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Abstract

The use of robotic legged locomotion offers great potential in terms of the ability
to traverse discontinuous or rough terrain, inaccessible to wheeled or tracked robots,
because feet require only intermittent support. In order to cross a complex environment
with limited safe foothold positions, a legged robot must be able to accurately control
the length of each step independently. For a hopping or running robot, this requires the
precise control of both apex height and forward velocity, with demand values varying
on every step – an agile gait – which is the challenge this thesis contributes towards.

In particular, the transition between the apex of one step and the next is considered as
a discrete problem of selecting the system inputs which result in the desired next apex
state, consisting of height and velocity. Despite the near ubiquity of legged locomotion
in nature, this task has proved difficult in robotic control. This is due to the need for
highly dynamic gaits, away from the simplifying assumptions of static balance, and
the use of spring-like mechanics to store and re-use energy between steps. The Spring
Loaded Inverted Pendulum model is widely used as an intuitive and simple model which
captures the key characteristics of dynamic running and hopping, but even this lacks
an exact analytical solution making the control task difficult.

The approach taken in this work is to formulate a simple controller, based on simple
analytical analysis, but select the gain values within this controller by using the re-
sults of previous steps, either pre-computed or on-line based on the preceding steps.
It is shown to be as accurate or better than the available analytical approximations
from the literature when applied to the Spring Loaded Inverted Pendulum model, whilst
remaining computationally inexpensive – an important advantage over numerical meth-
ods for real-time implementation. Furthermore, by tuning the controller on-line based
on previous steps, this approach has the benefits of reducing the manual effort in im-
plementation and automatically adapting to changes in the system dynamics during a
robot’s operation.

The control tasks for apex height and forward velocity are first considered indepen-
dently, with the proposed approach applied to each in simulation and using physical
experimental hopping robots, before finally they are combined to control both aspects
simultaneously in a simulation model.
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Chapter 1

Introduction

1.1 Background

Legged locomotion is an interesting area of research because it presents unique op-
portunities for robotic capabilities, but also many great challenges in order to realise
this potential. The potential is clear from the fact that legged animals can thrive in
such diverse terrains across the world, while a wheeled robot will struggle with a flight
of stairs. For robots to become more useful, they must be able to traverse complex
terrains of unpaved outdoor environments as well as indoor environments designed and
built for people. A possible approach to achieve this is to adopt a locomotion strat-
egy similar to the way animals (including people) move. This means robots must not
only possess legs with similar mechanical capabilities to ours, but also the equivalent
control abilities. They must achieve high efficiency and good foot placement accuracy,
to operate for significant periods in unstructured terrain, able to precisely control the
speed and direction of every step.

These requirements necessitate a gait that is dynamic, free from the limitations of
pseudo-static movements. While slow-moving robots can make use of static equilibrium
to maintain their balance, a dynamic gait allows for high speed movement without such
large energy cost penalty, because spring-like legs are able to store and reuse energy
between steps. The robot’s gait must also be agile, meaning the ability to achieve a new
desired apex state for every step. This will allow the robot to control the length of every
bound independently, and so to traverse difficult terrain where the safe foot landing
positions are not evenly spaced or in a straight line. The challenges in this control
problem are significant, in addition to the practicalities of the mechanical design. This
is well illustrated by the fact that even the simplest model to reasonably capture the
dynamics of running, the Spring Loaded Inverted Pendulum (SLIP), lacks a closed form
solution from which to create an exact, analytical controller.

To make some progress towards a vision of useful legged robots, the work presented
here is focused on the control of a small, single legged, pneumatically actuated robot,
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(a) (b)

Figure 1-1: The two custom built pneumatic robotic legged platforms used in this
work. (a) A single degree-of-freedom version constrained to hop vertically for 1D ex-
periments. (b) A version with an additional degree of freedom allowing the leg to
pivot and constrained to hop sideways in an approximately planar motion for the 2D
experiments.

the two versions of which are shown in Figure 1-1. While some way from being able
to traverse the same terrain as humans, it has been chosen as a test bed for several
reasons. The pneumatic actuation provides a spring-like effect as the air in the cylinder
is compressed by impact, while also allowing a convenient method to rapidly inject
energy at the desired point in time through opening a valve. The single leg limits the
robot to a hopping gait, but this is of little consequence from a control perspective
compared to bipedal running, which is also only features a single foot interacting with
the ground at a time. The primary difference is that in a biped the each individual
leg only participates in alternate stance phases which has the practical advantage of
allowing more time for repositioning. Furthermore, animals with more than two legs
have also been shown to have similar dynamics, with multiple legs in contact with the
ground simultaneously effectively acting as one [1], suggesting wider applicability of
results from monoped hoppers.

By definition, hopping and running gaits include a flight phase, during which there is
no contact with the ground, and provides a well defined apex point of peak height and
zero vertical velocity. This makes it convenient to define each hop as transition from
one apex state to the next, with the next state determined by the actual dynamics of
the system. This allows the control of the continuous dynamics of the system to be
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abstracted into a discrete problem: at a given apex point, some control input(s) should
be determined, to be applied during the upcoming step, in order that the system
dynamics result in the desired next apex state. As will be elaborated on later, an apex
state is generally defined by its apex height (peak centre of mass distance above ground
level) and horizontal velocity.

To address this control problem, the mapping between apex states, as a function of
the available inputs, is required. Previous researchers have developed various approx-
imations to the SLIP dynamics for this purpose, but the accuracy of these is limited
and deteriorates for more agile gaits. Another approach is to use numerical solutions,
which can be made (almost) exact through reducing the calculation timestep, but at
the cost of increasing computational expense. The problems with these approaches are
compounded by the fact that physical robots will tend to defy the idealised models on
which they are based, due to the inherent difficulty in modelling effects such as friction,
non-linear actuation, and addition of noise/measurement error.

1.2 Motivation

The particular approach taken in this work is motivated by the observation that any
controller that is dependent on an idealised model will degrade in performance for an
actual system which deviates from this. What is required is a controller which can ac-
curately control these complex dynamics, while remaining computationally lightweight.
A further goal would be to avoid being too dependent on the SLIP hopper, but rather
able to maintain good performance in the more realistic scenario of dynamics which
deviate from the idealised model. To attempt to achieve this, an alternative approach
will be taken focusing on a simple controller structure, taking inspiration from the early
controllers used by Raibert [2], which will be referred to in this thesis as “empirical”
controllers because they do not attempt to solve the dynamics directly. The controller
will be formulated through simple approximations to provide the structure of the con-
troller, giving a logical basis in theory, but actual value of the parameters within this
controller will be set by examining the results of previously completed steps. The mo-
tivation for such a strategy is the assumption that the controller values which would
have suitably predicted the preceding hops will make a good choice for controlling sub-
sequent hops. Simulations of simple or fundamental models will be used to develop
the controller and compare against the existing analytical approximations. A physical
robot will also be developed, to test and demonstrate the controller in more realistic
conditions.

1.3 Research Question

Given the rational outlined above, the research question to be posed is “can a discrete
feedback controller, derived from approximate dynamic models but tuned
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on-line, produce accurate hoping control of a small pneumatic robot”. To
answer this question, a self-tuning empirical controller will be developed and applied
to the control both apex height and velocity in simulation and a custom built physical
experimental hopper. In particular, the objective in developing this controller is to
outperform the analytical approximations available, even applied to the SLIP model
from which they were derived, while remaining computationally simple enough for
on-board implementation on low power hardware. To attempt to achieve this, the
controller will be designed to:

• contain only a small number of controller gains, which can be found by fitting
previously simulated data, and/or be updated on-line using the preceding steps

• include the ability track rapidly changing (agile) demands, outperforming the
available analytical approximations for the SLIP model

• avoid the large computational requirements of numerical approaches through a
simple algebraic form

1.4 Contributions

• The development of an adaptive empirical controller in the context of the control
of a hopping robot

• A demonstration of this controller both for height and velocity control, with a
direct comparison against the analytical approximations for controlling the SLIP
hopper in simulation

• The design and building of two physical robots, demonstrating one- and two-
dimensional hopping control in real time

1.5 Thesis Outline

In this thesis, the overall problem of control of a hopping robot is decomposed into
controllers for hopping height and forward velocity, first considering each separately
and then recombining them. After this introductory chapter and a literature review in
Chapter 2, the main structure and contributions are as follows.

Chapter 3 considers the task of apex height control, often neglected when studying the
lossless SLIP model. The primary contribution of this chapter is a simple but accurate
controller for the one-dimensional case of vertical hopping which is capable of agile
motion with changes in demand for every hop, together with a method for on-line tuning
of the control parameters. The controller is demonstrated in simulation and using
a physical experimental hopper, tracking large demand variations and automatically
adapting to changes in the environment.
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In Chapter 4 a similar approach is applied to velocity control of the archetypal SLIP
model for dynamic hopping and running. This contributes a pragmatic novel approach
the problem of forward velocity control in running, focusing on agile gaits with random
demand values. It combines a low computational cost with good control accuracy,
whilst providing benefits in terms of adapting to changes in the system and avoiding
the need to manually tune the controller. The proposed method is compared in detail
in simulation to existing analytical controller methods, with the comparison of these
methods against each other another contribution. Finally a physical experimental robot
is built to approximate the 2D SLIP hopper and the empirical controller, including self-
tuning, is demonstrated to successfully run on-board in real time.

Chapter 5 seeks to combine the preceding chapters to control a hopping gait that
varies in both apex height and forward velocity, contributing a simulation study into
the important question of whether two components can be treated as independent, as
is often assumed. It considers, in simulation, three possible approaches: a decoupled
controller assuming complete independence, a modified version based on further rea-
soning about the interacting dynamics, and the extreme case of a controller with a very
large number of empirically determined terms.

Finally, Chapter 6 concludes the thesis, collecting the key findings and discussing
possible areas for future work.

1.6 Publications

This thesis contains work which has lead to the following publications:

• M. F. Hale, J. L. du Bois, and P. Iravani, “A comparison of analytical and
empirical controllers for the slip hopper,” in 18th Annual Conference on Towards
Autonomous Robotic Systems, TAROS 2017, pp. 79–85, Springer Verlag, 2017.

• M. F. Hale, J. L. Du Bois, and P. Iravani, “Agile and Adaptive Hopping Height
Control for a Pneumatic Robot,” Proceedings - IEEE International Conference
on Robotics and Automation, pp. 5755–5760, 2018.

• M. F. Hale, and P. Iravani. “An Adaptive, Low Computational Cost, Hopper
Controller”, in peer review at time of writing.
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Chapter 2

Literature Review: Hopping
Robots

2.1 Introduction

This chapter will examine some of the previous related research. Legged robots can be
classified by the number of legs and the type of gait they use. Some multi-legged and
static walking robots will be briefly described for context, but the focus of this review
will be hopping robots aimed at the dynamic gaits discussed in the previous chap-
ter. Within these dynamic locomotion strategies, there a lot of focus on (asymptotic)
stability of steady gaits (e.g. [3–8]), where each step is the same length.

In order to realise the potential benefits of legged robots and traverse more difficult
terrain, such as limited, unevenly spaced footholds, the length of each step must be
controlled independently. Therefore a new target apex state to be reached in a single
hop. A gait that requires a different target state on each hop, as opposed to approaching
a steady state over several hops, will be termed “agile”, and particular emphasis will
be given below to controllers aiming to achieve this.

Therefore, this chapter will be divided into some background in walking robots in
Section 2.2, before discussing the modelling of hopping and running in Section 2.3, its
control in Section 2.4 and some examples of physical experimental hoppers are given
in Section 2.5. The research gap explored in this work is discussed in Section 2.6, with
some conclusions in Section 2.7.

2.2 Walking Robots

There has long been a desire to create machines which use legs, but the obvious chal-
lenge is to how to make them to move without falling over. This problem has been
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Figure 2-1: The Adaptive Suspension Vehicle which employed a statically stable alter-
nating tripod gait, with direction set by a human driver [12]

under consideration since at least the 1960s, when McGhee and Frank described sta-
ble “creeping” gaits for what they term “artificial quadrupeds” but we might consider
robots [9]. This involved keeping at least three feet in contact with the ground and
the centre of mass over the resulting support polygon at all times, and assuming the
movement is slow enough that the inertial forces can be ignored. This kind of gait was
employed in early legged robots, such as the Adaptive Suspension Vehicle [10] shown in
Fig. 2-1, and still in use in current research, thanks to it’s reliable stability (e.g. [11]).

Static gaits are simpler to compute and control, but in order for legged robots to
compete with wheeled or tracked methods, greater speed and energy efficiency are
required [13]. This can only be achieved by dynamic gaits, defined as those where the
movement is such that the inertial forces are significant – so that there are points in
the gait where should all the joints suddenly become locked, the robot would fall over.

Work at Honda (which would later became the famous ASIMO robot) was an early
attempt to make progress in this direction [14]. Their strategy was to take recorded
motion from human demonstrations, and play them back on their humanoid robot,
modulated by Zero Moment Point (ZMP) control to help maintain balance. ZMP is
an application of techniques from static walking to moderately dynamic motions by
including the effects of inertial forces, so that instead of the centre of mass remaining
directly above the foot support polygon, the “centre of pressure” must fall within it.
This has been successful for reasonable walking speeds and traversing stairs but still
requires large feet and high-gain position feedback control which limits the speed and
efficiency possible.

Another approach to the control of dynamic walking is that of “Virtual Model Control”,
employed on the Spring Flamingo [15] and related robots. Forces are computed based
on the interaction of virtual components, such as the “granny walker” spring damper
system to keep the body upright. The actual forces must be applied through the
real legs of the robot, and so the scheme requires constant contact with the ground
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Whereas the Leg Laboratory robots did a good job of 
demonstrated the feasibility of dynamically balanced legged 
systems, they had two primary limitations that would need to 
be addressed to build practical legged vehicles.  One is the 
need for on-board power so the robot could operate in the 
field without hoses and wires.  Another is the need for control 
algorithms that provide locomotion and stability on rough 
terrain.  We now turn to BigDog, a self-contained quadruped 
robot that uses many of the ideas and concepts of the Leg 
Laboratory robots, but also addresses the practical problems 
of onboard power and rough-terrain controls in order to move 
toward practical legged vehicles.  

 
Figure 2.  BigDog climbing a snow-covered hill during 
testing.  To see BigDog in action, click this link: 
www.BostonDynamics.com/dist/BigDog.wmv. 

3. BIGDOG 

BigDog is a legged robot under development at Boston 
Dynamics, with funding from DARPA.  The goal is to build 
unmanned legged vehicles with rough-terrain mobility 
superior to existing wheeled and tracked vehicles.  The ideal 
system would travel anywhere a person or animal could go 
using their legs, run for many hours at a time, and carry its 
own fuel and payload.  It would be smart enough to negotiate 
terrain with a minimum of human guidance and intervention.  
The BigDog robots we have built have taken steps toward 
these goals, though there remains a great deal of work to be 
done.  

BigDog has onboard systems that provide power, actuation, 
sensing, controls and communications.  The power supply is 
a water-cooled two-stroke internal combustion engine that 
delivers about 15 hp.  The engine drives a hydraulic pump 
which delivers high-pressure hydraulic oil through a system 
of filters, manifolds, accumulators and other plumbing to the 
robot’s leg actuators.  The actuators are low-friction 
hydraulic cylinders regulated by two-stage aerospace-quality 
servovalves.  Each actuator has sensors for joint position and 
force.  Each leg has 4 hydraulic actuators that power the 
joints, as well as a 5th passive degree of freedom.  See Figure 
3.  A heat-exchanger mounted on BigDog's body cools the 
hydraulic oil and a radiator cools the engine for sustained 
operation. 

An onboard computer controls BigDog's behavior, manages 
the sensors, and handles communications with a remote 

human operator.  The control computer also records large 
amounts of engineering data for performance analysis, failure 
analysis and operational support. 

BigDog has about 50 sensors. Inertial sensors measure the 
attitude and acceleration of the body, while joint sensors 
measure motion and force of the actuators working at the 
joints.  The onboard computer integrates information from 
these sensors to provide estimates of how BigDog is moving 
in space.  Other sensors monitor BigDog's homeostasis: 
hydraulic pressure, flow and temperature, engine speed and 
temperature, and the like.   

The onboard computer performs both low-level and high-
level control functions.  The low-level control system servos 
positions and forces at the joints.  The high-level control 
system coordinates behavior of the legs to regulate the 
velocity, attitude and altitude of the body during locomotion.  
The control system also regulates ground interaction forces to 
maintain support, propulsion and traction. 

BigDog has a variety of locomotion behaviors.  It can stand 
up, squat down, walk with a crawling gait that lifts just one 
leg at a time, walk with a trotting gait that lifts diagonal legs 
in pairs, trot with a running gait that includes a flight phase, 
and bound in a special gallop gait.  Travel speed for the crawl 
is about 0.2 m/s, for the trot is about 1.6 m/s (3.5 mph), for 
the running trot is about 2 m/s (4.4 mph) and BigDog briefly 
exceeded 3.1 m/s (7 mph) while bounding in the laboratory.   

BigDog weighs about 109 kg (240 lbs), is about 1 meter tall, 
1.1 meters long, and 0.3 m wide.   

BigDog is usually driven by a human operator who works 
through an operator control unit (OCU) that communicates 
with the robot via IP radios.  The operator uses the OCU to 
provide high-level steering and speed input to guide the robot 
along its path and to control the speed of travel.  The operator 
can also tell the robot to start or stop its engine, stand up, 
squat down, walk, trot, or jog.  A visual display provides the 
operator operational and engineering data.  The operator only 
provides high-level input, leaving BigDog's onboard control 
system to operate the legs, provide stability on rough terrain, 
and reflex responses to external disturbances. 

 Figure 3.  Illustration showing BigDog’s major components.  
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(a) Fig. 7. The proposed low level controller is applied on the Atlas robot to
turn a valve in the DRC Trials.

such slip occurs, we need to inform the IK controller. This
issue is analogous the root position divergence problem in
the walking case, but for orientation instead. In order to
correctly place the hands on the next rung to recover from
such rotations, we must rotate the IK solution to match the
measured orientation. We therefore periodically rotate the IK
solution such that the feet are aligned with the measured feet
orientations, and then the robot will reorient its upper body
towards the ladder and correctly reach targets in the real
world. It would have been preferable to update the orien-
tation continuously, but periodic updates were easier from
a software engineering perspective. Additionally, periodic
updates are less susceptible to the “chase condition” problem
described in Section V-B.1. This reorienting serves a similar
purpose to Eq. 13, but for rotation instead of translation. To
avoid chase conditions, this modification is disabled if there
is not significant (about 20%) weight on the foot.

1) Elbow management: We climb the ladder by placing
the hands (hooks made from pipes) on the steps. The robot’s
shoulders are nearly as wide as the railings, so the necessity
of shifting weight from side to side results in a significant
danger of bumping the arms on the railings. We avoid such
collisions by estimating the railing location based on the hand
location (based on the assumption that the hand is pushed up
against the side of the rung) and adding inequality constraints
to the IK using Eq. 12. The inequality constraints limit how
far outward each elbow can move in the lateral direction.
Additionally, when we wish to intentionally lean on the rail-
ing, we provide a desired elbow location (in only the lateral
direction) with a low weight. To prevent the problem from
becoming over-constrained by elbow management, we use
low weights for commanding hand orientation. Specifically,
we use Eq. 15 to rotate the hand orientation equations into
a basis containing the hand axis, a pitch-like vector, and a
yaw-like vector. We use a very low, but non-linear weight
for rotation about the hand axis (roll-like), allowing it roll
about 45 degrees nearly freely, but preventing it from rolling
much farther.

2) Hand to CoM integration: Our forward kinematics
based on the robot model is inaccurate. One result is that if

the hands are resting on one rung and the robot steps up one
step on the ladder, even though the true position of the hands
will not have moved, the measured position will have moved
several centimeters. If not accounted for, this will push the
CoM far from the desired location, eventually resulting in
failure. We therefore introduce an integrator that gradually
adjusts the desired position of both hands in the horizontal
plane based on the deviation between the measured and
desired CoM position similar to Section V-A.3. Essentially,
we are using the arms to pull or push the CoM into the
desired position. To avoid unintentionally rotating the robot,
this integrator is only active while both hands are in contact
with the rung.

