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Online Hybrid Motion Planning for Dyadic
Collaborative Manipulation via Bilevel Optimization

Theodoros Stouraitis*®, Student Member, IEEE, Iordanis Chatzinikolaidis*, Student Member, IEEE,
Michael Gienger®, Member, IEEE, and Sethu Vijayakumar*®

Abstract—Effective collaboration is based on online adaptation
of one’s own actions to the actions of their partner. This article
provides a principled formalism to address online adaptation
in joint planning problems such as Dyadic collaborative Ma-
nipulation (DcM) scenarios. We propose an efficient bilevel for-
mulation which combines graph search methods with trajectory
optimization, enabling robotic agents to adapt their policy on-
the-fly in accordance to changes of the dyadic task. This method
is the first to empower agents with the ability to plan online
in hybrid spaces; optimizing over discrete contact locations,
contact sequence patterns, continuous trajectories, and force
profiles for co-manipulation tasks. This is particularly important
in large object co-manipulation that requires changes of grasp-
holds and plan adaptation. We demonstrate in simulation and
with robot experiments the efficacy of the bilevel optimization
by investigating the effect of robot policy changes in response to
real-time alterations of the dyadic goals, eminent grasp switches,
as well as optimal dyadic interactions to realize the joint task.

Index Terms—Physical Human-Robot Interaction, Optimiza-
tion and Optimal Control, Manipulation Planning, Dual Arm
Manipulation

I. INTRODUCTION

ITH Dyadic collaborative Manipulation (DcM) we
W refer to a set of two individuals jointly manipulating an
object, as shown in[Fig. T] The two individuals partner together
to form a distributed system, augmenting their manipulation
abilities. Such individuals can be either humans or robots. In
scenarios where both individuals are humans, the collaboration
is natural as we humans are adept at co-manipulation. One key
element is our ability to understand our partner’s intentions
and adapt our actions accordingly. A second central skill is our
ability to generate sequential manipulation plans. Nevertheless,
our understanding of the mechanisms of joint action and
sequential decision making are still subject of research.

Early work by Sheridan identified eight core challenges
of human-robot communication, with two of them being: (i)
the need to acquaint both humans and robots with models
of their partners, and (ii) the need to regulate the interaction
of distributed decision-making systems, typically referred as
mixed initiative systems. Ajoudani et al. summarized the
strategies used to equip robots with interaction capabilities and
pinpointed that research on human-robot interaction models is
still at its infancy. In this work we focus on how a robot policy
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Fig. 1. DcM scenario which requires contact change with the left end-effector.

can be partner aware and flexible towards complying with the
requirements of DcM scenarios.

DcM scenarios demand a broad range of manipulation skills
from both participants. The secret behind humans’ remark-
able manipulation skills, is our competence in control and
prediction of contact events []5[] In this article, we address
co-manipulation scenarios that involve multiple changes of
contact, which is the crux of sequential manipulation [6]].

As a typical DcM example, consider a robot transporting
a large object with a human as shown in During
the task execution shown in there are instances in
which the current contact configuration is not sufficient for
the continuation of the task, e.g. rotating the object upside-
down (Fig. 2A to [Fig. 2|G). To avoid such deadlocks, both
the human and the robot should anticipate the object’s future
state and change their contact locations accordingly, as shown
in [Fig: 2B and [Fig. 2PD. As illustrated in [Fig. 2E and [Fig. 2G,
contact adjustments are crucial, as they result in failure or
success of the task. Further, actions like contact changes must
comply with the partner’s actions to jointly balance the object.

Joint planning in DcM scenarios is extremely challenging
and requires solution of the following four complex problems:

1) Partner’s intention estimation: An agent can only con-
tribute to the performance of the dyad, if an estimation
of the partner’s intention can be obtained.

2) Joint action space planning: As the two individuals act
upon the same object their actions need to be coordinated
with respect to the critical aspects of the task, e.g.
balancing the object in collaboration with the partner.
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Success

Fig. 2. Different action paths to collaboratively manipulate the object from
the initial pose (A) to the goal pose (G). The tree illustration has two branches.
The left branch (A-B-C-E), that does not involve any change of grasp from
the robot side and results in an object drop. The right branch (A-B-D-F-G),
where the robot changes grasp-hold at (D) after the human partner changed
grasp-hold at (B), to successfully jointly rotate the object to the goal (G).

3) Online motion plan generation: Since the human partner’s
behavior is changing—i.e. non-stationary—a collabora-
tive agent needs to update its own action plans on-the-fly
according to the current goal and state of the interaction.

4) Agent’s hybrid policy: The agent’s repertoire of actions
needs to be sufficiently rich to participate in DcM tasks.
Such actions belong to a hybrid space of both continuous
and discrete quantities, like forces and contact changes.

In this article we address the last three points with a novel
bilevel optimization formulation—where a continuous opti-
mization problem is embedded into a discrete one. We couple
informed-graph-search methods and trajectory optimization to
efficiently compute online hybrid motions with high fidelity.
The resulting motion plans can be updated on-the-fly and
incorporate both geometrical and physical couplings between
the individuals of the dyad. Partner’s intentions are represented
as task space goals and here we assume that the intentions can
be predicted. The partner’s policy is abstracted as task space
wrenches, which enables us to model joint manipulation. The
proposed method enables robots to generate on-the-fly joint
action policies that are partner-aware and can benefit from the
breadth of the hybrid action space.

The contributions of this article can be summarized as:

1) Partner-aware dyadic planning formalism: We extend
the joint planning formalism—introduced in our previous
work [[7]—to non-stationary partner behaviors. Using this, the
problem of finding the appropriate actions to co-manipulate
the object can be addressed given an estimate of the partner’s
variable intentions. This formalism serves as a principled basis
for the development of partner-aware joint-action method.

2) Bilevel computational formulation: Our bilevel opti-
mization formulation enables the combination of graph-search
methods with trajectory optimization methods in one frame-
work. The former provides a coarse solution which is refined
by the latter. This combination allows us to efficiently explore
the discrete modes of the problem, e.g. the contact state of
an end-effector, and holistically reason about geometric and
dynamic properties, e.g. contact locations, forces and timings.

3) Hybrid optimal control for multi-contact planning: We
present a holistic model-based optimization method that allows
robotic agents to treat concurrently (i) forces, (ii) contact
locations, (iii) actions timings, (iv) object’s trajectory, and
(v) contact sequence pattern, towards obtaining an optimal
solution for multi-contact tasks. To do so, we introduce a set
of hybrid motion primitives that enable our method to generate
hybrid plans without a pre-specified contact pattern as in [7].

4) Online dyadic planning: By combining the above three
with the partner model introduced in our work [7] and an
informed search planner, we realize a computationally efficient
optimization method for DcM setups. The method generates
hybrid motion plans online that are capable of adapting on-
the-fly to changes during the task, like dyadic goal changes.

This article is organized as follows: reviews
related work on DcM setups and hybrid motion generation.

[Section I presents the problem formulation. Brief background
on methods is provided in while the methods’
details are given in [Section V| [Section VI| and [Section VII|
presents the evaluation of the method and the ex-
perimental results. Finally, and [X] discuss promis-

ing research directions and conclude this article. Overall,
our work addresses the problem of hybrid action generation
towards complying with the joint planning requirements in
DcM scenarios. We demonstrate that such actions can be
computed efficiently, enabling online motion re-planning with
respect to dyadic goals and interactions.

II. RELATED WORK
A. Human-Robot Collaboration (HRC) components

1) Partner’s policy prediction: In [8], [9] a confidence
measure of the human’s goal prediction was used to alter
between reactive and proactive robot behaviors. Multi-class
classifiers were utilized in [[10f], [11]] to recognise human part-
ner’s commands through force interaction in co-manipulation
tasks. Further, conditional random fields were adopted in [[12]]
to infer the human’s intended goal during box co-pushing tasks
and in [13]] to anticipate object related human activities. In [|14]]
learning-based human’s occupancy workspace was predicted
to generate robot collision free motion. A comprehensive lit-
erature on modelling other agents in multi-agent environments
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can be found in [15]]. These methods predict the partner’s
intent, however the adaptation of the agent’s policy is only
realised as a selection from a set of discrete behaviors or as
a modification of few continuous variables.

2) Dyadic interaction models: Interaction models are sep-

arated in three prevailing schools of thought, described below.

Control focused: Agravante et al. [|16] used impedance
control to accommodate partner’s actions and collaboratively
carry a table with a human. A load sharing framework with
predefined sharing modes was presented in [|17]]. In both cases,
the partner is treated as an external disturbance to the system.

