

Figure 7.27: First-Order scheme Convergence History for the supersonic case (M∞ = 1.2
and α = 0o)

7.2.3 Supersonic Test Case

This case is given for sake of completeness. The current preconditioning scheme is meant

to work only for subsonic flows, and because it is a global preconditioner, it will not be active

in the low-speed pockets near the stagnation region. This case is run at M∞ = 1.2 with zero

angle of attack on the finer grid. A plot of the residual reduction for the first-order scheme is

given in Fig. (7.27). The first-order scheme is run at a CFL=60 after 50 iterations running

at CFL=3.0, and the high-order scheme is run at a CFL=50 after 50 iterations running at

CFL=2.0.

A comparison of drag coefficients is given in Table (7.2). It is noticed that the results

are in good agreement with those in the AGARD report. Finally, Mach contour lines are

shown in Fig. (7.28), and are in good agreement with the AGARD results.

70

0.450.6
5

0.70

0.75

0.80

0.80

0.85

0.8
5

0.85

0.9
0

0.90

0.9
0

0.90

0.9
0

0.95

0.95

0.95

0.9
5

0.9
5

1.00

1.00

1.0
0

1.0
0

1.0
0

1.05

1.05

1.0
5

1.0
5

1.10

1.10

1 .10

1.1
0

1.1
0

1.15

1.1
5

1.15

1.20

1.20

1.20

1.20

1.20

1.25
1.25

1.25

1.25

1.30

1.30

1.30

1.30

1.30

1.35

1.35

1.35

1.35 1.3
5

1.40

1.40

1.45

Figure 7.28: Mach contour lines for the supersonic case (M∞ = 1.2 and α = 0o)

Table 7.2: Drag Coefficients comparisons at M=1.2 and α = 0o

Cd
Original Scheme 1st Order 0.1032

2nd Order 0.0972

3rd Order 0.0969

AGARD Test Cases 0.0946 ∼ 0.0960

7.3 Steady-State, Internal Flows: Nozzle Tests

A Convergent-Divergent (C-D) nozzle is an excellent test case for internal flows, because

of the availability of quasi one-dimensional analytical solutions. The nozzle geometry is from

reference [32], with Ainlet/Athroat = 2.5 and Aexit/Athroat = 1.5. The nozzle is discretized

by means of a 202× 62 grid, shown in Fig. (7.29). CVBCs are imposed on exit and inlet of

the nozzle.

Three major types of flow can be encountered in C-D Nozzle, depending on pe/po ratios.

The first one is fully subsonic flow for various, prescribed, exit pressures. Lowering the exit

pressure, a shock standing in the diffuser can be formed, and this case can be used to

test the performance of the schemes for mixed flow types. The third flow type is a fully

71

Figure 7.29: Grid used for the Convergent-Divergent Nozzle (202 × 62)

supersonic case. In all cases the reference Mach number, Mr, is taken to be the value at

the inlet of the nozzle. The quasi-one-dimensional solution is also evaluated for these flow

types.

7.3.1 Subsonic Nozzle

This case is designed to test the reliability and robustness of the preconditioning scheme

for internal flow applications. The flow will accelerate/decelerate throughout the nozzle,

according to the prescribed exit pressure. In this case, four different pe/po ratios were

imposed (0.999998, 0.9998, 0.98 and 0.89). It is a well-known result that the flow accelerates

by further decreasing the exit pressure, until sonic conditions are established at the throat.

Both schemes are run with a CFL=100, and comparisons are made between axial pressure

and analytical solution. Note that the area-averaged results for each cross-section could be

slightly closer to those of the exact solution.

The axial pressure distributions are compared to the analytical solution in Figs.(7.30),

(7.31), (7.32), (7.33). It is seen that the preconditioned scheme features a better solution

than the original first-order scheme. Notice that first order scheme results do not deviate

72

too much from the solution (the vertical scales in these plots are extremely enlarged at the

higher pressures). However, if one looks closely at the lower the inlet Mach number cases,

it is found that second-order original scheme solution shows some oscillations, which are

not found in the preconditioned scheme. These oscillations actually grow larger as Ae/At

is increased (this is now shown in the present study).

For the first-order original scheme the convergence histories deteriorate as the Mach

number goes further down, as shown in Fig. (7.34). The preconditioned scheme makes

the residual reduction roughly independent of Mach number at low speed flows, as seen in

Fig.(7.35). However, an interesting result which was not observed in the airfoil case is that

convergence is better for the original scheme when used for relatively high-speed subsonic

nozzle (such as pe/po = 0.89). As for high-order schemes, the same patterns are encountered

for convergence histories, as seen in Figs. (7.36) and (7.37). Mach number independence

in the residual history can be seen in Fig. (7.37) for the preconditioned scheme. Finally,

Mach number contours are given for pe/po = 0.89 in Fig. (7.38).

7.3.2 Nonisentropic Choked Nozzle

The flow in the convergent part of the nozzle will keep accelerating as pe/po goes down

until attaining sonic conditions at the throat. Further decreasing exit pressure will not

change anything in convergent part, but will affect the divergent part. This flow is called

a choked flow, and is no longer isentropic in the divergent section. A normal shock wave

appears in the divergent part, an its location depends on the exit pressure. In this study,

pe/po is chosen as 0.75, in order to have a normal shock wave roughly halfway in the diffuser.

Original and preconditioned schemes are run with a CFL=20. A lower CFL is used for a

few iterations at the beginning. The analytical solution is set as the initial condition.

Comparison are with values at the center line or area-averaged.

There is no expectation of superiority for the scheme in this case. In fact, this nozzle

is a good example of a mixed type flow without a stagnation point. The first comparisons

are made between axial pressure distribution and analytical solution in Fig. (7.39). All

solutions are in very good agreement. The convergence graphs are shown in Fig. (7.40).

