332 research outputs found

    Quantum cryptography: key distribution and beyond

    Full text link
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Comment: It's a review on quantum cryptography and it is not restricted to QK

    Experimental implementation of bit commitment in the noisy-storage model

    Full text link
    Fundamental primitives such as bit commitment and oblivious transfer serve as building blocks for many other two-party protocols. Hence, the secure implementation of such primitives are important in modern cryptography. In this work, we present a bit commitment protocol which is secure as long as the attacker's quantum memory device is imperfect. The latter assumption is known as the noisy-storage model. We experimentally executed this protocol by performing measurements on polarization-entangled photon pairs. Our work includes a full security analysis, accounting for all experimental error rates and finite size effects. This demonstrates the feasibility of two-party protocols in this model using real-world quantum devices. Finally, we provide a general analysis of our bit commitment protocol for a range of experimental parameters.Comment: 21 pages (7 main text +14 appendix), 6+3 figures. New version changed author's name from Huei Ying Nelly Ng to Nelly Huei Ying Ng, for consistency with other publication

    Quantum Cryptography: Key Distribution and Beyond

    Get PDF
    Uniquely among the sciences, quantum cryptography has driven both foundational research as well as practical real-life applications. We review the progress of quantum cryptography in the last decade, covering quantum key distribution and other applications.Quanta 2017; 6: 1–47

    Quantifying the Leakage of Quantum Protocols for Classical Two-Party Cryptography

    Get PDF
    We study quantum protocols among two distrustful parties. By adopting a rather strict definition of correctness - guaranteeing that honest players obtain their correct outcomes only - we can show that every strictly correct quantum protocol implementing a non-trivial classical primitive necessarily leaks information to a dishonest player. This extends known impossibility results to all non-trivial primitives. We provide a framework for quantifying this leakage and argue that leakage is a good measure for the privacy provided to the players by a given protocol. Our framework also covers the case where the two players are helped by a trusted third party. We show that despite the help of a trusted third party, the players cannot amplify the cryptographic power of any primitive. All our results hold even against quantum honest-but-curious adversaries who honestly follow the protocol but purify their actions and apply a different measurement at the end of the protocol. As concrete examples, we establish lower bounds on the leakage of standard universal two-party primitives such as oblivious transfer.Comment: 38 pages, completely supersedes arXiv:0902.403

    Cryptography in a quantum world

    Get PDF

    On the power of two-party quantum cryptography

    Get PDF
    We study quantum protocols among two distrustful parties. Under the sole assumption of correctness - guaranteeing that honest players obtain their correct outcomes - we show that every protocol implementing a non-trivial primitive necessarily leaks information to a dishonest player. This extends known impossibility results to all non-trivial primitives. We provide a framework for quantifying this leakage and argue that leakage is a good measure for the privacy provided to the players by a given protocol. Our framework also covers the case where the two players are helped by a trusted third party. We show that despite the help of a trusted third party, the players cannot amplify the cryptographic power of any primitive. All our results hold even against quantum honest-but-curious adversaries who honestly follow the protocol but purify their actions and apply a different measurement at the end of the protocol. As concrete examples, we establish lower bounds on the leakage of standard universal two-party primitives such as oblivious transfer

    Quantum Computers and Quantum Coherence

    Full text link
    If the states of spins in solids can be created, manipulated, and measured at the single-quantum level, an entirely new form of information processing, quantum computing, will be possible. We first give an overview of quantum information processing, showing that the famous Shor speedup of integer factoring is just one of a host of important applications for qubits, including cryptography, counterfeit protection, channel capacity enhancement, distributed computing, and others. We review our proposed spin-quantum dot architecture for a quantum computer, and we indicate a variety of first generation materials, optical, and electrical measurements which should be considered. We analyze the efficiency of a two-dot device as a transmitter of quantum information via the ballistic propagation of carriers in a Fermi sea.Comment: 13 pages, latex, one eps figure. Prepared for special issue of J. Mag. Magn. Matl., "Magnetism beyond 2000". Version 2: small revisions and correction
    corecore