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Nomenclature

Abbreviations:
DNS Direct numerical simulation
FTF Flame transfer function
h.o.t. Higher order terms
LES Large-eddy simulation
NEP Nonlinear eigenproblem
ODE Ordinary differential equation
PDE Partial differential equation
PDF Probability density function
RANS Reynolds-averaged Navier-Stokes
URANS Unsteady Reynolds-averaged Navier-Stokes
Greek:
ℵi Heat capacity factor of species i
α Fuel-to-air port ratio in the diffusion flame
α j Acoustic pressure amplitude of the j-th Galerkin

mode
µµµ M-tuple of non-negative integers for multi-index

notation
∆h◦f ,i Formation enthalpy of species i
∆s◦f ,i Formation entropy of species i
ω̇i Production rate of species i
ε Perturbation parameter
η j Acoustic velocity amplitude of the j-th Galerkin

mode
γ Heat-capacity ratio, γ =

cp
cv

κ Flame curvature
λ Thermal diffusivity
O Big O notation
µi Chemical potential of species i
ν Stoichiometric mass ratio
ω Angular frequency, Im(σ)

φ Phase in the flame model, or equivalence ratio
Φ j Acoustic velocity spatial shape of the j-th

Galerkin mode
Ψi Chemical potential function of species i
Ψ j Acoustic pressure spatial shape of the j-th

Galerkin mode
ρ Density
σ Eigenvalue, or Laplace variable (context depen-

dent)
τ Flame time delay
τd Travelling-acoustic-wave time downstream of the

flame
τe Advected entropy disturbance time downstream of

the flame
τu Travelling-acoustic-wave time upstream of the

flame
τττ Stress tensor
p Vector of system’s parameters
Mathematical:
∠ Phase
¯ Base- or mean-flow quantity
· Scalar product
Q̇ External-source heat release rate
≡ Definition
·̂ Laplace transformed quantity ·
〈·, ·〉 Bilinear, or sesquilinear form
‖·‖ Euclidean norm (p = 2)
‖·‖p p-norm
CN Field of N-tuple of complex numbers
RN Field of N-tuple of real numbers
Ae Laplace transform of Se
D Diffusion coefficient
L Markstein length, or generic continuous linear op-

erator, or Lagrangian
N A nonlinear operator of the governing equations
R Specific gas constant
Ru Universal gas constant
Se Advected entropy disturbance
Z Acoustic impedance
˜ Dimensional quantity
Im(·) Imaginary part
Re(·) Real part
Roman:
q̄ Base- or mean-flow solution
δP Perturbation matrix
ŝ Spatial structure of harmonic forcing
q̂ Direct eigenvector
σk,± k-th order eigenvalue drifts in auxiliary eigenprob-

lem
fi Volume force on species i
H

∆̃p Thermoacoustic matrix perturbed along the multi-

parameter direction ∆̃p.
I Identity matrix
M Positive-definite matrix
N Matrix of the nonlinear eigenproblem
n Normal vector
u Velocity
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Vi Diffusion velocity of species i
X Matrix of auxiliary eigenproblem
x Spatial coordinates
X f , Y f Spatial coordinates in the flame domain
Y Mass matrix of auxiliary eigenproblem
z± Eigenvectors of auxiliary eigenproblem
q̂+ Adjoint eigenvector
det Determinant
dim Dimension of a vector space
null Null space (or kernel)
rank Rank of a matrix
tr Trace
q State in continuous spaces, such as Hilbert spaces
q State vector
∆̃p Perturbation unit direction in the multi-parameter

space
a Algebraic multiplicity of an eigenvalue
b Bloch wave number
c Speed of sound
cp,i Heat capacity at constant pressure of species i
cv,i Heat capacity at constant volume of species i
Da Damköhler number
F Laplace transform of f
f Acoustic wave travelling in the direction of the

mean flow
FG Coordinates of the flame front of a premixed flame
G Flame gain, or G field in the level-set method for

premixed flames, or Laplace transform of g
g Acoustic wave travelling in the opposite direction

of the mean flow, or geometric multiplicity of an
eigenvalue

h Enthalpy
hs,i Sensible enthalpy of species i
He Helmholtz number
i Imaginary unit, or eigenvalue’s index in multi-

index notation
K Disturbance phase velocity in premixed flames
L Length scale
M Mach number, or number of parameters, i.e.

length of p
mi Partial multiplicity of local Smith form
n Flame index
Ns Number of species
p Pressure, or single parameter
Pe Péclet number
Q Number of elements in truncated asymptotic ex-

pansion
QR Rate of heat released by reaction with multiple-

scales
Rd Acoustic reflection coefficient at the outlet
Re Entropy-to-acoustics reflection coefficient at the

outlet
Ru Acoustic reflection coefficient at the inlet
Re Reynolds number
s Entropy
S1 Density ratio
S2 Adiabatic flame temperature to ambient tempera-

ture ratio
s0

L Flame speed in premixed flames
ss,i Sensible entropy of species i
Sc Schmidt number
T Temperature
t Time
u Axial velocity
u′s Flame front speed in a one-dimensional flame
V Domain
Vf Flame domain
Wi Molar mass of species i
x f Flame location
Yi Mass fraction of species i
Z Mixture fraction
q State vector
Subscripts:
0 Unperturbed variable, or initial condition
1 First-order perturbation
2 Second-order perturbation
d Downstream of the flame
F Fuel
f Flame
f r Flame front of the premixed flame
h Homogeneous solution
in Inlet
O Oxidizer
p Particular solution
re f Reference condition
u Upstream of the flame
Superscripts:
′ Fluctuation in the time domain
∗ Complex conjugate
+ Right limit
− Left limit
◦ Standard condition
H Conjugate transpose

Glossary

• Adjoint: Or dual. It could be used as an adjective or a
noun.

• Base flow: A steady solution of the governing
equations. With abuse of terminology, sometimes it is
used interchangeably with “mean flow”

• Direct eigenfunction: Eigenfunction
• Direct solution: The solution of the problem, as

opposed to the adjoint solution
• Drift: Or perturbation, or shift, or small change
• Defective eigenvalue: A degenerate eigenvalue with

fewer independent eigenfunctions than its algebraic
multiplicity

• Degenerate eigenvalue: A defective eigenvalue or a
semi-simple eigenvalue with multiplicity greater than
unity

• Eigenfunction: Also known as eigenmode, eigenshape,
eigensolution, eigenvector, mode, global mode

• Eigenpair: Eigenvalue with the corresponding

3



eigenfunction
• Eigenproblem: Or eigenvalue problem
• Eigenvalue splitting: The splitting of a degenerate

eigenvalue in different trajectories
• Exceptional point: A defective eigenvalue that is a

branch-point solution of the characteristic function
• Jump: Or discontinuity
• Mean flow: A time-averaged solution of the governing

equations. Note that a base flow is a mean flow, but the
converse is true only if the solution of the governing
equations is steady.

• Mode: It could refer to either an eigenpair, or an
eigenfunction, or an eigenvalue

• N-fold degenerate eigenvalue: A degenerate
eigenvalue with multiplicity N

• Sensitivity: Or gradient. Sometimes referred to as a
higher order derivative (second-order sensitivity, etc.)

• Semi-simple eigenvalue: An eigenvalue with the
number of independent eigenfunctions equal to its
algebraic multiplicity

• Simple eigenvalue: A semi-simple eigenvalue of unit
multiplicity

• Small: A non-rigorous term that often refers to a
first-order quantity, unless otherwise specified

Abstract
In a thermoacoustic system, such as a flame in a com-

bustor, heat release oscillations couple with acoustic pres-
sure oscillations. If the heat release is sufficiently in phase
with the pressure, these oscillations can grow, sometimes
with catastrophic consequences. Thermoacoustic instabili-
ties are still one of the most challenging problems faced by
gas turbine and rocket motor manufacturers. Thermoacous-
tic systems are characterized by many parameters to which
the stability may be extremely sensitive. However, often only
few oscillation modes are unstable. Existing techniques ex-
amine how a change in one parameter affects all (calculated)
oscillation modes, whether unstable or not. Adjoint tech-
niques turn this around: They accurately and cheaply com-
pute how each oscillation mode is affected by changes in all
parameters. In a system with a million parameters, they cal-
culate gradients a million times faster than finite difference
methods. This review paper provides (i) the methodology and
theory of stability and adjoint analysis in thermoacoustics,
which is characterized by degenerate and non-degenerate
nonlinear eigenvalue problems; (ii) physical insight in the
thermoacoustic spectrum, and its exceptional points; (iii)
practical applications of adjoint sensitivity analysis to pas-
sive control of existing oscillations, and prevention of os-
cillations with ad-hoc design modifications; (iv) accurate
and efficient algorithms to perform uncertainty quantifica-
tion of the stability calculations; (v) adjoint-based methods
for optimization to suppress instabilities by placing acoustic
dampers, and prevent instabilities by design modifications in
the combustor’s geometry; (vi) a methodology to gain phys-
ical insight in the stability mechanisms of thermoacoustic
instability (intrinsic sensitivity); and (vii) in nonlinear pe-

riodic oscillations, the prediction of the amplitude of limit
cycles with weakly nonlinear analysis, and the theoretical
framework to calculate the sensitivity to design parameters
of limit cycles with adjoint Floquet analysis. To show the
robustness and versatility of adjoint methods, examples of
applications are provided for different acoustic and flame
models, both in longitudinal and annular combustors, with
deterministic and probabilistic approaches. The successful
application of adjoint sensitivity analysis to thermoacous-
tics opens up new possibilities for physical understanding,
control and optimization to design safer, quieter and cleaner
aero-engines. The versatile methods proposed can be ap-
plied to other multi-physical and multi-scale problems, such
as fluid-structure interaction, with virtually no conceptual
modification.

1 Introduction
Thermoacoustic oscillations are a challenging problem

that affects aircraft and industrial gas turbines, as well as
rocket and heat-exchanger manufacturing [1–7]. In gas tur-
bines, the chemical energy contained in the fuel is converted
into thermal energy via controlled combustion with air. Dur-
ing the combustion process, the flame releases unsteady heat,
which is a powerful monopole source of sound waves [8]
propagating back and forth within the combustion chamber.
When they echo and return to the flame, sound waves may
enhance the heat released by the flame, which, in turn, gen-
erates even stronger sound waves. These are called thermoa-
coustic instabilities or oscillations, which are also known as
combustion instabilities1. For this to occur, three macro sub-
systems – hydrodynamics2, acoustics, and the flame (Fig. 1)
– constructively interact with each other. Hydrodynamic in-
stabilities (e.g. shear layer instabilities) unsteadily change
the flame shape, which, in turn, changes the heat release rate,
thereby generating acoustic perturbations. The latter, in turn,
excite hydrodynamic instabilities at the flame’s base, which
closes the feedback loop. The essence of this feedback mech-
anism was explained by Lord Rayleigh [16] and mathemat-
ically formalized in [17, 18] by defining the acoustic energy
as

Ẽac ≡
1
2

∫
Ṽ

(
˜̄ρũ′ · ũ′+ p̃′2

˜̄ρ ˜̄c2

)
dṼ , (1)

where ˜ denotes a dimensional quantity; ¯ is the mean-flow
quantity; ′ is the small fluctuation; ρ̃ is the density; ũ is
the velocity; p̃ is the pressure; c̃ is the speed of sound; and
Ṽ is the space domain, i.e., the volume of the combustion
chamber. By combining the acoustic momentum and energy
equations (Sec. 2), the instantaneous change in the acoustic

1Additionally, there exist thermoacoustic instabilities that occur in
anechoic systems, which are called intrinsic thermoacoustic instabilities
[9–15].

2i.e. non-reacting flow phenomena governed by low-Mach number equa-
tions.
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Fig. 1: Three main subsystems interact with each other to
give rise to thermoacoustic instabilities.

energy reads

∂Ẽac

∂t̃
=

∫
Ṽ

(
γ−1
γ ˜̄p

)
p̃′ ˜̇Q′ dṼ −

∫
S̃

p̃′ũ′ ·n dS̃, (2)

where γ is the gas heat-capacity ratio; ˜̇Q is the heat-release
rate from a generic source; and n is the unit vector normal
to the boundary S̃. When the left-hand side of Eqn. (2) is
positive over an acoustic period, the acoustic energy, Ẽac, in-
creases in time. Physically, this occurs when the heat-release
rate is sufficiently in phase with the acoustic pressure such
that the source of power (first integral on the right-hand side)
exceeds the acoustic radiation from the boundary (second in-
tegral on the right-hand side). This is called the Rayleigh
criterion [16]3, which is pedagogically explained in [3, 7].
The growth of the acoustic energy over a cycle results in a
noisy (often tonal) thermoacoustic oscillation. In jet engines
and afterburners, where the power density is ∼ 0.1 GW/m3,
detrimental consequences of thermoacoustic oscillations are
mechanical fatigue, noise pollution and increase in the en-
gine emissions. In the worst-case scenario, uncontrolled
thermoacoustic oscillations can extinguish the flame or bring
about structural failure, especially in rocket motors where
the power density is ∼ 1 GW/m3 in solid rockets, and ∼ 50
GW/m3 in liquid rockets [1, 4]. It is, therefore, paramount
for engineers to understand, predict and control these os-
cillations, and suppress them when they occur. Eigenvalue
analysis is a widely used tool in industry and academia for
the calculation of thermoacoustic stability, as detailed in the
next section 1.1.

3In the original Rayleigh criterion the dissipation integral,
∫

S̃ p̃′ũ′ ·n dS̃,
is not accounted for, but it can be found in Chu [18]. Other sources of
acoustic damping, such as dissipation in the thermal/viscous boundary layer,
are not taken into account to a first approximation. As a side note, as shown
by Chu [19], the acoustic energy can support spurious growth even in the
absence of sources and presence of dissipation. This aspect is discussed by
defining other thermoacoustic norms to measure the acoustic energy [20–
28].

1.1 Eigenvalue analysis
In the preliminary design of an aero-engine combustor,

the first objective is to guarantee that the configuration is lin-
early stable to small perturbations over the desired operat-
ing range. A necessary condition for thermoacoustic oscil-
lations not to occur is that the growth rates of the eigenval-
ues are negative, i.e., the eigenvalues lie in the stable semi-
plane. Eigenvalue analysis is attractive because it is com-
putationally cheaper than testing, high-fidelity computations
and nonlinear analysis.

1.1.1 Transient growth
Truth must be told – The stability of eigenvalues is a

necessary but not sufficient condition for the combustor not
to experience nonlinear oscillations. Indeed, if the transient
growth is sufficiently large, even small perturbations, such
as background noise, can be amplified and trigger nonlin-
earities. This phenomenon is particularly dangerous in sub-
critical bifurcations, within the hysteresis region in which a
finite-amplitude solution co-exists with an eigenvalue stable
fixed point. If the degree of non-normality is large4 in the
hysteresis region, a linearly stable solution can be driven to
an oscillating attractor. This phenomena is therefore called
triggering or bypass transition5 [30, 34–39].

In general, thermoacoustic systems are non-normal
because their eigenfunctions are not orthogonal to each
other [40]. As reviewed by Sujith et al. [39], non-normality
in thermoacoustics was investigated in ducted diffusion
flames [36, 37] and heat sources [34, 35, 41–45]; solid rocket
motors [46, 47]; and premixed flames [48]. Later on, the au-
thors of [38] showed that thermoacoustic non-normality in
ducted diffusion flames is not as influential as it was thought
to be. The calculations were performed both by singular
value decomposition [38] and semi-norm Lagrangian opti-
mization [49]. In ducted premixed flames, the level of non-
normality was shown to be small [50]. The small degree
of non-normality justifies the use of eigenvalue analysis in
thermoacoustic stability. Non-normal effects are ignored ac-
cordingly in this review.

1.2 Adjoint-based methods: A literature review
Figure 2a shows a typical low-order thermoacoustic net-

work of an aeronautical gas turbine [51]. When stability
analysis is performed, some thermoacoustic eigenvalues may
be found to be unstable. To study the influence of a small
change in one of the many parameters of the network, the
naive approach is to re-run the stability analysis for every pa-
rameter and calculate how every eigenvalue is affected. This
is called the finite-difference approach. When the parameters

4A linear operator that does not commute with its adjoint is called non-
normal. A property of non-normal systems is that their eigenfunctions are
not orthogonal to each other.

5An example occurs in incompressible hydrodynamics of the Poiseuille
flow, where the eigenvalue becomes unstable at a Reynolds number Re ≈
5772, but in experiments transition to turbulence is observed at Re ≈
1000 [29–33]. In this case eigenvalue analysis fails because the system is
highly non-normal.
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Fig. 2: (a) An example of a gas-turbine thermoacoustic net-
work reduction taken from [51]. (b) The squares pictori-
ally denote the eigenvalues. If the thermoacoustic network
system has some eigenvalues with positive growth rate (red
squares), the system is linearly unstable. Adjoint methods
quantify how eigenvalues of interest change due to a small
modification of any parameter (arrows). (Panel (b) is a pic-
torial figure and does not contain any results from calcula-
tions.)

are more than the quantities of interests, an inverse approach
turns this procedure around. One single adjoint calculation
provides the gradient of the quantity of interest with respect
to all the parameters of the network6 (Fig. 2b). This is called
the adjoint approach.

In other words, the solution of the adjoint system pro-
vides the gradient of the quantity of interest to all the pa-
rameters of the system. Computationally, adjoint methods
require fewer computations than finite-difference methods
when the number of parameters is larger than the number
of quantities of interest, which is a typical situation in many
engineering problems. Furthermore, adjoint methods enable

6In the same vein, adjoint methods can be applied to the calculation of
the optimal position where to place an external passive device, thereby re-
ducing the number of computations by a factor equal to the number of grid
points, which can be millions in numerical simulations.

the calculation of the forced response (receptivity) of the
flow to external open-loop forcing.

1.2.1 Non-reacting flows
In non-reacting fluid mechanics, adjoint methods were

first applied to shape optimization problems. Pironneau [52]
analytically derived the optimal shape of a unit-volume body
with smallest drag in a Stokes flow. This technique was sub-
sequently used to calculate the shape derivative of a hump
to minimize the drag [53]. Notably, adjoint methods were
developed and integrated into the wing-design cycle of air-
craft by Jameson (and co-workers) [54–56], as acknowl-
edged in [57].

This section offers an overview of adjoint methods used
in non-reacting hydrodynamic stability, i.e., the blue portion
of the circle in Fig. 1. Adjoint techniques were first applied
to boundary-layer receptivity by Tumin and Fedorov [58].
In order to map out the regions where to insert a second
small cylinder to stabilize the vortex shedding instability
of a cylinder flow at Re = 50, Hill [59] combined direct7

and adjoint eigenfunctions. The sensitivity maps obtained
from this theoretical analysis compared favourably with
the experimental data of Strykowski and Sreenivasan [60].
In a subsequent study, inspired by the spectral theory
of the Orr-Sommerfeld operator [61, 62], Hill [63] used
the adjoint eigenfunctions to calculate the receptivity of
Tollmien-Schlichting waves in Blasius boundary layers
to forcing of the momentum, mass, vorticity, boundary
conditions and to acoustic waves. Adjoint sensitivity studies
were performed by Luchini and Bottaro [64], to calculate the
receptivity of the Görtler instability, and by Pralits et al. [65]
to calculate the wall and momentum forcing sensitivity of
compressible boundary layers. The leading-edge receptivity
of flat plates using adjoint eigenfunctions was investigated
by Giannetti and Luchini [66]. Notably, the work by
Hill [59] was revisited by Giannetti and Luchini [67],
who introduced the concept of structural sensitivity to
estimate the wavemaker region, i.e. the region of absolute
instability in local analysis [68], with a global approach8.
The first-order eigenvalue drift formula of [67] was also
used in flow instability in [69–71]. Sensitivity analysis to
base-flow9 modifications and steady forcing acting on the
steady equations was proposed by Bottaro et al. [72] in a
local-analysis framework. The analysis was generalized to
a global approach by [73–75], who reproduced the results
of [60] with a good agreement.

The above pioneering studies laid out the foundations
of many other applications in hydrodynamic stability.
In incompressible flows, examples of applications are,

7The word direct is used to denote the eigenproblem derived from the
governing equations to distinguish it from the adjoint eigenproblem.

8In the hydrodynamic-stability jargon, global stability analysis denotes
eigenvalue analysis performed on a base-flow solution with no particular
symmetry assumptions, in contrast to local analysis, which assumes the base
flow to be parallel.

9The base flow is the solution of the steady equations, i.e., it is a fixed
point.
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among others, the forward-facing step [76]; disks and
spheres [77–79]; rotating cylinders [80]; wake flows [81];
non-Newtonian cylinder flows [82]; a channel with sudden
expansion [83]; oblate spheroidal bubbles [84]; a T-
junction [85, 86] and X-junction [87] relevant to micro-fluid
dynamics; two side-by-side cylinders [88]; the sensitivity
of the recirculation length to steady forcing in separated
flows [89]; cavities in Newtonian [90] and non-Newtonian
fluids [91]. The first-order sensitivity theories were extended
to second order analysis by Tammisola et al. [92], who used
adjoint eigenfunctions to study the effect of span-wise wavy
blowing-suction perturbations of a semi-infinite plate on
stability. A second-order framework was employed to com-
pute the optimal span-wise periodic flow modifications in a
parallel shear flow [93]. In low-Mach number flows, where
the density changes with the temperature but not the pres-
sure, adjoint methods were applied by Qadri et al. [94–96]
to understand the physical mechanism of the spiral vortex
breakdown of swirling flows and design control strategies
in jets. In compressible flows, the structural and base-flow
sensitivity were applied by Meliga et al. [77, 97, 98], who
studied the stability of axisymmetric wakes past disks,
spheres and rocket-shaped bodies; and by Fedorov [99], who
calculated the receptivity of a supersonic boundary layer.

In non-reacting fluid mechanics, the theory was ex-
tended by Giannetti et al. [100] to calculate the sensitivity of
a limit-cycle stability, in particular the secondary instability
of the cylinder flow, by Floquet theory. This framework was
applied to investigate the secondary instability of a rotating
flow [101]; and the origin of the flip-flop instability of two
side-by-side cylinder wakes [102]. The effect that base-flow
modifications have on the secondary instability of a cylinder
wake was investigated in [103].

Adjoint sensitivity methods can be applied to time-
averaged flows taking the mean flow as the input of the
analysis, instead of the base flow. Eigenvalue analysis on
time-averaged turbulent flows [104] provide useful and
accurate results on the frequency of coherent structures
in a wide range of flows, although such an analysis is not
mathematically justified a priori because the mean flow
is not a fixed point of the governing equations. Inspired
by the results of the cylinder flow of Barkley [105], the
conditions under which mean-flow analysis is valid were
found by Sipp and Lebedev [106] via weakly nonlinear
analysis of laminar flows, and by Beneddine et al. [107]
via resolvent analysis of turbulent flows, who extended the
studies of McKeon and Sharma [108] and Turton et al. [109].
Crouch et al. [110] successfully investigated the stability
and global modes of the aerofoil transonic buffet including
the Spalart-Allmaras eddy viscosity at the perturbation level.
Fosas de Pando et al. [111] proposed a matrix-free algorithm
to extract the discrete direct and adjoint solutions from a
nonlinear code, which was applied to calculate the stability
and receptivity of turbulent aerofoil tonal noise [112].
Meliga et al. [113] applied adjoint-based analysis to a D-
shaped object to find the optimal locations at which to place

a small cylinder to control the coherent structure frequency
at a high Reynolds number by unsteady Reynolds-averaged
Navier-Stokes (URANS) equations. Mettot et al. [114]
revisited the case of [113] at a lower Reynolds number by
decomposing the variables in time-averaged, phase-averaged
and turbulent components [115]. Importantly, they found
that to improve the accuracy of stability calculations on
mean flows the eddy viscosity should be extracted from the
unsteady simulation. By extracting the eddy viscosity from
direct numerical simulation (DNS), the sensitivity of the
coherent structure oscillations to the shape of the injector
in a helicopter engine combustion chamber (cold flow)
was calculated in [116]. When the Reynolds number was
based on the combined molecular and eddy viscosity, the
prediction of the coherent structure frequency and shapes
was markedly improved. In experiments, adjoint analysis
was performed by Camarri et al. [117] on mean flows of the
wake past a porous cylinder and a thick plate to design a
passive control strategy [118].

Although beyond eigenvalue sensitivity, it is worth sum-
marizing some applications of adjoint sensitivity analysis in
unsteady non-reacting flows. When the drag is the quantity
of interest, a physical interpretation of the unsteady adjoint
field of the incompressible cylinder flow was proposed by
Wang and Gao [119]. The adjoint field was interpreted as
the transfer function between small forces applied to the
fluid and the resulting drag on the cylinder. By deploying
the shadowing lemma [120, 121], the sensitivity of time-
averaged cost functionals was developed by Wang [122].
Such a technique was made more computationally feasible
by the least-square shadowing method [123–126] and its
improved versions [127–129]. The discussion of Larsson
and Wang [130] is particularly relevant to fluid dynamics
simulations. In aeroacoustics, turbulent jet noise was con-
trolled via adjoint-based optimization by Kim et al. [131],
and the optimal shape of a Helmholtz resonator to maximize
acoustic damping was found by Caeiro et al. [132].