73

0 2 4 6 8 10

X

0.999994

0.999995

0.999996

0.999997

0.999998

0.999999

1P/Po
Pe/Po=0.999998, Mr=Minlet=0.001

Analytical Solution

1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.30: Pressure ratios, p
po

,
distribution along convergent-
divergent nozzle for
Mr = 0.001

0 2 4 6 8 10

X

0.9995

0.9996

0.9997

0.9998

0.9999

1P/Po
Pe/Po=0.9998, Mr=Minlet=0.01

Analytical Solution

1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.31: Pressure ratios, p
po

,
distribution along convergent-
divergent nozzle for Mr = 0.01

0 2 4 6 8 10

X

0.95

0.96

0.97

0.98

0.99

1P/Po
Pe/Po=0.98, Mr=Minlet=0.1

Analytical Solution

1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.32: Pressure ratios, p
po

,
distribution along convergent-
divergent nozzle for Mr = 0.1

0 2 4 6 8 10

X

0.5

0.6

0.7

0.8

0.9

1P/Po
Pe/Po=0.89, Mr=Minlet=0.25

Analytical Solution

1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.33: Pressure ratios, p
po

,
distribution along convergent-
divergent nozzle for Mr = 0.25

74

0 100 200 300 400 500

Number of Time Steps

−15

−10

−5

0

Lo
g[

Re
la

tiv
e

Re
si

du
al

]
Original Scheme

M=0.25, Pe/Po=0.89

M=0.1, Pe/Po=0.98

M=0.01, Pe/Po=0.9998

M=0.001, Pe/Po=0.999998

Figure 7.34: First-Order Scheme Convergence Histories for Subsonic Nozzle

0 100 200 300 400 500

Number of Time Steps

−15

−10

−5

0

Lo
g[

Re
la

tiv
e

Re
si

du
al

]

Preconditioned Scheme

M=0.25, Pe/Po=0.89

M=0.1, Pe/Po=0.98

M=0.01, Pe/Po=0.9998

M=0.001, Pe/Po=0.999998

Figure 7.35: First-Order Scheme Convergence Histories for Subsonic Nozzle

75

0 100 200 300 400 500

Number of Time Steps

−8

−6

−4

−2

0

Lo
g[

Re
la

tiv
e

Re
si

du
al

]
Original Scheme

M=0.25, Pe/Po=0.89

M=0.1, Pe/Po=0.98

M=0.01, Pe/Po=0.9998

M=0.001, Pe/Po=0.999998

Figure 7.36: Second-Order Scheme Convergence Histories for Subsonic Nozzle

0 100 200 300 400 500

Number of Time Steps

−4

−3

−2

−1

0

Lo
g[

Re
la

tiv
e

Re
si

du
al

]

Preconditioned Scheme

M=0.25, Pe/Po=0.89

M=0.1, Pe/Po=0.98

M=0.01, Pe/Po=0.9998

M=0.001, Pe/Po=0.999998

Figure 7.37: Second-Order Scheme Convergence Histories for Subsonic Nozzle

76

0
.2

5

0
. 2

5

0
.2

7

0
.2

7

0
.2

9

0
.2

9

0
.3

1

0
.3

3

0
.3

3

0
.3

5

0
. 3

7

0
.4

0

0
.4

2

0
.4

4

0
.4

4
0

.4
4

0
.4

6

0
.4

6

0
.4

6

0
.4

8

0
. 4

8

0
.4

8

0
.5

0

0
.5

0

0
.5

0

0
.5

0

0
.5

2

0
.5

2

0
.5

2

0
.5

4 0
.5

40
.5

6

0
. 5

6

0
.5

8

0
.5

8

0
.6

0

0
.6

0

0
.6

2

0
.6

2

0
.6

4

0
. 6

4

0
.6

6

0
.6

6

0
.6

8

0
.6

8

0
.7

0

0
.7

0

0
.7

2

0
.7

2

0
.7

4

0
.7

4

0
.7

6

0
.7

6

0
.7

8

0
.7

8

0
.8

0

0
.8

0

0
.8

2

0
.8

2

0.
84

Figure 7.38: Mach contours for pe

po
= 0.89

The first-order original scheme is superior to the the preconditioned one in convergence

rate, but the opposite is true for the high-order scheme.

This nozzle was also studied by using the WIND CFD solver at NASA [33]. The

solution behind the shock there was largely disturbed. The author of the study blames

that on the presence of interactions between the the normal shock and the pressure subsonic

outflow. The present results for the given exit pressure, shown in Fig. (7.41), show excellent

agreement with the analytical solution and no disturbances . This should be attributed to

the implementation of characteristic variable boundary conditions (CVBCs). In external

flow, farfield boundaries are located in regions where very small changes occur; consequently

the importance of boundary conditions is somewhat diminished. Here, the importance of

CVBCs is more clearly demonstrated. Finally, Mach contours are given in Fig.(7.42).

7.3.3 Supersonic Nozzle

When the exit pressure is reduced further, one can finally obtain a fully supersonic

isentropic solution (at the design exit Mach number). The exit pressure ratio is set to 0.16

to attain this condition. Both schemes are run at CFL=100, using the analytical solution

77

0 2 4 6 8 10

X

0.2

0.4

0.6

0.8

1P/Po
Pe/Po=0.75, Mr=Minlet=0.25

Analytical Solution

1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.39: Pressure ratios, p
po

, distribution along convergent-divergent nozzle for choked
flow

0 100 200 300 400 500

Number of Time Steps

−15

−10

−5

0

Lo
g[

R
el

at
iv

e
R

es
id

ua
l]

1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.40: Convergence Histories for nonisentropic nozzle pe

po
= 0.75

78

0 2 4 6 8 10

X

0

0.5

1

1.5

2

M
Pe/Po=0.75, Mr=Minlet=0.25

Analytical Solution

1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.41: Average Mach number distribution along convergent-divergent nozzle for
choked flow