VI. DISCUSSION AND FUTURE WORK

During early development on the real robot, we found
using ID alone is insufficient to generate the desired motions
on the physical robot, especially for the swing leg and arms.
We attribute this to modeling errors and joint stiction and
friction. Some control based on kinematics is necessary to
achieve accurate foot and hand placement. We have briefly
experimented with naively integrating desired accelerations
from ID into desired velocity and position, which resulted
in unstable overall behaviors. We did not investigate this
further for the sake of development time, but we observed
qualitatively the same behaviors in simulation when 20ms
delays of the torque command were added. Thus, a separate
IK pass was introduced as a temporary solution. Incon-
sistency between ID and IK solutions becomes our major
concern. A failure mode that we have observed is due to
IK and ID having separate constraints. For example, when
ID is unable to produce the demanded CoM acceleration
due to limited friction, CoM will physically diverge from
the desired trajectory. However, IK is unaware of such
constraints, and it will keep generating physically unrealistic
answers. We have also experimented with heavily biasing
IK solutions to match the acceleration from ID, which also
resulted in unstable behaviors. This, in the limit, is equivalent
to integrating the acceleration. We think one approach to
resolve this issue is to replace our current ID/IK combination
with Receding Horizon Control on the full dynamic model
similar to [23], which is close to, but not yet, computationally
tractable in a real-time setting.

The current implementation works well for static behav-
iors. Being static allows us to use various integrators to
compensate for modeling errors easily. It also greatly reduces
the effects of all kinds of delays. We want to achieve more
dynamic behaviors in the near future to gain speed and
improve stability. Dynamic walking is one of our top priority
goals. Modeling errors and delays stopped our early attempt
to walk dynamically with the walking controller presented
in [3]. The high level controller needs to rapidly re-optimize
foot step timing and location in a receding horizon fashion to
account for tracking errors and perturbation. We are actively
experimenting with explicitly accounting for torque delays
in our inverse dynamics formulation. The current low level
controllers are optimizing greedily for the current time step.
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(b)

Figure 2-2: Two walking robots made by Boston Dynamics: (a) BigDog [17] and (b)
ATLAS used as a research platform and shown competing in the DARPA Robotics
Challenge [18]

through large feet. Through various algorithms to select and tune the various virtual
components, steady state walking over rough ground and up and down slopes was
achieved [16].

Various fully actuated walking robots and their control continue to be an area of ac-
tive development, notably those build by Boston Dynamics, such as BigDog [17] and
ATLAS [18], shown in Fig. 2-2. A focus on practical application to real world has
been driven by private investment and the DARPA Robotics Challenge in 2013 and
2015, although challenges in autonomy in terms of energy and control remain. Boston
Dynamics have recently produced some exciting videos of what appears to be dynamic
walking and trotting, but as a private venture there is little available detail on how this
is achieved [19].

2.3 Modelling of Hopping and Running

While dynamic walking offers many improvements over statically stable gaits, animals
demonstrate much more impressive hopping and running gaits. These are defined
by the introduction of a phase without any contact with the ground, and offer the
opportunity to take advantage of many of the potential benefits of legged robots in
terms of traversing discontinuous terrain with large gaps at high speed, but precise
control over velocity in flight is required.

In hopping, as opposed to running, the same foot is used in each stance phase. This
makes such gaits by their nature highly dynamic, requiring a long flight phase to
reposition the foot in order to make progress, and it is common to also rely only on
dynamic stability even during the stance phase, with the foot approximating a point
contact that cannot apply any ankle torque. These dynamics are complex, and there
is a diverse range of animals (and to some extent robots) that apply these gaits, but a
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Figure 2-3: The Spring Loaded Inverted Pendulum (SLIP) model [20]

surprisingly simple model has been found which encapsulates much of this complexity.
The Spring Loaded Inverted Pendulum (SLIP) [20], shown in figure 2-3, has become the
standard model for investigating monopod locomotion in nature and robotics. Inspired
by the observation that the legs of running animals compress like a spring, this model
consists of a single point mass representing the body, with the leg modelled as a simple
massless spring. While not in contact with the ground (flight phase) the body moves
along a ballistic path, and when the foot contacts the ground (stance phase) the spring
is compressed and the body pivots about the foot. During stance, the only forces on
the body are the spring force and gravity.

A review of the literature has found that the SLIP model, or variants of it, is dominant
for the simulation of hopping and running robots. The remainder of this section will
discuss some of the many studies making use of the model, and the various additions
and alterations to the basic model they have made, as summarised in Table 2.1.

One shortcoming of the SLIP model is that it is energy conservative, which is clearly not
realistic as any physical system will experience energy losses. A popular way to model
this is to add a linear damper into the leg, in parallel with the spring [23, 30, 46, 47].
This is a simple friction model, which is straightforward to implement, adds a single
extra parameter and is easy to understand. Losses can also be introduced by including
a mass at the foot [35, 36], so the kinetic energy associated with it is lost at the
moment of impact when the foot immediately comes to rest. This has some physical
plausibility, and the modelled foot mass can be given a realistic value, but perhaps
does not encapsulate all the energy losses.

The SLIP model can also be extended by adding actuation, which otherwise acts pas-
sively during the stance phase. This can be linked to the introduction of losses, since
any non-conservative model will require actuation to compensate for losses and allow
the hopping to continue. Actuation can also be added to a lossless model, however,
to move the hopper between energy levels or reject disturbances that change the en-
ergy level, such as ground height changes. There are various forms such actuation
can take. An actuator can be added in series with the leg spring (between it and the
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Table 2.1: Various studies which have used the SLIP model, comparing the modifica-
tions and additions each has included.
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Other additions
to model

Ahmadi, 1997[21] Body rotation
Hyon, 2002[4] Body rotation
Schmitt, 2006[22]
Seipel, 2007[23]
Schmitt, 2009[24]
Carver, 2009[25] Extended to 3D
Poulakakis, 2009[26] Body rotation
Tamaddoni, 2010[27]
Karssen, 2011[28] Non-linear leg spring
Karssen, 2011[29]
Uyanik, 2011[30]
Vejdani, 2012[31]
Vejdani, 2012[31] Leg inertia in flight,

limited motor torque
Yu, 2012[32]
Piovan, 2012[33]
Arslan, 2012[34]
Rutschmann, 2012[35]
Byl, 2012[36]
Wensing, 2013[37] Extended to 3D
Wu, 2013[38] Extended to 3D
Haitao, 2013[39] Non-linear leg spring
Piovan, 2013[40]
Palmer, 2014[41]
Dadashzadeh, 2014[42]
Shemer, 2014[6]
Piovan, 2015[43]
Piovan, 2016[44]
Calisti, 2016[45] Hydrodynamics

effects, visous losses
Shemer, 2017[46]
Secer, 2018[47]
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body mass), in which case the input is defined by the displacement of this actuator
over time [21, 31, 33, 35, 36, 40, 43–45]. Alternatively, an actuator can be added in
parallel with the leg spring, with the additional force specified [26, 47]. In either case,
it is easy to envisage the physical application, with either position controlled or force
controlled actuators integrated into the leg design. Another method to add energy is
to allow the leg to take a different length at touchdown compared to liftoff [30, 31, 46].
This can be achieved in practice by pre-compressing the leg spring during flight, with
some form of latching mechanism to allow this energy to be released during the sub-
sequent stance phase. A somewhat less physically plausible method to add energy is
to allow the leg spring to take a different stiffness value when compressing compared
to decompressing, with an instantaneous change in stiffness at the point of maximum
compression [25, 32, 34]. The above actuators have all acted linearly along the length
of the leg, but it is also possible to apply a torque at the hip joint during stance in order
to add energy, either in combination with a leg actuator [4, 42], or alone [23]. This
makes good sense as the leg angle will need to be controlled during flight in any case,
in practice requiring actuation, and it may also be mechanically more straightforward
than a linear actuator.

The SLIP dynamics can also be extended in several other ways. The point mass
of the body is a clear simplification, and the rotation of the body can be added as
an additional degree of freedom to be controlled [4, 21, 26]. The spring can also be
modified to follow some non-linear dynamics [28, 39], which may change the behaviour
and stability of the system. Considering the lateral motion of the robot extends the
model into three dimensions, a key consideration for more practical robots [25, 37, 38].
Finally, Calisti et al.have taken a unique direction, considering a underwater robot
hopping along the bottom by adding hydrodynamic effects, including drag on the body,
to the SLIP model [45].

In several cases, the gait of a SLIP hopper has been used in order to control a more
complex morphology, where the more complex robot is forced to track the path pre-
dicted by the simple model [27, 37, 40, 47]. This is sometimes called using the SLIP as
an anchor, and shows the importance of controllers for the model, and their potential
for wider utility. Overall, it is clear that this is a very widely used model, the control
of which will be important for future robotic applications.

2.4 Control of Hopping and Running

The use of spring-like legs is likely to be required in order to achieve the efficiency
needed for mobile robot applications, but this same compliance further complicates the
control problem. The seminal work work of Raibert [2] in this direction has inspired
various strands of research in the subsequent decades, but these robots remain limited
to research labs (or, in many cases, to simulation).

Despite the apparent simplicity of the SLIP model, there is no analytical solution to
the stance phase dynamics and must be solved numerically. This has been the primary
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obstacle for controllers, which must predict what input values (usually touchdown angle
and/or force input during stance) will produce the liftoff conditions required to achieve
a desired trajectory. To simplify the control problem, Raibert proposed a strategy
to separate it independent sub-problems, to create the “three part controller” [48].
Firstly, forward velocity is controlled by the placement of the foot relative to the body
at touchdown (i.e. the touchdown angle). Secondly, the body attitude is corrected by
applying a hip torque during stance to remove unwanted angular momentum, Thirdly,
the apex height is controlled by leg thrust. The decoupling assumption is that these
three problems can be considered can be assumed independent, so they can be derived
and computed separately. The majority of work since has continued with this assump-
tion, although it is often not explicitly stated. This is in no small part due to the
use of the SLIP model, which is used to investigate forward velocity control, but its
lossless nature means height control can be ignored and a point mass body means there
is no body orientation to consider. In order be applied to physical robots, velocity a
controller for the SLIP model will need to be applied in conjunction with one for apex
height and possibly body attitude.

The following subsections will review some proposed controllers for hopping, organised
by some overall themes to the approaches that have been taken. These controllers
are equally applicable to monopod hopping and biped running, which both feature
alternating between a single foot stance and a flight phase. In general, the task these
controllers attempt to solve is to select the leg angle at touchdown in order that the
stance dynamics (usually assumed to be the SLIP model) lead to the desired forward
velocity on the next flight phase.

2.4.1 Finding Stable Gaits

Seyfarth et al. [49] demonstrated the existence of stable running gaits for certain combi-
nations of leg stiffness and forward speed, where a constant touchdown angle will allow
the hopper to naturally recover from small deviations. The stability of running gaits
is expressed by computing the apex-to-apex return map, which plots the next apex
state as a function of the current apex state, which provides a convenient graphical
representation to examine stability, such as those shown in figure 2-4.

These stable gaits have the obvious attraction of not requiring a controller to compute
the touchdown angle, as it is the same for each step, however the gaits must be carefully
chosen to be one of these particular stable combinations of parameters. Additionally,
the initial conditions must not fall outside the stable region, and disturbances must be
small enough to be rejected. To achieve gaits free from these restrictions, a controller
is required in order to select the appropriate touchdown angle, given the current state.

An extension to this idea is that of “Controlled Passive Dynamic Running”, where the
robot is designed to hop passively, but feedback control around this point is applied
encourage stability as well as make up for energy losses [51].

One method to increase the basin of attraction (the region of state space where the
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Figure 2-4: Some examples of (a) unstable and (b-c) stable apex return maps [50]

system can be started and will converge to the stable fixed point) is “Swing Leg Retrac-
tion” (SLR) (e.g. [50, 52]). In this method, the leg angle is varied as function of time
during stance, which effectively results in the angle at touchdown being determined by
the apex height, which is directly linked to time in flight phase. This has been shown to
not only enlarge the basin of attraction but also produce faster convergence to a stable
steady state hopping and stable gaits that otherwise are unstable [52]. The speed at
which the leg should be retracted is generally found through numerical simulations,
although some work has looked at producing analytical methods for selecting these
parameters [6].

2.4.2 Using Analytical Approximations

To assist in the development of controllers, multiple researchers have developed ap-
proximations to the stance dynamics that do have closed form solutions.

For example, Geyer et al. have derived an approximation assuming small angular sweep
and small spring compression [53]. Another analytical approximation from Saranl et
al. [54] assumes conservation of angular momentum, which requires that the effect of
gravity on the rotation are neglected.

Yu et al. have produced a more accurate approximation using a truncated Taylor se-
ries expansion [55]. This again makes the assumption that the spring compression is
a relatively small fraction of the leg length (which will make the approximation more
applicable to a stiff leg spring), but the more elaborate mathematical treatment is
shown through simulation to perform better than previous approximations for larger
touchdown angles and in particular asymmetric cases which are inherent to large ve-
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locity changes and so required for agile gaits. Subsequently, the same authors applied
this approximation to create a controller and tested in simulation, and is shown to
successfully vary the forward velocity of a SLIP model on level ground [32].

Another approximation was derived by Shen and Seipel [56] using the a assumptions
that “gravity acts mostly along the leg” and “denominators involving leg length can
be approximated as constant”. This has broken the general chronological pattern of
increasing algebraic complexity for more accurate results over time, instead giving a
highly simplified set of equations but with the advantage of an entirely linear approx-
imation to the stance phase which capture the qualitative characteristics of the SLIP
model. Although the stated aim of this piecewise-linear formulation is to allow for the
application of controllers, this has not so far been demonstrated.

There have also been many studies, focused primarily on implementation, that have
used control strategies derived from more crude approximations. One approach is
to simply neglect the gravity term during stance, making the dynamics analytically
solvable [7, 57]. An even simpler approach is the “Ball-Hopper” or “instantaneous
SLIP” model, where the leg stiffness is taken as infinite, e.g. [5, 6, 34, 58]. The result is
an instantaneous stance phase and the robot rebounds as one would expect of an ball
bouncing off a hard, angled surface.

A controller based on the instantaneous impact model was used “with ad hoc but phys-
ically motivated corrections” by Zeglin and Brown [59]. This simplified model is used
for a graph search to find suitable trajectories, creating a feedforward controller, and is
combined with a feedback controller to keep the robot close to the computed trajectory.
The graph search, being computationally expensive, is not performed on every hop, but
only only if the actual position becomes too far from the desired trajectory, in which
case a new trajectory must be computed starting at the current position.

Arslan and Saranl [34] utilised the Ball-Hopper model to create multi-step plans over
height varying terrain with gaps, combined with their own more complex approxima-
tion [54] in the step-to-step control of touchdown angle for a simulated SLIP hopper.
The resulting controller must re-plan on each step to make up for the differences be-
tween the models.

Shemer and Degani[46] used the instantaneous SLIP model with the addition of a
damping term to create a controller they call “polynomial energy insertion”. This is
aimed at stabilising a constant forward velocity subject to changes in the ground height,
requiring deadbeat control to reject changes in a single step. In their experimental
robot, the ParkourBot, the amount of energy added during a stance phase is determined
by retracting the leg during the preceding flight and they found an approximately linear
relationship between apex height and the required leg compression. This results in a
polynomial relationship between flight time from apex to touchdown, from which the
method takes its name.

All these approximations are most accurate for small touchdown and liftoff angles,
and for symmetrical gaits (where these two angles are similar in magnitude). This
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means they are suitable for controlling steady state gaits at relatively low speeds,
but performance rapidly degrades for more agile motions, with large changes in speed
requiring large angles and an asymmetric stance phase.

2.4.3 Using Numerical Models

Another approach is use a numerical simulation to solve the stance phase dynamics,
possibly for several steps into the future, and selecting inputs which minimise some
cost function in this simulation. This is known as Model Predictive Control (MPC).
For example, Rutschmann et al. [35] investigate the critical choice of the number of
future steps to simulate, which is a compromise between accuracy of the controller and
time to execute because of the computationally intensive numerical simulation. Using
a desktop computer, they find the MPC optimisation requires in the order of a few
hundred milliseconds (carried out during the flight phase) to achieve foot placement
within a centimetre of target.

On-line numerical simulations are used by Piovan and Byl [43] to choose actuator
displacement during stance phase for a simulated SLIP hopper, in order to reach a
desired liftoff state. Since the controller is to be operated in real time during the stance
phase, a low order integration method is used which is fast to compute, accepting a
reduction in accuracy.

In a recent extension into a three-dimensional simulation, Wu and Geyer [38] numer-
ically simulated the system to find a discretised solution for the result of all possible
landing angles. They state that this computation took “less than a day on a mod-
ern desktop PC”. This then effectively becomes a lookup table, with the controller
interpolating between points to achieve a desired next apex state. Their simulations
demonstrated robustness to ground height disturbances of up to 30% of leg length.

Offline simulation of the SLIP dynamics was also used by Wensing and Orin [37, 60],
in this case to find periodic gaits which were then applied to a more complex humanoid
model in simulation. The robot is stabilised using linearised models around these
periodic gaits, again computed numerically offline. An obstacle to the physical im-
plementation of strategies using prior simulations to create lookup tables or linearised
controllers is the reliance on a highly accurate simulation in order for the result to be
applicable to the real world. So, although still only in simulation, the fact a controller
derived from the SLIP model was successfully applied to a much higher degree of free-
dom biped is in itself an important and promising result, and supports further work
on SLIP hopper control.

Another approach for implementing the results of off-line simulation is to fit an ap-
proximated function to them, allowing for fast subsequent on-line calculation using
this function. Yim and Fearing [61] implement this, using a Taylor series polynomial
fitted to a simulation of their physical SALTO robot. This work is notable for con-
sidering both the leg force input and touchdown angle in three-dimensional hopping
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Fig. 9: The robot jumps up onto a chair and desk (trajectory in
blue), then back down (not shown here, but shown in Fig. 10).

-1.5

-1

-0.5

0

0.5

X,
Y 

Po
si

tio
n 

[m
]

Chair and Desk Trajectory

robot stance x
robot stance y
target x
target y

0 2 4 6 8 10 12 14 16
Time [s]

0

0.5

1

1.5

2

H
ei

gh
t [

m
]

Chair
Desk

surface z
robot z
target z

A)

-0.4
-0.2

0
0.2

X 
er

ro
r [

m
]

Error

Chair

-0.4
-0.2

0
0.2
0.4

Y 
er

ro
r [

m
] Chair

Desk

0 5 10 15 20 25
Step number

-0.6
-0.4
-0.2

0
0.2

Z 
er

ro
r [

m
/s

]

B)

Fig. 10: A) Foot placements and height of the robot as it jumps
onto the chair and desk and then back down.
B) Foot placement and voz error. Grey bars show foot placement
error for the standard deviation of the random walk angle error. To
avoid falling, foot placement error cannot cross furniture edges.
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Fig. 11: Hopping on a moving platform.

D. Jumping on a moving platform

Finally, the deadbeat foot placement hopping controller
is quick to compute and is robust to moderate ground
disturbances. Due to its quick computation, it is able to
quickly retarget to a new desired touchdown location. To
demonstrate this, we outfitted a hand-carried wooden board
with motion capture markers and commanded the robot to
jump to a point on the board. The robot was commanded
to alternate between the ground at (0,0,0) and the point on
the board. The trajectories of the point on the board and the
robot foot placements are plotted in Fig. 11.

The robot converged quickly to alternating between (0,0,0)
and the board. At nineteen seconds, the platform was lifted
off the ground. The robot completed two jumps from the
ground to the board before being captured on top of the board
at 22 seconds. The robot stabilized on top of the moving
board until the board was placed on the ground and moved
rapidly to the side at 33 seconds. The robot jumped between
(0,0,0) and board twice before the aggressive horizontal jump
length caused the robot to slip and fall over.

2235

Figure 2-5: Impressive agility demonstrated by the SALTO hopper, controlled based
on a function fitted to pre-computed simulation data [61]

and for highly agile hopping, and particularly for the remarkably impressive results
demonstrated on a physical robot, such as in Fig. 2-5.

2.4.4 Modifying the Model Dynamics

Piovan and Byl [33, 40] have taken an unusual approach of “Enforced Symmetry”,
whereby instead of attempting to solve the SLIP dynamics, the non-linear term is
instead cancelled out by providing an input to produce an identical but opposite force.
Then an exact analytical solution for leg length during stance can be found, although
the angular displacement must still be approximated. They have applied this approach
in simulation to an actuated SLIP hopper, maintaining a steady gait over uneven terrain
or after perturbations.

