
AN ABSTRACT OF THE DISSERTATION OF

Kevin Green for the degree of Doctor of Philosophy in Robotics presented on

August 31, 2022.

Title: Agile Bipedal Locomotion via Hierarchical Control by Incorporating

Physical Principles, Learning, and Optimization

Abstract approved:

Jonathan Hurst Ross L. Hatton

Robotic Bipedal locomotion holds the potential for efficient, robust traversal of

difficult terrain. The difficulty lies in the dynamics of locomotion which complicate

control and motion planning. Bipedal locomotion dynamics are dimensionally large

problems, extremely nonlinear, and operate on the limits of actuator capabilities,

which limit the performance of generic methods of control. This thesis presents an

approach to the problem of agile legged locomotion founded on a first principles

understanding of gait dynamics. This approach is built on the perspective that an

understanding of locomotion is vital to the successful application of modern control

and planning tools. We present 1) a ground-up analysis of legged locomotion

as a dynamical phenomenon, 2) approaches that utilize dynamically meaningful

reduced order models of locomotion, and 3) applications to the hardware robot

Cassie via reinforcement learning.

©Copyright by Kevin Green
August 31, 2022

All Rights Reserved

Agile Bipedal Locomotion via Hierarchical Control by
Incorporating Physical Principles, Learning, and Optimization

by

Kevin Green

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented August 31, 2022
Commencement June 2023

Doctor of Philosophy dissertation of Kevin Green presented on August 31, 2022.

APPROVED:

Co-Major Professor, representing Robotics

Co-Major Professor, representing Robotics

Head of the School of Mechanical, Industrial and Manufacturing Engineering

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection
of Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

Kevin Green, Author

ACKNOWLEDGEMENTS

To my research mentors. Jonathan, thank you for teaching me to be an

independent-thinking researcher and to keep the big picture in perspective. Ross,

thank you for helping me build excitement, wonder and appreciation for the beauty

of math and science. Alan, thank you for support and guidance as I ventured into

a new field. To my mentors at the University of Michigan Medical School, Glenn

Green, David Zopf and Kyle VanKoevering. Thank you for giving me the oppor-

tunity and the flexibility to contribute to extremely impactful projects and for

having the patience to teach me the basics of biology and anatomy which I lacked.

To C. David Remy whose passion for legged locomotion, mechanical engineering

and scientific research inspired me to follow my path studying bipedal robots. I

am eternally grateful that David responded to the email I sent him as a freshman,

even though I had left the subject line blank.

To the students I have collaborated with, have mentored me and have taught me

how to be a mentor, thank you. To Nils Smit-Anseeuw, Yevgeniy Yeslevskiy, and

Wyatt Felt thank you for mentoring me throughout my undergraduate research

career. The welcoming, supportive, thoughtful environment of the RAM-Lab had

a huge impact on me. To Andy Abate, Taylor Apgar, and Patrick Clary for

welcoming me to the Dynamic Robotics Lab and teaching me more than I could

have imagined, faster than I could have ever imagined. To Helei Duan, Jeremy

Dao, Mike Hector, and Brian Layng for working with me on research ideas that

years earlier I thought were totally impossible. To Jonah Siekmann, John Warila,

Yesh Godse, Ryan Batke, Fangzhou Yu, Andrew Sanders and Grace Stridick for

working with me as I have learned to be a mentor. I hope I have been able to have

a positive impact on your professional life and I thank you for trusting me with

your time and effort.

To my family and friends for helping support me through the most challeng-

ing five years of my life. Through publishing rejections. Through technical fail-

ures. Through wildfires. Through political turmoil. Through a global pandemic.

Through the isolation of social distancing. Through the loss of my grandma and

aunt. Thank you Anna Hua, Darren Cheng, Kari Green, Ted Xiao, and Melanie

Green.

Thank you Mom and Dad, more than I can express.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 A Brief History of Agile Legged Locomotion 1

1.2 Agile Legged Robot Control Methods 3

1.2.1 Raibert Control Laws . 4

1.2.2 Virtual Model Control . 4

1.2.3 Whole Body Control . 5

1.2.4 Hybrid Zero Dynamics . 6

1.2.5 Reinforcement Learning . 7

1.3 Thesis Format and Contribution . 7

I Fundamental Principles of Legged Locomotion 10

2 Emergent Properties of Agile Legged Locomotion 11

2.1 Gaits Can Be Described by Reduced-Dimensional Representations . 11

2.2 Trajectories Are Emergent Behaviors from Multifaceted Gait Ob-

jectives . 13

2.3 Touchdown Is the Most Challenging Instant of the Gait and Greatly

Influences Design and Control Choices 16

2.4 Actuator Dynamics and Limitations Dictate the Features of Effec-

tive Gait . 17

2.5 Physical Requirements for Leg Design Are Unique and Demanding . 19

3 Hierarchical Control Is Not a Forced-Compromise but Instead Is an Im-

plied Structure 22

II Multistep Planning through Dynamically Meaningful Re-
duced Order Models 25

4 Direct Optimization of Open-loop Disturbance Rejection 26

4.1 Abstract . 28

TABLE OF CONTENTS (Continued)
Page

4.2 Introduction . 28

4.3 Background . 30

4.4 Dynamic Model . 31

4.4.1 Equations of Motion . 32

4.4.2 Hybrid Transition Model . 34

4.4.3 Nondimensionalization . 34

4.5 Methods . 35

4.5.1 Minimum Effort Optimization 36

4.5.2 Disturbance Aware Trajectory Optimization 37

4.5.3 Testing Simulation . 40

4.6 Results . 40

4.6.1 Optimization Results . 41

4.6.2 Simulation Testing Results 43

4.7 Conclusions . 46

5 Real-time Motion Planning for Systems Without Closed Form Solutions 47

5.1 Abstract . 49

5.2 Introduction . 49

5.3 Modeling of Periodic Gaits . 52

5.3.1 Poincarè Map Discrete Dynamics 52

5.3.2 Failure Margin Function . 54

5.4 Approximation of the Step-to-Step System 54

5.4.1 Controlled First Return Map Approximation 55

5.4.2 Failure Margin Function Approximation 55

5.5 Footstep Planning Optimization Problem 56

5.6 Illustrative Application . 57

5.6.1 Step-to-Step Approximation of the aSLIP Model 60

5.6.2 Footstep Optimization and Failure Margin Utility 63

5.7 Conclusions . 66

TABLE OF CONTENTS (Continued)
Page

III Learning Reactive Control from First Principles of Legged
Locomotion 67

6 Incentivizing Robust Gaits using Environment Distributions in Reinforce-

ment Learning 68

6.1 Abstract . 70

6.2 Introduction . 70

6.3 Reinforcement Learning Formulation 73

6.3.1 State Space . 74

6.3.2 Action Space . 75

6.3.3 Reward Function . 76

6.3.4 Dynamics Randomization 78

6.3.5 Policy Representation and Learning 79

6.4 Terrain Randomization . 80

6.5 Results . 81

6.5.1 Simulation . 83

6.5.2 Behavior Analysis . 86

6.5.3 Hardware . 90

6.6 Conclusion . 91

7 Guiding Learned Policies using Optimized Spring-Mass Models 93

7.1 Abstract . 95

7.2 Introduction . 95

7.3 Background . 98

7.4 The Control Hierarchy . 99

7.4.1 The Reduced-Order Model Library 100

7.4.2 High Frequency Control Loop 104

7.5 Reinforcement Learning . 104

7.5.1 Problem Formulation . 104

7.5.2 Learning Procedure . 106

7.6 Results . 108

TABLE OF CONTENTS (Continued)
Page

7.6.1 Simulation . 108

7.6.2 Hardware . 110

7.7 Conclusion . 112

8 Learning Transient Locomotion through Centroidal Momentum References114

8.1 Abstract . 116

8.2 Introduction . 117

8.3 Background . 119

8.3.1 Reduced-Order-Models . 119

8.3.2 Learning for General Locomotion 120

8.3.3 Learning for Multiple Behaviors 121

8.4 Single Rigid Body Model Formulation 121

8.5 Trajectory Optimization Formulation 122

8.5.1 Hybrid Modes . 123

8.5.2 Decision Variables . 123

8.5.3 Transferability Constraints 124

8.5.4 Composing Maneuvers . 126

8.5.5 Objective . 129

8.5.6 Library Generation . 129

8.6 Running Reinforcement Learning Problem 130

8.6.1 Problem formulation . 132

8.6.2 Learning Procedure . 132

8.7 Running Results . 135

8.7.1 Simulation Results . 136

8.7.2 Hardware Results . 137

8.8 Four-Step Reinforcement Learning Problem 137

8.8.1 Reference Trajectory Optimization 138

8.8.2 Policy Network Design . 138

8.8.3 Reward Function Formulation 140

8.8.4 Episode Initialization . 143

8.8.5 Epilogue Reward . 143

TABLE OF CONTENTS (Continued)
Page

8.8.6 Dynamics Randomization 145

8.9 Four-Step Turn Results . 145

8.9.1 Simulation Results . 146

8.9.2 Hardware Results . 151

8.10 Conclusion . 154

9 General Conclusions 156

Bibliography 159

LIST OF FIGURES
Figure Page

2.1 Example of damage caused by poor gait design. 15

3.1 Hierarchy of control separated by information content and rate. . . 23

4.1 Robust actuated SLIP motion plan. 29

4.2 ASLIP model with state and parameter labels. 32

4.3 Minimum effort actuated SLIP optimization results. 42

4.4 Robust actuated SLIP optimization results. 44

4.5 Simulated disturbance response body traces for minimum effort and

robust motion plans. 45

5.1 Representative diagram of a dynamical system’s orbits, Poincarè

map, valid and invalid sets on the surface of section, and failure

margin function. 51

5.2 Simulated and neural network approximation of the controlled first

return map. 58

5.3 Kd-tree sampled and neural network approximation of the failure

margin function. 59

5.4 Visualization of the effect of adjusting the failure margin function

threshold on accuracy and coverage. 62

5.5 Comparison between resulting motions from the optimization with

and without the failure margin constraints. 64

6.1 High level diagram describing the interaction between domain ran-

domization and the learned control policy before transfer to hardware. 71

6.2 Periodic foot force and velocity penalty random indicator functions. 78

6.3 Terrain randomization for stair traversal. 80

6.4 Hardware stair traversal. 82

6.5 Success percentage in simulation across speed for a feed-forward

stair policy, a flat ground trained LSTM policy and a stair trained

LSTM policy. 84

LIST OF FIGURES (Continued)
Figure Page

6.6 Leg swing strategy comparison between stair trained policies and

flat ground trained policies. 87

6.7 Ground reaction forces and cumulative impulse for the stair LSTM

policy when it first encounters a step up, step down or flat ground. 89

7.1 High level control hierarchy using a static library of motions to

command a neural network. 97

7.2 Detailed control diagram including the motion library, learned con-

troller and low-level PD controller. 97

7.3 Bipedal actuated SLIP model with state and parameters labels. . . 101

7.4 Body and foot traces for an optimized 1.0 m/s walking gait from

the actuated SLIP model. 103

7.5 Forward velocity tracking from simulated step changes in com-

manded velocity. 107

7.6 Ground reaction force profile comparison between the actuated SLIP

policy and previous work’s policy. 109

7.7 Average foot placement error and standard deviation at different

commanded speeds. 111

7.8 Film strip motion comparison between the reduced-order model, full

order robot simulation, and hardware trial. 112

8.1 Single rigid body model reference-based learned controller workflow. 117

8.2 Visualization of single rigid body model footstep placement con-

straints. 124

8.3 Center of mass traces and footstep locations for a library of 4-step

90◦ turning trajectories. 130

8.4 Optimized single rigid body model trajectories for nominal locomo-

tion, running turns and a jump turn. 131

8.5 Film strip comparison between single rigid body model, MuJoCo

simulation and hardware treadmill trial for high speed running. . . 134

LIST OF FIGURES (Continued)
Figure Page

8.6 Comparison between reference-based and reference-free training

mean training episode length for grounded running. 136

8.7 Example four-step-turn optimized single rigid body model trajec-

tory at 2.5 m/s. 139

8.8 Diagram of policy transition and epilogue reward for the four-step-

turn maneuver. 144

8.9 Sample efficiency of training with varying amount of reference in-

formation for the four-step-turn manuever. 147

8.10 Simulated pelvis trajectory trace and footstep locations comparison

for full reference and refernce free control policies. 148

8.11 Pelvis yaw angle throughout the turn maneuver for the various poli-

cies in simulation. 150

8.12 Impact of ablating the epilogue reward on failure probability during

the turn and in the steps immediately after. 152

8.13 Impact of amount of reference information in the reward function

on failure probability during the turn and in the steps immediately

after. 153

LIST OF TABLES
Table Page

4.1 Nondimensional system parameters, states and inputs for the actu-

ated SLIP model. 35

5.1 Performance of variations on the motion planning problem across

1000 random tasks. 65

6.1 Description of mid-trial command variations probabilities and com-

mand ranges. 74

6.2 Weights and expressions for the terms of the reward function. . . . 77

6.3 Dynamics randomization parameters and ranges. 79

6.4 Cost of transport for different policies on flat and stair terrains. . . 86

7.1 States, parameters and control inputs for the actuated SLIP model

used to generate the library of motions. 102

7.2 PPO Hyperparameters . 105

8.1 PPO hyperparameters for single rigid body model reference-based

training. 133

8.2 Dynamics randomization parameter ranges. 135

8.3 Four-step-turn learned control policy inputs and size. 140

8.4 Reward component composition and weighting percentages. 142

8.5 Dynamics Randomization Parameter Range 146

Chapter 1: Introduction

As robots find increased use to areas beyond the factory, they require increased

mobility. Mobile robots are seeing application in a wide variety of applications such

as autonomous aerial vehicles in surveying [9], autonomous underwater vehicles in

ocean sampling [103], differential-drive wheeled vehicles in warehouses, and legged

robots in construction site surveying [151]. These new applications require different

physical capabilities. In particular legged robots hold promise for use in rough

terrain and environments engineered to accommodate the human form factor. No

robot is yet able to match or exceed the rough terrain traversal capabilities of

animals or humans. To realize this potential legged robots must be reliable, robust,

efficient, and agile.

This thesis presents a principled understanding of the fundamental principles

of legged locomotion and a series of academic research efforts which examine spe-

cific methods of investigating these properties and applying them to bipedal robot

control. The core principles are intended to be a useful guide to engineers and

scientists new to the area of agile legged locomotion. While the technical imple-

mentation methods will evolve and iterate in the coming decades, I hope that these

principles will be a more enduring understanding of the core phenomenon of legged

locomotion which we hope to understand and implement.

1.1 A Brief History of Agile Legged Locomotion

While many walking machines were created before Raibert’s, his hopping and run-

ning machines represent a leap forward in dynamism. In the early 1980s, Marc

Raibert’s Leg Lab at MIT built and demonstrated legged robots whose agility is

impressive even today. These robots were able to hop, run, skip and trot through

the use of pneumatic actuators and an external air source [124]. They even demon-

2

strated front flips and backflips on 3D robots [115].

While pnuematically actuated legged robots have fallen out of vogue, the con-

trol principles Raibert and his lab pioneered are the foundation of much work even

today [122]. The pneumatic hopping machines exploit the passive dynamics of an

pnuematic piston to act as a nonlinear spring [121].

In addition to Raibert and contemporaries’ work on hopping robots, passive

dynamic walking robots emerged [105]. Tad McGeer built a demonstration of a

completely passive walking machine which was able to sustain steady state locomo-

tion down a slight slope [104]. This machine’s gait was incredibly fluid and natural,

even reminiscent of a human walking gait. Later, Andy Ruina’s Biorobotics and

Locomotion Lab at Cornell extended these passive dynamic walking principles to

minimally actuated walking robots [33]. These robots generally use a small ankle

push off to inject energy into the gait efficiently to make up for all the unavoidable

losses in the mechanism and associated with foot touchdown. The most well known

of these minimally actuated walking robotics is the Cornell Ranger robot, which is

the most efficient walking robot to this day [15, 89, 34]. In a 2011 demonstration,

this robot walked 40.5 miles unassisted on a single battery charge over the course

of 30 hours and 50 minutes [134].

The spring-like passive dynamics of the Raibert hopping robots were extended

to electric motor driven legged robots. Gill Pratt’s continuation of the MIT leg

lab showed electrically actuated walking robots such as Spring Flamingo, Spring

Turkey and later M2 [119, 118, 73, 120, 131]. All of these robots used series elastic

actuation, which is where the interface between the prime mover and the kinematic

joint is intentionally made compliant. In Pratt’s robots this is used for both impact

tolerance and as a precise force transducer [131, 129, 130]. This design approach

is in common usage today with robots such as ANYbotics’ ANYmal [10] and

Appronik’s Draco [12, 5] which are built around modular series elastic actuators.

While compliance is extremely useful for accurate force control, it is also use-

ful to directly enable the gait dynamics for a robot whose actuators cannot act

transparently enough. Early hopping robots such as the bow legged hopper and

3

the ARL monopod are good examples of using this type of passive dynamics in

locomotion [24, 4]. Bipedal robots such as MABEL and ATRIAS use their passive

springs to absorb impacts and create smooth force profiles which would not be

possible with their relatively high inertia actuators [60, 77, 36, 128, 127].

An alternative approach to engineering passive compliance is to design a legged

robot with low inertia actuation then implementing the leg impedance in software.

One of the early proponents of this approach is Sangbae Kim from MIT with his

Cheetah robots [138, 160, 18]. In addition to control bandwidth, he argues that

the regenerative braking by backdrivable motors is vital to enabling efficient loco-

motion and real world usage [110]. The most extreme robot to demonstrate this

design philosophy is the Minitaur robot developed at the University of Pennsylva-

nia [90]. This robot’s legs are four bar kite linkages where two links are directly

driven by a brushless DC motor. This results in a robot with incredibly low inertia

legs. In recent years this low gear ratio approach has become the defacto standard

among a large set of commercially available quadrupedal robots.

The agility robotics robots Cassie and Digit sit between engineered passive com-

pliance and low inertia actuation. Their legs have passive fiberglass springs that

insulate the motors and their transmissions from foot impacts, but they also have

low gear ratios for backdrivability and software compliance [11, 161]. This design

approach has lead Cassie to demonstrate some of the most impressive performance

by electrically actuated bipedal robots [132, 142].

1.2 Agile Legged Robot Control Methods

Bipedal locomotion requires feedback control of the unstable, underactuated,

highly nonlinear dynamics. This control can range from quite simple heuristic,

separated feedback controllers (Raibert control laws) pioneered in the MIT Leg

Lab to extremely complex (provably stable hybrid zero dynamics). This section

will summarize some of the most common methods of control. Many of the meth-

ods are intrinsically connected to motion and footstep methods but we will try to

focus on the lowest level of whole robot level control.

4

1.2.1 Raibert Control Laws

The simplest control is perhaps that of the Raibert hoppers. The basic structure to

Raibert control is to separate the problem of locomotion into three separate pieces

with their own control laws. First, by increasing the pressure of the pnuematic leg

cylinder during mid-stance the leg will push off harder, injecting energy into the

system. Second, by changing the touchdown leg angle the robot can modulate its

forward velocity. Finally, during stance the robot applies hip torque to stabilize

the body pitch. These three control laws are essentially well tuned PID control

laws which are only applied during specific parts of the gait cycle.

1.2.2 Virtual Model Control

An evolution of this control approach is virtual model control (VMC). This was

first applied to spring turkey and later spring flamingo [73]. Virtual model control

is all about applying virtual forces on the robot’s body. It consists of two separate

but important parts. First is how the desired body forces are chosen based on a

series of virtual springs and dampers. If the robot is in single stance phase, virtual

springs and dampers are applied to the height of the robot body and to the bodies

rotation. This is known as the ‘virtual granny walker’ because it supports the

robot’s body but does not pull the robot forward. The forward position/velocity is

not able to be controlled because of the underactuation intrinsic to single stance.

However, if the robot is in double stance, it has an additional degree of control

and is now able to control the forward velocity of the body. The forward force is

calculated using a damper between the robot and a moving target, which is called

‘the virtual dog track bunny.‘ The spring/damper analogy is useful to internalize

what is happening but in practice these are simply PD controllers on the robot’s

body. This method of applying PD control to a robot’s body is the standard

practice in many bipedal control methods today [51, 11].

The second part of virtual model control is how the forces on the main body

are created. These forces on the body have to be created using the stance leg(s)

5

joint torques. This mapping of desired body forces to joint torques is done purely

kinematically in this early work. This is sometimes called Jacobian transpose

control because it is based around using the transpose of the Jacobian of the leg’s

kinematics to map body forces to joint torques. Jacobian transpose control is

still used today, particularly in robots with very lightweight legs and heavy bodies

[47, 73].

1.2.3 Whole Body Control

Many more recent control methods follow a similar structural approach to virtual

model control but with increased fidelity. Replacing the virtual model ‘granny

walker’ and ‘bunny’ are PD controllers tracking body motion from a motion plan-

ner. A common modification is to have the PD controllers act in acceleration

space instead of force space. This generalized better as inertia changes with body

configurations.

The other big improvement over virtual model control is modern whole body

control. Many similar control methods go by different names such as operational

space control, whole body control, or even simply inverse dynamics. These methods

exploit the linearity of multibody dynamics. If we examine a generic form of the

manipulator equation,

M(q)q̈ + C(q, q̇)q̇ + g(q) = Bτ + JTc λ+ JTf f (1.1)

we can see the linearity in generalized coordinate acceleration (q̈), actuator effort

(τ), kinematic constraint forces (λ) and ground reaction forces (f). In this ex-

pression M is the mass matrix, B is the velocity product forces, g contain the

gravitational forces, and B maps the control effort into generalized coordinates.

JT is the Jacobian of the kinematic constraints and Jf is the Jacobian to the con-

tact points which apply ground reaction forces. Further, if we are interested in

controlling the acceleration of an arbitrary point (ẍT) on the robot, that is linear

6

in generalized accelerations as we can see in the expression

ẍT = JT q̈ + J̇T q̇. (1.2)

This linearity allows us to solve for desired body accelerations by using standard

linear algebra techniques while exactly accounting for the robot’s internal dynamics

[79]. Additionally, if we would like to impose constraints such as torque limits or

friction cones we can form the acceleration matching task as an efficient quadratic

program [11]. These whole body control methods are excellent in that they fully

account for the instantaneous nonlinear dynamics and underactuation intrinsic to

legged robots. However, their principle drawback comes from that instantaneous

nature. They are not able to look ahead in the dynamics or through the gait cycles.

It could be very useful to alter the reactions of the robot based on the point of the

gait cycle. With whole body control any forethought must come from the motion

planner.

1.2.4 Hybrid Zero Dynamics

A method that considers the whole of the gait when designing the feedback control

is hybrid zero dynamics (HZD). The core principle of hybrid zero dynamics is about

distilling down to the underactuated components of motion in such a way that these

uncontrollable components are naturally stable. The process involves finding a

nominal trajectory and set of holonomic constraints which can be enforced through

the joint actuation. In a way, HZD is both a whole body controller and a reduced

order model. The full order holonomic constraints are optimized in conjunction

with the reduced, zero dynamics trajectory. A drawback is the limited nominal

motions. To achieve variations on the gait (speed, step length, expressive features,

ect.), a new trajectory must be optimized. Further, the space of gaits which have

holonomic constraints which are provably stable is smaller than the space of gaits

which are generally feasible. This method has shown applications on many bipedal

platforms such as RABBIT [29], MABEL [146], ATRIAS [65] and DURUS [98].

7

1.2.5 Reinforcement Learning

While reinforcement learning has been used for legged robots for decades [150],

it has recently dramatically increased in popularity and has demonstrated some

extremely impressive, dynamic behaviors. These works include quadrupeds like

Minitaur [149] and ANYmal [80], and bipeds like Cassie [161] and Digit [27]. Re-

inforcement learning for agile legged locomotion has mostly consisted of model-free,

neural network based methods in simulation. In particular, many methods use a

policy-gradient algorithm such as PPO, SAC, TRPO or DDPG [136, 62, 135, 97].

1.3 Thesis Format and Contribution

This thesis explores the principles of agile, efficient and robust bipedal locomo-

tion and applies these principles to motion planning and reactive control. Beyond

simply building more agile and robust controllers, we aim to find human under-

standable principles, strategies, and objectives.

Most of the chapters are adapted from published work which was produced as

a collaboration between myself and other researchers. These chapters are marked

with a title pages which includes the title, authors, publication venue and status

if the work is an in review manuscript. Further, each of these works contains a

paragraph describing each of the authors’ contribution to the work and to the

manuscript.

Part I contains a first principles description of agile, robust locomotion. This

part articulates the perspective about the fundamental basis of legged locomo-

tion and presents supporting evidence. It concludes with a more specific chapter

examining how hierarchical control is an emergent feature of legged locomotion.

Part II looks at insights from, and planning methods that use, reduced order

models of locomotion. Chapter 4 examines how to make aerial running robust to

ground height disturbances. The novel input linking method allows us to optimize

multiple trajectories for varying ground height that share actuator commands.

This method showed that for a series elastic leg it is useful to extend the leg through

8

the touchdown event and to swing the leg backwards at touchdown. This reinforces

previous biomechanics and optimization studies which shows the utility of these

strategies. Chapter 5 looked at a method for efficiently performing motion planning

using an dynamic model which does not have a closed form solution. Many motion

planning methods struggle with choosing between simple, mathematically efficient

models and dynamically rich, expensive models. This work uses a data-driven

approximation of the controlled first-return map which eases the computational

burden at the expense of approximation error. However, there is nothing stopping

the optimizer from extending the model well beyond the valid domain. For legged

robots this corresponds to states and inputs which cause the robot to fall. The

novel addition is to include a failure margin function which is an oriented distance

function in state-action space. We show that this addition greatly increases the

reliability of the planning method for an actuated spring loaded inverted pendulum

model.

Part III looks at integrating knowledge of agile locomotion with the power of

reinforcement learning to control real bipedal robots. Chapter 6 looks closely at

how the distribution of environments which the robot sees in training can affect the

resulting control policy. Specifically, we look at distributions of stairs compared

to flat ground. The stairs policy is highly successful at climbing and descending

flights of stairs in simulation and on hardware. This is the first demonstration of a

perception-free, unconstrained, bipedal robot climbing and descending stairs. Most

interesting is how we can examine the difference in the gait and control policy

between the stair controller and the flat ground controller. Chapter 7 takes a step

toward integrating reinforcement learned control policies into a control hierarchy.

We aimed to train a control policy which takes commands from and is trained

to imitate the motion of an optimized actuated spring loaded inverted pendulum

model. This resulted in a controller capable of high quality walking and grounded

running. Further, the controller showed signs of spring mass locomotion such as

double humped ground reaction forces in walking and similar body oscillations.

Chapter 8 looks to take this approach of using reduced order models to inform

9

learned control and extend it to one-off maneuvers such as high speed turns. In

particular we are interested in motions which rely on modulating angular momen-

tum. To this end, we elevate from our inverted pendulum models to a single rigid

body model with massless, ideal legs. These references are used to train learned

controllers to perform high speed locomotion and high speed, abrupt turns.

As many chapters are adapted from self contained publications, they present

their specific contributions in their body. The following are what I view as the

most impactful contributions from the work contained in this thesis.

• A concise and approachable description of the first principles of agile loco-

motion.

• Specific evidence that swing leg extension and angular retraction produce a

more robust response to ground variations.

• An approach to mitigate the risk of invalid solutions when planning with

data-driven Poincarè models.

• The first demonstration of blind traversal of stairs by an unsupported bipedal

robot.

• Evidence that learning locomotion on stair environments resulted in in-

creased swing leg retraction compared to flat ground environments.

• The first demonstration of training a learned controller for a biped to emulate

motions from a reduced-order model.

• The first example of learned, high-speed, agile turning maneuvers on an

unsupported bipedal robot.

• A novel epilogue reward system for learning fixed duration maneuvers.

10

Part I

Fundamental Principles of Legged

Locomotion

11

Chapter 2: Emergent Properties of Agile Legged Locomotion

In this chapter we will examine several important features of legged locomotion

which make it unique from an engineering perspective. These features are built

from the first principles of agile locomotion but we will go into more detail about

how they relate to the current methods and approaches in use. This section should

give unifying context for the following chapters’ technical research. The primary

intended audience is engineers and early career researchers in area of legged loco-

motion who would like to have a deeper understanding of the problems, difficulties

and unique features of legged locomotion, independent from the engineering chal-

lenges and general challenges of robotics.

2.1 Gaits Can Be Described by Reduced-Dimensional Representa-

tions

Legged locomotion is, at its core, a high dimensional quasiperiodic behavior. Walk-

ing and running is a cyclical manipulation of body shape which produces a net

displacement. To function in any useful context this locomotion cycle must be

able to be adjusted from step to step. This could be to avoid obstacles, to speed

up or slow down, or to adjust for variations in the terrain. The implicit question

is how does this cycle change? I contend that while the cycle exists in a very high

dimensional space (20-50 dimensions for legged robots and 100s of dimensions for

biological systems) it is varied along a much smaller dimensional manifold. I ask

forgiveness from the mathematicians and dynamicists for my casual usage of “man-

ifold.” The idea here is that the nominal gaits across different locomotion goals

will smoothly vary and lay on a smaller dimensional surface. When disturbed (for

example a push, a foot slip, or an unexpected ground height change), these orbits

may deviate from the manifold but will very quickly be forced back onto the man-

12

ifold. Over the next step or two the path on the manifold will converge back to

the specific desired orbit. Also importantly, the description of a dynamical state

projected onto the gait manifold should contain most of the information needed to

adjust gait level control actions such as foot placement and energy injection.

Reduced-order models of locomotion are the most explicit embodiment of this

dimensionality reduction in practice. For example, inverted pendulum models are

a principled minimal description of a legged robot. They describe the center of

mass dynamics of the robot and in particular the underactuation which results

from a point foot contact. This is clearly insufficient to fully describe the dy-

namics of a legged robot, but it is an excellent starting point to understand the

effect of foot placement and in some cases stance energy injection. Various models

either prescribe the stance leg forces (inverted pendulum, linear inverted pendu-

lum, spring loaded inverted pendulum) or can allow for some simplified descrip-

tor of leg actuation (Raibert hoppers, actuated spring loaded inverted pendulum)

[85, 95, 56, 123, 76]. More descriptive models such as centroidal momentum or

single rigid body models extend this to a larger representation which allows them

to perform more motions and encapsulate more of the robot’s dynamics.

These models’ usage is exactly in line with this smaller dimensional configura-

tion space because they are used to understand the effect of control actions on the

entirety of the gait cycle. These models are most powerful in control structures as

the model in an online model predictive controller. They enable reasoning about

the effect of varying footstep placement on the gait cycle several steps into the

future. Importantly for their efficacy they reason about this effect within this re-

duced dimensional space. Then these planned motions are lifted into the full-order

space of the robot and are stabilized with classical whole-body control techniques.

Learned control methods are a little more nebulous because it is extremely

difficult to inspect the optimized controller, but I would not be surprised if many

methods functionally converged to something resembling this reduced dimension

understanding of gait cycles. We observe that bipedal learned walking and running

controllers will generally converge to something that resembles a limit cycle in

13

simulation regardless of disturbances or initialization. This limit cycle varies as

we change dynamic parameters of the system and is different than the emergent

cycle on hardware. This is true across speeds which may indicate there is a strong

feedforward signal with a gentle feedback reaction. I believe this relates closely to

the idea of existing on a smaller manifold of motions and could be a very useful

feature of learned planners which encode the full observed robot state to a minimal

form for planning.

2.2 Trajectories Are Emergent Behaviors from Multifaceted Gait

Objectives

Motions are emergent results of the goal of locomotion, not the key interest. As

engineers and scientists, we observe and judge robot gait quality by observing its

trajectory. We see the poses, but more importantly we observe how they change

over time to form an opinion about the motion. Humans are particularly good

at observing, understanding, and even identifying specific individuals based on

human gait [83, 147]. However, we are much worse at recognizing animal motions

[32]. This raises an issue: if we use our aesthetic preferences to judge the quality of

a robot’s gait, we risk ensuring that our robots will move like humans. While this

could be useful if the true goal is human perception, if we actually care about the

robot’s performance we need to understand the factors that created that human

motion and emulate them but applied to the robot. Simply imitating “natural

human gait” on a robot without actually getting the physics of locomotion correct

misses the purpose. The gait must be driven by the integration of the physics of

locomotion and gait objectives to see the benefits of natural, agile locomotion.