Coupled-policies focused: Maeda et al. [18] proposed
a method to transfer adaptive hand-overs to robots from
kinesthetic demonstrations. Similarly, in [[19] force and vi-
sion information was employed to commence the appropriate
learned impedance behaviors depending on the task’s phase.
Data-driven extraction of interaction constraints during hand-
over tasks was proposed in [20]. The extracted constraints
were then used to form online robot responses. These methods
couple together the policies of the agent, the partner, and the
task evolution, to learn a direct mapping towards generating
online adaptive robot responses. Thus, their generalization
capabilities are limited to the demonstration set.

Partner-model focused: Maeda et al. [21] used a poly-
nomial model to predict human motion and update the robot’s
goal. In [22], [23] a task model was learned offline, to
guide the interaction at the reproduction phase. Evidence of
humans utilizing a model-based prediction of the partner’s
goal to update their own task’s goal and consequently their
own policy have been presented in [24]]. Such methods are
elegant, as each entity (partner, agent, task) of the interaction
is modelled separately and actions of the two individuals can
be appropriately reasoned upon. Our work follows the same
principle to obtain generalizable robot behaviors.

3) Agent’s policy generation: Another central aspect to
HRC are motion attributes that the robot can regulate to
fulfill the task in collaboration with the human. In [25] task
space attributes, e.g. the object’s trajectory, were optimized
to facilitate human ergonomics. In [26] adaptation during co-
manipulation was realized through turn-taking collaboration.
Further, a number of methods focus on the dynamic properties
of the interaction. Inverse dynamics approaches concentrated
on the torque and force regularization [27], [28]], while others
adapted the impedance characteristics of the robot online to
accommodate for partner’s actions [22], [29]. However, a cen-
tral aspect of manipulation is the selection of the appropriate
contact locations on the object [30]]. Accordingly, the exploita-
tion of the contact space of the object by the individuals is
vital in DcM scenarios. To the best of our knowledge, contact
adaptation within collaborative manipulation scenarios has
not been addressed yet, although it is crucial towards enabling
robot perform complex DcM tasks jointly with a partner.

B. Hybrid Motion with contact changes

Motivated to enhance robots with multi-contact manipula-
tion capabilities, here we review methods used to generate
hybrid motions.

1) Multi-contact planar manipulation: Mason introduced
the problem of planar non-prehensile manipulation, the motion
cone concept, and the voting theorem [31]. The limit surface
concept was introduced in [32] and used in [33] to model
the dynamics of planar pushing. These concepts map contact
point’s motion to object’s motion, and have been used [34]—
[36] to address planning and control for planar pushing. Also,
recently they were generalized to a broader set of planar
tasks [37]]. Yet the different contact modes are typically ex-
plored with offline sampling, and the quasi-static environment
assumption limits their applicability to 2D tabletop pushing.

2) Hybrid planning and control: According to an impor-
tant duality between manipulation and locomotion, the latter is
an instantiation of non-prehensile manipulation [38]]. Our work
is inspired by model-based optimal control methods [39]-[42],
that are not restricted by a quasi-static stability assumption.
Next, we describe three hybrid motion generation approaches.

Hierarchical approaches: These approaches address hy-
brid problems by decomposing them into action planning [43]],
contact planning [44], and motion control [45[]. Such hierar-
chies allow to exploit domain knowledge at the task planning
level and have been used for online motion generation. Yet, as
these elements are designed separately it is usual that the final
solution is not optimal or sometimes not feasible. In contrast,
our method treats all the variables of the problem holistically.

Mixed-integer programming: This formulation explicitly
models the hybrid nature of the problem and has been used
by [46]-[48]] for both locomotion and planar manipulation.
Yet mixed-integer methods need to explore both the contin-
uous and discrete parts of problems, while reasoning for the
discrete part is done using general combinatorial optimization
methods like Branch and Bound. This typically leads to large
computation times that can be prohibitive for DcM needs.

Continuous programming: Using continuous optimiza-
tion, in [41] a mathematical problem with complementarity
constraints was formulated in the presence of complex contact
phenomena. In [40] and [39]] smooth nonlinear optimization
problems were formulated based on a key observation: Mo-
tions through contacts have phases, while the contact set
remains invariant within each phase. One of their drawbacks is
that the motion can only be conditioned on physical properties
of the problem neglecting higher-level task objectives that are
common in DcM scenarios [49]], [50]. Our formulation treats
all the variables as continuous too and utilizes a graph search
method to consider higher-level task objectives too.

3) Sequential manipulation planning: On a different line
of work, Simeon et al. [51]] employed probabilistic roadmaps
to produce motion plans with multiple grasp-hold changes.
King et al. [52] used Monte Carlo Tree Search to plan
sequences of discrete pushes and reason about object inter-
actions. The A* algorithm was used by Gienger et al. [53]], to
demonstrate DcM scenarios with a human and a robot. These
methods discretize the state space to employ search algorithms.
Further, combinations of these methods with motion planners
have been realized [54]. Nevertheless, to the extend of our
knowledge these methods are limited to kino-dynamic planning
and have not been applied in hybrid problems, where the
generation of dynamically feasible plans is of core importance.




JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

Logic geometric programming (LGP): LGP with physics
synthesizes logical planning with optimal control to demon-
strate a broad range of robot sequential manipulation planning
capabilities. LGP has also been used for multi-agent coopera-
tive manipulation tasks [55], such as handovers. The cooper-
ative aspects are limited to the kinematic domain, where both
agents act synchronously, but their actions are not physically
coupled. In parallel to LGP with physics, the proposed method
combines the benefits of informed-graph-search algorithms
and optimal control formulations. Informed search methods
such as A* are a more efficient special case of the Branch
and Bound algorithm [56]], a fact that makes them well suited
for online motion adaptation during DcM tasks. Toussaint’s
work [57] exhibits creative solutions for manipulation puzzles
in simulation, while our method considers dynamic aspects of
the dyadic interaction and enables online re-planning.

III. PROBLEM FORMULATION

provides a graphical representation of DcM as a
system. It is separated into three components; (i) the partner’s
policy, (ii) the dyadic interaction, and (iii) the agent’s policy,
similarly to Key in this formulation is the dyadic
interaction, which is used to capture the binding between the
two individuals, both in physical and in mental terms. The
physical pairing arises due to the object, that acts as the phys-
ical medium for exchanging information, while the intentions
of the individuals are naturally correlated due to the common
task of the dyad. The exact pairing configuration—e.g. role
distribution within the dyad—can be regulated through the
physical constraints and the dyadic objectives.

A. Core Nomenclature

Here, we introduce the core notation used in this article,
while section specific symbols are defined in each section.
We use superscripts, k for the indexing of the agent’s k;;, end-
effectors’ quantities, as well as a and p, to refer to the same
quantity for the agent and the partner, respectively. We use
subscripts to denote both time and indices along a sequence.

neN Dimensionality of c-space (partner, agent)
veN Dimensionality of manipulation task
NeN Total number of knotd']
1eN Knot indices of the transcribed problem
jeN Indices of the graph-search problem
KeN Total number of agent’s end-effectors
T € Ryg Total motion duration (final time)
f¥ € R Forces applied by agent’s ky, end-effector
A €R”  Partner’s applied wrench
cf €R¥  Agent’s k,, end-effector position
K,DeR” Stiffness and damping (partner, agent)
q € R™  Configuration (partner, agent)
yer € R”YN Pose trajectory of the object
AT € RN Agent’s action timings

B. Formulation
The full control policy 7* of an agent participating in DcM
tasks is defined as function 7%(-) — £. £ is defined as
E=[fF ¢ AT, K¢ D¢ qf] VieN,

?

(D

and denotes a trajectory. However, as this work aims to

generate hybrid motion plans that belong in the force-contact

space, the output of the agent’s policy can be reduced to
£=[ff ¢ AT]VieN

?