0
.2

5

0
.2

5

0
.3

0

0
.3

0

0
.3

4

0
.3

9
0

. 3
9

0
.4

3

0
. 4

8

0
.5

2

0
.5

2

0
.5

2

0
.5

7

0
.5

7

0
.5

7

0
.5

7

0
.6

1

0
.6

1

0
.6

1

0
.6

6

0
.6

6

0
.6

6

0
.7

0

0
.7

00
.7

5

0
.7

5

0
.7

9

0
. 7

9

0
.8

4

0
.8

4

0
.8

8

0
.8

8

0
.9

3

0
.9

3

0
.9

7

0
. 9

7

1
.0

2

1
.0

6

1
.0

6

1
. 0

6

1
.1

1

1
.1

11
.1

5

1
. 1

5

1
.1

5

1
.2

0

1
.2

4

1
.2

4

1
.2

9

1
. 2

9
1

.3
3

1
.3

8

1
.3

8

1
.4

2

1
.4

2

1
.4

7

1
.4

7

1
.5

1

1
.5

1

1
.5

6

1
.5

6

Figure 7.42: Mach contours for pe

po
= 0.75

79

0 2 4 6 8 10

X

0

0.2

0.4

0.6

0.8

1P/Po
Pe/Po=0.16, Mr=Minlet=0.25

Analytical Solution

1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.43: Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
supersonic nozzle

as initial condition. The centerline pressure distribution is in very good agreement with the

analytical solution, as seen in Fig.(7.43) for all schemes. Again, the original scheme residual

reduction is superior to the one for the preconditioned algorithm, as seen in Fig.(7.44).

Various larger Ainlet/Athroat were also run in order to further investigate this behavior (at

larger are ratios, the flow speed decreases in the convergent portion). The original scheme

is still outperforming the preconditioned one. Mach contours are given in Fig.(7.45).

7.4 Unsteady Case: Shock Tube Problem

The shock tube problem is computed as a preliminary unsteady test case on a 201 × 6

grid, shown in Fig. (7.46), with the following initial conditions:

qL(ρ, u, v, p) =
{

1, 0, 0,
1

γ

}T
(7.1a)

qR(ρ, u, v, p) =
{ 1

10
, 0, 0,

1

10γ

}T
(7.1b)

80

0 100 200 300 400 500

Number of Time Steps

−15

−10

−5

0
Lo

g[
R

el
at

iv
e

R
es

id
ua

l]
1st Order Original Scheme

1st Order Precond. Scheme

2nd Order Original Scheme

2nd Order Precond. Scheme

Figure 7.44: Pressure ratios, p
po

, distribution along convergent-divergent nozzle for
supersonic nozzle

0
.2

5

0
.2

5

0
.2

5

0
.3

0

0
.3

0

0
. 3

5

0
.3

5

0
.4

1

0
.4

1

0
.4

6

0
.4

6

0
.5

1

0
.5

6

0
.6

1

0
.6

7

0
.7

2

0
.8

2
0

.8
8

0
.9

3

0
.9

8

1
.0

3

1
.0

8

1
.1

4 1
.1

9

1
.2

4

1
.2

9

1
.3

4

1
.4

0

1
.4

5

1
.5

0

1
.5

5

1
.6

0

1
.6

6

1
.7

1

1
.7

6

Figure 7.45: Mach contours for pe

po
= 0.16

81

Initial discontinuity is located in the middle of the shock tube. The purpose of this case

is to test the unsteady algorithm for varying reference Mach numbers. As mentioned before,

introducing a preconditioning matrix has no effect on steady-state cases, but it destroys time

accuracy. In order to recover time-accurate problems, the implicit time integration with

Newton iterations and symmetric Gauss-Seidel (LU/SGS) sweeps is employed. Third-order

fluxes are used in all computations.

The shock tube problem has two discontinuities which are the shock and the contact

surface. The discontinuities are proceeding to the right as time advances. All computations

are run to a time of 0.17 with time steps dt=0.00017 (1000 steps), and compared to

available analytical results. Any two-dimensional Euler code should be applicable to a

one-dimensional shock tube problem when proper boundary conditions are used. The

boundary conditions located at the left and right boundaries of the shock tube are the

initial conditions.

The results are compared to the analytical solution in Fig. (7.47) for various reference

Mach number. All numerical results are in good agreement with analytical solution. In

case of Mr = 1.0, the preconditioning does not destroy time accuracy, hence in this case the

residual reached to a fifteen order of magnitude reduction with 15 Newton iterations at every

time step. Even though this problem does not require preconditioning, the preconditioning

is introduced to verify the recovery of time accuracy. Reference Mach numbers such as 0.5

and 0.3 are chosen for the preconditioning matrix. In order to reach acceptable order of

magnitude residual reduction, one may have to use more Newton iterations. The reference

Mach number 0.5 case is required to run 20 Newton iterations to attain four orders of

magnitude in residual reduction, and the case Mr = 0.3 does require 50 Newton iterations

to reach the same residual reduction. Note that Newton iteration convergence at every time

steps is not important in steady-state cases, but it is very important in any unsteady case.

82

Figure 7.46: Grid for Shock Tube Problem (201 × 6)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Shock Tube Problem at t=0.17 for Various Reference Mach Numbers

Third−Order Scheme with dt=0.00017

Analytical Solution

Mr=1.0

Mr=0.5

Mr=0.3

Density

Pressure

Velocity

Figure 7.47: Mach contours for pe

po
= 0.75

CHAPTER VIII

SUMMARY AND CONCLUDING REMARKS

Numerical solutions of the two-dimensional Euler equations were investigated using a

finite volume formulation in conjunction with Roe flux difference splitting and explicit

and implicit time integration algorithms. A discretized-Newton linearization with nested

(LU/SGS) subiterations was used for solving the conservative implicit scheme. A global

preconditioning matrix was introduced in the hyperbolic system, in order to improve

convergence and preserve accuracy at low speeds. CVBCs were developed for the

preconditioned scheme at farfield boundaries. Tangency, along with constant enthalpy and

pressure gradient, were imposed as wall boundary conditions.

A few traditional test cases were performed, with the aim to measure the ability of the

new global preconditioner to accommodate low-speed flows. All test cases exclude implicit

integration and boundary conditions effects, in order to observe only the preconditioner

influence. Point disturbance tests show that the new preconditioner makes the convergence

rate independent of Mach number as the Mach number approaches zero; however, its

convergence rate falls slightly behind other local preconditioners. Furthermore, flow angle

and stagnation point tests prove that the new global preconditioner is extremely robust for

highly deflected flow angles and captures perfectly the stagnation point.

An external flow application involving a NACA 0012 airfoil was investigated next.