2.4.5 Approaches Without Solving Model Dynamics

The approaches above have taken different approaches to the thorny problem that the
stance phase SLIP dynamics have no closed form analytical solution, making control of
this model difficult. However, Raibert demonstrated computationally simple controllers
(a strict requirement given 1980s computer hardware) successfully controlling dynamic
gaits in real time without considering the SLIP model dynamics at all – in fact the SLIP
model was only proposed by Blickhan [20] a few years after Raibert’s classic book [2].

For forward velocity control, this was achieved by estimating the “CG-footprint”, the
section of ground covered by the centre of mass during stance and placing the food
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in the middle of this in order to produce a symmetrical stance phase and so maintain
a steady velocity. The foot position was moved back or forward from this point by a
proportional term acting on the error in velocity, with the gain tuned manually and
results showing the velocity converge on the demand within a few steps [2]. Although
Raibert’s controller has sometimes been applied directly, such as in the recent SALTO
robot [62], this overall approach has largely been neglected by researchers in the years
since.

One other technique that has avoided attempting to directly solve the SLIP dynamics is
the “Biologically Inspired Deadbead” (BID) controller. Inspired by the overall shape of
the time plots for the ground reaction force in biological data, Englsberger et al.[63, 64]
take the approach of fitting low-order polynomials to the force (and thus motion) profile
expected during stance. These polynomials can be solved by setting the boundary
conditions based on the desired future states, allowing for an analytical solution. The
advantage of this approach is its biological plausibility, and that it avoids the difficult
problem of solving the SLIP dynamics. However, this model does not take into account
any spring-like action in the leg, but instead the required force profile is determined by
the controller and (in simulation) applied entirely by the leg actuators. For practical
implementation, this would require very high-speed force control, and does not utilise
the efficiency advantage offered by elastic energy storage and release.

2.5 Physical Hopping Robots

In order to validate simulations and test control strategies, physical robots must be
built, but of course with the addition of real-world effects such as friction and sensor
noise. The have been various research robots built for this purpose [65]. Below are
described some of the most important which take a similar form to the SLIP hopper
model, for the purpose of testing and verifying hopping control strategies.

In his pioneering work, Raibert built two-dimensional and three-dimensional hop-
pers [48], shown in figure 2-6. These operated using a pneumatic leg, with the two-
dimensional version constrained by a long boom. The body was designed to have a
large inertia compared to the leg to allow a hip actuator to move the leg while in the
air, without too much effect on the body orientation, a feature seen in many later
robots also. Power and connection to an external control computer was provided via
an umbilical cable.

Brown and Zeglin developed the “Bow Leg Hopper” in the late nineties [58], shown in
figure 2-7. In this design the leg comprises a spring, shaped like an archer’s bow, in
which energy can be stored during the flight phase by a string which is mechanically
released upon touchdown. Actuation is provided by electric servos. The robot is
attached to the end of a boom, to create a planar motion, and a bungee cord pulling the
boom upwards reduces the effective gravity experienced by the robot. This leg actuator
design was further developed and integrated into the “Parkourbot” design, which has
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Figure 2-6: Raibert’s hoppers, (a) two-dimensional version and (b) three-dimensional
version.

Figure 2-7: The Bow Leg Hopper [58], photo from [66]
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been demonstrated operating on an inclined table to create a two dimensional reduced
gravity environment [5].

The ARL-monopod [67] and later ARL-monopod II [51, 68], shown in Fig. 2-8, are
electrically actuated planar hoppers. The later design was refined using leg and hip
springs to dramatically improve the energy efficiency by exploiting the natural dynamics
of the robot. The controller attempts to keep the robot in the centre of a treadmill to
simulate maintaining a forward running speed. The behaviour for such a system are
similar to running on fixed ground for steady state running, but the transient dynamics
of changing speed or direction are not well represented.

The ATRIAS monopod is deliberately designed to mimic the SLIP dynamics by con-
centrating the mass at the body and having a sprung leg. Initially a monopod was
build [69], and developed into a biped runner [70, 71].

In just the last few years, the SALTO robot shown in Fig. 2-9 has demonstrated some
very impressive developments. The robot is powered in stance by an electric motor
connected via an elastic element to a carefully designed leg linkage mechanism which
modulates the power output over the stroke [72]. The lightweight design has achieved
impressively large hops over 1 m high with a leg length of 14.4 cm [62]. Orientation in
flight is controlled via small thrusters and a reaction wheel.

2.6 Research Gap

This review has shown that the control of hopping, particularly the SLIP model, is an
important area of research in order for legged locomotion in robots to progress. Pre-
viously proposed controllers have been based around solutions to the SLIP dynamics,
either through approximation or numerical methods. However, such methods rely not
only on the accuracy of the approximation, but also the system’s adherence to the
idealised SLIP dynamics in order to be successful – physical robots will inevitably de-
viate from this, and controller performance will suffer. This leads to the research gap
identified for this work: an alternative approach to the controller would be to select
or tune controller parameters based on already completed steps. Thus, the novelty
of this work lies in the development and application, in simulation and hardware, of
an adaptive controller like this to the field of dynamic hopping control, which has not
been previously investigated.

2.7 Conclusion

The SLIP model has been extensively used by many researches because it captures the
fundamentals of legged running in a simple model. Despite this simplicity, a complete
solution to the dynamics is not available, and approximations are often used. The use-

20



robot with knees, which was able to walk down shallow inclines, driven entirelyby gravity without any actuation.In [5] we show that at 1:2m=s the ARL Monopod uses about half of itstotal energy expenditure for swinging the leg. Much of this energy can be saved,since passive dynamics can provide the leg swing motion via a spring connectingthe leg and the body at the hip joint as proposed in [10]. In our previous work[1], we presented a new control strategy to stabilize passive dynamic runningof a one-legged robot. An alternative approach for controlling the same robotsystem with compliant leg and hip was proposed by Fran�cois and Samson [3].The controller is derived based on a simpli�ed and linearized dynamic modelof the robot, and was shown to be both stable and robust in simulations.The current paper is devoted to the experimental validation of a controller[1] proposed earlier. In Sec. 2 the robot model and the design modi�cations tothe ARLMonopod are described which give rise to the \ARLMonopod II." Thehip and leg controllers are described in Sec. 3, together with the experimentalresults. Finally, Sec. 4 computes and discusses the energy expenditure as wellas the speci�c resistance.2. ARL Monopod II
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ftFigure 1. A sketch of ARL Monopod II with important variables, and a photo.The ARL Monopod II is constraint to move in a vertical plane and consistsof a body which is connected to a prismatic leg at the hip joint. A sketch ofthe mechanical system showing its degrees of freedom, together with a photois presented in Fig. 1. The system has a total of seven degrees of freedom,including the leg length (r), leg actuator displacement (pl), hip actuator dis-placement (ph), leg angle (�), and three degrees of freedom of the body (x; z;and body pitch angle �). Due to kinematic constraints, not all of them are free
Figure 2-8: The ARL-monopod II [68].

Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P

Duncan W. Haldane*, Justin K. Yim*, and Ronald S. Fearing

Abstract— In this work we present a new robotic system,
Salto-1P, for exploring extreme jumping locomotion. Salto-1P
weighs 0.098 kg, and has an active leg length of 14.4 cm.
The robot is able to perform a standing vertical leap of 1.25
m, continuously hop to heights over 1 m, and jump over 2
m horizontally. Salto-1P uses aerodynamic thrusters and an
inertial tail to control its attitude in the air. A linearized Raibert
step controller was sufficient to enable unconstrained in-place
hopping and forwards-backwards locomotion with external
position feedback. We present studies of extreme jumping
locomotion in which the robot spends just 7.7% of its time on
the ground, experiencing accelerations of 14 times earth gravity
in its stance phase. An experimentally collected dataset of 772
observed jumps was used to establish the range of achievable
horizontal and vertical impulses for Salto-1P.

I. INTRODUCTION

Saltatorial animals (animals that locomote by jumping)
such as bushbabies can move through complex, usually arbo-
real environments by chaining together large (over 2 meter)
jumps. This saltatorial mode of locomotion is interesting for
robotics because it enables rapid movement through complex
terrain and added flexibility for how the robot interacts with
the environment. The farther a robot can jump the better
it can discretize its environment, clearing larger gaps and
obstacles and making path-planning easier [7]. Prior work
has shown that a robot that can perform two high-amplitude
jumps in succession was able to spring off a wall to gain
energy and height [12]. A robot proficient at saltatorial
locomotion would be able to move through its environment
in new and previously insupposable ways.

Extreme saltatorial locomotion is characterized by large
jumps (over 1m) and short stance times which presents
some challenges. To explore this mode of locomotion a
robot needs to be able to jump high, do it repeatedly, and
control its landings. Should those criteria be met, extreme
saltatorial locomotion may still present unknown challenges
and properties.

For instance: duty factor is defined as the ratio of time
spent on the ground to the total stride duration, and is
frequently used to assess the dynamic character of a gait.

This material is based upon work supported by the National Science
Foundation under IGERT Grant No. DGE-0903711, the NSF GRFP, NSF
CMMI 1549667, and the United States Army Research Laboratory under
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Fig. 1: Photograph of Salto-1P with thrusters, fully crouched.
Photo credit: Ethan Schaler.

Typical duty factors for running animals range from 0.36-
0.5 [10], and most running robots have a duty factor of
approximately 0.5. The robot developed in this work had a
duty factor as low as 0.077, lower than the lowest observed
duty factor for a single limb of a cheetah running at top
speed [15]. The accelerations the robot experienced in stance
repeatedly exceeded 14 times earth gravity.

There have been many high performance legged robots,
but none that are sufficiently specialized for the study of
extreme saltatorial locomotion. Power-autonomous running
robots capable of repeated jumping [17], [5], [11], [14],
[19], [24], [34] have not demonstrated the ability to jump
more than 0.5m in height (except Salto-1P (this work)). The
jump height of these robots is on-par with their characteristic
dimensions, and their relatively small maximal jumps do
not enable the agile locomotion proposed by Campana and
Laumond [7].

The highest jumping robots explosively release pre-stored
energy to power their jumps. This stored energy can be a
chemical propellant in robots that use literal explosions to
jump, such as the Sandia hopper [31] or the SandFlea from
Boston Dynamics. Other high-jumping robots store energy
in a parallel-elastic leg mechanism, and use a mechanical

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
September 24–28, 2017, Vancouver, BC, Canada

978-1-5386-2682-5/17/$31.00 ©2017 IEEE 3345

Figure 2-9: The SALTO hopper [62]
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fulness of this model and the control strategies developed for it have been demonstrated
in real hardware, primarily in two-dimensional hoppers.

The available approximations are most accurate for small angles and symmetrical gaits,
and most research has been concentrated on maintaining stable steady gaits. For
more agile motion, with large angles and an asymmetric stance phase, the non-linear
terms become more important and the approximations are less accurate. Recently,
improvements in computing power have inspired attempts to perform real-time control
using numerical simulations. Difficulty in implementing this using on-board hardware
leads to the use of pre-computed simulations saved as lookup tables or fitted functions.

There is scope to further develop control strategies in particular for agile hopping, where
the robot can vary its forward speed on every hop. In order to be of use in real systems,
these must be simple enough to operate in real time on hardware that can be carried
on-board a robot. Building on the work described above, this may be be approached
by attempting to find more accurate approximations, or use numerical simulations with
larger timesteps. However, the approach in this thesis has been inspired by how much
Raibert’s hopping controller achieved without this kind of analysis of the SLIP model.
Similar simple controllers will be derived, exploring a new approach how they can be
tuned and updated in real time. The resulting controller will seek to overcome or avoid
the primary weaknesses of the other approaches, namely:

• provide good accuracy, even for agile gaits, to outperform analytical approxima-
tion methods

• be low in computation cost to provide a benefit over on-line numerical approaches

• use automatic tuning to make for simpler real-world implementation where system
dynamics and parameters are uncertain
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Chapter 3

Control of Apex Height in
Vertical Hopping

Consider yourself (or a robot) running across a rubble-strewn environment, where each
footstep position must be controlled to avoid dangerous material or gaps in the surface.
In order to do this, the distance between each step must in turn be controlled. For
instance, imagine that, while in the air, you see that your next bound needs to clear
a particularly large gap. You must ensure your foot strikes the ground at the correct
angle and subsequently apply the correct force during the contact (stance phase), in
order to cover a greater distance over the next bound (flight phase) compared to the
current one. It is easy to imagine that instinctively you are likely to attempt to increase
both forward velocity and apex height in order to cross the large gap. This is in contrast
to the typical SLIP model, where its energy conservative nature means that increasing
speed necessarily causes a decrease in apex height. Therefore, when considering agile
motion such as this, it is logical consider not only forward velocity but also apex height
control, introducing a model with variable system energy and losses.

This chapter is based around the development and testing of a physical, single degree of
freedom robot model, its simulation counterpart, and the application of a novel control
strategy to it. This serves as a test-bed for the height control portion of the more
general problem of agile legged locomotion.

3.1 Chapter Introduction

The chapter, which describes work presented at the IEEE International Conference on
Robotics and Automation (ICRA) [73], considers the problem of apex height control in
isolation. Thinking generally of any running system, a particular step can be charac-
terised by the horizontal (forward and/or sideways) velocity, and the peak height – the
apex height – with the distance travelled in a that step linked to both these parameters.
Velocity clearly has a direct relationship to the step length, but velocity control alone
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is not sufficient. A higher apex will lead to a greater time in flight, causing more dis-
tance to be covered and a longer step length, therefore accurate control of apex height
will be not only useful, but a requirement for accurately landing on footholds which
vary in height and/or separation. Even for flat terrain, changes in footstep length can
be controlled through either modulating the forward velocity or the apex height [74];
in practice is is likely that varying both forward velocity and apex height will allow
for greater agility and a larger range of step lengths to be achieved. It is therefore
important apex height control is not neglected.

The emphasis on control of the lossless SLIP model, while a very useful model of
hopping and running, avoids the need to actively control the apex height, because the
constant energy level means it becomes a simple consequence of the velocity. In real
robots (and non-conservative models) there will be energy losses which would lead to
hop height decaying if not compensated for. In order to approximate the idealised
lossless dynamics, actuation must be used with the controller estimating the energy
loss and attempting to replace it. In addition, for agile motion, the controller must
determine the amount of energy to add or subtract to reach the demanded apex for
the next hop.

The task of hop height control will be investigated here for single degree-of-freedom,
one-dimensional hopping, i.e. hopping vertically with no forward motion. These dy-
namics are clearly simpler than when forward motion is included, however starting with
this simple model will allow the control approach to be developed and demonstrated
on this sub-problem (of height control) before considering the more complex task of
hopping in two dimensions. It is assumed that the height controller can later be com-
bined with a forward velocity controller (such as that in Chapter 4), with independent
inputs controlling each; an assumption explored later in Chapter 5. This is sometimes
called the “decoupling assumption”, and has been a common feature of legged robot
control since the Raibert’s “three part controller”[48].

The physical experimental robot, shown in Fig. 3-11, comprises a simple pneumatic
actuator used to form the leg, constrained on a boom to hop vertically. Compression
of the air in the actuator creates a spring-like effect to store and release energy from
one hop to the next. A simulation of this robot, with a simple gas compression model,
is first created to develop and test the controller.

3.1.1 Chapter Outline and Contributions

This chapter contributes the derivation and testing, in simulation and hardware, of
an empirical controller applied to the control of apex height in a hopping robot. Fur-
thermore, an on-line adaptive method will be demonstrated to allow the controller to
select the parameters with reduced manual effort and automatically update to changes
in system dynamics. The remainder of the chapter is laid out as follows:

• Section 3.2 describes the system model and problem under consideration
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Figure 3-1: The problem formulation: given the nth apex state and a desired (n+ 1)th

state (red), choose the system input (un, blue).

• The proposed empirical controller, with its rationale, formulation and self-tuning
method, is presented in Section 3.3.

• The controller is applied and tested in simulation and on an experimental hopper
in Sections 3.4 and 3.5 respectively

• Section 3.6 provides some concluding remarks

3.2 System Design and Simulation

3.2.1 Design Requirements

Running and hopping are dynamically very similar, with both characterised by alternat-
ing between stance phase, where a single foot is in contact with the ground, and a flight
phase, with no ground contact. The objective for the design of the robot described in
this chapter is to provide a minimal system which will emulate this alternating stance
and flight such that the apex height of the system must be controlled. To achieve this,
only the vertical motion needs to be considered, leading to a single dimensional robot
hopper. The key system state is the apex height, which is the highest point of a partic-
ular hop and where the vertical velocity is zero. The apex height of a particular flight
phase is dictated by the system dynamics, the value of the preceding apex height and
the system input, which is an additional leg force input during the intervening stance
phase. The overall system phases and states are summarised in Fig 3-1.

During stance, the robot will have the opportunity to apply a force to the ground in
order to control the next apex height; theoretically, this force could be varied arbitrary
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over the duration of the stance phase, to give a huge choice of possible inputs. However,
as the system state is one-dimensional, it should be possible to find a control scheme
where the system input is constrained to also be described by a single value. In any case,
it is also likely to be impractical to implement complex force modulation over the short
duration of a stance phase. The physical parameter to which the input corresponds
will vary depending on the design of the robot in question, but must relate in some
way to the force or energy input.

Physical space limitations of the laboratory necessitate that the physical robot is
smaller than human-scale machines that may be deployed in the future, but this does
not prevent the controller demonstration. It does, however, shorten the time of each
stance-flight cycle, which adds to the timing precision needed. In particular, the energy
input must be done rapidly because of the limited timeframe of the stance phase, and
in such a way that it can be accurately controlled.

3.2.2 Overall System Design

In order to replicate the vertical motion only of a hopping robot, the system will
consist of a single leg constrained to move vertically. The overall system design is
shown conceptually in Fig. 3-2. A pneumatic leg actuation system has been chosen
where compressed air is injected into the actuator by the timed opening of a valve.
The advantage of this is that energy, stored in the compressed air supply, can be
injected into the system very quickly, giving a near instantaneous change in energy
level to act as the system input. The pneumatic system also has the benefit that the
compression of air in the actuator acts as a spring because when the robot hits the
ground its momentum compresses the air causing the actuator pressure to rise. This
stores and reuses some of the energy from one hop to the next, and a spring-like leg is
a key feature of running in biology and for robotics [20].

Vertical motion is achieved my constraining the robot body on the end of a boom, much
longer than the hop height, which is pivoted at the other end. As shown in Fig. 3-3,
this results in approximately one-dimensional motion, where horizontal movement and
rotation can be neglected.

To allow for extended experiments without the need to change batteries, and to simplify
the physical design, power for the pneumatics will be provided by a fixed pressure
external supply. Between the downward (compression) and upward (extension) parts
of the stance phase, an inlet valve is briefly opened between the supply and the actuator
to cause the pressure in the actuator rise, adding energy. The duration of this opening
is used as the control input to the system – to add more energy, the value remains open
for a longer period of time before being closing. Once the actuator has extended and
the foot leaves the ground, a second, outlet, valve is opened for long enough to return
the actuator pressure to atmospheric, so the system is reset in preparation for the next
landing. This pneumatic circuit is shown schematically in Fig. 3-4.

The control task to be considered is to determine the required inlet valve opening time
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Figure 3-4: Schematic of the pneumatic circuit. Energy is added by briefly opening
the inlet valve to allow air from the fixed pressure supply to enter the actuator. The
system is reset during flight by opening the outlet valve and venting any remaining
pressure in the actuator to atmosphere.

(or in general, the system input un) to take the system from a particular apex height
yapex
n to the desired next apex height ytarget

n+1 . The controller must therefore take the
form:

un = f
(
yapexn , ytargetn+1

)
(3.1)

3.2.3 Simulation Model

Before application on the physical robot, the controller will be tested in simulation.
This not only has the advantage of ease of testing without risk of physical damage,
but also allows a much wider range of conditions and parameters to be tested. The
simulation is implemented in MATLAB using the built-in numerical solver ode45.

The model of the dynamic system consists of a mass, damper and actuator as shown
in Fig 3-5. Height is measured from the point where the foot is in contact with the
ground and the leg is in the fully extended position, such that compression of the leg
is a negative displacement, and positive displacements represent the height of the foot
from the ground during the flight phase.