2

A trajectory £ is a time-indexed sequence of actions, that guide
the object to the goal state x7 given its current state x;, with
. T . - .
x¢ = [yt ¥:| . In the top right of , we illustrate few
trajectories (grey) from all feasible ones, as well as the optimal

one (black) with £*.

xpr = f(m%,7) 3)

The actual task, i.e. the object’s motion, is a function of the two
individuals® policies described by (3). Thus, the policies of the
two individuals are coupled, forming the dyadic interaction.
We represent this relationship with

5 = Wa(xta 7?‘_[)7 9D7 9./\/()’

4)

which indicates the dependency of the agent’s policy to the
estimated policy of the partner 7P, the parameters of both
the dyadic setup P and the manipulation task M. As
shown in the estimation of the partner’s policy can be
obtained based on a set of sensory measurements, an intention
estimation process and a parametric model. In the proposed
DcM formulation, the parametric model of the partner’s policy
dependents on the state of the object, it outputs task-space
wrenches and can be described by a set of parameters 67,
formally written as

A = 7P (xy; 6P). 5)

To comply with the sequential nature of DcM tasks, the
policy of the partner should be non-stationary. This can
be represented with a multi-modal probability distribution
Pr(6P|x;,qY, HP) over parameters 0P, given the sensed data
x¢,q} and a history of partner’s actions H”. In every instance
of the dyadic interaction the partner’s policy is described by
one of the modes of the distribution as shown in top left of
This can be obtained by an intention estimation process.
The aim in DcM scenarios is to obtain the agent’s optimal
policy that depends on the parameters of the dyadic setup,
of the manipulation task and the current estimate of partner’s
policy. We express partner-aware dyadic planning with

T
& = min/ c(n®, 7P, 07 6M)dt
e 0

st g(m®,x,, 77, 0M) <0,

(6)

by introducing the idea of considering the partner’s actions
into the motion plans of the agent through the constraint
functions g(-). As the partner’s behaviour is non-stationary, the
parameters 67 of the partner’s policy 7, need to be estimated

Knots are the discretization points of the transcribed continuous problem.
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Process
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Fig. 3.

A typical DcM scenario along with a modular description of DcM as a system. On top left a multi-modal distribution describes the policy of the

partner and top right illustrates the optimal trajectory £* computed from the policy of the agent along with few other feasible trajectories. The exact definitions

of u and x are given in [Section V]

repeatedly during the interaction to provide 7P, which will
trigger an update of 7“. Further, the objectives of the dyad,
such as 7, are met through the cost function ¢(-), where
6P can represent i.e. the role assignment within the dyad.
Additionally, the task specifications can be satisfied either
through the the cost function ¢(+) or the constraints g(-), where
6 may define i.e. the final pose of the object or a constant
linear/angular velocity of the object.

IV. BACKGROUND

A. Hybrid motion preliminaries

As described in [Section IIlL the policy of the agent 7%

generates hybrid action trajectories, that guide the object from
the current state to the goal. We illustrate one such trajectory
in [Fig. 4] where the object’s pose y;, the end-effectors’
positions c* and the contact force f' of the left end-effector
are visualized. Such trajectories have hybrid nature due to
the contact change. The elements we would like to highlight
in are: (i) critical transition instances exist within the
trajectory, where discontinuities occur, e.g. the force at T}
and T3, (ii) according to these time-instances, the motion can
be separated in phases—called contact-invariant phases, e.g.
contact and swing phase, and (iii) the sequential arrangement
of these phases defines the outline of the trajectory—which
we refer to as structure of the motion and we denote with

H € {0,1}%*". In manipulation setups the structure of the
motion specifies the arms’ contact sequence pattern, i.e. the
order with which the arms change contacts.

! i 0 !

| ' Pre-contact
R > —>
! Contact | Swing

?

o—¢ P °
TO T1 T2 T3 T4

Fig. 4. Hybrid motion plan with one grasp-hold change, separated into phases.
The grey dotted area on top illustrates the physical space (x,z,¢). Orientation
¢ is illustrated with the green arrow in the object. The force f! applied by
the left (blue) end-effector is shown with the middle plot. The knots of the
trajectory with resolution 3 are shown in the bottom graph along with the
contact distance d of the left end-effector to the object’s surface. The contact
knots are grey, the swing knots are pink, and the pre-contact knot is cyan. It
is worth mentioning that all the quantities shown here are optimized.
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B. Graph search algorithms preliminaries

Search algorithms are used to find paths within graphs [58].
A graph G = (V, E) is described with a set of nodes V" and set
of directed edges . Each edge eP? € E denotes a directed link
between node vP € V and v? € V, where v? is a successor of
vP. In the context of search algorithms; i) each edge eP? has an
associated cost ¢P4 > (, ii) the graph can be obtained given a
set of initial nodes {v*} C V and a successor operator I'. T" is
defined on the set V' and when applied on a node v* provides
all its directed edges to successor nodes with the respective
costs. Finally, given a node v*® and the successor operator I, a
subgragh G* = (V*  E*) can be constructed such that all the
nodes of G* define the accessible set of nodes from node v®.

Graph search algorithms address the problem of finding the
optimal patlﬂ v = {vo, ..., va} of length AL € N from a start
node v*® to a set of goal nodes {v9}, expressed as

min c(v) (7a)
st v = fy(v5,¢€5) (7b)
e; € I'(vj) (7¢)
vy = v° (7d)
vy € {v9} (7e)

where C(v) € R is the total cost along the path, indicates
the set of all directed edges starting from a given node, f,(-)
is the transition function responsible for computing the next
node in the sequence, and (7d), specify the initial node
and the set of final nodes, respectively [58]. The specifics for
our problem regarding C, I, f., and the representation of v are
discussed in These methods compute efficiently
a sequence of transitions, i.e. the structure of the motion. Yet,
they neglect details of the actual continuous motion through
the transitions.

C. Trajectory optimization preliminaries

Trajectory optimization (TO) addresses the problem of
finding locally optimal trajectories for dynamical systems [59],
[60]. We consider the following optimal control problem

in /0 c(@(t),ul) dt + ¢ ((T))  (8a)
s.t. w(t) = f (x(t),u(t)) (8b)
z(0) € Xq (8¢)

2(ty) € X; (8d)

g (@(t),u(t) € Z (8e)

t € [0,7], (8f)

where 7 is the dimensionality of a general system, x € R" is
the model’s state vector, u € R" is the model’s control vector,
c(+), ¢s(+) € R in (8a) are the running and final cost functions,
f(-) € R" in (8b) describes the system’s dynamics, and
to @ describe bounds on the initial state, final state, path
constraints and motion duration, respectively.

2We use superscripts to index nodes and edges in a time agnostic fashion
and subscripts to index the nodes in the optimal path sequence, as in

section II1-A

Description (8) belongs to a rather general class of opti-
mization problems—termed Infinite Programming problems—
since we seek to find a set of continuous functions that fulfill
a set of continuous constraints. To make such problems com-
putationally tractable, the usual approach is to parameterize
the problem using a finite number of decision variables, i.e.
express the problem as a constrained parameter optimization
problem. In this work we express the hybrid problem utilizing
direct transcription (using a trapezoidal integration rule); we
further specify our problem’s structure in and
while more details on TO methods and transcrip-
tion methods are provided in These methods are
used to compute efficiently continuous motion plans through
discontinuities, and typically require a proper initial seed.

V. BILEVEL OPTIMIZATION

In this section we provide the core computational formalism,
that enables on-the-fly generation of hybrid motion plans, both
for single agent manipulation planning and for joint manipu-
lation planning in dyads. First, we describe how graph search
(GS) algorithms can be formally combined with trajectory
optimization (TO) methods. The former is the outer level and
the latter is the inner level of the bilevel optimization. Next, we
present the details of the outer and inner levels. The schematic
shown in illustrates the interplay between the outer and
inner level, and reveals the nested structure of the inner level.

Bilevel formulation: The aim of this formalism is to
provide the means to generate hybrid trajectories, like the one
shown in Motivated by the key observations mentioned
in and inspired by the bilevel method presented in
[61] as well as the “Mixed-Logic Program” [57], we combine
the two formulations presented in and (@) into a single
bilevel optimization formulation, as follows

min c(v) (9a)
s.t. vy = v° (9b)
x(vy) € Xn(67) (9¢)
ej € I'(v;,607) (9d)
T
arg min / c(x,u,e;)dt
x(t),u(t) 0
s.t. z=f(x,u,e;,0°)
vyl € xo € Xo(v;), (%)

z(T) € Xy(ej),
g(z,u) € Z(ej),
t €[0,7)

The outer level of the optimization is described with equations
to and it is responsible to construct the structure of
the motion. This is achieved by performing a discrete search
using the GS method, shown in The inner level of the
optimization is described with the TO problem and its role
is to compute the continuous trajectories, such that the discrete
transitions can be realized. and are identical to (7d)
and in formulation (7)), however the discrete transition
function f, described in is now replaced by (O¢), which
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Bilevel Optimization

Inner level

Outer level Hybrid Trajectory

Graph- =" A Optimization
search i g
- Dyadic planning
algorithm
A* b

Hybrid Optimization
Lexicon for Manipulation

Fig. 5. Overview of the methods; optimized paths are obtained through an
iterative execution of the outer (discrete) and inner (continuous) levels of the
bilevel optimization.

denotes a nonlinear continuous optimization problem of the
form (8). Additionally, to reflect in the computational formal-
ism the dependency of the solution to the current mode of
the partner’s policy—as denoted by (@) and (B)—we modified
©d), (Od), and such that they depend on the parameters
6”. The dyadic planning details are given in the [Section VII|

Outer-Inner level interplay: First, the outer level com-
putes a discrete sequence of states, that define the initial
structure of the motion towards the goal. Second, each segment
of the motion is passed on and is optimized by the inner level.
One or more of these segment may be altered by the inner
level, resulting in a modification of the initial structure of
the motion. Consequently the discrete sequence of states—
subsequent to the modified segment—might become obsolete
and might need to be re-computed by the outer level. This
third step is closing the bilevel loop. Running these three steps
iteratively, the bilevel optimization converges to the goal in
a sliding window fashion. In we illustrate the bilevel
nature of the method with four examples.