The excellent articles by Sipp et al. [133], Luchini and
Bottaro [134] and Camarri [135] review adjoint analysis for
flow control of non-reacting fluids in depth.

1.2.2 Reacting flows
This section offers an overview of adjoint methods used

in reacting flows at the intersection between the red and
blue circles in Fig. 1. Eigenvalue sensitivity analysis was
applied to a low-Mach number combusting flow by Chan-
dler et al. [136]. The wavemaker region of a low-Mach
number flame was calculated in [137], where a passive con-
trol strategy to suppress a jet flame oscillation was designed.
The eigenvalue sensitivity of reacting bluff-body wakes was
investigated by local analysis by Emerson et al. [138].

Although beyond eigenvalue sensitivity, it is worth
summarizing some applications of adjoint sensitivity anal-
ysis in reacting flows. In the calculation of sensitivities
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in chemical kinetics, adjoint methods were reviewed by
Sandu et al. [139]. An implementation of these methods
can be found in the open-source solver for chemical kinetics,
thermodynamics and transport processes CANTERA [140].
In Reynolds-averaged Navier-Stokes (RANS) simulations,
Wang et al. [141] accelerated Monte-Carlo assessment for
uncertainty quantification of the scramjet unstart by ad-
joint methods. The sensitivity of the flame tip tempera-
ture and NOx emissions in hydrogen flames to chemistry
model parameters was investigated in [142]. Other imple-
mentations of adjoint methods in steady reacting flow solvers
can be found in [143–145]. In time-dependent problems,
Lemke et al. [146, 147] showed that adjoint equations of
one- and two-dimensional compressible reacting flows pro-
vide accurate gradient information even with stiff nonlin-
ear reaction rates. The sensitivities and optimal initial con-
ditions to maximize the integrated heat release were com-
puted for a three-dimensional reacting jet crossflow [148].
In laminar flames, adjoint looping was implemented by
Qadri et al. [149] to calculate the optimal location where to
spark a diffusion flame to maximize the nonlinear integrated
heat release. Linearly optimal initial conditions that maxi-
mize the acoustic output of a radially imploding flame were
calculated in [150]. The sensitivity of the optimal frequency
response to swirling of M-flames was investigated by Skene
and Schmid [151]. In turbulent flames, adjoint methods en-
abled the calculation of the sensitivity of localized ignition
in non-premixed mixing layers [152] .

1.2.3 Thermoacoustics
This section offers an overview of adjoint methods

for thermoacoustic stability at the intersection of the three
circles in Fig. 1. Adjoint methods for thermoacoustic
eigenvalue sensitivity analysis were developed in a longi-
tudinal n-τ combustor model by Magri and Juniper [153].
A pedagogical explanation of the method can be found
in [154]. Using Galerkin methods, they studied the eigen-
value sensitivity to (i) any of the design parameters of the
system and (ii) generic passive control devices (feedback
sensitivity, also known as structural sensitivity). The latter
was tested experimentally in a Rijke tube in [155–157],
who measured the growth rate and the frequency shift in
the presence of the passive control device. The growth-rate
shift was predicted accurately by adjoint sensitivity analysis
applied to a open-ended duct flame model [153]. Adjoint
analysis was extended to a ducted compact diffusion flame
in [158, 159] to calculate the thermoacoustic sensitivity to
the flame parameters, and to a premixed flame modelled by
a flame front tracking equation [160]. By multiple-scale
analysis, the authors of [161] proposed a thermoacoustic
model that simulates the three-way interactions between
all subsystems (Fig. 1). The individual influence of the
hydrodynamic and acoustic fields on the thermoacoustic
stability were identified and calculated by an adjoint method.
The adjoint sensitivity framework was applied in [162] to
thermoacoustic networks, which are used in the prelim-
inary design of aero-engines and gas turbines for power

generation. Adjoint methods were developed to accelerate
uncertainty quantification of thermoacoustic stability in an
annular-combustor network [163] and in a turbulent swirled
combustor [164], where first- and second-order corrections
for nonlinear degenerate eigenproblems were used [165].
The first implementations of an adjoint Helmholtz solver
can be found for a turbulent swirl combustor in [164] and a
two-dimensional annular combustor in [166]. Monte-Carlo
free methods were developed by Mensah et al. [167],
who calculated the probability that a dump combustor
becomes unstable by deriving an adjoint-based algebraic
expression for the stability margin. To reduce the cost of
computations in rotationally symmetric annular combustors,
Mensah et al. [166] computed the thermoacoustic modes
by applying Bloch wave theory [168, 169] to only one
sector of the combustor. By using adjoint methods, they
calculated the sensitivity of the degenerate eigenvalue to
asymmetries in the flame transfer function due, for example,
to an azimuthal mean flow. They extended their analysis to
flame describing functions for the calculation of limit cy-
cles [170]. Different symmetry-breaking perturbations to the
burners were studied with higher-order perturbation adjoint
theory in [171]. In eigenvalue optimization, Mensah and
Moeck [172] calculated the optimal placement and tuning
of acoustic dampers in an annular combustor; while Aguilar
and Juniper [173, 174] eliminated thermoacoustic oscilla-
tions by shape optimization. Recently, Silva et al. [175]
applied adjoint methods to calculated the critical flame
index with relevance to intrinsic thermoacoustic modes. The
receptivity and sensitivity to different thermoacoustic source
terms, as applied to the quasi-one-dimensional Helmholtz
equation, were recently studied in [176].

Beyond eigenvalue sensitivity, adjoint gradient-based
optimization was used to find the optimal initial perturba-
tion that could cause triggering in an electrically heated Ri-
jke tube [34, 42]. In a stochastic framework, Boujo and
Noiray [177] used the adjoint Fokker-Planck equation to
identify the parameters of a stochastic harmonic oscillator,
such as the linear growth rate and damping, with relevance
to output-only system identification of thermoacoustic oscil-
lations from noisy time series [178–180]. In weakly non-
linear analysis, Orchini et al. [181] calculated the unstable
solution of subcritical bifurcations in a Rijke tube by ex-
panding the Stuart-Landau equation up to fifth order, where
adjoint equations were used to enforce solvability condi-
tions [106, 182–186].

1.3 Conventions
Depending on the convention used in the original pa-

pers, the complex plane is plotted either with the growth
rate on the vertical axis or the horizontal axis. In the for-
mer case, the unstable semi-plane is at the top, in the latter
case the unstable semi-plane is on the right. Readers who are
new to thermoacoustics will soon familiarize with, and even
sooner may get frustrated by, the different conventions used
in stability analysis. To help with visualization, the unstable
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plane is shaded in a grey colour. Note that σ denotes both a
complex variable (i.e., the Laplace variable) and the eigen-
value. This is a slight abuse of notation because, in general,
an eigenvalue is a complex variable but the converse is not
necessarily true. To avoid confusion, care has been taken to
make the distinction between an eigenvalue and a Laplace
variable clear in the relevant sections.

1.4 Dimensional and nondimensional parameters
This review paper wishes to show the versatility of

adjoint-based methodology to tackle thermoacoustic stabil-
ity. In so doing, a variety of configurations are reviewed.
Unless otherwise stated, the exact parameters and operating
points used in the applications taken from the literature can
be found in the original publications, as referenced in each
section or caption. Unless otherwise specified, (i) the spatial
coordinate is nondimensionalized by the length of the com-
bustor for longitudinal configurations, or the length of the
circumference for annular combustors; and (ii) the time is
nondimensionalized by the acoustic time, which is the ratio
between the characteristic length and the reference speed of
sound. It follows that the eigenvalue is nondimensionalized
by the acoustic frequency.

1.5 Objectives and structure
This paper reviews the theory and applications of adjoint

methods in thermoacoustics. Because adjoint models are,
by definition, tied up with the physical models, this paper
also reviews modelling approaches in thermoacoustics start-
ing from the general, compressible, multi-component, react-
ing governing equations. Different thermoacoustic models
(n-τ model, flame transfer function, diffusion and premixed
flames), numerical approaches (Galerkin method, wave ap-
proach, Helmholtz solver, multiple scales) and configura-
tions (longitudinal and annular combustors) are presented in
Sec 2.

The theory of adjoint sensitivity analysis is mathemat-
ically formalized and reviewed in depth in Sec. 3. In low-
order thermoacoustic networks and Helmholtz solvers, the
stability problem is typically governed by nonlinear eigen-
problems. In rotationally symmetric combustors, such as
annular and can-annular combustors, these nonlinear eigen-
problems can be degenerate with one eigenvalue being asso-
ciated with two independent eigenfunctions. First, the stabil-
ity problem is presented for time-delayed models. Empha-
sis is given on nonlinear eigenproblems, which govern the
stability of most thermoacoustic systems. Second, the ad-
joint problem is explained and physically interpreted as the
receptivity of thermoacoustic linear oscillations. Both con-
tinuous, discrete, and automatic differentiation adjoint ap-
proaches are presented. Third, the adjoint-based calculation
of the eigenvalue sensitivity is shown for higher order per-
turbations, both for non-degenerate eigenvalues, which are
typically relevant to longitudinal configurations, and degen-
erate eigenvalues, which are typically relevant to rotationally
symmetric annular and can-annular configurations.
A more general model of thermoacoustic stability by multi-

ple scales is presented in Sec. 4, which is a standalone sec-
tion. In thermoacoustics, hydrodynamic instabilities influ-
ence the dynamics of the flow field around the flame. Acous-
tic perturbations, in turn, may excite hydrodynamic instabil-
ities at the flame’s base (e.g. shear layer instabilities). How-
ever, in most thermoacoustic systems, the hydrodynamics-
acoustics dynamics is one-way coupled; the hydrodynamics
is usually modelled with simple models and the acoustics de-
velop on top of it. By multiple scales, a model is devised such
that the hydrodynamics and acoustics are two-way coupled
in a mathematically robust manner. Physical insight between
the coupling of the subsystems is enabled by the concept of
intrinsic sensitivity.

Key features of the thermoacoustic spectrum are shown
in Sec. 5, as relevant to longitudinal configurations. The in-
teraction between acoustic modes and intrinsic thermoacous-
tic modes is shown by varying the flame gain and time delay.
An exceptional point is found at the intersection of the tra-
jectories of the acoustic and intrinsic modes.

The remainder of the paper shows applications of adjoint
analysis. Both deterministic and probabilistic approaches are
reviewed. Section 6 reviews deterministic approaches, where
no uncertainty is assumed in the system’s parameters. The
objectives are to (i) calculate the sensitivity of thermoacous-
tic stability to the design parameters of the system and the
insertion of passive devices to control oscillations; and (ii)
physically explain the coupling mechanisms between the hy-
drodynamic and acoustic subsystems. A comparison with
experimental results is shown. Section 7 reviews probabilis-
tic approaches, where the flame parameters are assumed un-
certain. The objective is to develop adjoint-based methods to
calculate the probability that a system will become unstable.
Two adjoint-based methods are reviewed. In the first method,
an adjoint code enables the accurate calculation of the proba-
bility of instability by reducing the number of computations
by a factor of ∼ O(M), where M is the number of Monte
Carlo samples, which, in this case, is 10,000. In the second
method, an adjoint method avoids the Monte Carlo sampling
altogether. The uncertainty present in the flame parameters
can markedly affect the predictions from deterministic sta-
bility analysis. It is advised that uncertainty quantification
should be run along with traditional stability analysis for ro-
bust design.

Optimization of thermoacoustic configurations is en-
abled when the sensitivity information obtained by an ad-
joint method is embedded in a gradient-update routine. Sec-
tion 8 reviews adjoint-based optimizations by placing acous-
tic dampers and making passive changes in the geometry.
Effects of symmetry-breaking perturbations on annular com-
bustors are shown in Sec. 9. A Bloch wave approach is used
to (i) reduce the number of computations by taking advan-
tage of the discrete rotational symmetry of the problem, and
(ii) gain physical insight on a stabilization mechanism (the
inclination rule).

The last two sections include nonlinear thermoacoustic
effects. Section 10 shows how to accurately approximate the
amplitude of the oscillations by weakly nonlinear analysis,
where adjoint equations enforce solvability conditions. Fi-
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nally, Sec. 11 presents a new method to accurately calculate
the drift of the Floquet exponents of a periodic oscillation in
time, which extends eigenvalue analysis from fixed points to
limit cycles.

Conclusions and future directions end the paper.

2 Thermoacoustic models
Thermoacoustics is a multi-physical phenomenon that

ensues from the interaction between three subsystems, i.e.,
acoustics, hydrodynamics and flame (Fig. 1) [1, 3–5, 7, 187]:

• Acoustics. This subsystem includes the fluid phenom-
ena that are characterized by wave propagation. In
low-Mach number mean flows, the acoustics are chiefly
influenced by the (i) impedances of the combustor’s
boundaries; (ii) propagation with the mean-flow speed
of sound; and (iii) refraction due to mean-flow gradients.
Acoustics are damped mainly by radiation/convection
out of the domain; vortical dissipation where the flow
separates; and vortical/entropic coupling at the thermo-
viscous boundary layer.

• Hydrodynamics. This subsystem includes all the non-
reacting fluid phenomena that are characterized by low-
Mach convection, which is the typical regime of gas-
turbine combustion assumed in this paper. In partic-
ular, unsteady coherent structures generated by hydro-
dynamic instabilities are important to thermoacoustic
stability, such as shear-layer instability of two differ-
ent fluid streams (also known as Kelvin-Helmholtz in-
stability); vortex shedding behind bluff bodies used to
stabilize flames (also known as Bénard-von-Kármán in-
stability); jet instabilities, such as vortex breakdown in
swirling jets; backward-facing steps and cavities [187];
to name a few10.

• Flame. This subsystem includes all the phenomena that
are characterized by chemical processes and their inter-
action with the flow dynamics. In the calculation of
thermoacoustic stability, the most important output of
the combustion process is the heat-release rate of the
flame. Aeronautical gas turbines typically work in a
rich-burn quick-quench lean-burn (RQL) regime, which
is a mixing-controlled process. In order to lower NOx
emissions, industrial technology is moving toward par-
tially premixed flames. Therefore, two limit cases of
flames will be considered in this paper: A diffusion
flame, whose dynamics are governed by mixing, and a
premixed flame, whose dynamics are governed by flame
propagation11.

10Other important hydrodynamic phenomena that can bring about ther-
moacoustic instabilities, in particular in aero-engines, are droplet formation,
jet impingement, secondary breakup and coalescence.

11In real aero-engines, flames are often imperfectly premixed and the
evaporation of sprays is another mechanism that leads to thermoacoustic
instabilities [188]. Imperfectly premixed flames and sprays will not be con-
sidered in this review.

2.1 Nonlinear, multicomponent, compressible, reacting
flow equations

The general, nonlinear equations of compressible, react-
ing, multi-component flows are presented. Throughout the
paper, it is assumed that the flow can be modelled as a con-
tinuum, Newtonian fluid. The problem is governed by the
dimensional equations of continuity, momentum, energy and
conservation of species, respectively [189–192]

Dρ̃

Dt̃
+ ρ̃∇̃ · ũ = 0, (3a)

ρ̃
Dũ
Dt̃

+ ∇̃ p̃ = ∇̃ · τ̃ττ+ ρ̃

Ns

∑
i=1

Yi f̃i, (3b)

ρ̃
Dh̃
Dt̃

=
Dp̃
Dt̃

+ ˜̇Q+ ∇̃ ·
(

λ̃∇̃T̃
)
− ∇̃ ·

(
ρ̃

Ns

∑
i=1

h̃iYiṼi

)
+

+ τ̃ττ · ∇̃ · ũ+ ρ̃

Ns

∑
i=1

Yi f̃i · Ṽi, (3c)

ρ̃
DYi

Dt̃
+ ∇̃ ·

(
ρ̃ṼiYi

)
= ˜̇ωi, (3d)

where ˜ denotes a dimensional variable; ρ̃ is the density; ũ
is the velocity; p̃ is the pressure; T̃ is the temperature; h̃ is
the enthalpy; τ̃ττ is the viscous stress tensor; Ns is the num-
ber of species; the subscript i denotes the i-th species; f̃i is
a volume force; Ṽi is the diffusion velocity, which, adopting
Fick’s law, is Ṽi = −D̃∇̃ log(Yi); D̃ is the diffusion coeffi-
cient; λ̃ is the thermal diffusivity; Yi is the mass fraction; ˜̇ωi is
the production rate; and ˜̇Q is the external-source heat release
rate. The material derivative is D(·)/Dt̃ ≡ ∂(·)/∂t̃ + ũ · ∇̃(·),
where ∇̃ is the nabla operator and (·) · ∇̃(·) ≡ (·) j∂/∂x̃ j(·)i
in Einstein’s notation. t̃ is the time. Vector quantities are
denoted in bold, tensors are denoted in bold with an under-
line. The entropy s̃ is defined by Gibbs’ relation for a multi-
component gas

T̃ ds̃ = dh̃− d p̃
ρ̃
−

Ns

∑
i=1

µ̃i

W̃i
dYi, (4)

where µ̃i is the chemical potential and W̃i is the molar mass.
By combining Gibbs’ equation (4) and the energy equation
(3c), the latter can be re-formulated with the entropy vari-
able, as follows

T̃
Ds̃
Dt̃

=−
Ns

∑
i=1

µ̃i

W̃i

DYi

Dt̃
+

1
ρ̃

[
˜̇Q+ ∇̃ ·

(
λ̃∇̃T̃

)]
+

1
ρ̃

[
−∇̃ ·

(
ρ̃

Ns

∑
i=1

h̃iYiṼi

)
+ τ̃ττ · ∇̃ · ũ+ ρ̃

Ns

∑
i=1

Yi f̃i · Ṽi

]
. (5)

In a mixture of gases, the enthalpy and entropy are defined
as

h̃ =
Ns

∑
i=1

h̃iYi, s̃ =
Ns

∑
i=1

s̃iYi, (6)
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where

h̃i = h̃s,i +∆h̃◦f ,i, s̃ = s̃s,i +∆s̃◦f ,i, (7)

where h̃s,i and s̃s,i are the species’ sensible enthalpy and en-
tropy, respectively. ∆h̃◦f ,i and ∆s̃◦f ,i are the formation enthalpy
and entropy, respectively, at standard condition ◦. Equa-
tions (3a)-(3d) govern the nonlinear thermoacoustic problem
when a state equation is chosen and initial/boundary con-
ditions are imposed. Low-order models for the acoustics
(Sec. 2.2), flame (Sec. 2.3) and hydrodynamics (Sec. 2.4) are
presented with their simplifying assumptions. Table 1 sum-
marizes the thermoacoustic models, numerical methods, and
configurations reviewed in this paper.

2.2 Acoustics
The acoustic subsystem and its interaction with the heat

released by the flame are often characterized by the following
assumptions [193, 194]:

• there is no external source of heat, ˜̇Q = 0;
• species-diffusion effects are negligible, Ṽi = 0;
• viscous effects are negligible, τ̃ττ = 0;
• thermal diffusivity is negligible, λ̃ = 0;
• volume forces are negligible, f̃i = 0;
• the gas is calorifically perfect, i.e., c̃p,i and c̃v,i are con-

stant and

h̃ = c̃p(T̃ − T̃ ◦)+
Ns

∑
i=1

∆h̃◦f ,iYi, (8)

where c̃p = ∑
Ns
i=1 c̃p,iYi;

• the gas is ideal,

p̃ = R̃ ρ̃T̃ , (9)

where R̃ = R̃u

(
∑

Ns
i=1

Yi
W̃i

)
, with R̃u being the universal

gas constant.

Under these assumptions, the nonlinear dimensional equa-
tions (3) simplify to

Dρ̃

Dt̃
+ ρ̃∇̃ · ũ = 0, (10a)

Dũ
Dt̃

+
∇̃p̃
ρ̃

= 0, (10b)

Dp̃
Dt̃

+ γ p̃∇̃ · ũ = (γ−1) ˜̇ωT +
p̃− ρ̃

p̃◦
ρ̃◦

γ−1
Dγ

Dt̃
, (10c)

ρ̃
DYi

Dt̃
= ˜̇ωi, (10d)

where ˜̇ωT =−∑
Ns
i=1 ∆h̃◦f ,i ˜̇ωi is the volumetric heat release rate

due to reaction, and γ is the heat capacity ratio. Gibbs’ rela-

tion (4) simplifies to [195]

ds̃
c̃p

=
d p̃
γp̃
− dρ̃

ρ̃
−

Ns

∑
i=1

(ψi +ℵi)dYi, (11)

where

ψi ≡
1

c̃pT̃

(
µ̃i

W̃i
−∆h̃◦f ,i

)
, (12)

ℵi ≡
1

γ−1
d log(γ)

dYi
+

T̃ ◦

T̃
d log(c̃p)

dYi
(13)

are the species’ chemical potential function and heat-
capacity factor, respectively [195,196]. The energy equation
formulated with the entropy variable (5) simplifies to

1
c̃p

Ds̃
Dt̃

=−
Ns

∑
i=1

(
ψi +

∆h̃◦f ,i
c̃pT̃

)
DYi

Dt̃
. (14)

2.2.1 Linearization
Assuming that the acoustics are small perturbations

evolving on top of a mean flow, a generic flow variable is
decomposed as

˜(·) = ˜̄(·)+ ε ˜(·)′, (15)

where ε� 1 is the arbitrary perturbation parameter; the over-
bar ¯ denotes the steady mean-flow variable (∂ ˜̄(·)/∂t̃ = 0),
and the prime ′ denotes the unsteady fluctuation. The equa-
tions are nondimensionalized with reference quantities de-
noted by the subscript re f : ∇̃ = ∇/L̃re f ; where L̃re f is a
length scale; ρ̃ = ρρ̃re f ; p̃ = pp̃re f , where p̃re f = c̃2

re f ρ̃re f ;
c̃re f is the reference speed of sound; and the other variables
are nondimensionalized differently according to whether
they are mean-flow or acoustic quantities, as explained in the
following sections.

The heat capacities are assumed constant, therefore
dc̃p = 0 and dγ = 0.

2.2.2 Nondimensional mean-flow equations
The mean-flow velocity scales with the convection ve-

locity, i.e., ˜̄u = ũre f ū. The mean production rate is nondi-
mensionalized as ¯̇ωi =

˜̇̄
ωiL̃re f /(ρ̃re f ũre f ), such that ¯̇q =

˜̇̄
ωT L̃re f /(ũre f p̃re f ) is the nondimensional mean heat-release
rate due to combustion. On grouping the steady terms, the
nondimensional mean-flow continuity, momentum, energy
and species equations read, respectively

∇ · (ūρ̄) = 0, (16a)

∇
(
M̄2

ρ̄ū · ū+ p̄
)
= 0, (16b)

ū ·∇p̄+ γ p̄∇ · ū = (γ̄−1) ¯̇q, (16c)
ρ̄ū ·∇Ȳi = ¯̇ωi, (16d)
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Methodology Physical model Application

Acoustics Flame Hydrodynamics Configuration DOFs

Multiple-scale Multi-dimensional Chemistry Eqns. Low-Mach number Eqns. Dump combustor O(106)

Helmholtz equation Multi-dimensional Flame response Flame response
• Dump combustor
• Annular combustor

O(105)

O(105)

Wave approach One-dimensional
• Flame response
• Kinematic model

• Flame response
• Disturbance phase velocity

• Choked ducted flame
• Open ducted flame
• Annular combustor

O(10)
O(102)
O(10)

Galerkin method One-dimensional Chemistry Eqns. Uniform Open ducted flame O(103)

Table 1: Road map of the thermoacoustic models, numerical methods, and configurations reviewed in this paper. DOFs
stands for degrees of freedom.

where M̄ = ũre f /c̃re f is the mean-flow Mach number. In the
limit of low-Mach number combustion, Eqn. (16b) shows
that the mean-flow pressure is constant at first order of M̄,
i.e.,

∇ p̄ = 0 for M̄� 1. (17)

Variations of the mean pressure are neglected accordingly in
this paper. The nondimensional mean-flow energy equation
with the entropy variable reads

ū ·∇s̄ =−
Ns

∑
i=1

(
ψ̄i +

∆h̃◦f ,i
c̃p

˜̄T

)
ū ·∇Ȳi, (18)

where s̃ = s̄c̃p.

