24 research outputs found

    Model based methods for the control and planning of running robots

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent University, 2009.Thesis (Master's) -- Bilkent University, 2009.Includes bibliographical references leaves 115-122.The Spring-Loaded Inverted Pendulum (SLIP) model has long been established as an effective and accurate descriptive model for running animals of widely differing sizes and morphologies. Not surprisingly, the ability of such a simple spring-mass model to capture the essence of running motivated several hopping robot designs as well as the use of the SLIP model as a control target for more complex legged robot morphologies. Further research on the SLIP model led to the discovery of several analytic approximations to its normally nonintegrable dynamics. However, these approximations mostly focus on steady-state running with symmetric trajectories due to their linearization of gravitational effects, an assumption that is quickly violated for locomotion on more complex terrain wherein transient, non-symmetric trajectories dominate. In the first part of the thesis , we introduce a novel gravity correction scheme that extends on one of the more recent analytic approximations to the SLIP dynamics and achieves good accuracy even for highly non-symmetric trajectories. Our approach is based on incorporating the total effect of gravity on the angular momentum throughout a single stance phase and allows us to preserve the analytic simplicity of the approximation to support research on reactive footstep planning for dynamiclegged locomotion. We compare the performance of our method with two other existing analytic approximations by simulation and show that it outperforms them for most physically realistic non-symmetric SLIP trajectories while maintaining the same accuracy for symmetric trajectories. Additionally, this part of the thesis continues with analytical approximations for tunable stiffness control of the SLIP model and their motion prediction performance analysis. Similarly, we show performance improvement for the variable stiffness approximation with gravity correction method. Besides this, we illustrate a possible usage of approximate stance maps for the controlling of the SLIP model. Furthermore, the main driving force behind research on legged robots has always been their potential for high performance locomotion on rough terrain and the outdoors. Nevertheless, most existing control algorithms for such robots either make rigid assumptions about their environments (e.g flat ground), or rely on kinematic planning with very low speeds. Moreover, the traditional separation of planning from control often has negative impact on the robustness of the system against model uncertainty and environment noise. In the second part of the thesis, we introduce a new method for dynamic, fully reactive footstep planning for a simplified planar spring-mass hopper, a frequently used dynamic model for running behaviors. Our approach is based on a careful characterization of the model dynamics and an associated deadbeat controller, used within a sequential composition framework. This yields a purely reactive controller with a very large, nearly global domain of attraction that requires no explicit replanning during execution. Finally, we use a simplified hopper in simulation to illustrate the performance of the planner under different rough terrain scenarios and show that it is robust to both model uncertainty and measurement noise.Arslan, ÖmürM.S

    Motion Planning and Control of Dynamic Humanoid Locomotion

    Get PDF
    Inspired by human, humanoid robots has the potential to become a general-purpose platform that lives along with human. Due to the technological advances in many field, such as actuation, sensing, control and intelligence, it finally enables humanoid robots to possess human comparable capabilities. However, humanoid locomotion is still a challenging research field. The large number of degree of freedom structure makes the system difficult to coordinate online. The presence of various contact constraints and the hybrid nature of locomotion tasks make the planning a harder problem to solve. Template model anchoring approach has been adopted to bridge the gap between simple model behavior and the whole-body motion of humanoid robot. Control policies are first developed for simple template models like Linear Inverted Pendulum Model (LIPM) or Spring Loaded Inverted Pendulum(SLIP), the result controlled behaviors are then been mapped to the whole-body motion of humanoid robot through optimization-based task-space control strategies. Whole-body humanoid control framework has been verified on various contact situations such as unknown uneven terrain, multi-contact scenarios and moving platform and shows its generality and versatility. For walking motion, existing Model Predictive Control approach based on LIPM has been extended to enable the robot to walk without any reference foot placement anchoring. It is kind of discrete version of \u201cwalking without thinking\u201d. As a result, the robot could achieve versatile locomotion modes such as automatic foot placement with single reference velocity command, reactive stepping under large external disturbances, guided walking with small constant external pushing forces, robust walking on unknown uneven terrain, reactive stepping in place when blocked by external barrier. As an extension of this proposed framework, also to increase the push recovery capability of the humanoid robot, two new configurations have been proposed to enable the robot to perform cross-step motions. For more dynamic hopping and running motion, SLIP model has been chosen as the template model. Different from traditional model-based analytical approach, a data-driven approach has been proposed to encode the dynamics of the this model. A deep neural network is trained offline with a large amount of simulation data based on the SLIP model to learn its dynamics. The trained network is applied online to generate reference foot placements for the humanoid robot. Simulations have been performed to evaluate the effectiveness of the proposed approach in generating bio-inspired and robust running motions. The method proposed based on 2D SLIP model can be generalized to 3D SLIP model and the extension has been briefly mentioned at the end