In flight, gravity, −mg, is the only force being applied, and the motion is simply
described by:

ÿ = −g (3.2)

During stance, the point mass of the body experiences the same force due to gravity
and a force exerted by the pneumatic actuator and frictional effects. The instantaneous
actuator force is computed using a simple pneumatic model; this means the instanta-
neous state is described by two variables, the body displacement y and the pressure
inside the actuator, P , which are linked through the pneumatic model. The volume
inside the actuator is approximated from the known geometry, in particular the cross
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Figure 3-5: The model of the hopper used in simulation. The actuator force is computed
by a pneumatic model which provides a spring-like effect as the air is compressed.

sectional area of Ac and an approximated value for the dead volume, including the pipe
length between the valve and actuator of V0. The volume is reduced linearly by leg
compression, so (noting that y will be negative during stance):

V = V0 +Acy (3.3)

The pressure of the gas inside the actuator is modelled using the equation for adiabatic
compression/expansion of an ideal gas, which assumes the process is fast enough to
neglect heat exchange:

PV γ = constant (3.4)

where p and V are the instantaneous pressure and volume of the actuator chamber and
γ is the ratio of specific heats for air, taken as 1.4. Differentiating with respect to time
and rearranging yields:

Ṗ = −γP
V
V̇ (3.5)

For an actuator with a cross sectional area of Ac, the rate of change of the actuator
volume is related to the velocity as V̇ = Acẏ, as so the rate of change of pressure due
to the motion of the leg is:

Ṗ = −γP
V
Acẏ (3.6)

To keep the controller equivalent to that for the physical system, the control input, u,
is the time, in milliseconds, for which the inlet valve is opened. During this time, an
additional term is added to equation (3.6), to account for the extra pressure created
by this input. This flow entering the chamber is modelled as the nominal flow stated
by the valve manufacturer, scaled proportionally to the pressure difference across the
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valve. The theoretical volumetric flow, Q, through the valve is modelled as:

Q = C (Psupply − P ) (3.7)

where the C value is given on the manufacturer’s datasheet. The proposed valve (se-
lected below in Section 3.5.1) has a stated value of C = 0.2 l s−1 bar−1. This Volumetric
flow is converted to a pressure rise by replacing V̇ by Q in equation (3.5). It is as-
sumed the supply pressure, Psupply, is constant at 6 bar, but the flow will decrease as
the pressure in the actuator rises.

Losses are introduced in two ways. The first is a viscous damping term in the dynamics,
proportional to the vertical velocity, active only during stance, to represent frictional
forces. The second consists of removing a fixed percentage of the energy on touchdown
(by reducing the velocity), which is somewhat analogous to a coefficient of restitution.
These impact losses are likely to occur due to the unmodelled mass of the foot, for
which the associated kinetic energy will be lost, and the stiction in the pneumatic
cylinder, which will take some energy to overcome. The coefficients for both of these
losses have been manually tuned to give similar levels of loss to those of the physical
system.

3.3 Empirical Controller Derivation

3.3.1 Controller Formulation

This section will describe the rationale behind the formulation of a simple controller,
and describe the method used to adaptively tune the parameters quickly and accurately,
providing a novel method for the control of a hopping machine. Although this chapter
is focused on the control of the robot described in Section 3.2.3 as a practical example,
the general approach may be applicable to many legged machines, and comprised the
stages:

1. Formulate simple (linear or linearised) relationship between steady state output
(yapex
ss ) and input (uss)

2. Formulate linear or linearised function that describes the effect of deviating from
uss by ∆u

3. Collect the parameters from these equations into a small number of constants/gains

4. Update the gain values on the assumption that the values which would have
correctly predicted the outcomes of the actual inputs for the previous p hops/steps
will also be suitable for future hops/steps

Inherent in the method taken here the assumption that the required input, u, to take
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the system from one apex to the desired next state can be decomposed into:

u = uss + ∆u (3.8)

The first part, uss, describes the input required to overcome losses and maintain a
steady state, such that for the nth hop yapex

n+1 = yapex
n = yapex

ss . A simple estimate is to
assume losses are proportional to height and energy input is proportional to u, so that:

uss = α1 y
apex
ss (3.9)

The second term, ∆u, describes how a deviation from the steady state input affects
the height of the next apex. Let the change in apex state be ∆y = yapex

n+1 − y
apex
n and

again assuming proportionality between u and energy supplied:

∆u = α2 ∆y (3.10)

At the nth apex, values up to yapex
n are known1, and un should be chosen to achieve

yapex
n+1 = ytarget

n+1 at the next apex. Making the substitution that yapex
ss = yapex

n in (3.9)
and combining (3.8)–(3.10), the input to be applied is calculated as:

un = α1yn + α2

(
ytarget
n+1 − yn

)
(3.11)

which provides the controller formula.

3.3.2 Tuning Parameters On-line

Multiple Linear Regression

When at the nth apex, all values of y up to yapex
n are known; un should now be selected

in order to achieve ytarget
n+1 . In order to apply Eq. (3.11), values of α1 and α2 are

needed. These could be found by simulation or manual tuning, but here a method will
be presented to compute them by considering previous inputs and the resulting apex
states. Consider applying (3.11) to the preceding p hops and collecting these equations
into a matrix:

û =

ûn−p...
ûn−1

 =

yn−p (yn−p+1 − yn−p)
...

...
yn−1 (yn − yn−1)


︸ ︷︷ ︸

Y

[
α1

α2

]
︸ ︷︷ ︸
A

(3.12)

Here, Y contains the observed apex heights over the previous p hops, and û is the

1In practice there may be a delay in computing yapex
n , but in any case it should be known before

the un is required during the stance phase.
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Figure 3-6: Method for controller update at each apex.

inputs that would have been chosen using a particular set of α values. If it is assumed
that the values which would have accurately predicted this previous behaviour will be
good values for future use in the controller, then A should be chosen to minimise the
error between the predicted (û) and actual (u) input values. This error is defined as ε:

ε = u− û = u− Y A (3.13)

Note all of the values inside Y and u are known at the nth apex. The values of α1 and
α2 to minimise the sum of the squares of the errors, ε′ε, are given by the well known
multiple linear regression solution:

A =
(
Y TY

)−1
Y Tu (3.14)

At least two previous hops are required in order to provide enough information to set
the α values, so p ≤ 2. In this special case p = 2, Y is square and so (3.14) reduces to:

A = Y −1u (3.15)

The controller sequence is illustrated in Fig. 3-6. Clearly, this strategy for selecting
α values cannot work for the first few hops, before p previous results are available.
As a simple way to overcome this, some fixed initial values are used, determined from
previous simulations or experiments as described below, and will also serve as the values
for a fixed gain controller for comparison to the adaptive controller.

Avoiding Matrix Inversion Singularities

For steady state gaits, the change in height between hops, ∆y, will be close to zero.
Intuitively, this will provide little information for selecting α2, which describes the input
needed to make such changes. This would be an example of the matrix to be inverted
in (3.14) being close to singular, and the resulting α2 value would be very susceptible
to any small errors. A simple strategy to avoid this will be employed, whereby Y must
contain at least one ∆y of a minimum magnitude, otherwise α2 is not updated but left
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Figure 3-7: Using simulations to estimate α1 (left) and α2 (right)

at its previous value. This is considered acceptable as for a steady state gait, the term
including α2 in (3.11) is small anyway.

In the simulation environment, during long runs with a repetitive demand (either steady
state or alternating between two values), the system will settle to precisely the same
values on each step without the small variations caused by real sensor and actuator
inconsistencies. This has been found to lead to errors in the matrix inversion even
with the ∆y check described above, believed to be due to the limits of numerical
precision. Therefore, an additional check skips the gain updates altogether when the
matrix condition number is very large2. This is not expected to be necessary for physical
implementation.

3.4 Simulation Results

The numerical simulation described in Section 3.2.3 has been used to test the controller
with three different settings. Firstly, with fixed, pre-set gains (α1 and α2) which re-
main unchanged. Secondly, by starting with these gains but then allowing the update
algorithm to modify them, with values of p = 2, 3, 5, 10. The minimum ∆y value to
update α2 has been set at 3 mm, approximately 10% of a typical hop height.

Before the controller can be applied, the fixed values for the gains are required. Re-
peated simulation of the apex-to-apex dynamics has been used to find the steady state
input to achieve a range of steady state heights, as well as the input required to move
between of these heights in a single hop. These have been used to create the linear fits
shown in Fig. 3-7 to estimate α1 and α2.

2Implemented using the MATLAB function rcond, see mathworks.com/help/matlab/ref/rcond.

html
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For the tests a set sequence of demand heights was passed to each controller in turn. An
example set of demand values has been used to demonstrate the controller’s applicabil-
ity to a range of demands. This begins with a steady state demand near the system’s
maximum height, then near the minimum, before an alternating demand between the
high and low values and a series of random demands illustrate agile changes.

The results using the controller with fixed gains and for p = 2, 3, 5, 10 against this set
of demands, on “hard” ground representing a firm floor, are shown in Fig. 3-8. It can
be seen that while the fixed gains controller suffers a steady state error, the adaptive
controllers are able to remove this error by tuning α1, as shown by the updating gain
values in the lower plot. The performance is broadly similar over the agile demands.
The controller adapts more quickly with low p values, but is prone to occasionally
miscalculating the required gain values, e.g. at hop 32 for p = 2, leading to a larger
error in apex height on next step. A higher p value uses more previous steps to reduce
such errors and will improve stability for practical applications. This is seen as a slower
but less erratic updating of the gains for p = 5 and even more so at p = 10.

The accuracy of the controllers is shown in more detail in Fig. 3-9, with each of the four
types of demand in the illustrative example above considered in turn: a steady state
demand of a high and a low hop, alternating on every step between two values, and
demand varying randomly between steps. Controllers with fixed gains and values of
p = 2, 3, 5, 10 are included. For each of the controllers, the absolute error (magnitude
of the difference between demanded and actual apex height) has been measured with
100 hops in each run. As the random demand will be different on every run, 100
repeats were conducted in this case, to give an average taken over a total of 10, 000
hops. However, for p = 2, the robot failed (becoming “stuck” on the ground after
applying too small an input) on 33 of the runs, giving fewer hops overall and clearly
an ineffective controller.

For all of the regular demand profiles (constant or alternating values) the adaptive
controller finds the appropriate gain values and the error is very small irrespective
of p value, while the fixed gains version suffers steady state errors. However, for the
random demand the adaptive controller is less accurate when the p value is small. In
these cases, the adaptive controller is using only a small sample of hops, which may
be different in height or required height change from the next hop, and so not allow
for good gain values to be chosen for the upcoming control input. This problem is
overcome by larger p values, which by using more previous hops can, on average, select
better gain values, with values over p = 5 outperforming the fixed gains.

One significant advantage of using adaptive gains is to automatically correct for changes
in the system. For example, as a robot moves it may encounter different ground surfaces
with varying stiffnesses and energy dissipation. In the next test, the robot experiences
a sudden increase in the energy loss on touchdown between one step and the next. The
controller is given no warning or indication this has happened, except for the resulting
changes in hop height. The result is shown in Fig 3-10, where, as a simple example of
an agile gait, the demand height alternates between high and low. The point of change
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Figure 3-8: Performance of each controller in simulation for a range of demand profile.
Reasonable performance is achieved for agile demands, and the adaptive controller is
able to eliminate the steady state error. Top: target apex heights and those achieved.
Bottom: gain values as they are updated.
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Figure 3-9: Errors suffered by the controller with fixed gains and adapting by consider-
ing the preceding p hops, for steady state demands, demands alternating on each step
and for a random sequence of demand values.

it denoted by the vertical dashed line. It takes a little more than p hops to adjust the
gains and correct for the error; the fixed gain controller does not correct and suffers a
steady state error as it is poorly tuned for the new ground properties.

3.5 Physical Experiments

3.5.1 Transition to Physical Implementation

This section presents results of applying the controller from Section 3.3 to a physical
test system, shown in Fig 3-11. The previous simulation results have been used to
inform and give greater confidence to the physical robot design in several ways.

The simulations have shown hop heights in the region of 40 mm are possible, which
should be suitable for the space available, which allows for a boom length of approx-
imately 1 m. This hop height is also large enough to be accurately tracked by the
external tracking cameras (accuracy <1 mm) and on-board timing, with an expected
flight time of approximately 90 ms. It should be noted the precise level and nature of
frictional losses is difficult to estimate in advance, and notoriously difficult to model.
This is very likely to affect the size of actuator required. However, in advance of
building the physical system, various frictional values were experimented with in the
simulation, including highly conservative values, and found to give acceptable perfor-
mance by increasing the valve actuation times.

An important aspect of the chosen actuation system is the inlet valve, and in particular
its ability to open and close rapidly. The valve actuation time must be significantly
shorter than the total valve opening time in order that it can be precisely controlled. In
the simulations, the valve opening time computed by the various controller parameters
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Figure 3-10: Effect of a sudden change in ground surface in simulation. After the
change, the fixed gain controller is poorly tuned as suffers significant error, which the
adaptive controllers are able to remove. Top: target apex heights and those achieved.
Bottom: gain values as they are updated.
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varied between 2.1 ms to 6.8 ms, so the selected valve must open and close in less time
than this.

Taking these factors into consideration, various parameters of the simulation were ad-
justed to select the valve and actuator as:

• Festo Fast switching valve MHJ9-QS-4-LF with quoted closing and opening times
of 0.7 ms and 0.9 ms respectively3

• Festo DSNU cylinder with 8 mm diameter and 60 mm stroke4

There are, of course, limitations to what can be learn from the simulations with regard
to the effects of noise introduced by measurement error and other variability, which
is likely to impair the controller and adaptive scheme. This is expected to mean that
higher p values become necessary in physical experiments.

Overall, the successful simulations give confidence that the controller structure is a
sensible one, and that a relatively small number of hops will be sufficient to tune the
adaptive controller. Testing on a simple system physical system is the next logical step,
to verify the controller can be transferred for more practical implementation.

3.5.2 Physical Robot

The experimental setup, shown in Fig 3-11, consists of a single pneumatic leg rigidly
attached to, and pointing vertically down from, the body of the robot. The robot is
mounted on the end of a boom which is pivoted at the other end in the vertical plane; as
the boom is much longer than the leg or the hop heights, the movement is constrained
to be almost vertical. This also provides a long lever arm, so any friction in the bearing
at the base of the boom has a minimal impact on the dynamics of the robot at the
end of the boom. The boom is made from a carbon fibre tube so it is both lightweight
and stiff to minimise its inertia while keeping the motion constrained. For simplicity of
mechanical design, power (in the form of electrical connection and compressed air) are
supplied externally through the boom. All control computation is carried out on-board
by an Arduino Nano (16 MHz ATmega328, 2 kB RAM); this very low power device
was chosen to highlight the low computational load of the algorithm. The robot has a
mass of 506 g and a leg length of 150 mm.

For this one-dimensional system, the only sensing that is required is the height of
each hop. A simple footswitch is used for this purpose, which detects the transitions
between flight and stance. This provides a measure of flight time, allowing calculation
of hop height at the moment of touchdown. Neglecting any friction during flight and
assuming a purely vertical motion (i.e. that the boom is long compared to hop height)
then the height, yapex for a given flight time, tflight, and acceleration due to gravity, g,

3Details available from www.festo.com/cat/en-gb_gb/products_MHJ?CurrentPartNo=572079
4Details available from www.festo.com/cat/en-gb_gb/products_DSNU_1?CurrentPartNo=1908250

40

www.festo.com/cat/en-gb_gb/products_MHJ?CurrentPartNo=572079
www.festo.com/cat/en-gb_gb/products_DSNU_1?CurrentPartNo=1908250


Figure 3-11: The robot used for experimental validation, constrained to hop vertically.
The boom, carrying external power supply, can be seen coming from the left. The
camera in the background forms part of the vision system, which is used for verification
only with all control is on-board based on footswitch timing.

Figure 3-12: The three ground surfaces in their tray, left to right: “soft”, “hard” and
“springy”.
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is computed as:

yapex =
1

2
g

(
tflight

2

)2

(3.16)

For the two valves controlling air entering and leaving the actuator, fast acting solenoid
values (Festo MHJ9 with switching time <1 ms), have been used, arranged as described
above and shown in Fig. 3-4. The supply air is provided by an external compressor
with a reservoir much larger than the actuator to allow many hops to be completed
with no significant change in the supply pressure, set to 6 bar

Ideally, the input valve opening should occur at the bottom of the stance phase, so
as to provide the additional pressure for the entirety of the extension but none of the
compression part of the stance. However, it is difficult in practice to detect this point
precisely in real time. If the stance forces can be assumed to be dominated by the spring
stiffness, it is reasonable to assume the frequency of the oscillation will be constant,
and the valve opening can be executed after a fixed delay from the touchdown, an
event which is easy to detect via a footswitch. In practice, this delay has been set
experimentally to 50 ms by manually determining the value with gives the highest
steady-state apex height.

A standard pneumatic cylinder (Festo, DSNU-8) has been used for simplicity, but the
friction is significant and in particular the seals cause a stiction effect. This will be a sig-
nificant source of inefficiency and future applications should implement a lower-friction
alternative to reduce losses. However the current setup is sufficient to demonstrate the
controller.

In order to test the controller’s ability to operate on various ground surfaces, and
demonstrate its adaptive nature, three distinct surfaces are used. These surfaces can
be seen in Fig 3-12, and will be referred to as “soft”, “hard” and “springy” ground.
The soft ground is a spongy cellulose material expected to absorb more energy on
impact, the hard ground is an aluminium plate and the springy surface has been made
by stretching a latex rubber membrane over a frame (like a drum). The three test
surfaces are contained in a tray to ensure the tops of the surfaces are at the same level
and allow for quick manual changes between surfaces.

A simple test was performed by pressurising the actuator, dropping the robot onto each
surface with no actuator input and measuring the height of the rebound using motion
tracking cameras. The coefficient of restitution can be estimated as the ratio of apex
height from one hop to the next, and was found to be approximately 0.30, 0.22 and
0.33 for the hard, soft and springy surfaces respectively.

3.5.3 Experiments and Results

As with the simulation, the first task is to find a set of gains which will be used in
the “fixed gain” controller, and as initial gains for the adaptive controller. This was
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Figure 3-13: Estimates for α1 and α2 have found by fitting to a test sequence of valve
opening times (u). These values are to be used as initial values and for the fixed gain
controller.

done by cycling through a set of open loop valve opening times, allowing the system to
settle on a steady state for each. The resulting plots of steady state values, uss, and the
effect of a step change starting at steady state conditions, ∆u, are shown in Fig. 3-13
for each of the ground surfaces. It can be seen each surface has distinct characteristics,
requiring different gain values.

As for the simulation, a set sequence of demands is used that includes sections of
steady state, alternating high and low and random variation in demand height. The
time-series for a single run is shown in Fig 3-14, together with the data from motion
capture cameras for verification. The robot’s internal estimates of apex height (blue
crosses) match well the tracked heights.

For each ground surface, the controller has been applied using fixed gains (from Fig. 3-
13) and with the adaption implemented with two p values, defining the number of
previous hops considered: p = 2 (the minimum possible) and p = 5. The results of
each test are shown in Fig 3-15, with a separate plot for each surface. Each surface
shows a similar result, with the fixed gain controller suffering steady state error which
are removed by the adaptive scheme. The lower p value should remove such errors
more quickly, but also tends to be more erratic, because it uses only a small sample of
previous data – in effect, it has a shorter “memory”.