2.2.3 Nondimensional acoustic equations
The acoustic velocity scales with the speed of sound,

ũ′ = u′c̃re f , therefore the time scales with the wave-
propagation time, t̃ = tL̃re f /c̃re f . The acoustic pressure is
nondimensionalized as p̃′ = p̃re f p′. The production-rate
fluctuation is nondimensionalized as ω̇′i = ˜̇ω′iL̃re f /(ρ̃re f c̃re f ),
such that q̇′ = ˜̇ω′T L̃re f /(c̃re f p̃re f ) is the nondimensional heat-
release rate fluctuation due to combustion. On grouping the
terms∼O(ε), the nondimensional linearized continuity, mo-
mentum, energy and species equations read, respectively

∂ρ′

∂t
+∇ ·

(
ρ̄u′+ M̄ρ

′ū
)
= 0, (19a)

∂u′

∂t
+ M̄

(
u′ ·∇ū+ ū ·∇u′

)
+

∇p′

ρ̄
= 0, (19b)

∂p′

∂t
+ M̄

(
ū ·∇p′+ γp′∇ · ū

)
+ γ p̄∇ ·u′ = (γ−1)q̇′, (19c)

∂Y ′i
∂t

+ M̄ū ·∇Y ′i +u′ ·∇Ȳi =
ω̇′i
ρ̄
−

¯̇ωi

ρ̄2 ρ
′. (19d)

The nondimensional linearized energy equation expressed
with the entropy reads

∂s′

∂t
+ M̄ū ·∇s′+u′ ·∇s̄ =

−
Ns

∑
i=1

(
ψ̄i +

∆h̃◦f ,i
c̃p

˜̄T

)(
∂Y ′i
∂t

+ M̄ū ·∇Y ′i +u′ ·∇Ȳi

)
. . .

−
Ns

∑
i=1

(
ψi +

∆h̃◦f ,i
c̃pT̃

)′
M̄ū ·∇Ȳi, (20)

where s̃′ = s′c̃p. The hydrodynamics affects the mean flow
and its interaction with the heat released by the flame. When
the hydrodynamic and flame subsystems are modelled,
Eqns. (19) are closed and called thermoacoustic equations.
In the following sections, three common simplifications
and solution methods of the acoustic equations (19) are
presented12. The pros/cons of each approach are explained.
The heat-release term in Eqn. (19c), which is the monopole
source of acoustics, is modelled in Sec. 2.3.

Helmholtz equation. In addition to the assumptions
listed in Sec. 2.2, in the Helmholtz-equation model it is as-
sumed that [40, 197]:

• the mean-flow Mach number is negligible, M̄ = 0;
• the gas composition is uniform, therefore the single-

fluid model is adopted. This means that the species
equation (3d) is not considered, the heat-release rate in
Eqn. (19c) needs to be specified and ¯̇q = 0 in Eqn.
(16c) [40, 197]. The latter is justified providing that
M̄ � L̃ f /L̃a, where L̃ f is the flame spatial length and
L̃a is the acoustic spatial scale [197, 198].

By taking the time derivative of Eqn. (19c) and sub-
tracting the divergence of Eqn. (19b) multiplied by γ p̄, an

12Ray theory and Green’s function techniques to solve the acoustics are
not treated in this paper.
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inhomogeneous wave equation is obtained

∂2 p′

∂t2 − γ p̄∇ ·
(

∇p′

ρ̄

)
= (γ−1)

∂q̇′

∂t
, (21)

which can expressed with the speed of sound

∂2 p′

∂t2 −∇ ·
(
c̄2 p′

)
= (γ−1)

∂q̇′

∂t
, (22)

where c̄ = ˜̄c/cre f such that c̄2 = γ p̄/ρ̄. The Laplace trans-
form13 of Eqn. (21) is the Helmholtz equation14

σ
2 p̂−∇ ·

(
c̄2 p̂
)
= σ(γ−1) ˆ̇q′. (23)

Other conventions for the Laplace variable that are often
used in the literature are σ = iω or σ =−iω, where ω is the
complex eigenfrequency and i2 = −1. At fully reflective
boundaries, p̂ = 0, whereas at rigid walls, ∇p̂ · n = 0,
where n is the normal to the boundary. The general bound-
ary condition is prescribed with the acoustic impedance
Z = p̂/(ρ̄c̄û ·n) such that c̄Z∇ p̂ ·n+σ p̂ = 0, which models
the dissipation of energy by acoustic radiation. To model
further sources of damping, the reader may refer to [189].
A detailed explanation of the Helmholtz equation as applied
to thermoacoustics is given by Nicoud et al. [40, 197]. The
advantage of the Helmholtz-equation framework is that
it can tackle three-dimensional geometries, with the con
that it holds for very small mean-flow Mach numbers and
requires numerical discretization, such as finite elements
(e.g., [40, 166, 172, 199–202]), finite volumes (e.g., [164])
or finite difference. This model is applied in Sec. 7 for
uncertainty quantification of the stability of a turbulent
swirled combustor.

Travelling-wave approach. The travelling-wave ap-
proach (or simply wave approach) is a method to solve the
linearized Euler equations based on Riemann decomposition
of the primitive variables [203]. Applications of the wave-
approach in thermoacoustics are numerous [193, 198, 204–
210], to name only a few. The travelling-wave approach is
presented for longitudinal and annular combustors.

Travelling-wave approach in longitudinal acoustics The
main assumptions are:

• the flow is one-dimensional, i.e., the characteristic
acoustic frequency, f̃ac, is smaller than the cut-off fre-
quency;

• the flame is compact, i.e., the flame Helmholtz num-
ber, He ≡ 2π f̃acL̃/ ˜̄c, and the flame Strouhal number,
St ≡ 2π f̃ac, L̃/ ˜̄u are negligible [198], where L̃ is the axial
spatial extent of the flame;

13For a generic function f, the Laplace transform is defined as L{f} ≡
f̂(σ)≡ ∫

∞

0 f(t)exp(−σt)dt.
14Technically, this is an inhomogeneous Helmholtz equation, however,

the adjective inhomogeneous is dropped for brevity.

• the mean flow is one-dimensional and uniform (but not
necessarily zero);

• the flame is a perfectly premixed flame front moving at
speed u′s with respect to the laboratory frame, and it is
anchored to the burner, i.e., ūs = 0; and

• the fluid is modelled as a single-component mixture.

Here, it is customary to nondimensionalize the convection
mean flow speed with the speed of sound, ˜̄u = ū ˜̄cre f , hence,
¯̇q = ˜̇̄

ωT L̃re f /(c̃re f p̃re f ).
By combining Eqns. (19b)-(19c) in their homogeneous

forms, the acoustic pressure reads

(
∂

∂t
+ ū

∂

∂x

)2

p′− c̄2 ∂2 p′

∂x2 = 0. (24)

From Eqn (20), the entropy fluctuation reads

∂s′

∂t
+ ū

∂s′

∂x
= 0. (25)

The acoustic density, ρ′, and velocity, u′, are governed by
a convective wave equation, the form of which is equal to
Eqn. (24). By integrating the linearized Gibbs’ relation along
a pathline, the entropy fluctuation can be related to the acous-
tic pressure and density as

s′ = p′−ρ
′. (26)

The partial differential equations (24)-(25) are hyperbolic
and can be solved with the method of characteristics, yield-
ing

p′ = f
(

t− x
c̄+ ū

)
+g
(

t +
x

c̄− ū

)
, (27a)

s′ =Se

(
t− x

ū

)
, (27b)

ρ
′ =p′−Se

(
t− x

ū

)
, (27c)

u′ =
1
ρ̄c̄

[
f
(

t− x
c̄+ ū

)
−g
(

t +
x

c̄− ū

)]
, (27d)

where u′ originates from the linearized momentum equation,
and ρ′ comes from Eqn. (26). The solutions are the forward,
f , and backward, g, acoustic waves (Riemann invariants),
which travel at speeds c̄+ ū and c̄− ū, respectively15. In ad-
dition, there exists an entropy wave, Se, which is convected
with the mean flow at speed ū, which generates an excess
density [211]. Modelling a multi-component mixture creates
additional excess density [195]. Figure 3 shows a schematic
of the longitudinal combustor modelled with the wave ap-
proach.

The assumption of a compact heat source physically sig-
nifies that there is no accumulation rate of mass, momentum

15 In other words, the characteristic lines are given by dx/dt = c̄± ū
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Fig. 3: Travelling-wave approach as applied to a longitudinal combustor with upstream (downstream) acoustic reflection
coefficient Ru (Rd) and entropic reflection coefficient, Re. The Mach number at the outlet is sonic, i.e. the combustor is
choked. f is the downstream-travelling acoustic wave, g is the upstream-travelling acoustic wave, and Se is the entropic
perturbation generated by the unsteady flame, whose flame front fluctuates with velocity u′s.

and energy at the heat source location. Therefore, the heat
source creates a discontinuity in the mean flow, and jump
conditions can be derived by the integral form of the govern-
ing equations, accordingly. When linearized, the jump con-
ditions at the nondimensional flame location x f read [212]

[
ρ
′ū+ ρ̄u′

]x+f
x−f

= u′s(ρ̄d− ρ̄u), (28a)[
p′+2ρ̄ūu′+ρ

′ū2]x+f
x−f

= 0, (28b)[
γ

γ−1
(

p′ū+ p̄u′
)
+

3
2

ρ̄ū2u′+
1
2

ρ
′ū3
]x+f

x−f

=

= q̇′+u′s

(
p̄d− p̄u

γ−1
+

1
2

ρ̄uūu(ūd− ūu)

)
, (28c)

where the flame front speed, u′s, reads [212, 213]

u′s = ūu

(
ρ′(x−f )

ρ̄u
+

u′(x−f )

ūu
− q̇′

¯̇q

)
. (29)

The subscript u denotes a condition upstream of the flame,
whereas subscript d denotes a condition downstream of the
flame. On Laplace transforming, the upstream acoustic wave
reads

Fu(σ) = RuGu(σ)exp(−στu) , (30)

where Ru = −1 is the upstream reflection coefficient for an
ideal open end, and

τu =
2x f c̄u

c̄2
u− ū2

u
. (31)

The downstream boundary is modelled as a choked outlet,
where the flow is sonic. The acoustic variables are con-
strained by [214]

2
u′

ū
+

ρ′

ρ̄
− p′

p̄
= 0, (32)

which physically corresponds to ensuring that the critical
mass flow rate is maximal. Therefore the downstream re-
flected acoustic wave reads

Gd(σ) = RdFd(σ)e−sτd +ReAe(σ)e−στe , (33a)

where

Rd =
1− 1

2 (γ−1)M̄d

1+ 1
2 (γ−1)M̄d

, (33b)

Re =
1
2 M̄d

1+ 1
2 (γ−1)M̄d

, (33c)

τd =
2(1− x f )c̄d

c̄2
d− ū2

d
, (33d)

τe =
(1− x f )c̄d

ūd(c̄d− ūd)
(33e)

and Ae is the Laplace transform of the entropy disturbance,
Se. Entropy fluctuations are assumed to be generated by
the unsteady flame front, therefore the flow is isentropic up-
stream of the flame.

Travelling-wave approach in an annular combustor.
Annular combustion chambers are used in aircraft gas tur-
bines because of their compactness, low-NOx emissions and
ability for efficient light round [215, 216]. Such configura-
tions, however, suffer from combustion instabilities due to
azimuthal modes that often become unstable at low frequen-
cies, at which damping mechanisms are less effective. This
low-order model describes a combustion chamber connected
by longitudinal burners fed by a common annular plenum
(Fig. 4).

The main assumptions are:

• in the plenum and the combustor, the acoustics depend
on the azimuthal coordinate. In the burners, the acous-
tics depend only on the axial coordinate;
• the mean-flow convection speed is zero;
• the external walls of the annular cavities are rigid;
• there is no flame-to-flame interaction from one sector to

another;
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Fig. 4: Schematic of a rotationally symmetric annular com-
bustor, which consists of a plenum and combustion chamber
connected by longitudinal burners. In this case there are 16
burners. (a) Mean-flow speed of sound; (b,c) cross sections
of the annular combustor. This represents the MICCA com-
bustor [202, 217–219] as modelled in [171].

• flames are compact;
• the fluid is modelled as a single-component mixture.

The derivation of the model is conceptually similar to
the longitudinal-wave approach, but the mathematical
expressions are more involved because of the geometry. The
acoustics propagate in the plenum, combustor and burners as
travelling waves. At the intersection between a burner and
an annular cavity, (i) the energy jump condition provides
the relation between the three pressure waves, and (ii) the
momentum jump condition provides the relation between
the three velocity waves. Across the flame inside the burner,
the acoustic pressure does not change, but the flow rate
undergoes a discontinuity induced by the dilation from the

heat-release rate, which is modelled with a flame transfer
function. For more the mathematical details the reader may
refer to [220–222].

Galerkin method. With the Galerkin method the gov-
erning partial differential equations are discretized into a set
of ordinary differential equations by choosing a Riesz basis
that matches the boundary conditions and the discontinuity
condition at the flame. Here, an open-ended duct, where
the acoustic pressure is zero at the ends, is chosen. In this
section, the same assumptions as the “Travelling-wave ap-
proach” hold, with the additional condition that the mean-
flow convection velocity is zero. Therefore, advected dis-
turbances, such as entropy spots, cannot be modelled. The
Galerkin method, which is a weak-form method, ensures that
the error is orthogonal to the chosen basis in the subspace in
which the solution is discretized, so that the solution is an op-
timal weak-form solution. The pressure, p′, and velocity, u′,
are expressed by separating the time and space dependence,
as follows [158]

p′ =
K

∑
j=1

{
αu, j(t)Ψu, j(x), 0≤ x < x f ,

αd, j(t)Ψd, j(x), x f < x≤ 1,
(34)

u′ =
K

∑
j=1

{
ηu, j(t)Φu, j(x), 0≤ x < x f ,

ηd, j(t)Φd, j(x), x f < x≤ 1.
(35)

For an open-ended duct

p′ = (36)

K

∑
j=1

{
−α j(t)sin(ω j

√
ρ̄ux) , 0≤ x < x f ,

−α j(t)
(

sinγ j
sinβ j

)
sin(ω j

√
ρ̄d(1− x)) , x f < x≤ 1,

u′ = (37)

K

∑
j=1

η j(t) 1√
ρ̄u

cos(ω j
√

ρ̄ux) , 0≤ x < x f ,

−η j(t) 1√
ρ̄d

(
sinγ j
sinβ j

)
cos(ω j

√
ρ̄d(1− x)) , x f < x≤ 1.

where γ j ≡ ω j
√

ρ̄ux f and β j ≡ ω j
√

ρ̄d(1− x f ). The spatial
dependency of each mode of (36)-(37) is shown in Fig. 5. ω j
is calculated through the dispersion relation

sinβ j cosγ j + cosβ j sinγ j

√
ρ̄u

ρ̄d
= 0. (38)

Note that in the limit ρ̄u = ρ̄d , the nondimensional angular
frequencies of the acoustic eigenfunctions are ω j = jπ, as it
ought to be for an open-ended duct.
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Fig. 5: The acoustic eigenfunctions of an open-ended duct
with zero mean flow. (a) Pressure and (b) velocity with
temperature jump (red-dashed lines) and without tempera-
ture jump (black-solid lines). The position of the mean-flow
temperature jump is at x f = 0.25.

2.3 Flame models
Two simplified flame models are presented to model dif-

fusion and premixed flames.

2.3.1 Diffusion flame
Diffusion flames are governed by the mixing between

the fuel and oxidizer streams. As such, diffusion flames
do not propagate. An important geometric parameter that
affects the flame shape is the fuel-to-air port ratio. The
main assumptions of this simplified model are: (i) the den-
sity in the flame domain is uniform; (ii) the Lewis number,
defined as the ratio of thermal diffusivity to mass diffusiv-
ity, is unitary; (iii) the chemistry is infinitely fast with one-
step reaction; (iv) the flame is two-dimensional. In diffusive
problems, it is convenient to introduce the mixture fraction,
Z, [223]

Z ≡ νYF −YO +YO,in

νYF,in +YO,in
, (39)

where ν is the stoichiometric mass ratio; the subscripts F ,
O and in denote fuel, oxidixer and inlet, respectively; and Y
is the mass fraction. The fuel and oxidizer diffuse into each
other and, under the infinite-rate chemistry assumption, com-
bustion occurs in an infinitely thin region at the stoichiomet-
ric contour, Z = Zsto, where Zsto = (1+νYF,in/YO,in)

−1. The
governing equation for Z is derived from the species equa-
tions [224, 225] and, in nondimensional form, reads

∂Z
∂t f

+(ū+u′f )
∂Z
∂x f
− 1

Pe

(
∂2Z
∂X2

f
+

∂2Z
∂Y 2

f

)
= 0, (40)

where t f is the nondimensional time in the flame domain; u′f
is the acoustic velocity evaluated at the flame location; Pe
is the Péclet number, which is the ratio between the diffu-
sion and convective time scales; and X f and Yf denote the
nondimensional spatial coordinates in the flame domain. In
the flame domain, which is separated from the acoustic do-
main, the time scales with the inverse of the convective ve-
locity. Therefore, the velocities are nondimensionalized by
the mean flow convective velocity. More details can be found
in [158]. At the oxidizer port Z = 1, whereas at the fuel port
Z = 016. Neumann boundary conditions are prescribed else-
where to ensure that there is no diffusion across the walls
of the combustor, and that Z is uniform at the end of the
flame domain. The variable Z is split into two components,
Z = Z̄ + z′, in which Z̄ is the steady solution [158] and z′ is
the small fluctuation. The nondimensional heat release (rate)
is given by the integral of the total derivative of the nondi-
mensionalized sensible enthalpy

Q̇∼
∫

V f

d(Tb−Tin)

dt
dX f dYf , (41a)

Tb = Tin + Z̄ + z′, Z < Zsto, (41b)

Tb = Tin +
Zsto

1−Zsto

(
1− Z̄− z′

)
, Z≥ Zsto, (41c)

where Vf is the flame domain, and Tin is the nondimen-
sional inlet temperature of both species. The fluctuating
heat-release, integrated over the flame domain, that feeds
into the acoustics is q̇′ ∼ Q̇− Q̄, where the symbol ∼ sig-
nifies that the exact expression for the quantity depends on
the scale factors used [158].

2.3.2 Premixed flame
The dynamics of a premixed-flame front is modelled

here with a kinematic model, the G-equation (see, e.g., [189,
227–230]), which is a level-set method that tracks the prop-
agating infinitely-thin flame front that separates reactants by
products. This is a simplified model for a premixed flame be-
cause it does not include reaction mechanisms. Turbulence
effects are neglected for simplicity. The nondimensional G-
equation reads

∂G
∂t f

+u ·∇G = s0
L (1−Lκ) |∇G|, (42)

where u is the hydrodynamic velocity field; s0
L is the flame

speed; L is the Markstein length; and κ is the flame curva-
ture. The flame front is the locus of points for which G = 0.
The flame is assumed axisymmetric. The G-equation can be
linearized around a mean flame shape17. Following [160],

16Axial back diffusion at the port is neglected because the Péclet number
is assumed to be large [226].

17Elaborate flame dynamics, such as pinch-off and flame wrinkling, are
nonlinear phenomena, which are not captured by linear analysis.
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on linearization, the flame front is a single-valued function
of the radial coordinate of the flame front

G(X f r,R f r, t f ) = X f r− F̄G(R f r)−F ′G(R f r, t f ), (43)

where the flame shape is defined by the mean function F̄G
and the fluctuation by F ′G, which are provided by Eqns. (6a)-
(6b) in [160]. The subscript f r stands for “flame front”. The
axial and radial components of the hydrodynamic velocity
field are, respectively

uX = ū+∆ux, (44)

uR =−1
2

R f
∂∆ux

∂X f
. (45)

In forced flames, the nondimensional axial perturbation ∆ux
is prescribed, whereas in self-excited thermoacoustic prob-
lems, as those under investigation in this paper, the axial
perturbation is provided by the acoustic model. Finally, the
total nondimensional heat release rate is obtained by integra-
tion [160]

Q̇∼ 2π

∫ R

0
(1−Lκ)

√
1+
(

dF̄G

dR f
+

∂F ′G
∂R f

)2

R f dR f , (46)

where the symbol ∼ signifies that the exact expression for
the quantity depends on the scale factors used.

2.3.3 Flame response models
In linear approximation, the total unsteady heat release

can be expressed in terms of response functions (chapter 12
of [187])

ˆ̇q′

¯̇q
(ω) = FTFu

û′

ū
+

1
M̄

FTFp
p̂′

p̄
+

1
M̄

FTFφ

φ̂′

φ̄
, (47)

where FTFu, FTFp and FTFφ are the transfer functions ob-
tained by harmonically forcing (with a small amplitude) the
velocity, pressure and equivalence ratio, respectively, over
a range of angular frequencies, ω, and measuring the heat
release output. (The presence of 1/M̄ is due to the nondi-
mensionalization used in Secs. 2.2.2-2.2.3.) Transfer func-
tions characterize the behaviour of linear time-invariant sys-
tems. In this paper, only FTFu is considered because it
is the dominant transfer function in fully premixed flames.
The subscript u will be dropped from now on. Transfer
functions that are measured in a different range of forc-
ing amplitudes are called flame describing functions (see,
e.g., [206, 227, 231, 232] for more references). In polar nota-
tion, the normalized heat release rate is provided by

ˆ̇q′

¯̇q
= |FTF| û

′

ū
exp(i∠FTF) . (48)

The negative slope of the transfer-function phase is the time
delay

τ =−d∠FTF
dω

, (49)

which, at low-frequencies, can be assumed constant, such
that

ˆ̇q′

¯̇q
= |FTF| û

′

ū
exp(−iτω) . (50)

The inverse Fourier-transform of Eqn. (50) justifies the time-
delayed model (also known as the n− τ model)

q̇′ = nu′ (t− τ) , (51)

where n is the interaction index, which measures the flame
gain. The time-delayed model in Eqn. (51) was a phe-
nomenological model proposed by Crocco and Cheng [233],
after some discussions with Summerfield [234], to explain
rocket-engine combustion instabilities [4, 235, 236].

2.4 Hydrodynamic models
Accurate hydrodynamic fields can be obtained by com-

putational fluid dynamics, however, this review focuses on
simplified qualitative models. First, in the diffusion-flame
problem, the hydrodynamic field is assumed uniform for
simplicity. Secondly, in the premixed-flame model, the ac-
tion of the hydrodynamic field is encapsulated in the nondi-
mensional disturbance phase velocity, K, which modulates
the perturbation along the flame, ∆u, at the flame’s base as

∂∆uX

∂t f
+

1
K

∂∆uX

∂X f
= 0. (52)

In general, the nondimensional disturbance phase velocity,
K, depends on the frequency of oscillation. K was calculated
from Direct Numerical Simulations in a conical flame [237].
Here, K is assumed constant, K = 1.2, as proposed in [160].
Thirdly, in the flame response model, the action of the hy-
drodynamics is absorbed in the interaction index, n, and the
time delay, τ, both of which encapsulate combustion and hy-
drodynamic phenomena.

3 Stability, receptivity and sensitivity (SRS) analysis
The theoretical foundations of stability, receptivity and

sensitivity analysis of thermoacoustic systems are laid out in
the following subsections. The proposed framework and for-
malism are kept as general as possible, such that they can
be applied to other problems, such as hydrodynamic stabil-
ity, time-delayed differential equations, and multi-physical
systems. The stability of the system is calculated by eigen-
value analysis, whereas the receptivity to open-loop forcing
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is calculated by adjoint analysis. Finally, it is shown that the
sensitivity can be accurately and cheaply calculated by com-
bining the information from stability and adjoint analyses.

3.1 Stability
In general, the linearized thermoacoustic problem in the

time domain is governed by a time-delayed problem

dq
dt

= Lq+Lτq(t− τ)+ s, t > 0, (53a)

q = g(t), t < 0, (53b)
q = q0, t = 0, (53c)

where q ∈ RN is the state vector, which represents a linear
perturbation around an unperturbed mean flow; g ∈ RN is
the preshape condition; q0 is the initial condition; and s is an
open-loop forcing term, i.e. it does not depend on the state
variables and is set to zero except in Sec. 3.2. Although the
solution, q, lives in RN , time delayed systems are infinite
dimensional because of (53b). The linearized problem (53)
is also known as direct problem.

Physically, the time delay is the time that a flow per-
turbation at the flame’s base takes to release a heat pertur-
bation into the acoustics. There are two scenarios. In the
first scenario, the heat release, ˆ̇q, is modelled by a flame re-
sponse (Sec 2.3), in which τ 6= 0 (hence Lτ 6= 0) is a key ther-
moacoustic parameter. The matrices L and Lτ are the spatial
discretizations of the partial derivatives of the linear opera-
tor and the linear time-delayed operator, respectively, which
embed the discretized boundary conditions. Without loss of
generality, it is assumed that q = 0 for t < 0 and q = q0 at
t = 0, i.e. the flame and acoustics are at rest for t < 0. In the
second scenario, the heat release is not modelled by a flame
response, therefore the hydrodynamic and flame equations
are solved to obtain ˆ̇q. The matrix L contains the hydrody-
namic and combustion equations; τ = 0, hence Lτ = 0; and
q = q0 at t = 0. The linear time-delayed system becomes a
linear initial value problem.

All the remarks that are being made are valid for both
time-delayed systems and initial value problems18.