A. Outer optimization level

For the outer optimization level we aim for a fast GS
method, to compute the structure of the motion, e.g. a sequence
of contact changes and object’s motions. Given a discrete
state representation, the state-space can be encoded into a
graph, with each discrete state being a node v of the graph as
described in We use a coarse state representation
that includes a discrete description of the object’s state y and
contact locations of agent’s end-effectors c*. A node v in the
graph corresponds to the tuple (y,c!,c"), where y,c!,¢" € N
and v is defined as an index to the tuple with v € N.
depicts a viable 2D state discretization.

A key element of the GS algorithms is the successor
operator I', defined in I' allows us to attain
a low branching factor and perform graph expansion more
efficiently than brute-force node insertion [62]]. We realize I'
for multi-contact manipulation and DcM scenarios specifically.
We construct a simplified and intuitive physics model of the
object-hand interactions based on the following rules [53]].
Feasible states:

1) Left end-effector must always be on the left of the right.
2) A minimum distance between end-effectors is defined.
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Fig. 6. A representative illustration of the of four different solution paths (i)
to (iv) obtained with the proposed bilevel optimization method. The dashed
lines depict the discrete transition found from the outer (discrete) level of the
optimization, while the full lines are the continuous segments obtained from
the inner (hybrid) level of the optimization. All four paths start from the same
initial node with index 1. Solution path (i) ends at node 7. Solution paths (ii)
and (iii) end at node 8 although they are different paths. In particular path (ii)
will be generated when having a change of goal from final node 7 to node 8.
Similarly, paths (iii) and (iv) end at different nodes which are identical with
respect to the task, if we observe the state of the object only. An interesting
point is the alternation of the transition from e3> to e3:6 by the inner (hybrid)
level optimization, which results in a new path from node 6 to the goal.

L
/
4
’
/
\
A\
N\
:‘m
[}
1
[}
e
e

3) Applied forces have to be permissible given the contact
location (see [Section VI-3).

4) When both end-effectors are in contact, they must quasi-
statically counteract gravity effects on the object’s CoM.

5) The pivoting torque spawned in scenarios with single
contact must not violate a given threshold (DcM-specific).

Feasible transitions (task-depend):

a) Both end-effectors must be in contact to rotate the object.
b) A single or both end-effectors can change contact within
one transition.

Rules [D} [2)] and [a)] are realized based on a mapping from
the discrete state to the continuous Cartesian space of end-
effectors. Rules [3)| and 4)| are computed based on quasi-static
principles which are configuration dependent, typically used
in grasping literature [30]]. Further, rule [5)| reserves as an
implicit threshold on the required torque the partner has to
apply, counteracting the pivoting torque applied by the agent
as states with high torques are not allowed.

Regarding the particular choice of graph search method we
use a heuristic A* algorithm for the following two reasons.
First, the A* algorithm is considered a special case of Dynamic
Programming (DP) [63]], [64]]. Thus, the solution of our overall
problem is obtained by a bilevel optimization process. Second,
A* is known for its computational efficiency, as it exploits
heuristics to achieve a very low effective branching factor.

A* constructs an optimal sequence of states in terms of the
evaluation function C(-) = g(-) 4+ h(-). The cost term g(-) €
R is obtained from edges’ costs (see [Section IV-B)), while
the heuristic term h(-) € R needs to be admissible (always
under-estimate the actual cost) and monotonic to ensure that
the solution path found is optimal [58]. To facilitate optimal
composition of the solution paths shown in the heuristic
term h(-) needs to be designed in accordance with the cost
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(a) (b)

Fig. 7. 2D illustration of an example state space representation of the outer
(discrete) level. The numbers in circles denote contact points. (a) Discretiza-
tion of the contact space. (b) Discretization of the object’s orientation (the
translational part can be discretized with a checkerboard-like grid).

function ¢(-) of the inner optimization level in (O¢). The details
on the heuristic and the cost terms are given in [Section VIII

The outer level provides the optimal structure of the motion
efficiently—plus—an initial guess for the inner optimization
level, by converting the optimal sequence of states to contin-
uous trajectories using fifth-order-polynomials [53].

B. Inner optimization level

The inner level is responsible for optimizing the hybrid
path (see [Fig. 4), given the structure of the motion. Here all
motion-relevant quantities (see [Section IV-Al) are optimized

within their continuous manifold, while the discretized de-
scription of the quantities (see serves as a bases
for the initial seed of the continuous problem.

For example, contacts c¥ are optimally selected from the en-
tire object surface, not only from the discrete contact locations
shown in As it has been reported in our previous work
[7] and by others [39]-[42]], [57], the computational times
of optimizing the full path at once are extensively large for
any type of online motion adaptation. Further, the non-convex
nature of the problem gives no global optimality guarantees.
Thus, to address the computational efficiency challenge, we
propose to optimize each segment of the motion separately. To
realize this, we introduce a decomposition of general hybrid
motion into a set of hybrid motion primitives, referred as
the Hybrid Optimization Lexicon for Manipulation (HOLM).
shows the primitives for a single end-effector and
illustrates a few combinations of HOLM primitives
for bimanual agents.

In contrast to [[65]], where the hybrid motion is chopped into
spacetime windows with fixed contact configuration and time
duration, we choose to build each primitive as a sequence of
two contact-invariant phases (see in of variable
time duration. The primitive Cnt2Cnt has to two consecutive
contact phases, the Cnt2Sw has a contact phase followed by
a swing phase—where the grasp-hold change starts—and the
Sw2Cnt has a swing phase followed by a contact phase, where
the grasp-hold change is completed. A single swing primitive
does not contribute to the task, thus every swing phase is
accompanied by a contact phase. Hence, each segment of
the motion is optimized including the critical transitions of
making and braking contact (discontinuities) to anticipate the
next phase’s contact configuration. The transition from one

Cnt2Cnt Cnt2Sw Sw2Cnt

(v [ i
o))

i)\ ((v) L= e=~, (vi)
» ¢ ® o
——n 0, o—oo~ » o9
L ~ . Om=’
(b)

Fig. 8. The set of primitives referred as Hybrid Optimization Lexicon for
Manipulation (HOLM). Dashed lines denote swing phase, while full lines
denote contact phase. (a) Three primitives for a single end-effector. (b) Six
bimanual primitives, where the left end-effector is coloured blue and the right
is red. For primitives (ii) and (iii) end-effectors can be switched, such that the
left (blue) remains in contact and the red performs a swing. Similarly, (iv)
can be symmetrically switched.

(iii)

—s

HOLM primitive to the next does not require special treatment
as the contact configuration is not altered.

Regarding the collection of primitives used, Sw2Cnt and
Cnt2Sw form the the minimal set of making-braking contact,
while Cnt2Cnt is used to maintain contact, e.g. this is par-
ticularly useful when the robot rotates the object towards the
goal. The use of the Cnt2Cnt primitive is encouraged with rule
(a) described in In general, this set of primitives
allows to fine-tune the hybrid robot motions to be legible [66].

The inner level accomplishes very fast optimal hybrid
motion plan generation, given the structure of the motion. To
the extend of our knowledge, this in turn empowers the bilevel
optimization to be the first on-the-fly re-planning capable
hybrid optimization method. This allow us to demonstrate
online hybrid policy adaptation with respect to non-stationary
dyadic interactions. Next, we provide the inner level details.

VI. HYBRID PLANNING VIA TRAJECTORY OPTIMIZATION

To solve the continuous optimization problem in (O¢)), we
perform direct transcription as explained in This
involves discretizing the trajectories of the following decision
variables. For each i, knot, the quantities of interest (see (2)
and (3)) are, (i) the pose of the object y;, (ii) the velocity of
the object y; € R”, (iii) action timings AT, (iv) the contact
locations cf, and (v) the contact forces ff. We group these
quantities in two vectors

N

x; = [yi S’i]T and u; = i ATi]T (10

Vi € N the trajectory of x; and u; describes a hybrid motion
(described in [Section TV-A). TO problems with intermittent
contacts can be expressed using complementarity constraints,
yet in practice convergence of these problems is difficult (see

[Appendix B). In our work, the structure of the motion is
optimized by the outer level (Section V-A), which allows us

to customize our transcription, and separate the motion in
phase with different constraints—the contact-invariant phases

mentioned in [Section IV-Al Next, we present the phase-

independent and the phase-specific constraints, respectively.