This test case shows that new global preconditioning retains accuracy as well as a high

convergence rate for a realistic case. For subsonic speeds, the new scheme successfully fixed

the inaccuracy found with compressible algorithms at very low Mach numbers. A transonic

case was also investigated, in order to assess the preconditioning converging ability, although

the original scheme works fine in the transonic case (transonic airfoil results did not show

any significant gains in convergence rate).

83

84

An converging-diverging nozzle was chosen to test the new scheme for internal flows.

The convergence rate for the new global preconditioning is roughly independent of the

Mach number, and the convergence only accelerates at very low speeds. Otherwise, it

is apparent that the original scheme has better convergence properties than the new

preconditioned scheme in the nozzle case. The author investigated larger Ainlet/Athroat

ratios, thus increasing the region of very subsonic flow; however, the convergence rate was

essentially unchanged. Quality and importance of boundary conditions were demonstrated

in the case of a shock standing in the diffuser section.

For unsteady cases, the preconditioned scheme destroys time accuracy. Newton

formulation is designed to overcome this problem, at the price of increasing the number

of Newton iteration per time steps.

The new global preconditioning was proven to be numerically very reliable and robust,

and it compares favorably with local preconditioners. Future work should focus on

investigating its convergence acceleration ability in more detail. Moreover, the current

implementation should be extended to three space dimensions, viscous cases using the

Navier-Stokes equations, and reactive flow problems (e.g. combustion).

REFERENCES

[1] E. Turkel, V. N. Vatsa, and R. Radespiel, “Preconditioning Methods for Low-Speed
Flows,” tech. rep., NASA Langley Research Center, NASA Contract No. NAS1-19480,
NASA Langley Research Center, Hampton, VA 23681-0001, April 1995.

[2] M. R. Zaccanti, Analysis and Design of Preconditioning Methods for The Euler

Equations. PhD thesis, Mississippi State University, December 1999.

[3] D. L. Darmafol and B. V. van Leer, “Local Preconditioning of The Euler Equations:
A Characteristic Interpretation,” in , Lecture Series 1999-03, VKI, VKI, 1999.

[4] W. R. Briley, H. McDonald, , and S. J. Shamroth, “A Low Mach Number Euler
Formulation and Application to Time-Iterative LBI Schemes,” AIAA, vol. 21, pp. 1467–
1469, October 1983.

[5] D. Lee, Local Preconditioning of The Euler and Navier-Stokes Equations. PhD thesis,
University of Michigan, 1996.

[6] D. L. Darmafol and P. J. Schmid, “The Importance of Eigenvectors for Local
Preconditioners of the Euler Equations,” AIAA Paper 95-1655, 1995.

[7] W.R.Briley, L. K. Taylor, , and D. L. Whitfield, “High-Resolution Viscous Flow
Simulations at Arbitrary Mach Number,” Journal of Computational Physics, vol. 184,
pp. 79–105, January 2003.

[8] A. Fiterman, E. Turkel, and B. van Leer, “Preconditioning and The Limit to The
Incompressible Flow Equations,” Tech. Rep. ICASE REPORT No.93-42, NASA, 1995.

[9] J. M. Janus, “The Development of a Three-dimensional Split Flux Vector Euler Solver
with Dynamic Grid Applications,” Master’s thesis, Mississippi State University, August
1984.

[10] F. M. White, Viscous Fluid Flow. McGRAW-HILL, 1974.

[11] C. B. Laney, Computational Gasdynamics. Cambridge University Press, 1998.

[12] R. J. L. Veque, Numerical Methods for Conservation Laws. Springer Verlag, 1992.

[13] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer
Verlag, 1999.

[14] P. L. ROE, “Approximate Riemann Solvers, Parameter Vectors, and Difference
Schemes,” Journal of Computational Physics, vol. 43, pp. 357–372, 1981.

[15] D. L. Whitfield, J. M. Janus, and L. B. Simpson, “Implicit Finite Volume High
Resolution Wave-Split Scheme for Solving the Unsteady Three Dimensional Euler and
Navier-Stokes Equations on Stationary or Dynamic Grids,” tech. rep., NASA Lewis
Research Center, February 1988.

85

86

[16] Z. U. A. Warsi, Fluid Dynamics Theoretical and Computational Approaches. CRC
Press, 1999.

[17] J. C. Tannehill, D. A. Anderson, and R. H. Pletcher, Computational Fluid Mechanics

and Heat Transfer. Taylar&Francis, 1997.

[18] C. Hirsch, Numerical Computation of Internal and External Flows. John Wiley&Sons,
1988.

[19] A. Chorin, “A Numerical Method for Solving Incompressible Viscous Flow Problems,”
Journal of Computational Physics, vol. 2, pp. 12–26, August 1967.

[20] E. Turkel, “A Precondtioned Methods for Solving the Incompressible and Low-Speed
Compressible Flows,” Journal of Computational Physics, pp. 277–298, 1987.

[21] J. F. III and M. B. Giles, “Accelerated Convergence of Euler solutions Using Time
Inclining,” AIAA, vol. 28, pp. 1457–1463, August 1990.

[22] D. Choi and L. Merkle, “Application of Time-Iterative Schemes to Incompressible
Flow,” AIAA, vol. 23, pp. 1518–1524, December 1984.

[23] A. Fiterman, E. Turkel, and B. van Leer, “Pressure Updating Methods for The Steady-
State Fluid Equations,” Tech. Rep. ICASE REPORT No.93-42, NASA, 1995.

[24] J. M. Weiss and W. A. Smith, “Preconditioning Applied to Variable and Constant
Density Flows,” AIAA, vol. 33, pp. 2050–2057, November 1994.

[25] M. R. Zaccanti and P. Cinnella, “Effective Preconditioning Methods for The Euler
Equations,” AIAA, pp. 2000–2253, June 2000.

[26] W.R.Briley and H.McDonald, “An Overview and Generalization of Implicit Navier-
Stokes Algorithms and Approximate Factorization,” Computer and Fluids, vol. 21,
pp. 1467–1469, March 2001.

[27] D. L. Whitfield and L. K. Taylor, “Numerical Solution of The Two-Dimensional
Time-Dependent Incompressible Euler Equations,” Tech. Rep. MSSU-EIRS-ERC-93-
14, MSU, 1994.