3.1.1 Stability conditions
Time-delayed thermoacoustic systems, which are re-

tarded systems, are asymptotically stable if and only if ∀ε> 0
there exists δ> 0 such that, ∀q([−τ,0]) with ‖q([−τ,0])‖∞<
δ, ‖q‖∞< ε for t ≥ 0, where ‖•‖∞ is the infinity norm. Physi-
cally, a thermoacoustic system is asymptotically stable if per-
turbations die out in the long-time limit, i.e. q = 0 for t→∞.
Crucially, thermoacoustic systems are asymptotically stable
if they are exponentially stable. To calculate the exponential
stability, a modal decomposition is employed for the state
vector

q(x, t) = q̂(x)exp(σt), (54)

18An initial value problem can be viewed as a subset of a time-delayed
problem with τ = 0.

where x are the spatial coordinates, σ ∈ C, and ˆ is the
Laplace transformed quantity. The system is exponentially
stable if Re(σ) < 0, i.e. the growth rate is negative. The
angular frequency is provided by the imaginary part, Im(σ).
If the largest growth rate is zero, the system is marginally
stable, i.e. perturbations persist with no amplification/decay.
Otherwise, the system is unstable.

3.1.2 Nonlinear eigenproblem
The substitution of the modal decomposition (54) into

the governing equations, in general, results in a nonlinear
eigenproblem (NEP) [40,163,165], in contrast to most cases
in hydrodynamic stability where linear eigenproblems19 gov-
ern the stability. The nonlinear eigenproblem reads

N(σ,p)q̂ = 0 , (55)

where N is an N×N complex matrix, which is assumed ana-
lytic20 with respect to the parameters’ vector, p, and the com-
plex number, σ, in a suitably defined domain of the complex
plane21. The dependence on σ and p is dropped unless it is
necessary for clarity. The size of the matrix has the order
of either 1− 100, in the case of a network-based model, or
103− 106 in Helmholtz solvers. The nonlinear eigenprob-
lem is solved when σ and q̂ 6= 0 are found such that (55) is
satisfied, which corresponds to the condition

det(N) = 0. (56)

The above condition cannot be directly solved in most prob-
lems by cofactor expansion because the determinant has a
complexity that grows factorially with the size of the ma-
trix. More numerically efficient methods are typically used
(Sec. 3.1.3).

The main sources of nonlinearity in the eigenprob-
lem (55) are (i) the flame response model, which intro-
duces a characteristic time delay τ appearing as exp(−στ)
in the frequency space; (ii) and non-ideal acoustic bound-
ary conditions, which are functions of frequency-dependent
impedances [40]. σ may appear under rational, polynomial,
trigonometric and exponential nonlinearities. In general,
such an NEP cannot be recast as a linear eigenproblem. The
set of all the eigenvalues of N(σ,p) is the spectrum; and q̂
is the direct22 eigenfunction, which forms an eigenpair with
σ. The eigenfunction is the natural shape with which a small
perturbation oscillates around the base state.

19Or nonlinear eigenproblems with quadratic nonlinearities, which can be
recast as linear eigenproblems.

20Some authors discard the growth rate in the Flame Transfer Function
(FTF) and retain only the angular frequency. In this scenario, we can apply
analytic continuation to extend the FTF to the complex plane.

21For example, by leaving out of the domain the singularities of rational
functions.

22Also known as the right eigenvector or, simply, eigenvector.
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3.1.3 Features of nonlinear eigenproblems
Nonlinear eigenproblems appear in different applica-

tions in science and engineering beyond thermoacoustics, for
example, in vibrations of structures, fluid-structure interac-
tion, nanotechnology (quantum dots), time delayed systems,
control theory, to name a few. For more details, the reader
may refer to [238–242]. The key facts of NEPs that are use-
ful for stability, receptivity and sensitivity analysis of ther-
macoustic systems and reacting flows are:

• A linear eigenproblem is a subset of NEPs with N =
A−σL, where A and L may be complex matrices. Some
thermoacoustic systems, however, may be governed by
linear eigenproblems (e.g., in state space models [243–
245] or with time-delayed equations that are linearized
in τ [42, 153]);

• The spectrum of an NEP is discrete, i.e. it does not have
accumulation points. The eigenvalues are isolated and
can be countably infinite;

• An eigenvalue has algebraic multiplicity a if
d j/dσ jdet(N) = 0 and da/dσadet(N) 6= 0, where
j = 0,1, ...,a− 1. The geometric multiplicity, g, of an
eigenvalue σ is the dimension of the null space of N(σ),
i.e. g = dim(null(N(σ))). In linear eigenproblems, the
algebraic multiplicities add up to the dimension of the
problem. However, in NEPs there may exist an infinite
number of eigenvalues, and an eigenvalue may have any
algebraic multiplicity greater than the dimension of the
problem23;

• An eigenvalue is semi-simple if a = g. If a = 1, the
eigenvalue is simple;

• An eigenvalue is defective if a > g. An important class
of defective eigenvalues are branch-point solutions of
the characteristic function24, which are known as excep-
tional points [246,247]. Exceptional points have infinite
sensitivity to infinitesimal perturbations to the system
(Fig. 7);

• Eigenvalues that are not simple are degenerate. For
example, problems with symmetries, such as rotation-
ally symmetric annular combustors, typically have semi-
simple, thus degenerate, eigenvalues;

• Eigenvectors corresponding to distinct eigenvalues are
linearly independent in linear eigenproblems, whereas
this is not necessarily the case in NEPs. Likewise, gen-
eralized eigenvectors of linear eigenproblems are lin-
early independent, whereas this does not necessarily
hold in NEPs. All the linearly independent eigenvec-
tors (and generalized eigenvectors) provide a basis for
non-defective (defective) NEPs;

• On the one hand, algebraic simplicity implies geomet-
ric simplicity. On the other hand, geometric simplicity
and ∂N/∂σ-orthogonality (Eqn. (60)) implies algebraic
simplicity [248];

23For example, the complex function F(z) = zN+k , with N being the space
dimension and k being a positive integer, has an eigenvalue σ = 0 with al-
gebraic multiplicity of N + k.

24The solutions of the characteristic function may be complex multival-
ued functions, hence, they may be branch points.

• Numerically, an NEP can be solved by Newton’s meth-
ods with iterative projection methods for large-scale
problems (Lanczos, rational Krylov, Jacobi-Davidson,
etc.), contour integration [242] and linearization meth-
ods, to name a few. The references [240, 242,
249] provide thorough descriptions of existing numer-
ical methods for NEPs. In thermoacoustics, simple
gradient-based iteration algorithms are typically utilized
(e.g., [40]). Contour integration was applied to solve
dispersion relations in [250] and to find all the defec-
tive and non-defective eigenvalues in a given circle of
the complex plane in [247, 251]. The contour integra-
tion method proved numerically more robust and stable
than gradient-based iteration methods, with the advan-
tage of finding all the eigenvalues in a defined domain
in the complex plane;

• The eigenvalues of a state space model (Eqs.(53a)-
(53c)) are the poles of the corresponding transfer func-
tion.

Appendix A explains the local Smith form of NEPs.

3.2 Receptivity (adjoint eigenproblem)
The receptivity of a thermoacoustic variable to open-

loop forcing or initial conditions is calculated by solving the
adjoint problem. The key facts of adjoint NEPs that are use-
ful for receptivity analysis of thermacoustic systems and re-
acting flows are:

• The adjoint operator, N+, is defined such that for any
vector, q̂+, the following identity holds

〈q̂+,Nq̂〉M ≡ 〈N+q̂+, q̂〉M, (57)

where 〈·, ·〉M is a bilinear form25, or a sesquilinear
form26 when working with complex numbers instead of
a bilinear form. In this paper, an inner product27 is used
to define the adjoint operator

〈a,b〉M ≡ aHMb, (58)

where M is a positive-definite weight matrix, a,b are
generic complex vectors and H is the conjugate trans-
pose. The adjoint operator reads

N+ = M−1NHM . (59)

The right-hand side of (59) defines a similarity trans-
formation, therefore the spectrum of NH is the com-

25i.e., 〈a + c,b + d〉 = 〈a,b〉+ 〈c,b〉+ 〈a,d〉+ 〈b,d〉 and 〈λa,αb〉 =
λδ〈a,b〉 , where a, b, c, d are arbitrary complex vectors and λ, α are ar-
bitrary complex scalars.

26i.e., 〈a + c,b + d〉 = 〈a,b〉+ 〈c,b〉+ 〈a,d〉+ 〈b,d〉 and 〈λa,αb〉 =
λ∗δ〈a,b〉.

27i.e., a sesquilinear form that is symmetric, that is, 〈a,b〉= 〈b,a〉∗.
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plex conjugate28 of the spectrum of N. This information
serves as a good check when validating adjoint algo-
rithms. Unless otherwise specified, in this paper, M = I,
thus, the subscript M in (58) is dropped;

• Importantly to sensitivity analysis (Sec. 3.3), a neces-
sary and sufficient condition for the eigenvalue to be
semi-simple is that direct and adjoint eigenvectors are
∂N/∂σ-orthogonal to each other [248]

〈
q̂+

j ,
∂N
∂σ

∣∣∣
σi

q̂i

〉
=Cδi, j , (60)

where δi, j is the Kronecker delta, and C 6= 0 is a user-
defined normalization factor, often C = 1. Equation (60)
is a generalization of the bi-orthogonality condition of
linear eigenproblems that appear in hydrodynamic sta-
bility [62];

• From a corollary of the Keldysh theorem [238, 242], in
a neighbourhood of a simple eigenvalue σ j, the inverse
of the operator can be represented as

N−1(σ) =
1

(σ−σ j)

q̂ j⊗ q̂+∗
j〈

q̂+
j ,

∂N
∂σ

∣∣∣
σ j

q̂ j

〉 +O(σ−σ j),

(61)

where ⊗ is the dyadic product, and ∼ O(σ−σ j) is an
analytic additive term (a remainder from the Laurent se-
ries), which is zero in linear eigenproblems. Note that
the adjoint eigenfunction projects a vector onto the cor-
responding direct eigenvector, or, in other words, the ad-
joint eigenvector is a projector.

3.2.1 CA, DA or AD?
To present the different ways and philosophies to ob-

tain the adjoint of a system, a step back is taken to con-
sider the nonlinear problem in time. Three steps are gen-
erally taken to simulate problems in thermo-fluid dynamics.
First, under the continuum hypothesis, continuous differen-
tial equations are selected to represent the physical problem,
e.g. partial differential equations, ordinary differential equa-
tions, integro-differential equations. The more skilled the
modeller, the more predictive the selected equations. Sec-
ond, assuming that no closed-form solution exists29, a dis-
cretization scheme is chosen to approximate the continuous

28 Strictly speaking, for general NEPs such that det((N(σ)))∗ 6=
det((N(σ∗))), the spectrum of (N(σ))H is the spectrum of N(σ) be-
cause σ is the solution of the adjoint problem, i.e., 0 = det((N(σ))) =
det((N(σ)))∗ = det((N(σ))T )∗ = det((N(σ))H). However, the NEP may be
recast as M(σ)q̂ = σq̂, where M(σ) ≡ σI−N(σ). With this arrangement,
the complex conjugate, σ∗, is the eigenvalue of the adjoint eigenproblem
(M(σ))H q̂+ = σ∗q̂+, i.e., the solution of det(M(σ)H −σ∗I) = 0. In this
paper, we implicitly use the latter arrangement when referring to the adjoint
spectrum as being the complex conjugate of the direct spectrum.

29Alas, this is the case in the vast majority of engineering problems.

equations, e.g., finite differences, finite volumes, finite ele-
ments, spectral methods, etc. Third, the discrete equations
are implemented in algorithmic instructions in a computer
program. The adjoint model can be defined and implemented
after any of these three steps: The continuous adjoint (CA)
approach defines the adjoint system after the first step; the
discrete adjoint (DA) approach defines the adjoint system af-
ter the second step; and the automatic (or algorithmic) dif-
ferentiation (AD) approach defines the adjoint system after
the third step30. In this review, the focus is on CA and DA
approaches. An example of an AD approach in thermoacous-
tics can be found in [252].

Typical applications of adjoint analysis of nonlinear
systems in the time domain are variational data assimila-
tion, Bayesian inference, sensitivity analysis, constrained
optimization, optimal control, calculation of singular
vectors, input/output analysis, inverse modelling. The
time-dependent framework is described in Appendix B.1. In
this review, the focus is on applications of adjoint analysis
to eigenvalues.

A comment on the differences between CA and DA
approaches. Continuous adjoint equations were introduced
in the second half of the 18th century by the Italian-French
mathematician Joseph-Louis Lagrange in the theory of lin-
ear ordinary differential equations. Here, the CA approach
is analysed as applied to partial differential equations, and
differences with the DA approach are discussed. First, in the
CA approach the solutions live in different spaces, typically
Sobolev spaces. For Riesz theorem, the adjoint always ex-
ists and is unique in continuous operators in Hilbert spaces,
of which a finite dimensional space is a subset. Second, the
adjoint boundary conditions explicitly appear as further vari-
ables, whereas in the DA approach they are encapsulated in
the discrete operator. Third, the adjoint equations are defined
by a bilinear form, or a sesquilinear form when working with
complex numbers, that includes the spatial dependency[

q+,
(

∂

∂t
−L

)
q
]
−
[(

∂

∂t
−L+

)
q+,q

]
=

= boundary and initial terms. (62)

Here, an inner product is used to define the adjoint equations
(see Sec. 3.2)

[a,b]≡ 1
T

1
V

∫ T

0

∫
V

a∗ ·b dV dt, (63)

where L is the continuous linear thermoacoustic operator,
which is a linear combination of the spatial derivatives (see
Sec. 2); a, b are arbitrary functions in the function space in
which the problem is defined31; V is the space domain; T is

30In other areas in computational science, no distinction is made between
DA and AD. However, the author feels that such a distinction should be
made, in particular in thermoacoustic problems.

31In this section, the underline is used to denote a function that depends
on space as well.
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the integration time; and ∗ is the complex conjugate. Iden-
tity (62) is sometimes referred to as Green’s (or Lagrange-
Green) identity [134, 253]. To find the adjoint operator with
the CA approach, integration by parts (with the divergence
theorem) of (63) is performed. The adjoint boundary con-
ditions, which arise from integration by parts of (63), are
defined such that the right-hand side is zero. Importantly,
it is straightforward to check the important property that
∂([q+,q])/∂t = 0, which is used for debugging unsteady ad-
joint codes (see dot-product test in Appendix B.2).

The authors of [153, 162] presented a comparison be-
tween the numerical truncation errors between the CA and
DA methods as applied to thermoacoustics. Although the
two formulations should converge in principle, it has been
shown that convergence is actually not guaranteed a pri-
ori [134, 254–257]. Dual-consistent numerical schemes help
improve this convergence (see, e.g., [258, 259]). On the one
hand the CA approach highlights the physical information
carried by the adjoint variables at the boundaries. On the
other hand, the DA approach provides the exact gradient (to
machine precision) of the discrete objective function. For
the thermoacoustic system considered in this paper, the DA
method provides more accurate results and is easier to im-
plement. However, the results obtained via the CA method
are shown to describe how the method works and inter-
pret the jump conditions in thermoacoustic network models
(Sec. 3.5). In Appendices B.2-B.3, other remarks on adjoint
equations are listed for keen readers.

3.2.2 Physical information from adjoint eigenfunctions
To show the physical information that can obtained from

the adjoint eigenpairs, here it is assumed that the eigenvalue
is simple so that Eqn. (61) holds. Similar conclusions can be
drawn if the eigenvalue is semi-simple.

The spatially-discretized linearized time-delayed ther-
moacoustic problem (53) can be solved by the Laplace trans-
form. By observing that the Laplace transform of q(t− τ) is
q̂exp(−στ)+ ĝ, Eqns. (53) are transformed as

[σI−L−Lτ exp(−στ)]︸ ︷︷ ︸
≡N

q̂ = ŝ+q0 +Lτĝ. (64)

The solution in the time domain is provided by the Bromwich
integral32

q(t) =
1

2πi

∫
γ+i∞

γ−i∞
N−1(σ)(ŝ+q0 +Lτĝ)exp(σt)dσ

(65)

=
∞

∑
j=1

A j exp(σ jt), (66)

where N−1(σ) is the resolvent. The last equality is a conse-
quence of the theorem of residues, where A j ≡ Res

{
q̂ j
}
≡

32In spatially continuous problems, the continuous spectrum should be
considered as well [260, 261]. More details for thermoacoustic systems can
be found in [154].

limσ→σ j(σ−σ j)q̂ j for simple eigenvalues, σ j. On substitut-
ing the inverse operator (61) in (65), the modal amplitudes
of the solution in time are calculated as

A j =

〈
q̂+

j , ŝ(σ j)+q0 +Lτĝ(σ j)
〉

〈
q̂+

j ,
∂N
∂s

∣∣∣
σ j

q̂ j

〉 . (67)

Physically, the response of the jth component of q in the
long-time limit increases (i) as the forcing frequency is close
to the jth eigenvalue, σ j (resonance); (ii) as the forcing, ŝ, ap-
proaches the adjoint eigenfunction, q̂+

j ; and (iii) as the initial
and preshape conditions, q0 and Lτĝ, overlap, respectively,
the adjoint eigenfunction. Therefore, to observe the maxi-
mum amplification of q̂ j, the thermoacoustic system should
be either forced with a frequency close to σ j; or forced with
ŝ = q̂+

j exp(iω jt), where ω j ≡ Im(σ j); or initialized with
q0 = q̂+

j and Lτĝ = q̂+
j ; or a combination of the above. For

example, the adjoint eigenfunction of the acoustic momen-
tum equation reveals the locations where the thermoacoustic
system is most receptive to forces, such as acoustic dampers
and drag devices (Secs. 6.1.1, 6.3).

3.3 Eigenvalue sensitivity
The objective is to calculate the change of a thermoa-

coustic eigenvalue due to an infinitesimally small change
to the problem. Such a calculation is enabled by perturba-
tion methods. Perturbation theory of eigenvalues was pio-
neered in self-adjoint problems, i.e. acoustic problems by
Lord Rayleigh ( [203], Sec. 90) and quantum mechanics33

by Schrödinger (pp. 64–76 of [262]). However, in general,
thermoacoustic systems are not self-adjoint [35–37, 39, 40],
which is a property calling for adjoint eigenvectors. The phi-
losophy of adjoint perturbation theory can be summarized as
follows. First, the thermoacoustic stability problem (55) is
solved for a set of parameters p0. The eigenvalue σ0 and
eigenfunction q̂0, with their multiplicities, are called the un-
perturbed solutions, which are subject to

N(σ0,p0)q̂0, j = 0, j = 1, . . . ,g, (68)

with the corresponding adjoint problem

NH(σ0,p0)q̂+
0, j = 0, j = 1, . . . ,g, (69)

where NH(σ0,p0) is a shorthand for [N(σ0,p0)]
H . It is re-

called that the thermoacoustic matrix is assumed analytic in
σ and p. Second, the matrix N is perturbed by small changes
to the parameters, p0, or by small changes to the operator, δP

33Quantum mechanics offers a large “repository” of mathematical tech-
niques, some of which can be adapted to tackle acoustic/thermoacoustic
problems. For example, some aeroacoustic problems can be cast in a
Schrödinger equation and solved by Dyson expansion [195]. There are other
examples, which will be the subject of another study.
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(Sec. 3.3.4). Third, the eigenvalues and eigenvectors are ex-
panded in asymptotic series centred around p0 or N(σ0,p0)
(Sec. 3.3.4). Finally, the different orders of the eigenvalue
and eigenvector drifts (also known as corrections) are gov-
erned by linear inhomogeneous systems. These are solved
by using the adjoint eigenvectors, which provide solvability
conditions (see also Appendix B.2).

3.3.1 Multi-index expansion
In multi-index notation up to order k, the expansion of

the thermoacoustic matrix N around the eigenvalue σ0 and
the set of M parameters cast in a vector p0, reads [165, 171,
172]

N(σ,p) = ∑
|(i,µµµ)|≤k

Ni,µµµ (σ−σ0)
i (p−p0)

µµµ +h.o.t., (70)

where (i,µµµ) ≡ (i,µ1, . . . ,µM) is an (M + 1)-tuple of non-
negative integers, h.o.t. are the higher order terms, and

Ni,µµµ ≡
1

(i,µµµ)!
∂|(i,µµµ)|N
∂σi∂pµµµ , (71)

where

|(i,µµµ)| ≡ i+µ1 + . . .+µM, (72)
(p−p0)

µµµ ≡ (p1− p0,1)
µ1 . . .(pM− p0,M)µM , (73)

(i,µµµ)!≡ i!µ1! . . .µM!, (74)

∂|(i,µµµ)|N
∂σi∂pµµµ ≡

∂|(i,µµµ)|N
∂σi∂pµ1

1 . . .∂pµM
M

. (75)

The Taylor series (70) converges providing that a singularity
is not encountered. For example, the first order truncation
of (70) yields

N(σ,p)≈
≈ N(σ0,p0)+N1,0 (σ−σ0)+N0,1 (p−p0)

= N(σ0,p0)+
∂N
∂σ

(σ−σ0)+
M

∑
j=1

∂N
∂p j

(p j− p0, j) .

(76)

3.3.2 Sensitivity to one parameter
The case of a perturbation applied to one parameter is

first analysed. The parameter is assumed analytic with power
series up to order Q

p =
Q

∑
j=0

ε
jp j +h.o.t., (77)

where ε is the perturbation parameter. Simple and semi-
simple thermoacoustic eigenpairs can be expanded as power

series34

σ = σ0 +
Q

∑
j=1

σ jε
j +h.o.t., (78)

q̂ = q̂0 +
Q

∑
j=1

q̂ jε
j +h.o.t.. (79)

To calculate the coefficients of (78)-(79), which are the
eigenvalue and eigenvector drifts, respectively, the decom-
positions (78)-(79) are substituted into the eigenvalue prob-
lem (55). Each order of ε defines the equation for the
eigenpair drift, which, at k-th order, reads in compact no-
tation [172]

N0,0q̂k =−rk−σkN1,0q̂0 , (80)

where N0,0 ≡ N(σ0,p0) and35

rk =
k

∑
n=1

N0,nq̂k−n+

+
k

∑
0<|νννµµµ|≤k

µµµ6=1k

k−|νννµµµ|
∑
n=0

(
|µµµ|
µµµ

)
σ

µµµ
νννN|µµµ|,nq̂k−n−|νννµµµ|, (81)

where

ννν≡ (1,2, . . . ,M), (82)(
|µµµ|
µµµ

)
≡ |µµµ|

µµµ!
, (83)

σ
µµµ
ννν ≡

M

∏
n=1

σ
µ1
1 . . .σ

µM
M , (84)

µµµννν≡ µ1ν1 . . .µMνM, (85)

and 1k is a multi-index of zeros except for the position k,

34In contrast, if the eigenvalue is defective and a branch-point solution of
the characteristic function, a fractional power series (also known as Netwon-
Puiseux series or Puisex series) has to be employed, σ = σ0 +∑

Q
j=1 σ jε

j
a +

h.o.t. and q̂ = q̂0 +∑
Q
j=1 q̂ jε

j
a +h.o.t., where a is the algebraic multiplicity

(Appendix I of [263], pp. 65-66 of [261] and [248,264–269]). Although be-
yond the scope of this review paper, it is interesting to characterize the sen-
sitivity of defective branch-point eigenvalues because their rate of change is
infinitely larger than the rate of change of the parameters. In other words,
the thermoacoustic stability at an exceptional point is infinitely more sen-
sitive to perturbations than the thermoacoustic stability of a non-defective
system [163, 247].

35Private communication with G. Mensah and A. Orchini.
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where it is 1. For example, the first three orders of rk read

r1 =N0,1q̂0, (86a)
r2 =N0,1q̂1 +N0,2q̂0 +σ1 (N1,0q̂1 +N1,1q̂0)

+σ
2
1N2,0q̂0, (86b)

r3 =N0,1q̂2 +N0,2q̂1 +N0,3q̂0

+σ1 (N1,0q̂2 +N1,1q̂1 +N1,2q̂0)

+σ
2
1 (N2,0q̂1 +N2,1q̂0)+σ2 (N1,0q̂1 +N1,1q̂0)

+2σ1σ2N2,0q̂0 +σ
3
1N3,0q̂0. (86c)

Equation (80) is a linear inhomogeneous system, which is
not invertible because matrix N0,0 is singular. For the linear
system (80) to have solutions, a solvability condition has to
be fulfilled at each order. This is where the adjoint eigen-
functions are called upon. Equation (80) is projected onto
the corresponding adjoint eigenvector to yield

〈
q̂+,−rk−σkN1,0q̂0

〉
= 0 . (87)

On the one hand, if the eigenvalue is simple (non-
degeneracy), Eqn. (87) can be solved for the eigenvalue
drifts, σk, which can be subsequently substituted back into
Eqn. (80) to obtain the eigenvector drift, q̂k. Numerical
strategies to compute q̂k can be found in [165]. On the other
hand, if the eigenvalue is semi-simple, g solvability condi-
tions have to be fulfilled simultaneously, which give rise to
an auxiliary eigenvalue problem

XXXkzzz−σkYYY zzz = 0 (88)

where XXXk and YYY are matrices whose components are

[XXXk]i, j =
〈

q̂+
0,i,−rk, j

〉
, (89)

[YYY ]i, j =
〈

q̂+
0,i,N1,0q̂0, j

〉
, (90)

i, j = 1,2, . . . ,g. (91)

If the ∂N/∂σ-orthogonality normalization (60) is imposed,
then YYY = I. By solving (88) for problems with double ge-
ometric multiplicity, g = 2, such as rotationally symmetric
annular combustors, the first-order eigenvalue drift reads

σ1,± =− tr(XXX)

2
±
√

tr(XXX)2

4
−det(XXX), (92)

with the corresponding eigenvectors

zzz± =

(
−[XXX ]12

[XXX ]11−σ1,±

)
. (93)

Two scenarios are considered. First, the perturbation to
the system may be such that the auxiliary problem is still
degenerate up to k-th order, i.e. σk,+ = σk,−. Geomet-
rically, the degenerate eigenspace does not unfold because
zzz+ = zzz−. Second, the perturbation to the system may be
such that the auxiliary problem is not degenerate at k-th or-
der, i.e. σ+ 6= σ−. The directions along which the degenerate
eigenspace unfolds are provided by the two different eigendi-
rections zzz±, along which the perturbation analysis becomes
non-degenerate (Sec. 9). Mode degeneracy with semi-simple
eigenvalues is a problem relevant to annular and can-annular
combustors because of their rotationally symmetric geome-
try (see, among others, [163, 165, 166, 171, 221, 270–279]).
The multiplicity of the degeneracy induced by the symme-
try is typically g = 2, which physically corresponds to two
eigenfunctions that are rotating in opposite azimuthal direc-
tions with the same frequency.