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

1) Phase-independent constraints: We introduce here con-
straints that are applied to all the knots of the trajectory
regardless of the particular phase. We note that the object’s dy-
namics f,(-) € R?” and the end-effectors’ motion f.(-) € R”
are integrated using trapezoidal quadrature. Also, 1. € R?”
defines the reachable area of the agent’s end-effectors, referred
as arms workspace.

« Dynamics of the object (discussed further in|Section VII))

. T .
[Yitr1 Vis1] = Folyi, Vi Mo £F, ¢, ATy). (1D
« Initial state of the object
Yo = yg and }'70 = }.’8 (12)
« Desired final state of the object
ynN =Yy and yn =¥y (13)
« Kinematic limits of the agent’s end-effectors
cf € 1. (14)
We use simple box bounds to approximate them.
« Upper bound on the total time of the motion
N
Y AT <T. (15)
i=1

2) Phase-specific constraints: The transcription of our
hybrid optimization problem follows the phase-based parame-
terization (see introduced in [40], also used in [39].
We extend this by considering the three possible collision
states between two rigid bodies as described in [67]], and we
split the knots in three sets according to the contact-invariant
phases; the contact, swing, and pre-contact sets, shown in
At each discretization point (knot) a constant subset
of constraints needs to be satisfied. Most of the phase-specific
constraints are time independent, which allows us to optimize
each phase’s duration and satisfy the constraints of each phase
simultaneously. Each phase is characterized by a distinct set
of decision variables that allows us to enforce a number
of constraints implicitly and reduce the number of decision
variables. A list of the constraints categorized according to
the phase of the motion follows.

i) Contact phase:
o Permissible contact forces (discussed in detail next):

W(Ef) > 0. (16)
« No contact point slipping (implicit constraint):
ek =o. a7

« End-effectors in contact with the object (implicit con-
straint):
d(Cf, Soﬁj(yiv C,]f)) = 07

where d(-) € R is the signed distance between end-
effector and object. S, (y,c¥) — R computes
the closest point on the object’s surface to the end-
effector’s location and stresses out the importance of
object’s shape representation described below.

(18)

(b)

Fig. 9. (a) Illustration of an end-effector in contact with the object. Valid 2D
contact forces (shown in green) are generated by the conical combination
of the rays v{ and v§. This form can be preferred for interior-point
methods that traverse the interior of the feasible region and avoid unnecessary
considerations of invalid contact forces (shown in red). (b) The position of
the end-effector described in 2D polar coordinates ¢ = [B,7]T, along with
normal vector n¢ at the imminent contact location are depicted.

ii) Swing phase:
o End-effector’s motion:

ch = fe(ck,éf, AT)). (19)
« End-effector’s swing motion away from object:
d(ct, Swi(yi, €f)) > 0. (20)
o No force (implicit constraint):
fF =0. 21
iii) Pre-contact phase:
« End-effectors touching the object:
d(ct, Sui(vis cf)) = 0. (22)
o No force (implicit constraint):
£ = 0. (23)

3) Permissible contact forces: With (I6) we denote the
allowable contact forces exerted by the end-effectors to the
object. This forces should satisfy the constraintﬂ

f'n° >0
‘thc| < ,uanC,

(24a)
(24b)

where f is the force vector, n© € RY is the normal and
t¢ € RY is the tangent vector at the contact point on the
object’s surface. ;1 € R is the friction coefficient. Here, (24a))
is the unilateral contact constraint and (24D} is the friction cone
constraint; we use the linearized friction cone form. In @I)
the constraints are denoted using the halfspace representation.
Alternatively, the force constraints can be enforced using the
vertex representation, also used in [68]]

K
f= E O(glllc,
=1

where v = nj+ utj are the extreme rays of the friction cone,
oy > 0 are weighting coefficients and x € R is the number of
rays used. Normals, tangents, and extreme rays are functions
of the contact location and are obtained from S, (-) according
to the object shape representation. A 2D graphical illustration
and intuitive comparison between the halfspace and the vertex
forms is given in We choose to enforce constraint (T6)
with (23)) as we have empirically noticed faster convergence.

(25)

3For readability, we drop the indices with respect to end-effectors and knots
of the trajectory.
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4) End-effectors’ position representation: Equations (T4),
(18), (20), 22), and are realized given a specific represen-
tation of the end-effectors position. We choose to represent the
end-effectors position relative to the CoM of the object in polar
coordinates, graphically shown for the 2D case in [Fig. 9b|

5) Object’s shape representation: The object’s surface
is represented with a closed cubic spline curve. The spline
representation is a smooth description of the object’s surface
from which all relevant properties along with their gradients
can be extracted, like normal and tangent vectors. The use
of continuous representations of the object’s surface is more
generic than approaches like [[69] that rely on the convexi-
fication of the object’s shape, as scaling with respect to the
number of edges/phases becomes cumbersome.

6) Input variables and hyper-parameters: The only re-
quired input variable is the description of the manipulation
task, 6. Here we use the start and goal state of the object,
denoted as [y(’; yg] and [y}‘v y}‘v] respectively. Nonethe-
less, the specification of M can be as flexible as needed,
and can be specified either via the cost function ¢(-), e.g.
minimize object’s acceleration, or via the constraints g(-), e.g.
set upper object’s velocity limits or set forbidden regions of
the workspace. To solve the TO problem two hyper-parameters
need to be specified. (i) The resolution of the grid N (number
of knots) shown in (ii) Motion’s upper time bound 7.

VII. DYADIC CONSTRAINT AND PARTNER MODEL

In this section, we present the specifics on how to incorpo-
rate the partner’s policy in the framework and generate dyadic
hybrid plans. In DcM scenarios the object is jointly manip-
ulated by both individuals—as specified by (B)—by applying
forces on it. We propose to incorporate the partner’s policy
in the TO framework through the transcription constraints
defined in (TI). Only now, the object’s dynamics are subject
to the partner’s wrenches too, described by

ml 0] .. mg K rr .
[0 J} yﬁ[y?’X(JW)]:Z{éf} fi+A, (26

k

where m € R and J € RY{” are the mass and inertia
of the object, I is the identity matrix, g is the gravitational
acceleration, y¢ is the object’s angular velocity, and with ()
we refer to the cross product matrix formed by the input vector.
By realizing according to the augmented dynamics—
where X represents the partner’s contribution—the trajectory
optimization generates plans in accordance to the partner’s
policy, referred as partner-aware. This is illustrated in
with the physical constraints block. In contrast to [55], where
the method assumes full control authority over the partner’s
actions, the only requirement of our method is an estimate of
the partner’s policy.

Partner’s policy parametric model (Fig. 3): This work
aims to provide a principled way towards incorporating part-
ner’s actions into the policy of the agent. An essential step
towards this goal is to identify the appropriate function space
in which the partner’s policy lies. We use here a simple but
ample model for the partner’s policy,

A=K(yy —vyi) + DIy = ¥i)- @27

The parameters K” and D? denote a spring-damper behav-
ior of the partner towards the goal [y} ¥i] of the co-
manipulation task. K? can be interpreted as the parameter that
can shape whether the partner acts as a leader KP > 0 or as
a follower K? = 0, along with all the intermediate behaviors.
The goal [y}*\, y}‘\,] captures the partner’s intentions relative
to the task. This model has been used in human motor control
research [70], as it captures the essence of the partner’s policy.

Partner’s policy oracle function: As this work is not
focused on estimating the partner’s policy 7P, we assume
an oracle function exists. The oracle function can predict
the parameters 07 = (y&,¥Yx,K?, DP) that describe the
current mode of the partner’s policy (see [Section III). This
in turn enables the use of (B) without the need to compute
Pr(6P|x;,qY, HP). The implementation of the oracle function
could be realized with the methods reviewed in

VIII. EXPERIMENTS

In this section, we first provide computational evaluations of
the proposed method. We proceed with simulations on both a
single agent and a dyadic setup. Last, we evaluate the proposed
method with real-world DcM experiments. See the attached
material for video footage of the simulations and the human-
robot experiments during DcM tasks.

The purpose of the computational study is to highlight the
computational gains of HOLM, in comparison to our previous
work [[7], and emphasize the importance of specific algorithmic
choices. The objective of the single agent simulations is to
demonstrate the capabilities of the method to plan highly
dynamic motions. Likewise, the dyadic simulations present a
multitude of situations where the resulting hybrid policy of the
agent is conformed to the partner’s policy. The experiments
with a human-robot dyad demonstrate our method’s viability
to plan on-the-fly under real-world conditions.