[28] J. C. Newman, III, W. Anderson, and D. L. Whitfield, “Multidisciplinary Sensitivity
Derivatives Using Complex Variables,” Tech. Rep. MSSU-COE-ERC-98-08, MSU,
1998.

[29] T. W. Swafford, Computational Fluid Dynamics, An Introduction to the Governing

Equations and Formulations for Numerical Solution. Mississippi State University, 1994.

[30] A. Dadone and B. Grossman, “Surface boundary conditions for the numerical solution
of the euler equations,” AIAA Journal, vol. 32, pp. 285–293, February 1994.

[31] AGARD, “Test Cases for Inviscid Flowfield Methods : Report / of Fluid Dynamics
Panel Working Group 07.,” Tech. Rep. AGARD AR-211, NATO, May 1985.

[32] M. Liou, “Generalized Procedure Constructing an Upwind-Based TVD Scheme,”
AIAA, pp. 87–0355, January 1987.

87

[33] J. W. Slater, “NPARC Alliance CFD Verification and Validation Archieve,” NASA,
p. www.grc.nasa.gov/WWW/wind/valid, February 2001.

APPENDIX A

CURVILINEAR TRANSFORMATION

88

89

In order to derive a transformed version of the governing equation (2.11), one starts

with the following relations between Cartesian x, y, z and general curvilinear coordinates

ξ, η, ζ (also included in possibility of a change in the time coordinate, from t to τ):

τ = τ(t), t = t(τ),

ξ = ξ(x, y, z, t), x = x(ξ, η, ζ, τ), (A.1)

η = η(x, y, z, t), y = y(ξ, η, ζ, τ),

ζ = ζ(x, y, z, t), z = z(ξ, η, ζ, τ).

Partial derivatives with respect to curvilinear and Cartesian coordinates can be written

as follows, using the rule of differentiation:

∂()

∂τ
=

∂()

∂t

∂t

∂τ
+
∂()

∂x

∂x

∂τ
+
∂()

∂y

∂y

∂τ
+
∂()

∂z

∂z

∂τ
, (A.2a)

∂()

∂ξ
=

∂()

∂t

∂t

∂ξ
+
∂()

∂x

∂x

∂ξ
+
∂()

∂y

∂y

∂ξ
+
∂()

∂z

∂z

∂ξ
, (A.2b)

∂()

∂η
=

∂()

∂t

∂t

∂η
+
∂()

∂x

∂x

∂η
+
∂()

∂y

∂y

∂η
+
∂()

∂z

∂z

∂η
, (A.2c)

∂()

∂ζ
=

∂()

∂t

∂t

∂ζ
+
∂()

∂x

∂x

∂ζ
+
∂()

∂y

∂y

∂ζ
+
∂()

∂z

∂z

∂ζ
, (A.2d)

and

∂()

∂t
=

∂()

∂τ

∂τ

∂t
+
∂()

∂ξ

∂ξ

∂t
+
∂()

∂η

∂η

∂t
+
∂()

∂ζ

∂ζ

∂t
, (A.3a)

∂()

∂x
=

∂()

∂τ

∂τ

∂x
+
∂()

∂ξ

∂ξ

∂x
+
∂()

∂η

∂η

∂x
+
∂()

∂ζ

∂ζ

∂x
, (A.3b)

∂()

∂y
=

∂()

∂τ

∂τ

∂y
+
∂()

∂ξ

∂ξ

∂y
+
∂()

∂η

∂η

∂y
+
∂()

∂ζ

∂ζ

∂y
, (A.3c)

∂()

∂z
=

∂()

∂τ

∂τ

∂z
+
∂()

∂ξ

∂ξ

∂z
+
∂()

∂η

∂η

∂z
+
∂()

∂ζ

∂ζ

∂z
. (A.3d)

Writing Eqs. (A.2) and (A.3) in matrix form, one obtains:

90

∂()
∂τ

∂()
∂ξ

∂()
∂η

∂()
∂ζ

=

tτ xτ yτ zτ

tξ xξ yξ zξ

tη xη yη zη

tζ xζ yζ zζ

∂
∂t

∂
∂x

∂
∂y

∂
∂z

, (A.4)

and

∂()
∂t

∂()
∂x

∂()
∂y

∂()
∂z

=

τt ξt ηt ζt

τx ξx ηx ζx

τy ξy ηy ζy

τz ξz ηz ζz

∂
∂τ

∂
∂ξ

∂
∂η

∂
∂ζ

. (A.5)

The matrix relationship (A.4) can be inverted to find Cartesian derivatives in terms of

curvilinear ones, as follows:

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

∂()
∂t

∂()
∂x

∂()
∂y

∂()
∂z

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

=
1

tτJ

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

J

{−xτ (yηzζ − zηyζ)

−yτ (zηxζ − xηzζ)

−zτ (xηyζ − yηxζ)}

{−xτ (zξyζ − yξzζ)

−yτ (xξzζ − zξxζ)

−zτ (yξxζ − xξyζ)}

{−xτ (yξzη − zξyη)

−yτ (zξxη − xξzη)

−zτ (xξyη − yξxη)}

0 tτ (yηzζ − zηyζ) tτ (zξyζ − yξzζ) tζ(yξzη − zξyη)

0 tτ (zηxζ − xηzζ) tτ (xξzζ − zξxζ) tτ (zξxη − xξzη)

0 tτ (xηyζ − yηxζ) tτ (yξxζ − xξyζ) tτ (xξyη − yξxη)

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

∂
∂τ

∂
∂ξ

∂
∂η

∂
∂ζ

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

,

(A.6)

where J = ∂(x,y,z)
∂(ξ,η,ζ) = [xξ (yηzζ − zηyζ) + yξ (zηxζ − xηzζ) + zξ (xηyζ − yηxζ)] is

the Jacobian of the inverse coordinate transformation.