3.3.3 Sensitivity to multiple parameters
If the eigenvalue is simple, the extension to multiparam-

eter expansion simply involves a multivariate expansion of
the eigenvalue with respect to the parameters’ vector

σ = σ0 + ∑
|µµµ|≤k

1
µµµ!

∂|µµµ|σ
∂pµµµ (p−p0)

µµµ +h.o.t.. (94)

The eigenvalue drifts can be found by applying the method of
Sec. 3.3.2. If the eigenvalue is semi-simple, (94) is not totally
differentiable because of the auxiliary eigenvalue problem in
(88) [171,261]. To circumvent the lack of total differentiabil-
ity, the problem can be turned to a single-parameter problem:

• A perturbation direction in the parameter space is cho-
sen, ∆p = p−p0;

• The perturbation direction is normalized as

∆̃p≡ ∆p
‖∆p‖ ; (95)

• The parameters’ vector is perturbed as

p≡ p0 + ε∆̃p, (96)

such that

N(σ,p) = N
(

σ,p0 + ε∆̃p
)

≡H
∆̃p (σ,ε) , (97)

where H
∆̃p (σ,ε) is the thermoacoustic matrix perturbed

along the parameters’ direction ∆̃p by a single parameter
ε;
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• The eigenvalue drifts can be calculated with the formu-
lation of Sec. 3.3.2 by using

H
∆̃p,m,n =

1
m!n!

∂m+n

∂σm∂εn H
∆̃p

∣∣∣
(σ=σ0,ε=0)

. (98)

3.3.4 Sensitivity to the thermoacoustic matrix
Another approach is to directly perturb the operator by

another operator

N(σ) = N0(σ)+ εδP(σ), (99)

where N0 is the unperturbed matrix. This is the usual ap-
proach used in hydrodynamic stability [134], which was
used in thermoacoustics for the calculation of linearly op-
timal passive control devices [153, 154], base-state sensitivi-
ties [158, 160, 165], uncertainty quantification both in annu-
lar [163] and longitudinal combustors [164,167] and optimal
acoustic damper placements in annular combustors [172].

Base-flow perturbations. To design control strategies,
the effect that a controller has on the base flow has to be con-
sidered. When an external controller, such as a Helmholtz
resonator, is placed into the thermoacoustic system, it in-
duces a perturbation to the matrix as

δP =
∂N
∂p

+
∂N
∂q̄

dq̄
dp

, (100)

where p are the parameters that the object changes, i.e. a
feedback forcing, drag coefficient, etc., and q̄ is the base flow
upon which the thermoacoustics evolve. In hydrodynamic
stability, the sensitivity ∂N/∂p is customarily called struc-
tural sensitivity36, which estimates the wavemaker regions
in the flow. The sensitivity ∂N/∂q̄dq̄/dp is called base-flow
sensitivity [72, 73]. In order to calculate the change of the
base flow, another set of adjoint equations can be imposed
to constrain the base-flow equations when a small steady
forcing term is added. The adjoint base flow is the solu-
tion of an inhomogeneous linear system, where the inhomo-
geneous term depends on the direct and adjoint eigenfunc-
tions [73]. Base-flow sensitivity was applied in thermoacous-
tics in [158] in a ducted diffusion flame to find the optimal
changes to stabilize a thermoacoustic instability. Recently,
the effect of shape modifications of annular and longitudi-
nal combustors were calculated in [173, 174] to stabilize all
the thermoacoustic eigenvalues with adjoint-based optimiza-
tion. The calculation of the eigenvalue and eigenvector drift
closely follows the philosophy presented in Secs. 3.3.2-3.3.3.
For example, the eigenvalue drift at first order reads [165]

σ1 =
〈q̂+,δPq̂〉〈
q̂+, ∂N

∂σ

∣∣∣
σ0

q̂
〉 , (101)

36More precisely, a norm of such a sensitivity was originally called struc-
tural sensitivity in [67].

which is a formula that is used in a number of studies in
flow instability, some references of which are discussed in
Sec. 1.2.1.

3.3.5 Intrinsic sensitivity
The intrinsic sensitivity is defined as the eigenvalue sen-

sitivity to intrinsic physical mechanisms [49, 161], i.e. the
perturbation operator of the eigenvalue sensitivity formula
(101) is the Jacobian itself (Eqn. 53b), i.e. δP = L for non-
time-delayed systems. This enables us to identify the regions
of the flow where the hydrodynamic and acoustic subsystems
are active and quantify how they affect the overall thermoa-
coustic stability. When the mean flow is a fixed point of the
equations, the real part of (101) provides a map showing the
regions to which the thermoacoustic stability is most sensi-
tive to the j-th variable through the i-th equation. Likewise,
the imaginary part of (101) shows the regions to which the
thermoacoustic angular frequency is most sensitive.

3.4 Adjoint methods vs finite difference
On the one hand, to calculate the first-order eigenvalue

drift, σ1, with a traditional finite-difference approach, the
eigenproblem is solved for each parameter’s perturbation,
which is computationally costly if the number of parameters
is larger than the number of quantities of interest, in this case
being the eigenvalues. On the other hand, with adjoint sen-
sitivity analysis, only the unperturbed eigenproblem and its
adjoint are solved to obtain σ1, regardless of the number of
parameters being perturbed. Therefore, if one is interested
in the first-order sensitivity of one eigenvalue to, say, one
million parameters, finite-difference methods would require
solving one million eigenproblems, whereas adjoint methods
would require solving only one eigenproblem and its adjoint.

3.5 Example of continuous adjoint equations of a ther-
moacoustic network

The adjoint of a thermoacoustic network solved with a
wave approach is derived by a continuous adjoint (CA) ap-
proach, whereas the adjoint of the multiple-scale model is
derived by a discrete adjoint (DA) approach (Sec. 4.4).

The adjoint variables for the governing equations (19)
are defined as ρ̂+(x), û+(x), p̂+(x), whereas the adjoint vari-
ables for the jump conditions (28) are defined as f̂+, ĝ+, ĥ+.
More details can be found in [162]. Integration by parts of
Green’s identity (62), yields the continuous adjoint equations

−σ
∗
ρ̂
++ ū

dρ̂+

dx
= 0, (102a)

−σ
∗
ρ̄û++ ρ̄ū

dû+

dx
+ ρ̄

dρ̂+

dx
+ γp̄

d p̂+

dx
= 0, (102b)

−σ
∗ p̂++ ū

d p̂+

dx
+

dû+

dx
= 0, (102c)
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the relationships between adjoint variables

f̂+ = ρ̂
+(x+f )− ūd û+(x+f )+

1
2
(γ−1)ū2

d p̂+(x+f ), (103a)

ĝ+ = û+(x+f )− (γ−1)ūd p̂+(x+f ), (103b)

ĥ+ = (γ−1)p̂+(x+f ), (103c)

and the adjoint jump conditions

[
ρ̂
+− ūû++

1
2
(γ−1)ū2 p̂+

]x+f

x−f

=−(c̄2
u− ū2

u)û
+
s −

1
2
(γ+1)ū2

uq̂+s , (104a)[
û+− (γ−1)ū p̂+

]x+f
x−f

= γūuq̂+s , (104b)[
p̂+
]x+f

x−f
=−q̂+s , (104c)

where

û+s = â+u +

(
p̄d− p̄u

γ−1
+

1
2

ρ̄uūu(ūd− ūu)

)
â+2 , (104d)

q̂+s =
(

¯̇qâ+1 − û+s
)

ne−σ∗τ, (104e)

â+1 =
(ρ̄d− ρ̄u)

ρ̄u(c̄2
u− ū2

u)
×(

ρ̂
+(x+f )− ūd û+(x+f )+

1
2
(γ−1)ū2

d p̂+(x+f )
)
, (104f)

â+2 =
(γ−1)p̂+(x+f )

ρ̄u(c̄2
u− ū2

u)
, (104g)

where q̇′ was modelled with an n− τ model (Eqn. 51). The
term û+s is the adjoint flame speed in the lab frame of ref-
erence. Physically, it provides the response of the thermoa-
coustic mode to harmonic forcing of the flame speed. The
adjoint boundary conditions are defined such that the bound-
ary terms are zero

ρ̂
+∗ūρ̂+ ρ̂

+∗
ρ̄û+ û+∗ρ̄ūû+ û+∗ p̂+ p̂+∗ūp̂+ p̂+∗γ p̄û = 0.

(105)
As shown by Aguilar et al. [162], the set of adjoint partial
differential equations is hyperbolic: Two adjoint acoustic
waves propagate at speeds c̄ + ū and c̄− ū and an adjoint
entropy wave convects at the mean speed ū. The flame and
frequency-dependent boundary conditions make the system
non-self-adjoint. Equation (105) provides the upstream ad-
joint reflection coefficient relationship at the inlet

R+
u =

1
Ru
∗

1−Mu

1+Mu
, (106)

therefore the upstream adjoint boundary condition reads

G+
u = R+

u
−1F+

u e−σ∗τu . (107)

Owing to the acceleration through the choked end, the en-
tropy wave generates an acoustic disturbance, whereas the
downstream acoustic wave does not generate an entropy
wave. In the adjoint problem, however, the outgoing ad-
joint acoustic wave at the choked end creates both a back-
ward adjoint acoustic wave and a backward adjoint entropy
wave. This is because the direct equations propagate quan-
tities forward in time, while the adjoint equations propagate
receptivities backwards in time. Equation (105) provides the
reflection coefficient relationships at the outlet

R+
d =

1
Rd

1+Md

1−Md
, (108)

R+
e =

1
Re

Md

2(Md−1)
. (109)

Finally, with these expressions, the downstream adjoint
boundary conditions are obtained

F+
d = R+

d
−1G+

d e−s∗τd , (110)

A+
d = R+

e
−1G+

d e−s∗τe . (111)

As explained in [162], the receptivity to the mass equation,
used to compute the corresponding feedback mechanisms, is
given by ρ̂+(x)+ c̄2 p̂+(x). In the same reference, the discrete
adjoint equations can be found.

4 Thermoacoustic models with multiple scales
A more general thermoacoustic stability model was pro-

posed by multiple-scale analysis [161]. By multiple-scale
analysis, it is possible to simulate the hydrodynamic field and
consistently calculate the heat-release rate from the chem-
istry equations. The main assumption of this approach is
that the flame is smaller (but not compact) with respect to
the acoustic spatial scale. The reacting low-Mach number
equations, which govern hydrodynamic phenomena, are cou-
pled with the acoustic equations in a mathematically consis-
tent manner by combining an asymptotic approach with a
multiple-scale method. The two perturbation parameters are
the hydrodynamic Mach number, M̄ ∼ O(ε) and the flame
compactness, h̃/L̃∼O(εm), where 0 < ε� 1, where h̃ is the
flame length or shear-layer thickness and L̃ is the combustor
longitudinal dimension. The Mach number is the smallest
perturbation parameter, hence 0 ≤ m ≤ 1. In most gas tur-
bine chambers, acoustic phenomena evolve at scales that are
different from those of hydrodynamic phenomena. This is
because low-frequency thermoacoustic instabilities are ex-
pected to scale with the longitudinal length, L̃, whereas hy-
drodynamic instabilities are expected to scale with the flame
length or shear-layer thickness, h̃. Observing that (i) hydro-
dynamic phenomena scale with the convective time, h̃/ũ, and
the flame length, h̃; (ii) acoustic phenomena scale with the
acoustic time, L̃/c̃, and combustor’s length, L̃, it follows that
thyd/tac = M̄L̃/h̃ = ε1−m and xhyd,i/xac,i = L̃/h̃ = ε−m. thyd is
the hydrodynamic time, tac is the acoustic time xhyd are the
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hydrodynamic spatial coordinates, and and xac are acoustic
spatial coordinates. High-frequency transverse instabilities
are not considered in this multiple-scale analysis.

Fig. 6: Coupling between combusting hydrodynamics, gov-
erned by the low-Mach number equations, and acous-
tics. Depending on the multiple-scale limit, the coupling
terms, Fac→hyd and Fhyd→ac, have different expressions (Tab.
2) [161].

To reduce the complexity and separate out hydrody-
namic and acoustic phenomena from the original equations
(3), the following procedure is carried out:

(i) Asymptotic expansion: The variables are expanded
assuming a low-Mach number decomposition of the form φ

= ∑i εiφi, where φ denotes a generic variable.
(ii) Differential operators decomposition: In the

double-time-double-space approach (2T-2S), φ(x, t) →
φ(xhyd ,xac, thyd , tac). By applying the chain rule, both the
temporal and spatial derivatives are decomposed as ∂/∂t →
∂/∂tac+ε1−m∂/∂thyd , and ∇→ ∇hyd +εm∇ac. In the double-
time-single-space approach (2T-1S), φ(x, t) → φ(x, thyd , tac)
and only the temporal derivative is decomposed as ∂/∂t →
∂/∂tac + ε1−m∂/∂thyd . In the single-time-double-space ap-
proach (1T-2S), φ(x, t)→ φ(xhyd ,xac, t) and only the spatial
derivative is decomposed as ∇→ ∇hyd + εm∇ac.

(iii) Order-by-order matching: New equations are de-
fined by collecting terms in order of ε.

(iv) Average-plus-fluctuation decomposition and equa-
tion averaging: In 2T-2S, the time decomposition φ = 〈φ〉ac+

φ
′
ac, is substituted into the operator presented in (ii) and the

equations are time averaged over the slow hydrodynamic
time scale thyd . The angle brackets 〈·〉ac represent the time
average of the fast variable, tac, the superscript ′ represents
the small fluctuation. Then, the variables are split as φ =
〈φ〉hyd + φ

′
hyd , and the equations are spatially averaged over

the long acoustic spatial scale xac. The angle brackets 〈·〉hyd

represent the spatial average of the short spatial variable xhyd .
In 2T-1S, only the time decomposition and averaging is ap-
plied. In 1T-2S, only the spatial decomposition and averag-
ing is applied.

Regardless of the limit used, the above four steps lead to
a nonlinearly coupled set of low-Mach number and acoustic
equations, which are explained in Secs. 4.1-4.2.

4.1 Low-Mach number equations
Hydrodynamic phenomena are governed by the continu-

ity, momentum, energy and mixture-fraction low-Mach num-
ber equations for constant pressure flames [192]

∂ρ

∂thyd
+∇hyd · (ρu) = 0, (112)

∂u
∂thyd

+u ·∇hydu+
1
γρ

∇hyd p− 1
S1Reρ

∇hyd · τττ = Fac→hyd ,

(113)
∂T

∂thyd
+u ·∇hydT − 1

S1RePrρ
∆hydT −DaQR = 0, (114)

∂Z
∂thyd

+u ·∇hydZ− 1
S1ReScρ

∆hydZ = 0, (115)

where the spatial gradient ∇hyd acts on the hydrodynamic
spatial scale, xhyd . Da is the Damköhler number, Sc is the
Schmidt number, S1 is the oxidizer-to-fuel density ratio of
the jet, Pr is the Prandtl number, and QR is the rate of
heat released by reaction as nondimensionalized in [161].
The state equation is ρ [(S1 − 1)Z +1] [(S2 − 1)T +1] =
1, where S2 is the ratio between the adiabatic flame tem-
perature and the ambient temperature. The state equation
shows that the thermodynamic pressure is constant and equal
to unity when nondimensionalized. This nonlinear prob-
lem can be conveniently expressed in matrix form as q̇hyd

− H(qhyd) = F(q)ac→hyd , where qhyd = (ρ,u,T,Z)T is the
vector of the hydrodynamic variables; q̇hyd = ∂qhyd/∂thyd ;
q =

(
qhyd ,qac

)T , with qac being the vector of the acoustic
variables (Sec. 4.2); and Fac→hyd =

(
0,Fac→hyd ,0,0

)T is the
vector of forcing terms (Tab. 2). The hydrodynamic opera-
tor, H, is nonlinear because of the convective derivatives and
reaction term.

4.2 Acoustics
The acoustic variables are governed by the continuity,

momentum and energy equations

∂ρ
′
ac

∂tac
+∇ac ·

(
〈ρ〉hyd u

′
ac

)
= Fhyd→accon , (116)

∂u′ac

∂tac
+

1
γ〈ρ〉hyd

∇ac p
′
ac = Fhyd→acmom , (117)

∂p
′
ac

∂tac
+ γ∇ac ·u

′
ac = Fhyd→acen , (118)
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where the spatial gradient ∇ac acts on the acoustic spatial
scale, xac. The variables are nondimensionalized as in [161].
This problem can be expressed as q̇ac −Aqac = F(q)hyd→ac,
where qac = (ρ

′
ac,u

′
ac, p

′
ac)

T is the vector of the acous-
tic variables; q̇ac = ∂qac/∂tac; and Fhyd→ac =

(
Fhyd→accon ,

Fhyd→acmom , Fhyd→acen

)T is the vector of forcing terms. The
acoustic operator, A, is linear. The nonlinearities are con-
tained in the forcing term. State and mixture fraction equa-
tions (not shown) are required for the calculation of the heat-
release terms in 2T-1S and 1T-2S (Sec. 4.3).

The acoustics dissipates mainly by radiation from the
combustor’s open boundaries and slightly in the viscous-
thermal boundary layer. Nonlinear damping effects, such as
vortex roll-up at sharp changes to the cross-sectional area,
are not included in the current study because this study
focuses on the stability of infinitesimal perturbations. In
this asymptotic analysis, acoustic dissipation in the viscous-
thermal boundary layer is neglected because of its being of
higher order. Physically, the acoustic viscous terms are neg-
ligible because (i) when the acoustic time is faster than the
hydrodynamic time, the acoustic Reynolds number is very
large and (ii) when the acoustic scale is longer than the hy-
drodynamics, the boundary layer scale is negligible. How-
ever, near the wall, these terms may be important and need
modelling. Therefore, the viscous-thermal acoustic dissipa-
tion is modelled as a sink term in the acoustic energy equa-
tion proportional to p′ac, in a similar manner to [280]. The
acoustic radiation should be modelled by impedance bound-
ary conditions, which makes the final eigenproblem nonlin-
ear in the eigenvalue (Sec. 3.1.2).

4.3 Two-way coupling terms

The terms coupling the hydrodynamics to the acoustics
depend on the multiple-scale limit considered (Tab. 2). Here,
comments are made on the terms that are most relevant to
thermoacoustics. On the one hand, the hydrodynamics is an
acoustic energy source through the spatially averaged dila-
tion of the flow in the 2T-2S limit, which acts as a dipole-
like source. This tends to the classic unsteady heat release
in the 2T-1S and 1T-2S limits, which acts as a monopole-
like source (second to last row in Tab. 2). Physically, the
unsteady heat release only partly contributes to the acoustic
energy input in the 2T-2S limit. (The unsteady heat release
is calculated by using the acoustic density, temperature and
mixture-fraction equations.) On the other hand, the acous-
tics forces the hydrodynamic momentum via the nonlinear
term −1/ρ ∇hyd · 〈ρu′ac⊗u′ac〉ac in the double space limits
(2T-2S and 1T-2S, last row in Tab. 2). This term is known as
the acoustic Reynolds stress [281], which, as opposed to the
turbulent Reynolds stress, does not require closure because
it is obtained from the acoustic solver. In the 1T-2S limit,
the hydrodynamic momentum is forced through the acoustic
pressure gradient that imposes a global acceleration.

In compact form, the coupled thermoacoustic problem

(Fig. 6), governed by (112)-(118), reads

q̇−T(q) = F, (119)

where T(q) is the nonlinear thermoacoustic operator, and F
=
(
Fac→hyd , Fhyd→ac

)T .

4.3.1 Linearization
The linearization of the multiple-scale thermoacoustic

model requires extra comments [161]. The hydrodynamic
variables are assumed ∼ O(1) and the acoustic variables ∼
O(ε). Physically, the acoustics is regarded as a perturbation
field on top of the hydrodynamic flow. Different multiple-
scale limits spawn different linear behaviours. The hydrody-
namic variables are split as qhyd = q̄hyd +εqhyd,1, where q̄hyd
∼ O(1) is the steady mean flow calculated from numerical
simulations or experiments and εqhyd,1 is the low-frequency
large-scale coherent hydrodynamic structure. Therefore, the
perturbation hydrodynamic vector, qhyd,1, and acoustic vec-
tor, qac, are of the same order ε but act at different scales.
When linearized, the thermoacoustic problem can be ex-
pressed in compact form as q̇ = Lq, where

L =

( δH
δqhyd

+
δFac→hyd

δqhyd

)
δFac→hyd

δqac
δFhyd→ac

δqhyd

(
A+

δFhyd→ac
δqac

). (120)

The Jacobian operator is the functional derivative of the
thermoacoustic operator that is evaluated at the base flow
q̄hyd . In the double-time limits, 2T-2S and 2T-1S, the lin-
earized acoustic Reynolds stress, which is the term coupling
the acoustics to the hydrodynamics, is neglected because of
higher order. The linear dynamics are only one-way coupled
because the coupling term δFac→hyd = O(ε2) is negligible
in (120). This is because, when there are two time scales
(the acoustic time being faster than the convective time), the
acoustics are driven by the hydrodynamics but do not affect
it. Physically, the influence of the acoustics averages to zero
over the long time scale of the hydrodynamics. This is equiv-
alent to one of the mechanisms described by Lieuwen [187]
in which, if one considers perturbations convecting at uni-
form speed along a long flame such that there are many oscil-
lations along the flame, most of the heat release perturbations
cancel out, causing the flame to behave as a low pass filter.
From this two-scale argument, a thermoacoustic instability
is more likely to exist when the time scales are the same.
In a classic picture of a thermoacoustic instability, the two
time scales are indeed the same [282]. In fact, when only
one time scale is modelled, as in 1T-2S, the thermoacous-
tic system is two-way linearly coupled because δFac→hyd =
O(ε), i.e., there is a non-trivial interaction between hydrody-
namic and thermoacoustic stability. By using modal transfor-
mations, the resulting direct thermoacoustic eigenproblem is
linear and reads

σq̂ = Lq̂, (121)
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2T-2S 2T-1S 1T-2S

Fhyd→accon −∇ac ·
(
〈ρ〉hyd

〈
u′ac

〉
hyd

+
〈

ρ
′
hydu′hyd

〉
hyd

)
0 −∇ac ·

(〈
ρ
′
hydu′hyd

〉
hyd

)
Fhyd→acmom 0 0 −1/〈ρ〉hyd ∂/∂thyd

〈
ρ
′
hydu′hyd

〉
hyd

Fhyd→acen −γ〈∇ac ·u〉hyd DaQ
′
R0,ac Da〈QR1〉hyd

Fac→hyd −1/ρ∇hyd ·
〈

ρu′ac⊗u′ac

〉
ac

−1/ρ∇hyd ·
〈

ρu′ac⊗u′ac

〉
ac

−1/(γρ)∇ac p
′
ac

Table 2: Terms coupling hydrodynamics to acoustics, hyd→ ac, and acoustics to hydrodynamics, ac→ hyd. These terms
depend on the multiple-scale limit: Double-time-double-space (2T-2S), double-time-single-space (2T-1S) and single-time-
double-space (1T-2S). In 2T-1S xhyd = xac, in 1T-2S thyd = tac. The numbers in the subscripts of QR0 and QR1 refer to the
orders of the heat-release asymptotic expansion. Adapted from [161].