In the field of legged robotics we struggle with meaningful, objective compar-

isons of different control methods. While a cynical view is that this is used to

cover up deficiencies of different approaches, a fairer view would be that there is

fundamentally not a single measure of legged robot performance1. Instead, it is

1This is to say nothing of the difficulty in comparing different hardware platforms that may

14

complex, multifaceted, and situation dependent.

Injury avoidance is a vital cost function for locomotion. Risk of injury manifests

in both falls and in damage caused by impacts during locomotion. Avoiding falls

is an important interest which should be considered when designing hardware and

choosing locomotion paths, motions and control strategies. Further, the risk of

falling varies with the environment. A robot will have to consider footholds much

more carefully when traversing difficult terrain such as a boulder field or stepping

stones compared to walking across a uniform paved surface. In addition to the

specific physical attributes of the environment, the uncertainty of the environment

greatly impacts the risk of failure. If the robot’s sensing is degraded because of

lighting conditions or the environment itself has varying ground properties (e.g. a

muddy trail) then the robot will need to be more conservative in its behavior to

keep the risk of falling acceptably low.

Second is slightly less intuitive, the robot must avoid damage during normal

locomotion. This can be thought of the difference between a human runner trip-

ping, falling and tearing a ligament versus a runner developing shin splints over

the course of a cross-country season. A robot’s gait selection can affect the amount

stress on different components which can cause premature failure.

One example of this second failure mode is shown in Fig. 2.1. This shows

photos of the Cassie robot after a learned controller was run for a 5k race [41].

This controller emphasized heel touchdown with the hope of reducing impacts,

energy loss and disruption to the gait. However, this caused the foot to slide as

it was touching down and wore away the heel of the foot over the course of the

53-minute race. Further, the impacts were transmitted to a mechanical weak point

in the motor crank which actuated the foot. This led to a failure where the crank

cracked. The lesson here for gait design is that hardware design, control strategy,

and gait design must be integrated. An example engineering tradeoff this prompts

is when to modify the mechanical leg design to better accommodate the stresses,

and when it is better to modify the gait to avoid long-term damage.

have particular challenges which suit different control approaches.

15

Figure 2.1: Two examples of damage caused by poorly designed gait motions. The
gait in question was taught to heel strike which applied large impulsive loads to
the foot actuation system, breaking the connecting rod and cracking the aluminum
crank. It also caused the foot to slide at touchdown, wearing away the rubber of
the foot.

A second class of objectives beyond self-preservation are the high-level mobility

goals. At the most basic level there is the task goal, e.g. walk to the kitchen. This

goal often is paired with a description of the urgency of motion. The urgency may

be high, such as in a hot food delivery task, or it could be relatively slow, such as

preemptive restocking. Another mobility goal could be the expressiveness of the

gait [46]. For example, when delivering parcels in a residential setting the robot

would want to be non-threatening, predictable and pedestrian. If the same robot

was patrolling a secure site, their gait should be more authoritative and deliberate.

Finally, a legged robot must balance energy usage against all these other factors

to maximize its battery life. Like in automotive design, energy efficiency is traded

off against power, speed, capacity, and expressiveness. Much work has investigated

optimizing robot gait for pure energy efficiency. This has produced some incredi-

ble smooth, efficient gaits but their robustness to unexpected disturbances is not

considered at optimization time.

16

Humans and animals are very good, but not perfect at balancing these same

objectives in a context dependent manner. As an example of risk adjustment,

consider how a human will change their gait when walking through a room in

the pitch dark compared to in the light. In the dark room a person will be more

cautious, shortening footstep length, swinging legs more carefully and being closer

to statically stable walking. However these balances are not perfect in humans,

take for example competitive running. Runners would like to minimize the risk of

injury and to that end require coaching from experts to refine their technique.

2.3 Touchdown Is the Most Challenging Instant of the Gait and

Greatly Influences Design and Control Choices

When walking or running, one of the largest sources of disturbances and uncer-

tainty is the ground itself. In general, touchdown is a collision event which results

in extremely abrupt changes in system velocity. These sharp changes in velocity

can make feedback control near touchdown difficult and often requires either loose

feedback gains or very careful, contextual gain design [165]. While it is possible

to sense or estimate features of the ground surface, this is difficult to do so re-

liably and precisely due to conditions changing from foothold to foothold. This

includes properties such as ground height, ground compliance, friction properties

and ground normal. This disturbance works differently than the traditional distur-

bance sources often considered in control theory. Touchdown disturbance appears

suddenly and substantially at the instant of touchdown, even changing the moment

that touchdown occurs.

Compounding on the manifestation of disturbances is the fact that touchdown

delineates a loss of control authority. As previously discussed, dynamic legged

locomotion is underactuated, meaning that there are components of the robot’s

state which cannot be influenced directly at an instant in time. As an example, one

of these components is the angular momentum around the contact point during

stance. To have a realistic, useful robot we need to control the long-term behavior

17

of these state components. The way many of these vital components are controlled

is through foot placement. If the robot has too much forward momentum, the

correct reaction is to place the foot further forward. The instant after a foot is

placed on the ground, there is a long length of time before the robot can place the

next foot to influence the future motion of the robot.

To achieve robust locomotion, gait strategies must be selected with considera-

tion to how they interact with touchdown disturbances. The motion and control

strategies should seek to minimize the long-term disruption on the gait from these

disturbances. The nominal motion at touchdown can be designed in such a way

that it reduces the sensitivity of the gait to variations. A great example of this

phenomenon is swing leg retraction in drop steps. When running humans and birds

swing their legs, they extend them further forward than their ideal leg touchdown

angle, then swing them backwards to the ideal touchdown angle [20, 157]. If the

ground is higher than expected they will touchdown with a more angled leg, and

if the ground is lower, they will touchdown with a more vertical leg. This has

several effects on the gait which are desirable. First, it modulates the maximum

leg force during stance so that the leg is not overloaded and risk damage. Second,

it automatically regulates the body height of the next step by adding or removing

forward momentum. On step ups, the more forward foot placement lifts the body

height while removing forward momentum. On step downs, the more retracted

foot placement lowers the body and accelerates it forward. This strategy is use-

ful because it is much more important to immediately regulate body height to

avoid falling or kinematic problems in leg swing, then to adjust forward speed in

subsequent steps.

2.4 Actuator Dynamics and Limitations Dictate the Features of Ef-

fective Gait

From an engineering perspective, muscles are a very complex actuator. Skeletal

muscle exhibits length dependent force exertion, velocity dependent force and even

18

different types of skeletal muscle contractions [44, 126]. These muscle properties

are extremely important to understand human and animal gait. Studies which

attempt to model human gait or to optimize prosthesis assistance often need to

use extremely high dimensional models with individual muscle models [140, 66].

As we look toward legged robots, it makes intuitive sense that our engineered

actuators’ dynamics and limitations are very different but are just as important to

the robot’s gait.

The actuator dynamics associated with a robot are vitally important to enable

effective gait. When I describe actuator dynamics, I am referring to the physical

properties and the actuation limitations of a primal mover of a legged robot. By far

the most used actuation method in dynamic legged robots currently is brushless

DC (BLDC) motors with transparent speed reductions. Transparency is an ex-

tremely important attribute of an actuator in the context of locomotion. Dynamic

transparency is an actuator’s ability to admit, sense and respond to external forces

and impacts. BLDC motors are particularly well suited to legged robots because

of their high power to weight ratio, high efficiency, and high torque density [91].

Even with the high torque density, robot legs often require more torque than is

possible with direct-drive systems without the motor size becoming unwieldly or

overdriving the windings to the point of unreliability. Further, the legs do not

require the top speeds possible with a direct-drive brushless motor. This leads

to the intuitive engineering solution of a mechanical speed reduction: a geartrain.

An important question is once you are adding a transmission, how much do you

reduce the speed of the motor? One approach to choosing a transmission ratio is

to do it based on the speed and torque required for a target walking gait. This

is the classic mechanical engineering method, one that is used when selecting a

drive motor for a lathe or an industrial fluid pump. How fast should it go and

how much torque will it need to provide at different speeds? This is an excellent

method for tasks which require continual, steady state effort like machine tools or

industrial equipment. However, the requirements for walking and running gaits

are much more than a speed and a force. They require dynamic accelerations un-

19

der different load conditions, continual feedback for balance and adjustment and

acceptance of impacts and the variations of impacts. Looking holistically at the

requirements for gait, it makes sense that when selecting the transmission ratio

that the dynamic transparency is an important factor. Transparency is reduced

when the transmission ratio is increased because the reflected inertia of the rotor

and the reflected damping increase with the square of the ratio.

When considering the transparency of the actuation, the balance of factors is

pushed more towards low gear ratios and more backdrivable transmissions. This

can be seen in many agile and dynamic legged robots which have entered the

market. The MIT mini cheetah quadruped is extremely agile, able to run at

high speeds and perform dynamic maneuvers like backflips [1]. This robot uses

BLDC motors with a low, six to one ratio planetary reduction [87]. The Agility

Robotics’ bipedal robot Cassie uses BLDC motors with a 16 to one reduction on

the sagittal plane hip and knee joints [133]. This robot has performed some of the

most impressive traversal feats in the real world, ranging from blind stair traversal

to setting the bipedal robot 5k record to setting the bipedal robot 100 meter dash

record [41].

2.5 Physical Requirements for Leg Design Are Unique and Demand-

ing

The features and requirements for an agile robot leg are very different from robot

arms or other mechatronic systems. The core requirements are high force capacity,

high unloaded acceleration, accurate position control and the ability to stabilize

the body in stance. The leg will need to be able to apply a significant fraction

of the total robot’s body weight, be that over half for a biped or over a quarter

for a quadruped. This requires the leg able to support and accelerate its own

weight as well as that of the body which includes batteries, compute hardware,

perception and any functional loads (manipulators, advanced sensors, ect.). This

last requirement is less specific because there is a very interesting continuum of

20

ways this can be satisfied ranging from extremely high bandwidth force control to

carefully engineered passive dynamics with low bandwidth control. Using purely

active control, the leg’s actuators must have high bandwidth because the foot may

only be on the ground for several hundred milliseconds at a time. In this time the

foot much establish ground contact, sense the disturbances that may have been

introduced then apply the corrective forces to stabilize the robot. An excellent

example of a robot that use this approach is the MIT mini cheetah [160]. Alter-

natively, this can be accomplished by having a leg with very well designed passive

dynamical properties that result in a much smaller required actuation bandwidth.

Examples of robots which use this second approach are SALTO, ATRIAS, and

Raibert’s original hopping robots [64, 74, 122].

Agile, high-speed locomotion requires quick leg repositioning. The limiting

factor in this is often not the maximum speed of the leg but the acceleration

capability of the leg. It must lift off the ground after being swept backwards in

stance, reverse direction, swing beyond the desired touchdown angle, then retract

toward the planned touchdown location. One of the most intuitive things that

limits legged runners (human, animal and robot) is how quickly they can get

their legs repositioned. When a runner is moving too quickly and cannot get its

leg far enough forward in in time, it will tumble forward and fall to the ground.

Beyond being able to physically reposition the leg in time, the robot must be

able to precisely position the foot at touchdown to stablize and control the overall

forward and lateral momentum.

Further the leg must be able to accommodate impacts without damage, gait

disruption, or excessive energy loss. The reasoning behind this necessity was dis-

cussed in Section 2.3.

Together these requirements make for a strong leg with high force density, high

dynamic transparency and low overall weight. One of the most important features

is to reduce the task space inertia as much as possible. The task space inertia

is the measure of the apparent inertia at the foot of the robot. It includes the

mechanism of the leg, the physical inertia of the leg components and the actuator

21

reflected inertia, as they translate to the foot. It is direction dependent, describing

how much force is required to accelerate the foot in a particular direction. A much

more detailed discussion of the measure, how to calculate it, and the implications

for leg design can be found in [2]. The principle ways that task space inertia

can be reduced are through the transmission ratios, the mass distribution and

the leg kinematics. Reducing the transmission ratios while maintaining torque

requirements would require physically larger motors, but this will result in a more

transparent system. The exact balance is a trade off as the larger motors increase

total mass and will generally increase the resistive losses in the motor for a given

torque output. The task space inertia can also be decreased by moving mass to

be as proximal as possible on the leg mechanism. Finally, the leg kinematics are

very important to the foot’s apparent inertia. The more the joints are able to

spread out the velocity required post impulse the lower the inertia will be. This

means that extended legs are very bad for inertia, which makes sense intuitively

to humans. When falling a distance, people must avoid having their knees locked

because that dramatically increases their foots task space inertia. Their knees and

hips are unable to reduce the impulse by contracting so the impulse needed to slow

their body is transferred up the leg, likely causing damage to bones.

22

Chapter 3: Hierarchical Control Is Not a Forced-Compromise but

Instead Is an Implied Structure

Hierarchical control is a property of many of the most popular control approaches

for legged robots. The hierarchy of control methods serve to separate compo-

nents that require different execution speed, different model fidelity and different

amounts of world information. An interesting question is if this is merely a nec-

essary compromise or if it is emergent from the structure and principles of legged

locomotion. It could be argued that this is a simplification because of computa-

tional limitations. If in the future we have access to orders of magnitude more

computation power onboard a robot, it might become possible to plan a precise,

optimal full over trajectory that is verifiably robust to disturbances at thousands

of Hertz. I argue, that if that was an option it would fundamentally not be neces-

sary and may not ever produce better performance than a well built hierarchical

control structure which can actually be implemented. This is because legged loco-

motion actually has layered, distinct levels of action. These range from very fast

stabilizing feedback, to more abstract foot placements, to long-term body motions.

A diagram of the difference levels of the hierarchy are shown in Fig. 3.1.

At the lowest level and fastest rates we have passive dynamics of the robot. All

active control, even if it is running at an extremely high rate is limited by the phys-

ical bandwidth of the actuators. In most legged robots (other than piezo-electric

and direct drive robot) this is a significant physical delay to react to disturbances.

This means that the physical properties of the robot define the highest rate reac-

tion. By engineering passive compliance into a robot leg, the high rate reactions

can be prescribed. Moving up a level, low-level control like whole-body control

can run at very high rates, with very accurate models of the robot’s dynamics

and kinematics. They are able to do this because they have very short or non-

existent forward horizons. In other words, they don’t think about the future, they

23

Figure 3.1: Hierarchy of control for legged locomotion. The levels of the hierarchy
are separated by their execution rate, by the fidelity of their internal model and
by the horizon for which they look ahead.

are purely reactive. At a middle level there is a short horizon, terrain aware step

planner. This is necessary for traversal around obstacles in the environment and

maintain dynamic balance. This requires a forward horizon over which to consider

the effect of actions. However, this level of planning does not require a sophisti-

cated, full-order model or nearly as fast of an execution rate. Instead much simpler

models such as SLIP, IP, LIP or even purely kinematic models can be sufficient for

basic locomotion. Finally, the highest level considered here is the large scale path

planning which can operate slowly on very simple models. These models can be

as simple as a differential drive SE(2) model in a 2D world. The world model can

be relatively coarse but could need be quite large depending on the task.

From a biomechanics perspective we know that humans and animals use some-

thing akin to this hierarchical control. At the lowest level, legs have engineered

passive dynamics through the skeletal system and muscle-tendon units. These

passive dynamics allow the leg’s muscle groups to efficiently produce the forces

necessary in stance while accommodating disturbances without destabilizing the

walker. Slightly higher, there are instinctive reactions which operate with rela-

tively low latency from the brain stem. Above that humans will plan out a series

of footsteps and a rough sense of the body movements. We specifically know that

people only need need two step lengths of visual information to plan footholds

24

[101]. Further we know that people limit their step planning to between 1.5 and 2

seconds into the future [102]. It is interesting that a different study showed that

the amount of time people spend looking at the footholds increases as the terrain

becomes rougher [111]. This may imply that for selecting footholds, that even if

you have the capability to sense and plan footsteps further in the future it would

not be helpful. Higher than this humans plan their gross motions through space,

not considering the specific gait physics on how they will get there.

25

Part II

Multistep Planning through

Dynamically Meaningful Reduced

Order Models

26

Chapter 4: Direct Optimization of Open-loop Disturbance Rejection

This chapter contains a study which investigates optimization of robust gait plans

across varying environments. It contains a novel approach to input linking the dif-

ferent scenarios together. The resulting motions independently arrive at strategies

that are observed in animal locomotion.

Contributions

Kevin Green wrote the manuscript, devised, implemented and performed the nu-

merical experiments. Jonathan Hurst and Ross L. Hatton supervised the investi-

gation and co-wrote the manuscript.

27

Planning for the Unexpected:

Explicitly Optimizing Motions for

Ground Uncertainty in Running

Kevin Green, Ross L. Hatton, and Jonathan Hurst

IEEE International Conference on Robotics and Automation

Paris, France (Remote)

May 2020

28

4.1 Abstract

We propose a method to generate actuation plans for a reduced order, dynamic

model of bipedal running. This method explicitly enforces robustness to ground

uncertainty. The plan generated is not a fixed body trajectory that is aggressively

stabilized: instead, the plan interacts with the passive dynamics of the reduced

order model to create emergent robustness. The goal is to create plans for legged

robots that will be robust to imperfect perception of the environment, and to work

with dynamics that are too complex to optimize in real-time. Working within

this dynamic model of legged locomotion, we optimize a set of disturbance cases

together with the nominal case, all with linked inputs. The input linking is non-

trivial due to the hybrid dynamics of the running model but our solution is effective

and has analytical gradients. The optimization procedure proposed is significantly

slower than a standard trajectory optimization, but results in robust gaits that

reject disturbances extremely effectively without any replanning required.

4.2 Introduction

Dynamic locomotion such as running and walking has many dimensions beyond

position trajectories, which are merely one symptom of the resulting behavior. As

such, new approaches are needed to incorporate powerful existing motion planning

and control methods with the dynamic behaviors of legged locomotion. Compli-

cating factors include underactuation, nonlinear hybrid dynamics, large system

dimensionality and significant uncertainties in ground properties. However, legged

locomotion is not so complex as it first appears, because most behaviors can be

described by relatively simple reduced-order models, showing some promise for

planning within this dynamic space. Many reduced-order models consist of a point

mass body and a massless leg that can apply forces from a contact point toward the

point mass, where body motion is only influenced by gravity and the forces applied

by the leg. Examples of this type of model include the inverted pendulum (IP)

model, the linear inverted pendulum (LIP) model, the spring loaded inverted pen-

29

Figure 4.1: A robust motion plan for the actuated SLIP model. All trajectories
use the same control inputs, yet they all converge from different heights to the
same final apex state.

dulum (SLIP) model, and the actuated spring loaded inverted pendulum (ASLIP)

model. The differentiating factor between these models is the calculation of the

applied leg force.

When walking and running, the ground height for the next step cannot be

measured perfectly so intrinsic robustness to errors in ground height is extremely

desirable. Ground sensing is a difficult problem because of the complex dynamics of

legged locomotion[25]. Feet can slip which complicates proprioceptive estimation

[19]. Cameras, LIDAR and other sensors experience difficult-to-predict motion

throughout the gait cycle. Due to the sharp cost of failures (falls and subsequent

damage) it is desirable to be robust to the uncertainties in ground height. This

is the perspective that motivates much of the work on generating robust blind

locomotion [125].

This work describes a method to search for open loop actuation plans for the

ASLIP model that exactly reject a range of disturbances in the ground height

30

(Fig. 4.1). There are multiple reasonable ways to define rejection of a ground

height disturbance; here we define rejection as returning to the desired apex state

relative to the disturbed ground height. If a different desired behavior can be

expressed in terms of the final states in the disturbance cases (e.g. return to the

desired apex state relative to the previous state), then the method presented here

enables investigation of that behavior. The resulting open loop plans for this model

consist of swing leg motion and a trajectory for the extension of leg actuator. Leg

swing motion controls the foot’s touchdown angle and the leg actuator controls

the set point of the damped spring in the leg. Our approach is to optimize the

expected motion for a set of disturbance cases in one large problem. This is not

trivial because it requires linking the inputs between the different cases including

accounting for the timing of the hybrid transitions. The solution we propose for

input linking is effective and includes analytical gradients throughout.

We provide an overview of relevant existing work in Section 4.3. The ASLIP

model and its hybrid dynamics are defined in Section 4.4. In Section 4.5 we describe

the two trajectory optimization techniques we are comparing and the simulation

we use to test performance. The results of both optimizations and the simulation

testing are reported in Section 4.6. Closing remarks are in Section 4.7.

4.3 Background

Studying reduced order models has provided insight into the phenomenon of legged

locomotion and how to create dynamic walking and running in robots. The passive

SLIP model explains most of the effects observed in human ground reaction forces

during running and walking [56]. If this model is extended with swing leg dynamics,

it can generate all common bipedal gaits [55]. Further, the SLIP model can be

used to generate foot placement policies that regulate forward speed [49]. In the

actuated and damped ASLIP model, an open loop cyclic reference trajectory was

shown to reject both ground height and ground impedance variations when hopping

vertically [78]. Preflex (pre-reflex) behaviors on an extension of the ASLIP model

can aid in mitigating sensing delays when the system encounters disturbances [75].

31

These discoveries inform us on how to create and stabilize legged locomotion.

The insights from reduced order models have been successfully leveraged in

generating control methods for legged robots. The ATRIAS robot successfully

demonstrated robust blind walking by leveraging knowledge from reduced order

models about foot placement, energy injection and clock based open-loop feed-

forward signals [74]. The RHex hexapod robot was stabilized with a feedback

policy from a clock-driven SLIP [8].

Other control approaches directly manipulate reduced order models to plan

motions online in a model predictive control approach. A common approach for

bipedal locomotion is it use the linear inverted pendulum model due to its linear

dynamics [50, 45, 11]. This allows the robot to quickly reason about where to

place its feet given the estimated state and the goals from a high level planner or

an operator.

4.4 Dynamic Model

The ASLIP model consist of a point mass body with mass m and no rotational

inertia as well as a massless leg. This leg has a linear extension actuator that is

assumed to be a rigid position input. The output of this actuator is connected to

the massless point foot through a damped linear spring with stiffness k and viscous

damping b. This system has states corresponding to the body position x, y and

velocity ẋ, ẏ, the leg actuator set point position r0 and velocity ṙ0, and the passive

spring deformation rp. The leg actuation extension is limited to be between l0 and

l0/2 where l0 is used as a descriptive length of the leg. Gravitational acceleration

is g. These coordinates and parameters are labeled on the system diagram in Fig.

4.2. We include the actuator velocity as a state because we use the acceleration

of the set point r̈0 as the control input. The commanded acceleration is limited in

magnitude as a proxy for absolute torque limits. Here 5g is used as the maximum

acceleration The passive spring deflection must be a part of the state because

during flight phase the spring and damper create first order dynamics. This model

has both a discrete control action in the foot placement as well as a continuous

32

Figure 4.2: The ASLIP model in stance with labeled parameters and state vari-
ables. The origin for the body position (x, y) is the contact point.

control action in the leg extension actuator which results in a much richer action

space than the passive SLIP model.

4.4.1 Equations of Motion

This system has two distinct dynamic modes, flight and stance. In flight phase the

dynamics of the body and the leg are fully decoupled. The body exhibits ballistic

motion with the equations of motion

ẍ = 0 (4.1)

ÿ = −g. (4.2)

33

The leg set point motion is only influenced by the commanded acceleration (r̈cmd)

because it is assumed to be rigidly actuated,

r̈0 = r̈cmd. (4.3)

The passive deflection of the spring has a first order response during flight due to

the lack of foot mass,

ṙp = −k
b
rp. (4.4)

In stance phase the toe is constrained to stay in contact with the ground and

leg is able to apply forces on the main body, but only in the leg length direction.

In the application of this constraint, the spring deflection variable (rp) is made

dependent on the body and set point position. To simplify the description of the

dynamics, the origin of the body’s position coordinate system is set to be the foot

contact point. This makes the spring deflection and velocity

rp = r − r0 (4.5)

ṙp = ṙ − ṙ0, (4.6)

where r is the total leg length and ṙ is the total leg velocity. The stance center of

mass dynamics are

ẍ =
xF

mr
(4.7)

ÿ =
yF

mr
− g (4.8)

where F is the leg force on the body, defined as

F = k(r0 − r) + b(ṙ0 − ṙ). (4.9)

We assumed that the set point is a rigid position source so it is influenced only by

the r̈cmd control signal despite the external loads it is supporting in stance.

34

4.4.2 Hybrid Transition Model

We are using this model to represent the sagittal plane dynamics of bipedal aerial

running. This means that the robot will cycle through the phases of flight, left

leg stance, flight and right leg stance before repeating. Given symmetries in the

sagittal plane we can analyze only half of this cycle. The start and end points of

this half cycle are somewhat arbitrary, but a common choice is to use the apex

condition in flight as the start and end point [56]. With this start and end point,

the phases of our half cycle are descending flight, stance, ascending flight.

Touchdown is when the model transitions from flight to stance which occurs

when the foot reaches the ground. This is more precisely described as the states

at the moment of touchdown intersect the guard surface√
x2 + y2 = r0 + rp. (4.10)

Liftoff is where the model transitions from stance phase to flight phase when

the ground reaction force goes to zero. This is not the same as when the spring has

zero deflection because of the damping in the spring. The liftoff transition guard

is described as having zero force in the spring

k(r0 − r) + b(ṙ0 − ṙ) = 0. (4.11)

This model does not include the case where the force vector exits the friction cone

and causes the foot to slip.

4.4.3 Nondimensionalization

If this model was being used to generate motions for a specific robot, one would use

meaningful physical parameters from that robot for the reduced order model. Here

we are interested in results that are generally applicable so we nondimensionalize

our model. The nondimensionalization of our ASLIP model is based on previous

work nondimensionalizing SLIP models and variations on SLIP models [71, 31].

35

Symbol Value Description
Base Units m 1 [m] Mass

l0 1 [l0] Max set point Length
g 1 [g] Gravitational acceleration

Parameters k 20 [mg/l0] Leg spring stiffness

b 0.89 [m
√
g/l0] Leg spring damping

States x - [l0] Horizontal position
y - [l0] Vertical position
ẋ - [

√
gl0] Horizontal velocity

ẏ - [
√
gl0] Vertical velocity

r0 - [l0] Leg set point length
ṙ0 - [

√
gl0] Leg set point velocity

rp - [l0] Leg spring deflection
Inputs r̈cmd - [g] Leg set point acceleration

Table 4.1: Nondimensional system parameters, states and inputs for the actuated
SLIP model.

The characteristic units are the maximum leg set point length, mass of body and

gravitational acceleration. All parameters and states are represented relative to

these quantities and are summarized in Table 4.1. Two parameters must be cho-

sen, the leg stiffness and the leg damping. The numbers we selected are similar

to previous SLIP modeling papers [31] and are based on observations of human

biomechanics [7]. The leg stiffness we used is 20 [mg/l0] and the leg damping is

0.89 [m
√
g/l0]. The damping value is such that the body and leg system has a

damping ratio of 0.1 in stance.

4.5 Methods

As a standard of comparison we first present a conventional minimal effort trajec-

tory optimization. Then we describe the explicitly robust trajectory optimization

method we propose. Finally, we describe a separate testing simulation to analyze

the disturbance rejection capabilities of the open loop motion plans produced by

these two optimization methods.

36

4.5.1 Minimum Effort Optimization

The minimum effort optimization seeks to find a single state trajectory and input

signal that will result in moving from an initial apex state to the following apex

state while minimizing a measure of actuator effort. This is formulated as a direct

collocation problem. In this technique, the optimizer has access to both the dis-

cretized states and control inputs as decision variables as well as the time between

the discretizations. It is conventional to have the states evenly spaced in time with

a single duration decision variable. The dynamics are imposed as constraints be-

tween subsequent states and their inputs based on numeric integration techniques.

In this work we use trapezoidal integration. Much more detail on this approach

can be found in [88]. Direct collocation optimizations such as those implemented

here contain hundreds or thousands of decision variables. This means that it is

not feasible to report every individual constraint. Instead we describe the general

form of constraints which are applied across the time discretized states.

Our optimization is complicated by the three separate dynamic phases. Each

phase of the dynamics is implemented with its own set of discretized state and input

variables and phase duration variable. The final state of one phases is constrained

to match the first state of the next phases. Additionally the final states of the

first flight phase and the stance phase must be at the hybrid transition guards

described above in Section 4.4.2.

The initial height and forward velocity as well as the final height and forward

velocity are constrained to match user-specified values. To ensure the initial and

final states are apex states, the vertical velocities are constrained to be zero.

The objective (J) we use is the integral of the set point acceleration squared,

J =

∫ τ

0

r̈ 20 dt (4.12)

where τ is the total duration of the motion. This is a useful objective both the-

oretically and practically. If this was a real system where the set point actuator

is a geared electric motor, this objective is proportional to the thermal energetic

37

losses in the motor due to accelerating the actuator inertia [166]. Practically this

smooths the acceleration commands which increases the accuracy of the trapezoidal

integration scheme [88].

The constraints and objective functions are generated using a modification of

COALESCE, a MATLAB based optimization problem generation library [84]. We

generated the constraints, constraint Jacobian, objective and objective gradients

analytically while preserving their sparsity. This produces a nonlinear program-

ming (NLP) problem that can be solved to local optimality using an off the shelf

nonlinear solver. We used IPOPT (an interior point technique package) to solve the

NLP, but other implementations or optimization techniques could be used [158].

4.5.2 Disturbance Aware Trajectory Optimization

The method we use to optimize for variations in ground height is an extension

of the minimum effort technique presented above. We not only create all the

state variables and inputs for the expected motion, but also for some number of

disturbance cases with different initial conditions. All of the disturbance cases are

thought of as different versions of what may happen during the planned step; this

means that they must all share the same set point motion. This is ensured through

an input linking opteration described in the following section. Each disturbance

case still has the same final state constraints, forcing the optimizer to try to funnel

each of the disturbance cases to the single final state.

The minimum effort objective was removed for this trajectory optimization

because it was found to prevent the convergence of the optimization. This makes

this optimization problem more accurately a constraint satisfaction problem. The

limits on the maximum acceleration of the set point ensure that even without an

explicit objective that the motion of the set point is relatively smooth.

One subtle aspect of this problem is that the disturbance cases are able to

each select a different leg touchdown angle. This may appear to conflict with the

assumption that the model cannot know which disturbance case is occurring, but

the optimizer is implicitly selecting a leg swing trajectory. Each disturbance case

38

contacts the ground at a different time at a different leg angle. This set of leg

angles over time exactly constitutes a leg swing retraction policy.

The difficult aspect of working with all the disturbance cases together is that

their control inputs must be linked together. The system will not know which of

the disturbance cases it is in so the inputs as a function of total time must match.

Each disturbance case has flight and stance phases that take different lengths of

time, so we cannot rely on the indexing of the collocation nodes to link instances.

This problem exists when trying to link disturbance cases in any system that goes

through hybrid transitions or has a variable duration.

The solution is to use an additional set of decision variables evenly spaced

through time that are not linked to any specific dynamic phase or collocation

node. Each of the collocation node inputs are constrained to be equal to the linear

interpolated value from these control points.

To describe this constraint and its gradient, we first define a generic linear

interpolation function and a zero order hold function. The linear interpolation

function (with extrapolation) as it is conventionally understood is

LI(x, v, xq) =

x2−xq
x2−x1v1 +

xq−x1
x2−x1v2 xq ≤ x2

xi+1−xq
xi+1−xi vi +

xq−xi
xi−xi vi+1 xi < xq ≤ xi+1,

2 < i < N − 2

xN−xq
xN−xN−1

vN−1 +
xq−xN−1

xN−xN−1
vN xN−1 < xq

(4.13)

where x ∈ RN is a strictly increasing vector of the sample points, v ∈ RN is the

values of those sample points and xq ∈ R is the query point. For use in the gradient

expression we need the zero order hold function (with extrapolation),

ZOH(x, v, xq) =

v1 xq ≤ x2

vi xi < xq ≤ xi+1,

2 < i < N − 1

vN xN < xq

(4.14)

39

were x, v, and xq are the same as in the linear interpolation function definition.