91

If a comparison is made between the matrix elements of Eqs. (A.5) and (A.6), metrics

relations are obtained, as follows:

τt =
1

tτ

ξt =
τt
J
{−xτ (yηzζ − zηyζ) − yτ (zηxζ − xηzζ) − zτ (xηyζ − yηxζ)},

ηt =
τt
J
{−xτ (zξyζ − yξzζ) − yτ (xξzζ − zξxζ) − zτ (yξxζ − xξyζ)},

ζt =
τt
J
{−xτ (yξzη − zξyη) − yτ (zξxη − xξzη) − zτ (xξyη − yξxη)}, (A.7)

ξx =
1

J
(yηzζ − zηyζ) , ηx =

1

J
(zξyζ − yξzζ) , ζx =

1

J
(yξzη − zξyη),

ξy =
1

J
(zηxζ − xηzζ) , ηy =

1

J
(xξzζ − zξxζ) , ζy =

1

J
(zξxη − xξzη),

ξz =
1

J
(xηyζ − yηxζ) , ηz =

1

J
(yξxζ − xξyζ) , ζz =

1

J
(xξyη − yξxη).

Note that time derivatives can be further simplified by using the space derivatives. The

space-time derivatives follows:

ξt = τt(−xτ ξx − yτξy − zτ ξz),

ηt = τt(−xτηx − yτηy − zτηz), (A.8)

ζt = τt(−xτζx − yτζy − zτ ζz).

At this point, consider a generic governing equation can be represented strong conservation

form, as follows:

∂q

∂t
+

∂f

∂x
+

∂g

∂y
+

∂h

∂z
= 0. (A.9)

The equation above can be written in curvilinear coordinates by using equations (A.3), as

follows:

(

τt
∂q

∂τ
+ ξt

∂q

∂η
+ ηt

∂q

∂η
+ ζt

∂q

∂ζ

)

+

(

ξx
∂f

∂ξ
+ ηx

∂f

∂η
+ ζx

∂f

∂ζ

)

+

(

ξy
∂g

∂ξ
+ ηy

∂g

∂η
+ ζy

∂g

∂ζ

)

+

(

ξz
∂h

∂ξ
+ ηz

∂h

∂η
+ ζz

∂h

∂ζ

)

= 0. (A.10)

92

Note that the above equation is no longer in a strong conservation law form, because

coefficients do multiply derivatives.

Multiplying equation (A.10) by J and adding several zero terms(shown in brackets), one

obtains:

Jτt
∂q

∂τ
+ Jξt

∂q

∂ξ
+ Jηt

∂q

∂η
+ Jζt

∂q

∂ζ
+

[

q
∂J

∂τ
− q

∂J

∂τ

]

+

[

q
∂Jξt
∂ξ

− q
∂Jξt
∂ξ

]

+

[

q
∂Jηt
∂η

− q
∂Jηt
∂η

]

+

[

q
∂Jζt
∂ζ

− q
∂Jζt
∂ζ

]

+ Jξx
∂f

∂ξ
+ Jηx

∂f

∂η
+ Jζx

∂f

∂ζ
+

[

f
∂Jξx
∂ξ

− f
∂Jξx
∂ξ

]

+

[

f
∂Jηx
∂η

− f
∂Jηx
∂η

]

+

[

f
∂Jζx
∂ζ

− f
∂Jζx
∂ζ

]

+

Jξy
∂g

∂ξ
+ Jηy

∂g

∂η
+ Jζy

∂g

∂ζ
+

[

g
∂Jξy
∂ξ

− g
∂Jξy
∂ξ

]

+

[

g
∂Jηy
∂η

− g
∂Jηy
∂η

]

+

[

g
∂Jζy
∂ζ

− g
∂Jζy
∂ζ

]

+ Jξz
∂h

∂ξ
+ Jηz

∂h

∂η
+ Jζz

∂h

∂ζ
+

[

h
∂Jξz
∂ξ

− h
∂Jξz
∂ξ

]

+

[

h
∂Jηz
∂η

− h
∂Jηz
∂η

]

+

[

h
∂Jζz
∂ζ

− h
∂Jζz
∂ζ

]

= 0. (A.11)

The above equation can be rearranged in the following form:

(

Jτt
∂q

∂τ
+ q

∂J

∂τ

)

+

(

Jξt
∂q

∂ξ
+ q

∂Jξt
∂ξ

)

+

(

Jηt
∂q

∂η
+ q

∂Jηt
∂η

)

+

(

Jζt
∂q

∂ζ
+ q

∂Jζt
∂ζ

)

+ q

[

∂J

∂τ
+
∂Jξt
∂ξ

+
∂Jηt
∂η

+
∂Jζt
∂ζ

]

+

(

Jξx
∂f

∂ξ
+ f

∂Jξx
∂ξ

)

+

(

Jηx
∂f

∂η
+ f

∂Jηx
∂η

)

+

(

Jζx
∂f

∂ζ
+ f

∂Jζx
∂ζ

)

− f

[

∂Jξx
∂ξ

+
∂Jηx
∂η

+
∂Jζx
∂ζ

]

+

(

Jξy
∂g

∂ξ
+ g

∂Jξy
∂ξ

)

+

(

Jηy
∂g

∂η
+ g

∂Jηy
∂η

)

+

(

Jζy
∂g

∂ζ
+ g

∂Jζy
∂ζ

)

−

g

[

∂Jξy
∂ξ

+
∂Jηy
∂η

+
∂Jζy
∂ζ

]

+

(

Jξz
∂h

∂ξ
+ h

∂Jξz
∂ξ

)

+

(

Jηz
∂h

∂η
+ h

∂Jηz
∂η

)

+

(

Jζz
∂h

∂ζ
+ h

∂Jζz
∂ζ

)

− h

[

∂Jξz
∂ξ

+
∂Jηz
∂η

+
∂Jζz
∂ζ

]

= 0. (A.12)

The terms shown in brackets here are identically zero (this can be verified using the

metrics relations in Eq. (A.7)). Furthermore, applying the product rule to the terms in

93

parenthesis and collecting them yields:

∂ (Jτtq)

∂τ
+
∂ (Jξtq + Jξxf + Jξyg + Jξzh)

∂ξ
+
∂ (Jηtq + Jηxf + Jηyg + Jηzh)

∂η
+

∂ (Jζtq + Jζxf + Jζyg + Jζzh)

∂ζ
= 0. (A.13)

In order to write the above equation in a compact form, one can define:

Q = Jqτt,

F = J(ξtq + ξxf + ξyg + ξzh), (A.14)

G = J(ηtq + ηxf + ηyg + ηzh),

H = J(ζtq + ζxf + ζyg + ζzh).