4.4 Discrete adjoint
The numerical discretization of (121) was performed by

a finite element method [161], which is particularly conve-
nient to calculate the adjoint system because the Jacobian is
numerically available. The adjoint problem is obtained by
taking the complex-conjugate transpose of (121)

σ
∗q̂+ = LH q̂+. (122)

Intrinsic sensitivity. The intrinsic sensitivity frame-
work introduced in Sec. 3.3.5 is able to calculate the effect
that a perturbation onto a subsystem has on the stability of
the coupled system. The eigenvalue drift for an intrinsic per-
turbation εJ reads

σ1 = ε

[
q̂+∗

hyd , q̂
+∗
ac

] Hyd. Ac.→ Hyd.

Hyd.→ Ac. Ac.

[ q̂hyd
q̂ac

]
〈q̂+, q̂〉 ,

(123)

where the mathematical expressions of the boxed subsystems
are provided in (120). For example, the exact first order
change of the thermoacoustic stability due to a perturbation
applied to the acoustic subsystem that affects the hydrody-
namic subsystem is σ1 = εq̂+∗

hyd · Ac.→ Hyd. q̂ac/〈q̂+, q̂〉.
As shown in [49], the physical cause of an intrinsic perturba-
tion originates from weakly nonlinear interactions, which are
listed in [283]. The small change induced by the nonlinear
interactions is regarded as a local change in the underlying
operator, which, at first approximation, is assumed propor-
tional to the operator itself.

5 The thermoacoustic spectrum
The calculation of how eigenvalues change due to per-

turbations is the main subject of this review. It is, thus, im-
portant to gain insight on how the thermoacoustic spectrum
changes with respect to the two key thermoacoustic parame-
ters: The flame gain and time delay.

The configuration under investigation is a ducted
flame [9] with a closed end at the inlet (∂ p̂/∂x = 0) and an
open end at the outlet (Dirichlet p̂ = 0). The flame is placed
at x f = 0.6. As reported in [175], and rigorously shown
in [284] with nondimensional analysis, the physical, quali-
tative behaviour of the spectrum (Fig. 7) is general for lon-
gitudinal configurations. The computations were performed
with a quasi-one dimensional Helmholtz solver. For the op-
erating point and other parameters the reader may refer to
Tab. 3 of [175].

The first acoustic mode is a quarter-wave mode of the
duct with nondimensional angular frequency of ωn,τ=0 = 1.
Figure 7 shows the results of the parametric study by vary-
ing the flame gain as n = [0→ 1], and nondimensional time
delay as τ = [0→ 1]. A spiral-like structure and curvilin-
ear trajectories are observed. The centre of the star is the
acoustic mode. Once n is increased from zero, the eigenval-
ues depart from the acoustic mode. These trajectories rotate
counter clock-wise for increments of τ. Some trajectories
protrude to the unstable semi-plane when the flame gain is
greater than a critical value.

Extreme sensitivity. The marginal trajectories con-
nected to the acoustic mode and defined by 0.32 < τ < 0.33
change directions suddenly (from left to right when increas-
ing τ) after a critical value τ ≈ 0.325. Such a behaviour is a
signature of extreme sensitivity of thermoaocoustics: Phys-
ically, a small increment in the time delay may drastically
change the stability of the combustor.

Intrinsic thermoacoustic modes (ITA). Figure 7 shows
quasi-vertical trajectories, whose growth rate for small val-
ues of n is very negative and increases with n. The resonance
angular frequency tends to 2π · j/(2τ) (with j = 1,3,5, · · · )
and the growth rate to −∞ when n approaches zero [193].
The angular frequency corresponds to ITA resonance fre-
quencies [9, 10], therefore these trajectories are labelled
as ITA trajectories (in agreement with [285]). As shown
in [175], the crossing from the unstable to the stable semi-
plane of the trajectories is a function of only the time delay.

Exceptional points. As thoroughly explained in [247],
the set of parameters and the relevant eigenvalue at which
intrinsic and acoustic modes cross each other are an excep-
tional point: The eigenvalue is a branch-point solution of the
characteristic function. The eigenvalue at this exceptional
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Fig. 7: Locus of eigenvalues as the flame parameters are varied as n = [0→ 1] and τ = [0→ 1] with increments of 0.05.
Adapted from [175].

point is two-fold defective, has infinite sensitivity to first-
order perturbations and the behaviour in its neighbourhood
can be described by a Puiseux series (see footnote 34).

6 Applications of SRS analysis without uncertainty
The philosophy of stability, receptivity and sensitivity

(SRS) analysis of eigenvalues is summarized in Fig. 8. In
Fig. 8a, the large black circles represent the unperturbed
eigenvalues. The flame modes are stable, whereas the acous-
tic modes protrude toward the unstable semi-plane because
of the thermoacoustic coupling. Together with the calcula-
tion of the corresponding eigenfunctions, this is the outcome
of stability analysis. The smaller red circles represent the ad-
joint eigenvalues, which are the complex conjugate of the
direct problem. The calculation of the corresponding ad-
joint eigenfunctions is the outcome of receptivity analysis.
In Fig. 8b, the eigenvalues sightly change due to a small per-
turbation to the system. The calculation of this change, in
particular of the dominant eigenvalue(s) (Fig. 8c), is the out-
come of sensitivity analysis. Stability, receptivity and sen-
sitivity analyses are presented and interpreted in this paper
for different thermoacoustic problems and different pertur-
bations. The exact calculation of the sensitivities to design
parameters; external passive devices; and intrinsic perturba-
tions (Sec.3.3) are presented in the following sections.

6.1 Direct and adjoint eigenfunctions
This section explains the physical meaning of the direct

and adjoint eigenfunctions of open-ended duct acoustics with
the heat release modelled by (i) an n-τ response model, (ii)
a diffusion flame and (iii) a premixed flame. The mean-flow
Mach number is zero. The direct and adjoint mode shapes
are shown in Fig. 9. The eigenfunction is the natural shape
with which the system oscillates around the perturbed base
state. To maximize observability, a sensor should be placed

where the amplitude of the direct mode shape is larger. The
adjoint eigenfunction is the receptivity to initial conditions or
forcing to excite the corresponding eigenfunction. To maxi-
mize controllability, an actuator should be placed where the
amplitude of the adjoint mode shape is larger.

First, the top row of Fig. 9 shows the acoustic velocity
and pressure eigenfunctions, û and p̂, respectively, which are
modelled with an n− τ model for the flame. The pressure is
continuous, yet not smooth, at the flame’s location, whereas
the velocity undergoes a discontinuity (Fig. 9a). This is be-
cause of the jump conditions (28), which physically repre-
sent the volume dilation due to the heat released by the flame.
Moreover, open ends are modelled as Dirichlet boundary
conditions for p̂, which become Neumann boundary con-
ditions for û, as seen from the momentum equation (19c)
for a zero mean flow. The adjoint pressure, p̂+, is the La-
grange multiplier of the energy equation, therefore it is the
receptivity to energy sources, such as heat inputs. It inherits
the discontinuity at the heat source location from û and the
boundary conditions from p̂. The adjoint velocity, û+, is the
Lagrange multiplier of the momentum equation, therefore it
is the receptivity to momentum sources, such as forces. The
adjoint velocity is continuous, yet not smooth, at the flame’s
location.

Figure 9b, the eigenfunctions of the mixture fraction of a
ducted diffusion flame are shown. The corresponding acous-
tic variables are similar to Fig. 9a, therefore they are not
shown. The mixture fraction eigenfunction has a wavy pat-
tern, which is typical of fluid dynamic phenomena that are
governed by convection-diffusion processes. The white line
is the steady-flame position that corresponds to the stoichio-
metric line. The adjoint mixture fraction has high magnitude
around the flame. This is because species injection affects
the heat release only if it changes the gradient of Ẑ at the
flame itself, which is achieved by injecting species around
the flame. Its magnitude increases towards the tip of the
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Fig. 8: (a) Spectrum and complex conjugate adjoint spectrum
of a ducted flame (here a diffusion flame as an example).
(b) Perturbed eigenvalues (small magenta squares) due to a
small perturbation to the system. (c) The calculation of the
eigenvalue shift is provided by sensitivity analysis.

flame, where ∇Ẑ is weakest. From a practical point of view,
this shows that open-loop control of the mixture fraction has
little influence at the injection plane but great influence at
the flame tip. In this case, this could be achieved by injecting
species at the wall [158].

Finally, a ducted premixed case is considered in
Fig. 9c [160]. The flame wrinkling is provided by the flame
front eigenfunction, f̂ , where the dashed line is the steady
conical solution. The adjoint flame front can be used to cal-
culate the sensitivities, as explained in Sec. 6.2. However, the
physical interpretation of the adjoint flame front in terms of
receptivity is difficult because the flame front is a kinematic
quantity with the G-equation model.

6.1.1 Helmholtz resonators
When the unsteady heat released by the flame is zero, the

direct pressure is identical to the adjoint pressure, and the ve-
locity is identical to the adjoint velocity (not shown), i.e. the
acoustic system is self-adjoint. When the heat released by
the flame is not zero, the direct and adjoint eigenfunctions
are different from each other, i.e. the thermoacoustic system
is non self-adjoint. Non-self-adjointness may have an im-
portant consequence on the optimal placement of Helmholtz
resonators, which are passive devices used in industry to sup-
press thermoacoustic instabilities [286–292]. Importantly,
Helmholtz resonators are typically placed where p̂ p̂∗ is max-
imal (see half-wave resonators, e.g., [289, 293]). For an
open-ended tube, this condition occurs at the centre of the
tube. However, in a system that it is not self-adjoint, this is
not exactly the linearly optimal location because, albeit the
pressure is maximum around the centre of the tube, the sys-
tem is more receptive before the flame’s location. Therefore,
the best location to place the Helmholtz resonator is where
the amplitude of p̂p̂+∗ is maximum, which, in this case, is
slightly upstream of the centre of the tube (Fig. 9a).

6.2 Sensitivity to design parameters
The direct and adjoint eigenfunctions of the open-ended

duct of Sec. 6.1 are combined to obtain the sensitivity of the
most unstable eigenvalue to small changes to some design
parameters (Sec. 3.3), where the heat release is modelled by
(i) an n− τ flame response, (ii) a diffusion flame and (iii) a
premixed flame.

First, the case of the n−τ model is considered. The sen-
sitivities are depicted in Fig. 10a as functions of the flame
position. Any small increase from −1 in the reflection co-
efficients, Ru and Rd , makes the system more stable because
less acoustic energy is reflected back into the tube. The sen-
sitivity to the interaction index, n, has the smallest amplitude
and shows that a second heat source in the second half of the
duct will stabilize the system. However, the sensitivity to the
time delay, τ, has a great impact on the eigenvalue drift. An
increase in the time delay destabilizes the system if the flame
is located in the first half of the duct before ≈ 0.4 [162].

Second, in Fig. 10b, the sensitivities of a ducted diffu-
sion flame are shown as functions of the stoichiometric mix-
ture fraction, Zsto, and the ratio between the fuel slot and
the diameter of the duct, α. When Zsto and α are perturbed,
Z̄ changes, which, in turn, changes the steady flame shape,
hence the phase between the acoustic pressure and the heat
release. The flame length increases as Zsto increases and as
α decreases [158]. The sensitivities depend strongly on Zsto
and α but are similar at similar values of the flame length.

Third, the eigenvalue sensitivities to the aspect ratio and
acoustic location of a ducted premixed flame are shown in
Fig. 10c. For fixed mean-flow velocity and disturbance phase
velocity, the time delay in a premixed flame is proportional to
the flame length. In this case, the sensitivity is discontinuous
across the white lines, where, as shown by [160], the second
eigenvalue becomes unstable (or vice versa).

These maps accurately quantify the first-order change
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Fig. 9: Direct eigenfunctions (left columns) and adjoint eigenfunctions (right column) for acoustic variables (top row, adapted
from [162] with permission from Elsevier, xduct is the nondimensional axial coordinate of the duct), a diffusion flame (middle
row, adapted from [158] with permission, light/dark colours correspond to positive/negative values) and a premixed flame
(bottom row, data is courtesy of A. Orchini [160]) in an open-ended duct with no mean flow. The direct eigenfunctions are the
thermoacoustic modes with which the system linearly vibrates. The adjoint eigenfunctions are the receptivity of the system
to open-loop sources in the equations. The nondimensional factors of the flame coordinates can be found in [158, 160].

in the thermoacoustic stability due to changes of the design
parameters. This information can be used for the design of
stable combustors to prevent instabilities from occurring. If
the technologist wishes to suppress an existing instability,
Sec. 6.3 shows how to implement adjoint techniques for pas-
sive control with external devices.

6.2.1 Experimental validation
Rigas et al. [155] carried out experiments to validate

some of the sensitivities obtained by adjoint-based analy-
sis. They set up an open-ended vertical Rijke tube with a
main electrical heater, which consisted of a gauze of wires
placed at a quarter from the inlet. When the electrical power
was larger than the damping, the first acoustic mode be-
came unstable. The system exhibited hysteresis as the main

power was increased/decreased (subcritical bifurcation). A
second mesh of wires was used as a passive drag device
with no power input. This device was attached to an auto-
mated height gauge at the top of the tube, which enabled it to
be transversed with high accuracy. The raw pressure signal
was sampled at high frequency with a condenser-type micro-
phone. To obtain the growth rates and frequencies after the
insertion of the drag device, the main heater power was set
just below that of the Hopf point, i.e., where the system is
linearly marginally stable. The system was then increased
to the critical power with a step function. On the one hand,
the growth rate was calculated as the slope of the logarithmic
linear region of the absolute value of the Hilbert-transformed
signal. On the other hand, the frequency was calculated as
the mean of the time derivative of the phase in the logarith-
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Fig. 10: Growth-rate (left column) and angular-frequency (right column) sensitivity. Top row: Sensitivities to the upstream
(downstream) reflection coefficients, Ru (Rd), the flame index, n and time delay, τ, of a ducted generic flame for different
positions of the flame’s location (adapted from [162] with permission from Elsevier). Middle row: Sensitivities to the design
parameters α (fuel-to-air port ratio) and Zsto of a ducted diffusion flame with the steady-flame length contours superimposed
(values from 4 to 2 from bottom to top) (adapted from [158] with permission). Bottom row: Sensitivities to the flame aspect
ratio and flame location of a ducted premixed flame. The maxima are marked by white lines, the minima are marked by
black lines (Left: Reprinted with permission from Elsevier [160], Right: Data is courtesy of A. Orchini) .

mic linear region of the Hilbert-transformed signal. To mea-
sure the decay rate the main heater power was initially set
just above the fold point, i.e., the first operating point in the
hysteresis region at which the system has both a fixed point
and a limit-cycle solution. The power was then decreased as
a step function; the growth rate and frequency were measured
as before. The sensitivity was calculated by finite difference
between the experiments with/without drag device.

Figure 11 shows the experimental growth-rate sensitivi-
ties (circles) and the corresponding predictions from adjoint-
based sensitivity analysis (black line), which are normalized
by their inlet value for a better comparison. The prediction
is in favourable agreement with the experimental data. The

discrepancy towards the outlet is expected to be due to wall
heat-transfer and boundary conditions, which were not mod-
elled. In general, the predictions from sensitivity analysis are
as good as the physical model adopted. Discrepancies with
experimental data is due to the working assumptions made
for the thermoacoustic model, not adjoint analysis. The ex-
perimental frequency drift was compared in [156, 294] with
the predictions from adjoint sensitivity analysis. They found
that adjoint-based frequency sensitivity was not satisfacto-
rily in agreement with the experimental shift. This was due
to the fact that the experiment had more complex physics
than that captured by the model, for example, strong mean
flow temperature gradients were present in the experiment
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Fig. 11: Growth-rate drift due to the insertion of a drag de-
vice. The heat source is located at x f = 0.25. Adjoint predic-
tions (solid line) against experimental results (circles, data is
courtesy of [155]) normalized for comparison.

but not in the model. This can be explained by observing
that the eigenvalue is, at a first approximation, a function of
the main-heater power, P, the velocity at the drag device lo-
cation, xc, and the mean-flow temperature, i.e.,

σ = σ(P,Ū(xc), T̄ (xc)). (124)

Interestingly, the mean-flow temperature is a function of the
position of the drag device, xc, because after insertion of it
the flow slows down and the heat transfer decreases, accord-
ingly. Therefore, the temperature and the velocity are depen-
dent variables, i.e., T̄ = T̄ (Ū(xc)). The total derivative of the
eigenvalue with respect to a variation of the velocity caused
by the drag device reads

dσ

dŪ
=

∂σ

∂Ū
+

∂σ

∂T̄
dT̄
dŪ

. (125)

Jamieson et al. [156, 157, 294] experimentally measured the
total derivative (left-hand side of (125)) and compared it
with the sensitivity ∂σ

∂Ū from adjoint-based sensitivity anal-
ysis [153] (the analysis of [153] was improved to include
base-flow velocity perturbations by Aguilar [295]). The re-
maining term, ∂σ

∂T̄
dT̄
dŪ , is a leading-order cause of the discrep-

ancy, which is large because differences in the mean-flow
temperature markedly affect the acoustic natural frequency
but not the growth rate [158, 198].

6.3 Sensitivity to passive devices
The case of a choked duct, which is relevant to aero-

nautical propulsion, with a premixed flame modelled by an
n− τ model is considered. This case is particularly relevant
to aero-engines, where the nozzle guide vane downstream of
the combustor’s exit is (nearly) sonic [296]. The inlet is an
ideal open end, and the outlet choked condition is provided
by Marble and Candel [214].

In a choked combustor the mean flow cannot be ne-
glected because the outlet is sonic, therefore the acoustic
density is one of the state variables (Fig. 12c). In the re-
gion upstream of the flame, the density (Fig. 12c) shows a
similar behaviour to the pressure, which is scaled by 1/c̄2

u.
However, downstream of the flame, the density contains the
influence of both acoustic and entropy waves through Gibbs’
relation (26). Small entropy inhomogeneities appear in the
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Fig. 12: Direct (left axis, thick-black lines) and adjoint (right
axis, thin-red lines) eigenfunctions of a choked combustor
with an n− τ model (adapted from [162] with permission
from Elsevier). The mean flow is not neglected, therefore
the acoustic density belongs in the state vector.

downstream region because the acoustic fluctuations change
the temperature upstream, while the mean heat release is
constant in this model [212]. The entropy spots are accel-
erated through the nozzle and converted into indirect acous-
tic waves. With a moving flame front, the indirect acoustic
wave is only . 0.6% the incoming acoustic wave, but with
the flame front at rest (ûs = 0) the indirect acoustic wave is
≈ 21% the incoming acoustic wave. Therefore, the flame
at rest produces louder indirect noise than the moving flame
front.

As for the system’s receptivity, there exist adjoint en-
tropy waves upstream and downstream of the flame in the
Lagrange multipliers of both the energy equation ( p̂+ in
Fig. 12b) and the continuity equation (ρ̂+ in Fig. 12c). To
produce a change in the generation of entropy waves through
the unsteady flame speed, the energy equation should be
forced upstream of the flame, as intuitively expected. Forc-
ing the energy equation after the flame changes the intensity
with which the entropy waves interact with the choked end.

By combining the direct and adjoint eigenfunctions, the
sensitivities to external passive control devices are calcu-

33



-2

0

2

4

0

2

4

0

0.5

1

-1

-0.5

0

-2

0

2

-1

-0.5

0

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

Fig. 13: Sensitivity to passive devices in a choked combustor that generate feedback from pressure, velocity and density to
the continuity, momentum and energy equation. Thick lines from discrete adjoint calculations, thin lines from continuous
adjoint calculations, symbols from finite difference (benchmark solution). Dark (black and red) lines and circles for growth-
rate sensitivity, light (blue and cyan) lines and squares for angular-frequency sensitivity. Adapted from [162] with permission
from Elsevier.

lated. First, a mechanism that adds mass proportionally to
the state variables is shown in the top row of Fig. 13. As
shown by the growth-rate sensitivities, if mass is added in
phase with p̂, û, or ρ̂, the device will destabilize the sys-
tem. Of particular interest is a feedback proportional to the
pressure (first panel, top row). This is a simplified model
for a Helmholtz resonator. In a system with a choked end,
a Helmholtz resonator optimally stabilizes the eigenvalue at
an axial location ≈ 0.96, which is not exactly the antinode
of the resonant mode (see also Sec. 6.1.1 for a discussion
of Helmholtz resonators in open-ended ducts). Second, a
mechanism that adds momentum proportionally to the state
variables is shown in the middle row of Fig. 13. Physically, a
drag device, which forces the flow in the opposite direction to
the velocity, is an example of these feedback mechanisms. A
drag device is strongly stabilizing. Third, a mechanism that
adds heat proportionally to the state variables is shown in the
bottom row of Fig. 13. Any mechanism that causes increased
heat input in phase with the pressure will destabilize the sys-
tem according to the Rayleigh criterion (2) (see Appendix C

for an adjoint interpretation of this thermoacoustic stability
criterion), as is the case for solid rocket propellants [297]. As
explained in [162], there are oscillations in the sensitivities
upstream and downstream of the flame. These are caused by
the passage of entropy waves and the indirect generation of
acoustic waves at the choked end. Whether the interference
between acoustic waves and entropy-induced acoustic waves
is constructive or destructive is problem-dependent (it varies
with the spatial scales).

This methodology is useful to select an appropriate pas-
sive device to stabilize an existing thermoacoustic instability.

6.4 Sensitivity to intrinsic physical mechanisms
A three-dimensional diffusion-flame dump combustor

is modelled with the multiple-scale method of Sec. 4. The
discretization is performed by a finite-element method with
Taylor-Hood elements on an unstructured grid [161]. The
nondimensional mean-flow temperature is shown in Fig. 14a.
The intrinsic sensitivity (Sec. 3.3.5) is calculated. This en-
ables the identification of the regions of the flow where the
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hydrodynamic and acoustic subsystems are active and quan-
tify how they affect the overall thermoacoustic stability.

When two-way coupled, the low-Mach number flow and
acoustics become unstable. The angular frequency is close to
the acoustic frequency; the instability is driven by acoustic
effects because the unstable mode is primarily acoustic. In
this stability framework, the hydrodynamics is simulated and
two-way interacts with the acoustics (Secs. 3.3.5).

First, the spatial function

Re(σ1) = Re
(

q̂+H
hyd L12q̂ac

)
(126)

is analysed in the top panel of Fig. 14b, where L12 is the
coupling operator from the acoustics to the hydrodynamics
(top-right component of matrix (120)) through the acoustic
pressure gradient (bottom-right term in Tab. 2). This for-
mula quantifies how much a unit perturbation to the acoustic
vector L12q̂ac changes the thermoacoustic eigenvalue of the
coupled system through the receptivity of the hydrodynamic
physical process, q̂+

hyd . The highest sensitivity straddles the
recirculation region at the top left corner. Physically, the
acoustics are acting as extra feedback momentum sources,
enhancing the hydrodynamic sensitivity, which is, indeed,
often close to the recirculation boundary [134]. Changes in
the strength of the coupling from the acoustics to the hydro-
dynamics here will have the most influence on this mode,
i.e., the mode is very sensitive to the coupling in this region.
However, this is only one component of the intrinsic sensitiv-
ity and the coupling from acoustics to hydrodynamics is not
the dominant mechanism. The maximum growth rate drift is
Re(σ1)∼ O(10−4).

Secondly, the spatial function

Re(σ1) = Re
(
q̂+H

ac L21q̂hyd
)

(127)

is analysed in the bottom panel of Fig. 14b, where L21 is
the coupling term from the hydrodynamics to the acoustics
(bottom-left component of matrix (120)). This formula quan-
tifies how much a unit perturbation to the hydrodynamic field
L21q̂hyd changes the thermoacoustic eigenvalue of the cou-
pled system through the receptivity of the acoustic physical
process, q̂+

ac. The maximum value is Re(σ1)∼O(10−2). The
region of high sensitivity straddles the stoichiometric line,
where most of the heat is released by the flame. This phys-
ically shows the most active physical mechanisms of insta-
bility: A small change in the coupling from hydrodynamics
to acoustics causes a larger stability drift than a small change
in the coupling from the acoustics to the hydrodynamics. In
other words, small changes of the strength of the hydrody-
namic feedback (i.e., coupling) greatly change the flame re-
sponse to acoustic perturbations which, in turn, have signif-
icant influence on the thermoacoustic stability. In the limit
of classic one-way coupled thermoacoustic models, this re-
sult is consistent with the diffusion-flame structural sensitiv-
ity and Rayleigh Index analysis of [158].
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Fig. 14: (a) Nondimensional mean-flow temperature field
obtained by large-eddy simulation [161]. (b) Growth-
rate sensitivity to intrinsic hydrodynamic feedback feed-
ing the momentum equation, the maximum straddles the
recirculation-boundary (upper dashed line). (c) Sensitivity to
the hydrodynamics through acoustic mechanisms, the max-
imum straddles the stoichiometric line (lower dashed line).
Adapted from [161] with permission from Elsevier.

7 Applications of SRS analysis under uncertainty
In the previous section, SRS analysis was performed by

assuming that the operating condition was exactly known.
However, practical systems are affected by uncertainties in
the operating conditions and parameters. It is paramount
to quickly and accurately calculate the probability that a
thermoacoustic system is unstable given uncertainties in the
model parameters. The methods presented in this section en-
able the calculation of how uncertain values of the flame pa-
rameters, n and τ, affect the the dominant eigenvalue. Ad-
joint methods will be exploited to calculate the eigenvalue
drift with respect to random perturbations.