Parameters of experimental setup: The state of the object
sy = [x z qﬂ with task dimension v = 2, which is
sufficient for the demonstrations; however, both levels
can be realised in 3D space with v = 3, e.g. the
inner level can be modified based on our previous work [68]].
To obtain the discrete state (y,c!,c”) mentioned in the outer
level (Section V-A), we only need to consider ¢ and the
contact locations, as the translational components of y, do not
affect the structure of the motion. ¢ is discretized with 30°
resolution and for each of ¢! and ¢” we specify 16 contact
locations. With these choices and with the rules defined in
the branching factor for a brute-force search
method is b ~ 23. Yet, the A* algorithm uses heuristics to
guide the search, thus the average effective branching factor
for our setup is b* ~ 4, which is the key to very efficient outer
level computation times. Regarding the evaluation function C'
of A*, the heuristic term h models the angular difference
between the current and goal rotation angles of the object,
while the transition cost function g corresponds to the re-
quired movement length; shorter transitions in the continuous
Cartesian space are cheaper. The cost function of the HOLM
primitives similarly minimizes distance to goal and overall

path length. With this setup—as discussed in

the resulting A* discrete solution sequence is optimal and
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TABLE I
Average computation time of majorly used HOLM primitive types described
in

TABLE II
Computational evaluation of the bilevel optimization and inner level
specifically with respect to five different groups of tasks.

HOLM type No. of Exact Hessian ~ Limited-memory BFGS
variables
Cnt2Cnt 134 34ms, 28 iter 75ms, 34 iter
Cnt2Sw 128 47ms, 38 iter >6000ms, >3000 iter
Sw2Cnt 129 50ms, 29 iter 2800ms, 1535 iter
Cnt & Cnt 194 44ms, 25 iter 58ms, 26 iter

Cnt & Sw2Cnt 189
Cnt & Cnt2Sw 188

131ms, 70 iter
49ms, 29 iter

>8000ms, 3000 iter
2740ms, 1521 iter

in accordance with the inner optimization level. The knot
resolution used for the HOLM primitives is 6 knots per phase,
and the friction cone is y = 0.5. For each HOLM primitive,
we use an upper time bound of T' = 3.5sec for contact phases
and T' = 6.5sec for swing phases. Once the hybrid motions
are optimized in the task space they are being mapped to the
configuration space of the robot using inverse kinematics [71].

Regarding the implementation details, we use CasADi
to realize the HOLM primitivesﬂ where each primitive is a
separate parameterizable hybrid problem. Each hybrid problem
is a large and sparse nonlinear optimization problem which is
solved using IPOPT [73], while the automatic differentiation
capabilities of CasADi allows us to provide exact gradient
and hessian information. The A* planner and the lower-level
control aspects of the robot, e.g. IK, are implemented in
the Robot Control Software (Rcs) frameworkﬂ All
experiments are conducted on a 64-bit Intel Quad-Core i7
3.40GHz workstation with 16GB RAM.

A. Computational Evaluations

We now show improved computational results over our pre-
vious single optimization based hybrid planning approach [7].

1) HOLM computation times: In we present the
average computation times for 15 runs of each HOLM prim-
itive. Each primitive is evaluated on a variety of tasks, using
three objects with different shape, a sphere, a rectangular box,
and a parallelogram box. The tasks involve translation from

#An open-source repository with our HOLM implementation can be found
in: https://github.com/stoutheo/HybridManip/tree/HOLM-primitives|
SInformation about Rcs can be found in: [https://github.com/HRI—EU/Rcs|

() (b) (©

Fig. 10. In these keyframes a single robot agent performs a dynamic hybrid manipulation task, i.e. rotate a ball by throwing it up in the air and catching it.

Task No. of No. Graph  First Time Full Full
contact of size seg- per path path
changes  seg- ment seg- time time

ments time ment (HOLM)
i 0 1 1011 0.24s  0.24s 0.02s 0.02s
ii 1 3-4 11567 1.08s  0.45s 0.09s 0.30s
iii 1-2 4-6 18510 1.52s  0.53s 0.13s 0.75s
iv 2-3 6-8 47097 4.86s  1.07s 0.18s 1,30s
v 4-6 8-12 102329 8.23s  2.93s 0.25s 5,20s

0m — 1m and rotation from 0° - 180°, similar to the ones
shown in and [12] The computational times reported
are obtained with zero initial seed and they scale linearly with
respect to the number of knots and the time horizon. These
results reveal the computational benefits of HOLM.

2) Bilevel optimization computation times: In [Table II
we present the average computation times for the bilevel
optimization. We group tasks in terms of angular distance from
the initial state of the object to the goal, as this grouping nicely
relates to the number of contact changes required to complete
the task. As the number of contact changes depends on the
initial contact configuration, a range of contact changes is
given rather than an exact number (second column of [Table TI)).
We also provide the approximate horizon of the resulting
motion. These tasks are:

i) 0° < A¢ < 20°, with motion horizon ~7 sec,

ii) 20° < A¢ < 120°, with motion horizon ~20 sec,
iii) 120° < A¢ < 140°, with motion horizon ~28 sec,
iv) 140° < A¢ < 200°, with motion horizon ~71 sec,
v) 200° < A¢ < 360°, with motion horizon ~114 sec.

We show the computation time required for the first segment of
the motion, the average computation time for each one of the
consecutive segments (fifth and sixth column of [Table TI). The
former indicates the planning time until the receding horizon
plan can be updated, while the latter specifies how fast the
successive segments are computed. These computation times
comprise revising structure of the motion too. These times are
proportional to the graph size displayed with the number of
explored nodes (fourth column of [Table TI). These evaluations
exhibit the online planning capabilities of the bilevel method.

(d (e) ®
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Fig. 11. In (a) and (b) we illustrate generated motion plans in response to two different partner policies. The green rectangle is the manipulated object, the
blue dot is the left end-effector of the agent. The object’s start pose is annotated with 1 and the goal with 4. The arrow field illustrates the forces applied by
the partner. (a) and (b) stress out the dependency of chosen contact location to the partner’s policy.

3) Discussion: The main steps that allow us to improve
the computation times from tens of seconds in our previous
work [7]], to milliseconds for HOLM and few seconds for
the bilevel optimization are: (i) Decomposing the problem
into HOLM primitives, which allows to keep the size of
the hybrid problems small (second column of [Table 1), (ii)
exploring the hybrid structure of the problem with an efficient
graph-search algorithm, (iii) formulating a sparse problem that
can be efficiently solvecﬂ (iv) providing the exact Hessian
using automatic differentiation, (third and fourth column of
[Table I), and (v) selecting the end-effectors’ and permissible
force representation discussed in [Sections VI-3| and [VI-4]

The seventh column of shows the average com-
putation times required to optimize the full continuous path
using the HOLM primitives only for the inner optimisation
level. First, as the HOLM primitives utilize the initial seed

provided by the outer level (see[Section V-A), the computation
times are much smaller than the ones in Second, in

the eighth column of we provide the computation
times (only inner level) needed to compute the full path
using a hierarchical approach, as in [74]. The comparison
between the seventh and eights column of reveals the
computational gain of using HOLM primitives with respect to
the baseline approach.

Finally, the success rate of the bilevel optimization depends
on the selected discretization of the outer level. If a fine
discretization is selected, an optimal solution is always found.
However, this is achieved at the expense of computational
efficiency. Therefore, we used a discretization of 30° that
provides fast solutions and satisfying success rate. The inner
optimization level has been empirically observed to provide
robust solutions in terms of convergence, due to the appro-
priate initial seed given. This allows us to mitigate sensitivity
issues with respect to the initial seed, which is a common
drawback of continuous optimization methods. Further, even
in case the inner level fails to converge, we can always use
the interpolated trajectory obtained by the outer level.

SInterior-point methods are able to solve our specific problem more robustly
than sequential quadratic programming methods.

The computation times presented demonstrate the online
planning capabilities of our method. We gained approxi-
mately a x10 to x50 speedup in comparison to our previous
work [7|], while simultaneously the arm’s contact sequence
pattern (structure of the motion) is automatically computed.

B. Simulations experiments

We present here a number of different motion plans gener-
ated by the proposed method that demonstrate the capability
to find dynamic and partner-aware solutions. A dynamic
motion is illustrated in [Fig. 10[a-f), where a robot performs
in simulation the challenging task of throwing and catching
a ball. Next, the variability of the solutions generated with
respect to the dyadic setup is analyzed.