The transformed equation can then be written in the following vector form, where the

strong conservation form has been restored:

∂Q

∂τ
+

∂F

∂ξ
+

∂G

∂η
+

∂H

∂ζ
= 0. (A.15)

The Euler equations can be transformed using the procedure outlined above, because

they can be written in a strong conservation form consistent with Eq. (A.9). In order to

find the transformed vector quantities for the Euler equations, the dependent variable and

fluxes are rewritten in Cartesian coordinates, as follows:

q =

ρ

ρu

ρv

ρw

E

, f =

ρu

ρu2 + p

ρuv

ρuw

ρuht

, g =

ρv

ρuv

ρv2 + p

ρvw

ρvht

, h =

ρw

ρuw

ρvw

ρw2 + p

ρwht

.

(A.16)

94

The use of the above vector quantities q, f , g, h results in the transformed corresponding

vectors Q, F , G, H, as follows:

Q = τtJ

ρ

ρu

ρv

ρw

E

, K = J

ρθk

ρuθk + kxp

ρvθk + kyp

ρwθk + kzp

ρhtθk − ktEcp

, (A.17)

where

ht = et + Ec
p

ρ
,

θk = kxu + kyv + kzw + kt,

K = F and θξ = U for k = ξ, (A.18)

K = G and θη = V for k = η,

K = H and θζ = W for k = ζ.

Note that τt = 1 in most applications, because time is left unchanged in the transformed

equations (A.15), i.e τ = t.

APPENDIX B

FLUX JACOBIANS

95

96

The vector of primitive variables and the generic flux vector for the Euler equations can

be written as follows:

q = J

ρ

u

v

w

P

=

q1

q2

q3

q4

q5

, K = J

ρθk

ρuθk + kxp

ρvθk + kyp

ρwθk + kzp

ρhtθk − ktEcp

. (B.1)

The transformed flux vector K can be written in terms of the dependent variables q to

construct the flux Jacobian matrix ∂K/∂q. The contravariant velocity θk can be written in

terms of the dependent variables, as follows:

θk = kxq2 + kyq3 + kzq4 + kt. (B.2)

In a similar way, total specific energy and enthalpy definitions from Section 2.3 yield:

et =
q5
q1

Ec
γ − 1

+ Ec

(

q22 + q23 + q24
2

)

,

ht =
q5
q1

Ec
γ − 1

+ Ec

(

q22 + q23 + q24
2

+
q5
q1

)

. (B.3)

At this point, the matrix can be found easily. If we define the flux Jacobian matrix

S = ∂K/∂Q (using conserved variables), then the two matrices are related, as follows:

∂K

∂q
=

∂K

∂Q

∂Q

∂q
= S M, (B.4)

where M is transformation matrix given in section (2.5)

The system matrix s is related the Jacobian matrix above as follows:

s = M−1∂K

∂q
= M−1SM. (B.5)

97

After some algebra, one obtains:

s =

θk kx ρ ky ρ kz ρ 0

0 θk 0 0 kx

ρ

0 0 θk 0
ky

ρ

0 0 0 θk
kz

ρ

0 kx γ p ky γ p kz γp θk

. (B.6)

By using the relation p = ρ c2

γ , the matrix s gets the following form.

s =

θk kx ρ ky ρ kz ρ 0

0 θk 0 0 kx

ρ

0 0 θk 0
ky

ρ

0 0 0 θk
kz

ρ

0 kx ρ c
2 ky ρ c

2 kz ρ c
2 θk

. (B.7)

Multiplying the matrix s by the preconditioning matrix Γq gives the preconditioned system

matrix sΓ, which is necessary for the preconditioned formulation:

sΓ = Γqs =

θk kx ρ ky ρ kz ρ 0

0 θk 0 0 kx

ρ

0 0 θk 0
ky

ρ

0 0 0 θk
kz

ρ

0 β kx ρ c
2 β ky ρ c

2 β kz ρ c
2 β θk

, (B.8)

where

sΓ = aΓ for k = ξ,

sΓ = bΓ for k = η, (B.9)

sΓ = cΓ for k = ζ.

APPENDIX C

EIGENVALUES AND EIGENVECTORS

98

99

Let A be a n×n matrix. A number λ is said to be an eigenvalue of A if the there exists

a nonzero solution vector K of the linear system:

A K = λ K. (C.1)

The solution vector K is said to be a right eigenvector corresponding to the eigenvalue λ.

Equation (C.1) can be rearranged as

(A − λ I) K = 0, (C.2)

where I is the identity matrix.

In here, the trivial solution is {K} = 0. Nontrivial solutions exist if and only if the

determinant of the coefficient matrix is equal to zero:

det (A − λ I) = 0. (C.3)

Eq. (C.3) leads to an nth degree polynomial in λ . This polynomial is called the

characteristic equation of A, and solutions of the polynomial are the eigenvalues of A. In

order to find the eigenvectors corresponding to an eigenvalue λ, equation (C.2) is to be

solved. Note that eigenvectors are not unique: for example, if K1 is an eigenvector, then

αK1 is also an eigenvector, where α is an arbitrary value.

The eigenvalues and eigenvectors of the system matrix sΓ = Γqs are going to be found

next. For convenience, the matrix sΓ is rewritten here:

sΓ = Γqs =

θk kx ρ ky ρ kz ρ 0

0 θk 0 0 kx

ρ

0 0 θk 0
ky

ρ

0 0 0 θk
kz

ρ

0 β kx ρ c
2 β ky ρ c

2 β kz ρ c
2 β θk

. (C.4)

100

After some algebra, the eigenvalues of the matrix sΓ are obtained as follows

λ1 = θk, λ2 = θk, λ3 = θk, θk β
+ + σ, θk β

+ − σ, (C.5)

where σ =
[

(θk β
−)

2
+ β c2 (k2

x + k2
y + k2

z)
]1/2

with β± = 1 ± β
2 .