Consider the kth collocation node with input uk at time tk, and control points

described by time T ∈ Rm and value U ∈ Rm. Our constraint (g) takes the form

g(uk, tk, U, T) = uk − LI(T, U, tk) = 0. (4.15)

This constraint means that the the actual input uk must be equal to the interpo-

lated input from the control points at the current time tk.

The optimization method we use benefits from having analytical gradients of all

constraints, which we can describe for this function. The gradient of the constraint

in 4.15 can be found using basic calculus. With respect to some decision variable

(y) the gradient1 of this constraint is

∇yg(uk, tk, U, T) = ∇yuk (4.16)

+ ZOH(Tm−1
1 ,

Um
2 − Um−1

1

Tm2 − Tm−1
1

∇ytk, tk) (4.17)

+ ZOH(Tm−1
1 ,

Um
2 − Um−1

1

Tm2 − Tm−1
1

, tk)LI(T,∇yT, tk) (4.18)

+ LI(T,∇yU, tk) (4.19)

This constraint allows us to link all of the set point acceleration profiles to-

gether in a differentiable way. Unfortunately the gradient is undefined at the node

points themselves and is frequently discontinuous. This discontinuous gradient can

slow the optimization procedure but the constraints converge well to the desired

tolerance in our application. A better option could be to use a piecewise cubic in-

terpolation method to ensure the gradients are well formed, but it would decrease

the sparsity of the constraints with respect to the decision variables.

1In this expression the symbol U b
a is the vector of components described by

[Ua, Ua+1, ..., Ub−1, Ub].

40

4.5.3 Testing Simulation

To objectively test the disturbance rejection of the motions produced by the two

trajectory optimization methods we implement a hybrid simulation of the ASLIP

model. The simulation uses the same model dynamics and hybrid transitions

except that we treat the set point trajectory (position r0(t) and velocity ṙ0(t)) as

the inputs. The system is forward integrated using MATLAB’s variable step size

ODE solver ODE45 with event sensing for the hybrid transitions.

Additionally, the leg touchdown angle must be defined for each of the motions.

The robust optimization finds an explicit time varying leg touchdown angle. The

minimum effort optimization only selects a single leg angle. One option would be

to just use that single leg angle. A better option is to use the heuristic that the

leg touchdown angle tracks a fixed horizontal touchdown location on the ground.

This policy is similar to what guinea fowl do when they encounter an unexpected

step up or down [21], and should ensure that the minimum effort optimization is

not unfairly hindered with an unreasonable leg angle policy.

We run this forward simulation for a set of initial condition disturbances until

it reaches the next apex state. If the disturbance is poorly handled it is possible

that the body does not ever reach the next apex state. This generally is because

the model falls into the ground before lifting off or reaches liftoff with a negative

vertical velocity.

4.6 Results

To evaluate the optimization methods we generate motion plans for 625 sets of

initial states and final goal states. The experiments were run single threaded on a

standard desktop computer with an Intel Core i7-7700k and 24 GB of RAM. These

correspond to every combination of five initial heights, initial horizontal velocities,

final heights, and final horizontal velocities. This results in creating motion plans

for steady state gaits, changes in speed, planned step ups and planned step downs.

Observations on the optimization process and the resulting motions are presented

41

for both the minimum effort and the explicitly robust optimizations. Finally, the

performance of the plans from both methods is tested using a separate simulation

for significantly more disturbance heights than were explicitly optimized.

4.6.1 Optimization Results

The minimum effort optimizations converged to optimality relatively quickly and

reliably. The mean solutions time was 0.90 seconds and 95% solved in under 3.1

seconds. An example solution is shown in Fig. 4.3. The system lands with the leg

set point slightly retracted and stationary. Then throughout stance the leg extends

and reaches the maximum extension just before liftoff. As the leg extends it does

positive work against the spring, replacing the energy lost in the damper during

stance. During the flight phases the leg is smoothly retracted back to prepare for

the next touchdown event. The ground reaction forces appear very similar to those

seen in human running trials as well as in passive SLIP models.

In the explicitly robust optimization we used +0.10, +0.05, −0.05 and −0.10

[l0] as the errors in ground height for the disturbance cases which means this

problem has five times the number of variables and constraints of the minimum

effort problem. The mean solutions time was 4.3 seconds and 95% of successful

solutions solved in under 8.9 seconds. This is notably slower than the minimum

effort optimization, particularly when you consider the average time per iteration

which was 0.01 seconds for the minimum effort and 0.2 seconds for the robust

optimization. This is to be expected because of the over five times difference in

number of decision variables and constraints between the two problems.

An example solution to the robust optimization is shown in Fig. 4.4. We

can see in the top plot that all five initial heights converge back to the nearly

same final height and forward velocity. Each trajectory has a different touchdown

angle, becoming steeper for later touchdowns. The second plot shows that as

the different disturbance cases touchdown, the leg is already extending in length.

All the trajectories lift off at different points in time as the leg reaches its peak

extension which is well short of the maximum extension of 1 [l0]. In the ground

42

-0.5 0 0.5

0.8

0.9

1

1.1

Flight Phase
Stance PhaseV

er
tic

al
 P

os
iti

on

Horizontal Position

0 0.5 1 1.5 2
0.7

0.8

0.9

1

Le
g

Le
ng

th

Set Point Position
Deflected Leg Length

Time

0 0.5 1 1.5 2
-2

0

2

4

Vertical Force
Horizontal Force

Time

G
ro

un
d

R
ea

ct
io

n
F

or
ce

Figure 4.3: An example solution from the minimum effort optimization. We see
that the model lands with the leg retracted, then smoothly extends to the maxi-
mum length at lift off to replace the energy lost in the leg spring damping.

43

reaction force plot at the bottom, we can see that the later the touchdown, the

greater the peak force vertical force. This intuitively makes sense because it should

require a larger vertical impulse to reverse the vertical velocity of the body and

return it to the final desired height.

4.6.2 Simulation Testing Results

The performance of the two different trajectory generators was tested using the

simulation described in section 4.5.3. Each trajectory was tested using eleven

different vertical disturbances representing different step ups and step downs, be-

tween +0.1 [l0] and −0.1 [l0]. An example result is shown in Fig. 4.5 for a steady

state gait. Looking at the minimum acceleration results in blue, we can see that

touchdown points are at similar heights because the leg set point has almost zero

velocity at this point in the cycle. As these motions exit stance, they have dras-

tically different forward velocity but a smaller range of final heights compared to

the initial disturbances. The robust trajectories in orange show a very different

reaction. The touchdown states are in a much tighter grouping due to the leg

extension and the precise leg placement policy generated by the optimization. The

states converge through stance and ascent until they reach the apex state. All of

the robust apex states in this figure have less than 0.001 [l0] error in final height

and 0.001 [
√
gl0] error in final forward velocity.

Looking at the results of all of the simulations we observe that 14% of the

disturbances caused the minimum acceleration policy to fail to reach a valid sub-

sequent apex state because the body contacted the ground before it reached an

apex state. None of the tested disturbances caused the robust policy to fail. When

comparing the final state error of the conditions where the minimum acceleration

policy did not fail, the robust policy had on average 43 times less height error and

81 times less velocity error.

44

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.6

0.8

1

1.2

Flight Phase
Stance Phase

Horizontal Position

V
er

tic
al

 P
os

iti
on

0 0.5 1 1.5 2 2.5
0.5

0.6

0.7

0.8

0.9

Set Point Position
Deflected Leg Length

Time

Le
g

Le
ng

th

0 0.5 1 1.5 2 2.5
-2

0

2

4

6
Vertical Force
Horizontal Force

Time

G
ro

un
d

R
ea

ct
io

n
F

or
ce

Figure 4.4: A robust motion plan for the actuated SLIP model. All trajectories
use the same control inputs, yet they all converge to the same final apex state.

45

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

Horizontal Position

0

0.2

0.4

0.6

0.8

1

1.2

V
er

tic
al

 P
os

iti
on

Robust Policy Flight
Robust Policy Stance
Min Effort Policy Flight
Min Effort Policy Stance

Figure 4.5: Simulation results of the open loop plans for the robust policy and the
minimum effort policy. The robust policy (orange) has an apex height error of less
than 0.001 [l0] and an apex velocity error of less than 0.001 [

√
gl0] for all disturbance

cases. The swing leg of the robust policy is a product of the optimization while
the minimum effort policy uses ground speed matching.

46

4.7 Conclusions

We presented a new method to create open loop plans for an ASLIP model that are

extremely robust to ground height uncertainty. The presented approach consists of

optimizing many different trajectories for different disturbance cases while linking

the inputs together. The input linking used here is effective and efficient due to

its analytical gradients and can be applied to other hybrid or variable duration

trajectory optimization problems across a set of disturbances. The results show

that the robust open loop motions plans produced have an order of magnitude less

final state error compared to the minimum effort plans.

47

Chapter 5: Real-time Motion Planning for Systems Without Closed

Form Solutions

This chapter contains a study which investigates the performance of a motion

planning method for systems with periodic motions and dynamics which have no

closed form solution. In particular, it looks into how to handle the reality of

catastrophic failure of these models. It proposes a novel failure margin function to

help the optimizer avoid extrapolating the learned dynamic model outside of the

viable space.

Contributions

Kevin Green wrote the manuscript, devised, implemented and performed the nu-

merical experiments. John Warila contributed to the implementation and analysis

of the numerical experiments and co-wrote the manuscript. Jonathan Hurst and

Ross L. Hatton supervised the investigation and co-wrote the manuscript.

48

Footstep Planning for Agile

Models of Locomotion using

Failure Margin Constraints

Kevin Green, John Warila, Ross L. Hatton, and Jonathan

Hurst

(Accepted)

IEEE International Conference on Robotics and Automation

Philadelphia, Pennsylvania, USA

May 2022

49

5.1 Abstract

When legged robots perform dynamic locomotion, their underactuated dynamics

require motion planning to intelligently adjust footstep locations. Often bipedal

footstep and motion planning uses mathematically simple models, such as the

linear inverted pendulum, instead of dynamically-rich models that do not have

closed-form solutions. We propose a real-time optimization method to plan for dy-

namical models that do not have closed form solutions and experience irrecoverable

failure. Our method uses a data-driven approximation of the step-to-step dynam-

ics and of a failure margin function. This failure margin function is an oriented

distance function in state-action space where it describes the signed distance to

success or failure. The motion planning problem is formed as a nonlinear program

with constraints that enforce the approximated forward dynamics and the validity

of state-action pairs. For illustration, this method is applied to create a planner

for an actuated spring-loaded inverted pendulum model. In an ablation study, the

failure margin constraints increased the amount of valid solutions by between 11%

and 51% for different objectives and lengths of horizon. While we demonstrate

our method on a canonical model of locomotion, we also discuss how this can be

scaled to data driven models and full order robot models.

5.2 Introduction

The full-order dynamics of legged robots are computational infeasible for real time

motion planning so motion planners generally use simplified, reduced-order mod-

els of locomotion. Two of the most commonly used models are the linear inverted

pendulum (LIP) model [52] and the centroidal dynamics model [37]. These models

balance the benefit lower dimensionality while still capturing the core underactu-

ated dynamics of locomotion. Some of these models also have computationally

attractive dynamics, particularly the closed-form dynamics of the LIP model.

Unfortunately, there is a trade-off to using some of these highly computation-

ally efficient reduced order models. Many of these models fail to exhibit features

50

of locomotion which are known to relate to robust, efficient locomotion and are

observed in human and animal locomotion. Energetically optimal gaits for bipedal

robots can include the center of mass oscillations vertically and step frequency

that varies with speed [145]. Neither of these features appear in conventional

linear inverted pendulum footstep planning. Further the spring loaded inverted

pendulum (SLIP) model, not the LIP model replicates the center of mass dynam-

ics and ground reaction forces of human walking and running [56], as well as the

disturbance response of drop steps in guineafowl [21].

Considerable interest recently has focused on using these dynamically rich mod-

els for bipedal locomotion planning. Unfortunately, many more complex models

have the problem that they are nonintegrable and analytical approximations are

often unwieldy [72, 167]. An extreme approximation of the actuated spring mass

model was shown to be extremely robust for low speed bipedal locomotion [11].

Recent work planned footsteps with the simple LIP model then mapped those plans

to a more dynamic and complex actuated SLIP model [164]. A different approach

is to approximate the step-to-step dynamics directly instead of approximating the

continuous dynamics. This has been shown to be useful in a one-step optimal con-

troller [16] and in a multistep model predictive controller [168]. One area that has

not been as well investigated is handling failure conditions of these models. Mod-

els of legged locomotion have failure modes where they never return to an apex

condition, primarily falling into the ground or from the foot slipping. These fail-

ure modes result in complex, non-convex failure boundaries in state-action space

[69]. Naively bounding the state and action ranges as to not include any failures

severely limits the dynamism of potential motions.

In this work, we propose an optimization planning method for cyclic locomo-

tion of analytically intractable models that include complex failure conditions. Our

method is based on use of a data-driven, differentiable approximation of the con-

trolled (Poincarè) first return map and of a state-action failure margin function,

shown in Fig. 5.1. Our failure margin function represents the signed distance to

the failure boundary. This allows us to add constraints on the motion planning

51

Poincaré
Section

Valid Orbits

Flow Resulting in Failure

Failure Margin Function

+

- -

--

Figure 5.1: The relationship between the Poincarè section of a dynamical system
and its failure margin function. Dynamical systems, such as legged locomotion,
exhibit orbits which are effectively characterized with a Poincarè section. Legged
locomotion is plagued with failure conditions (such as falling over) so we classify
points on the Poincarè section into a set (V) if they produce valid orbits. This
set is then used to generate an oriented distance function that we call the failure
margin function.

52

problem that ensures the each step in the state-action sequence is dynamically

viable. Without this margin function we show that the optimization often chooses

solutions that attempt to extrapolate into regions where failures occur. Section 5.3

defines the controlled first return map and failure margin function for a generic

dynamical system. Section 5.4 describes how we generate approximations of the

return map and failure margin function. A sample motion planning optimization

problem is described in Section 5.5. We demonstrate these methods on an actu-

ated SLIP model in Section 5.6. Finally, we provide areas for future extensions

and improvements in Section 5.7.

5.3 Modeling of Periodic Gaits

To plan multiple steps ahead for a legged robot we need a dynamic model of

locomotion. This model can be a simplified model, a full-order simulation of a

robot, or even data from the real world robot. Full order simulations and real-

world robots present additional challenges, because of their large state dimensions

as discussed in Section 5.7.

Our dynamic model can be described by its configuration and velocity {q, q̇} ∈
TQ, and has forward dynamics

q̈ = f(q, q̇,u), (5.1)

where u is the control action. These dynamics are likely hybrid, but for notational

clarity we will assume they are continuous.

5.3.1 Poincarè Map Discrete Dynamics

Legged locomotion is at its core a cyclic motion of the joints that results in net

displacement. A powerful perspective to analyze cyclic motions is the Poincarè

section and map. We define a surface of section Γ which is transverse to the flow

53

of our state and which intersects with all gait trajectories of interest,

Γ ⊂ TQ. (5.2)

This section is one dimension smaller than the full state and can be parameterized

by a new, reduced state coordinate s ∈ Γ.

We seek to define a function, Φ(·), which represents the controlled first return

map. Our system is an actively controlled system, so instead of a traditional

Poincarè Map, ours is augmented by the control actions. This map will allow

us to predict the future state of the system by adjusting control actions (e.g.

foot placement). The dynamical system may have continuously varying actions

throughout its orbit, so to rein in the infinite dimensional function space we define

a set of basis functions for a tractable parameterization. We define the space of

all parameterized actions as A. However, we must consider the fact that some

state-action pairs will fail. For example, the ground reaction forces could violate

the friction cone, cause the foot to slip and the robot to fall. This will result in

a system trajectory that never returns to the Poincarè section. We can define the

set of valid state-action pairs that will successfully return to the section as

V ⊂ Γ× A. (5.3)

Thus, our controlled first return map is

Φ : V −→ Γ. (5.4)

which maps valid state-action pairs to the next state on the surface of the section.

However, the definition of this function is unhelpful to planning motions. Cal-

culation of this function requires numeric integration due to the nonlinearity of the

dynamics. Further the numeric integration gives us no method of finding the Jaco-

bian of the transition function (∇s,aΦ(s, a)) reliably without slow, computationally

expensive numeric differentiation.

54

5.3.2 Failure Margin Function

We would like to be able to easily identify if a candidate state and action will fail,

and if it does, determine what direction we should move it to be closer to being

a success. To achieve both of these, we construct a failure margin function which

is an oriented distance function [43] (also called signed distance function), often

used in computer graphics [99, 14]. To define this function, we employ distance

function from a point (x) to a non-empty set (A ⊂ RN) with an associated norm

(∥·∥),
dA(x) = inf{∥x− y∥ : y ∈ A}. (5.5)

we’re going to pull information from our problem to populate we can define our

failure margin function as an oriented distance function in terms of the valid set

and the complement of the valid set,

bVc(s, a) = dVc(s, a)− dV(s, a). (5.6)

Here the compliment of V represents the space of invalid state-action pairs, defined

as Vc = (Γ×A) \V. This function will be positive if the state-action pair is valid

and negative if the pair is invalid. Its magnitude represents the minimum distance

to the boundary of success and failure.

5.4 Approximation of the Step-to-Step System

To facilitate real-time, optimization based planning methods we develop a fast to

evaluate, differentiable approximation of the controlled first return map and failure

margin function. The failure margin function allows the optimization to constrain

the state, action pairs to be in the valid set, V. Efficient differentiability of our

approximation is extremely important because we would like to be able to use

gradient-based optimization algorithms such as sequential quadratic programming

or interior-point methods.

55

5.4.1 Controlled First Return Map Approximation

We use a standard supervised learning method to fit our controlled first return map

approximator to a training data set. Many structures of approximator could be

used, such as polynomials and Gaussian processes but we use feed-forward neural

networks. The approximation of the true first return map, Φ(s, a), is referred to

as P (s, a). The training data set is generated by sampling uniformly state-action

pairs and performing the numeric integration. This will either fail, in which case

we discard the sample, or it succeeds, in which case we add the initial state, action

and final state to the data set.

5.4.2 Failure Margin Function Approximation

The failure margin function is more difficult to create an approximation of because

it cannot be directly sampled. To generate data for our failure margin function

we need a relatively accurate method of calculating the oriented distance function

from (5.6).

We decided to sample the distance function using a direct application of our

definition of the margin function from (5.6). We uniformly sample the state-action

space, classify each point as either valid or invalid and build two sets of points.

We then construct two k-d trees, one for valid points and one for invalid points.

If we have a sample point, these trees allow us to efficiently find the closest valid

or invalid point. Now we can sample our oriented distance function. We select

a random point in state-action space, sample if it is a valid or invalid point by

forward simulating. Now we look to calculate our best approximation of (5.6). If

our point is a valid state-action pair then dV(s, a) = 0 and if it is invalid then

dVC (s, a) = 0. Now we only need to calculate the distance to the remaining set

which is the canonical use-case for our kd-tree. This allows us to build a training

set which we can use to fit the approximation (M) to the sampled oriented distance

function such that, M(s, a) ≈ bV(s, a).

56

5.5 Footstep Planning Optimization Problem

There are many ways to formulate a footstep planning problem depending on the

required behavior. Here we use a basic formulation which tasks the system with

reaching a commanded state N steps in the future. The problem is provided with

s0, the predicted next apex state, and sgoal the commanded goal state. This is

an effective formulation for traversal of nominally flat, obstacle free environments

with a higher level planner or human commanding target states.

The footstep planning problem is formed as a nonlinear programming problem

of the following form.

minimize
x

f(x)

subject to hn(x) = 0, n ∈ [0, N − 1]

gn(x) < 0, n ∈ [0, N − 1]

hgoal(x) = 0.

(5.7)

This optimization problem finds a sequence of states and actions of length N that

are dynamically consistent and reach the final goal state while minimizing the

objective f(x). The decision variable x represents the next N states and actions.

x = [s1, s2, ..., sN , a0, a1, ..., aN−1] (5.8)

The objective function,

f(x) =
i=N−1∑
i=0

(si − si+1)
TH(si − si+1), (5.9)

minimizes the squared, weighted distance between sequential apex states which

incentivizes gradual acceleration or deceleration. Inspired by excellent results of

a similar planner on Cassie [11], we also will test the performance of this motion

planning problem without an objective, i.e. f(x) = 0. Removing the objective

resulted in significantly faster and more reliable convergence to acceptably smooth

57

motion plans.

The approximated forward dynamics are enforced through an equality con-

straint,

hn(x) = P (sn, an)− sn+1. (5.10)

The viability of state-action pairs is enforced through an inequality constraint,

gn(x) =M(sn, an) + ϵ, (5.11)

which ensures the learned failure margin function is greater that a given threshold

value, ϵ. Finally, the goal constraint enforces that the final state of the optimization

matched the commanded goal state (sgoal),

hgoal(x) = sN − sgoal. (5.12)

We can implement the Jacobian of the constraints analytically through backprop-

agation of the approximations, P (·), M(·).

5.6 Illustrative Application

To test the utility and feasibility of this type of planner we choose to test it on

one of the simplest systems that demonstrates the problematic features inherit

to legged locomotion. These difficult features include nonlinear dynamics with no

closed form solution, hybrid transitions, failures states and parameterized, low-level

control policies. The simple, illustrative model we use is the nondimensionalized,

actuated spring-loaded inverted pendulum (aSLIP) model. This model consists

of a point mass body and a massless leg which can apply forces through ground

contact. The leg consists of a damped spring in series with an extension actuator

which is controlled throughout stance phase and can be instantly repositioned

during flight phase. Detailed dynamics of this model and its hybrid transitions are

presented in [59].

The configuration of the model is described the the horizontal and vertical

58

To
uc

hd
ow

n
Le

g
A

ng
le

 [r
ad

]

Ground Truth:
Simulation/kd-tree

Learned Model

-0.8

-0.4

0

0.4

0.8

-0.8

-0.4

0

0.4

0.8

Forward SpeedBody HeightForward Displacement

0.7
0.8
0.9
1
1.1
1.2

0.7
0.8
0.9
1
1.1
1.2

-0.6

-0.4

-0.2

0

0.2

0.4

-1

-0.5

0

0.5

1

-0.6

-0.4

-0.2

0

0.2

0.4

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1-1 -0.5 0 0.5 1-1 -0.5 0 0.5 1

0.6

0.6

To
uc

hd
ow

n
Le

g
A

ng
le

 [r
ad

]

Forward Velocity Forward Velocity Forward Velocity

Figure 5.2: Comparison between ground truth and the approximation of the con-
trolled first return map. For this figure we fixed the initial body height to 1.05[l0]
and the midstance leg extension to 0.05[l0]. We see that our approximator is highly
accurate for most of the space, with the largest error near the limits of the input
space.

59

-0.3
-0.2
-0.1
0
0.1
0.2
0.3

-0.6

-0.4

-0.2

0

0.2

0.4
0.6

Touchdown
Leg Angle [rad]

-0.6

-0.4

-0.2

0

0.2

0.4
0.6

Touchdown
Leg Angle [rad]

-0.3
-0.2
-0.1
0
0.1
0.2
0.3

-1 -0.5 0 0.5 1
Forward Velocity

Failure Margin Ground Truth: kd-tree

Failure Margin Learned Approximation

Figure 5.3: Comparison between ground truth and the learned approximation of
the failure margin function. For this figure we fixed the initial body height to
1.05[l0] and the midstance leg extension to 0.05[l0]. The learned approximation
captures the general shape of the failure margin function but does not capture all
the details of the zero contour (bolded contour line).

60

position of the body, q = [x, y], while the velocity is the horizontal and vertical

velocity of the body q̇ = [ẋ, ẏ]. This model has failure modes where it falls over or

when the foot slips from a friction cone violation. The inputs are the leg angle at

touchdown (α) and the motion pattern of the leg extension actuator which is in

series with the damped leg spring. We select a simple actuator pattern inspired by

the pneumatic Raibert hopping robots [122]. The leg actuation is parameterized

by a single value (∆L) that represents how far the leg actuator will extend at the

maximum compression of the leg during stance. One could use a smooth extension

profile, however for simplicity we chose to instantaneously change the actuators

position (and thus the resting length of the leg spring) at maximum compression.

This highlights a powerful feature of this method, one could design virtually any

actuation profile or parameterization that they prefer. The action could be the

true amount of energy to inject or remove, it could be the commanded amount

of total energy in the system post extension, or it could be carefully designed to

achieve increased robustness such as was shown in [59, 156].

5.6.1 Step-to-Step Approximation of the aSLIP Model

For the aSLIP model we selected the apex of flight phase as our surface of section.

This is where the vertical velocity is zero during flight phase,

Γ = {[x, y, ẋ, ẏ] s.t. ẏ = 0 ∧ Flight Phase}. (5.13)

This allows us to represent the apex state by the reduced coordinates s = [x, y, ẋ].

Further we can exploit translational invariance to allow us to eliminate the hori-

zontal displacement (x) from our apex state for the input. We need to know how

far each step will translate the robot forward, but the starting location does not

change anything about the step or its dynamics. This means the final state-action

space will be

[y, ẋ, α,∆L] ∈ Γ× A. (5.14)

61

We define absolute limits on the state-action space based on reasonable gaits.

These limits are

0.8 [l0] ≤ y ≤ 1.2 [l0]

−1.0 [
√
gl0] ≤ ẋ ≤ 1.0 [

√
gl0]

−0.6 [rad] ≤ α ≤ 0.6 [rad]

−0.05 [l0] ≤ ∆L ≤ 0.15 [l0].

(5.15)

The first return map is

[∆xi+1, yi+1, ẋi+1] = Φ(yi, ẋi, αi,∆Li), (5.16)

where ∆xi+1 is the change in horizontal position from apex i to apex i+1. This is

the first return map that we sample uniformly to create the training data set, form

the kd-tree and sample the margin function. The kd-tree and margin function

were created using a weighed 2-norm as their distance function with weighting

matrix of: diag(0.063, 0.250, 0.309, 2.50). This weighting was chosen based on the

maximum range of each coordinate in the state-action space.

We tested several different neural network architectures, varying the width of

the hidden layers and the choice of activation functions. The neural networks are

optimized with the goal of minimizing the weighted 2-norm of the prediction error.

The weighting matrix was also chosen to normalize the ranges of the different vari-

ables, diag(0.250, 6.25, 0.25). The neural networks are implemented using PyTorch

and optimized using the ADAM (adaptive momentum estimation) method with

the default learning rate of 0.001 [92]. They were optimized until stationary which

took approximately 100,000 iterations which corresponded to 5 to 10 minutes us-

ing a computer with an NVIDIA GTX 1080 and an Intel i7-7700k. We found that

there was little difference in the performance between tanh and ReLU activation

functions. Performance improved as the network size increased up to layer widths

of 64 neurons. This led to the choice to use networks with 2 hidden layers of 64

neurons each with ReLU activation functions.

62

100

80

60

40

20

0-0.2 -0.1 0 0.1 0.2
Margin Function Threshold

Pe
rc

en
ta

ge

Conservative Threshold

Predicted Threshold

Valid Labeled Successes
All Successes

Percentage of Successful
Steps Included

Accuracy of Valid Label
Valid Labeled Successes

All Valid Labeled

((

((

Figure 5.4: Performance of the failure margin function as we vary the valid point
threshold value. We can see that as the threshold increases that the accuracy
of the valid label increases. However, increasing the threshold also decreases the
percentage of all successful steps that are included. Ideally, we want both of these
to be as high as possible. We can adjust the threshold to balance the restriction
of possible motions with confidence in accuracy of labeled points.

We can examine our approximation’s performance compared to ground truth

with the contour plots in Fig. 5.2. These plots show a 2D slice of the 4D state-action

space. The top row shows the ground truth from simulation and the bottom row

shows the learned approximator. We can see that the model performs well for most

of the space, with the highest discrepancies occurring at the most extreme edges

of the space. The failure margin function approximator in Fig. 5.3 captures the

general shape of the function but does not replicate the zero contour extremely

accurately. The ground truth plots show artifacts of our kd-tree method. The

bubble-like arcs in the contour lines are a result of individual points in the kd-tree.

This problem would get worse as dimensionality increases, but could be countered

with more sophisticated sampling techniques to add points to the kd-tree that are

near the success/failure boundary.

The most useful feature of the margin function is accurate classification of state-

action points. We expect a perfect margin function to assign every valid point a

63

positive value and every failure a negative value. To evaluate the performance, we

can look at the classification accuracy as we vary our threshold, ϵ. This helps us

choose the threshold for our optimization to be reasonably confident we will not

accidentally allow failure states because of the inaccuracy of our approximation.

However, as we increase the constraint threshold we will exclude more valid points

which limits the space of possible behaviors. Fig. 5.4 shows the accuracy of the

valid label and the percentage of valid points included as we vary the threshold, ϵ.

From this, we make the engineering decision to use a threshold of 0.05. This will

result in 97% of valid labeled points being valid and 59% of possible valid points

being included.

5.6.2 Footstep Optimization and Failure Margin Utility

To test the utility of the approximations we implemented the multi step locomo-

tion optimization problem from Section 5.5. We assigned our system a random

initial height and forward speed in the valid range from (5.15), then sought a so-

lution that over the course of N steps would achieve an apex state that matched

a randomly selected goal height and forward speed. This approach did not com-

mand the final position of the robot because it was intended to emulate a gait

transition rather than a position-keeping task. We implemented the nonlinear op-

timization problem using the cyipopt python wrapper around ipopt. [158]. The

objective function gradient and constraint Jacobians were analytically calculated

using pytorch’s automatic differentiation functionality.

This optimization problem is simple enough that we can form a strong intuition

for the optimal motion and when failures could manifest. The objective function

from (5.9) is minimized by having a linearly varying apex height and forward

velocity along the planned motion. If it is physically possible, the optimal motion

will be to select whatever leg angle and extension results in these linearly varying

apex states. however if this motion is not possible or allowed by the margin

constraint, the optimizer should select the closest to linearly varying apex states

as is allowable. Generally, we expect this problem will fail when requiring large

64

0 0.5 1 1.5 2

With Failure
Margin ConstraintsV

er
ti

ca
l B

od
y

P
os

it
io

n
[l

0]
V

er
ti

ca
l B

od
y

P
os

it
io

n
[l

0]

Horizontal Body Position [l0]

Without Failure
Margin Constraints

Foot Slip Failure

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

Figure 5.5: Resulting solutions from optimization problems where the task to
significantly speed up and slightly lower the apex height. The optimization problem
with failure margin constraints produce a valid trajectory and the problem without
failure margin constraints solves “successfully” but contains a failure step.

changes in velocity in a short number of steps, because that would be the instance

of extreme leg angles leading to foot slip.

A difficult planning task is illustrated in Fig. 5.5. In this figure we show the

resulting solution of the optimization problem with and without margin function

constraints. Additionally we simulated each commanded step and plotted the

motion of the body through space. The first return map approximation is not

perfect so we see small defects between the end of the simulated motion and the

optimized intermediate apex state. The optimization without failure margin con-

straints thinks it found a valid plan, but we can see that step three actually results

in foot slip as it falls forward.

65

3 Step Horizon

Problem Description State Objective No Objective

Margin No Margin Margin No Margin

Failed to Solve 25.4 % 1.1 % 29.0 % 0.5 %

Contains Failure Step 27.6 % 56.5 % 13.0 % 60.0 %

Valid Solution 47.0 % 42.4 % 57.6 % 39.5 %

Mean Time (sec) 0.29 0.18 0.14 0.072

4 Step Horizon

Problem Description State Objective No Objective

Margin No Margin Margin No Margin

Failed to Solve 29.4 % 10.5 % 22.6 % 0.4 %

Contains Failure Step 27.8 % 51.9 % 11.9 % 56.1 %

Valid Solution 42.8 % 37.6 % 65.5 % 43.5 %

Mean Time (sec) 1.29 0.98 0.16 0.079

Table 5.1: Performance of variations on the motion planning problem across 1000
random tasks.