The adaptive scheme should be able to overcome changes in the system after a few
hops. To test this, the ground surface tray was manually moved during the flight
phase between one hop and the next, to mimic the effect of a robot stepping from one
surface onto another. The controller is provided with no prior warning this will happen,
and must adapt based only on the changes in the relationship between the input and
resulting apex heights. Figure 3-16 shows the results of changing from hard to soft
(top) and from hard to springy (bottom). After the change, the fixed gain controller
suffers an error, and does not correct for it. In contrast, the adaptive scheme is able to
update the relevant gains and returns to the demanded heights.
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0 5 10 15 20 25 30 35 40
10

20

30

40

50
Hard ground

0 5 10 15 20 25 30 35 40
0

20

40

60
Soft ground

0 5 10 15 20 25 30 35 40
0

20

40

60

80
Springy ground

Figure 3-15: Experimental results over different ground types
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Figure 3-16: Experimental results with changing ground surface at dashed line

3.6 Concluding Remarks

This chapter has presented an empirical controller in the context of height control for a
one dimensional hopper, with on-line self tuning of the controller parameters based on
previous hops. It has been applied to a simulation of a pneumatically actuated robot
leg, and its physical incarnation constrained to vertical motion. This computationally
simple controller has been shown to be able to dynamically control agile changes in
height and provides several benefits:

• fast to compute and implement on low power hardware

• directly computes the system input (here valve opening), eliminating need for
lower level controller

• elimination of steady state errors for constant demand heights

• takes into account additional energy needed to change height so can perform agile
sequences

• adapts to changes in system or environment

One critical design choice is the selection of the parameter p, which selects how many
previous steps to consider. A small p creates a controller with a short “memory”, which
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will adapt to changes more quickly, but may change the gains too readily in response
to noise or erroneous values. Conversely, a large p results in more stable gain values,
which will update more slowly. The choice will depend on the application, and will have
to be made on a case by case basis. This will depend upon the physical robot itself,
for example the prevalence of measurement noise, but also the environment and task
in question, such as the frequency and magnitude of changes to the ground surface.

The height controller is intended to form one part of a controller for hopping or running
in two or three dimensions. In the forthcoming chapters, a similar controller for forward
velocity in two-dimensional hopping is presented, and then these combined to control
both height and velocity.
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Chapter 4

Forward Velocity Control of the
Spring Loaded Inverted
Pendulum

When hopping or running, it is possible to change the length of a bound even without
changing the overall system energy. This is illustrated in Fig. 4-1, where a hopper
traverses unevenly spaced stepping stones, with the first requiring a longer step than
the second. The apex of the first is lower and faster with more kinetic energy contained
in the forward velocity, while the second follows a higher, more looping trajectory with
more energy instead transferred into gravitational potential.

The stance between these two bounds is the critical phase, in which the hopper must
achieve the appropriate transfer of this energy, as once in the flight phase it will follow a
ballistic trajectory and can no longer adjust. Slowing down, as in this example, requires
the hopper to “lean back”, so that the angle of the leg at the moment of touchdown
is further from the vertical than at lift off. Conversely, “leaning forward” would mean
the leg starts closer to vertical, so that by the time of liftoff the leg is more inclined
and can be thought of as pushing the body forward to increase horizontal velocity.

This chapter seeks to build a controller around this intuition, to control a sequence of
varying demand velocities.

4.1 Introduction

This chapter considers the task of controlling the forward velocity at each apex for the
commonly used “Spring Loaded Inverted Pendulum” (SLIP) model. Much of the sim-
ulation work (excluding the adaptive tuning) was presented at the conference Towards
Autonomous Robotic Systems (TAROS) [75], and a further publication including the
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Figure 4-1: Conceptual diagram of hopping between stepping stones. A larger step
can be achieved by a higher velocity, so velocity control could be used to cross difficult
terrain. The green background indicates the stance phase, while blue is the flight phase,
defined by foot contact with the ground.

adaptive approach and experimental validation is under review at the time of writ-
ing. Fig. 4-1 shows conceptually the alternating stance and flight phases of the robot’s
motion. In order to traverse differently spaced footholds (the black platforms), the
forward velocity must be accurately changed over a single stance phase – an agile gait.

The robot considered is a two dimensional hopper, moving vertically and in a single
horizontal direction, equivalent to the sagittal plane and ignoring the need for the left-
to-right balance of a three-dimensional system. Furthermore, the model is energetically
conservative (without any frictional or other losses) and so the task of energy regulation
can be ignored. Although the apex height will vary from apex to apex, depending on
the forward speed such that the total energy is constant, the height is not actively
controlled but instead follows as a consequence of achieving the desired velocity, which
is the parameter subject to demand values.

As this chapter considers only control of the forward velocity, it makes the inherent
assumption that the control developed for this aspect of hopping (or running) can later
be applied in conjunction with other controllers (for balance, apex height etc.). This
approach has been widely accepted ever since the pioneering “three-part controller”
from Raibert[48] made this decoupling assumption.

4.1.1 Chapter Outline and Contributions

This chapter will present:

• In sections 4.2 to 4.5, a simulation comparison of existing analytical approxima-
tions against a simple, two-term, empirical controller applied to the lossless SLIP
model.
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Figure 4-2: System model for (a) flight phase and (b) stance phase.

• In Section 4.6, the used adaptive gains to allow for automatic adjustment of the
controller, with simulation results in Section 4.7.

• Finally in Section 4.8, an experimental demonstration on a physical, pneumati-
cally actuated, robot with this empirical controller and adaptive gains operating
in real time.

4.2 System Model

4.2.1 Description of Model

The SLIP model has been very widely used in simulations of dynamic legged loco-
motion. First proposed by Blickhan [20], it is inspired by the simple observation in
biological running that while the foot is in contact with the ground, the leg compresses
and then extends like a spring. Thus, the model comprises a point mass (representing
the body) and a simple spring (representing the leg). As the mass is concentrated
in the body, while the foot is not in contact with the ground, defined as the flight
phase, the only force present is gravity and the motion is a simple ballistic trajectory.
When the foot is in contact with the ground, the stance phase, the leg spring creates
an additional force, acting along the leg as it pivots about the foot contact point (it is
assumed there is no movement of the foot relative to the ground during stance). These
two phases are illustrated in Fig. 4-2, with some important variables labelled: x and y
are the horizontal and vertical displacement, θ and r are the leg angle and length, m
is the body mass and k is the leg spring constant.

During running or hopping, the system alternates between a stance phase with a single
foot in contact with the ground, and a flight phase characterised by ballistic motion;
whether the next stance uses the opposite foot (bipedal running) or the same foot
(hopping) is of no consequence for this model, and so hopping and running are similar
control problems and will be considered equivalent in this analysis. The cyclic nature
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of the system means it is convenient to consider the apex state, where the body reaches
its highest point for a particular flight phase and the vertical velocity is zero. The
dynamics of the system are then a mapping of one apex state to the next. The apex
state can be defined completely by the horizontal position and velocity and the vertical
position of the body (the vertical velocity being defined to be zero) relative to some
origin. It is often convenient to omit the horizontal position, as this has no effect on
the dynamics and is not relevant if the objective is to control horizontal speed.

Thus, for the two-dimensional form of the SLIP hopper, the apex state will be described
by the forward velocity, ẋapex and apex height, yapex.

4.2.2 The Control Task: Velocity Control

The model is energetically conservative, so not all apex states are reachable for a given
system; indeed there is a unique apex height which will result for a given forward
velocity and system energy. Therefore, for the problem of velocity control, no apex
heights need to be specified but instead are a necessary and natural result of achieving
the demanded velocities. The general task considered here is: during a flight phase,
given the current (nth) apex state, select the touchdown angle (θtdn ) at which the natural
dynamics of the system will result in the desired value of forward velocity (ẋtgtn+1) for
the next flight phase, as illustrated in Fig. 4-3.

For a particular task, a sequence of steps must be performed with a set target velocity
for the flight phase of each individual step. A steady state demand would consist of
the same target velocity on each step. By contrast, the demand will be termed “agile”
if there is significant variation such that the target velocity at each flight phase may
be different from the previous one, requiring changes in velocity at every stance phase.
This is a more difficult task, compared to approaching a steady state demand over
multiple steps, but is critical for legged locomotion to traverse complex terrain. This is
because it allows the length of each step to be controlled individually, in order to solve
tasks such as traversing a series of isolated safe foot landing positions, such as stepping
stones.

Therefore accurately computing the required touchdown angles to achieve a given ve-
locity target sequence is required to control foot landing positions, and furthermore to
do so quickly could be particularly useful for planning planning the landing positions –
for instance finding a sequence that is feasible without exceeding some limits on touch-
down angle or velocity might require many possible plans to be evaluated in a short
time.

4.2.3 System Dynamics

As described above, the SLIP model consists of a point mass body connected to a
massless foot by a spring.
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Figure 4-3: The problem being considered: the relationship from the nth apex velocity
to the (n+1)th is a function of the touchdown angle. Note that angles are defined as
positive clockwise, so in the example shown θtdn is negative, which is typical for positive
velocities.

When the foot is not in contact with the ground, during the flight phase, the spring is
assumed to take its rest length and the robot acts as a point mass falling under gravity,
with zero inertia, and so the foot can be positioned arbitrarily. The angle of the leg is
still important, however, to detect when the foot will hit the ground (touchdown). In
this case the coordinates are the horizontal and vertical body displacements, x and y,
and the leg angle, θ, as shown in figure 4-2(a).

During the stance phase, when the foot is assumed to be rigidly attached to the ground,
the coordinate system is changed to a rotational system, with θ the leg angle and r the
leg length, as shown in figure 4-2(b).

For this system the equations of motion for the flight phase are:

ẍ = 0 (4.1a)

ÿ = −g (4.1b)
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and during stance phase:

r̈ =
k

m
(r0 − r) + rθ̇2 − g cos θ (4.2a)

θ̈ =
g

r
sin θ − 2ṙθ̇

r
(4.2b)

where m is the body mass, k is the spring stiffness, g is the acceleration due to gravity
and x, y, r and θ are the dimensions as defined in figure 4-2.

4.2.4 Non-dimensional Equations

To allow for easier comparison between systems of different sizes, the equations can
be non-dimensionalised [55]. To do this, a reference length (for which r0, the rest
length of the leg is used) and an arbitrary time scaling factor, s, must be defined;
careful choice of s allows the system to be characterised by a single parameter, the
“dimensionless stiffness”, k∗. Other dimensionless quantities will be denoted by the
overbar throughout, and are defined as:

x̄ = x
r0

, x̄′ = sẋ
r0

, x̄′′ = s2ẍ
r0

ȳ = y
r0

, ȳ′ = sẏ
r0

, ȳ′′ = s2ÿ
r0

r̄ = r
r0

, r̄′ = sṙ
r0

, r̄′′ = s2r̈
r0

θ̄ = θ , θ̄′ = sθ̇ , θ̄′′ = s2θ̈

Here ()′ represents differentiation with respect to the non-dimensional time, t̄ = t/s.
The time scale factor is chosen as s =

√
r0/g. Substituting these coordinates into the

equations of motion for the standard SLIP hopper (equations 4.1 and 4.2) during flight
phase:

x̄′′ = 0 (4.3a)

ȳ′′ = −1 (4.3b)

and during the stance phase:

r̄′′ = k∗(1− r̄)− cos(θ̄) + r̄(θ̄′)2 (4.4a)

θ̄′′ =
1

r̄
sin θ̄ − 2θ̄′r̄′

r̄
(4.4b)

The non-dimensional system is then characterised by a single quantity, the dimension-
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Table 4.1: Example system parameters demonstrating how a typical human and a small
robot can have the same dimensionless stiffness (k∗).

Symbol (units) Human Robot

Leg stiffness k (kN m−1) 6.87 0.392
Mass m (kg) 70 0.6

Gravitational acceleration g (m s−2) 9.81 9.81
Leg rest length r0 (m) 1 0.15

Time scale factor s =
√

r0
g 0.319 0.124

Dimensionless stiffness k∗ = kr0
mg 10.0 10.0

less stiffness k∗, given by:

k∗ =
kr0

mg
(4.5)

4.2.5 Simulation Parameters

From experimental data, Blickhan and Full found the dimensionless stiffness for animal
and human bipedal running to have a typical value of k∗ ≈ 9.76 with a standard
deviation of 2.44 [1]; thus a value of k∗ = 10 has been chosen as a starting point for
this simulation study. Table 4.1 shows how this value can be arrived at using typical
values for a human, in the first column. As shown in the “Robot” column, it is possible
to select a spring constant, k, to give the same non-dimensional stiffness parameter,
while constrained to realistic values of g, m, and r0 for a small scale test robot. As
such the non-dimensional simulation could equally apply to a human-scale robot or the
small prototype planned, with the only difference how the resulting non-dimensional
values are interpreted.

4.3 Existing Approximate Analytical Methods

The flight phase (Fig. 4-2(a)) is characterised by ballistic motion under gravity, and
can be solved analytically. However the stance phase dynamics, with the spring force
acting along the leg, do not have an exact analytical solution and therefore require
approximation, either by numerical methods or using assumptions and simplifications
to obtain an analytical solution. For practical, real-time implementation in a robot
controller, this approximation should be both accurate and simple to compute. This
section will very briefly outline some previously proposed approximations from the
literature; the full derivations and details can be found in the relevant references.

Each of these has been implemented in MATLAB in order to form controllers. Gener-
ally, in the original papers, the approximations are formulated to answer the forward
problem of predicting the outcome of a stance phase given certain touchdown condi-
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tions, however in order to control the system the inverse is required, i.e. a prediction
of what touchdown condition should be chosen in order to achieve a desired forward
velocity at liftoff. So, to carry out this conversion, a simple optimisation algorithm has
been implemented, involving repeated executions of the forward approximation to find
the touchdown angle which achieves the desired velocity. This has the advantage of
simplicity and minimises the possibility of inadvertently introducing implementation
errors which would skew the resulting comparison. These multiple evaluations increase
the computation load, and so this implementation is very likely not the most compu-
tationally efficient. For future applications, a careful algebraic handling could perhaps
produce an efficient closed form version for each of these approximations. However,
for the purpose of a simulation study on a desktop computer the actual efficiency is of
relatively little importance. The results of this will be compared later, in Section 4.5.1.

In this simulation environment, exact values for the system parameters, such as the
leg stiffness, are available for these approximations, although of course any physical
robot’s controller would have the rely on measured or computed values, which would
create further inaccuracies.

The full detail of the approximations are available in the relevant papers, and are only
very briefly outlined here:

Schwind (2000): An iterative approximate solution is found by applying the “mean
value theorem”, considering the system as an integral describing the spring-mass and
a perturbation caused by gravity [76].

Geyer (2005): This is a much used approximation, which has the benefit of a sim-
ple, easy to calculate algebraic form. An important assumptions are of small leg angles
and small leg compression, which limit the accuracy to cases of stiff leg spring and low
speeds. These allow the dynamics to be expressed as a Taylor series, solved approxi-
mately by truncation. [53].

Saranli (2010): Here the approximation based on Geyer’s approach is improved with
the addition of explicit improvements to compensate for the asymmetric effects of grav-
ity, which should improve performance in non-symmetrical stance phases, i.e. where
there are changes in horizontal velocity. Also included is a correction for damping,
although this are not applicable here as the model is lossless [54].

Yu (2012): A more algebraically complex approximation to the stance dynamics,
using a perturbation solution. This allows for the weakening of some of the assumptions,
in particular taking some account of non-uniform angular momentum when solving the
rotational motion [55].
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4.4 Empirical Velocity Controller

This section will develop a very simple analytical approximation for a controller, using
admittedly very crude approximations. However, the simple form will allow an em-
pirical approach to be taken to tune the parameters in following sections. Remember
from Section 4.2.2, the aim is to select the nth touchdown angle (θtdn ) in order that the
forward velocity of the next apex (x̄′n+1) equals some target velocity (x̄′tgt), which in
general will be different from the current velocity(x̄′n).

4.4.1 Controller Formulation

Firstly, consider the steady state case where x̄′n = x̄′n+1 = x̄′ss. This occurs when
the stance phase is symmetrical, and so the touchdown and liftoff angles are equal in
magnitude, and defined as θ̄ss = −θ̄td = θ̄lo. This is sometimes referred to as the
“neutral angle” [48].

During stance, if the leg spring force is assumed much larger than the gravity force
(which is true if the spring stiffness is high) then gravity can be temporarily neglected.
In this case, the system will oscillate at its natural frequency and the dimensionless
stance time will be approximately π

√
1/k∗. Also assuming a constant horizontal ve-

locity and small angles, the horizontal displacement during stance phase is:

∆x̄ ≈ 2θ̄ss ≈ x̄′ssπ
√

1/k∗ (4.6)

Rearranging yields:

θ̄tdn = −θ̄ss ≈ −
(

π

2
√
k∗

)
x̄′ss (4.7)

Collecting the constants, it can be seen that, for a steady velocity:

θ̄td = −θ̄ss ≈ −β1x̄
′ss (4.8)

where β1 is a positive constant.

Now the effect of deviating from this neutral angle will be considered, i.e. how to adjust
the touchdown angle to increase or decrease the horizontal velocity. A simple case is
when x̄′ = 0 then θ̄ss = 0, irrespective of the value of β1. A common simplification of
the SLIP model is to assume a very stiff spring, which leads to an instantaneous stance
phase (e.g. [5]). Then the system behaves like a ball bouncing off a hard surface inclined
at the touchdown angle; as illustrated in Fig. 4-4, this gives a liftoff angle of 2θtd. Using
a small angle approximation for sin(θ̄td), the change in the forward component of the
velocity, ∆x̄′, is found to be:

∆x̄′ ≈ 2
√

2ȳapex θ̄∆ (4.9)
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Figure 4-4: If the leg spring is assumed infinitely stiff, the stance phase reduces to
the dynamics of a ball bouncing instantaneously off an angled surface (blue). For zero
initial horizontal velocity, the touchdown velocity is vertical and the liftoff velocity
occurs at an angle of 2θtd (red).

Again, to produce a simple tunable relationship we look to combine the constants into
a positive value, β2. The greatest simplification can be achieved by assuming that
the apex height (ȳapex) remains constant between hops and so can be included in the
constant (β2A), to yield:

θ̄∆ ≈ β2A∆x̄′ (4.10)

However, as the forward velocity changes from step to step, energy is transferred from
potential to kinetic and so the apex height will in fact vary. Therefore, it should be
more accurate to not include ȳapex in the constant term, and instead measure the actual
value on each hop and use this in the controller. This case, considering the variation in
height, will be referred to simple as the “full” version (and the above version, assuming a
constant apex height, the “simplified” version), and the new tunable parameter denoted
by β2B:

θ̄∆ ≈ β2B√
ȳapex

∆x̄′ (4.11)

The disadvantage to including the variation in height is that, in practice, the leg angle
needs to be adjusted to its new value during the flight phase. If the actual value of
apex height is required, this is likely to only be available after the apex has occurred,
leaving only the second half of the flight phase in which to actually carry out the
computation and physical re-positioning of the leg. Besides, the apex height can be
difficult to measure quickly and accurately. Of course, these disadvantages do not exist
in simulation. Therefore, the two possible options will be tested in simulation in order
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Figure 4-5: Example trajectories at the neutral angle and deviating from it. A more
negative angle corresponds to “leaning back” and causes a higher and slower trajectory,
and vice versa.

to determine if the increased accuracy from considering the variation in height is likely
worth these added implementation complexities.

In equation (4.8) we have an equation which describes the required touchdown angle
to maintain the current horizontal velocity, and in (4.10) or (4.11) a description of
the change in touchdown angle (relative to the first angle) which will induce a desired
change in forward velocity. This is illustrated in Fig. 4-5; at the neutral angle, θtd =
−θss and the next apex state is the same as that which preceded it; deviating from
this angle creates a higher and slower or lower and faster apex state. Thus, summing
these components gives a control logic to compute the system input (θtd) based on the
current state (x̄′n) and demanded next state (x̄′tgtn+1), with two tunable parameters, β1

and β2. With the two options discussed for β2, the controller has two possible forms
(the “simplified” and “full” versions):

θ̄tdn = −β1x̄
′
n︸ ︷︷ ︸

θ̄ss

+β2(x̄′tgtn+1 − x̄
′
n)︸ ︷︷ ︸

θ̄∆

(4.12a)

θ̄tdn = −β1x̄
′
n︸ ︷︷ ︸

θ̄ss

+
β2B√
ȳapexn

(x̄′tgtn+1 − x̄
′
n)︸ ︷︷ ︸

θ̄∆

(4.12b)

4.4.2 Numerical Verification

The linear relationships on which the controller is based can be verified in simulation.

Considering first the linear relationship predicted in (4.8), a brute force iterative method
of repeated simulations has been used to find the neutral angle (θss) for a range of
steady state velocities between x̄′ss = −1 and 1. The leg stiffness used was k∗ = 10
with the apex height set to maintain the total dimensionless system energy (found by
E∗ = ȳapex + x̄′/2) as E∗ = 1.5. The result is shown in Fig. 4-6(a), with a best fit line
approximating β1 showing a good fit.
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Figure 4-6: Numerical simulation results for verifying (a) the linear relationship be-
tween steady state velocity and touchdown angle from (4.8), and (b) how deviation
from that angle creates a change in velocity as predicted by (4.10).