7.1 Forward uncertainty quantification
The input of the forward uncertainty quantification prob-

lem37 is the probability density function (PDF) of the model
parameters (prior). The least biased PDF should be cho-
sen38, i.e., the PDF that maximizes the information entropy.
Jaynes [300] provides practical criteria for choosing the ap-
propriate PDF. For example, when min/max values of the
uncertain parameters are assumed to be known, the uniform
distribution is the least biased PDF. Two different approaches
are described. In the first approach (Sec. 7.2), the PDF of
the growth rate is estimated by Markov-Chain-Monte-Carlo

37For inverse uncertainty quantification and data assimilation the reader
may refer to recent works in thermoacoustics and reacting flows [298, 299].

38However, the PDF is often practically imposed by an educated guess
originating from past experience.
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(MCMC) sampling (or simply, Monte Carlo sampling) [278].
The probability that the mode is unstable is therefore pro-
vided by the measure of the portion of the growth-rate PDF
in the unstable semi-plane. This is pictorially shown by the
intersection of the shaded unstable semi-plane and the PDF
of the eigenvalue in Fig. 15b, which, mathematically reads39

P (Re(σ)> 0) =
∫

∞

0
PDF{Re(σ)}dRe(σ). (128)

The second approach (Sec. 7.3) is based on the calculation
of the stability margin in the parameters’ space, i.e., the lo-
cus of parameters such that the system is marginally stable,
i.e., Re(σ(n,τ)) = 0, which is calculated by expanding the
eigenvalue using adjoint perturbation theory (Sec. 3.3). The
probability that the mode is unstable is the measure of the
intersection between the PDF of the parameters and the sta-
bility margin. The side to choose is the unstable one. This
corresponds to the shaded area in Fig. 15a, labelled Eu in the
following definition

P (Re(σ)> 0) =
∫

Eu

PDF{p}dp, (129)

where p is the vector of parameters, which, here, are n and τ.
If another PDF of the parameters is chosen, the probability
that the mode is unstable can be straightforwardly calculated
from (129), which makes this method versatile and compu-
tationally cheap.

7.2 Adjoint-based Monte-Carlo methods
This method is applied to the 19-burner annular com-

bustor described in [163, 221]. First, different standard de-
viations to the uniform distributions of the flame parameters
are imposed to calculate the probabilities that the mode is
unstable. The results are shown in Tab. 3. When the stan-
dard deviations are smaller than 2.5%, the first-order ad-
joint method provides accurate predictions, although it be-
comes less accurate for larger deviations. However, the
second-order adjoint method provides accurate predictions
of the probability up to standard deviations of 10%, match-
ing satisfactorily the benchmark solution by costly finite-
difference methods (MC). Fig. 16a shows the scattering of
the eigenvalues via Monte Carlo simulations (dark black cir-
cles), second-order adjoint method (light blue circles) and
surrogate algebraic models obtained by the active subspace
method40 (white-circles) [163,278, 301]. The scatterings are
obtained by imposing a uniform probability distribution be-
tween ±0.1n,±0.1τ, which represents the uncertainties of
the flame parameters (last row of Tab. 3). The PDFs of the

39This quantity is sometimes referred to as the risk factor [278].
40This method, as applied to uncertainty quantification with adjoints, is

explained in [163]. The directions in the parameters space along which the
eigenvalue changes the most are calculated by singular value decomposition
of the covariance matrix, which is calculated by MCMC integration. These
directions are used to algebraically approximate the response surface, i.e.
how the eigenvalue changes with the parameters, with nonlinear regression.

Fig. 15: (a) Uniform distribution of the flame parameters
centred around the mean interaction index, n̄, and mean time
delay, τ̄. The standard deviations are sn and sτ, respectively.
The black solid line is the stability margin, i.e., the locus of
points that corresponds to a zero growth rate. The ratio be-
tween the shaded area and the total area is the probability that
the mode is unstable. (b) Corresponding distribution of the
eigenvalues. The integration of the PDF of the growth rate
in the unstable semi-plane is the probability that the mode is
unstable.

Standard
deviation

MC 1st-order AD 2nd-order AD

1% 15.4% 14.7% 15.4%

2.5% 31.3% 33.2% 31.2%

5% 33.25% 40.3% 33%

10% 34.5% 43.2% 34.9%

Table 3: Probabilities that the mode is unstable calculated by
the Monte Carlo method as a function of the standard devia-
tion of the flame index and time delay uniform distributions.
MC stands for standard Monte Carlo method and AD stands
for adjoint. Adapted from [163].

perturbed growth rates are depicted in Fig. 16b. The PDF
shape is satisfactorily estimated by the second-order adjoint
method.
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Fig. 16: (a) Scattering of the eigenvalues calculated by stan-
dard Monte Carlo method (dark-black circles), Monte Carlo
method with adjoint equations (light-blue circles) and Monte
Carlo method with a surrogate algebraic model with adjoint
equations (white circles). The unperturbed eigenvalue is de-
noted by a white square. (b) Estimates of the PDFs as his-
tograms of the growth rates of panel (a). Units are dimen-
sional as in the original paper [163], to which the reader is
referred for more details.

7.3 Monte-Carlo free methods
This method is demonstrated for the turbulent swirled

combustor designed and built at EM2C laboratory [302,303].
A three-dimensional Helmholtz solver is employed [167].
This axisymmetric combustor (Fig. 17a) consists of a cylin-
drical plenum, a convergent duct with a swirler, and a cylin-
drical combustion chamber. A mixture of methane and air
is injected upstream of the plenum. The operating condi-
tion ‘B’ of [303] is considered in this study. More details
can be found in [304] (configuration C03), who estimated
the acoustic damping for accurate stability calculations. The
flame transfer function gain, |FTF|, and phase, φ ≡ ∠FTF,
(see Sec. 2.3), are affected by experimental uncertainties,
∆|FTF| and ∆φ. The uncertain flame transfer function, thus,
reads

FTF(ω,∆|FTF|,∆φ) =

= |FTF|(ω)exp(iφ(ω))︸ ︷︷ ︸
FTFmeasured(ω)

(1+∆|FTF|)exp(i∆φ). (130)

Note the ∆|FTF| is defined as a relative measurement er-
ror while ∆φ is considered an absolute measurement error.
The flame gain and phase are extracted from the measured
flame describing function of flame B in [304] with the small-
est forcing amplitude. For the eigenvalue to be expanded in
power series, the flame transfer function has to be differen-
tiable with respect to its parameters. Therefore, the data has

been fit by a rational function [167]. The thermoacoustic sys-
tem is unstable with the corresponding eigenfunction shown
in Fig. 17b. A relative error for the gain of ∆|FTF|=±10%

Fig. 17: (a) Turbulent swirled combustor under investiga-
tion [302]. (b) Thermoacoustic eigenfunction calculated
with a Helmholtz solver. (c) Stability margins calculated by
first-order and second-order adjoint methods with no Monte
Carlo sampling. The white line is calculated by Monte Carlo
sampling for reference. The rectangular represents the uni-
form PDF of the flame transfer functions parameters. The
shaded area is the set of parameters corresponding to posi-
tive growth rates. Adapted from [164, 167].

and an absolute error for the phase of ∆φ = 0.1 · 2π are im-
posed. Figure 17c shows the stability margins calculated
from interpolations of 10,000 uniform Monte Carlo sam-
ples and the first- and second-order adjoint algebraic expres-
sions. Because the first order theory approximates the stabil-
ity margin as a straight line, it only gives a rough estimate.
However, the curvature obtained with second order theory
nearly exactly coincides with the benchmark stability mar-
gin calculated by the Monte Carlo method. Second-order
methods are particularly suitable for longitudinal thermoa-
coustic problems because the eigenvalue trajectories have a
spiral shape with respect to variations of the flame parame-
ters (Fig. 7), whose local curvature is well approximated by
second-order expansion. The probability that the mode is un-
stable is 76.8% by Monte Carlo sampling (10,000 nonlinear
eigenproblems to be solved), 83.78% with the first-order ad-
joint method (zero eigenproblems solved other than the orig-
inal one), and 76.8% with the second-order adjoint method
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(zero eigenproblems solved other than the original one).

8 Applications of SRS analysis to optimization
Adjoint-based sensitivity analysis (Sec. 3.3) provides

the gradient of the eigenvalue with respect to all the thermoa-
coustic parameters. The gradient information can be embed-
ded in an optimization routine to find the local extremum of
a cost functional. Two examples of stabilization of thermoa-
coustic instabilities via optimization are presented. In the
first example, the instability is suppressed by passive devices
(Helmholtz resonators, which are acoustic dampers), which
are optimally placed and tuned in the combustor [172]. In the
second example, the instability is suppressed by modifying
the shape of the combustor [173]. Both examples are applied
to annular combustors.

8.1 Optimal placement and tuning of acoustic dampers
A two-step optimization algorithm for the optimal place-

ment and tuning of dampers in annular combustion chambers
was proposed by [172]. The optimization algorithm was ap-
plied to a simplified two-dimensional rotationally symmetric
annular combustor with twelve burner-flame sectors (a sim-
plified model of the annular combustor of [200]). The opti-
mization algorithm had two steps:

• Placement of the acoustic dampers. The effect that
the placement of several dampers has on the stability
is accurately calculated for different possible config-
urations by using multi-parameter perturbation theory
(Sec. 3.3). As summarized in Figure 18, the placement
of dampers in sectors 1, 5, and 9 provides strongest sta-
bilization considering both the first and second order az-
imuthal modes. This is in agreement with the position-
ing rule [305], i.e. the optimal arrangement of dampers
is achieved by evenly distributing them within a sector
spanning half the circumferential wavelength of the con-
sidered mode (and rotating any of these dampers by half
of this wavelength has no effect);

• Tuning of acoustic damper coefficients. This is
achieved by an iterative gradient-based method. In each
iteration step, first the optimal direction in parameter
space to tune the dampers is estimated by the multi-
parameter perturbation theory. Once the direction is
found, the problem is reduced to a single-parameter per-
turbation to compute the step size to be taken in that di-
rection with second-order perturbations. The stabiliza-
tion of the annular combustor was achieved after 45 it-
erations.

8.2 Shape optimization
The authors of [173] stabilized a thermoacoustic annu-

lar configuration by optimizing the geometry of the sectors
of the combustor by a wave approach (Sec. 2.2.3) combined
with a flame response model (Sec. 2.3). First, they calculated
the adjoint-based sensitivity of the unstable modes to small
changes in the geometry, whose shape was parametrized.

min = 11.7159 1/s0
damping growth

(1,5,9)
(1,3,5)
(1,4,8)
(1,4,7)
(1,3,6)
(1,3,4)
(1,4,5)
(1,5,11)
(1,8,9)
(1,3,8)

(1,11,12)
(1,6,7)

Stable Unstable

0

Damper location

Growth rate (1/s)

Fig. 18: Placement of the acoustic dampers in an annular
combustor with twelve burners (first step of the optimiza-
tion algorithm). Green and orange arrows indicate the pre-
dicted shift in growth rate for the the first azimuthal mode,
while red and blue arrows correspond to the second az-
imuthal mode. Both modes are degenerate; symmetry break-
ing damper placements split the degenerate eigenvalues, e.g.
(1,6,7), whereas rotationally symmetric damper placements
do not split the eigenvalues, eg. (1,5,9). The asterisk denotes
the growth rate that is actually computed. The triplets denote
the annular sectors where acoustic dampers are applied (only
a set of three dampers is considered). The most stabilizing
pattern is (1,5,9). Adapted from [172].

Secondly, the gradient information was embedded in an op-
timization routine based on a steepest descent method. The
cost functional to minimize was defined as the sum of the
growth rates in a given frequency range. Figure 19 shows
the application of shape optimization to a sector of annular
combustor. It was found that only small changes in the areas
are required to stabilize the longitudinal mode, with wave
number n = 0, and the azimuthal unstable modes, with wave
number n 6= 0. Physically, the optimization procedure mod-
ifies the configuration such that the pressure fluctuations are
sufficiently out of phase with respect to the heat released by
the flame, so that the Rayleigh criterion (Eqn. 2) becomes
negative.

9 Combining Bloch theory with adjoints: The inclina-
tion rule in annular combustors
In annular combustors with discrete rotational sym-

metry, the eigenfunctions can be represented as Bloch
waves [168, 169], for example, the acoustic pressure eigen-
functions read

p̂ = exp(ibϕ)ψb(ϕ), (131)

where ϕ is the azimuthal coordinate, b is the Bloch
wavenumber and ψb(ϕ) is a periodic function of the az-
imuthal coordinate, i.e. ψb(ϕ) = ψb(ϕ+ 2π

N ), where N de-
notes the degree of rotational symmetry of the unperturbed
annular combustor. In the MICCA combustor, N = 16. By
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Fig. 19: (a) The black (dashed) line denotes the original
unstable annular combustor (a cross section of a sector is
shown). The red (solid) line shows the optimized combustor.
(b) Eigenvalue trajectories from the original unstable config-
uration (black squares) to the stabilized configuration (red
circles). n indicates the wave number of the mode. Adapted
from [173]. Units are dimensional as in the original paper, to
which the reader may refer for details.

using a basis of Bloch waves, it can be shown that the aux-
iliary matrix YYY in Eqn. (88) is equal to the identity matrix.
When the same perturbation, ε, is applied to any number of
burners, the operator derivative in sector n is either identical
in all perturbed burners, or N0,1 = 0 in the unperturbed burn-
ers. It can be shown that due to Bloch periodicity, the matrix
that defines the auxiliary eigenproblem of the semi-simple
eigenvalue in Eqn. (88) reads [171]

X1 =
〈

p̂+(0),N0,1 p̂(0)
〉
(0) ∑

n∈per.

[
1 exp(i2bn 2π

N )
exp(−i2bn 2π

N ) 1

]
︸ ︷︷ ︸

χχχ

,

(132)

where (0) represents a reference sector. Matrix χχχ is Her-
mitian, therefore its eigenvalues are real. Therefore, re-
gardless the number of the perturbed burners, the phase of
〈p̂+(0),N0,1 p̂(0)〉(0) is the same as that of the eigenvalues
of X1 (modulo phase shift of π if the eigenvalues of χχχ are
negative). The matrix χχχ depends on the distribution pattern
of the perturbed burners only, and it can be argued that the
Bloch wavenumber b is equivalent to the azimuthal mode

order. Hence, ∑n∈per. exp(i2bn 2π

N ) is the second coefficient
of the Fourier transform of the burner arrangement pattern.
Such a first-order splitting theory has analogies with the C2n-
criterion of [273, 274] and the weakly nonlinear analysis
of [277].

The above rationale can be generalized to predict the
first-order eigenvalue drift for different perturbations of the
burners. An interesting case is obtained when two sepa-
rate sets of burners are perturbed in different ways such
that the average FTF perturbation is zero. For these per-
turbations, it can be proven that the eigenvalue splits in op-
posite directions, which is numerically demonstrated in the
MICCA combustor [202, 219] solved by a Helmholtz solver
(Sec. 2.2.3). The eigenvalue trajectories are shown in Fig. 20
for increasing values of the perturbation parameter. Despite
the variation of the eigenvalues being nonlinear, the first-
order theory predicts the two degenerate eigenvalues to split
precisely in opposite directions. It is therefore impossible to
make a certain combustor more stable by applying this type
of perturbation: If the growth rate of one of the split eigen-
values is decreased, as a consequence, the growth rate of the
other split eigenvalue is increased.

10 Weakly nonlinear analysis
Just after the Hopf bifurcation, in the linearly unstable

region, oscillations grow in amplitude and saturate at low
(large) amplitudes in super-(sub-)critical bifurcations. Gen-
erally, it is of interest to (i) identify if the Hopf bifurcation is
super- or sub-critical; and (ii) estimate the amplitude of the
oscillations in the vicinity of the Hopf bifurcation. Weakly
nonlinear analysis is a method to achieve objectives (i) and
(ii) without performing fully nonlinear simulations. (Eigen-
value analysis of a fixed point can only identify when the
Hopf bifurcation occurs.) Weakly nonlinear analysis is a
method based on an asymptotic expansion of the govern-
ing equations with respect to a perturbation parameter in the
vicinity of a marginally stable point. The weakly nonlinear
analysis of fluid systems of [106] was applied and extended
by [181] in thermoacoustics to analyse the subcritical bifur-
cation of a ducted heat source. By weakly nonlinear analy-
sis, the dynamics of the perturbed states are calculated by (i)
applying a slow-manifold reduction with the method of mul-
tiple scale (or, equivalently, the method of averaging); (ii)
expanding the equations at the desired order; (iii) projecting
the equations onto the marginally stable adjoint eigenfunc-
tion. The temporal evolution of the amplitude and frequency
of the oscillation, which are generally obtained by solving
a nonlinear PDE, are reduced to the Stuart-Landau equa-
tion [182, 183], which is a first order ODE. Adjoint methods
play a crucial role at step (iii) of the above procedure, where
the set of inhomogeneous linear equations that stem from the
perturbation expansion is solved by solvability conditions.
This way, the Landau coefficients, which govern the ampli-
tude evolution, are uniquely determined. In a ducted heat
source, Orchini et al. [181] showed that at least a fifth order
expansion is necessary to satisfactorily predict the amplitude
in the bi-stable region of a subcritical thermoacoustic bifur-
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Fig. 20: (a) Pressure eigenfunction of the first plenum-
dominant azimuthal mode of the MICCA combustor com-
puted with a Helmholtz solver. (b) Symmetry breaking per-
turbation pattern under consideration. The FTF of the burn-
ers with the same colours is perturbed by the same amount.
The orange colour represents positive perturbations, whereas
the white colour represents negative perturbations. The av-
erage perturbation to the FTF is zero. (c) Eigenvalue tra-
jectories due to the symmetry breaking perturbation pattern
(b). The star denotes the two-fold semi-simple (degenerate)
eigenvalue; different colours indicate the eigenvalue splitting
due to the symmetry breaking perturbation; cross and plus
symbols denote calculations from adjoint analysis; and black
lines/symbols denote the exact solution. Third-order adjoint
analysis favourably captures the actual eigenvalue splitting.
For the inclination rule, it is not possible to stabilize an an-
nular combustor (at first order) by applying an azimuthal
perturbation with zero average. The units are physical for
a better comparison with the experimental data of [202,219].
Adapted from [171].

cation up to the fold point, as shown in Fig. 21. (Although
not shown, in the supercritical bifurcation only a third order
expansion is sufficient [106].) The effect that stochastic per-
turbations have on thermoacoustic oscillations in subcritical
bifurcations was investigated in [43, 44, 306].

11 Sensitivity of limit cycles: Adjoint Floquet analysis
The calculation of the stability of limit cycles is pro-

vided by Floquet analysis, which is a form of eigenvalue
analysis on the linearized Poincaré map. An adjoint-based
method to calculate the first order sensitivity of the stability
and the period of a limit cycle is proposed.

Fig. 21: Weakly nonlinear analysis at third order (black thick
line), fifth order (red line) and numerical continuation of the
fully nonlinear equations (circles). Solid and dashed lines
indicate stable and unstable solutions, respectively. (a) Bi-
furcation diagram of the amplitude of the oscillations at the
resonant frequency. (b) Frequency shift of the oscillations
with respect to the marginally stable frequency. Adapted
from [181] with permission.

11.1 Floquet analysis
Upon spatial discretization, the nonlinear thermoacous-

tic problem is cast in compact form as a dynamical system

dq
dt

= Lq+N (q), (133)

where q is the state vector, L is the linear part of the equa-
tions, and N (q) is the nonlinearity. Let Q̄ be a T̄ -periodic
solution of (133), such that Q̄(t + T̄ ) = Q̄(t). Robust nu-
merical procedures to compute limit cycles in high dimen-
sional systems can be found in [307–309], among others.
The objective is to investigate the stability of the periodic
solution, Q̄(t), by calculating the evolution of small pertur-
bations on the periodic attractor. The state vector is expanded
as q(t) = Q̄(t)+εy(t), where ε� 1 is the arbitrary perturba-
tion parameter and y(t) is the time-dependent perturbation.
From Floquet theorem [168], the time dependent perturba-

40



tion can be expressed as

y(t) = ˆ̄y(t)exp(σ̄F t), (134)

where ˆ̄y(t+ T̄ ) = ˆ̄y(t), and σ̄F ∈C is the Floquet exponent41.
On introducing the normalized temporal variable t̃ = t/T̄ to
avoid secular effects, the linearized problem around the peri-
odic solution, Q̄, reads

1
T̄

d ˆ̄y
dt̃

+ σ̄F ˆ̄y = L ˆ̄y+J ˆ̄y, (135)

where J = ∂N/∂Q calculated at Q̄ is the (now time-
dependent, periodic) Jacobian. To define the discrete adjoint
operator, a temporal inner product is defined

〈a,b〉 ≡
∫ 1

0
aHb dt̃ (136)

where a and b are generic vectors. By applying a similar pro-
cedure as described in Sec. 3.3, the adjoint Floquet problem,
which is denoted by +, is derived and reads

1
T̄

d ˆ̄y+

dt̃
− σ̄

∗
F ˆ̄y+ = LH ˆ̄y++JH ˆ̄y+, (137)

where ∗ denotes the complex conjugate.

11.2 Floquet-exponent sensitivity
A generic perturbation, εδH, is imposed to the unper-

turbed equations (133) such that the perturbed periodic solu-
tion42 is governed by

1
T

dQ
dt̃

= LQ+N (Q)+ εδH. (138)

By considering a sufficiently small perturbation, εδH, the pe-
riodic variables are linearized as Q= Q̄+εδQ and the period
as T = T̄ +εδT . The evolution of the first-order perturbation
of the base flow is governed by

1
T̄

dδQ
dt̃
−LδQ−JδQ =

δT
T̄ 2

dQ̄
dt̃

+δH. (139)

The Floquet pair is linearized as ŷ = ˆ̄y+ εδŷ and σF = σ̄F +
εδσF . The perturbed Floquet equation becomes

1
T̄

dδŷ
dt̃
− δT

T̄ 2
d ˆ̄y
dt̃

+ σ̄F δŷ+δσF ˆ̄y =

Lδŷ+Jδŷ+
(

∂J
∂Q

δQ
)

ˆ̄y+δĤ, (140)

41µ̄ = exp(σ̄F T̄ ) is the Floquet multiplier. The Floquet exponents are
non-unique because exp(σ̄F T̄ ) = exp(σ̄F T̄ + 2πin), where n is an integer,
whereas the Floquet multipliers µ̄ are unique.

42It is assumed the perturbed periodic solution is still periodic, i.e., it does
not bifurcate to another solution.

where δĤ is a generic small perturbation that acts only on
the Floquet dynamics. To isolate δσF , which is the quantity
that needs to be determined in sensitivity analysis, the adjoint
base-flow is invoked. Its governing equation reads43

1
T̄

dQ+H

dt̃
+Q+HL+Q+HJ+ fH( ˆ̄y+, ˆ̄y) = 0, (141)

where f( ˆ̄y+, ˆ̄y) is a sesquilinear operator defined such that
〈 ˆ̄y+,

(
∂J
∂Q δQ

)
ˆ̄y〉 = 〈f( ˆ̄y+, ˆ̄y),δQ〉. The adjoint initial condi-

tions are defined as ˆ̄y+(0) = 0 and Q+(0) = 0. (Both adjoint
variables are 1-periodic with respect to the normalized time
t̃.) Finally, the first-order drift of the Floquet exponent is
expressed as

δσF =
〈Q+, δT

T̄ 2
dQ̄
dt̃ +δH〉+ 〈 ˆ̄y+, δT

T̄ 2
d ˆ̄y
dt̃ +δĤ〉

〈 ˆ̄y+, ˆ̄y〉 , (142)

where the terms with δT are related to the base-flow sensi-
tivity, whereas the term with δĤ is related to the sensitiv-
ity of the Floquet exponents for a frozen base flow. δT can
be calculated by the Fredholm alternative, which provides a
solvability condition as explained in the next section.

11.3 Period sensitivity
The governing equation of the base-flow perturbation

(139) is a linear inhomogeneous differential equation, which
has a solution if the Fredholm alternative is satisfied, i.e.,
the right-hand side must be orthogonal to the kernel of the
homogeneous adjoint equation. The homogeneous adjoint
equation is provided by (141) by setting f( ˆ̄y+, ˆ̄y) = 0. The
adjoint base-flow solution therefore is a linear combination
of a particular solution, p, and the homogeneous solution, h,
Q+ = Q+

p +Q+
h . The Fredholm alternative provides the first-

order drift in the period due to a small perturbation δH such
that Eqn. (139) is fulfilled. This is mathematically achieved
by projecting Eqn. (140) onto Q+

h , i.e. 〈Q+
h ,

δT
T̄ 2

dQ̄
dt̃ + δH〉 =

0, which implies

δT
T̄ 2 =−〈Q

+
h ,δH〉

〈Q+
h ,

dQ̄
dt̃ 〉

. (143)

When δT is substituted back into (142), the Floquet-
exponent drift is calculated with respect to any linear per-
turbation δH and δĤ. Note that if the base flow is unper-
turbed, i.e. δH = 0, then δT = 0. Equation (142) is the
general equation for the first-order (non-degenerate) Floquet-
exponent drift due to linear perturbations acting on a periodic
attractor both at base-flow and linearized levels.