To examine if the failure margin function improves the reliability of the op-

timization problem, we ran 1000 motion planning problems with three and four

step planning horizons. The results of these optimizations are summarized in Ta-

ble 5.1. In every situation, the failure margin constraints increase the percentage

of problems for which a fully valid solution was found , with a relative increase of

between 11% (three step, with state objective) and 51% (four step, without state

objective). The optimizations with failure margin function constraints returns no

solution more often than those without, but they have a greatly reduced chance of

returning a solution that contain failure steps. Similar to previous studies, we see

that the problems without objectives solve more reliably in significantly less time,

particularly for the longer horizon case.

66

5.7 Conclusions

The approach we presented in this paper shows that it is possible to efficiently

plan robot locomotion multiple footsteps ahead with a complex model that can

be designed for high quality locomotion, not mathematical ease. In particular,

our failure margin function greatly improved performance for models that exhibit

catastrophic failure conditions. This approach was demonstrated on a canoni-

cal model of locomotion that is well understood but does not have a closed form

solution. The failure margin function constraints were able to increase the op-

timization’s ability to produce a valid plan by between 11 and 51 percent. Our

proof of concept implementation is on the edge of speeds necessary for real-time

planning. Further engineering effort in optimizing the approximator sizes, tuning

optimizer tolerances and optimizing the software implementation could provide a

meaningful decrease in execution time.

While we demonstrated this problem on a canonical model of locomotion, there

are no inherent barriers to applying this to real, full-dimensional robots. This

planning method hold promise for application to a more physically grounded model

such as the data-driven, reduced order models proposed in [28]. The complex

dynamics that such models exhibit can be encapsulated cleanly into the controlled

first-return map. An alternative approach is to start with a stabilizing locomotion

controller for a full order robot, such as in [142, 57, 155], and sampling a Poincarè

section of the full robot state and controller commands. The dimensionality of

this return map is too large to plan with, but we could build an autoencoder to

compress the states to a reduced representation. This would allow us to plan valid

motions and control policy commands in this compressed state-action space.

Acknowledgements

We would like to thank Helei Duan, Jeremy Dao, Connor Yates, Aseem Saxena

and Prof. Alan Fern for their thoughtful discussions and feedback on this work.

67

Part III

Learning Reactive Control from

First Principles of Legged

Locomotion

68

Chapter 6: Incentivizing Robust Gaits using Environment

Distributions in Reinforcement Learning

This chapter contains a study which proposes an approach to learn control for

traversing stairs without perception or world knowledge. It accomplishes this

through careful design of the distribution of environments seen by the system in

training together with the power of recurrent neural networks. We further investi-

gate the strategies used by the learned policy and identify biologically recognizable

gait features.

Contributions

Jonah Siekmann devised and implemented the learning approach, conducted hard-

ware experiments and wrote the manuscript. Kevin Green performed the behavior

analysis, contributed to the learning approach, assisted hardware experiments and

co-wrote the manuscript. John Warilla contributed to the learning implementa-

tion, assisted hardware experiments and co-wrote the manuscript. Alan Fern and

Jonathan Hurst supervised the investigation and co-wrote the manuscript.

69

Blind Bipedal Stair Traversal via

Sim-to-Real Reinforcement

Learning

Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and

Jonathan Hurst

Robotics: Science and Systems XVII

Virtual

July 2021

70

6.1 Abstract

Accurate and precise terrain estimation is a difficult problem for robot locomotion

in real-world environments. Thus, it is useful to have systems that do not depend

on accurate estimation to the point of fragility. In this paper, we explore the limits

of such an approach by investigating the problem of traversing stair-like terrain

without any external perception or terrain models on a bipedal robot. For such

blind bipedal platforms, the problem appears difficult (even for humans) due to

the surprise elevation changes. Our main contribution is to show that sim-to-real

reinforcement learning (RL) can achieve robust locomotion over stair-like terrain

on the bipedal robot Cassie using only proprioceptive feedback. Importantly, this

only requires modifying an existing flat-terrain training RL framework to include

stair-like terrain randomization, without any changes in reward function. To our

knowledge, this is the first controller for a bipedal, human-scale robot capable of

reliably traversing a variety of real-world stairs and other stair-like disturbances

using only proprioception.

6.2 Introduction

In order to be useful in the real world, bipedal and humanoid robots need to be

able to climb and descend stairs and stair-like terrain, such as raised platforms or

sudden vertical drops, which are common features of human-centric environments.

The ability to robustly navigate these environments is crucial to getting robots to

work with and alongside humans safely. Achieving this level of robustness on a

bipedal platform is no easy task; while other platforms such as quadrupedal robots

benefit from inherent stability due to multiple points of contact with the ground at

a given time and the ability to stop and stand like a table, bipedal robots such as

Cassie rely entirely on dynamic stability (essentially always existing in a state of

falling). On stair-like environments, this is especially apparent due to the difficulty

of recovery from missteps with only two legs.

By contrast, robots with quadrupedal morphologies have been able to use pro-

71

Domain Randomization

Hardware Execution

Sim-to-Real

Learned Controller

Proprioceptive Data PD Targets

Figure 6.1: In this work, we investigate the limits of blind bipedal locomotion. We
present a training pipeline which produces policies capable of blindly ascending and
descending stairs in the real world. These policies learn proprioceptive reflexes to
reject significant disturbances in ground height, resulting in highly robust behavior
to many real-world environments.

prioception alone to negotiate stairs [96, 18], and hexapedal robots have even

been able to use open-loop control to ascend and descend stairs [107]. While pla-

nar bipedal robots have been shown to be able to reject disturbances like large

unexpected dropsteps [109], the vast majority of approaches seeking to enable

such robots to negotiate stairs in the real world require either accurate vision sys-

tems [61, 6, 106] or operation in a carefully controlled laboratory environment

[26, 132, 53], meaning the robot is localized through a known start location or the

stairs are designed in tandem with robot morphology.

However, robots must be able to operate outside of controlled laboratory con-

ditions and handle the massive variety of conditions in the real world. This goal

72

is not compatible with a complete reliance on exteroceptive sensors such as RGB

and depth cameras for accurate terrain estimation, which introduce fragility to

real world conditions [54]. For instance, cameras may be unreliable if exposed

to occlusion, fog, or varying lighting conditions. Further, integrating a state-of-

the-art computer vision system into a high-speed controller is technically difficult,

especially on a computationally limited platform like a mobile robot. For practical

purposes, underlying controllers should be as robust as possible while relying on as

little information about the world as possible. Ideally, a bipedal robot should be

able to traverse as much of the entire breadth of human environments as possible

using proprioception, while relying on exteroceptive sensing for further efficiency

and high-level planning (and being robust to mistaken perception). This begs the

question: how robust can a blind bipedal robot be?

Reinforcement learning (RL) based approaches have begun to show significant

promise at robust real-world legged locomotion [96, 161, 141]. Unlike optimization

or heuristic-based control methods which rely on prescribed ground contact sched-

ules or force-based event detection, RL can produce control policies which learn

proprioceptive reflexes and strategies for dealing with unexpectedly early or late

contact and rough terrain through exposure to a variety of disturbances during

training. However, the limits of this approach are unclear and prior work has not

been demonstrated on the scale and variety of disturbances involved in stair-like

terrain.

In this work, we show that robust proprioceptive bipedal control for complex

stair-like terrain can be learned via an existing RL framework with surprisingly

little modification. In particular, the only adjustment needed is the terrain ran-

domization used during training, where we define a distribution over upward and

downward going stairs including variation in height, width, and slope of the con-

tact planes. Learning on this distribution allows for blind locomotion up and down

unknown stairs as well as handling more general stair-like terrain characteristics,

e.g. logs, curbs, dropoffs, etc. The learned controller is demonstrated in simulation

and a variety of real-world settings. To our knowledge, this is the first demonstra-

73

tion of its kind and suggests the continued exploration into the limits of robust

proprioceptive bipedal control.

6.3 Reinforcement Learning Formulation

We follow a sim-to-real reinforcement learning (RL) approach for learning bipedal

locomotion and assume basic familiarity with RL [148]. In the general RL setting,

at each discrete time step t the robot control policy π receives the current state

st and returns an action at, which is applied and results in a transition to the

next state st+1. The state transition dynamics are unknown to the robot and

are governed by a combination of environmental conditions, such as terrain type,

and the robot dynamics. In addition, during learning, each state transition is

associated with a real-valued reward rt. The reward is governed by the application

goals to encourage the desired behavior during learning. The RL optimization

objective considered in this work is to learn a policy through interaction with the

environment that maximizes the expected cumulative discounted reward over a

finite-horizon T . That is, find a policy π that maximizes: J(π) = E
[∑T

t=0 γ
tRt

]
,

where γ ∈ [0, 1] is the discount factor and Rt is a random variable representing

the reward at time t when following π from a state drawn from an initial state

distribution.

For complex environments, RL typically requires large amounts of training

experience to identify a good policy. Further, for biped locomotion, the training

will involve many falls and crashes, especially early in training. Thus, training

from scratch in the real-world is not practical and we instead follow a sim-to-

real RL paradigm. Training is done completely in a simulation environment, with

dynamics randomization (see below), and the resulting policy is then used in the

real-world.

In the remainder of this section, we detail the specific sim-to-real RL formula-

tion used in this work, which follows recent work [141] on learning different biped

gaits over flat terrain. Surprisingly, only minimal changes were required to en-

74

Command Probability of Change Range
Forward Speed 1/300 [-0.3m/s, 1.5m/s]
Sideways Speed 1/300 [-0.3m/s, 0.3m/s
Turn Rate 1/300 [-90deg/s, 90deg/s]

Table 6.1: At each timestep, each command input to the policy is subject to a
1/300 probability of being altered. When this occurs, a new command is sampled
from a uniform distribution parameterized by the rightmost column. Given that
maximum episode length is 300 discrete timesteps, this means each command will
change at least once on average per episode.

able policy learning for the much more complex stair-like terrains of this paper1

In particular, the only major modification required was the randomized domain

generation of stair-like rather than mostly flat terrain as discussed later in Section

6.4; no novel stair-specific reward terms were needed.

6.3.1 State Space

The state st that is input to the control policy at each time step includes three

main components. First, the state contains information about the robot’s instan-

taneous physical state, including the pelvis orientation in quaternion format, the

angular velocity of the pelvis, the joint positions, and the joint velocities. The

second component of st is composed of command inputs, which come from a hu-

man operator. These commands are subject to randomization during training to

give the policies a wide breadth of experience attempting to traverse stairs over a

variety of speeds and approach angles. Details of this randomization can be seen

in Table 6.1.

The third component includes two cyclic clock inputs, each corresponding to a

1This was only discovered after a careful ablation analysis of our first success on stair-like
terrain, which originally included seemingly necessary modifications to prior work, such as more
complex reward functions and state features.

75

leg of the robot, p:

p =

{
sin (2π(ϕt + 0.0))

sin (2π(ϕt + 0.5))
(6.1)

Here ϕt is a phase variable which increments from 0 to 1, then rolls back over to 0,

keeping track of the current phase of the gait. The constant offsets 0.0 and 0.5 are

phase offsets used to make sure that the left and right legs are always diametrically

opposite of each other in terms of phase during locomotion.

6.3.2 Action Space

The output action at of the control policy at each time step (running at 40Hz)

is an 11 dimensional vector with the first 10 entries corresponding to PD targets

for the joints, each of which are fed into a PD controller for each joint operating

at 2KHz. Prior work has found it advantageous to learn actions in the PD target

space rather than directly learning the higher-rate actuation commands [113].

The final dimension of at is a clock delta δt (refer to 6.3.1 for information on

clocks), which allows the policy to regulate the stepping frequency of the gait.

Intuitively, this allows the controller to choose an appropriate stepping frequency

for a particular gait, command, and terrain. Specifically, the phase variable ϕ in

the state representation (Section 6.3.1) is updated at each timestep t by,

ϕt+1 = fmod(ϕt + δt, 1.0). (6.2)

This delta is bounded in a way such that the policy can choose to regulate the

gait cycle between 0.5x and 1.5x the nominal stepping frequency (which is approx-

imately one gait cycle every 0.7 seconds). While this component is included in the

control policy action, it does not appear to have a large impact on performance and

the learned policy does not vary δt much in response to disturbances. We suspect

that future ablation analysis will show that it is not important for performance on

the real robot.2

2We leave this as a hypothesis here, since we have not been able to test on the real robot at

76

6.3.3 Reward Function

To briefly review the approach taken in [141], we wish to take advantage of the

complementary nature of foot forces and foot velocities during locomotion to con-

struct a reward function which will punish one and allow the other, and vice versa,

at key intervals during the gait. We use a probabilistic framework to represent un-

certainty around the timings of these intervals. More specifically, we make use of a

binary-valued random indicator function Ii(ϕ) for each quantity qi which we wish

to penalize at some time during the gait cycle. This indicator function is likely to

be 1 during the interval in which it is active, and likely to be 0 during intervals in

which it is not active. The distribution of this binary-valued random function is

defined via the Von Mises distribution; for a more comprehensive description, see

[143]. In addition, rather than use the actual random variable in the reward we

instead opt to use its expectation for more stable learning; see Fig. 6.2 for a plot

of this expectation.

Our full reward function is as follows;

R(s, ϕ) = 1− E[ρ(s, ϕ)] (6.3)

Which is to say, our reward is the difference of a bias and the expectation of a

probabilistic penalty term ρ(s, ϕ) as described in [141]. See Table 6.2 for detailed

information on the exact quantities and weightings used.

We define Fl and Fr as the vectors of translational forces applied to the left and

right foot, and vl and vr similarly as the vectors of left and right foot velocities.

To maintain a steady orientation, an orientation error ϵo is used, which is equal to,

ϵo = 3(1− q̂T q body)
2 + 10

(
(1− q̂T q l)

2 + (1− q̂T q r)
2
)

(6.4)

where q l and q r are the quaternion orientations of the left and right foot, q body

is the quaternion orientation of the pelvis, and q̂ is a desired orientation (for our

purposes, fixed to be always be facing straight ahead).

the time of submission.

77

Weight Cost Component

0.140 1− E[Ileft force(ϕ)] · exp(−.01∥Fl∥)
0.140 1− E[Iright force(ϕ)] · exp(−.01∥Fr∥)
0.140 1− E[Ileft velocity(ϕ)] · exp(−∥vl∥)
0.140 1− E[Iright velocity(ϕ)] · exp(−∥vr∥)
0.140 1− exp(−ϵo)
0.140 1− exp(−|ẋdesired − ẋactual|)
0.078 1− exp(−|ẏdesired − ẏactual|)
0.028 1− exp(−5 · ∥at − at−1∥)
0.028 1− exp(−0.05 · ∥τ∥)
0.028 1− exp(−0.1(∥pelvisrot∥+ ∥pelvisacc∥))

Table 6.2: The cost terms which are summed together to compose the expected
penalty, E[ρ(s, ϕ)]. Terms involving an expectation of a variable Ii(ϕ) vary over the
course of the gait cycle, with the goal of penalizing foot forces and foot velocities
at key intervals to teach the policy to lift and place the feet periodically in order to
walk. Other terms exist for the sake of commanding the policy to move forward,
backwards, or sideways, or turn the robot to face a desired heading. Finally, the
remaining terms exist to reduce behaviors which are shaky and thus unlikely to
work well on hardware.

78

Figure 6.2: By alternatingly punishing foot forces during a ‘stance’ phase to teach
the policy to lift the foot, and punishing foot velocities during a ‘swing’ phase to
teach the policy to place the foot on the ground, we can construct a foundation on
which to learn simple walking behavior. Following in the path of previous work,
we define these cyclic coefficents as random indicator functions of the phase, and
take their expectation.

The quantities ẋdesired and ẏdesired correspond to a commanded translational

speed, while ẋactual and ẏactual are the actual translational speed of the robot. The

term pelvisrot represents the angular velocity while pelvisacc represents translational

acceleration; these terms are used in the cost component to reduce the shakiness

of locomotion behavior. The terms at and at−1 refer to the current timestep’s

action and the previous timestep’s action, and their use in the cost component is

to encourage smooth behaviors. The term τ is the vector of net torques applied

to the joints, and its use in the cost component is intended to encourage energy

efficient gaits.

6.3.4 Dynamics Randomization

In order to overcome any modeling errors that may be present in our simulated

Cassie environment, we randomize several important quantities of the dynamics

at the beginning of each episode during training as in previous work [112] [141].

These randomized parameters are listed in Table 6.3.

79

Parameter Unit Range
Joint damping Nms/rad [0.5, 3.5]× default values
Joint mass kg [0.5, 1.7]× default values
Ground Friction – [0.5, 1.1]
Joint Encoder Offset rad [−0.05, 0.05]
Execution Rate Hz [37, 42]

Table 6.3: To prevent overfitting to simulation dynamics and facilitate a smooth
sim-to-real transfer, we employ dynamics randomization. The above ranges param-
eterize a uniform distribution for each listed parameters. Damping, mass, friction,
and encoder offset are randomized at the beginning of each rollout, while execution
rate is randomized at each timestep to mimic the effect of variable system delay
on the real robot.

6.3.5 Policy Representation and Learning

We represent the control policy as an LSTM recurrent neural network [70], with two

recurrent hidden layers of dimension 128 each. We opt to use a memory-enabled

network because of previous work demonstrating a higher degree of proficiency in

handling partially observable environments [67] [112] [143]. For ablation experi-

ments, involving non-memory-based control policies, we use a standard feedforward

neural network with two layers of dimension 300, with tanh activation functions,

such that the number of parameters is approximately equal to that of the LSTM

network.

For sim-to-real training of the policy, we use Proximal Policy Optimization

(PPO) [136], a model-free deep RL algorithm. Specifically, we use a KL-threshold-

termination variant, wherein each time the policy is updated, the KL divergence

between the updated policy and the former policy is calculated and the update is

aborted if the divergence is too large. During training, we make use of a mirror

loss term [3] in order to ensure that the control policy does not learn asymmetric

gaits. For recurrent policies, we sample batches of episodes from a replay buffer

as in [143], while for feedforward policies we sample batches of timesteps. Each

episode is limited to be 300 timesteps, which corresponds to about 7.5 seconds of

80

Figure 6.3: In order to ensure robustness over a variety of possible stair-like terrain,
we randomize a number of parameters when generating stairs at the start of each
episode in simulation. These parameters include the number of stairs, the height
of each stair, the length of each stair, the length of the landing atop the stairs, and
the slope of the ground immediately before and after the stairs.

simulation time.

6.4 Terrain Randomization

Previous work on applying RL to Cassie has either trained on flat ground [161]

[143] or on randomized slight inclines [141]. Other work in applying deep RL

has investigated employing a curriculum of rough terrains which become increas-

ingly difficult as training progresses [96]. For the purpose of simplicity, we find

that training on interactions with a randomized staircase without a curriculum is

sufficient to learn robust behavior.

To this end, we train on a plane whose incline is randomized at the beginning of

each rollout in the pitch and roll axes. This incline is between -0.03 radians and 0.03

81

radians. As part of the dynamics randomization, ground friction is randomized,

increasing the potential difficulty of the environment. The starting position of the

stairs are randomized at the beginning of each rollout, such that the episode can

start with the policy already on top of the stairs, or with the stairs up to 10 meters

in front of the policy. This is done in order to ensure that the policy is able to see

lots of experience on flat or inclined ground, as well as on stairs.

The dimensions of the stairs are randomized within typical city code dimen-

sions, with a per-step rise of between 10cm and 21cm, and a run of 24cm to 30cm.

The number of stairs is also randomized, such that each set of stairs has between

1 and 8 individual steps. A small amount of noise (± 1cm) is added to the rise

and run of each step such that the stairs are never entirely uniform, to prevent the

policy from deducing the precise dimensions of the stairs via proprioception and

subsequently overfitting to perfectly uniform stairs.

6.5 Results

We trained four groups of policies, each containing five policies initialized with

different random seeds. First, we trained a group of simple LSTM policies with

stair terrain randomization; these are referred to in this section as Stair LSTM.

To investigate the importance of memory, we trained a group of feedforward poli-

cies also with stair terrain randomization; we denote these Stair FF. We also

trained a group of policies without stair terrain randomization, and denote these

Flat Ground LSTM, to investigate the importance of the terrain randomization

introduced in this work. The final group was trained with a simple additional

binary input informing the policy whether or not stairs were present within one

meter of the policy, referred to here as Proximity LSTM, in order to investigate

the benefit of leaking information about the world to the policies.

Each policy was trained until 300 million timesteps were sampled from the vir-

tual environment, simulated with MuJoCo [152]. Our selection of hyperparameters

for the PPO algorithm includes a replay buffer size of 50,000 timesteps, a batch

size of 64 trajectories for recurrent policies, and a batch size of 1024 timesteps

82

Figure 6.4: The learned policies exhibit a high degree of blind robustness to a
variety of stair-like terrain, and can reliably ascend and descend stairs of typical
dimensions found in human environments.

83

for feedforward policies. Each replay buffer is sampled for up to five epochs, with

optimization terminating early if the KL divergence reached the maximum allowed

threshold of 0.02. We clear our replay buffer at the start of each iteration. We

use the Adam [92] optimizer with a learning rate of 0.0005 for both the actor and

critic, which are learned separately and do not share parameters.

6.5.1 Simulation

6.5.1.1 Probability of Successfully Ascending and Descending Stairs

To understand the importance of memory and terrain randomization, we evaluate

three groups of policies on the task of successfully climbing and descending a set of

stairs in simulation. We compare the performance of Stair FF, Stair LSTM, and

Flat Ground LSTM policies on this task.

Specifically, we run 150 trials testing how often a policy is successfully able to

climb a set of stairs with five steps, each with a tread of 17cm and a depth of 30cm

(a typical real-world and relatively mild stair geometry). This should give us an

estimate of how reliably each group of control policies can climb a flight of stairs

that it approaches blindly. Success is defined as reaching the top of the flight of

stairs without falling. We also apply this procedure for descending stairs, running

150 trials on stairs with the same dimensions, and record the rate at which each

group of policies can reach the bottom without falling.

The results of these tests for three different training conditions is shown in

figure 6.5. We note that the Stair LSTM policy has the highest overall probability

of success. Nevertheless, the probability of success is dependent, in large part,

on approach speed. The policies experience higher rates of failure at low speeds,

where they may lack the momentum to propel themselves past poorly chosen foot

placements. They also experience higher rates of failure at high speeds, possibly

due to the more dynamic nature of high-speed gaits.

The Flat Ground LSTM policies, having never seen stair-like terrain during

84

Figure 6.5: We evaluate the probability of successfully climbing and descending
stairs without falling as a function of commanded speed between 0.25 m/s and
1.5 m/s over 150 trials. For Stair LSTM policies, there seems to be an optimal
approach speed for climbing stairs and a separate optimal descent speed. Stair
FF policies do not attain high performance, implying that memory could be an
important component of the learned behavior. Flat Ground LSTM policies, having
never encountered stairs in training, are virtually unable to climb stairs while
finding some success in descending stairs without falling over.

85

training, are unable to compensate and experiences a high rate of failure for both

ascent and descent. The Stair FF policies, despite encountering stairs during

training, are unable to learn an effective strategy for handling stairs, implying

that memory may be an important mechanism for robustness to stair-like terrain.

6.5.1.2 Energy Efficiency Comparison

To understand the consequences of training with terrain randomization, we also

compare the cost of transport between Flat Ground LSTM policies, Stair LSTM

policies, and Proximity LSTM policies. The cost of transport (CoT) is a common

measure of efficiency of legged robots, humans and animals. It is the energy used

per distance, normalized by weight to be unitless. It is defined as

CoT =
Em

Mgd
, (6.5)

where Em is the energy used by the motors, M is the total mass of the robot, g is

the gravitational acceleration and d is the distance traveled. The energy used by

Cassie is calculated using positive actuator work and resistive losses via

Em =

∫ T

0

(∑
i

max(τi · ωi, 0) +
ωmax
i

Pmax
i

τ 2i

)
dt. (6.6)

Here τi is the torque applied to motor i and ωi is its rotational velocity. We

use two parameters to define the resistive losses in terms of torque, Pmax
i is the

maximum input power and ωmaxi is the maximum speed of motor i. The results of

testing steady state CoT at 1 m/s on flat ground can be seen in Table 6.4. These

calculations of CoT do not include the overhead power draw from computation

and control electronics so they should not be used to compare between robots,

only between control policies.

We find that Flat Ground LSTM policies learn the most energy efficient gaits

for walking on flat ground. Stair LSTM policies learn less efficient flat-ground gaits

86

Policy Group Mean CoT Std. CoT
Proximity LSTM (stairs) 0.47 0.0086
Stair LSTM 0.46 0.0323
Proximity LSTM (flat) 0.39 0.0257
Flat Ground LSTM 0.38 0.0205

Table 6.4: Locomotion efficiency as measured by cost of transport (CoT) for walk-
ing at 1 m/s over flat ground in simulation between three groups of policies over
all five random seeds. We note that policies not trained on stair terrain random-
ization tend to learn more energy efficient gaits, though some energy efficiency
can be recovered by providing the stair-trained policies with a binary stair pres-
ence/absence input.

in order to be robust to stairs; however, the stair proximity input to the Proximity

LSTM can help to recover some of this lost energy efficiency by allowing the learned

controller to switch between a stair-ready gait and a more energy efficient, flat-

ground gait.

6.5.2 Behavior Analysis

To understand the strategy adopted by the policy, we can benefit from taking

the perspective of experimental biology.We specifically look at the behavior as the

robot contacts the first step up or down after walking along flat ground. First we

will analyze the swing leg motion to understand how the robot places its foot on

step ups and step downs. Once the swing foot contacts a step up or down, the

force applied by the foot on the ground during stance phase can be modulated to

better prepare the robot for future steps. We analyze how the ground reaction

force and total impulse varies in the case of step ups and step downs.

6.5.2.1 Swing Foot Motion

To understand the change the stair terrain makes in the foot swing path we compare

the result of a Flat Ground LSTM policy and a Stair LSTM policy when they

87

(a) Swing foot paths for the stair trained policy and the flat ground
policy overlaid on example step ups and step downs.

(b) The leg angle between the robot body and the swing foot as the
foot descends toward touchdown.

Figure 6.6: A comparison of the swing foot motion of the Stair LSTM policy and
the Flat Ground LSTM policy while locomoting at 1.0 m/s. There is a significant
change in the leg swing policy as a result of training on randomized stairs. The
most significant changes are higher foot clearance, a steeper foot descent and a
faster leg angle retraction rate.

88

encounter a drop step. The foot swing path during a drop step lets us see where

the policy would place the foot if it had encountered a step up or a step down.

Fig. 6.6a shows the foot swing path of these two policies relative to the ground.

We can see that the Stair LSTM policy takes a much higher step compared to

the Flat Ground LSTM policy which gives it additional clearance so it can step

up onto a large step. A second interesting observation is the steeper path of the

swing foot for the Stair LSTM policy. The swing foot only moves forward 14 cm

while it is in the height range where it may encounter the front face of a step up.

We hypothesize this is a strategy that prevents the foot from stubbing the toe too

hard on the front face of a stair and causing the robot to trip forward.

A second viewpoint to understand leg swing motion is to look at the leg swing

retraction. In humans and in bipedal birds it is observed that the swing leg is

swung backwards, relative to the body, towards the ground near the end of stance

[116, 39]. This has the benefits of reducing the velocity of the foot relative to

the ground and thus reducing the impact [20] as well as improving ground height

disturbance rejection by automatically varying the leg touchdown angle [139].

Our training procedure does not explicitly incentivize the policy to exhibit

these leg swing retraction behaviors, but we do see them emerge as shown in Fig.

6.6b. This figure shows the angle of the swing foot relative to the body between

the peak of leg swing and contact with the maximum step down. The Stair LSTM

policy has a faster leg retraction rate compared to the Flat Ground LSTM policy.

With only this data we cannot say if this retraction profile is optimal or even if it

is the cause of the improved performance on stairs. However, the fact that there

is a significant change in the leg retraction profile as a result of training on stairs

is an interesting observation.

6.5.2.2 Ground Reaction Forces

Once the robot’s foot has touched down its control authority is limited due to

the underactuated nature of bipedal locomotion. However, the robot still has a

significant amount of control through the ground reaction force. To understand

89

Figure 6.7: The ground reaction forces and cumulative impulses of a Stair LSTM
policy when it encounters varying ground height. The peak vertical force (A) after
the impact remain roughly equivalent while the force in the second half of stance is
modulated. The horizontal force (B) shows oscillations that match the frequency
of the learned policy execution rate. This may be the policy controlling the body’s
attitude. The total vertical impulse (C) shows the expected result of a larger
impulse stepping up and a smaller one stepping down. The horizontal impulse
(D) shows a result that is predicted by leg swing retraction. When stepping down
the foot is shifted backwards relative to the body which results in net acceleration
forward which is shown here by a positive horizontal impulse.

90

how the Stair LSTM policy reacts to a 10 cm step up or down we plot the hori-

zontal and vertical ground reaction forces in the sagittal plane in Fig. 6.7. At the

beginning of stance there is a large spike in force that dwarfs the normal forces

during stance. The force value during this spike is largely defined by the tuning

of the simulation contact model so it is not of primary interest to understanding

the behavior of the policy. The first interesting thing we see in subplot A is that

the maximum nominal leg force is held relatively constant which is a predicted

result of a well adjusted leg swing policy [17]. Second we see that the magnitude

of the second hump in the double humped ground reaction forces is increased in

the step down and decreased in the step up. In the horizontal forces (subplot B)

we see an oscillating signal where the oscillations match the frequency of policy

evaluation. We hypothesize that this is the policy working to control the attitude

of the pelvis. Prioritizing body attitude over forward velocity would be similar to

the explicit priorities during single stance in Virtual Model Control [73]. The lower

two subplots (C and D) show the cumulative impulse in the vertical and forward

directions throughout the stance phase. We can see that the step up applies a

larger vertical impulse and the step down a smaller vertical impulse. This agrees

with the intuition that the robot should apply a smaller vertical impulse to lower

itself down a step compared to lifting itself up a step. The horizontal impulse tells

us if the robot speeds up or slows down in the forward direction during the stance

phase. We see that the step down results in a significantly larger forward impulse

and the step up reduces the vertical impulse very slightly. This aligns with the

predicted behavior from a well tuned swing leg retraction policy.

6.5.3 Hardware

The recurrent policies transferred to hardware without any notable difficulties. We

were able to take the robot for a walk around a large university campus using a

randomly selected Stair LSTM policy and attempt to climb the staircases we came

across. We observed robust and error-correcting behavior, as well as successful

and repeatable stair ascents and descents. In addition, we noted robustness to

91

uneven terrain, logs, and curbs, none of which were modeled in training. The

policy was similarly robust to inclines and deformable terrain, demonstrated by a

walk through a wet grass field and up a small hill. These experiments can be seen

in our submission video 3, and a still image of one such experiment can be seen in

Fig. 6.4.

In addition to testing one-off terrains all over the university campus, we ran

ten trials ascending stairs, and ten trials descending stairs on an outdoor real-

world staircase. We recorded an 80% success rate in ascending stairs using the

selected Stair LSTM policy, and a 100% success rate in descending stairs. A full

video of this trial can be seen in our attachment to this submission. We note

that the learned behavior is robust to missteps, and can quickly recover from

mistakes, though the policy is not completely infallible and will fall if it makes

a particularly egregious error. This experiment can be seen in our supplemental

video 4. The blind, proprioceptive learned strategy appears to rely on a solid stair

face; evaluating policies on slatted stairs in simulation resulted in a much higher

failure rate, pointing to the limits of such an approach. Even when explicitly

included in training, slatted stairs tended to trip up policies on ascent. By contrast,

stairs with randomly inclined steps (e.g., ones where each step had a unique pitch

and roll orientation) did not seem to be difficult for ascent or descent. Likewise,

approaching and ascending stairs at an angle did not seem to be an issue for

policies.