For the second relationship, between θ∆ and ∆x̄′ from (4.10) or (4.11), similar simula-
tions were used to find the touchdown angle (θtd) which results in a specific change in
forward velocity (∆x̄′), over a range of starting velocities (x̄′n). The actual deviation
from the neutral angle was then calculated at each point as θ∆ = θtd − θss, with θss

from the first set of simulation.

Figure 4-6 shows the values from the numerical simulations. It can be seen that the
linear relationships predicted by equation (4.8) holds very well for finding β1. In figure
4-6(b) the line shown is for the more simple relationship (4.10), and shows a reasonable
fit, although the relationship depends to some extent on the initial velocity. These
graphs show that the linear relationships proposed do describe the nature of the system,
and therefore hold promise as the basis of the empirical controller.

4.5 Comparison of Empirical and Analytical Controllers

Controllers have been implemented based on each of the approaches in Sections 4.3
and 4.4 and used to control a numerical simulation of the full SLIP dynamics using
Matlab. These simulations aim to test the controllers’ ability to make large changes in
forward velocity over a single stance phase. Each run simulates only a single step, with
a starting velocity in the range x̄′n = [0, 1] and target velocities of x̄′n+1 = [0, 1] This
range corresponds to stopping or starting a jogging pace in a single step for a human (or
human-sized robot). In each run, the robot starts at the apex and the controller selects
the touchdown angle based on the target velocity, then the full dynamics, defined by
(4.3) and (4.4), are simulated until the next apex state, where the achieved velocity is
measured, and the absolute value of the difference is recorded.
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Figure 4-7: The average velocity error for each controller, plotted as (a) the mean value
for all those that did not fall, for each value ∆x̄′ and (b) as a box plot, showing the
minimum, lower quartile, median, upper quartile and maximum of the error for each
controller over the full range of conditions tested.

4.5.1 Controller Performance Comparison

The results for k∗ = 10 are compared in Fig. 4-7, plotted against the desired change in
velocity (∆x̄′ = x̄′tgt − x̄′n); the magnitude of this value corresponds to how far from a
symmetric stance the motion is. As starting velocity is always positive, positive values
∆x̄′ mean a increase in speed, and negative values slowing down or stopping.

The error value for a particular step is the difference between the target and actual
velocity at the (n+ 1)th apex:

x̄′error = x̄′n+1 − x̄′tgt (4.13)

However, when considering several steps, taking an average of this value would cause
positive (too fast) and negative (too slow) errors to cancel out, giving a misleading
average error of close to zero despite a poor performance in both cases. Therefore, for
the plots below the average of the magnitude of this error has been plotted, |x̄′error|.

Most of the approximations make an assumption of a symmetrical stance phase, conser-
vation of angular momentum or equivalents. Therefore, the larger changes in velocity
(i.e. more agile gaits) result in larger errors as they breach these assumptions. Both
the simplified and full empirical controllers show good performance across the range of
∆x̄′ when compared against the approximation based controllers, with the simplified
version showing a slight deterioration in performance, as expected due to the limitation
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of assuming a constant apex height. The empirical controllers were pre-tuned, off-line,
using a set of simulated results over the same range of x̄′tgt and x̄′n as the test, using
the regression method described below in Section 4.6.

4.5.2 Effect of Leg Stiffness Value

All the analytical approximations and the motivation for the form of the empirical
controller in some way use an approximation of a stiff leg spring. This is equivalent to
an instantaneous stance phase, because a very stiff spring would have a very fast natural
frequency and therefore rebound in a short time. Therefore, to test the controllers’
sensitivity to this approximation the simulations were repeated at various leg stiffness
(k∗) values, and the results are shown in Fig. 4-8.

4.5.3 Agile Gait Control

The previous simulations have been for a single step at a time, with the initial apex
conditions pre-set. Of course, for physical experiments and applications, the robot will
instead need to carry out a series of steps one after another, with the final state of
one step becoming the initial state of the next; such motion will be simulated in this
section as preparation for the experimental implementation of the controller later in the
chapter. An example of a simulated motion is shown in Fig. 4-9. The lower sub-figure
shows how varying the horizontal velocity has a direct effect on the step length, with
higher speed leading to longer steps. This may be useful in situations where there are
limited safe positions for foot placement.

The simulation environment allows for a large number of steps to be considered. Results
will be reported to measure the stability and accuracy of the controllers.

Firstly, the stability of the system will be measured by the mean number of steps the
robot can take before falling. This is more challenging when the velocity is higher and
when there is larger changes from step-to-step. The demand velocity for each step
will be randomly chosen between zero and a maximum value, x̄′max; higher values of
x̄′max will produce gaits which are faster on average and more agile, i.e. have more
variation between steps. The maximum number of steps for a run will be 100, and so
the “stability score” will be defined as the mean steps to failure with a maximum of
100.

The results, for the two empirical options and the analytical approximations (see Sec-
tion 4.3) over 100 simulated trails of 100 steps each with k∗ = 10, are plotted in
Fig. 4-10. It can be seen in each case there is a sudden drop as the maximum velocity
reaches the point where the controller is no longer able to model the system accurately
enough to prevent falling over. The two options for the empirical controller both remain
stable at higher velocities than any of the analytical approximation based controllers,
but there is little difference between them.
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Figure 4-8: Comparison of median error magnitude for each controller considered
against a range of leg stiffness values. For each point, the equivalent of the simula-
tions for Fig. 4-7 were performed, with the median of the absolute error is reported,
on a logarithmic vertical scale. All the controllers are more accurate when the leg is
stiffer, as a stiff leg (equivalent to instantaneous stance phase) is a common assumption,
however the empirical controllers suffer this effect much less as they can be re-tuned
for each stiffness value.
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Figure 4-9: A simulation example of agile motion, with large changes in velocity be-
tween steps. Changes in forward velocity (lower plot) lead to different length steps
(upper plot). Black crosses denote the foot landing positions and grey bars the stance
phases.
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Secondly, for those controller and x̄′max combinations that are stable, the accuracy can
be measured. Again, the demand profile consists of random values between zero and
x̄′max, and the accuracy measured as the magnitude of the difference between demand
and actual velocity, taken as an average over 10, 000 steps. Accuracy has only been
considered in the cases where the stability score was 100 as the required steps could
not be completed in the unstable cases.

Upon each step the absolute difference between the demand for that step and the actual
velocity is recorded. Median and upper and lower quartile values are shown in Fig. 4-11.

Across the range of x̄′max tested, the median error was between 25% and 40% lower for
the option “full” empirical controller over the “simplified” version. The disadvantage
of using the full version for the physical implementation (Section 4.8) would be the
requirement to measure the apex height for use in the controller computation. This
would mean the controller could only compute the required angle after the apex has
been reached, even assuming instantaneous measurement data being available. This
would leave less time for the leg to be physically re-positioned before the touchdown,
which is of critical importance. Therefore, with a view to physical implementation,
the reduction in performance is considered acceptable and the simpler version of the
controller will be used below.

4.6 Adaptive Gains Through Multiple Linear Regression

For the empirical control strategy suggested here the two controller parameters, β1

and β2, need to be selected. This could be done though the analytical approximations
above, however due to their very approximate nature the results would be poor. In the
results above, the values have been pre-set through simulation by fitting values to large
numbers of single-step simulations, with the initial conditions for these steps varied
over the range of expected conditions. However, this is not such an attractive approach
for physical robots; large numbers of repeated tests would require a lot of time and
effort. In this section, an approach will be taken to approximate β1 and β2 on-line,
using data from a small number of preceding steps with arbitrary initial conditions
(rather than systematically varied over a range).

To do this, a tuning method similar to the one used for the one-dimensional controller
in Section 3.3.2 will again be used, described again here for completeness. Noting
that when the robot is at the nth apex point information will be available from the
preceding stance phases, this information can be used to inform the choice of the nth

touchdown angle by selecting the β1 and β2 values which would have correctly predicted
the outcomes of these previous stance phases. Let p be the number of previous steps
to be considered for the selection of β1 and β2 (the “memory” of the controller); if the
vector of actual touchdown angles (the system inputs) which were applied are denoted
by Θ, let the values that would have been chosen using a particular set of β values be
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Figure 4-10: Stability for the analytical approximations and the two options for the
empirical controller. The “stability score” is the mean number of steps completed out
of a maximum of 100, over 100 separate trials. For each step, the demand velocity is
chosen randomly varying between zero and x̄′max.
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Figure 4-11: The absolute errors recorded over 10, 000 simulated steps, using the most
promising analytical controllers (“Yu” and “Saranli”) and the two empirical formula-
tions under consideration. The empirical controllers show a slight improvement over
the best approximation-based controller, with a small further improvement of the full
version over the simplified one. Plotted are the medians of the absolute errors, and
the associated upper and lower quartile bounds. Missing bars (at higher velocities)
indicate the simulated robot fell before completing all the steps, and corresponds to
values after the fall in stability shown in Fig. 4-10.
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Figure 4-12: The adaptive controller update logic.

Θ̂, then:

Θ̂ =

θ̂n−p...

θ̂n−1

 =

−x̄
′
n−p

(
x̄′n−p+1 − x̄′n−p

)
...

...
−x̄′n−1

(
x̄′n − x̄′n−1

)


︸ ︷︷ ︸
X

[
β1

β2

]
︸︷︷︸
β

The errors to be minimised, ε is:

ε = Θ− Θ̂ = Θ−Xβ (4.14)

The gain values to minimise the sum of the squares of the errors, ε′ε, are found by
multiple linear regression:

β =
(
XTX

)−1
XTΘ (4.15)

With two gain parameters to determine, the minimum number of previous steps to
consider is p = 2, in which case:

β = X−1Θ (4.16)

The controller update sequence is illustrated in Fig. 4-12. The first p hops must be
completed before this method can be applied to set the β values, and so some initial
values are required to control these first few steps. In simulation, the fixed values found
above will be used for the initial values, and for the experimental hopper some values
are found manually. As long as these are sufficient for the system to complete p hops
without falling over, the adaptive controller can be activated, beginning at the (p+1)th

hop.

4.7 Adaptive Simulation Results

It was shown in Section 4.5.1 that, with the optimum gain values, the empirical con-
troller performs well. In this section, the adaptive approach will be introduced for
selecting the gains; this means the gains will be selected during the simulation, based
on limited information, and so will inevitably cause some reduction in performance.
The adaptive gains will therefore be compared against a “fixed gain” version of the
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controller using the same values as above (Section 4.4.2), which were found by fitting
to a large sample. For the adaptive controller, the p value sets how long the “memory”
is, i.e. how many previous steps are considered for selecting the new gain values. A
range of values will be compared in order to asses the trade-off between fast adaptation
to changes in the system against improved stability and accuracy.

4.7.1 Agile Control

Firstly, the adaptive controller will be tested under the conditions used to compare the
analytical controllers in Section 4.5.3 above, namely the mean steps to failure (“stability
score”, with a maximum of 100) and the average of the absolute velocity error over
10, 000 steps.

By using previous steps to select the gains any error or inaccuracy in the linear mod-
elling for these steps will inevitably be amplified, and so the adaptive controllers are
less stable (more likely to cause the robot to fall) than when fixed gains are used. In
Fig. 4-13 it can be seen smaller p values creates more instability, as small errors have a
larger weight in the tuning; whereas when p is large, the average is taken over a larger
number of data points and so the result is more stable. The smallest value possible is
p = 2, which sometimes falls even at low speeds, while at and above p = 10 there is
little difference from the fixed gain version.

The adaptive controllers use only a limited amount of information from the previous
steps, for which the target velocity was randomly varied, and so may not provide a
representative sample. It would therefore be reasonable to expect a deterioration in
performance compared to the fixed gains which were selected using a large set of steps
specifically simulated to evenly cover the targeted space of velocities (in this case,
x̄′ = 0 to 1). However, Fig. 4-14 shows that for most velocity values, all the adaptive
controllers outperform the fixed gain controller. This is because for x̄′max values less
than 1, the demanded velocities do not actually cover the full range of steps used to
determine the fixed gains, and so a better set of gain values can be found by using even
a limited number (i.e. p) of actual steps. This suggests that, whether tuned off-line or
on-line, it is important that the conditions used when selecting the gain values match
those which will actually be encountered – potentially a significant advantage of tuning
on-line based on real data as the robot progresses.

4.7.2 Adaptation to a Change in System Parameter

One advantage to a system where the controller gains are changed during a run is
adaptation to changes in the robot dynamics. Changes in the dynamics may occur
if, for example, the mass changes (such as carrying a payload) or if it moves onto a
different terrain with stiffer or softer ground. In the simulation, such changes can be
created by changing the value of k∗, the dimensionless spring stiffness. In the following
tests, k∗ is changed instantaneously between two stance phases, and the control receives
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Figure 4-13: Stability for the (simplified) empirical controller, for a range of p values.
The “Fixed gain” version is analogous to an infinite p value, and is the same as the
“Empirical (simple)” controller from Fig. 4-10. The “stability score” is the mean num-
ber of steps completed out of a maximum of 100, over 100 separate trials. For each
step, the demand velocity is chosen randomly varying between zero and x̄′max.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 4-14: The errors in velocity recorded over 10, 000 simulated steps for a range of
p values and the “fixed gains” empirical controller, which is the same as the ‘Empirical
(simple)” controller from Fig. 4-11. Plotted are the median and the associated upper
and lower quartile of the error, defined as the absolute difference between the demand
and actual velocity for each step.
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Figure 4-15: An example of one run with a change in k∗ between steps 5 and 6. Shown
are (top) the achieved velocities compared with those demanded and (bottom) the
gains as they are re-tuned by the adaptive controller with p = 3 and p = 10.
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Figure 4-16: The response to a change in system parameter. For hops 1–5, k∗ = 6.7
and thereafter k∗ = 10. Shown are the mean and standard deviation of the velocity
error over 10, 000 simulations with random velocity demands on each step. When well
tuned, the average error should be zero and a more consistent controller will have a
smaller standard deviation.
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no notification of this change, other than the changes in velocity resulting from the new
system dynamics.

An example of one such run if shown in Fig. 4-15 where k∗ is changed from 6.7 to 10
between steps 5 and 6. The fixed gain controller is pre-tuned (using the same procedure
described above) for the initial value of k∗. The adaptive controllers, the gain values
are allowed to settle over a number of previous steps, significantly larger than p, before
the plotted steps. Fig. 4-16 shows aggregated results from 10, 000 such runs, with a
new random set of target velocities for each run; the median and quarterlies of the error
(defined here as the difference between demand and achieved velocities) on each step
are shown. An accurate and consistent controller would produce a bar centred around
zero with small error bars. Before the change, all the controllers track the demand
fairly closely, but immediately after (step 6) suffer the expected error from changed
system dynamics. However, the adaptive controllers are able to re-tune, and recover
performance; this takes approximately p steps, as before this some results from the old
system dynamics are still included in the multiple linear regression model. Therefore,
lower values of p will adjust to such changes more quickly. It was found that, for this
particular step change in k∗, values below p = 5 caused the robot to fall in most cases,
while at p = 5, eight of the 10, 000 runs (0.1%) caused the robot to fall and are excluded
from the plot. No such failures occurred for the fixed gains or p = 10 controllers.

4.8 Physical Experiments

In order the verify the simulations described above, the proposed controller has been
demonstrated on a physical robot. This section details a physical robot made for this
purpose, and some experiments implementing the controller with adaptive and fixed
gains.

4.8.1 Robot Design

In order to carry out experiments, a physical hopper is needed. For two-dimensional
hopping, the robot must be allowed to move in two axes, but be contained in the
third so it can traverse a plane, but the constraining mechanism must be low mass
and friction to avoid introducing significant disturbances into the dynamics. Achieving
this on a perfect plane is difficult due to the need for linear rails which add inertia
and friction, but can be approximated by attaching the robot to the end of a boom
which is pivoted in two directions. This means the robot actually traverses the surface
of a sphere, but so long as the boom is long compared to the hop height and length,
this surface is approximately planar. The long lever arm of the boom also means any
friction in the pivot is more easily overcome. This planned layout is shown conceptually
in Fig. 4-17. The horizontal and vertical motion are not directly controlled. Instead,
the robot has two further degrees of freedom, over which it has partial control. Firstly,
the leg angle, which can be set during the flight phase but is allowed to move freely
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during stance. Secondly, the leg length which will be at its maximum during flight,
and in stance will compress, with control only over the gross energy added through the
valve opening time.

The robot used in these experiments is shown in Fig. 4-18. The long boom to constrain
the robot to the sagittal plane can be seen, with the leg able to pivot in this plane also.
The body is attached rigidly to the boom to prevent rotation. In this way, the robot
approximates the SLIP model described in Section 3.2.3, moving in two dimensions.
By having only the leg rotate, the rotational inertia is minimised in order to better
approximate the point mass of the SLIP model.

The leg is made from a pneumatic actuator with valves for inlet (from a 6 bar supply)
and outlet (to atmosphere), with the same actuation method as for the one dimensional
hopper described above in Section 3.5. Pneumatic actuation provides a convenient way
to rapidly inject energy at a specific time, by simply opening a value. To approx-
imate the lossless SLIP model, the same amount of actuation (i.e. the same valve
opening time) is applied during each stance phase so the system should settle to an
approximately constant energy level.

The leg actuation system must set the leg angle to a desired value during the flight
phase, but during the stance phase the leg should be allowed to rotate freely to follow
the natural dynamics (with imposed torque as close to zero as possible). The actuation
system has been designed to allow this by being able to release the leg when desired. As
shown in Fig. 4-19, this system comprises three parts: the non-rotating body (coloured
green), the actuating servos and connected arms (red), and the rotating leg (blue).
A central shaft connects these parts, allowing the leg and servo arms to rotate about
a common axis. Fig. 4-20 shows how the two servo arms can move back and forth
together, (a)-(c), to push the pin (grey circle) which protrudes from the leg, driving
the leg to a demanded position, e.g. during flight phase. In order to allow the leg to
swing freely (e.g. during stance phase), the servo arms move away from each other,
(d), releasing the pin. A physical electronic switch in the foot to detect the moment
of impact with the ground (touchdown) via an interrupt pin on the Raspberry Pi
minimises the delay in activating this release.

To calibrate the required low-level inputs to the servos a step input test was performed.
For this, the robot was suspended above the ground so the leg could be moved back
and forth freely, and the servos set to open and then drive the leg to a given angle.
Fig. 4-21 show the results of such a test once the low level servo control had been
manually tuned. This suggests that moving from the “open” position (grey areas) to
a demanded angle can be achieved in approximately 120 ms; this measured time will
include the latency in angle measurement from the external tracking system. This
must occur during the flight phase, so that the leg is in position ready for the following
touchdown, which, in the experiments described below, provides approximately 200 ms
to 250 ms for this.

Power (both electrical and pneumatic) are provided through the boom for simplicity.
Position estimation is carried out though an on-board IMU and an external tracking
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Figure 4-17: Concept sketch for the 2D physical robot, showing the degrees of freedom
(red) and rotational axes (blue). The horizontal and vertical body displacements are
approximated by a 2-way pivot at the other end of a boom (yellow). The leg has an
additional two degrees of freedom: its rotation which can be controlled in flight, and
its extension along which the input can be applied during stance.
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Figure 4-18: The experimental robot hopper, constrained to the sagittal plane by a
long boom.
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Figure 4-19: Exploded 3D view of the design for leg actuation.
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Figure 4-20: The servo actuation method. The pin attached to the leg protrudes into
the page between the servo arms, and can be forced to (a) a positive angle, (b) a
negative angle, (c) the zero position, or (d) the servos can opened to allow the leg to
swing freely (during stance phase).
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Figure 4-21: Step input to test low-level leg angle control using the servo system
described. Reasonable angles can be achieved in approximately 120 ms.

system which runs on a laptop, with these two sources combined using a simple compli-
mentary filter. The control algorithm described in Section 4.4 is carried out on-board
on a Raspberry Pi Zero (1GHz, single-core CPU and 512MB RAM)1.

The robot mass is approximately 600 g and with the actuator extended the leg length
(from centre of mass to foot) is 150 mm. The stiffness of the leg is created by the
compression of air trapped in the actuator, which makes it non-linear. However an
approximate value analogous to the spring stiffness in the model (Section 3.2.3) can
be found from the stance time. A typical value is 0.15 s, which, assuming this is half
the natural frequency, suggests a stiffness of approximately 260 N m−1. Together, these
values correspond to a dimensionless stiffness of k∗ = kr0/mg ≈ 6.7.