1) Partner-aware solutions: First, we alter the partner’s
policy parameters K? and D? in (27). Each partner’s policy
is expressed as a force field along one axis: in 771 along X, in
wP2 along Z, in 7”3 along the main diagonal, and in 774 along
¢ axis. In|Fig. 11aland [Fig. T1b] the agent has one end-effector
and jointly completes with the partner, a 2.12m translation task
in a zero gravity (table-top) scenario. [Fig. 124 and [Fig. 12b]
illustrate solutions for a 0.98m translation and a —90° rotation
task, generated as responses to two different partner policies
in an scenario with gravity along the z axis. The former task
highlights the effect of the partner’s policy on the selected
contact location. The variation of the computed solutions is
evident in the latter task in [12d] and [T3] where we
present trajectories for four distinct partner’s policies.

Second, we adjust the partner’s goal [y% ¥x| in @7).
IFig. 14| shows the optimized contact locations and swing
motions for three goals. These experiments demonstrate the ca-
pability of our method to adapt trajectories, contact locations,
and action timings in response to different partner policies.

2) Outer vs. inner level solutions: With we show
the benefits of our method over solely search-based planning
approaches [53]]. During this 90° object rotation DcM task, the
human partner does not properly support the object, as shown
in [Fig. 15] where the avatar’s left hand is not in contact with
the object. In our partner model, this is represented through
parameters KP*¢ = 0 and DP¢ = 0 in (27). The search-based
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Fig. 12. Similar to [Fig. 11aland |[Fig. 11b} (a) and (b) depict the resulting trajectories in response to two partner policies. The red and blue dots are the right
and left end-effectors of the agent. The start pose is annotated with 1 and the goal with 6. Most of the object’s trajectory is planned at the active regions
of the partner’s force field, indicating that the robot utilizes the partner’s contribution to the task accordingly. Trajectories are displayed separately for four
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Fig. 13. The arms’ contact sequence pattern for the four distinct partner’s

policies shown in and [T2d] The colours indicate which arm is in
contact with the object.
outer level provides a coarse solution (blue line in [Fig. T6) that
does not take into account the policy of the partner, while the
inner level significantly alters the plan (green line in
to conform to the dynamic constraints of the task, i.e. jointly
balance the object. This shows that the inner level significantly
alters trajectories, durations, and action timings of the outer
level solution, to respect dynamic aspects of the interaction.
3) Online adaptation to alternations of the joint goal:
During this DcM scenario, the initial object’s target orientation
of 150° changes to —55°, while the agent is not aware of
this change in advance. The object’s target serves as a proxy

to the partner’s intention. This is realized by altering the
goal [yy ¥7] during the interaction shown in In
to we show the angular state evolution of the
object and the two end-effectors. Once the change of joint
goal occurs, replanning is completed in 0.95sec for the first
segment of the receding horizon plan. The consecutive seg-
ments are adapted in 1.13sec. This illustrates that our method
can adapt on-the-fly trajectories, action timings, durations, the
structure of the motion and contact locations to respond to
real-time changes of the joint task.

C. DcM experiments

We validate our approach in a real setting, where a human
partner jointly manipulates two different objects with a bi-
manual, i.e. k € {1,2}, and n = 32 DoF robot. The robot
moves on the horizontal plane in a omni-directional fashion—
due to its mobile base—and utilizes its two Kuka LBR iiwa
820 arms along with two Schunk dexterous 3-finger hands
for manipulation and DcM tasks. A linear joint allows the
arm base to be translated along the vertical axis. We use a
box and a cylindrical object. Both are bulky, so that a human
cannot perform the task alone. The hybrid motion plans are
optimized in the task space and are realized on the robot in
a open-loop fashion, after being mapped to the configuration
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(b)

14

Fig. 14. The agent’s left end-effector performs a swing motion, while the partner supports the object from the other side. Depending on the partner goal, the
contact locations change. The small yellow spheres denote the knots of the trajectory and the larger one the anticipated contact location. The black curve is
the interpolated trajectory. The partner’s intended object orientations are (a) 30°, (b) 60° and (c) 90°.

(a) (®) (©) ()

Fig. 15. Keyframes of a rotational DcM task with y3, = 90° intended goal, where the partner is not properly supporting the object. (a) The left hand of
the avatar is not in contact with the object. (b) The object is first rotated in the opposite direction to be properly supported by the agent’s right hand. (c) The
swing motion to change grasp hold is performed. (d) The object is properly held and jointly rotated to the intended target.
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Fig. 16. Evolution of the object orientation for the 90° DcM task shown
in The blue curve is the path computed from the outer level of the
optimization, while the green is the final path optimized by the inner level.
The shaded areas indicate the duration and temporal placement of the swing
motion of the left end-effector. The inner level initially rotates the object
opposite to the goal to satisfy the dynamic constraints of the task.

space using IK. A detailed description of the physical system
can be found in [53]. The robot utilizes surface contacts at the
planned contact locations as a form of mechanical feedback.
Further, it is worth noting that the joint-range of the robot only
permits rotations of the object of about 90° before it reaches
kinematic limits, thus grasp-hold changes are required.

1) Human-aware solutions: In correspondence to the sim-
ulation experiments shown in[Figs. 12]and [T3] we demonstrate
a 90° box rotation task with one contact change per arm. Dur-

ing this real-world evaluation, the human partner is actively
rotating the box and no change of goal occurs. The key-frames

of the DcM scenario are depicted in

2) Online adaptation to human’s goals: We perform two
experiments to demonstrate the on-the-fly adaptation to the
humans’ real-time changing goals. Similar to the simulations
shown in [Figs. 17] and [I8] these changes are unexpected.

In the first experiment, shown in the initial goal
of the human partner is to rotate the cylindrical object to
90°. The full plan is computed by the bilevel optimization
in 1.72sec and the duration of the resulting hybrid motion is
27.31sec, with one contact change. During the experiment,
the human partner decides that the preferred orientation of
the object should be 180°. Given the change of the human’s
goal, the robot agent computes the first segment of the adapted
plan in 0.54sec and the remaining segments of the hybrid plan
are computed within 1.28sec, while the total duration of the
updated plan is 51.63sec with two contact changes.

In the second experiment, shown in [Fig. 21| the initial goal
of the human partner is to rotate the object to —45°. The hybrid
motion plan includes a grasp-hold change of the right arm and
has a total duration of 28.93sec, which is computed within
1.69sec. During execution, the human alters the intended
dyadic goal and aims for a 90° desired object orientation.
The first segment of the adapted motion (receding horizon)
is computed in 2.60sec, while the remaining hybrid plan is
computed in parallel with the execution of the first segment
in 4.98sec. The total updated plan has a duration of 57.35sec



JOURNAL OF KX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

150 Goal Initial -~ #
change Goal /
100 /

_________
________

e

Re-plan in
0.95 secs

Angle (degrees)
N
S

— Initial
-50 -- Discarded New_ |
— New Goal
-100
0O 10 20 30 40 50 60 70 80 90
(a) Time (s)
2
_ 00 Goal change / Initial
g 150 = Re-planin | Goal
& 100 0.95 secs | ™\ l
< 50 Seeeene
= New __§ . Tnitial
g swing swing 2
-50 \
.. New
-100 .. — Initial
Initial -- Discarded Goal \
_150Nswmg 1 — New L—o
-200
0 10 20 30 40 50 60 70 80 90
(b Time (s)
50 Goal »
. Change Inl!ﬁlal T
§ 0] Re-plan in swing New
ED 0.95 secs ™~ Goal
2 50 TN
0 \ New,~
2 y SWINZ nitial
<-100 \ Goal
— Initial
-150} .. Discarded R l
— New
-200
0 10 20 30 40 50 60 70 80 90
© Time (s)

Fig. 17. Evolution of (a) the object’s absolute orientation, and the relative
to the object orientation of the (b) left end-effector and (c) right end-effector
for a non-stationary task. The shaded areas indicate the duration and temporal
placement of the end-effectors’ swing motion and its adaptation according to
the switch of the joint goal. The vertical orange dotted line indicates the exact
point in time where the change happens. The re-planning duration of 0.95sec
is shown with respect to the total motion duration of 88.27sec.

and includes two contact changes. Note that this experiment
requires a complete reversal of the object’s orientation. The
computed motion stops near —45° (see attached video) and
then an opposite rotation is initiated. The stop is due to the
rotation reversal and not due to stretched computation time.

IX. DISCUSSION

In this section, we discuss our dyadic modelling choice,
practical considerations and possible extensions of the pro-
posed approach.

In our partner-aware dyadic formulation presented in
tion IlI|we treat the two individuals and their dyadic interaction
separately (see [Fig. 3); such treatment was used to analyze
Human—Human interactions [24f]. We believe that this design
choice is of core importance; as it has been shown in a
variety of scenarios in[Section VIII} This allows our method to
generalize over different tasks and partner behaviors, assuming
that the partner behavior can be approximated with the simple
but rich spring-damper model.