6.6 Conclusion

In this work, we have motivated the desirability of a highly robust but blind walking

controller, and demonstrated that such a blind bipedal walking controller is capable

of climbing a wide variety of real-world stairs. In addition, we note that producing

such a controller requires very little modification to an existing training pipeline

[141], and in particular no stair-specific reward terms; simply adding stairs to

3[Web link to submission video: youtu.be/MPhEmC6b6XU]
4[Web link to supplemental video: youtu.be/nuhHiKEtaZQ]

https://youtu.be/MPhEmC6b6XU
https://youtu.be/nuhHiKEtaZQ

92

the environment with no further information is sufficient for learning stair-capable

control policies. An important requirement of this learned ability appears to be a

memory mechanism of some kind, probably due to the partially observable nature

of the task of walking through unknown terrain while blind. In future work, it will

be interesting to investigate how vision can be most effectively used to improve

the efficiency and/or performance of a blind bipedal robot. Further, this work

has demonstrated surprising capabilities for blind locomotion and leaves open the

question of where the limits lie.

Acknowledgments

This work was partially supported by NSF grant IIS-1849343 and DARPA contract

W911NF-16-1-0002. Special thanks to Intel for access to the vLab cluster, and to

Yesh Godse, Jeremy Dao, and Helei Duan for advice and guidance.

93

Chapter 7: Guiding Learned Policies using Optimized Spring-Mass

Models

This chapter contains a study which investigates the potential of training control

policies for legged robots which follow motion commands from a reduced order

model. In particular we look at the applicability of optimized motions of the

bipedal actuated spring loaded inverted pendulum model. We show that the policy

learned to replicate features of spring mass locomotion. This shows promise as a

method of tracking motion plans from reactive planners built on simplified models.

Contributions

Kevin Green devised the concept, implemented the trajectory optimization and

assisted in developing the learning procedure. Yesh Godse and Jeremy Dao lead

the learning procedure and trained the controllers. Hardware experiments were

conducted by Kevin Green, Yesh Godse and Jeremy Dao with help from other

Dynamic Robotics Lab members. Alan Fern, Ross L. Hatton and Jonathan Hurst

supervised the investigation. Kevin Green primarily wrote the manuscript and all

other authors contributed to the writing and editing.

94

Learning Spring Mass

Locomotion:

Guiding Policies With a

Reduced-Order Model

Kevin Green, Yesh Godse, Jeremy Dao

Ross L. Hatton, Alan Fern and Jonathan Hurst

IEEE Robotics and Automation Letters

Volume 6, Number 2, pages 3926-3932

March 17, 2021

95

7.1 Abstract

In this paper, we describe an approach to achieve dynamic legged locomotion on

physical robots which combines existing methods for control with reinforcement

learning. Specifically, our goal is a control hierarchy in which highest-level behav-

iors are planned through reduced-order models, which describe the fundamental

physics of legged locomotion, and lower level controllers utilize a learned policy

that can bridge the gap between the idealized, simple model and the complex,

full order robot. The high-level planner can use a model of the environment and

be task specific, while the low-level learned controller can execute a wide range

of motions so that it applies to many different tasks. In this letter we describe

this learned dynamic walking controller and show that a range of walking motions

from reduced-order models can be used as the command and primary training

signal for learned policies. The resulting policies do not attempt to naively track

the motion (as a traditional trajectory tracking controller would) but instead bal-

ance immediate motion tracking with long term stability. The resulting controller

is demonstrated on a human scale, unconstrained, untethered bipedal robot at

speeds up to 1.2 m/s. This letter builds the foundation of a generic, dynamic

learned walking controller that can be applied to many different tasks.

7.2 Introduction

a powerful approach to control agile and dynamic legged robots is to use a control

hierarchy that combines specific domain knowledge of legged locomotion with the

power of deep reinforcement learning. The long term goal is to enable robots to be

able to navigate quickly through previously unseen environments with agility that

approaches or exceeds that of humans and animals. The control hierarchy should

consist of a low-level walking controller generated through reinforcement learning

that can account for and exploit the passive dynamics of the physical robot. This

low-level controller receives motion commands from a terrain-aware motion plan-

ner. The commands from the planner must be rich enough to sufficiently direct

96

the walking controller while still being as simple as possible. This letter focuses on

the learned controller and its interface, so we elect to use a library of precomputed

motions (Fig. 7.1).

Learned controllers have incredible potential to create dynamic locomotion,

but to be integrated into a control hierarchy we need an effective control inter-

face. Dynamic legged locomotion is by its nature underactuated, hybrid, unstable,

nonlinear, and must be able to operate with significant ground uncertainty. These

challenges may be addressed by deep neural networks acting as controllers because

of their ability to encode highly nonlinear control policies. However, if we would

like to develop more complex behaviors such as autonomous navigation through

unknown, obstacle filled environments, we will need to extend this approach. It

may be possible to expand the learning problem so that the same policy that dy-

namically controls the robot also interprets the world around it and chooses how

to move to the goal, but we choose not to take this approach because of the chal-

lenge of generalization to new tasks, sensors and environments. Instead, we seek

to create a learned controller that can be directed by other intelligent systems in

a modular hierarchy. Recent work explores the use of hierarchical learned con-

trol structures to quadrupedal locomotion. Some methods use both a high-level

learned policy and a low-level learned policy [82, 154]. Another method combines

a low-level model based controller with a high-level, learned gait planner [35].

Reduced-order models of locomotion capture the core dynamics of locomotion

which make them a compelling control interface. The most common models used

to plan motion for bipedal robots are inverted pendulum models, which consist

of a point mass and massless legs that can apply forces through ground contact

[85, 108, 11]. These models describe the underactuation of dynamic walking as

well as the discrete choice of foot step locations while remaining simple enough

to plan with in real time. The spring loaded inverted pendulum (SLIP) model

is particularly applicable for agile locomotion because with simple, feed-forward

policies it demonstrates strong stabilizing effects [59, 69, 78]. Many agile robots

closely resemble the SLIP model [93, 121] or are designed with SLIP locomotion

97

Figure 7.1: Our proposed control hierarchy which demonstrates a learned controller
for a legged robot that is commanded using reduced-order model motions. In future
work, this library of reduced order model motions can be replaced by a dynamic
motion planner.

30hz

Joint PD
Controller

Reduced Order
Model Library

RobotForward
Velocity

Command

Periodic
Clock

Body and Foot
Pose

Body and Foot
Velocity

Joint
Torque

Sensor
Readings

Observed State State
Estimator

2000 Hz
33 Hz

(NN)

Joint PD
Command

Reference Joint
Angles

+

Figure 7.2: The control diagram for both learning in simulation and running on
hardware. At a relatively slow 33 Hz, the library is sampled and the learned policy
is evaluated. At a much faster 2000 Hz, the joint PD controller is evaluated, the
commanded torques are sent to the motors, and the state estimator is updated.
The inputs to the learned policy are only the reduced-order model motion and the
state estimate.

98

as a goal [128, 100], which motivates our choice to use an actuated variation of the

SLIP model in this letter.

In this paper we present a method of using reduced-order models of walking to

direct high quality, transferable walking controllers and demonstrate its effective-

ness on a Cassie series robot from Agility Robotics. We use the bipedal actuated

SLIP model as the reduced-order model of walking to create a library of gaits

across different speeds. The gaits are optimized using a direct collocation method

to create energetically optimal walking cycles. Following these trajectories makes

up 70% of the reinforcement learning reward while 20% is for foot orientation and

10% is for smooth actions. The resulting controller produces visually natural mo-

tions with clear correspondence to the reference trajectories. These results show

that reduced-order model trajectories are useful tools in training and controlling

learned walking controllers.

7.3 Background

Reinforcement Learning is a learning framework in which agents learn what ac-

tions to take in order to maximize their cumulative future reward. Policy gradient

methods, such as Proximal Policy Optimization (PPO) [136], are a popular choice

of reinforcement learning algorithms that have been successfully applied to gen-

erate control policies for robotic systems, including legged robots [161, 149]. An

important part of using reinforcement learning to solve complex control problems

is the design of the reward function evaluated after each agent-environment inter-

action. Most applications of reinforcement learning to legged locomotion employ

heuristic reward functions to produce walking behavior [80, 149]. Though this

method has been effective, it is often hard to describe a desired motion through

objective, generic reward functions. The definition must be sufficiently detailed

to prevent maladaptive policies from learning motions that exploit features of the

reward or simulator and do not accomplish the underlying goal when transferred

to hardware. Researchers often use long and complex reward functions to prevent

these maladaptive policies; [80] uses 8 different reward terms for a single walking

99

task.

A different approach is to use a single expert trajectory as a reference motion

[161]. The reward function encourages motions that are close to the specified expert

trajectory, which can result in a policy that closely recreates the desired motion.

The use of the reference information discourages exploitative policies since the

desired motion is now densely and properly represented. When a reference motion

reward makes up a significant portion of the total reward, it severely restricts

the space of solutions to be those near the reference motion. For some tasks

this restriction is unacceptable; however, for bipedal locomotion restricting the

final behavior to resemble a normal walking gait is actually preferable because it

disincentives strange, exploitative behaviors.

We note that the method from [161] used a single reference trajectory. To

provide effective information for a variety of speeds, this single trajectory was

“stretched” and “compressed” to higher and lower speeds, sometimes creating

trajectories that were physically infeasible. These infeasible trajectories may harm

the learning problem by making the trajectory matching reward signal conflict with

the dynamics of the system. Our work mitigates this conflict by using reduced order

model trajectories with inverse kinematics to produce feasible walking trajectories

for every training speed. Furthermore, the use of a reduced-order model allows

for greater flexibility in the control system, by allowing future work to use the

reduced-order model trajectories as a form of higher level planning.

7.4 The Control Hierarchy

We created a control hierarchy (Fig. 7.2) to allow us to train and test a walking

controller that utilized reduced-order model motion. The only external input to

the system is a human operator’s forward velocity command. Internally, a periodic

clock increments forward through the walking cycle. The velocity command and

clock are inputs to a library of reduced-order model motions (§7.4.1). The library

returns the positions and velocities of the reduced-order model’s body and feet

for use as input to the learned policy. Additionally, the library contains a set of

100

robot-specific motor angles that correspond to a robot pose that match the body

and foot positions. The learned policy is evaluated and the output is summed

together with the reference joint angles to form the motor proportional-derivative

(PD) command. These commanded angles are sent to the high frequency control

loop (§7.4.2). This control loop evaluates the PD controller, sends torques to the

motors, measures robot sensors, filters sensor data, and estimates the full state of

the robot. This structure is utilized not just in hardware but also in the simulation

environment we use to train the learned policy (π).

7.4.1 The Reduced-Order Model Library

Our motion library consists of task space (body and foot) trajectories for periodic

walking over a range of forward speeds. Body and foot trajectories will be used as

an input to the learned policy as well as the majority of the reward signal. These

trajectories will not be strictly dynamically feasible on the full order robot, but

they should describe a nearly feasible center of mass motion that can be produced

by valid ground reaction forces at the feet. To create each trajectory we optimize

the reduced-order model and augment it with a minimum-jerk swing leg profile.

We additionally calculate motor angles for each motion through offline inverse

kinematics to use as a feed forward term into the PD controller.

The motions in the library are energetically optimal periodic gaits of the 3D,

bipedal actuated SLIP model. This model consists of a point mass body and two

massless legs (Fig. 7.3). Parameters of the model were chosen to closely resemble

the Cassie robot, see Table 7.1. Each leg has a extensible actuator in series with

a spring and a damper. The trajectory optimization method we use is a direct

collocation method where the state and inputs are discretized and dynamics are

enforced through equality constraints between sequential states [117]. Our imple-

mentation is not contact-invariant so we needed to specify the contact sequence.

We define a walking contact sequence made up of alternating single stance and

double stance phases. We vary the average forward velocities from 0 to 2 m/s in

steps of 0.1 m/s as an equality constraint on the final state. The energetic objective

101

Figure 7.3: The 3D, bipedal actuated spring loaded inverted pendulum model
which we optimize to create walking gaits for our motion library. This model has a
point mass body with no rotational inertia and two massless, compliant, actuated
legs.

102

Symbol Value and Unit Description
States r - [m,m,m] 3D body position

dl - [m] Left leg actuator setpoint
dr - [m] Right leg actuator setpoint

Parameters m 30 [kg] Body mass
k 3000 [N/m] Leg spring stiffness
b 2 [Ns/m] Leg spring damping
Im 10 [kg] Leg actuator linear inertia
g 9.81 [m/s] Gravitational acceleration

Continuous ul - [m/s2] Left actuator acceleration
Inputs ur - [m/s2] Right actuator acceleration
Discrete rl - [m,m,m] Left foot stance position
Inputs rr - [m,m,m] Right foot stance position

Table 7.1: States, parameters and control inputs for the actuated SLIP model used
to generate the library of motions.

function we use is

f =

∫ T

0

(u2l + u2r)dt (7.1)

where ul and ur are the accelerations of the leg actuators. This cost function rep-

resents the resistive losses in an electric motor when it applies forces to accelerate

the inertia of its rotors. We ensure kinematic feasibility by including a conser-

vative constraint on the maximum and minimum leg extension. To generate the

swing foot motions we calculated minimum integrated jerk squared motion pro-

files. These profiles connect the footholds from the trajectory optimization with a

specified vertical clearance height at the midpoint. We use a modified version of

COALESCE [84] to generate the problem and its analytical gradients and IPOPT

[158] to solve the problem.

An example optimal motion with a mean velocity of 1.0 m/s is shown in Fig.

7.4. The different phases can be seen in the main body’s path where it reaches its

peak height in single stance and the minimum height in double stance. The feet

follow smooth paths with the 0.2 m specified vertical clearance height.

103

0

0.4

0.8

0.1
-0.1
0

0.4

0.8

0.2

0.6

1
0.2

0.6

1

Left Swing

Double Stance

Left Single Stance

Left Foot Swing Right Foot Swing

Body Motion

Forward Displacement
(m)Horizontal

Displacement
(m)

Vertical
Displacement

(m)

Figure 7.4: The optimized task space motion of the reduced-order model for 1.0
m/s walking. The hybrid phase is shown through the color of the body trajectory.
This motion together with its velocities make up the motion library.

104

7.4.2 High Frequency Control Loop

The task space motions of the reduced-order model are inputted to a learned policy

running at 33 Hz which outputs delta motor positions δa. These deltas are added

to the baseline joint angles from the library, â, to create the final command for

the PD controller, a = â+ δa. The use of joint angle baseline actions was used in

prior work on learned walking controllers for Cassie [162]. The actions are passed

to a joint level PD controller with fixed feedback gains running at 2 kHz. Note

that the learned policy only outputs position targets while the velocity targets are

always set to zero. This means the proportional-derivative controller should more

accurately be called a proportional-damping controller. We choose this structure

as previous work has shown learning PD targets to be easier and produces higher

quality motions [114].

7.5 Reinforcement Learning

The optimal learned controller should be able to capture the most important fea-

tures of the reduced-order model’s motion and translate them into a stable walking

behavior that functions on hardware.

7.5.1 Problem Formulation

The inputs to the policy are the estimated robot state and the desired positions

and velocities of the robot’s pelvis and feet. The estimated robot state contains

the pelvis height, orientation, translational velocity, rotational velocity, and trans-

lational acceleration in addition to the positions and velocities of the actuated and

unactuated joints on Cassie. This state estimate together with the commanded

pose and velocity from the reduced-order model library form a 64D input space.

The output of the learned policy is a 10D vector containing motor position targets

for each of Cassie’s actuated joints.

105

Parameter Value
Adam learning rate 1× 10−4

Adam epsilon 1× 10−5

discount (γ) 0.99
clipping parameter (ϵ) 0.2
epochs 3
minibatch size 64
sample size 5096

Table 7.2: PPO Hyperparameters

We learn control policies by using a simulated model of Cassie1 in the MuJoCo

Physics simulator [152]. Our dynamic model of Cassie includes the reflected inertia

of each motor (defined as “armature” in MuJoCo). We also attempt to model

actuator delay by limiting when new torque commands are actually executed.

Desired torques only take effect 0.003 seconds (6 time steps of the high frequency,

PD control loop) after being “sent” to the simulator. We believe these extra facets

of the model help improve the policy’s robustness against differences in simulation

and reality, enabling cleaner sim-to-real transfer.

An important part of this setup is that even during training we use an estimate

of the state rather than the true state. Though we have access to the true simulated

state we instead pass the simulated sensor values into a state estimator to get a

simulated “observed state.” This incorporates simulated sensor noise and state

estimator dynamics into the learning process, which is an essential part of making

policies robust enough for sim-to-real transfer. This allows us to use the exact

same controller structure on hardware, effectively just switching out the simulated

robot for the real robot.

106

7.5.2 Learning Procedure

The reinforcement learning algorithm we use is an implementation of PPO2 with

parallelized experience collection and input normalization[136]. Our policy is a

fully connected feed-forward neural network with 2 hidden layers of 256 nodes

each. We choose to use fixed covariance instead of making it an additional output

of the policy. The hidden layers use the ReLU activation function and the output

is unbounded. This architecture was chosen because previous work found it was

large and deep enough to generate high quality locomotion across a range of walking

speeds [161]. More information on training hyperparameters can be found in table

7.2. At the start of each episode, a reference trajectory is randomly selected from

the reduced-order model library and the simulated model of Cassie is set to a

random starting position in the trajectory’s walk cycle. A single step of agent-

environment interaction includes the policy computing an action, sending it to the

low-level PD controller which simulates forward 1/33 of a second, and retrieving

the next state in the 33 Hz execution cycle. We define the maximum episode

length for this MDP problem to be 400 steps of agent-environment interaction,

which corresponds to 12 seconds. Episodes are terminated when the number of

steps reaches the maximum episode length or when the reward for the current step

is less than 0.3. This termination condition encapsulates when the robot falls to

the ground or if it deviates excessively from the goal behavior.

We design the following reward function that is evaluated after each step:

r = 0.3 rCoM vel + 0.3 rfoot pos + 0.1 rstraight diff

+ 0.2rfoot orient + 0.1raction diff

All of the terms in the reward function are computed as the negative exponential

of a distance metric. This lets us limit the maximum reward per step to 1 and per

1Simulation and state estimation library available at https://github.com/osudrl/

cassie-mujoco-sim
2Reinforcement Learning code, reward functions, and ASLIP reference motions available at

https://github.com/osudrl/ASLIP-RL

https://github.com/osudrl/cassie-mujoco-sim
https://github.com/osudrl/cassie-mujoco-sim
https://github.com/osudrl/ASLIP-RL

107

Figure 7.5: Forward velocity comparison of the user desired velocity, the corre-
sponding reduced-order model center of mass velocity, and the simulated robot’s
pelvis velocity. As can be seen, the policy closely tracks the user’s desired veloc-
ity. The difference between the reduced-order model and robot’s velocity show the
learned policy does not emulate the spikes in reduced-order model’s body velocity
which occur at touchdown.

episode to 400.

The first three terms of the reward function account for 70% of the total reward.

Together they penalize the differences between the current state of the robot and

reference task space position and velocity. The center of mass velocity matching

reward, defined as

rCoM vel = exp(−||vCoM − vrefCoM||), (7.3)

incentivizes matching the robot’s center of mass (pelvis) velocity to the reference

velocity. However, rCoM vel is calculated using the local pelvis frame which prevents

the policy from receiving a large reward for sidestepping or walking diagonally. To

ensure the robot locomotes in the forward direction, rstraight diff rewards the lateral

robot position being close to zero.

To get the controller to track the reference foot positions, rfoot pos rewards the

robot’s foot positions to be close to the reference motion’s foot positions, where

the foot position is defined as the position of the foot relative to the body. On the

full order robot, the orientation of the foot joints is important for stable walking on

108

hardware. However, our reduced order model has point feet which do not describe

or incentivize any particular foot orientation. We reward forward pointing toes

and feet parallel to the ground through rfoot orient.

A reward term that helps the transfer to hardware is raction diff, which penalizes

the distance between the last action and the current action and results in smoother

action outputs. Without this term the policy can converge to behaviors that

rapidly oscillate the commanded motor angles which is not conducive to success

on hardware.

It is important to note that with the inclusion of the raction diff term, reaching the

maximum reward is impossible and not an expectation, as the policy would need to

output a constant motor angle while tracking the reference motion. Furthermore,

perfectly matching the positions of the reduced-order model at each step is likely

not possible because of the significantly more complex dynamics of the full order

robot. As seen in [128, 100], directly applying spring-mass behavior to a robot is

challenging and sensitive. Thus our learned controller should use the spring mass

model as a guide towards highly effective walking solutions that work for the robot

on hardware.

7.6 Results

We trained ten different policies from randomized initial weight seeds for our

method. The training process takes just under five hours of wall clock time using

50 cores on a dual Intel® Xeon® Platinum 8280 server. The policy learns to step

in place after about 25 million timesteps, and converges to a reward of almost 300

after about 175 million timesteps, where it is able to track all of the walk cycles

in the reduced-order model library.

7.6.1 Simulation

By varying the user-provided forward velocity to the reduced-order model library,

we demonstrate the learned control policy’s ability to smoothly transition between

109

2 0 0

0

2 0 0

4 0 0

6 0 0

AS LIP Policy Xie e t . a l. M e th od

Left Foot
Right Foot

2 0 0

0

2 0 0

4 0 0

6 0 0

0 .0 0 .4 0 .8
Tim e (s)

2 0 0

0

2 0 0

4 0 0

6 0 0

0 .0 0 .4 0 .8
Tim e (s)

S
pe

ed
 =

 0
.0

 m
/s

S
pe

ed
 =

 1
.0

 m
/s

S
pe

ed
 =

 2
.0

 m
/s

G
R

F
s

(N
)

G
R

F
s

(N
)

G
R

F
s

(N
)

Figure 7.6: Ground reaction force profiles of the actuated SLIP policy compared
to a single reference trajectory policy for [161] method. The actuated SLIP policy
shows double hump ground reaction forces as is expected from spring mass walking,
where the single reference policy shows flattened single hump ground reaction forces
similar to linear inverted pendulum walking.

110

discrete reference walk cycles (Fig. 7.5). The policy produces walking behavior

with oscillations in pelvis velocity that correspond with the oscillations in center of

mass velocity from the reduced-order model. Furthermore, this velocity tracking

succeeds across the broad set of commanded speeds and the transitions between

them.

In order to quantify how well desired foot locations can be realized through

this control hierarchy, we measure the average error between the foot touchdown

locations of the reduced order model commands and the robot in simulation (Fig.

7.7). At all speeds, we observe that the robot places its feet slightly wider than

the reduced-order model. Above 1.0 m/s, we see that the robot’s footsteps lag

more and more which corresponds to error in tracking the reduced-order model’s

forward velocity. At speeds under 1.0 m/s this placement error doesn’t exceed an

average of 10 cm.

The ground reaction forces show that our policy produces features indicative of

spring mass walking that were not explicitly incentivized by the reward function.

We compare the ground reaction forces across different commanded speeds to those

from the single reference trajectory policy (Fig. 7.6). Particularly at 0 and 1.0

m/s the actuated SLIP policy has a double hump ground reaction force which is

present in spring mass walking. In comparison, the single reference trajectory has

a single hump ground reaction force with a flattened peak for all speeds. This type

of ground reaction force is expected from a bipedal walking policy that holds the

body at a constant height, similar to the linear inverted pendulum [85]. These

ground reaction forces are not themselves a useful measure of performance of the

gait, but instead provide us evidence that our learned controller is emulating the

dynamics of our reduced order model.

7.6.2 Hardware

We directly transfer the policies trained in simulation to hardware, demonstrating

that this approach can achieve a strong sim-to-real transfer. We observe that

the the learned walking motion is springy, with slight oscillations in the pelvis

111

Figure 7.7: Average foot placement error and standard deviation over 15 foot steps
at various speeds. The average error across speeds under 1.0 m/s is relatively low
and is sufficient for planning precise footstep locations.

velocity and changes in leg length directly corresponding to the same variations in

the motion of the reduced-order model. This motion correspondence can be seen

in Fig. 7.8 and our accompanying video, which shows Cassie walking using our

learned policy for an extended period of time, as well as a comparison between the

motions of the reduced-order model, the learned controller in simulation, and the

learned controller on hardware. The video also shows that the stepping frequency

of all three stages in the control hierarchy: reduced-order model, simulation, and

hardware, match for the same forward velocity commands.

To test the ability of these policies to rapidly change speeds in hardware, the

human operator sends the robot sudden changes in velocity commands. The results

of this trial are shown toward the end in the attached video. This controller is able

to walk significantly faster and with a longer stride than was possible using previous

model-based control methods on the same robot [11].

112

Figure 7.8: Motion comparison of the reduced-order model, simulation, and hard-
ware at different phases in the gait. The top images represent the desired reference
motion to recreate, the middle images show the learned policy in simulation, and
the bottom images show the learned policy executed on hardware.

7.7 Conclusion

In this letter, we have presented an effective control structure for producing spring

mass-like motion on a human scale bipedal robot. This method employs reduced-

order model reference trajectories to inform the learning process of the desired task

space motion. We find that this method is successful in producing similar motion

to the actuated SLIP model and generates policies that can realize this behavior

on the bipedal robot Cassie. We found success using the actuated SLIP model as

the reduced order model to guide Cassie. One should consider carefully the choice

of reduced order model when applying this work to other robots. Continuations

of this work will focus on extending the variety of motions the low-level policy can

track and improving the foot step location tracking.

This low-level controller will enable many different opportunities for integration

of high-level motion planners. Now that we have a policy capable of following a

desired reduced-order model motion, we can work to extend this to generate policies

that follow any arbitrary reduced-order model trajectory. This would allow for

113

incorporating a high-level planner in the reduced-order model space, such as the

planner proposed in [30]. Allowing for reactive planning decisions like navigation

and obstacle avoidance to happen at the reduced-order model level will also make

it significantly easier to achieve fully autonomous agile legged robots.

Acknowledgments

We thank John Warila and Dylan Albertazzi for their assistance rendering videos,

Helei Duan, Jonah Siekmann, Lorzeno Bermillo, and Pedro Morais for productive

discussions.

114

Chapter 8: Learning Transient Locomotion through Centroidal

Momentum References

This chapter contains work aimed at performing agile, transient maneuvers. The

first component is to build a system to reliably optimize transferable trajectories for

a centroidal momentum model. Second, we learned locomotion controllers which

are tasked with performing these agile maneuvers. We investigated the utility of

centroidal momentum references compared to center of mass only references (pure

inverted pendulum models) and reference free learning as well as a novel epilogue

reward. This chapter contains work that formed two IEEE Humanoids papers

but is tightly related so it is combined into a single chapter. Much of the text

is reproduced from the conference paper submissions with expanded sections and

reorganization as was necessary.

Contributions

Kevin Green devised the approach, contributed to the optimization implementa-

tion, co-wrote the manuscript and supervised the investigation. Ryan Batke led

the optimization implementation and learning implementation and co-wrote the

manuscript. Fangzhou Yu led the maneuver reinforcement learning implementa-

tion and co-wrote the manuscript. Jeremy Dao contributed to the learning imple-

mentation and co-wrote the manuscript. Ross L. Hatton, Alan Fern, and Jonathan

Hurst supervised the investigation and edited the manuscript.

115

Optimizing Bipedal Maneuvers of Single

Rigid-Body Models for Reinforcement Learning

Ryan Batke, Fangzhou Yu, Jeremy Dao,

Jonathan Hurst, Ross L. Hatton, Alan Fern, and Kevin Green

(In Review) IEEE Humanoids 2022

Dynamic Bipedal Maneuvers through

Sim-to-Real Reinforcement Learning

Fangzhou Yu, Ryan Batke, Jeremy Dao,

Jonathan Hurst, Kevin Green, and Alan Fern

(In Review) IEEE Humanoids 2022

116

8.1 Abstract

For legged robots to match the athletic capabilities of humans and animals, they

must not only produce robust periodic walking and running, but also seamlessly

switch between nominal locomotion gaits and more specialized transient maneu-

vers. Despite recent advancements in controls of bipedal robots, there has been

little focus on producing highly dynamic behaviors. First, we propose a method

to generate reduced-order model reference trajectories for general classes of highly

dynamic maneuvers for bipedal robots for use in sim-to-real reinforcement learning.

Our approach is to utilize a single rigid-body model (SRBM) to optimize libraries

of trajectories offline to be used as expert references in the reward function of a

learned policy. This method translates the model’s dynamically rich rotational

and translational behavior to a full-order robot model and successfully transfers to

real hardware. Within this work we introduce a set of transferability constraints

that amend the SRBM dynamics to actual bipedal robot hardware, our framework

for creating optimal trajectories for a variety of highly dynamic maneuvers as

well as our approach to integrating reference trajectories for a high-speed running

reinforcement learning policy. Second, we investigate the reinforcement learning

problem on nominal locomotion using the SRBM reference and on dynamic four-

step turns. On the bipedal robot Cassie on which we were successfully able to

demonstrate highly dynamic grounded running gaits up to 3.0 m/s. Inspired by

conventional optimization-based control techniques for legged robots, this work

applies a recurrent policy to execute four-step, 90 turns trained using reference

data generated from optimized single rigid body model trajectories. We present a

novel training framework using epilogue terminal rewards for learning specific be-

haviors from pre-computed trajectory data and demonstrate a successful transfer

to hardware on the bipedal robot Cassie.

117

 SRBM
Reference Reward

Sim-to-Real
 Transfer

 SRBM
Optimization

MuJoCo Sim

Hardware

Figure 8.1: Dynamic maneuver workflow - SRBM optimized reference trajectories
are used to develop learned controllers in simulation that are deployed on hardware.

8.2 Introduction

Bipedal animals from ratites to humans are capable of executing dynamic and

aggressive motions that can seem effortless and graceful, but in reality require a

complex balance of body momentum with fast and precise footstep placements.

Human athletes and animals are able to execute maneuvers where in a few steps

they redirect their momentum in sharp, often successive turns to quickly change

direction. Additionally, both humans and many animals are capable of leaping

into the air to reach higher locations, cross gaps or as a means to change direction.

Bipedal robots have recently demonstrated increasingly dynamic capabilities

[142, 80]. However, these advancements are still far behind the feats achieved by

well tuned biological systems. Modern control techniques that produce reliable

locomotion such as model predictive controllers (MPC) based on Linear Inverted

Pendulum (LIP) dynamics [137] severely restrict a systems behavior, preventing

the realization of many high speed gaits, highly efficient gaits or dynamic maneu-

118

vers.

The usage of reduced-order-models (ROM) is a hallmark of optimization-based

bipedal locomotion controllers. These models serve to embed controllers with

simplified descriptions of locomotion dynamics to reduce the complexity of plan-

ning. Open-loop planning techniques like trajectory optimization (TO) can be used

with a ROM to quickly generate highly non-linear optimal trajectories by enforc-

ing meaningful constraints and objective functions on the underlying model. The

popular LIP model as well as the Spring Loaded Inverted Pendulum (SLIP model)

lack the fidelity to capture the effects of angular momentum on the system that

are necessary to achieve maneuvers such as sharp turns and spin jumps [56, 85].

Centroidal Momentum Models are another popular class of ROM commonly used

for full humanoid robots [38, 159]. These models characterize both the linear and

angular momentum of a robots CoM, but do not encode a mean orientation for

the robot which is necessary for our target maneuvers.

Data-driven methods offer a competing paradigm for control. Recent successes

with model-free deep reinforcement learning (DRL) based controllers for legged

robots have demonstrated a wide range of robust and dynamic behaviours on hard-

ware [142, 96, 40]. These learned controllers have the advantage of being trained

in simulation on full-order robot models that contain dynamic information missing

from ROMs. Techniques such as dynamics randomization allow for a DRL agent

to experience and adapt to various conditions over millions of iterations. This

allows for the training of incredibly robust policies that can reliably traverse the

sim-to-real gap. As powerful as these techniques have proven to be at demonstrat-

ing common gaits, the extension of reference-free DRL to structured maneuvers is

still an unsolved problem.