43The equation can be derived by defining a Lagrangian that constrains
the base flow equations and perturbation Floquet equations. The derivation
is left out for brevity.
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12 Conclusions
One of the objectives of gas turbine manufacturers is

to design linearly stable thermoacoustic systems and make
them operate in safe operating conditions. Thermoacoustic
systems have many parameters but the quantities of inter-
est, for example the unstable modes, are usually only very
few. Calculating how the stability changes because of per-
turbations or modifications to the system is one of the central
problems in thermoacoustics. First, it is shown that adjoint
methods are accurate and versatile design tools for thermoa-
coustics and, in general, multi-physical problems. The ap-
peal of adjoint techniques applied to thermoacoustics is that,
in very few calculations, one can predict accurately how the
growth rate and frequency of thermoacoustic oscillations are
affected either by all possible passive control elements in the
system, or by all possible changes to its design parameters.
The versatility of adjoint methods is shown by tackling a
great variety of problems, which are often encountered in in-
dustrial applications, such as longitudinal and annular com-
bustors modelled with flame responses and reduced-order
models for the flame dynamics. Adjoint methods can be ap-
plied to most of the solution methodologies in thermoacous-
tics: Helmholtz solvers, wave approaches, Galerkin methods
and multiple-scale methods.

Secondly, the concept of intrinsic sensitivity is shown to
reveal physical insight in the active physical mechanism in
thermoacoustics. The method was applied to a dump com-
bustor, the mean flow of which was calculated by large eddy
simulation. The intrinsic sensitivity shows that the hydrody-
namics greatly influences the overall thermoacoustic stabil-
ity’s sensitivity straddling the flame, which means that the
active physical mechanism is due to the Rayleigh criterion.
Intrinsic sensitivity is a general framework, which can be ap-
plied to problems where different physical phenomena are at
play.

Thirdly, it is shown that model and parameter uncertain-
ties can greatly affect the stability calculations. This review
recommends evaluating the uncertainty of stability calcula-
tions to estimate the confidence, or degree of belief, in our
calculations. The probability that combustors are unstable
given uncertainties in the flame transfer functions are calcu-
lated by two adjoint methods. The first is an adjoint Monte-
Carlo method, which is applied to an annular combustor and
a turbulent swirl dump combustor. By implementing the ad-
joint code, the number of nonlinear eigenproblems solved
is reduced by a factor equal to the number of Monte Carlo
samples which, in this case, is 10,000. The second method is
Monte-Carlo free, which is applied to a longitudinal combus-
tor. Adjoint methods enable the calculation of the stability
margin, with which it is possible to evaluate the uncertainty
on the stability for free.

Fourthly, Bloch wave theory can reduce the number of
computations in rotationally symmetric annular combustors
by a factor equal to the number of sectors. An application
of adjoint methods combined with Bloch wave theory is re-
viewed to determine the effect of symmetry-breaking pertur-
bations in an annular combustor (in this case the MICCA
combustor). Because of the inclination rule, which is an-

alytically derived, it is not possible to stabilize an annular
combustor (at first order) by applying a perturbation to the
annulus with zero mean.

Fifthly, the gradient information is embedded in opti-
mization routines to find (i) the optimal placement of acous-
tic dampers to stabilize an unstable annular combustor, and
(ii) the optimal area and length dimensions to design a stable
sector of an annular combustor. Key to the gradient-based
optimization process is the implementation of the adjoint
code, which provides the gradient of the quantity of inter-
est, i.e. the eigenvalue, with respect to the quantities that the
technologist wishes to change.

Finally, moving onward from linear analysis, adjoint
equations are deployed to predict the amplitude of a limit cy-
cle by weakly nonlinear analysis. An adjoint Floquet method
is proposed to calculate the sensitivity of nonlinear periodic
solutions.

The application of adjoint methods to industrial con-
figurations can make a step change in the way that design
is performed. The tools are ready for eigenvalue and lin-
ear analysis, however adjoint equations have great potential
in other applications in thermoacoustics and reacting flows
(Sec. 12.1).

12.1 Current and future directions
• Modelling. To fully take advantage of the versatility and

robustness of adjoint methods, it is important to remind
that the results from adjoint analysis are as good as the
physical model. Indeed, the accuracy of the eigenvalue
drifts predicted by the adjoint-based sensitivity frame-
work depends strongly on the accuracy of the thermoa-
coustic models adopted. Effort to develop accurate ther-
moacoustic models should, of course, be continued, for
example, to include sprays, evaporation and imperfectly
premixed flames of real aero-engines.

• Nonlinearity and unsteadiness. Thermoacoustic sys-
tems can be highly nonlinear and display periodic,
quasi-periodic and chaotic oscillations. Most, but not
all, techniques reviewed in this paper are applied to
eigenvalue sensitivity of fixed points. The proposed
theoretical framework (adjoint Floquet analysis) can be
used to calculate the sensitivity of periodic orbits to pre-
dict the effect of external passive devices or design pa-
rameters, accordingly. Floquet analysis will be neces-
sary in subcritical bifurcations, where the thermoacous-
tic system may have self-sustained large oscillations de-
spite the eigenvalue being stable. When oscillations be-
come chaotic, adjoint methods become notoriously un-
stable because of the butterfly effect. Methods to sta-
bilize the calculation of adjoint systems in chaotic os-
cillations are in constant development. Covariant Lya-
punov analysis [310] and shadowing methods with auto-
matic differentiation [252] offer potential ways to tackle
chaotic thermoacoustic systems.

• Physics-informed data driven methods. Because ther-
moacoustic systems are extremely sensitive to perturba-
tions, the time accurate prediction of their nonlinear evo-
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lution is challenging. To improve the accuracy of design
tools, such as reduced-order models, algorithms from
Bayesian inference and machine learning [298] can be
used to (i) optimally calibrate an uncertain model on the
fly, given data from sensors or flame images; (ii) iden-
tify deficiencies in the model; (iii) assimilate data from
experiments to improve the state estimation to capture
extreme events, such as sudden bifurcations or the oc-
currence of instabilities. Adjoint methods enable the
calculation of the above by statistically constrained opti-
mization [299]. In particular, ad-hoc experimental cam-
paigns should be run to provide machine learning and
data assimilation algorithms with training data, such as
flame images, pressure from sensors, etc.

• Industrial applications. Because adjoint-based tech-
niques are versatile, they can be implemented in in-
dustrial design tools by creating the adjoint of a ther-
moacoustic code. The effort of implementing the ad-
joint code pays off because manufacturers will be able,
among others, to (i) compute the optimal passive change
of the system’s parameters and boundary conditions
given an operating condition; (ii) find the optimal set of
operating conditions to make the system work in the sta-
ble regime given some constraints, such as the geometry
(constrained optimization); or calculate the optimal pas-
sive feedback mechanism in an elaborate thermoacous-
tic network and position to suppress a thermoacoustic
oscillation; and (iii) evaluate the uncertainty of design
tools to better inform the design decision process. Fur-
thermore, adjoint methods can help identify the optimal
location where to place a sensor and actuator in active
feedback control [205, 210, 311]. The sensor should be
placed where the direct eigenfunction has largest mag-
nitude, the actuator should be placed where the adjoint
eigenfunction is greatest. New strategies through fuel
injection can be devised utilizing the adjoint flame field.

Adjoint methods help design safer, quieter and cleaner com-
bustors both for power generation and propulsion.
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[239] Mennicken, R., and Möller, M., 2003. Non-self-
adjoint boundary eigenvalue problems, Vol. 192. Gulf
Professional Publishing.

[240] Mehrmann, V., and Voss, H., 2004. “Nonlinear eigen-
value problems: A challenge for modern eigenvalue
methods”. GAMM Mitteilungen, 27(2), pp. 121–152.

[241] Betcke, T., Higham, N. J., Mehrmann, V., Schröder,
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A Local Smith form of nonlinear eigenproblems

Matrix N(σ) can be decomposed around an eigenvalue
σ0 in local Smith form as

P(σ)N(σ)Q(σ) = D(σ), (144)
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where P and Q are invertible analytic matrix functions, and
D is an analytic diagonal matrix of the form

D(σ) =


(σ−σ0)

m1

. . .
(σ−σ0)

mg

I
0d×d

 , (145)

where d = N− rank(N(σ)), with N being the dimension of
the vector space. Matrix D is the local Smith form of N at σ0;
m1, . . . ,mg are the partial multiplicities; the number of partial
multiplicities is the geometric multiplicity, g, and ∑

g
i=1 mi is

the algebraic multiplicity. An eigenvalue is semi-simple if
mi = 1 with i = 1, . . . ,g, which becomes simple if g = 1.
Otherwise the eigenvalue is defective. The j-th column of Q
is the eigenvector associated with the j-th diagonal element
of D, the root of which is the eigenvalue. The local Smith
decomposition generalizes the modal decomposition for de-
fective NEPs.

B More on adjoint equations
Some extra remarks on adjoint equations are described

for the reader who wishes to delve more into the matter.

B.1 Adjoint equations of nonlinear time-dependent sys-
tems

This review paper is mostly focused on frequency-based
approaches. For completeness, the adjoint equations of a
generic nonlinear dynamical system are derived and dis-
cussed.

Let x ∈ RN be the state vector (e.g., fluid variables at
grid points or nodes, etc.); p ∈ RM be the parameters’ vec-
tor (e.g., boundary shape, Reynolds number, Flame Transfer
Functions, geometric parameters, etc.); and J (x,p) be the
cost functional such that J : RN ×RM → R. The state vec-
tor is the solution of a system of partial differential equations
with relevant initial and boundary conditions. The spatial
derivatives are numerically discretized and encapsulated in
the operator F. The time is continuous. In so doing, the dy-
namical system is governed by a set of ordinary differential
equations, which can be cast as

F(x, ẋ,p, t) = 0, (146)
g(x(0),p) = 0, (147)

where F is a nonlinear implicit operator that depends on
the parameters p, and g is a nonlinear function that sets the
initial conditions.

The objective of sensitivity analysis is to calculate the
gradient of the quantity of interest, J , with respect to the

parameters

dJ (x,p)
dp

=
∂J
∂p

+
∂J
∂x

dx
dp

. (148)

A Lagrangian functional is defined

L ≡ J (x,p)−〈q+,F(x, ẋ,p, t)〉−µµµT g(x(0),p), (149)

where q+ ∈ RN and µµµ ∈ RN are the as-yet-unknown La-
grangian multipliers; ẋ≡ dx

dt ; and

〈a,b〉 ≡ 1
T

∫ T

0
aT b dt (150)

is an inner product, where a and b are arbitrary vectors in
RN . Although not necessary (further simplifications follow
in the next sections), the cost functional is considered in the
form of a time average over [0,T ]

J (x,p) =
1
T

∫ T

0
J̃ (x,p)dt. (151)

Because of the constraints (146)-(147), it follows that

dL
dp

=
dJ
dp

. (152)

Therefore, the total derivative of the Lagrangian reads

dL
dp

=
1
T

∫ T

0

(
∂J̃
∂p

+
∂J̃
∂x

dx
dp

)
dt+

− 1
T

∫ T

0
q+T

(
∂F
∂p

+
∂F
∂x

dx
dp

+
∂F
∂ẋ

dẋ
dp

)
dt+

−µµµT
(

∂g
∂p

+
∂g

∂x(0)
dx(0)

dp

)
, (153)

which, after some re-arrangement and integration by parts,
reads

dL
dp

=
1
T

∫ T

0

∂J̃
∂p

dt+

− 1
T

∫ T

0

(
− ∂J̃

∂x
+q+T ∂F

∂x
−

q+T d
dt

(
∂F
∂ẋ

)
− dq+T

dt
∂F
∂ẋ

)dx
dp

dt+

− 1
T

∫ T

0
q+T ∂F

∂p
dt

− 1
T

[
q+T ∂F

∂ẋ
dx
dp

]T

0
−µµµT

(
∂g
∂p

+
∂g

∂x(0)
dx(0)

dp

)
. (154)
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The objective is to calculate the gradient information dL
dp

without calculating dx
dp for any t ∈ [0,T ]. By defining the

following conditions

q+T
(T ) = 0, (155)

µµµT =
1
T

q+T
(0)

∂F
∂ẋ

∣∣∣
0

(
∂g

∂x(0)

)−1

, (156)

∂J̃
∂x

= q+T ∂F
∂x
−q+T d

dt

(
∂F
∂ẋ

)
− dq+T

dt
∂F
∂ẋ

(157)

the sensitivity of the quantity of interest can be calculated
from (154) as

dL
dp

=
dJ
dp

=
1
T

∫ T

0

(
∂J̃
∂p
−q+T ∂F

∂p

)
dt+

− 1
T

q+T
(0)

∂F
∂ẋ

∣∣∣
0

(
∂g

∂x(0)

)−1
∂g
∂p

. (158)

B.1.1 Simplifications
In many cases, the nonlinear dynamical system is ex-

plicit

F(x, ẋ,p, t) = ẋ− F̃(x,p, t), (159)

and initial conditions of the form of

g(x(0),p) = x(0)−x0 = 0. (160)

The adjoint system simplifies to

q+T
(T ) = 0, (161)

µµµT =
1
T

q+T
(0), (162)

∂J̃
∂x

=−q+T ∂F̃
∂x
− dq+T

dt
. (163)

If the quantity of interest is not an integral quantity but is a
function evaluated only at the end of a time window, T , i.e.
J = J (x(T ),p), the adjoint system further simplifies to

q+T
(T ) =

∂J
∂x(T )

, (164)

µµµT =
1
T

q+T
(0), (165)

0 = q+T ∂F̃
∂x

+
dq+T

dt
. (166)

The adjoint equation (166) becomes homogeneous and the
gradient of the quantity of interest becomes the initial con-
dition44 (at t = T ) for the adjoint equations. Finally, if the

44Sometimes referred to as the terminal condition.

parameters of interest are the initial conditions p = x0, then
(158) simplifies to

dL
dx0

=
dJ
dx0

=
∂J (T )

∂x0
− 1

T
q+T

(0). (167)

A necessary condition for optimality is that the Lagrangian is
stationary with respect to first-order perturbations, i.e. dL

dx0
=

0.

B.2 More remarks on adjoint equations
• Labels. In functional analysis and linear algebra, ad-

joint operators are also known as dual or back projection
operators;
• Adjoint models are anti-causal. In the time domain,

the adjoint system is anti-causal because it evolves
backward in time. This is because the initial condition
is prescribed at the end of the integration, t = T (e.g.,
Eqn. (164)), i.e. the adjoint variables carry information
on the sensitivity of an output to inputs. Adjoint
equations are always linear by definition, i.e. they are
dual to the tangent equation. They are defined with
respect to the Jacobian of the direct system, which,
in nonlinear systems, depends on the direct solution
(which can be stored or check-pointed to save storage).
In the frequency domain, the anti-causality of the
adjoint equations results in a modal transformation
with opposite sign, i.e. q(x, t) = q̂(x)exp(σt) and
q+(x, t) = q̂+(x)exp(−σ∗t).

• Adjoint codes are reverse differentiation codes. The
adjoint code can be regarded as a case of differen-
tiation algorithms in reverse mode. Some example
of direct/adjoint algorithms are: Truncation/zero
padding, matrix multiplication/conjugate-transpose
matrix multiplication, derivative/negative derivative,
convolution/cross-correlation;

• Adjoint solutions are Lagrange multipliers. In
constrained optimization, the adjoint solutions are the
Lagrange multipliers of the governing equations in the
constrained functional (Eqn. (149)). Thus, the adjoint
variables provide the gradient of the quantity of interest,
or cost functional, with respect to the variables of the
system. The gradient information can be combined with
gradient-based optimization algorithms (e.g., steepest
descent/ascent, conjugate gradient, etc.);

• Adjoint models are not physical models per se. Al-
though adjoint solutions have a physical interpretation
as Lagrange multipliers in constrained optimization,
adjoint equations can be defined without any cost
functional: Only a bilinear form is required (and, of
course, the identification of the correct spaces in the
continuous approach). When working in complex
spaces, instead of a bilinear form a sesquilinear form
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that defines an inner product is commonly used45.
Therefore, adjoint equations do depend on the definition
of the bilinear/sesquilinear form, which means that an
adjoint model is not a physical model per se46. See
Sec. 3.2 for more details;

• Adjoint solutions enforce solvability conditions. In
linear algebra, for an inhomogeneous non-invertible
linear system to have a solution, the known vector has
to be orthogonal to the the solution of the homogeneous
adjoint system (solvability condition, or compatibility
condition, or Fredholm alternative);

• Adjoint solutions and Green’s functions. The i-th
component of the adjoint solution is the value of the cost
functional when the direct solution is the i-th Green’s
function;

• Testing an adjoint code. In the time domain, the ad-
joint system must pass the dot-product test. This test
requires the tangent equation, or a finite-difference ap-
proximation of it, and checks that at each time step
q+(t) · q(t) = constant ± tol, where tol is a numerical
tolerance, as it ought to be47. In the frequency domain,
the first test is to check that the spectrum of the adjoint
system is the complex conjugate of the spectrum of the
original system. The second test is to check that the
∂N/∂σ-orthogonality condition, or the bi-orthogonality
conditions of linear eigenproblems, hold. Both in time
and frequency domains, the adjoint code must pass the
Taylor test. With respect to a parameter, p0, that is per-
turbed as p1 = p0 + ε

J (p1) = J (p0)+ ε
dJ
d p

∣∣∣
p0
+O(ε2), (168)

the test is passed if

J (p1)− J (p0)− ε
dJ
d p

∣∣∣
p0

ε
∼ O(ε), (169)

where J (p1) is calculated by re-running the code, and
dJ
d p

∣∣∣
p0

is calculated by the adjoint code. In other words,

the left hand side of Eqn. (169), which is the relative
error, is a straight line with respect to the perturbation,
ε. The same test applies to the eigenvalue, σ, as the
quantity of interest. Higher order adjoint codes can
be checked by truncating the Taylor expansion (168) to

45However, self-adjointness can only be defined with an inner product.
Some systems may be self-adjoint with respect to an inner product but may
not be with respect to other inner products.

46This does not imply that no physical information can be extracted from
the adjoint model.

47By (i) projecting the direct equations onto the adjoint function and the
adjoint equations onto the direct function, and (ii) combining these two pro-
jections; it follows that d(q+(t) ·q(t))/dt = 0.

higher order. An example of a successful Taylor test for
first- and second-order adjoint eigenvalue perturbations
is shown in Fig. 22.

To delve into the mathematics of adjoint equations, the
following readings are suggested: [256, 257, 312–319].

Fig. 22: An example of a successful Taylor test for first (cir-
cles) and second-order (squares) adjoint eigenvalue perturba-
tions in a 19-burner annular combustor. Data is nondimen-
sionalized by the modulus of the unperturbed eigenvalue.
Reprinted from [165] with permission from Elsevier.

B.3 Regularity of the continuous adjoint function in
strong and weak forms

Given two Banach spaces B1 and B2 and the linear
mapping T : B1→ B2, the problem is to find x ∈ B1 such that
T (x) = f for a given f ∈ B2. In particular, the calculation
of the sensitivity of the solution x is the goal. An adjoint
method can be used to obtain such a sensitivity. Adjoint
methods require the introduction of the adjoint of the
operator T , which is formally defined as:

Given two Banach spaces B1, B2 and their
dual space B+

1 , B+
2 , the adjoint (also called dual)

of the operator T : B1 → B2 is the mapping be-
tween the dual spaces T+ : B+

2 → B+
1 satisfying

∀(x,y+) ∈ (B1,B+
2 ) : 〈y+,T (x)〉B+

2 ,B2
= 〈T+(y+),x〉B+

1 ,B1

with 〈·, ·〉 denoting the duality pairing.
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This definition is then used to introduce the adjoint
equation:

Find y+ ∈ B+
2 such that T+(y+) = g with g carefully

chosen to obtain the desired sensitivity.

Because of the definition of the adjoint of an opera-
tor, the adjoint equation is an equality in B+

1 . This space
might lack sufficient regularity to make a numerical estima-
tion very difficult. For example, if T : H2(Ω) → L2(Ω),
then T+ : L2(Ω) → H−2(Ω) and an adjoint equation has
to be interpreted as an equality in H−2(Ω); where Ω is a
bounded open domain in Rn, Hk(Ω) is a Sobolev space of
degree k equipped with 2-norm; and L2 is the space of square
Lebesgue integrable functions. In principle, the adjoint equa-
tion must be solved as an equality in the distribution sense.
On the other hand, when the direct problem is studied in
weak formulation, its adjoint equations are obtained simply
by interchanging the arguments of the sesquilinear form (trial
and test functions) that defines the direct equation. The ad-
joint function is the test function, for example in finite el-
ement methods. Consequently, the definition of its adjoint
does not require the introduction of an adjoint operator as
defined above. Therefore, in problems formulated in weak
form, the direct and adjoint solutions have the same degree
of regularity, meaning that the adjoint solution does not live
in the dual space of the direct solution.

C An adjoint-based interpretation of thermoacoustic
stability criteria
The same assumptions made in the subsection

“Helmholtz equation” (Sec. 2.2.3) are invoked here. The di-
rect and adjoint eigenvectors are decomposed as

[u(x, t), p(x, t)] = [û, p̂]exp(σt), (170)

[u+(x, t), p+(x, t)] = [û+, p̂+]exp(−σ
∗t). (171)

With these modal transformations, in the time domain, the
direct and adjoint eigenvectors rotate in the same direction
in the complex plane, i.e., their angular frequencies have the
same sign (and are equal to each other). The nondimensional
momentum and energy equations for one-dimensional acous-
tics read

σû+
∂ p̂
∂x

= 0, (172)

σ p̂+
∂û
∂x

= ˆ̇q. (173)

The heat-release rate, ˆ̇q, is assumed to be in feedback with
the state variables so that the problem is closed. For simplic-
ity, ρ̄ = 1, γ p̄ = 1 and the factor (γ−1) was encapsulated in
ˆ̇q. The continuous adjoint equations, which are defined with

respect to a sesquilinear form 〈 f ,g〉 ≡ ∫ 1
0 f ∗g dx, read

−σ
∗û++

∂p̂+

∂x
= 0, (174)

−σ
∗ p̂++

∂û+

∂x
= 0. (175)

The heat release rate is perturbed as ˆ̇q + δ ˆ̇q, where |δ ˆ̇q|∼
O(ε). From Eqn. (101), the first-order eigenvalue drift reads

σ1 =
〈

p̂+,δ ˆ̇q
〉
, (176)

where the denominator of (101) was normalized to unity. If
the heat source is localized at x = x f (with a Dirac delta),
then the eigenvalue drift is a function of x f

σ1 = p̂∗+f δ ˆ̇q f , (177)

which in polar representation reads

σ1 = |p̂∗+f ||δ ˆ̇q f |exp(−iθp̂+f
)exp(iθ

δ ˆ̇q), (178)

where

θp̂+f
≡ atan2(Im(p̂+f ),Re(p̂+f )), (179)

θ
δ ˆ̇q ≡ atan2(Im(δ ˆ̇q),Re(δ ˆ̇q)) (180)

are the arguments of the adjoint pressure and heat-release
rate perturbation, respectively, The real part of σ1 provides
the growth-rate drift, i.e., the change in the linear stability

Re(σ1) = |p̂∗+f ||δ ˆ̇q f |cos(θ
δ ˆ̇q−θp̂+f

). (181)

Equation (181) has a physical interpretation. Assuming that
δ ˆ̇q f is imposed where p̂+f 6= 0, first, Re(σ1) is maximum
when θ

δ ˆ̇q − θp̂+f
= ±2(k− 1)π, where k is a positive inte-

ger. This physically signifies that when a perturbation to the
heat release is in phase with the adjoint pressure, the sys-
tem’s stability is maximally destabilized. Second, Re(σ1)
is minimum when θ

δ ˆ̇q − θp̂+f
= ±(k + 1)π. This physi-

cally signifies that when a perturbation to the heat release
is in antiphase with the adjoint pressure, the system’s sta-
bility is maximally stabilized. Third, Re(σ1) is zero when
θ

δ ˆ̇q − θ p̂+f
= ±(2k + 1)π/2. This physically signifies that

when a perturbation to the heat release is in quadrature with
the adjoint pressure, the system’s stability is unaffected.

(Note that we could have used the adjoint modal trans-
formation and sesquilinear form without the complex conju-
gate (Sec. 3.2) because the complex conjugate is not manda-
tory in the definition of the adjoint problem for the calcula-
tion of the eigenvalue drift. The results discussed would still
be valid by taking into account that, without complex conju-
gate, the adjoint eigenvector rotates in time in the direction
opposite the direct eigenvector.)
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