    Bridging Vision and Dynamic Legged Locomotion

    Get PDF
    Legged robots have demonstrated remarkable advances regarding robustness and versatility in the past decades. The questions that need to be addressed in this field are increasingly focusing on reasoning about the environment and autonomy rather than locomotion only. To answer some of these questions visual information is essential. If a robot has information about the terrain it can plan and take preventive actions against potential risks. However, building a model of the terrain is often computationally costly, mainly because of the dense nature of visual data. On top of the mapping problem, robots need feasible body trajectories and contact sequences to traverse the terrain safely, which may also require heavy computations. This computational cost has limited the use of visual feedback to contexts that guarantee (quasi-) static stability, or resort to planning schemes where contact sequences and body trajectories are computed before starting to execute motions. In this thesis we propose a set of algorithms that reduces the gap between visual processing and dynamic locomotion. We use machine learning to speed up visual data processing and model predictive control to achieve locomotion robustness. In particular, we devise a novel foothold adaptation strategy that uses a map of the terrain built from on-board vision sensors. This map is sent to a foothold classifier based on a convolutional neural network that allows the robot to adjust the landing position of the feet in a fast and continuous fashion. We then use the convolutional neural network-based classifier to provide safe future contact sequences to a model predictive controller that optimizes target ground reaction forces in order to track a desired center of mass trajectory. We perform simulations and experiments on the hydraulic quadruped robots HyQ and HyQReal. For all experiments the contact sequences, the foothold adaptations, the control inputs and the map are computed and processed entirely on-board. The various tests show that the robot is able to leverage the visual terrain information to handle complex scenarios in a safe, robust and reliable manner

    Online Optimization-based Gait Adaptation of Quadruped Robot Locomotion

    Get PDF
    Quadruped robots demonstrated extensive capabilities of traversing complex and unstructured environments. Optimization-based techniques gave a relevant impulse to the research on legged locomotion. Indeed, by designing the cost function and the constraints, we can guarantee the feasibility of a motion and impose high-level locomotion tasks, e.g., tracking of a reference velocity. This allows one to have a generic planning approach without the need to tailor a specific motion for each terrain, as in the heuristic case. In this context, Model Predictive Control (MPC) can compensate for model inaccuracies and external disturbances, thanks to the high-frequency replanning. The main objective of this dissertation is to develop a Nonlinear MPC (NMPC)-based locomotion framework for quadruped robots. The aim is to obtain an algorithm which can be extended to different robots and gaits; in addition, I sought to remove some assumptions generally done in the literature, e.g., heuristic reference generator and user-defined gait sequence. The starting point of my work is the definition of the Optimal Control Problem to generate feasible trajectories for the Center of Mass. It is descriptive enough to capture the linear and angular dynamics of the robot as a whole. A simplified model (Single Rigid Body Dynamics model) is used for the system dynamics, while a novel cost term maximizes leg mobility to improve robustness in the presence of nonflat terrain. In addition, to test the approach on the real robot, I dedicated particular effort to implementing both a heuristic reference generator and an interface for the controller, and integrating them into the controller framework developed previously by other team members. As a second contribution of my work, I extended the locomotion framework to deal with a trot gait. In particular, I generalized the reference generator to be based on optimization. Exploiting the Linear Inverted Pendulum model, this new module can deal with the underactuation of the trot when only two legs are in contact with the ground, endowing the NMPC with physically informed reference trajectories to be tracked. In addition, the reference velocities are used to correct the heuristic footholds, obtaining contact locations coherent with the motion of the base, even though they are not directly optimized. The model used by the NMPC receives as input the gait sequence, thus with the last part of my work I developed an online multi-contact planner and integrated it into the MPC framework. Using a machine learning approach, the planner computes the best feasible option, even in complex environments, in a few milliseconds, by ranking online a set of discrete options for footholds, i.e., which leg to move and where to step. To train the network, I designed a novel function, evaluated offline, which considers the value of the cost of the NMPC and robustness/stability metrics for each option. These methods have been validated with simulations and experiments over the three years. I tested the NMPC on the Hydraulically actuated Quadruped robot (HyQ) of the IIT’s Dynamic Legged Systems lab, performing omni-directional motions on flat terrain and stepping on a pallet (both static and relocated during the motion) with a crawl gait. The trajectory replanning is performed at high-frequency, and visual information of the terrain is included to traverse uneven terrain. A Unitree Aliengo quadruped robot is used to execute experiments with the trot gait. The optimization-based reference generator allows the robot to reach a fixed goal and recover from external pushes without modifying the structure of the NMPC. Finally, simulations with the Solo robot are performed to validate the neural network-based contact planning. The robot successfully traverses complex scenarios, e.g., stepping stones, with both walk and trot gaits, choosing the footholds online. The achieved results improved the robustness and the performance of the quadruped locomotion. High-frequency replanning, dealing with a fixed goal, recovering after a push, and the automatic selection of footholds could help the robots to accomplish important tasks for the humans, for example, providing support in a disaster response scenario or inspecting an unknown environment. In the future, the contact planning will be transferred to the real hardware. Possible developments foresee the optimization of the gait timings, i.e., stance and swing duration, and a framework which allows the automatic transition between gaits