A promising alternative to relying solely on either ROM based optimizations or

reference-free DRL is to utilize a dynamically rich model offline to first plan highly

non-linear behaviors through TO. These reference trajectories can then be used as

a central part of a reward function to allow a learned controller to generalize the

optimal trajectories from a simple model to the full-order robot and transfer to

119

hardware.

In this work we present a single rigid-body model (SRBM) as applied to the

bipedal robot Cassie. Using TO we create libraries of optimal trajectories offline

that utilize the SRBM to plan a variety of highly dynamic behaviours such as

running routes and jumps. These trajectories are then incorporated as part of

a policies reward function and trained using proximal policy optimization (PPO)

to develop controllers that are capable of executing the desired maneuver online

on real hardware. The challenge of successfully transitioning between different

policies is addressed during the training process with the concept of an epilogue

terminal reward. To test the viability of our proposed technique implemented on

real world hardware, we demonstrate the successful sim-to-real transfer of Cassie

performing a four-step 90 degree right turn using a policy trained with trajectory

data that successfully transitions between another policy performing a running

gait developed from our previous work.

8.3 Background

8.3.1 Reduced-Order-Models

A SRBM approximates the inertia of a legged robot’s many rigid bodies to a

single body located at the center of mass (CoM) which is manipulated by ground

reaction forces (GRFs) applied at foot locations through an idealized, massless

leg. The power of the SRBM is in its simplicity, using only a small number of

parameters it is able to characterize the linear and rotational dynamics that are

required to achieve highly aggressive maneuvers. These models have been applied

to quadruped robots to great success, allowing for hardware demonstrations of

dynamic behaviours such as flips [86, 1]. SRBMs have been utilized for dynamic

quadrupeds in conjunction with both optimization [18] and RL based controllers

[163].

Similar application of SRBMs are much less frequent in the domain of bipeds.

This is because, unlike quadrupeds, bipedal robot’s legs often represent a more

120

significant contribution to the robot’s inertia [144]. A SRBM can still be used to

plan for less-ideal bipeds and full humanoids, but requires careful consideration of

how to best to apply the ROM to the full-order robot. An impressive example of

the SRBM being utilized to plan for angular momentum rich trajectories on a biped

is Boston Dynamics’ Atlas. Atlas can perform a wide variety of maneuvers from

backflips to sequential parkour jumps onto slanted surfaces [22]. Boston Dynamics

has indicated that TO is used offline to create libraries of task-specific maneuvers

based off of an SRBM that is adjusted for kinematic feasibility [94, 42]. Online

the robot uses MPC guided by the offline optimal trajectories to perform short

horizon optimizations that make real-time adjustments allowing for the execution

of the dynamic behaviours on hardware.

Previous work combined reference trajectories and DRL to develop walking

controllers for Cassie [161], but these were based off only a single manipulated

reference and thus were limited in application. Additional work was conducted

using SLIP models to create libraries of reference trajectories to guide DRL [58].

Most similar to this current work, combining TO and DRL for locomotion was

shown by [23] for a terrain-aware quadrupedal robot.

8.3.2 Learning for General Locomotion

RL has shown to be a promising alternative to model-based control of legged

robots [141, 149, 96]. However, most published work on the application of RL

to legged locomotion focuses on performing cyclic gaits, while in this work we

are concerned with more dynamics one-off maneuvers. Prior work on performing

different behaviors with learned methods use RL to train a singular policy to

execute all desired behaviors instead of training separate policies for each individual

behavior. This causes the behavior space of the policies to be limited by the

richness of a singular reward function, making them ill-suited to learning multiple

different behaviors. This work addresses this issue by switching between policies

trained to execute specific behaviors. [141] demonstrated a learning framework

capable of reproducing all common bipedal gaits for Cassie on a single policy that

121

does not use expert reference trajectories. The resulting policy could continuously

transition between different bipedal gaits by adjusting a left and right foot cycle

offset parameter. More recent work [48] used a similar learning framework to the

one in this work to develop policies for Cassie to step on target footholds. The

foothold targeting policies were allowed to modulate the gait behavior to achieve

strides of varying length by adaptively changing the stepping frequency. Model

differences between simulation and the real world robot were resolved by training

the policy with dynamics randomization [149], which has shown to improve the

consistency of successful sim-to-real transfers of recurrent neural network (RNN)

walking policies for Cassie [143].

8.3.3 Learning for Multiple Behaviors

RL has also been used to learn different locomotion skills as well as smooth transi-

tions between them. [63] demonstrated successful sim-to-real transfer of switching

between forward and backward walking on a single policy trained with atomic,

task-specific reward functions. Similarly, learned locomotion control policies have

shown to be capable of assuming different gait behaviors to negotiate terrain ob-

stacles and gaps. [68] demonstrated the emergence of robust obstacle clearing

behavior for torque-controlled legged agents by training control policies using sim-

ple reward functions in obstacle-rich simulation environments. These examples of

prior work engineer the agent-environment interactions to encourage the emergence

of multiple behaviors, which suffer from the same drawbacks as the examples in

Section 8.3.2 because multiple behaviors are learned on a single policy.

8.4 Single Rigid Body Model Formulation

Our representation, dynamics and quaternion integration method are inspired by

[81]. This body has a configuration space of SE(3) and a velocity in R6. While

this is the precise structure of the space, we elect to use a common representation

of the configuration space as [pc,q] ∈ R3 × S3. Here pc is the 3D position of the

122

body’s center of mass (CoM) and q is the body’s attitude as a quaternion. The

body’s velocity is represented by the CoM linear velocity vc ∈ R3 and the body

frame angular velocity ω ∈ R3. We then combine the configuration and velocity

into a single state vector x which has dynamics

x =

pc

q

vc

ω

 , ẋ =

vc

1
2
q⊗ ω̂

1
m
FW (x,u)

J−1(τB(x,u)− ω × Jω)

 . (8.1)

Here x and u are the state and control vectors, m is the mass, J ∈ R3×3 is the

body frame rotational inertia matrix, FW (x,u) ∈ R3 are the external forces in

the world frame, and τB(x,u) are the external moments as expressed in the body

frame. In the rotational dynamics, ⊗ represents quaternion multiplication and ω̂

is the angular velocity as a quaternion with zero scalar part. More details on the

rotational dynamics can be found in [81].

Our model is actuated by ground reaction forces which are applied by a mass-

less, ideal leg. These ground reaction forces can be thought of as a perfect force

vector applied to the body through the foot’s contact point. This can then be

transformed into a wrench at the body to integrate the dynamics. In our imple-

mentation the model can have one, two or no active foot contacts depending on

its specified hybrid mode.

8.5 Trajectory Optimization Formulation

We used direct collocation trajectory optimization implemented in COALESCE

[84] and solved using IPOPT [158] to create libraries of dynamically feasible open-

loop trajectories offline. Dynamically rich trajectories can be generated though

specifying a physically meaningful objective function, a sequence of hybrid modes

and constraints that shape the behavior of the model to the dynamic maneuvers

that are the goal of this work. By specifying sequences of hybrid phases and

123

applying sets of constraints, through the optimization we are able to develop a

wide variety of agile maneuvers that can be easily iterated and shaped to create

expert references for learning-based controllers.

8.5.1 Hybrid Modes

We are interested in agile maneuvers that span multiple footsteps which means

that our motions will span multiple hybrid modes. While there is much interest in

contact implicit TO, we chose to prescribe the contact sequence a priori. We chose

this because the space of contact sequences for point foot bipedal models with no

arm contact in a flat environment is relatively small. For standard locomotion

gaits at a commanded speed there are three reasonable options: The robot can

walk with a double stance phase, it can run with an aerial phase, or it can perform

a grounded run with no double stance or flight phase. Each of these corresponds

to a different sequence of three hybrid modes: aerial flight, single stance, double

stance. Our model’s massless, ideal legs mean that we can consider left and right

single stances to have identical dynamics. In this work we are interested in agile

maneuvers, as well as dynamic jumps. For running and turning maneuvers we use

a grounded run contact pattern, which consists of alternating single stance modes.

For jumping maneuvers we use double stance and aerial flight modes.

8.5.2 Decision Variables

Our TO consists of several hybrid modes serially appended to each other, with a

total ofM modes for any maneuver. Each of these modes has N collocation points

which evenly divide the duration of the hybrid mode in question. This means that

for any mode we have N sequential variants of the state and inputs. Our state is

parameterized by 13 components: 3 from CoM position (pc), 3 from CoM velocity

(vc), 4 from the orientation quaternion (q), and 3 from body frame angular velocity

(ω). If we are in single-stance we need to collocate the inputs, which in this case are

N of the ground reaction forces F ∈ R3. In order to adjust the timing of the hybrid

124

-1.5-1-0.500.511.5

y position [m]

0

0.5

1

1.5

2

2.5

x
po

si
ti

on
 [

m
]

A

step 1
step 2
step 3
step 4

-1.4-1.2-1-0.8-0.6-0.4-0.200.20.4

y position [m]

0

0.5

1

1.5

x
po

si
ti

on
 [

m
]

B

step 1
step 2
step 3
step 4

-0.8-0.6-0.4-0.200.20.40.60.8

y position [m]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

x
po

si
ti

on
 [

m
]

C

step 1 L
step 1 R
step 2 L
step 2 R

Figure 8.2: Footstep constraint visualizations, A: forward running, B: 900 turn, C:
900 spin jump. These constraints are built of a pair of linear constraints on foot
location in X-Y space. The constraints are based on a “nominal” heading and are
relative to the initial and final positions of the body in that dynamic phase.

transitions the optimizer needs to be able to adjust the duration of the phases. To

this end, we also create a single decision variable per phase which represents the

phase’s duration. Lastly, the optimization needs to be able to adjust the location

where the stance foot is placed. This is accomplished by adding a single position

vector as a decision variable for single-stance phases pf ∈ R3. For double stance

phases we have two foot positions, pf,1, pf,2, and similarly F1, F2. In this work

we constrain the vertical components of foot position to be zero for flat ground

gaits. This results in a total decision variable count of 13N + 1 for flight phases,

16N + 4 for single-stance phases, and 19N + 7 for double stance.

The indexing x(m,n) is used in this paper to refer to the mth hybrid mode and

the nth collocation point of any variable. When no indexing is used this refers to

a variable throughout the entire trajectory, for each mode and collocation point.

The letters i and F refer to the initial and final modes of any maneuver, where 1,

and N are used to indicate the first and final collocation point of any mode.

8.5.3 Transferability Constraints

In order to constrain the model to produce maneuvers which are more likely to

transfer to the physical robot we apply some general constraints. First is kinematic

feasibility: The workspace of most real robot legs are complicated spaces, particu-

125

larly so for Cassie’s four bar leg mechanism. We would also need to describe this

workspace relative to the center of mass of the robot. Knowing the difficulty in

creating a very accurate model, we compromise and impose a single constraint on

the total leg length,

∥pc − pf∥ ≤ Lmax. (8.2)

A constraint is also imposed on the angle that the leg can make with respect

to the unit vector pointing directly downwards in the body frame, ẑbody. This is

used as a proxy for joint and configuration limits. A variable ψ is used to define

the bounds of how different the normalized leg vector can be from ẑbody,

ψ < ẑbody ·
(pc − pf)

∥(pc − pf)∥
. (8.3)

Next we impose several constraints on the ground reaction forces. We apply a

quadratic friction cone constraint,

µF 2
z ≥ F 2

x + F 2
y . (8.4)

Additionally, we apply a maximum force constraint based on the physical limita-

tions of our actuation

F 2
z + F 2

x + F 2
y ≤ F 2

max. (8.5)

Our simplified model has no actuator dynamics which means it is able to in-

stantly change the foot force which is not realistic. We impose a maximum yank

constraint (rate of change on vertical force) Ḟmax based on analysis of our previ-

ously developed controllers for the Cassie robot.

− Ḟmax ≤ Ḟz ≤ Ḟmax (8.6)

In reality we impose the constraint on the finite difference between subsequent col-

located inputs, because the force has no intrinsic dynamics. Feasibility constraints

are placed on each component of ω to prevent the optimizer from exploiting the

126

simplified models dynamics, this also yields smoother more feasible motions. We

apply a simple bound on the angular velocity, |ω| ≤ ωmax.

Lastly, a simple footstep heuristic is used to present the optimization with areas

of feasible space to place the models feet. This constraint ensures that feet are

placed on the correct side of the body to prevent leg crossing. The heuristic defines

acceptable regions by first constructing two half-planes for each step, drawn from

the CoM position at foot touchdown and foot liftoff and extended out infinitely

along the current heading. These planes are then projected out in the correct

side of the body by some minimum distance δmin. The region encapsulated by the

intersection of these planes forms a feasible region where feet may be placed. δmin

is needed to prevent the optimizer from exploiting monopod dynamics and placing

footstep locations directly under the model which does not translate well to actual

biped hardware. Fig. 8.2 depicts a visualization of these constraints for several

example maneuvers.

8.5.4 Composing Maneuvers

We are able to design agile maneuvers within our TO framework by specifying

sequences of hybrid modes and accompanying sets of constraints that shape the

optimization to produce the desired behavior. The transferability constraints from

Section 8.5.3 are applied in general to each hybrid mode. Additionally, loosely

bounded constraints are also placed on the minimum and maximum duration for

each phase. These durations control the stepping frequencies for single-stance

phases, and the liftoff, flight, and touchdown durations for jumping motions. Any

number of maneuvers can be developed using these principles. For breadth we

present three formulations for hybrid mode sequences and constraint sets to create

trajectories for nominal forward running gaits, dynamic turns, and spin jumps.

127

8.5.4.1 Forward Running

To develop a grounded running gait we specify sequences of single-stance dynamics

and apply the appropriate set of constraints. Constraints are enforced to ensure

that the heading remains mostly constant throughout the gait. To enforce con-

straints on quaternion orientations, we employ a distance function which bounds

the angle difference θtol that two quaternions can have from each other,

d(q1,q2) ≤ θtol. (8.7)

We use this function to formulate a constraint between the initial orientation q(i, 1)

and a specified desired orientation for forward running qrun, as well as the final

orientation q(F,N) and the same desired orientation. Average velocity constraints

are applied in the form of,

px(F,N)− px(i, 1)

T
= vdes, (8.8)

where T is the total duration of the maneuver. Additionally, zero average velocity

constraints are applied in the lateral direction to py. Cyclic equality constraints are

applied within each phase and enforced on the bodies height, pz(m, 1) = pz(m,N)

and vertical velocity, vz(m, 1) = vz(m,N). Similar constraints are applied to the

angular velocity in the y direction, while the x and z angular velocities are mirrored

with constraints such as ωx(m,N) = −ωx(m, 1)
For each hybrid mode the body’s final orientation q(m,N) is mirrored about

it’s sagittal plane. Using the distance function d, this mirror, qmirror(m,N) must

be within a tolerance θmirror of the initial orientation of the mode q(m, 1),

d(qmirror(m,N),q(m, 1)) ≤ θmirror. (8.9)

128

8.5.4.2 Turning

Turning maneuvers are sequences of single-stance phases with the explicit desire to

change heading throughout the maneuver. The desired heading for each mode is

updated by incrementing the current heading by the desired total change in heading

over the number of steps for the turn. Using our quaternion distance function d we

ensure that that the bodies orientation at the end of the maneuver q(F,N) aligns

with the desired orientation for the turn qturn within a tolerance θturn. Desired

velocity equality constraints are only enforced on the initial and final collocation

points, v(i, 1) and v(F,N), as the optimization needs to be free to modulate the

bodies velocity throughout the maneuver. Cyclic equality constraints are only

placed on the initial and final heights for the maneuver

pz(i, 1) = pz(F,N). (8.10)

8.5.4.3 Spin Jumps

Our example formulation for jumping maneuvers consist of 4 hybrid modes, a

double stance for liftoff, followed by two consecutive flight phases, and ending

with a double stance for touchdown. Two flight phases are required so that the

jump height can be precisely specified at apex.

Multiple constraints are enforced on the models orientation at different stages

of the jump. Our distance function d is used on the final orientation at liftoff,

q(i, N), to constrain it to be within some tolerance θliftoff of a desired neutral

starting position qliftoff. A loose tolerance θtouchdowni is applied using the same

quaternion distance constraint at the beginning of touchdown q(F, 1) to ensure that

the majority of the turn is accomplished in the air to achieve the desired rotation

qtouchdown. A second tighter tolerance θtouchdownF applied to the final orientation

q(F,N) ensures that the model makes any required corrections to finish close to

qtouchdown.

Equality constraints are placed on vc(i, 1), vc(F,N), ω(i, 1), and ω(F,N) to en-

129

force that the jumps start and end at rest. Lastly, equality constraints are placed

at the final collocation point of the first aerial phase (hybrid mode 2). These ensure

that pz(2, N) reaches the desired height, pzdes , and is at the same time at the apex

of the jump by forcing vz(2, N) to 0. Additional constraints can also be employed

to ensure displacement of the body in any direction, as would be required to jump

up onto a surface or over a gap.

8.5.5 Objective

The objective for each trajectory is the minimization of the squared ground reaction

forces and the resulting moments applied at the body. This objective incentivises

smoother control inputs which are more transferable to hardware. The objective

function is the integral

f =

∫ T

0

(
u2(τ) +M2(τ)

)
dτ, (8.11)

which is approximated using trapezoidal integration.

8.5.6 Library Generation

The end goal of the optimization is to construct entire libraries of optimal trajecto-

ries for a given maneuver. For the case of grounded maneuvers such as the running

gaits and dynamic turns, these libraries are similar optimizations sweeping through

a range of desired velocities. For the spin jumps the optimization could be solved

for over a range of desired heights or end displacements of the CoM. The purpose

of generating entire libraries for maneuvers is to make them more generalizable

and help develop more robust learned control policies that can execute the target

maneuver on hardware and for a wide variety of conditions.

Much of the success of solving a TO problem lies with good choice of initial

conditions. Initial guesses are expertly chosen for the first optimization of a library.

Then the solution is used as the initial guess for the next iteration to speed-up con-

130

X Distance (m)

Y
 D

ist
an

ce
 (

m
)

0 0.5 1.5 2 2.5

0.3 m/s

0.7 m/s

1.1 m/s

1.5 m/s

1.9 m/s

2.3 m/s

2.7 m/s

3.1 m/s

3.5 m/s

Left Stance 1
Right Stance 1
Left Stance 2
Right Stance 2
Left Foot 1
Right Foot 1
Left Foot 2
Right Foot 2

1

0

0.5

1

1.5

2

Figure 8.3: Center of mass traces and footstep locations for a library of 4-step 90◦

turning trajectories.

vergence. This additionally increases the likelihood that the library of trajectories

will smoothly vary which is useful for the DRL problem. Fig. 8.3 is an example of

trajectories for a library of 4-step 90◦ turns from 0.1-3.5 m/s.

8.6 Running Reinforcement Learning Problem

Our approach to developing reference guided RL control policies borrows ideas from

both referenced-based work [161] as well as more recent reference-free work [141].

131

A B C
Ascent Descent

0 0.5 1 1.5 2 2.5

0

200

400

600

Time (sec)Time (sec)
0 0.5 1 1.5 2 2.5 3 3.5

-200

0

200

400

Time (sec)

T
ot

al
 G

ro
un

d
R

ea
ct

io
n

Fo
rc

es
 (

N
)

X Force
Y Force
Z Force

0 0.1 0.2 0.3 0.4 0.5 0.6
-100

0

100

200

300

400

Distance (m)
Distance (m)

Distance (m)

Figure 8.4: Visualizations and accompanying GRF plots for a selection of maneu-
vers. A: 2-step running trajectory at 2 m/s. B: 3-step −90◦ turn into 3-step +90◦

turn at 2 m/s. C: −90◦ spin jump, CoM reaching 1.2 m. Vertical dashed lines on
GRF plots indicate the transition between hybrid phases.

We seek to leverage the rich dynamic information from the SRBM captured in

maneuver libraries to create meaningful reward functions that not only bootstrap

the learning process from this expert information but are also capable of extending

the capabilities of learned controllers to highly dynamic maneuvers. In this work, as

a case study to validate the transferability of SRBM dynamics to Cassie we attempt

the task of developing a high-speed running policy from a library of optimized

running references from 0.1-3.5 m/s. Although running can be described entirely

as a periodic phenomenon without ROM information [141], we first seek to learn

how well SRBM reference policies cross the sim-to-real gap, and if utilizing this

reference information provides any benefits to training over reference-free methods.

132

8.6.1 Problem formulation

Our control policy is a long-short-term-memory (LSTM) NN with two fully con-

nected hidden layers of 128 units each. The policy takes as input both estimated

state and task information. 41 total inputs represent the robot’s internal state,

comprised of; pelvis orientation, pelvis rotational velocity, estimated foot positions,

motor positions and velocities and actuated joint positions and velocities. Three

additional inputs provide task information in the form of a commanded velocity

and a 2D clock signal. The outputs of the network are the 10 commanded joint

PD set points which are sent to high rate, low-level motor controllers.

Control policies are trained using a MuJoCo simulated model of Cassie1. The

learned controller runs at 40 Hz, with a total of 250 steps per episode (equivalent

of 6.25 sec). The reference trajectories range in length from 0.54-1.0 sec and are

looped repeatedly for the duration of each episode.

At the beginning of each episode Cassie is initialized with a random state from

a previously trained nominal walking gait. This randomization helps to increase

the robustness of the policy as it most often needs to recover from poor starting

conditions at the beginning of each episode. Additionally the policy is given a

random commanded velocity which selects the corresponding reference trajectory.

8.6.2 Learning Procedure

We use proximal policy optimization (PPO) [136] with the Adam optimizer due

to its relative simplicity and previously demonstrated successes. Training hyper-

parameters provided in Table 8.1.

We formulate our reward function to include components that reward track-

ing the important dynamics from the reference trajectories. We include terms

for matching body orientation (8.12), CoM linear velocities (8.13) and angular

momentum L = Jω (8.14), as well as x and y components of the foot positions

1Simulation available at https://github.com/osudrl/cassie-mujoco-sim

https://github.com/osudrl/cassie-mujoco-sim

133

Parameter Value

Adam discount (γ) 0.95
Adam epsilon 1 × 10−6

actor learning rate 3 × 10−4

critic learning rate 3 × 10−4

gradient update clipping 0.05
batch size 64
epochs 5
sample size 50000

Table 8.1: PPO hyperparameters for single rigid body model reference-based train-
ing.

relative to the body (8.15).

rq = 0.05 exp(−d(q,qref)) (8.12)

rv = 0.35 exp(−|vx − vrefx |)

+ 0.1 exp(−|vy − vrefy |)

+ 0.1 exp(−|vz − vrefz |)

(8.13)

rL = 0.15 exp(−∥L− Lref∥) (8.14)

rpf = 0.15 exp(−|20 · (pfx − preffx)|)

+0.15 exp(−|20 · (pfy − preffy)|).
(8.15)

Additionally our controller features a piecewise-linear clock signal explained in

detail in [40] that rewards the agent based on matching the stepping frequencies

determined by the optimization.

rclock = 0.3 exp(−|Fclock|). (8.16)

Non-reference terms are also added to account for limitations inherent to model

134

Figure 8.5: Comparison of 3.0 m/s running. Top: Render of single rigid-body
model optimized trajectory. Middle: Cassie MuJoCo simulation. Bottom: Cassie
hardware treadmill test.

itself as well as the limitations of its application to Cassie. Firstly, the model only

has point feet and no swing leg dynamics, to account for these we reward foot

orientation and swing apex heights to encourage the system to keep its feet facing

forward and for the robot to not shuffle its feet.

rq = 0.3 exp(−|d(qfoot,q
ref
foot)|) (8.17)

rzfoot = 0.3 exp(−|zfoot − zdesfoot|). (8.18)

A major point of consideration is how to impart single rigid-body orientations

onto a multiple-rigid body complex system. Geometric mechanics techniques such

as minimum perturbation coordinates [153] possibly present intriguing insights but

are out of scope for this work. To this effect we chose to match our orientations

to Cassie’s pelvis, which only represents a portion of the robots total orientation,

but is the single most natural choice of its many rigid bodies. As the pelvis is

not the optimal choice to apply the SRBM rotational information we found it

135

Parameter Randomization Bounds

Policy Rate [0.95:1.05] × default
Joint Damping [0.5:3.5] × default
Joint Mass [0.5:1.5] × default
Ground Friction [0.35:1.1]

Table 8.2: Dynamics randomization parameter ranges.

necessary to include terms to our reward formulation that attempt to ameliorate

this discrepancy. A lateral drift term is included to keep the robot running in a

straight line,

rdrift =

0.3 if |py| < 0.2

0.3 exp(−|15 · py|) if |py| ≥ 0.2 .
(8.19)

The final rewards are penalties to hip roll motor velocities to prevent excessive

motions at the pelvis.

rhip roll = 0.1 exp(−|ωhip roll|) (8.20)

rhip yaw = 0.1 exp(−|ωhip yaw|). (8.21)

All reward terms are then normalized before summing to calculate the total

reward. In order to increase our policies robustness and aid in the crossing of

the sim-to-real gap we employ dynamics randomization during training. At each

episode the dynamics listed in Table 8.2 are randomly modified to aid in the gen-

eralization of our policy and its ability to overcome discrepancies from simulation

to hardware:

8.7 Running Results

Using our dynamic maneuver TO formulation outlined in Section 8.5 we are able to

create a wide variety of reference maneuvers based on SRBM dynamics as applied

to the Cassie robot. Several such example maneuvers and their ground reaction

forces are presented in Fig. 8.4 and in the supplemental video.

136

M
ea

n
E

pi
so

de
 L

en
gt

h
(S

im
ul

at
io

n
S

te
ps

)

Reference-Based

Reference-Free

0.0 1.0 2.0 3.0

Timesteps Sampled
1e7

50

250

200

150

100

Figure 8.6: Mean training episode length for grounded running trained on speeds
between 0.1 and 3.5 m/s. The episode length is an useful way to compare ability
of controllers with different reward functions.

8.7.1 Simulation Results

Two running policies were trained with the same inputs and hyperparameters over

the velocity range of 0.1-3.5 m/s. First is our reference-based control policy with

the same composition as outlined in Section 8.6. The second serves as a reference-

free baseline and utilized the previous state of the art reward composition laid out

in [141]. Given the differences in reward terms, we elect to compare mean episode

length for each policy during training as a metric for quantifying the stability of

each policies gait, as shown in Fig. 8.6. We can note that the reference-based policy

achieves a stable running gait (consistently reaches the maximum episode length of

250 simulation steps) with much greater sample efficiency than the reference-free

policy. A stable running gait is achieved by the reference-based policy after only

∼ 0.8×107 timesteps where the reference-free policy required ∼ 2.0×107 timesteps,

indicating that for this particular gait the usage of SRBM reference dynamics

yielded a roughly 2.5× increase in sample efficiency. From qualitatively analyzing

both policies in simulation, we note that the reference-based policy moves in a

more fluid manner, characterized by the natural oscillating motions of the model

when compared to the more rigid reference-free policy. This can be seen in the

supplemental video.

137

8.7.2 Hardware Results

The reference-based control policy was successfully deployed onto a physical Cassie

robot and was able to run on a treadmill up to 3.0 m/s as shown in the supplemental

video. A high level of similarity can be visually seen between the gaits of the

SRBM reference (with added swing leg kinematics for visualization), the MuJoCo

simulation in which training took place, and the physical hardware test, as shown in

Fig. 8.5. This demonstration indicates that SRBM dynamic reference information,

even with rotational dynamics applied only at Cassie’s pelvis can indeed be used

in a RL framework to train dynamic running policies up to high speeds. However,

we were not able to fully cross the sim-to-real gap as top speeds (between 3.0 and

3.5 m/s) achieved in simulation were not able to be repeated on hardware.

8.8 Four-Step Reinforcement Learning Problem

A four step 90 right turn was selected as the target behavior for the control policies

in this work because its aperiodic and highly dynamic nature marks a significant

departure from the dynamical regime of regular walking. Control policies trained

to execute the turning behavior are initialized from states derived from a pretrained

walking policy and transition back to the walking policy at the end of the turning

maneuver. Matching the terminal state of the reference trajectory is not guaran-

teed to permit successful transitions back to walking policies, so turning policies

must learn how to deviate away from tracking the reference data to facilitate suc-

cessful transitions. This challenge is addressed using epilogue rewards detailed

in Section 8.8.5, and is a novel component of our proposed learning framework.

We train recurrent control policies to perform four-step, 90 turns using Proximal

Policy Optimization (PPO) in simulation [136]. The simulator we use is MuJoCo,

extended with the robot’s state estimator and noise models2. Previous work has

shown that highly accurate simulations such as this are effective at producing con-

trol policies that transfer to hardware with no additional adaptation [40, 141, 63].

2Simulation available at https://github.com/osudrl/cassie-mujoco-sim

https://github.com/osudrl/cassie-mujoco-sim

138

8.8.1 Reference Trajectory Optimization

Dynamic legged maneuvers require abrupt changes in linear and angular momen-

tum while heavily constrained by underactuation constraints. We hypothesize

that in these contexts reference information could be more useful than it was

previously shown to be in nominal, steady-state locomotion. To provide a rich

library of reference motions we perform trajectory optimization with an SRBM,

representing a reduced-order model of locomotion. The SRBM approximates the

complex multibody dynamics of a robot into a single rigid-body with dynamics

that are manipulated via ground reaction forces applied at footholds. We apply

a widely-used, prescribed contact sequence, direct collocation trajectory optimiza-

tion method [84]. This allows the optimization to adjust foot timings, but not the

sequence of contacts. This is not overly restrictive as bipedal robots have only a

small space of feasible contact patterns. Our contact pattern for four-step turns

is a grounded run consisting of alternating phases of single-stance with instant

transfer. We apply a set of transferability constraints which ensure the resulting

trajectories are more directly applicable to the target Cassie robot. These in-

clude maximum ground reaction force, friction cones, maximum yank (time rate

of change of force), leg length limits, and foot placement constraints to prevent leg

crossing. More details on the library generation method can be found in [13].

The resulting library of turn references spans from 0.0 to 2.5 m/s. The 2.5 m/s

turning trajectory is shown in Fig. 8.7. The trajectories have smoothly varying

body motions, footstep locations, ground reaction forces, and step timing.

8.8.2 Policy Network Design

The policy architecture used in this work is derived from previous work on applying

LSTM networks to bipedal locomotion control [143]. Both actor and critic networks

are LSTM RNNs of size 128x128. The state space inputs to our control policy

concatenates information from the robot state estimator along with a maneuver

progression counter, two periodic clock waveforms, and a target forward heading

139

Figure 8.7: Plot of the reference trajectory for a 2.5 m/s, four-step turn from the
optimized single rigid-body model moving left to right. The thick line represents
the center of mass path, with different colors showing the different stance phases.
Thin lines show leg positions at the start and end of stance phases.

140

Policy Input Size
Pelvis Orientation Quaternion 4
Pelvis Angular Velocity 3
Pelvis Translational Acceleration 3
Joint Positions and Velocities 28
Maneuver Progression 1
Clock Signal 2
Target Forward Speed 1

Table 8.3: The inputs into the learned control policies. All state information is
estimated from real or simulated sensor data.

speed for a total input space size of 42. The breakdown of the state space is

shown in Table 8.3. From our testing, using a reduced state input set by omitting

the maneuver progression counter and pelvis translational acceleration estimates

also produces successful turning policies with no noticeable difference in simulation

behavior and training time.

The action space of the policy consists of position targets for all 10 actuated

joints on Cassie. The actions are updated at our nominal policy control rate of 40

Hz, which are then sent to joint-level PD controllers running at 2 kHz.

8.8.3 Reward Function Formulation

To support an ablation study, we trained policies using different reward functions,

Full Reference, Subset Reference, Foot Timing, and No Reference, each with a dif-

ferent set of additive reward components that capture different aspects of reference

information. Table 8.4 gives the individual component weights for each of the four

reward functions. All weights are rounded the nearest percentage point.

Two of the reward components are common across all four reward function

variations:

• A contact mode reward rcontact, which specifies when each foot should be in

swing or in stance with a piecewise linear clock function. The gait param-

eters that define such a function (stepping frequency and swing ratio) and

calculated from the reference information. We refer readers to previous work

141

[40] for further details.