For the outer level described in we used a
specific discrete state representation and rules that do not
model the partner explicitly. Nevertheless, our framework can
be easily extended to enable multi-layered dyadic interaction

modelling. The inner level (see [Section V-B) takes into ac-

count geometric [55]] and dynamic aspects of the interaction
(see [Section VITI-B2), while the outer level could incorporate
logical interaction rules, e.g. if one of the partner’s arm is
swinging, the agent’s end-effectors should remain in contact
with the object. Also due to the A* choice, the outer level finds
only the optimal discrete solution. One could enhance the plan-
ning robustness at the expense of optimality or computation
time, by realizing the outer level with Anytime Repairing A*
[75]], that computes multiple incrementally optimal solutions.

Last, during the robot experiments, we identified the poten-
tial usefulness of micro-scale adaptation to task’s current state.
Essentially, coping with arbitrary dyadic situations requires
both our online planning adaptation method (long horizon)
and closed-loop control (short horizon). To this front, a Hybrid
Model Predictive Control (MPC) implementation based on the
HOLM primitives would allow the robot to correct for small
errors during the evolution of the task, e.g. close the loop with
respect to the object’s state. The HOLM computation times

presented in |Section VIII-Al|serve as a first promising step.

X. CONCLUSION

This article presents a novel concept towards online adaptive
robot motion generation for physical human-robot collabora-
tion tasks, such as Dyadic collaborative Manipulation (DcM)
scenarios. We propose a formalization towards addressing the
joint action problem based on the assumption that an estimate
of the partner’s non-stationary intentions can be attained.

Further, we propose a novel computational formalism to
exploit the efficiency of informed-graph-search methods in
combination with the dynamic and geometric reasoning of
optimal control methods. Our approach computes the optimal
hybrid policy for the robot to complete manipulation tasks as
a member of a dyad or alone. The method only assumes a
roughly estimated model of the partner’s policy and a model
of the object. With this information, our bilevel optimization
computes dynamically consistent and optimal hybrid paths for
the (i) trajectory of the object, (ii) agent’s forces, (iii) agent’s
contact locations, (iv) respective timings of these actions, and
(v) arms’ contact sequence pattern. Due to the computational
efficiency of the method the optimal paths can be computed
online, such that on-the-fly adaptation to real-time changes
of the dyadic interaction can be realized. This capability
of the proposed method is particularly important for HRC
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(b)
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()

Fig. 18. A sequence of frames of a non-stationary DcM scenario. The orientation of the object is given at the top left corner of every keyframe. The initial
joint goal is to rotate the object to 150°; keyframes (a) and (b) show the hybrid plan and the early execution steps for achieving this joint partner-agent goal.
However, in between (b) to (c) the joint intended goal changes to rotate the object to —55°. This causes an on-the-fly adaptation to a new hybrid motion
plan in (c). Keyframes during the execution of the adapted plan are shown in (d), (e) and (f).

scenarios, where typically the human partner alters intentions
and behaviors multiple times throughout the interaction.

In summary, the proposed method is able to optimize over
a variety of different modes, which span both

1) the hybrid action space that arises, due to the multi-

contact nature of the task,

2) the multi-modal nature of joint-action planning, due to

the non-stationary policy of the partner.

The pivotal aspects that enables the method to holistically
optimize over such a complex and multi-modal space effi-
ciently is the use of an informed-graph-search algorithm in
combination with the decomposition of the hybrid motion into
the HOLM primitives. The outer level’s rules explore only
the useful part of the solution space and with the HOLM
primitives hybrid motion plans are optimized very efficiently.

We evaluated the method both in simulation and with an
actual human-robot dyad. Both results demonstrate that the
proposed method enables the robot agent to adapt its motion
plans online, in response to real-time changes of the dyadic
setup. These indicate the large potential of the method to be

(b)

Fig. 19. Keyframes of a 90° box rotation DcM scenario. The human and the robot jointly complete the task. (a) Initial configuration. (b) Contact change by
the right arm. (c) The left arm has changed contact and the task is completed.

employed in general co-manipulation scenarios. Our future
work will focus on methods to estimate the human intentions
online and fully realize our vision presented in

APPENDIX A
TRAJECTORY OPTIMIZATION METHODS

Trajectory optimization methods can be categorized as
either indirect or direct. Indirect methods are based on the
calculus of variations or the Maximum Principle [76]. They
first use necessary conditions, usually as a boundary value
problem in ordinary differential equations, and then discretize
the resulting equation to obtain the optimal solution. For our
problem, multiple path constraints (8€) have to be included,
which is not straightforward using this transcription method.
Direct methods for TO first discretize (8)) and then use standard
nonlinear optimization techniques to solve the resulting para-
metric problem [60]. Since standard optimization techniques
are used, general constraints are easily incorporated. This
comes with costs regarding the accuracy of the obtained
solution, for which the required level is always application
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Fig. 20. Keyframes of a DcM task, where the human and the robot rotate a cylinder. (a) Initial state. (b) To realize the initial dyadic goal of orienting the
cylinder at 90°, the robot performs a left arm contact change. (c) The partner’s goal changes to a 180° orientation for the cylinder. (d), (e) The robot performs
the new contact changes in accordance to the adapted joint plan. (f) The updated plan is completed given the latest human goal.

dependent, while the resulting problems are easier to pose and
solve. Our method falls into the direct TO category.

Next, there are three main direct TO methods: shooting,
transcription, and collocation [77]. In direct shooting meth-
ods, an integration scheme (e.g. an ODE solver) is used to
eliminate state trajectory variables from the problem. As a
result, problems in this class require only discretization of the
control and possibly of the path constraints. To compute the
state trajectory calls to an embedded integrator are needed,
which first requires the integrator to provide sensitivities and
second it can be especially problematic for unstable systems.
To mitigate this, direct multiple shooting methods perform both
a state and control discretization, while calls to an integrator
are still used, albeit for a shorter horizon [78]]. This leads to
larger but structured nonlinear problems.

Direct transcription methods do not require calls to an
embedded integrator; the discrete system’s dynamics are en-
forced as constraints. This is achieved by discretizing both
the controls and the states in a grid as well as the objective
integral, where the grid points are called knots. Using direct
transcription, problem (§) can be expressed as

N—-1
13151 z; ¢i (i, u;) + en (2N)
7=

s.t. iy = f (x4, uy)
xg € Xo
xy € Xy
g(xi,u;) <0
i€ {0,N},
where the notation is the same as in The opti-

mization problem is typically large and sparse, and nonlinear
solvers which exploit sparsity (SNOPT or IPOPT [73])

can be used. Direct transcription methods have similar con-
vergence characteristics with direct multiple shooting, are well
parallelizable, and are preferred for problems with challenging
path constraints. Their drawback is that the time discretization
and the integration scheme should be carefully selected, since
there is a trade-off between accuracy and computation effort.

Finally, in direct collocation methods both the input and
the state are parameterized by piecewise polynomial functions
(splines). Using these polynomial functions, the values of the
state and control are computed outside of the knot points (typ-
ically at the midpoint of each segment), referred as collocation
points. At these collocation points, the derivative of the spline
is enforced to match the dynamics. Most commonly, first-order
polynomials are used for the input and third-order for the state.
Defining the collocation points at the midpoints of the spline
allows their practitioners to compute the values of the state
and control at the collocation points without computing the
spline coefficients [80].

APPENDIX B
TRAJECTORY OPTIMIZATION THROUGH CONTACT

In trajectory optimization through contact, the hybrid nature
of the intermittent contacts is usually expressed via a comple-
mentarity formulation defined as 0 < dLf > 0, where d is
a signed distance between the contacting objects and f is the
constraint normal force between them. This states that only
unilateral force can be exerted between the bodies, penetration
is not allowable, and that situations involving no contact
but contact force are excluded. Mathematical programs with
complementarity constraints are in practise difficult to solve
as they do not satisfy constraint qualifications and relaxations
are usually needed [41].
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Fig. 21. A sequence of frames of a DcM scenario, where the human’s initial goal is to orient the cylinder at —45° and during the task execution his goal
changes to 90°. (a) Initial configuration. (b) Right arm during swing phase. (c) Right arm grasp hold change has completed. (d) Human and robot jointly
rotate the cylinder towards the original goal. (e) Given the human’s goal change, the adapted hybrid motion plan is in progress. (f) Right arm contact location
change according to the updated plan. (g) Object’s weight is transferred to the right arm and the left arm changes grasp hold. (h) All grasp hold changes have
finished and the final object’s rotation starts. (i) The dyad reaches the object’s goal orientation.
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