    An Empirical Approach for the Agile Control of Dynamic Legged Robot

    Get PDF

    Experimental Methods To Support Robot Behavior Design For Legged Locomotion On Granular Media

    Get PDF
    Most models of legged locomotion assume a rigid ground contact, but this is not a reasonable assumption for robots in unstructured, outdoor environments, and especially not for field robots in dry desert environments. Locomotion on sand, a highly dissipative substrate, presents the additional challenge of a high energetic cost of transport. Many legged robots can be adapted for desert locomotion by simple morphological changes like increasing foot size or gearing down the motors. However, the Minitaur robot has direct-drive (no gearbox) legs which are sensitive enough to measure ground properties of interest to geoscientists, and its legs would lose their sensitivity if they were geared down or the footsize increased substantially. This thesis has two main contributions. First, a controller for jumping on sand with a direct-drive robot that saves significant energy in comparison to a nominal compression-extension Raibert-style controller without sacrificing jump height. This controller was developed by examining the complex interaction between the jumping leg and the ground, and devising a force to add to the leg controller which will push the robot’s foot into a more favorable state that does not transfer as much energy to the ground. The second contribution is a ground emulator robot which can be programmed to exert ground force functions of arbitrary shape. With the ground emulator, it is possible for a robot on a linear rail to jump dozens of times per experiment, whereas traditional experiments on granular media would require the ground to be reset between individual jumps. Results from the simulation experiments used to develop the controller and the ground emulator experiments used to test it on a physical robot leg are validated with experiments on a prepared granular media bed. Finally, the contributions of this thesis are contextualized in a broader project of building explainable artificially intelligent systems by composing robust, mostly reactive controllers

    Reachability and Real-Time Actuation Strategies for the Active SLIP Model

    Get PDF
    Running and hopping follow similar patterns for different animals, independent of the number of legs employed. An aerial phase alternates with a ground contact phase, during which the center of mass moves as if a spring were compressed and then extended to recover stored elastic energy. Hence, consisting of a point mass mounted on a massless spring leg, the Spring Loaded Inverted Pendulum (SLIP) is a prevalent model for analyzing running and hopping. In this work we consider an actuated version of the SLIP model, with a series elastic actuator added to the leg, serving the purposes of adding/removing energy to/from the system and of modifying dynamics during stance, toward achieving non-steady locomotion on varying terrain. While the SLIP model has been a topic of research in legged locomotion for several decades, studies on the effect of actuation on the system's behavior are still not complete.The goal of this thesis is to explore how a series elastic actuator applied to the SLIP model's leg can change the system's dynamics. This, in turn, enables a variety of long-term planning strategies for using limited footholds and design non-steady gaits while simultaneously recovering from unexpected perturbations, both sensorial and due to a limited knowledge of the terrain profile.We principally investigate how, through actuation, we can solve partially or completely the system's equations of motion, to enforce a desired trajectory and reach a desired state. We also determine the reachable state space of the model using several different actuation strategies, investigating the variation of the reachable set with respect to particular actuator motions and providing relationships between local actuator displacements throughout stance and location of the reached apex state. We then propose a control strategy based on graphical and numerical studies of the reachability space to drive the system to a desired state, with the ability to reduce the effects of sensing errors and disturbances happening at landing as well as during ground contact
    corecore