• Action smoothness, torque cost, motor velocity costs rctrl on the hip roll

and yaw motors, and self collision avoidance rewards to promote successful

sim-to-real transfer.

The four reward functions are summarized below.

8.8.3.1 Full Reference

The tracking components of the reward function include pelvis yaw angle (ψ),

pelvis linear velocity (v), pelvis angular momentum (L), and the relative distance

vector between the pelvis COM and the stance foot (pose). They are given by

rrefψ = exp (−
∣∣(3(ψpelv − ψref

pelv)
∣∣) (8.22)

rv = exp (−
∥∥2(vpelv − vref

pelv)
∥∥
1
) (8.23)

rL = exp (−
∥∥Lbody − Lref

body

∥∥
1
) (8.24)

rpose = exp (−
∥∥5(ppose − pref

pose)
∥∥
1
) (8.25)

8.8.3.2 Subset Reference

Includes only a subset of full reference rewards, specifically

rrefψ , rvxy , rposexy , rcontact, rctrl. Notably, this omits the angular momentum

tracking term in equation (8.24), as well as tracking only the planar x, y compo-

nents of rv and rpose. This particular reward function was chosen because angular

momentum tracking was found to have no noticeable effects on the behavior of

the resulting policies.

142

Reward Full Ref. Sub Ref. Foot Timing No Ref.

rrefψ 6 3 - -

rinterpψ - - 20 20

rvxy 6 22 - -

rvz 3 - - -

rposexy 13 22 - -

rposez 6 - - -

rL 9 - - -

rcontact 38 32 53 53

rctrl 19 22 27 27

Table 8.4: Reward component composition and weighting percentages.

8.8.3.3 Foot Timing

Omits all tracking rewards (8.22) to (8.25) and only consists of rinterpψ , rcontact, rctrl.

The only reference information present in the reward is the gait parameters for

the contact mode reward term. rinterpψ replaces rrefψ and tracks a yaw target that

linearly interpolates between 0 and −π/2 within the timespan of the reference

turning maneuvers instead of the optimized yaw trajectory ψref
pelv.

8.8.3.4 No Reference

A reference-free policy similar to Foot Timing that also omits the tracking rewards

(8.22) to (8.25). It uses rinterpψ , rcontact, rctrl exclusively, but in contrast to Foot

Timing, the gait parameters for rcontact are set by a hand-tuned heuristic. Thus,

this policy uses no information from the reference trajectory.

143

8.8.4 Episode Initialization

The beginning of a training episode for turning needs to be reset to a configuration

that is a close match to the starting SRBM configuration specified by the turning

trajectory. For this purpose, a set of initialization poses Pinit(v, θ) is generated by

executing a pre-trained running policy in simulation for a sweep of commanded

speeds that match the speeds v of the trajectories in the reference library. The

configurations [q, q̇] of Cassie within a range of gait phases θ before and after a

left-foot swing apex (the starting point of the reference trajectories) are saved to

Pinit. On every reset, the configuration state of Cassie is uniformly sampled from

the set of poses in Pinit for a desired initial speed.

8.8.5 Epilogue Reward

Since we want to transition back to walking after executing a turn, it is paramount

that the turning policy fulfill the terminal objective of ending in a state that can

successfully initialize walking in order to return to a nominal locomotion gait. We

introduce the novel concept of training with an epilogue reward as a component

of our training framework in order to allow turning policies πturn to successfully

switch back to the nominal locomotion policies πwalk once the turning policies have

reached the end of the reference trajectory states.

At the end of a PPO rollout, the critic value for the final state Vπ(ST) is used

as the terminal value in the discounted chain of rewards received at each episode

step to estimate the sum of any future discounted rewards [136]. This is analogous

to calculating the n-step temporal-difference (TD) returns, where the final value

is an estimate for the uncollected rewards beyond the n-step horizon [148].

The epilogue reward introduced in this work modifies the terminal value used at

the end of a πturn training episode. It is computed as the discounted sum of returns

of the epilogue episode, which triggers when the turning policy has successfully

reached the end of its maneuver. In the epilogue episode, the walking policy πwalk

takes over from the last state of the turning episode (normal PPO rollout of the

144

start
training episode

epilogue start:
switch to

collect
terminal value;
end training
episode and
optimize

Figure 8.8: Visualization of a PPO rollout during training. After being initialized
from a πwalk pose, πturn is evaluated until the end of the turning maneuver. If
πturn completed the turning maneuver, πwalk subsequently takes over to generate
the epilogue reward.

145

πturn turning policy), and is evaluated deterministically for k simulation steps.

Once the epilogue is complete, the epilogue reward becomes the value of Vπturn(ST)

used to optimize πturn. Formally, the epilogue reward is

Vπturn(ST) =
(T+k∑
i=T

γi−TRi+1

)
+ γT+kVπwalk(ST+k+1) (8.26)

where k is the length of the epilogue, T is the length of the turning maneuver, Ri+1

is based on the reward function used to train πwalk, and Vπwalk is the critic trained

for the walking policy. Modifying the estimate of future returns in this manner

incentivizes πturn to terminate in a configuration [q, q̇] amenable for the execution

of πwalk by maximizing the epilogue returns for continued walking. As a control

for the epilogue, a No Epilogue policy is trained using the exact same rewards as

Foot Timing, but with k set to 0. The Foot Timing reward set was chosen over the

others because it produced the highest quality turning behaviors in sim as well as

fast convergence times. A value of 120 is used for k for all other policies.

8.8.6 Dynamics Randomization

We applied dynamics randomization as described in [143] during the training pro-

cess of our turning controller to help close the sim-to-real gap and enable a success-

ful transfer to real hardware. In addition, we also apply a constant perturbance

force to the robot pelvis over the course of a training episode with a randomly

sampled magnitude and direction in order to promote the emergence of robust

turning behaviors. The details of our randomization parameters can be found in

Table 8.5.

8.9 Four-Step Turn Results

To evaluate the utility and necessity of our optimized SRBM trajectories and the

epilogue reward, we assess and compare the set of policies proposed in Section 8.8.3

146

Parameter Range Unit
Policy Control Rate [0.95,1.05] × default Hz
Joint Encoder Noise [-0.05, 0.05] rad
Joint Damping [0.8, 2.5] × default Nms/rad
Link Mass [0.9, 1.5] × default kg
Friction Coefficient [0.45, 1.3] -
External Force Magnitude [0, 40] N
External Force Dir. (Azimuth) [0, 2π] rad
External Force Dir. (Elevation) [0, π

4
] rad

Initial Pelvis Velocity (x) [-0.3,0.3] + default m/s
Initial Pelvis Velocity (y) [-0.4,0.4] m/s

Table 8.5: Dynamics Randomization Parameter Range

and Section 8.8.5 in simulation for their performance and turning behavior char-

acteristics. We also present successful sim-to-real transfer of a selection of the

policies tested in simulation in our submission video.

8.9.1 Simulation Results

8.9.1.1 Sample Efficiency

We plot the learning curves for each policy in Figure Fig. 8.9 to compare the

sample efficiency of our turning policies. Since each policy is trained with different

reward functions, the reward values attained by each policy can not be used to form

conclusions about their relative performance. Instead, we compare policies by the

number of samples to convergence, shown for each turning policy by star symbols

in Fig. 8.9 that mark when each policy first surpassed 97% of the maximum reward

value experienced during training. Notably, the policies that use less information

from the optimized trajectories converge slightly faster than the policies that follow

the SRBM reference trajectory more faithfully. We hypothesize that the learning

147

0.0 2.0 4.0
Timesteps Sampled 1e8

10

20

30

40

50

60

70
R

e
w

a
rd

No Reference

Foot Timing

Subset Reference

Full Reference

Figure 8.9: Comparison of sample efficiency for our proposed turning policies.
Note that the absolute scale of the different curves are not necessarily comparable
since each reward function include different reward components. The star symbols
mark the time to convergence for each policy, which is the point on the learning
curve that exceeds 97% of the maximum reward seen during training for the first
time.

speed disparity may be attributed to model differences between the SRBM and

Cassie’s full-order dynamics leading to conflicting interactions between the tracking

reward terms. This may cause policies that track more of the reference data to

require more samples in order to learn to optimize for multiple conflicting objectives

before convergence.

148

-0.5 0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

Reference Body Motion

Full Reference Policy Body
Full Reference Policy Footsteps

Reference Footsteps

No Reference Policy Footsteps
No Reference Policy Body

Distance (m)

D
ist

an
ce

 (
m

)

Figure 8.10: Plot of footstep touchdown locations and pelvis trajectory for the
reference data, Full Reference and No Reference policies for a turning maneuver
executed at 2.5m/s.

149

8.9.1.2 Turning Behavior

Fig. 8.10 compares the turning trajectory of the Full Reference and No Reference

policies for a single sample trial in simulation against the trajectory prescribed

by the reference data. Since the No Reference policy is trained to match a foot-

step contact schedule set by a heuristic instead of following the trajectory data,

it completes the 90 turn in seven steps rather than four. As a result, the pelvis

trajectory and footstep placements distinctly differs from the reference data since

it is trained to not track the reference data. This is in contrast to the Full Refer-

ence policy turning behavior, where the features of the pelvis trajectory is similar

to that of the reference data, and the placement of its stance feet relative to the

body also closely match those of the reference. Policies trained on subsets of the

tracking rewards all produce four-step turning behaviors similar to the results of

the Full Reference policy, indicating that the only necessary reference trajectory

information for training policies to perform four-step 90 turns is a feasible footstep

contact schedule. Fig. 8.11 illustrates the change in orientation of the robot pelvis

over the course of a turning maneuver, which is not communicated by the pelvis

COM trajectories illustrated in Fig. 8.10. The Full Reference and Subset Refer-

ence policies are the two policies rewarded to track the optimized body yaw angle

trajectory, but we see observe noticeable deviations from the target yaw trajecto-

ries at the beginning of the first and third footsteps. This is likely caused by the

policies learning to maximize rewards of multiple conflicting objectives from the

reference data, such as pelvis linear velocity and body yaw angles.

8.9.1.3 Policy Robustness

We simulate 1000 trials of 2.5m/s turning maneuvers for each turning policy to

assess its ability to complete a turn and switch back to πwalk successfully in the

presence of a constant perturbance force applied to the body during the execution

of the turning maneuver. A random direction is sampled before each turning

maneuver trial, and a constant force of 35N is applied in the chosen direction.

150

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75

Maneuver Duration (s)

1.50

1.25

1.00

0.75

0.50

0.25

0.00

0.25

P
e
lv

is
 O

ri
e
n
ta

ti
o
n
 (

ra
d
)

step 1 step 2 step 3

step
4

No Reference

Foot Timing

Subset Reference

Full Reference

Reference Yaw Angle

Figure 8.11: Simulated pelvis yaw angles for various turning policies over the course
of a turning maneuver. The Foot Timing and No Reference policies are not trained
trained to track the reference data yaw trajectory shown in solid red.

151

The time at which the the policy falls over is logged for each trial to produce

the policy survival plots shown in Figs. 8.12 and 8.13. From Fig. 8.13, policies

trained with more of the reference trajectory data are more robust at rejecting

perturbance forces, with the exception that the No Reference policy outperforms

the Foot Timing policy during the turn maneuver. Since all policies experience

perturbance forces during training, it is possible that rewarding policies to track

certain elements of the trajectory data such as foot placement positions and pelvis

translational velocities are beneficial to policy robustness. Fig. 8.12 compares the

effects of training with and without the use of epilogue rewards. While the Foot

Timing policy achieved a survival fraction of around 50%, the No Epilogue policy

fared significantly worse than its counterpart with a terminal survival fraction of

just 4%. We observed that No Epilogue policy had a low transition success rate,

which indicates that epilogue rewards are necessary for reliable switching between

πturn and πwalk policies. We hypothesize that using other reward functions without

the epilogue reward will produce similar results, but did not run such tests in this

work.

8.9.2 Hardware Results

During our outdoors hardware tests, we were able to demonstrate successful turn-

ing maneuvers and policy switching on artificial turf with the No Reference and

Full Reference policies. The Subset Reference policy was also tested, but we were

unable to switch back to the walking policy without falling. We also successfully

tested the Foot Timing policy indoors on multiple low speed turns performed in

succession. While our simulation results indicate that the Full Reference policy

should perform more consistently than the No Reference policy on real hardware,

we observed that the No Reference policy was more consistent than the Full Refer-

ence policy at turning and transitioning in our outdoors tests. The Full Reference

and Subset Reference policies pitch the pelvis during the turn more so than the

No Reference and Foot Timing policies that in contrast keep the pelvis fairly level

throughout the turn. This is consistent with what we see in simulation, although

152

0 1 2 3 4 5
Time (sec)

Su
rv

iv
al

 F
ra

ct
io

n

1

0.8

0.6

0.4

0.2

0

Straight Line WalkingTurn Maneuver

Step
1

Step
2

Step
3

Step
4

Foot Timing with Epilogue
Foot Timing without Epilogue

Figure 8.12: Robustness comparison between the Foot Timing policy trained with
epilogue and the Foot Timing policy trained without using the same method as
Fig. 8.13.

153

Su
rv

iv
al

 F
ra

ct
io

n

1

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5

Time (sec)

Turn Maneuver Straight Line Walking

Step
1

Step
2

Step
3

Step
4

No Reference
Foot Timing
Subset Reference
Full Reference

Figure 8.13: Robustness comparison between our proposed turning policies con-
ducted for 1000 turning maneuver trials at 2.5m/s. The step labels denote the
reference data step progression timings produced by TO. Since the No Reference
policy is trained to follow a contact schedule set by a heuristic, the step labels do
not apply to this policy.

154

the Full Reference pelvis pitching motion in simulation is more fluid and intricate

than our corresponding hardware results which maintain an awkward downward

pitch throughout the entire turn. Due to unresolved sim-to-real challenges, we were

unable to replicate the same consistent performance seen in simulation in our hard-

ware trials. From our limited hardware tests, the No Reference policy seemed to

have a higher chance at executing successful turns than the Full Reference policy.

We refer readers to the attached video for full hardware results.

8.10 Conclusion

In this work we presented a framework for both authoring and executing dynamic

maneuvers for bipedal robots. Using a single rigid-body model-based trajectory

optimization amended for bipeds, we formulated a method of developing reference

trajectories for arbitrary maneuvers by specifying sequences of hybrid modes with

sets of shaping constraints. We were also able to demonstrate that these reference

trajectories could be used to develop reinforcement learning control policies capable

of crossing the sim-to-real gap to actual hardware. Our proposed method yielded a

∼ 2.5× increase in training sample efficiency to stable locomotion and our deployed

policy was able to achieve speeds of 3.0 m/s on hardware.

Epilogue rewards are a key component of our proposed learning framework to

facilitate smooth transitions between nominal locomotion policies and the policy

trained to execute the desired maneuver. While our methods exhibited promising

results in simulation, we encountered difficulties with sim-to-real and were unable

to fully transfer the success of our simulation results to hardware field trials. Al-

though we were able to demonstrate repeated successful turning maneuvers at low

speeds on hardware, turning maneuvers committed at faster walking speeds were

much less reliable. A possible reason for the performance gap might stem from is-

sues with the hardware state estimator producing inaccurate orientation estimates

only when large pelvis accelerations are experienced during the execution of turning

maneuvers at higher speeds. Our reference-based policies command much larger

pelvis pitch angles over the course of a turn than the No Reference and Foot Timing

155

policies which may have exacerbated the state estimation problems. It is possi-

ble that this difference may be a contributing factor to why the No Reference

policy performed better than the reference-based policies on hardware when our

simulation results suggest the opposite. One downside of the learning framework

introduced in this work is the challenge of scaling to switching between multiple

aperiodic behaviors sourced from a diverse behavior trajectory library. Future av-

enues of research could build upon this work by investigating how to effectively

switch between large sets of individual behavior policies in order to allow for the

execution of more complex dynamic routines such as dancing or parkour.

156

Chapter 9: General Conclusions

This thesis covered many techniques, approaches, and contexts in its pursuit of ag-

ile legged locomotion. Each chapter contained discussion and conclusions relevant

to its own content. This chapter will expand on what I listed as most impactful

contributions from this thesis and explicitly describe how they relate back to the

fundamental understanding of agile legged locomotion articulated in Part I.

Specific evidence that swing leg extension and angular retraction

produce a more robust response to ground variations. This work builds

the body of work which shows that open loop swing leg motions are able to sta-

balize running in the presence of ground disturbances. In particular this builds on

previous work with passive models in the context of guinea fowl running [21] and

preflexes [156] by looking at open loop actuation plans which are not replanned

at all during stance. The results further show that the combination of open loop

strategies and leg passive dynamics can fully reject ground disturbances without

active reactions or replanning. This directly relates to the concept that designing

behaviors around the moment of touchdown can produce motions that are more

robust to disturbances.

An approach to mitigate the risk of invalid solutions when planning

with data-driven Poincarè models. This supports the idea that high level

planning decisions, like footstep placement, can be made in a reduced space com-

pared to the full order system. In the work, we explicitly only plan using the

surface of section which orbits pass through. It also examines some of the ideas

of trading off between aversion to falls and highly dynamic motions through the

tuning of the novel failure margin function threshold.

The first demonstration of blind traversal of stairs by an unsupported

bipedal robot. Previous work has looked as precise sensing and planning to climb

and descend flights of stairs but this is the first to successfully demonstrate this

157

without sensing or modeling the stairs. It was highly successful, being able to

climb up and down a half flight of stairs ten times back-to-back with only one

failure.

Evidence that learning locomotion on stair environments resulted in

increased swing leg retraction compared to flat ground environments.

This reinforces that careful consideration of the moment of touchdown is vital to

be robust to ground variations. It further relates to biological studies of animal

swing leg motions by closely matching their reactions to drop steps.

The first demonstration of training a learned controller for a biped

to emulate motions from a reduced-order model. This reinforced the as-

sessment that locomotion exists on a reduced manifold by creating walking and

running gaits for a reduced order model then using reinforcement learning to ele-

vate those motions to the full order robot. It specifically supports this because the

final motion of the robot is identifiably similar to the spring mass model’s motion.

The body motion is perceptively similar and the ground reaction forces match

the double humped shape from the model (without explicit reward to match force

profiles).

The first example of learned, high-speed, agile turning maneuvers

on an unsupported bipedal robot. The extends much of the previous work

in this thesis and the field by pushing learned behaviors beyond the space of

nominally steady state locomotion. Similar behaviors have been demonstrated

by Boston Dynamics on the Atlas robot, however specific details on their methods

are limited and from the information they have provided it appears their methods

are substantially different than the approach used in this work [22].

A novel epilogue reward system for learning fixed duration maneu-

vers. This is particularly important for because of learned robotic control methods

typically use long, discounted reward horizons to incentivize stability. When a ma-

neuver has an end, there needs to be a strong reward signal to ensure this final

state is a good state for the next controller to start from. The new epilogue re-

ward system is vital for creating a maneuver controller which can transition back

158

to walking or running.

159

Bibliography

[1] Mini cheetah is the first four-legged robot to
do a backflip. http://news.mit.edu/2019/

mit-mini-cheetah-first-four-legged-robot-to-backflip-0304.
Accessed: 2019-04-05.

[2] Andrew M. Abate. Mechanical Design for Robot Locomotion. PhD thesis,
Oregon State University, 2018.

[3] Farzad Adbolhosseini, Hung Yu Ling, Zhaoming Xie, Xue Bin Peng, and
Michiel van de Panne. On Learning Symmetric Locomotion. In Proc. ACM
SIGGRAPH Motion, Interaction, and Games (MIG 2019), 2019.

[4] M. Ahmadi and M. Buehler. The ARL monopod II running robot: con-
trol and energetics. In Proceedings 1999 IEEE International Conference on
Robotics and Automation (Cat. No.99CH36288C), volume 3, pages 1689–
1694. IEEE.

[5] Junhyeok Ahn, Donghyun Kim, Seunghyeon Bang, Nick Paine, and Luis
Sentis. Control of a high performance bipedal robot using viscoelastic liq-
uid cooled actuators. 2019 IEEE-RAS 19th International Conference on
Humanoid Robots (Humanoids), 10 2019.

[6] Amos Albert, Michael Suppa, and Wilfried Gerth. Detection of stair di-
mensions for the path planning of a bipedal robot. In 2001 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics. Proceedings
(Cat. No. 01TH8556), volume 2, pages 1291–1296. IEEE, 2001.

[7] R McNeill Alexander. Elastic mechanisms in animal movement. Cambridge
University Press, 1988.

[8] Richard Altendorfer, Daniel E Koditschek, and Philip Holmes. Stability
analysis of a clock-driven rigid-body slip model for rhex. The International
Journal of Robotics Research, 23(10-11):1001–1012, 2004.

[9] Jonathan Amos. Uk drones map chernobyl’s ‘red forest’. BBC News, May
2019.

http://news.mit.edu/2019/mit-mini-cheetah-first-four-legged-robot-to-backflip-0304
http://news.mit.edu/2019/mit-mini-cheetah-first-four-legged-robot-to-backflip-0304
https://dl.acm.org/doi/10.1145/3359566.3360070
https://ieeexplore.ieee.org/abstract/document/936909
https://ieeexplore.ieee.org/abstract/document/936909

160

[10] ANYbotics. Meet anymal, your new inspector. ”https://www.anybotics.
com/anymal-autonomous-legged-robot/”, 2021.

[11] Taylor Apgar, Patrick Clary, Kevin Green, Alan Fern, and Jonathan Hurst.
Fast online trajectory optimization for the bipedal robot cassie. In Proc.
Robotics: Science and Systems XIV, Pittsburgh, PA, USA, 2018.

[12] Apptronik. Draco biped. ”https://www.anybotics.com/
anymal-autonomous-legged-robot/”, 2021.

[13] Ryan Batke, Fangzhou Yu, Jeremy Dao, Jonathan Hurst, Ross L. Hatton,
Alan Fern, and Kevin Green. Optimizing bipedal maneuvers of single rigid-
body models for reinforcement learning, 2022.

[14] Klaus-Peter Beier and Yifan Chen. Highlight-line algorithm for realtime
surface-quality assessment. Computer-Aided Design, 26(4):268–277, 1994.
Special Issue: Mathematical methods for CAD.

[15] Pranav A Bhounsule, Jason Cortell, and Andy Ruina. Design and control
of ranger: an energy-efficient, dynamic walking robot. In Adaptive Mobile
Robotics, pages 441–448. World Scientific, 2012.

[16] Pranav A. Bhounsule, Myunghee Kim, and Adel Alaeddini. Approximation
of the Step-to-Step Dynamics Enables Computationally Efficient and Fast
Optimal Control of Legged Robots. In International Design Engineering
Technical Conferences and Computers and Information in Engineering Con-
ference, volume 10: 44th Mechanisms and Robotics Conference (MR), 08
2020.

[17] A. V. Birn-Jeffery, C. M. Hubicki, Y. Blum, D. Renjewski, J. W. Hurst, and
M. A. Daley. Don’t break a leg: running birds from quail to ostrich prioritise
leg safety and economy on uneven terrain. Journal of Experimental Biology,
217(21):3786–3796, 2014.

[18] Gerardo Bledt, Matthew J Powell, Benjamin Katz, Jared Di Carlo, Patrick M
Wensing, and Sangbae Kim. MIT Cheetah 3: Design and control of a robust,
dynamic quadruped robot. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 2245–2252. IEEE, 2018.

https://www.anybotics.com/anymal-autonomous-legged-robot/
https://www.anybotics.com/anymal-autonomous-legged-robot/
https://www.anybotics.com/anymal-autonomous-legged-robot/
https://www.anybotics.com/anymal-autonomous-legged-robot/
https://ieeexplore.ieee.org/abstract/document/8593885
https://ieeexplore.ieee.org/abstract/document/8593885

161

[19] Michael Bloesch, Marco Hutter, Mark Hoepflinger, Stefan Leutenegger,
Christian Gehring, C. David Remy, and Roland Siegwart. State Estima-
tion for Legged Robots - Consistent Fusion of Leg Kinematics and. Robotics:
Science and Systems VIII, 2012.

[20] Yvonne Blum, Susanne W Lipfert, Juergen Rummel, and André Sey-
farth. Swing leg control in human running. Bioinspiration & biomimetics,
5(2):026006, 2010.

[21] Yvonne Blum, Hamid R. Vejdani, Aleksandra V. Birn-Jeffery, Christian M.
Hubicki, Jonathan W. Hurst, and Monica A. Daley. Swing-leg trajectory
of running guinea fowl suggests task-level priority of force regulation rather
than disturbance rejection. PLoS ONE, 9(6):18–20, 2014.

[22] Boston Dynamics. Atlas — partners in parkour, 2021.

[23] Philemon Brakel, Steven Bohez, Leonard Hasenclever, Nicolas Heess, and
Konstantinos Bousmalis. Learning coordinated terrain-adaptive locomotion
by imitating a centroidal dynamics planner. CoRR, abs/2111.00262, 2021.

[24] B. Brown and G. Zeglin. The bow leg hopping robot. In Proceedings.
1998 IEEE International Conference on Robotics and Automation (Cat.
No.98CH36146), volume 1, pages 781–786. IEEE, 1998.

[25] C. Cadena, L. Carlone, H. Carrillo, Y. Latif, D. Scaramuzza, J. Neira, I. Reid,
and J.J. Leonard. Past, present, and future of simultaneous localization
and mapping: Towards the robust-perception age. IEEE Transactions on
Robotics, 32(6):1309–1332, 2016.

[26] Stéphane Caron, Abderrahmane Kheddar, and Olivier Tempier. Stair climb-
ing stabilization of the HRP-4 humanoid robot using whole-body admit-
tance control. In 2019 International Conference on Robotics and Automation
(ICRA), pages 277–283. IEEE, 2019.

[27] Guillermo A Castillo, Bowen Weng, Wei Zhang, and Ayonga Hereid. Robust
feedback motion policy design using reinforcement learning on a 3d digit
bipedal robot. arXiv preprint arXiv:2103.15309, 2021.

[28] Yu-Ming Chen and Michael Posa. Optimal reduced-order modeling of bipedal
locomotion. In 2020 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 8753–8760, 2020.

https://iopscience.iop.org/article/10.1088/1748-3182/5/2/026006/meta
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100399
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100399
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0100399
https://ieeexplore.ieee.org/abstract/document/8794348
https://ieeexplore.ieee.org/abstract/document/8794348
https://ieeexplore.ieee.org/abstract/document/8794348

162

[29] Christine Chevallereau, Gabriel Abba, Yannick Aoustin, Franck Plestan, Eric
Westervelt, Carlos Canudas De Wit, and Jessy Grizzle. Rabbit: A testbed
for advanced control theory. IEEE Control Systems Magazine, 23(5):57–79,
2003.

[30] Patrick Clary, Pedro Morais, Alan Fern, and Jonathan Hurst. Monte-carlo
planning for agile legged locomotion. In Int. Conf. Automated Planning and
Scheduling, 2018.

[31] Tom Cnops, Zhenyu Gan, and C. David Remy. The basin of attraction
for running robots: Fractals, multistep trajectories, and the choice of con-
trol. IEEE International Conference on Intelligent Robots and Systems, 2015-
Decem:1586–1591, 2015.

[32] Leslie Cohen, Thomas F Shipley, Eve Marshark, Kathy That, and Denise
Aster. Detecting animals in point-light displays. In Proceedings of the Annual
Meeting of the Cognitive Science Society, volume 22, 2000.

[33] Steve Collins, Andy Ruina, Russ Tedrake, and Martijn Wisse. Efficient
bipedal robots based on passive-dynamic walkers. Science, 307(5712):1082–
1085, 2005.

[34] Jason Cortell and Pranav Bhounsule. How one might realize practical,
energy-efficient legged robots: lessons from the cornell ranger project.

[35] Xingye Da, Zhaoming Xie, David Hoeller, Byron Boots, Animashree Anand-
kumar, Yuke Zhu, Buck Babich, and Animesh Garg. Learning a contact-
adaptive controller for robust, efficient legged locomotion, 2020.

[36] Behnam Dadashzadeh, Hamid Reza Vejdani, and Jonathan Hurst. From
template to anchor: A novel control strategy for spring-mass running of
bipedal robots. IEEE International Conference on Intelligent Robots and
Systems, 1(Iros):2566–2571, 2014.

[37] Stefano Dafarra, Sylvain Bertrand, Robert J. Griffin, Giorgio Metta, Daniele
Pucci, and Jerry Pratt. Non-linear trajectory optimization for large step-
ups: Application to the humanoid robot atlas. In 2020 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 3884–
3891, 2020.

https://ieeexplore.ieee.org/abstract/document/6942912
https://ieeexplore.ieee.org/abstract/document/6942912
https://ieeexplore.ieee.org/abstract/document/6942912

163

[38] Hongkai Dai, Andrés Valenzuela, and Russ Tedrake. Whole-body motion
planning with centroidal dynamics and full kinematics. In 2014 IEEE-RAS
International Conference on Humanoid Robots, pages 295–302, 2014.

[39] Monica A. Daley and Andrew A. Biewener. Running over rough terrain re-
veals limb control for intrinsic stability. Proceedings of the National Academy
of Sciences, 103(42):15681–15686, 2006.

[40] Jeremy Dao, Kevin Green, Helei Duan, Alan Fern, and Jonathan Hurst.
Sim-to-real learning for bipedal locomotion under unsensed dynamic loads.
In 2022 International Conference on Robotics and Automation (ICRA), 2022.

[41] Jeremy Dao, Kevin Green, Helei Duan, Jonah Siekmann, Yesh Godse, Alan
Fern, and Jonathan Hurst. Challenges of Learned High-Speed Locomotion
over Five Kilometers in the Real World. In ICRA 2021: 5th Workshop on
Legged Robots: Towards Real-World Deployment of Legged Robots, 2021.

[42] Robin Deits. Making atlas dance, run, and jump. 6th Workshop on Legged
Robots at ICRA 2022, 2022.

[43] Michel C Delfour and J-P Zolésio. Shapes and geometries: metrics, analysis,
differential calculus, and optimization. SIAM, 2011.

[44] Scott E Dietert. The demonstration of different types of muscle fibers in hu-
man extraocular muscle by electron microscopy and cholinesterase staining.
Investigative Ophthalmology & Visual Science, 4(1):51–63, 1965.

[45] Dimitar Dimitrov, Alexander Sherikov, and Pierre-Brice Wieber. A sparse
model predictive control formulation for walking motion generation. In In-
telligent Robots and Systems (IROS), 2011 IEEE/RSJ International Con-
ference on, pages 2292–2299. IEEE, 2011.

[46] Anca D. Dragan, Kenton C.T. Lee, and Siddhartha S. Srinivasa. Legibility
and predictability of robot motion. In 2013 8th ACM/IEEE International
Conference on Human-Robot Interaction (HRI), pages 301–308, 2013.

[47] Helei Duan, Jeremy Dao, Kevin Green, Taylor Apgar, Alan Fern, and
Jonathan Hurst. Learning task space actions for bipedal locomotion. In
2021 IEEE International Conference on Robotics and Automation (ICRA),
pages 1276–1282. IEEE, 2021.

https://www.pnas.org/content/103/42/15681
https://www.pnas.org/content/103/42/15681
https://drive.google.com/file/d/1zOS-7Og81mWiXLqMs6el0_Vp8lyWwG0q/view
https://drive.google.com/file/d/1zOS-7Og81mWiXLqMs6el0_Vp8lyWwG0q/view

164

[48] Helei Duan, Ashish Malik, Mohitvishnu S. Gadde, Jeremy Dao, Alan Fern,
and Jonathan Hurst. Learning dynamic bipedal walking across stepping
stones. In accepted to 2022 IEEE/RSJ International Conference on Intelli-
gent Robotics and Systems, 2022.

[49] Michael Ernst, Hartmut Geyer, and Reinhard Blickhan. Spring-Legged Lo-
comotion on Uneven Ground: a Control Approach To Keep the Running
Speed Constant. Mobile Robotics, pages 639–644, 2009.

[50] Siyuan Feng. Full Body Control for the Atlas robot. 2014 IEEE International
Conference on Robotics and Automation, pages 3733–3738, 2014.