As mentioned before, the eigenvectors are not unique. A good starting is to seek

eigenvectors which contain as many zero elements as possible, in order to reduce arithmetic

operations when evaluating fluxes. One of the simplest possible set of eigenvectors (a matrix

showing the right eigenvectors as columns) was found by using a symbolic mathematic

manipulator (Mathematica), and reads

Rq =

0 0 1 ρ

σ̂−θ̂kβ−

ρ

σ̂+θ̂kβ−

−k̂z −k̂y 0 k̂x −k̂x

0 k̂x 0 k̂y −k̂y

k̂x 0 0 k̂x −k̂x

0 0 0 ρ(σ̂ − θ̂kβ
−) ρ(σ̂ + θ̂kβ

−)

, (C.6)

where k̂x = kx

|∇k| , k̂y =
ky

|∇k| , k̂z = kz

|∇k| , k̂t = kt

|∇k| with

|∇k| =
(

k2
x + k2

y + k2
z

)
1
2
,

θ̂k = u k̂x + v k̂y + w k̂z + k̂t, (C.7)

σ̂ =
[

(θ̂k β
−)2 + β c2

]
1
2
.

In the above, k̂∗ are the normalized metric coefficients.

The choice of eigenvectors shown before has some severe drawbacks: specifically, the

normalized metric coefficients can be easily zero because they correspond to the component

of unit vectors normal to cell faces. It is possible that any 2 out of 3 of these normalized

metrics coefficients be zero. However, a linear combination of the first three eigenvectors

101

may be used to overcome the ‘worst case’ scenario:

R(1,2,3)
q =

Rq
(1,2,3)
(1)

Rq
(1,2,3)
(2)

Rq
(1,2,3)
(3)

Rq
(1,2,3)
(4)

Rq
(1,2,3)
(5)

= c1

0

−k̂z

0

k̂x

0

+ c2

0

−k̂y

k̂x

0

0

+ c3

1

0

0

0

0

. (C.8)

The constants c1, c2, and c3 are arbitrary values. A choice of these constants gives rise to

three eigenvectors, as follows

Rq
1 = {k̂x , 0 , k̂z , −k̂y , 0}T for c1 = − k̂y

k̂x
, c2 =

k̂z

k̂x
, c3 = k̂x,

Rq
2 = {k̂y , −k̂z , 0 , k̂x , 0}T for c1 = 1 , c2 = 0 , c3 = k̂y, (C.9)

Rq
3 = {k̂z , k̂y , −k̂x , 0 , 0}T for c1 = 0 , c2 = −1 , c3 = k̂z.

At this point, using the following identity:

(σ̂ − θ̂k β
−) (σ̂ + θ̂k β

−) = β c2, (C.10)

one can derive a well-behaved version of the eigenvector matrix, as follows:

Rq =

k̂x k̂y k̂z
ρ
βc2

(σ̂ + θ̂kβ
−) ρ

βc2
(σ̂ − θ̂kβ

−)

0 −k̂z k̂y k̂x −k̂x

k̂z 0 −k̂x k̂y −k̂y

−k̂y k̂x 0 k̂x −k̂x

0 0 0 ρ(σ̂ − θ̂kβ
−) ρ(σ̂ + θ̂kβ

−)

. (C.11)

This nonsingular set of eigenvectors was proposed by Briley, Taylor and Whitfield [7].

It is seen that the determinant of the eigenvector matrix is |Rq| = 2 ρ σ̂ , which is always

nonzero.

102

The inverse of eigenvector matrix reads:

R−1
q =

k̂x −2ρk̂2
xθ̂kβ

−

c2β
k̂z − 2ρk̂xk̂y θ̂kβ

−

c2β
−k̂y − 2ρk̂xk̂z θ̂kβ

−

c2β
− k̂x

c2β

k̂y −k̂z − 2ρk̂xk̂y θ̂kβ
−

c2β −2ρk̂2
y θ̂kβ

−

c2β k̂x − 2ρk̂y k̂z θ̂kβ
−

c2β − k̂y

c2β

k̂z k̂y − 2ρk̂xk̂z θ̂kβ
−

c2β
−k̂x − 2ρk̂yk̂z θ̂kβ

−

c2β
−2ρk̂2

z θ̂kβ
−

c2β
− k̂z

c2β

0 k̂x(σ̂+θ̂kβ
−)

2σ̂
k̂y(σ̂+θ̂kβ

−)
2σ̂

k̂z(σ̂+θ̂kβ
−)

2σ̂
1

2ρσ̂

0 − k̂x(σ̂−θ̂kβ
−)

2σ̂ − k̂y(σ̂−θ̂kβ
−)

2σ̂ − k̂z(σ̂−θ̂kβ
−)

2σ̂ − 1
2ρσ̂

. (C.12)

C.1 Eigenvalues and Eigenvectors for Two Dimensional System

A non-singular set of eigenvectors is proposed for two dimensional system as

Rq =

0 1 ρ
β c2 (σ̂ + θ̂k β

−) ρ
β c2 (σ̂ − θ̂k β

−)

−k̂y 0 k̂x −k̂x

k̂x 0 k̂y −k̂y

0 0 ρ (σ̂ − θ̂k β
−) ρ (σ̂ + θ̂k β

−)

. (C.13)

The inverse of this eigenvector matrix is as follows

R−1
q =

0 −k̂y k̂x 0

1 −2 ρ k̂x θ̂k β−

c2 β
−2 ρ k̂y θ̂k β−

c2 β
− 1
c2 β

0 k̂x (σ̂ + θ̂k β−)
2 σ̂

k̂y (σ̂ + θ̂k β−)
2 σ̂

1
2 ρ σ̂

0 − k̂x (σ̂ − θ̂k β−)
2 σ̂ − k̂y (σ̂ − θ̂k β−)

2 σ̂
1

2 ρ σ̂

. (C.14)

Note that only one normalized metric coefficient can be zero in two dimensions. This

eigenvector matrix for two-dimensional systems is also well-behaved because its determinant

is |Rq| = 2ρσ̂, which is always nonzero.

	A Global Preconditioning Method for the Euler Equations
	Recommended Citation

	thesis.dvi