4.8.2 Experimental Testing Procedure

A fixed pair of β gain values were determined manually through trial and error, to
allow the robot to successfully hop along the track without falling over, approximately
tracking demanded velocities. This is required because the adaptive controller requires
data from at least p steps before it can be applied.

To test the tracking of an agile (i.e. varying each step) velocity demand, a sequence
was generated of 17 hops corresponding to hopping along and back for most of the
length of the track, with demand values (initially positive and then negative) varying
randomly in magnitude from zero to 400 mm s−1 (for comparison to the simulation
results, the equivalent non-dimensional value is x̄′ ≈ 0.33). The same fixed sequence
was used for each test for comparison purposes. For each test, before applying this
sequence, the controller was initialised with the manually selected β values and the
robot commanded to hop back and forth along the track with random magnitude
velocity demands (different each time). Once at least p hops had been completed the
adaptive controller was activated (except for the fixed gain controller) and the next
time the robot reached the start of the track the test sequence of demands was applied.

1See www.raspberrypi.org/products/raspberry-pi-zero-w/
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In this way the adaptive controller was set up with a different random sequence of
previous steps for each run, giving a representative range of values from which to tune
the controller gains.

This procedure was completed for 15 runs, giving a total of 255 individual steps, for
each of three controllers: using the manually determined fixed gains, and for p = 10, 30.
Values of p below 10 were found to cause the robot to fall without reliably completing
the run, and so were not included in the test.

4.8.3 Experimental Results

Fig. 4-22 shows the sequence of demand values, with the mean and standard deviation
of the measured velocity under each of the controllers (fixed, p = 10 and p = 30) at
each step. Under all three settings, the controller is able to approximately track the
demanded velocity. Although there is, inevitably, variation caused by the underlying
inaccuracies in measurement and actuation of the robot, there are some meaningful
trends that can be discerned.

Firstly, comparing the fixed gain version (blue diamond) to p = 30 (green star), the
introduction of the adaptive controller generally reduces the error – the mean is closer to
the target on most (15/17) of the steps in Fig 4-22. This can be measured by a reduction
in the overall mean of the absolute error for all 255 individual steps from 253 mm s−1 to
191 mm s−1 (significant within 1% under the Mann-Whitney U test2[77]). The adaptive
gains allow the controller to tune accurately to the system dynamics, outperforming
the fixed values which were manually selected by trial and error.

Secondly, the adaptive controllers show a larger amount of variability – i.e. the standard
deviation bars in Fig. 4-22 become larger. The mean standard deviation is 73 mm s−1

for the fixed gains, 85 mm s−1 at p = 30, and 107 mm s−1 at p = 10. This is as
expected from the simulation results, because adapting the gains on-line effectively
creates variation in the controller settings, which will lead to variation in the inputs
selected and the resulting velocities.

As was seen in the simulation results previously, the value of the update parameter
p has an influential effect on the robot stability. When setting up the robot, it was
generally found that below p = 8 the robot would fall in the majority of runs, and
p = 10 was required to consistently complete the required steps and so this was chosen
as the lowest value for the larger numbers of runs required to compute the data in
Fig. 4-22. The higher values of p required compared with the simulation (c.f. Fig. 4-
13) should be expected as a consequence of the introduction of inaccuracies associated
with measurement and actuation in physical systems. The variability increases for
lower p values because the selection of controller gain values are also subject to noise
in the data, and a larger sample of previous steps (p) allows some of this noise to be

2Implemented through the MATLAB function ranksum(), see www.mathworks.com/help/stats/

ranksum.html for details
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Figure 4-22: Results for velocity tracking of a fixed series of random velocity demands,
first positive then negative. Shown are the mean of the velocity for each step in the
sequence over 15 trial runs, with bars representing the standard deviation for that step
in the sequence. Compared are the controller with fixed (manually determined) gains,
and adapting over p = 30, 10 previous steps.

smoothed out. In this sense, the fixed gain controller can be considered as the extreme
case of infinite p.

The choice of p value is then a trade-off; higher p values correspond to using more
previous steps to tune the controller and so tends to be more accurate and is likely
more robust to noise. However lower p values will respond more quickly to changes in
the environment and to remove inaccuracies, using fewer previous steps. In practice, it
may not be necessary to update very rapidly; some changes may happen slowly, such
as a change in actuation as a battery runs down, or it may be acceptable to adapt more
slowly to a new running surface if these changes will be infrequent. In these cases, a
p value of 30 or even higher may be adequate. Even a high p value retains a practical
benefit in setting up a robot; the improved accuracy for p = 30 over the manually
chosen fixed gains demonstrates it can be difficult to select the optimum gains by trial
and error alone.

4.8.4 Limitations and Failure Modes

Even with fixed controller gains, there is still some inaccuracy and variability in the
results, due to practical limitations in the robot hardware. In particular, the leg ro-
tation actuator is only just able to move the leg to the demanded position within the
flight phase, and there may still be some oscillations in leg position at the moment of
touchdown. Additionally, velocity is computed by the derivative of the tracking posi-
tion data, which will exacerbate any noise. The velocity controller relies on these data
and the implementation of the computed leg touchdown angle, and so inaccuracies will
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be reflected in the velocity control results.

Further to the general challenges of physical implementation, there are some ways the
adaptive approach could create or amplify problems.

Noise and measurement error are inevitable for any real system, and will (almost)
always degrade performance. However, this controller formulation can exacerbate these
problems, because any error does not just affect the current step, but through the
selection of gains will influence future steps too. This can generally be mitigated by
choosing a larger p value, effectively increasing the sample size used to compute the β
values. Although these results suggest this has not been the case, and the accuracy has
not been significantly impacted in practice, suitable selection of the required p value
will be application specific.

The gain computation from Section 4.6 involves a matrix inversion, and when this
matrix is close to singular even a small measurement error can create large errors in
the selected gain values. Conceptually, this corresponds to cases where the preceding
p hops provide insufficient information to determine the best controller gains. For
instance, if two consecutive hops have very similar velocity, then ∆x̄′ ≈ 0 and this
provides little information for selecting β2. Such issues may be mitigated through
techniques to detect when the matrix inversion is poorly scaled, such as checking the
condition number and not updating the β values if this falls below a threshold.

4.9 Concluding Remarks

This Chapter serves to demonstrate the the core ideas behind the thesis, applied to
the lossless SLIP model for two dimensional hopping. Firstly, that taking a simple
empirical approach can be at least as accurate as even the more complex approximations
available, while also having very low computational cost to allow for implementation
on low-power hardware. Secondly, that this simple empirical approach can allow the
controller to be tuned on-line, using a small number of preceding steps.

An advantage of the empirical approach is the avoidance of convoluted algebraic analy-
sis required to achieve good accuracy, keeping the controller simple to derive, implement
and tune. The multiple linear regression approach allows the values for the controller
gains to be found quickly and easily. In addition, the empirical approach can still be
intuitive (at least to some extent) by formulating the structure of the controller from
consideration of the dynamics.

Another benefit of the simple formulation is the introduction of on-line tuning during
use. This has the potential to reduce the manual effort in tuning an empirical controller
allowing faster and easier implementation. It also allows the controller to adapt to
changes in the environment, such as different ground types or changes in leg stiffness
or body mass.
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When moving from the simulated environment to physical implementation, the be-
haviour of the system will inevitably deviate from the idealised SLIP dynamics. As
this happens, any analytical approximation is likely to only become more inaccurate,
with correspondingly deteriorating performance. As the empirical controller can be
tuned to the real system, rather than to the idealised model, it should be better able
to cope with this mismatch.

The experimental results have demonstrated that this controller formulation can make
the transition from simulation to physical implementation. The physical system in-
herently presents a more challenging control task, with the addition of sensor noise,
additional non-linearity of the spring force, frictional effects to be overcome all con-
tributing to errors and inconsistencies not found in the simulation. As a result, the p
value of the controller (the number of previous steps considered) had to be increased
to smooth out some of these errors, but values between 10 and 30 will still allow for
on-line adjustment to changing conditions.

As a final comment, the experimental work presented here reinforces that agile loco-
motion is an inherently difficult control problem in physical implementation, in ways
not easily captured by simulation. A small angular error in the touchdown angle is
often amplified in the resulting velocity, requiring a good measurement and actuation
accuracy on the leg angle, while the limited time in flight requires the leg swing to be
carried out quickly. From this perspective, the agile motion seen in nature is even more
impressive.
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Chapter 5

Combined Control of Hopping
Height and Forward Velocity

The previous two chapters have described the importance of, and proposed controllers
for, controlling the apex height and the forward velocity of a hopping robot. While an
agile gait – where every step is different – can be achieved by accurately varying either
of these parameters, that assumes that the other can be simultaneously maintained at
a constant value without the need for it to be controlled. Clearly this will not in general
be the case as the height of a hopping robot will be affected by energy losses, and the
forward velocity generally to be actively controlled as it relied on dynamic stability.
Therefore, controllers are required which can control both height and velocity at the
same time.

In this chapter, such controllers are formulated and tested in simulation. The simplest
approach is to take the controllers from the preceding chapters, and apply them at the
same time under the decoupled controller assuming they do not affect one another. An
improvement can be made by repeating some of the approach from previous chapters,
but with some account of the new dynamics of the system by considering the energy
transfer between velocity and apex height – refereed to as the energy controller. A
controller generated by stepwise regression, which result in much greater algebraic
complexity, demonstrates that a purely empirical controller is capable of accurately
implementing a gait that is agile in both apex height and forward velocity, however
both the decoupled controller and energy-based controller suffer degraded performance
even if only one of the states (height or velocity) is given agile demand values. The
adaptive method of gain updates successfully applied in previous chapters is found to
exacerbate these problems, and in particular lead to increased likelihood of the robot
falling, due poor gain choices caused by the underlying assumptions. These results
have implications if the many controllers based on the lossless SLIP model are to be
applied alongside a separate height controller.
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5.1 Chapter Introduction

The preceding chapters have demonstrated the empirical approach is effective for con-
trolling the height of a one-dimensional hopper, where there is no forward velocity, and
for the control of the forward velocity in a lossless SLIP model, where the height does
not need to be controlled. This chapter’s aim is to combine these two controllers for
height and forward velocity in a two-dimensional hopper and so explore, in simulation,
the limits of the decoupled approach (where these two parameters are assumed to be
independent). The ability to control both apex height and forward velocity in a an
agile way will be important in future applications where a robot is required to tra-
verse limited safe foothold positions which vary in both height and separation. If, for
example, the addition of height variation has a large impact on the forward velocity
controller, this would have serious implications for many controllers developed for the
lossless SLIP model when attempting to apply them to this sort of task.

The first controller presented in this chapter will take the most straightforward, de-
coupled, approach and simply apply the previous controllers in parallel without any
modification. This will be refined in the second controller (the “energy controller” be-
low) by taking a similar approach to that which derived the original controllers, namely
creating the overall form of the controller by reasoning about the dynamics (and in this
case, the coupling effect between the two parameters), before tuning the gain values
empirically. Finally, to show the potential power of an empirically tuned controller, a
set of terms are chosen by stepwise regression to give a highly accurate, if somewhat
more complex, formulation.

5.1.1 Chapter Contributions

This will be done by considering an extension to the SLIP model with the introduction
of energy loss through a damping term, described in below in Section 5.2, where the task
is to control the robot with variation between steps in the demanded values for both
apex height and forward velocity. The three controller formulations are presented in
section 5.3 and compared in simulation in section 5.4, before some concluding remarks
in section 5.5.

Building on the previous ones, in the chapter:

• The proposed controllers from chapters 3 and 4 are further tested in combination.

• A further controller is proposed based on a similar strategy but considering the
coupling effect of energy transfer between height and velocity, and the adaptive
tuning method again applied.

• As a starting point for possible future work, the stepwise regression method is
applied to generate a more accurate, purely empirical, controller.
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Figure 5-1: The modified stance phase model, with the addition of viscous damping in
parallel with the leg spring.

5.2 Simulation Model

In order to necessitate an input to maintain height, a viscous damping term will be in-
troduced into the stance phase of the SLIP model previously described in Section 4.2.3,
forming the model shown in Fig. 5-1. Although it is still highly simplified, this “lossy
SLIP” model adds some realism to the model in the form of an energy loss which must
be replaced. The flight phase dynamics are unchanged from equation (4.1), while the
stance phase dynamics (c.f. equation((4.2)) become:

r̄′′ = k∗(1− r̄)− cos(θ̄) + r̄(θ̄′)2 − c∗r̄′ + F (5.1a)

θ̄′′ =
1

r̄
sin θ̄ − 2θ̄′r̄′

r̄
(5.1b)

where F is a generic actuator force determined by the controller. In addition to the
terms defined in section 4.2.4, a new term c∗ is the dimensionless viscous damping,
defined in relation to the physical viscous damping coefficient c as:

c∗ =
cs2

mr0
(5.2)

The system inputs are the touchdown angle, θ̄td, as for the lossless SLIP model, and
the force F acting in the direction of the leg during the stance phase, but, by definition,
there is no contact during flight and so no input during this phase. While the force
input could be made to vary arbitrary over the stance phase, it will be restricted to a
chosen value (un) applied while the leg is extending (i.e. the upward part of the stance
phase) to give a single value for the input on a given step. Note that energy can be
removed from the system by setting this input to a negative value.

The system parameters have been chose as k∗ = 10 to match the simulations in chap-
ter 4, and c∗ = 0.5. The forward velocity values will again be varied from step to step
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Figure 5-2: Each point in the dataset consists of finding the values of un and θtdn which
will cause the system to move from an apex state of ȳapexn and x̄′n to the next apex
state of ȳapexn+1 and x̄′n+1.

between no forward motion to approximately a jogging pace, values x̄′ = 0 to x̄′ = 1.
The apex height should always be greater than the leg length (i.e. greater than 1) to
avoid the foot “clipping” the ground, so ȳapex = 1.2 to ȳapex = 2 has been chosen. The
demanded motions will vary each step individually up to this range to create highly
agile motion.

5.3 Empirical Controllers

5.3.1 Dataset Generation

First a dataset of “ground truth” values will be pre-computed, to be used for finding
the fixed gain values (and the initial values for the adaptive controllers), and will also
be used in developing the stepwise controller as described below. The controller inputs
affect the system dynamics, and thus determine the next apex state from the current
one, shown conceptually in Fig. 5-2. For each possible combination of current and next
apex states, ȳapexn , x̄′n, ȳapexn+1 and x̄′n+1, the two system inputs, un and θtdn , must be
found which will connect these states. This will be done through an iterative method
of numerical simulations, each of a single step. Combinations will be considered of
values from 1.2 to 2 for ȳapex (in steps of 0.08) and 0 to 1 for x̄′ (in steps of 0.1), giving
a total of 114 = 14 641 data points.

Once generated, this dataset will be used to fit each of the empirical controllers de-
scribed below to provide a good estimate for best gain parameters for overall perfor-
mance over this range of system states.

5.3.2 Decoupled Controller

The decoupled approach involves simply applying the height controller for vertical
hopping and the forward velocity controller for the SLIP dynamics from the previous
chapters in parallel with one another. In doing this, it is assumed that the problem
of controlling the height and that of controlling forward velocity can be considered
separate (i.e. decoupled), so that the force input into the leg, u, affects only the
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apex height, ȳapex, and that the touchdown angle, θtd affects only the forward veloc-
ity, x̄′. The height controller from equation (3.11) and the velocity controller from
equation (4.12) are combined to form:

un = α1 (ȳapexn − 1) + α2(ȳapexn+1 − ȳ
apex
n ) (5.3a)

θtdn = β1x̄
′
n + β2

(
x̄′tgtn+1 − x̄

′
n

)
(5.3b)

Note slight modifications from (3.11): firstly the addition of the overbar for ȳ indicating
the dimensionless quantities are now being used, and secondly yapexn is replaced by
(ȳapexn − 1). This is because the leg length could be ignored for the one dimensional
model, and so was set to zero to simplify the equations. However, the leg’s rest length
is now defined as 1 and the zero energy level is defined as the point where the leg is
at this length, vertical, and the foot in contact with the ground, while the height is
measured from ground level.

5.3.3 Energy Controller

Intuition for the problem suggests the decoupled approach will fail for agile gaits,
where there are significant changes in velocity from one apex to the next. This is
because adjusting the touchdown angle changes the forward velocity not by adding (or
removing) the required energy for this increase (or decrease) in velocity, but rather
by transferring energy from gravitational into kinetic, causing a lower and faster (or
higher and slower) next apex. It is therefore clear that controlling the velocity in this
way will also have the effect of changing the value of the next apex height – the two
parameters are coupled.

However, the observation that the touchdown angle should not significantly change the
energy level1 allows for another approach. Instead of the leg force input, un, being
selected to control the required apex height, yapexn+1 , it instead is selected to achieve the
required overall next apex energy level, Ēn+1. This energy can then be split between
forward velocity and height by the leg angle controller as required.

When the forward velocity controller was developed and tested in sections 4.4 and 4.5,
the “simplified” version was selected which assumed a constant apex height. Now,
with the apex height actively controlled and with a varying demand, this assumption
is likely to no longer be valid and the variation in apex height should be included.
The required addition to controller to return to the “full” version, derived from the
approximation described in section 4.4, is to divide the second term, which acts on the
required change in velocity, by

√
ȳapexn − 1. This makes intuitive sense when thinking

1An effect may be created indirectly, whereby a different touchdown angle causes differing behaviour
during the stance phase, which may in some way influence the amount of energy lost to the damping.
Any such effect is likely to be small and is ignored for the purpose of formulating this controller.
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about the energy of the system. When the apex height is lower, there is less energy
available to produce the desired change in velocity, and so a larger proportion of it is
required to be converted, requiring a larger deviation in the touchdown angle.

Defining a new pair of controller gains γ1 and γ2 to describe the required input to main-
tain a particular energy level and create a particular change in energy level respectively,
and re-introducing the velocity controller from equation (4.12b), the controller takes a
very similar form the those previously described:

un = γ1Ēn + γ2

(
Ētgtn+1 − Ēn

)
(5.4a)

θtdn = β1x̄
′
n + β2B

(
x̄′tgtn+1 − x̄′n√
ȳapexn − 1

)
(5.4b)

with the important new term to describe the (non-dimensional) energy level at the nth

apex, defined as:

Ēn = ȳapexn − 1 +
1

2

(
x̄′n
)2

(5.5)

This formulation moves beyond the decoupling assumption, as the energy (and so now
choice of un) depends on both the apex height and forward velocity, but retains some
of the advantage of the previous controller, without the value of either control input
being dependent on the other. It also retains a form based on simple approximations
and reasoning about the dynamics, assisting with an intuitive understanding of how it
functions. It can be thought of as the leg actuation modulating the total energy of the
system, while the touchdown angle determines how this energy is split between height
and velocity in the next flight phase.

The previously described adaptive approach through multiple linear regression based
on previous steps can also still be applied and will be tested below.

5.3.4 Term Selection by Stepwise Regression

The previous controllers have been formulated by first considering the physics of the
model, and from this determining a simple relationship, to be empirically tuned. If,
instead, the physics is not considered, and completely empirical approach may be taken,
it may be possible to find a better set of algebraic terms. Such a controller would lose
some appeal due to the lack of intuition for “how” it works, but could potentially be
more accurate. The self-tuning approach may still be taken, so long as the controller is
restricted to linear coefficients which can then be found through the regression method
discussed in previous chapters, although the more terms are included the less practical
this becomes.

Stepwise regression is a technique to automate the selection of parameters to be used
in a linear model [78, p.307-312]. To create the model, first a wide range of candidate
terms will be generated. From these, the stepwise regression algorithm will add and
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remove individual terms and determine those which have a significant impact on the
accuracy of the overall model, finishing with a linear combination of terms that can
accurately predict the values in the dataset generated above.