[51] Siyuan Feng, X. Xinjilefu, Christopher G. Atkeson, and Joohyung Kim. Op-
timization based controller design and implementation for the Atlas robot in
the DARPA Robotics Challenge Finals. IEEE-RAS International Conference
on Humanoid Robots, 2015-Decem:1028–1035, 2015.

[52] Siyuan Feng, X Xinjilefu, Christopher G. Atkeson, and Joohyung Kim. Ro-
bust dynamic walking using online foot step optimization. In 2016 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages
5373–5378, 2016.

[53] Giorgio Figliolini and Marco Ceccarelli. Climbing stairs with EP-WAR2
biped robot. In Proceedings 2001 ICRA. IEEE International Conference on
Robotics and Automation (Cat. No. 01CH37164), volume 4, pages 4116–
4121. IEEE, 2001.

[54] Michele Focchi, Romeo Orsolino, Marco Camurri, Victor Barasuol, Carlos
Mastalli, Darwin G. Caldwell, and Claudio Semini. Heuristic Planning for
Rough Terrain Locomotion in Presence of External Disturbances and Vari-
able Perception Quality, volume 132, pages 165–209. Springer International
Publishing, Cham, 2020.

[55] Zhenyu Gan, Yevgeniy Yesilevskiy, Petr Zaytsev, and C David Remy. All
common bipedal gaits emerge from a single passive model. Journal of The
Royal Society Interface, 15(146):20180455, 2018.

[56] Hartmut Geyer, Andre Seyfarth, and Reinhard Blickhan. Compliant leg
behaviour explains basic dynamics of walking and running. Proceedings of
the Royal Society B: Biological Sciences, 273(1603):2861–2867, 2006.

https://ieeexplore.ieee.org/abstract/document/933261
https://ieeexplore.ieee.org/abstract/document/933261
https://doi.org/10.1007/978-3-030-22327-4_9
https://doi.org/10.1007/978-3-030-22327-4_9
https://doi.org/10.1007/978-3-030-22327-4_9

165

[57] Yukai Gong and Jessy Grizzle. Angular momentum about the contact point
for control of bipedal locomotion: Validation in a lip-based controller. arXiv
preprint arXiv:2008.10763, 2020.

[58] Kevin Green, Yesh Godse, Jeremy Dao, Ross L Hatton, Alan Fern, and
Jonathan Hurst. Learning spring mass locomotion: Guiding policies with
a reduced-order model. IEEE Robotics and Automation Letters, 6(2):3926–
3932, 2021.

[59] Kevin Green, Ross L. Hatton, and Jonathan Hurst. Planning for the unex-
pected: Explicitly optimizing motions for ground uncertainty in running. In
2020 IEEE International Conference on Robotics and Automation (ICRA),
pages 1445–1451, 2020.

[60] J.W. Grizzle, Jonathan Hurst, Benjamin Morris, Hae-Won Park, and Koushil
Sreenath. MABEL, a new robotic bipedal walker and runner. In 2009 Amer-
ican Control Conference, pages 2030–2036. IEEE, 2009.

[61] J-S Gutmann, Masaki Fukuchi, and Masahiro Fujita. Stair climbing for hu-
manoid robots using stereo vision. In 2004 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566),
volume 2, pages 1407–1413. IEEE, 2004.

[62] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with
a stochastic actor. In International conference on machine learning, pages
1861–1870. PMLR, 2018.

[63] Roland Hafner, Tim Hertweck, Philipp Klöppner, Michael Bloesch, Michael
Neunert, Markus Wulfmeier, Saran Tunyasuvunakool, Nicolas Heess, and
Martin A. Riedmiller. Towards general and autonomous learning of core
skills: A case study in locomotion. In 4th Conference on Robot Learning,
CoRL 2020, 16-18 November 2020, Virtual Event / Cambridge, MA, USA,
volume 155, pages 1084–1099. PMLR, 2020.

[64] Duncan W Haldane, M M Plecnik, Justin K Yim, and Ronald S Fearing.
Robotic vertical jumping agility via series-elastic power modulation. Science
Robotics, 1(1), 2016.

https://ieeexplore.ieee.org/abstract/document/1389593
https://ieeexplore.ieee.org/abstract/document/1389593

166

[65] Kaveh Akbari Hamed and Jessy W Grizzle. Event-based stabilization of pe-
riodic orbits for underactuated 3-d bipedal robots with left-right symmetry.
IEEE Transactions on Robotics, 30(2):365–381, 2013.

[66] Matthew L Handford and Manoj Srinivasan. Energy-optimal human walking
with feedback-controlled robotic prostheses: a computational study. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 26(9):1773–
1782, 2018.

[67] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver.
Memory-based control with recurrent neural networks, 2015.

[68] Nicolas Heess, Dhruva TB, Srinivasan Sriram, Jay Lemmon, Josh Merel,
Greg Wayne, Yuval Tassa, Tom Erez, Ziyu Wang, S. M. Ali Eslami, Martin
Riedmiller, and David Silver. Emergence of locomotion behaviours in rich
environments, 2017.

[69] Steve Heim and Alexander Spröwitz. Beyond basins of attraction: Quan-
tifying robustness of natural dynamics. IEEE Transactions on Robotics,
35(4):939–952, 2019.

[70] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[71] At L Hof. Scaling gait data to body size. Gait & posture, 3(4):222–223, 1996.

[72] Philip Holmes, Robert J. Full, Dan Koditschek, and John Guckenheimer.
The dynamics of legged locomotion: Models, analyses, and challenges. SIAM
Review, pages 207–304, 2006.

[73] Jerry Pratt and Chee-Meng Chew and Ann Torres and Peter Dilworth and
Gill Pratt. Virtual model control: An intuitive approach for bipedal locomo-
tion. The International Journal of Robotics Research, 20(2):129–143, 2001.

[74] Christian Hubicki, Jesse Grimes, Mikhail Jones, Daniel Renjewski, Alexan-
der Spröwitz, Andy Abate, and Jonathan Hurst. ATRIAS: Design and vali-
dation of a tether-free 3D-capable spring-mass bipedal robot. International
Journal of Robotics Research, 35(12):1497–1521, 2016.

https://arxiv.org/abs/1512.04455
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://doi.org/10.1177/02783640122067309
https://doi.org/10.1177/02783640122067309

167

[75] Christian Hubicki, Mikhail Jones, Monica Daley, and Jonathan Hurst. Do
Limit Cycles Matter in the Long Run? Stable Orbits and Sliding-Mass Dy-
namics Emerge in Task-Optimal Locomotion. IEEE International Confer-
ence on Robotics and Automation (ICRA), 2015.

[76] Christian M Hubicki and Jonathan W Hurst. Running on Soft Ground:
Simple, Energy-Optimal Disturbance Rejection. Int. Conf. Climbing and
Walking Robots and the Support Technologies for Mobile Machines, pages
543–547, 2012.

[77] Jonathan W Hurst. The electric cable differential leg: A novel design
approach for walking and running. International Journal of Humanoid
Robotics, 8(02):301–321, 2011.

[78] Jonathan W. Hurst, Benjamin Morris, Joel E. Chestnutt, and Alfred A.
Rizzi. A policy for open-loop attenuation of disturbance effects caused by
uncertain ground properties in running. Proceedings - IEEE International
Conference on Robotics and Automation, pages 1455–1460, 2007.

[79] Marco Hutter, Mark Hoepflinger, Christian Gehring, Michael Bloesch,
C. David Remy, Roland Siegwart, C David Remy, and Roland Siegwart.
Hybrid Operational Space Control for Compliant Legged Systems. Robotics
Science and Systems (RSS), pages 129–136, 2012.

[80] Jemin Hwangbo, Joonho Lee, Alexey Dosovitskiy, Dario Bellicoso, Vassilios
Tsounis, Vladlen Koltun, and Marco Hutter. Learning agile and dynamic
motor skills for legged robots. Science Robotics, 4(26), 2019.

[81] Brian E. Jackson, Kevin Tracy, and Zachary Manchester. Planning with
attitude. IEEE Robotics and Automation Letters, 6(3):5658–5664, 2021.

[82] Deepali Jain, Atil Iscen, and Ken Caluwaerts. Hierarchical reinforcement
learning for quadruped locomotion, 2019.

[83] Gunnar Johansson. Visual perception of biological motion and a model for
its analysis. Perception and psychophysics, 14(2):201–211, 1973.

[84] Mikhail S. Jones. Optimal Control of an Underactuated Bipedal Robot. Mas-
ters of science in mechanical engineering, Oregon State University, 2014.

https://ieeexplore.ieee.org/document/4209293
https://ieeexplore.ieee.org/document/4209293
https://robotics.sciencemag.org/content/4/26/eaau5872
https://robotics.sciencemag.org/content/4/26/eaau5872
https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/1544br54x

168

[85] Shuuji Kajita, Fumio Kanehiro, Kenji Kaneko, Kazuhito Yokoi, and Hirohisa
Hirukawa. The 3d linear inverted pendulum mode: A simple modeling for
a biped walking pattern generation. In Proc. 2001 IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, volume 1, pages 239–246. IEEE, 2001.

[86] Benjamin Katz, Jared Di Carlo, and Sangbae Kim. Mini cheetah: A platform
for pushing the limits of dynamic quadruped control. In 2019 International
Conference on Robotics and Automation (ICRA), pages 6295–6301, 2019.

[87] Benjamin G Katz. A low cost modular actuator for dynamic robots. S.m.,
Massachusetts Institute of Technology, 2018.

[88] Matthew Kelly. An introduction to trajectory optimization: how to do your
own direct collocation. pages 1–44.

[89] Matthew Kelly, Matthew Sheen, and Andy Ruina. Off-line controller design
for reliable walking of ranger. In 2016 IEEE International Conference on
Robotics and Automation (ICRA), pages 1567–1572. IEEE, 2016.

[90] Gavin Kenneally. Design Principles for a Family of Direct-Drive Legged
Robots Design Principles for a Family of Direct-Drive Legged Robots. IEEE
Robotics and Automation Letters, 1(2):900–907, 2016.

[91] Sang-Hoon Kim. Electric motor control: DC, AC, and BLDC motors. Else-
vier, 2017.

[92] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980, 2014.

[93] Daniel E. Koditschek and Martin Bühler. Analysis of a Simplified Hopping
Robot. The International Journal of Robotics Research, 10(6):587–605, 12
1991.

[94] Scott Kuindersma. Recent progress on atlas, the world’s most dynamic hu-
manoid robot, 2020.

[95] Arthur D Kuo, J Maxwell Donelan, and Andy Ruina. Energetic consequences
of walking like an inverted pendulum: step-to-step transitions. Exercise and
sport sciences reviews, 33(2):88–97, 2005.

https://epubs.siam.org/doi/abs/10.1137/16M1062569?mobileUi=0
https://epubs.siam.org/doi/abs/10.1137/16M1062569?mobileUi=0
http://journals.sagepub.com/doi/10.1177/027836499101000601
http://journals.sagepub.com/doi/10.1177/027836499101000601
https://journals.lww.com/acsm-essr/Fulltext/2005/04000/Energetic_Consequences_of_Walking_Like_an_Inverted.6.aspx
https://journals.lww.com/acsm-essr/Fulltext/2005/04000/Energetic_Consequences_of_Walking_Like_an_Inverted.6.aspx

169

[96] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and
Marco Hutter. Learning quadrupedal locomotion over challenging terrain.
Science Robotics, 5(47):eabc5986, 10 2020.

[97] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess,
Tom Erez, Yuval Tassa, David Silver, and DaanWierstra. Continuous control
with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[98] Wen-Loong Ma, Ayonga Hereid, Christian M Hubicki, and Aaron D Ames.
Efficient hzd gait generation for three-dimensional underactuated humanoid
running. In 2016 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), pages 5819–5825. IEEE, 2016.

[99] Yawei Ma and Ren C Luo. Topological method for loop detection of surface
intersection problems. Computer-Aided Design, 27(11):811–820, 1995.

[100] William C Martin, Albert Wu, and Hartmut Geyer. Experimental evaluation
of deadbeat running on the atrias biped. IEEE Robotics and Automation
Letters, 2(2):1085–1092, 2017.

[101] Jonathan S Matthis and Brett R Fajen. Visual control of foot placement
when walking over complex terrain. Journal of experimental psychology:
human perception and performance, 40(1):106, 2014.

[102] Jonathan Samir Matthis, Jacob L. Yates, and Mary M. Hayhoe. Gaze and the
control of foot placement when walking in natural terrain. Current Biology,
28(8):1224–1233.e5, 2018.

[103] Seth McCammon, Gilberto Marcon dos Santos, Matthew Frantz, T. P.
Welch, Graeme Best, R. Kipp Shearman, Jonathan D. Nash, John A. Barth,
Julie A. Adams, and Geoffrey A. Hollinger. Ocean front detection and track-
ing using a team of heterogeneous marine vehicles. Journal of Field Robotics,
38(6):854–881, 2021.

[104] Tad McGeer. Passive dynamic walking. The International Journal of
Robotics Research, 9(2):62–82, 1990.

[105] Tad McGeer. Passive dynamic biped catalogue, 1991. In Experimental
robotics II, pages 463–490. Springer, 1993.

http://dx.doi.org/10.1126/scirobotics.abc5986

170

[106] Philipp Michel, Joel Chestnutt, Satoshi Kagami, Koichi Nishiwaki, James
Kuffner, and Takeo Kanade. GPU-accelerated real-time 3D tracking for
humanoid locomotion and stair climbing. In 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 463–469. IEEE, 2007.

[107] EZ Moore and M Buehler. Stable stair climbing in a simple hexapod robot.
Technical report, McGill Research Centre for Intelligent Machines, 2001.

[108] N. Motoi, T. Suzuki, and K. Ohnishi. A bipedal locomotion planning based
on virtual linear inverted pendulum mode. IEEE Transactions on Industrial
Electronics, 56(1):54–61, 2009.

[109] Hae-Won Park, Alireza Ramezani, and Jessy W Grizzle. A finite-state
machine for accommodating unexpected large ground-height variations in
bipedal robot walking. IEEE Transactions on Robotics, 29(2):331–345, 2012.

[110] Hae-Won Park, Patrick M Wensing, and Sangbae Kim. High-speed bounding
with the MIT Cheetah 2: Control design and experiments. The International
Journal of Robotics Research, 36(2):167–192, 2017.

[111] Jeff B. Pelz and Constantin Rothkopf. Chapter 31 - oculomotor behavior in
natural and man-made environments. In Roger P.G. Van Gompel, Martin H.
Fischer, Wayne S. Murray, and Robin L. Hill, editors, Eye Movements, pages
661–676. Elsevier, Oxford, 2007.

[112] Xue Bin Peng, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.
Sim-to-Real Transfer of Robotic Control with Dynamics Randomization. In
2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 3803–3810, 2018.

[113] Xue Bin Peng and Michiel van de Panne. Learning Locomotion Skills Using
DeepRL: Does the Choice of Action Space Matter? CoRR, abs/1611.01055,
2016.

[114] Xue Bin Peng and Michiel van de Panne. Learning locomotion skills us-
ing deeprl: Does the choice of action space matter? In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
page 12. ACM, 2017.

https://ieeexplore.ieee.org/abstract/document/4399104
https://ieeexplore.ieee.org/abstract/document/4399104
https://apps.dtic.mil/sti/citations/ADA438777
https://ieeexplore.ieee.org/abstract/document/6399609
https://ieeexplore.ieee.org/abstract/document/6399609
https://ieeexplore.ieee.org/abstract/document/6399609
https://ieeexplore.ieee.org/abstract/document/8460528
https://dl.acm.org/doi/abs/10.1145/3099564.3099567
https://dl.acm.org/doi/abs/10.1145/3099564.3099567

171

[115] Robert R. Playter. Passive Dynamics in the Control of Gymnastic Maneu-
vers. PhD thesis, Massachusetts Institute of Technology, The address of the
publisher, 8 1994.

[116] KL Poggensee, MA Sharbafi, and A Seyfarth. Characterizing swing-leg re-
traction in human locomotion. In Mobile Service Robotics, pages 377–384.
World Scientific, 2014.

[117] Michael Posa and Russ Tedrake. Direct trajectory optimization of rigid body
dynamical systems through contact. In Algorithmic foundations of robotics
X, pages 527–542. Springer, 2013.

[118] Gill A. Pratt, Matthew M. Williamson, Peter Dillworth, Jerry Pratt, and
Anne Wright. Stiffness isn’t everything. In Experimental Robotics IV, volume
223, pages 253–262. Springer-Verlag, London, 1997.

[119] Jerry Pratt, Peter Dilworth, and Gill Pratt. Virtual model control of a
bipedal walking robot. 1997 IEEE International Conference on Robotics
and Automation, 1997. Proceedings., 1, (April):193–198, 1997.

[120] Jerry E Pratt. Exploiting inherent robustness and natural dynamics in the
control of bipedal walking robots. PhD thesis, Massachusetts Institute of
Technology, 2000.

[121] Marc H. Raibert. Legged Robots. Commun. ACM, 29(6):499–514, June
1986.

[122] Marc H. Raibert. Legged Robots That Balance. Massachusetts Institute of
Technology, Cambridge, MA, USA, 1986.

[123] Marc H. Raibert, Jr. Brown, H. Benjamin, Michael Chepponis, Jeff Koech-
ling, Jessica K. Hodgins, Diane Dustman, W. Kevin Brennan, David S. Bar-
rett, Clay M. Thompson, John Daniell Hebert, Woojin Lee, and Lance Bor-
vansky. Dynamically Stable Legged Locomotion. MIT Technical Report,
(4148):134, 1989.

[124] Marc H Raibert, H Benjamin Brown Jr, Michael Chepponis, Jeff Koechling,
and Jessica K Hodgins. Dynamically stable legged locomotion. Technical
report, Massachusetts Inst of Tech Cambridge Artificial Intelligence Lab,
1989.

https://doi.org/10.1142/9789814623353_0044
https://doi.org/10.1142/9789814623353_0044
https://doi.org/10.1145/5948.5950

172

[125] Alireza Ramezani, Jonathan W. Hurst, Kaveh Akbari Hamed, and J. W.
Grizzle. Performance Analysis and Feedback Control of ATRIAS, A Three-
Dimensional Bipedal Robot. Journal of Dynamic Systems, Measurement,
and Control, 136(2):021012, 12 2013.

[126] Michael R Rehorn, Alison K Schroer, and Silvia S Blemker. The passive
properties of muscle fibers are velocity dependent. Journal of biomechanics,
47(3):687–693, 2014.

[127] Daniel Renjewski, Alexander Sprowitz, Andrew Peekema, Mikhail Jones, and
Jonathan Hurst. Exciting Engineered Passive Dynamics in a Bipedal Robot.
IEEE Transactions on Robotics, 31(5):1244–1251, 2015.

[128] Siavash Rezazadeh, Christian Hubicki, Mikhail Jones, Andrew Peekema,
Johnathan Van Why, Andy Abate, and Jonathan Hurst. Spring-Mass Walk-
ing With ATRIAS in 3D: Robust Gait Control Spanning Zero to 4.3 KPH on
a Heavily Underactuated Bipedal Robot. In Dynamic Systems and Control
Conference, 10 2015. V001T04A003.

[129] David W Robinson. Design and analysis of series elasticity in closed-loop
actuator force control. PhD thesis, Massachusetts Institute of Technology,
2000.

[130] D.W. Robinson and G.A. Pratt. Force controllable hydro-elastic actua-
tor. In Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat.
No.00CH37065), volume 2, pages 1321–1327. IEEE, 2000.

[131] D.W. Robinson, J.E. Pratt, D.J. Paluska, and G.A. Pratt. Series
elastic actuator development for a biomimetic walking robot. 1999
IEEE/ASME International Conference on Advanced Intelligent Mechatron-
ics (Cat. No.99TH8399), pages 561–568, 1999.

[132] Agility Robotics. Cassie: Dynamic Planning on Stairs.

[133] Agility Robotics. Agility robotics cassie user manual. https://github.com/
agilityrobotics/cassie-doc/wiki, 2020. Accessed: 2022-08-14.

[134] Andy Ruina. Cornell ranger, 2011-2012 4-legged bipedal robot.
”http://ruina.tam.cornell.edu/research/topics/locomotion_and_
robotics/ranger/Ranger2011/, 2012.

https://doi.org/10.1115/DSCC2015-9899
https://doi.org/10.1115/DSCC2015-9899
https://doi.org/10.1115/DSCC2015-9899
https://youtu.be/qV-92Bq96Co
https://github.com/agilityrobotics/cassie-doc/wiki
https://github.com/agilityrobotics/cassie-doc/wiki
http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011/
http://ruina.tam.cornell.edu/research/topics/locomotion_and_robotics/ranger/Ranger2011/

173

[135] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp
Moritz. Trust region policy optimization. In International conference on
machine learning, pages 1889–1897. PMLR, 2015.

[136] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg
Klimov. Proximal Policy Optimization Algorithms, 2017.

[137] Nicola Scianca, Marco Cognetti, Daniele De Simone, Leonardo Lanari, and
Giuseppe Oriolo. Intrinsically stable mpc for humanoid gait generation. In
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), pages 601–606, 2016.

[138] Sangok Seok, Albert Wang, Meng Yee Michael Chuah, Dong Jin Hyun,
Jongwoo Lee, David M Otten, Jeffrey H Lang, and Sangbae Kim. Design
principles for energy-efficient legged locomotion and implementation on the
mit cheetah robot. IEEE/ASME Transactions on Mechatronics, 20(3):1117–
1129, 2015.

[139] André Seyfarth, Hartmut Geyer, and Hugh Herr. Swing-leg retraction: a
simple control model for stable running. Journal of Experimental Biology,
206(15):2547–2555, 2003.

[140] Mohammad Sharif Shourijeh and John McPhee. Forward dynamic optimiza-
tion of human gait simulations: a global parameterization approach. Journal
of Computational and Nonlinear Dynamics, 9(3), 2014.

[141] Jonah Siekmann, Yesh Godse, Alan Fern, and Jonathan Hurst. Sim-to-Real
Learning of All Common Bipedal Gaits via Periodic Reward Composition. In
IEEE International Conference on Robotics and Automation (ICRA), 2021.

[142] Jonah Siekmann, Kevin Green, John Warila, Alan Fern, and Jonathan Hurst.
Blind Bipedal Stair Traversal via Sim-to-Real Reinforcement Learning. In
Proceedings of Robotics: Science and Systems, volume abs/2105.08328, Vir-
tual, 7 2021.

[143] Jonah Siekmann, Srikar Valluri, Jeremy Dao, Lorenzo Bermillo, Helei Duan,
Alan Fern, and Jonathan Hurst. Learning memory-based control for human-
scale bipedal locomotion. In Proceedings of Robotics: Science and Systems,
7 2020.

https://arxiv.org/abs/1707.06347
https://jeb.biologists.org/content/206/15/2547.short
https://jeb.biologists.org/content/206/15/2547.short
https://arxiv.org/abs/2011.01387
https://arxiv.org/abs/2011.01387
https://roboticsconference.org/2020/program/papers/31.html
https://roboticsconference.org/2020/program/papers/31.html

174

[144] Youngwoo Sim and Joao Ramos. Tello leg: The study of design principles
and metrics for dynamic humanoid robots, 2022.

[145] Nils Smit-Anseeuw, Rodney Gleason, Ram Vasudevan, and C. David Remy.
The Energetic Benefit of Robotic Gait Selection—A Case Study on the
Robot RAM<italic>one</italic>. IEEE Robotics and Automation Letters,
2(2):1124–1131, 2017.

[146] Koushil Sreenath, Hae-Won Park, Ioannis Poulakakis, and Jessy W Grizzle.
A compliant hybrid zero dynamics controller for stable, efficient and fast
bipedal walking on mabel. The International Journal of Robotics Research,
30(9):1170–1193, 2011.

[147] Sarah V Stevenage, Mark S Nixon, and Kate Vince. Visual analysis of gait
as a cue to identity. Applied Cognitive Psychology: The Official Journal of
the Society for Applied Research in Memory and Cognition, 13(6):513–526,
1999.

[148] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[149] Jie Tan, Tingnan Zhang, Erwin Coumans, Atil Iscen, Yunfei Bai, Danijar
Hafner, Steven Bohez, and Vincent Vanhoucke. Sim-to-real: Learning agile
locomotion for quadruped robots. In Proc. of Robotics: Science and Sys-
tems XIV, Pittsburgh, Pennsylvania, 6 2018. Robotics: Science and Systems
Foundation.

[150] Russ Tedrake and H Sebastian Seung. Improved Dynamic Stability Using
Reinforcement Learning. 5th Int. Conf. on Climbing and Walking Robots
(CLAWAR), (Figure 1):341–348, 2002.

[151] Travis Teo. From baristas to inspectors: Singapore’s robot workforce plugs
labour gaps. Reuters, May 2022.

[152] Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine
for model-based control. In 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 5026–5033. IEEE, 2012.

[153] Matthew Travers, Ross Hatton, and Howie Choset. Minimum perturbation
coordinates on so(3). In 2013 American Control Conference, pages 2006–
2012, 2013.

http://incompleteideas.net/book/the-book.html
http://incompleteideas.net/book/the-book.html
https://ieeexplore.ieee.org/abstract/document/6386109
https://ieeexplore.ieee.org/abstract/document/6386109

175

[154] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter. Deepgait: Plan-
ning and control of quadrupedal gaits using deep reinforcement learning.
IEEE Robotics and Automation Letters, 5(2):3699–3706, 2020.

[155] Maegan Tucker, Noel Csomay-Shanklin, Wen-Loong Ma, and Aaron D Ames.
Preference-based learning for user-guided hzd gait generation on bipedal
walking robots. arXiv preprint arXiv:2011.05424, 2020.

[156] Johnathan Van Why, Christian Hubicki, Mikhail Jones, Monica Daley, and
Jonathan Hurst. Running into a trap: Numerical design of task-optimal pre-
flex behaviors for delayed disturbance responses. IEEE International Con-
ference on Intelligent Robots and Systems, pages 2537–2542, 2014.

[157] H. R. Vejdani, Y. Blum, M. A. Daley, and J. W. Hurst. Bio-inspired swing
leg control for spring-mass robots running on ground with unexpected height
disturbance. Bioinspiration and Biomimetics, 8(4), 2013.

[158] Andreas Wächter and Lorenz T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale nonlinear program-
ming. Mathematical Programming, 106(1):25–57, Mar 2006.

[159] Patrick Wensing and David Orin. Improved computation of the humanoid
centroidal dynamics and application for whole-body control. International
Journal of Humanoid Robotics, 13:1550039, 09 2015.

[160] Patrick M. Wensing, Albert Wang, Sangok Seok, David Otten, Jeffrey Lang,
and Sangbae Kim. Proprioceptive actuator design in the MIT cheetah: Im-
pact mitigation and high-bandwidth physical interaction for dynamic legged
robots. IEEE Transactions on Robotics, 33(3):509–522, 2017.

[161] Zhaoming Xie, Glen Berseth, Patrick Clary, Jonathan Hurst, and Michiel
van de Panne. Feedback control for cassie with deep reinforcement learn-
ing. In 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 1241–1246. IEEE, 2018.

[162] Zhaoming Xie, Patrick Clary, Jeremy Dao, Pedro Morais, Jonathan Hurst,
and Michiel van de Panne. Learning locomotion skills for cassie: Iterative
design and sim-to-real. In 3rd Conf. on Robotic Learning (CORL), 2019.

https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://link.springer.com/article/10.1007/s10107-004-0559-y
https://ieeexplore.ieee.org/abstract/document/8593722
https://ieeexplore.ieee.org/abstract/document/8593722

176

[163] Zhaoming Xie, Xingye Da, Buck Babich, Animesh Garg, and Michiel van de
Panne. Glide: Generalizable quadrupedal locomotion in diverse environ-
ments with a centroidal model, 2021.

[164] Xiaobin Xiong and Aaron D. Ames. Dynamic and versatile humanoid walking
via embedding 3d actuated slip model with hybrid lip based stepping. IEEE
Robotics and Automation Letters, 5(4):6286–6293, 2020.

[165] William Yang and Michael Posa. Impact invariant control with applications
to bipedal locomotion. In 2021 IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), pages 5151–5158, 2021.

[166] Yevgeniy Yesilevskiy, Weitao Xi, and C David Remy. A Comparison of Series
and Parallel Elasticity in a Monoped Hopper. pages 1–6, 2015.

[167] Haitao Yu, ShengjunWang, Kaizheng Shan, Jun Li, Lixian Zhang, and Haibo
Gao. Seeking the analytical approximation of the stance dynamics of the 3d
spring-loaded inverted pendulum model by using perturbation approach. In
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 3314–3320, 2019.

[168] Ali Zamani and Pranav A. Bhounsule. Nonlinear model predictive control
of hopping model using approximate step-to-step models for navigation on
complex terrain. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 3627–3632, 2020.

	Introduction
	A Brief History of Agile Legged Locomotion
	Agile Legged Robot Control Methods
	Raibert Control Laws
	Virtual Model Control
	Whole Body Control
	Hybrid Zero Dynamics
	Reinforcement Learning

	Thesis Format and Contribution

	I Fundamental Principles of Legged Locomotion
	Emergent Properties of Agile Legged Locomotion
	Gaits Can Be Described by Reduced-Dimensional Representations
	Trajectories Are Emergent Behaviors from Multifaceted Gait Objectives
	Touchdown Is the Most Challenging Instant of the Gait and Greatly Influences Design and Control Choices
	Actuator Dynamics and Limitations Dictate the Features of Effective Gait
	Physical Requirements for Leg Design Are Unique and Demanding

	Hierarchical Control Is Not a Forced-Compromise but Instead Is an Implied Structure

	II Multistep Planning through Dynamically Meaningful Reduced Order Models
	Direct Optimization of Open-loop Disturbance Rejection
	Abstract
	Introduction
	Background
	Dynamic Model
	Equations of Motion
	Hybrid Transition Model
	Nondimensionalization

	Methods
	Minimum Effort Optimization
	Disturbance Aware Trajectory Optimization
	Testing Simulation

	Results
	Optimization Results
	Simulation Testing Results

	Conclusions

	Real-time Motion Planning for Systems Without Closed Form Solutions
	Abstract
	Introduction
	Modeling of Periodic Gaits
	Poincarè Map Discrete Dynamics
	Failure Margin Function

	Approximation of the Step-to-Step System
	Controlled First Return Map Approximation
	Failure Margin Function Approximation

	Footstep Planning Optimization Problem
	Illustrative Application
	Step-to-Step Approximation of the aSLIP Model
	Footstep Optimization and Failure Margin Utility

	Conclusions

	III Learning Reactive Control from First Principles of Legged Locomotion
	Incentivizing Robust Gaits using Environment Distributions in Reinforcement Learning
	Abstract
	Introduction
	Reinforcement Learning Formulation
	State Space
	Action Space
	Reward Function
	Dynamics Randomization
	Policy Representation and Learning

	Terrain Randomization
	Results
	Simulation
	Behavior Analysis
	Hardware

	Conclusion

	Guiding Learned Policies using Optimized Spring-Mass Models
	Abstract
	Introduction
	Background
	The Control Hierarchy
	The Reduced-Order Model Library
	High Frequency Control Loop

	Reinforcement Learning
	Problem Formulation
	Learning Procedure

	Results
	Simulation
	Hardware

	Conclusion

	Learning Transient Locomotion through Centroidal Momentum References
	Abstract
	Introduction
	Background
	Reduced-Order-Models
	Learning for General Locomotion
	Learning for Multiple Behaviors

	Single Rigid Body Model Formulation
	Trajectory Optimization Formulation
	Hybrid Modes
	Decision Variables
	Transferability Constraints
	Composing Maneuvers
	Objective
	Library Generation

	Running Reinforcement Learning Problem
	Problem formulation
	Learning Procedure

	Running Results
	Simulation Results
	Hardware Results

	Four-Step Reinforcement Learning Problem
	Reference Trajectory Optimization
	Policy Network Design
	Reward Function Formulation
	Episode Initialization
	Epilogue Reward
	Dynamics Randomization

	Four-Step Turn Results
	Simulation Results
	Hardware Results

	Conclusion

	General Conclusions
	Bibliography