The freedom of the simulation environment allows for a wide range of candidate terms
to be provided. Any possible controller will be considered to be made up of a sum of
terms, where each term is the product of the four values which define the current (nth)
and next ((n+ 1)th) apex states, each raised to a power (i,j,k and l respectively) and
with a unique coefficient, λ or κ:

un =
∑

λijkl
(
x̄′n
)i (

x̄′n+1

)j
(ȳapexn − 1)k

(
ȳapexn+1 − 1

)l
(5.6)

θtdn =
∑

κijkl
(
x̄′n
)i (

x̄′n+1

)j
(ȳapexn − 1)k

(
ȳapexn+1 − 1

)l
(5.7)

Candidate terms will be considered for all possible combinations of the powers in the
following ranges, giving a total of 255 candidates in each case.

i ∈ {0, 1, 2}
j ∈ {0, 1, 2}
k ∈ {−1,−0.5, 0, 0.5, 1}
l ∈ {−1,−0.5, 0, 0.5, 1}

Note that for all terms containing (x̄′)2, this is replaced by |x̄′| x̄′ in order preserve the
sign of the velocity and ensure the controller is agnostic to direction of travel. This
allows it to perform equivalently for positive or negative x̄′ values.

This gives a a controller formulation where un and θtdn are each computed by a total
of 225 candidate terms, where each term has a unique coefficient denoted by λ or κ
(including where all the powers are zero, giving a constant term). When the stepwise
regression method was applied2 to the dataset described above 49 λ terms for selecting
u, and 56 κ terms for selecting θtd, were included as significant in the final model.

5.4 Simulation Results

Each of the controllers described in Sections 5.3.2–5.3.4 above has been implemented
for comparison in simulation, with the decoupled and energy controllers tested using
fixed gain values and adapting over p = 10 preceding steps under the scheme already
described in detail for the height and velocity components of the controller in sections
3.3.2 and 4.6. Various ranges of demand in velocity and apex height will be tested,
i.e. requiring different levels of agility, with larger changes in demand from step to
step being more challenging to achieve. Results of some example runs are shown

2This was done with the MATLAB function stepwisefit(), using confidence values to add or remove
terms of 0.05
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in Figs. 5-3 to 5-6. The baseline result, against a steady state demand, is shown in
Fig. 5-3 with all the controllers able to achieve this, with a small steady state error for
the fixed gain decoupled and energy controllers. In each particular run, variation can
be introduced in either the height or forward velocity demand values, with the other
set at a steady state demand, or both can be varied at the same time. Variation in
either of demand values could introduce errors in the resulting velocities, apex heights,
or both.

It can be seen in Fig. 5-4 that the decoupled controller performs poorly when the
forward velocity is required to change in an agile manner, even for a constant height
demand, with the fixed gain version less accurate than the energy controller and the
adaptive version unstable. As forward velocity is changed, this removes or adds energy
to the height but is not compensated for under the decoupled assumption of the con-
troller. This problem is exacerbated by using the adaptive gains: when the apex height
fails to meet the demand, the gains are updated under the assumption this was caused
by the height controller, when if fact it was caused by the velocity controller through
changing the touchdown angle. This incorrect assumption causes poor gain values to
be chosen and the hopper often falls, in this case between steps 10 and 15.

Fig. 5-5 shows the inverse, attempting to maintain a steady velocity while the apex
height demand is agile. Although there are some differences between the decoupled
and energy controllers, neither shows a clearly improved performance over the other.
As before, the adaptive controllers perform noticeably worse achieving a steady-state
demand (in this case velocity) compared with the fixed gain equivalents because of
the deceptive feedback they receive, in this case by different leg actuations intended to
modify the apex height also affecting forward velocity.

Finally, Fig. 5-6 shows a run with changes in both forward velocity and apex height
demands. The controllers are all able to track these agile gaits, albeit with some error.
Indeed the adaptive decoupled controller which had previously been unstable with a
steady state apex height demand performs better now that the demands are changed
between steps since these changes yield better information for tuning the controller
gains.

The results described so far are some example runs from a larger set, from which
averages can be taken to confirm these observations hold more generally. For each
dimension (velocity and apex height), the demands have been varied randomly over
either the full range used in the dataset generation (maximum agility required), a
constant in the centre of this range (steady state), or a range half way between these
two. These different demand ranges make up the rows and columns in Fig. 5-7, labelled
along the left and bottom, where, for example, x̄′tgt = 0 to 1 indicates velocity targets
varying randomly between zero and 1 for each step, which would give a maximum
possible demanded change of 1. Each controller, for each pair of target ranges, was
tested over 1000 runs of 100 steps in each run, and the absolute error (the magnitude of
the difference between the achieved and the target values) on each step was recorded.

Results are shown in Fig. 5-7 for (a) the velocity errors and (b) the apex height errors.
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Figure 5-3: An example run with the demand values for both apex height and forward
velocity head constant, a steady state gait.
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Figure 5-4: An example run where the forward velocity target is varied, while the apex
height target is constant, for each controller.
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Figure 5-5: An example run where the forward velocity target held constant, while the
apex height target is varied, for each controller.
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Figure 5-6: An example run of varying both forward velocity and apex height demand
values, for each controller.
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Shown are the median and quartiles of the absolute error for all the steps completed.
For those cases where not every run was completed successfully the “stability score”
(the mean steps to failure with maximum of 100) is printed above the bars – these values
are very important because any controller that causes the robot to fall is likely to be
even less useful than one that is inaccurate but at least remains upright. With each
subplot, there are nine sets of target ranges, where top left is steady state demand (the
same target every step), and the bottom right most agile with large target variations
possible between each step.

Within the data in Fig. 5-7 there are several notable results and patterns that warrant
discussion.

For the case of steady state demand (top left subplot in each (a) and (b)), the error
is generally the lowest. In particular, the adaptive controllers (p = 10, yellow and
purple bars) rapidly tune the relevant parameters to the best values for this particular
velocity/height combination, bringing the average error to almost zero.

The decoupled and energy controllers (blue/yellow bars and orange/purple bars) have
very similar performance in terms of horizontal velocity error (Fig. 5-7(b)), whereas
the error in apex height control (Fig. 5-7(a)) shows the energy controller performing
better. As the demanded forward velocity is made more agile (moving from top row
to bottom row), the energy controller is much better able to compensate, even if the
apex height is demanded to be constant (left column). This indicates that the coupling
effect of transferring energy between kinetic (velocity) and gravitational (apex height)
considered by the energy controller formulation is indeed an important factor.

The introduction of self-tuning for the decoupled controller (compare the blue to the
yellow bars) reduces the stability significantly (indicated by lower values of the stability
score, printed above each bar when less than 100). This is in contrast to the results
from the equivalent controller used on the lossless version of the model in section 4.7,
where a value of p = 10 had very little detrimental impact on the stability score over
the fixed gains. The self-tuning method assumes that the controller parameters can be
selected based on previous steps, i.e. whatever parameters would have worked for the
preceding steps should be useful for this step. In cases where the information from the
preceding steps is not applicable, this will lead to erroneous parameters being selected;
this can amplify the errors introduced when the decoupling assumption fails to take
into account the effect of changes in apex height will have on the forward velocity and
vice versa. For instance, if a large increase in velocity on previous step has caused
the apex height to drop on that step, the self-tuning would conclude that the α gains
for selecting the input, u, should have been larger, and so apply a higher input values
(compared to the fixed controller), even if the next step requires instead a decrease in
velocity (which will add to the apex height).

The controller based on the stepwise regression model dramatically outperforms the
alternatives in Fig. 5-7. The variation in demand values makes much less difference than
for other controllers, and with errors of less that 1% of the demanded values even for the
agile gait demands. This shows the potential power of fitting larger numbers of terms;
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(a) Median absolute error in apex height, ȳapex
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Figure 5-7: Simulation results for each controller with demand values varied randomly
within the stated ranges.
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in particular, this controller is free from the assumptions of linear relationships, and
the “decoupling” of touchdown angle controlling velocity and leg force input controlling
height or energy level.

5.5 Concluding Remarks

5.5.1 The Decoupling Assumption

In this chapter, the the controllers previously introduced for hop height (Chapter 3) and
forward velocity (Chapter 4) are combined. The two controllers are applied in parallel
to a version of the SLIP model, extended to include some energy losses which introduces
the need for actively controlling the apex height. When applied independently, the
assumption being made is that for determining the required leg actuation, only the
apex height needs to be considered, and for the touchdown angle, only the forward
velocity The resulting decoupled controller has been shown to be adequate when the
demand vales are constant. However, for a gait that is agile (with variation in demand
on every step) in even one of the two states creates errors in both. The fact that
introducing more variation in apex height induces an error in the velocity, and vice
versa, suggests this decoupling does not in fact hold.

The performance of the controller can be improved by removing this assumption, al-
lowing the controller for each input to consider both parameters of the apex state (the
height and velocity). The “energy” controller remains in keeping with the approaches
from previous chapters, where the controller is formulated based on approximations to
the dynamics, but tuned based on completed steps.

In this way, the energy controller successfully reduced the apex height error. However,
the remaining error in forward velocity suggests there is a further coupling effect that
has not been accounted for, whereby the leg actuation force impacts not just the overall
energy level but also its division between forward velocity and height. This effect will
also be present for the many controllers based around the lossless SLIP dynamics,
implying that subsequently adding a height controller may be detrimental to their
efficacy, especially for agile gaits.

5.5.2 Utility of Stepwise Regression Controller

The terms used in the previously discussed controllers was determined through reason-
ing about, and approximations to, the dynamics of the system, with only the param-
eters tuned empirically. By relaxing the desire for this kind of intuitive reasoning, an
empirical approach can also be taken to choosing the terms themselves. As illustrated
by the controller created through stepwise regression method, this can provide greatly
improved accuracy.
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The approach to controller formulation for a physical robot would need to be evaluated
on a case by case basis; if a robot conforms closely to the SLIP model, the previously
described controllers may be suitable. For other robots, for instance with more complex
leg geometry, other simple relationships may be derived by reasoning about their dy-
namics. However, methods such as the stepwise regression used here, or more complex
machine learning systems, could become useful for complex robots; if the terms of the
controller can be kept linearly independent (i.e. a linear sum of terms each with their
own coefficient), tuning and on-line adaptation of the coefficients could still make use
of the multiple linear regression method from previous chapters.

The controller selected by stepwise regression in this chapter includes over 100 terms,
and is something of an extreme example whereby the simulated dataset is fitted very
closely by the empirical controller. Replicating such a large dataset for a physical robot
for the selection of these terms and tuning the coefficients is likely to be impractical.
Instead, which terms to be included could be selected through a large set of simulation
data, as was done here, but with with the actual λ and κ coefficients tuned based on
experimental data, possibly on-line. The additional noise and experimental error in a
physical robot means the number of sample steps must be substantially larger than the
number of parameters to be selected, and so the more terms included in the controller
the longer it will take to tune. For on-line tuning, this corresponds to a high p value, so
it would be slow to respond to changes. Even so, this could still be useful for responding
to slowly changing parameters, for instance a change in actuator characteristics as the
battery runs down in an electrically actuated robot.

Therefore, although the stepwise controller as formulated here is unlikely to be used
in practice, the overall technique could be. It would be appealing to always formulate
the controller based on knowledge of the robot’s dynamics, but if this is not possible
or found to perform poorly, a more purely empirical approach could be explored.
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Chapter 6

Conclusions and Future Work

6.1 Research Question

This thesis has explored agile and dynamic legged locomotion for robots, which is
challenging from both a mechanical and control perspective. The research question
originally posed in the introduction was: “can a discrete feedback controller,
derived from approximate dynamic models but tuned on-line, produce ac-
curate hoping control of a small pneumatic robot”.

This question has been explored through a combination of simulation and physical
experiments, with hopping control subdivided into control over the height of each
apex and the velocity of the horizontal motion. The proposed controller has been
successfully demonstrated as effective in the one dimensional case of height control,
including physical implementation with a pneumatically actuated leg. For the velocity
control, the empirical controller was found to outperform the available analytical SLIP
hopper controllers in simulation, with some physical verification of its efficacy. Less
clear is the ability of the height and velocity controllers to be combined, for cases where
both the height and velocity must be varied from step to step. While the controllers
could be applied to steady state demands, the accuracy and stability deteriorated for
agile gait, with a much more complex empirical controller needed even in simulation.

6.2 Findings

The analytical, simulation and experimental work described in this thesis has lead to
numerous findings.

In the literature, it was found that the Spring Loaded Inverted Pendulum (SLIP) is the
dominant model for dynamic hopping and running, with previous approaches to con-
trol mostly split between strategies reliant on numerical simulations or approximated
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analytical solutions, and focused largely on steady state gaits. Thus, the research gap
was identified for a controller using a simple empirical formulation, focussed on agile
hopping.

The single degree of freedom hopper of Chapter 3 found that a simple linearised con-
troller can be highly effective, even for the pneumatic system which presents non-linear
spring and actuation properties. An adaptive system of gains was shown to be able to
eliminate steady state errors and track an agile demand, as well as cope with changes
in the external system parameters, requiring no direct sensing of such changes other
than the resulting effect on the system apex state. Experimental validation of the sim-
ulations showed that the proposed system can overcome the measurement error and
noise of a physical system.

Chapter 4 looked at the control of the SLIP model. It was found that a two-term
empirical controller, if well tuned, could outperform the approximations found in the
literature for agile gaits on a simulated SLIP hopper. The adaptive system of gains
was found to be able to successfully predict the required gains for future steps, based
on the previous control outputs and apex states. While the gains of the controller can
be automatically selected, a key choice remains for the system designer: that of the
p value, representing the number of previous steps to be considered. A low p value
allows the system to rapidly update to changes in the system or environment, while
larger p values have the advantage of greater system stability especially in the face of
noise. In simulation, p values could be reduced to the theoretical minimum of p = 2
for slow, steady gaits, but for the physical test hopper this had to be increased to at
least p = 10.

It has been found, in Chapter 5, that the empirical controllers for height and for-
ward velocity from previous chapters can be applied simultaneously, but with sever
limitations. Simply assuming the two controllers are independent, so that leg force
affects only apex height and touchdown angle only forward velocity, in the decoupled
approach was successful for steady state gaits but, for agile gaits the errors were found
to be significantly larger than when each had been used in isolation. Furthermore, the
adaptive gain system was found to lead to the hopper falling in many cases where ei-
ther the height or velocity demand was varied. An important reason for this was found
to be that the transfer of energy between speed and height was not being accounted
for, and by reformulating the controller in terms of energy, instead of height, improved
the stability and to some extent the accuracy. Despite this, the controller still did not
perform nearly as well as a fully empirical controller, with many terms to account for
the coupled dynamics, suggesting there could be a better formulation available.

Overall, these findings have added to the body of work toward legged robotic systems
able to traverse complex terrain through agile gaits, by taking a novel control approach.
In particular, the results have shown that there is some promise in this more empirical
approach, where the controller gains can be set based on a small number of preceding
steps, an approach not seen in previous work. This work has contributed to the body
of knowledge through the controller formulation, simulations of fundamental models
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and physical experiments across one and two dimensions.

6.3 Closing Comments

The fundamental approach taken throughout this thesis has been to formulate a con-
troller based on simple analytical approximation, but to tune the appropriate gain
values by using the results of previous steps. This retains much of the benefit of the
analytical approximations over a fully empirical method, in terms of allowing some
intuitive reasoning about how the controller is functioning. This contrasts to many
“black box” algorithms popular in machine learning, where there is little understand-
ing of how the controller functions and therefore of why and in what circumstances
it might fail. Meanwhile by tuning the parameters, performance can be improved by
accepting that the approximation cannot faithfully reproduce the full dynamics, espe-
cially for a physical robot. It is therefore argued that this kind of approach can provide
reasoned but pragmatic solutions to difficult problems in robot control, such as legged
locomotion.

Another key feature has been an emphasis on minimising computational cost for the
deployed controller. With ever increasing power and reducing cost of computation, it
may be tempting to simply accept the computational cost of an approach based on
on-line simulation; however in cases where a simpler alternative is available, as well
as being more elegant, there are practical advantages. A more lightweight controller
allows for smaller, cheaper control hardware and less energy usage (therefore longer
battery life), and/or frees up resources for other computationally demanding tasks
such as vision or high level planning.

This approach offers the chance to combine the benefits of other methods, having
been shown to be more accurate than the available analytical approximations, but
is inherently simpler to compute than approaches using on-line numerical simulation,
such as model-predictive control.

Even if it does prove to be the case that a more complex controller is required to achieve
the desired accuracy, the simple model used here could still find application within the
overall controller architecture. For instance, a robot may need to asses the difficulty
of multiple potential paths, and in order to do so will need to determine, at least
approximately, the touchdown angles required for each path, over many steps. This
planning could make use of the fast to compute empirical controller for comparing the
options available, before a more complex but accurate controller refines the touchdown
angles to use for the chosen path. If only the computationally expensive method is
available, such planning problem could rapidly become infeasible.

This thesis has focused on the control of agile motion, allowing for changes in velocity
or apex height in a single step. This is in contrast to majority of previous work,
which, with a few notable exceptions, have focused on approaching a demand over
several steps and maintaining it, perhaps against disturbances. Such steady state gaits
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are undoubtedly useful to maximise efficiency and/or stability when running over flat
terrain, where the precise location of each foot landing is of little importance. However,
more complex terrain will require control over foot placement – consider crossing a set
of unevenly spaced stepping stones – and so the height and velocity of each step must
be adjusted. As robots move into more unstructured environments in the real world,
this kind of control will become ever more important.

6.4 Future Work

The work from this thesis presents several possible directions to continue the study of
robotic locomotion.

The results from Chapter 5 warrant further investigation of the coupling effect between
height and velocity control, which is a largely neglected area. The neat-perfect track-
ing from the complex stepwise-based controller suggests a trade-off between controller
complexity and performance. This could be further explored by introducing new terms
one at a time to find the most important, and create a controller with good performance
but few enough terms to allow for the adaptive gains scheme to be used.

A more capable physical robot platform would be needed to test the combined height
and velocity controllers in hardware, which would be an important next step. The
friction and lack of fidelity in the actuation has been the limiting factor in preventing
this from being achieved thus far. While the pneumatic actuator used was convenient
and sufficient for basic height control, a lower friction version would allow for larger
hops, making the errors less significant as a proportion. The leg angle actuator may
benefit from the addition of an encoder to provide faster position feedback and larder
actuation servos to allow for more accurate leg positioning during the flight phase.

While the simulation work here has been focussed on simple models in order to illu-
minate the fundamentals of the controller’s function, another question which could be
approached may be how well it may generalise to other leg geometries. As a first imple-
mentation, various non-linear leg springs could be implemented and compared. More
complex simulation models could be developed to include different leg geometries such
as using a knee joint, or the pneumatic model using the the one dimensional simulation
could be embedded into the leg of the SLIP hopper. The inclusion of body inertia and
hip torque adds another degree of freedom and actuation dimension which must also
be controlled, which could be attempted by an extension of the proposed controller
method. In this way, controllers could be tested in more detail in the simulation en-
vironment, across a wider range of conditions than can reasonably be implemented
physically.

While the control of apex height and forward velocity, as investigated here, is an im-
portant element of locomotion control, in general it would not be an end in and of itself
but rather a tool to achieve foot landing position targeting to allow the traversal of
complex terrain. This will add a layer of complexity to the implementation which may
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have unforeseen consequences. Therefore, the velocity and height controllers should
also be integrated into a higher level controller for foot placement, to apply the agile
motion to traversing footholds which vary in both horizontal separation and vertical
height. This is clearly an important next step toward traversing complex terrain, and
will then need to be further combined with perception capabilities for locating the safe
footholds and planning for determining the sequence in which to use them.

More generally, there are many challenges remaining for the practical application of
these types of controllers, especially in moving from simulation to physical robots.
Making this transition may be area where an adaptive controller has a particular ad-
vantage, since it can adapt to the system as it is, rather than as it was simulated. This
makes for an interesting area of potential study, such as by introducing additional noise
or errors into a simulation, or deliberately poorly tuning the controller to replicate the
possible difference when applied in practice.

For hopping robots with SLIP-like dynamics, such as considered in this thesis, small
errors in touchdown angle can lead to large errors in the resulting forward velocity.
This makes precise sensing and actuation, which must occur in the limited time of
the flight phase, a critical but difficult task, all too easily overlooked by simulation
studies. Space and hardware limitations have restricted this study to a small robot
with a relatively short hopping track. The next stages of development should see
larger and more unconstrained test robots, able to perform longer runs and better test
longer-term stability, and adaptation to changes, for example hopping between different
ground surfaces or carrying various payloads. Moving out of the laboratory and into
the field, the challenges of sensing will become even more difficult, and work needs
to be done to develop internal state estimation, without relying on external tracking
cameras.

Overall, the results of this thesis show potential for a simple, fast to compute, method
for controlling the complex task of agile legged locomotion, deserving of further inves-
tigation.
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