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1 Université de Montréal (DIRO), QC, Canada
salvail@iro.umontreal.ca

2 Centrum Wiskunde & Informatica (CWI) Amsterdam, The Netherlands
c.schaffner@cwi.nl

3 SUNY Stony Brook (Dept. of Computer Science), NY, USA
mirka@cs.au.dk

Abstract. We study quantum protocols among two distrustful par-
ties. Under the sole assumption of correctness—guaranteeing that hon-
est players obtain their correct outcomes—we show that every protocol
implementing a non-trivial primitive necessarily leaks information to a
dishonest player. This extends known impossibility results to all non-
trivial primitives. We provide a framework for quantifying this leakage
and argue that leakage is a good measure for the privacy provided to the
players by a given protocol. Our framework also covers the case where
the two players are helped by a trusted third party. We show that de-
spite the help of a trusted third party, the players cannot amplify the
cryptographic power of any primitive. All our results hold even against
quantum honest-but-curious adversaries who honestly follow the proto-
col but purify their actions and apply a different measurement at the
end of the protocol. As concrete examples, we establish lower bounds on
the leakage of standard universal two-party primitives such as oblivious
transfer.

Keywords: two-party primitives, quantum protocols, quantum informa-
tion theory, oblivious transfer.

1 Introduction

Quantum communication allows to implement tasks which are classically impos-
sible. The most prominent example is quantum key distribution [4] where two
honest players establish a secure key against an eavesdropper. In the two-party
setting however, quantum and classical cryptography often show similar limits.
Oblivious transfer [22], bit commitment [24,23], and even fair coin tossing [18]
are impossible to realize securely both classically and quantumly. On the other
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hand, quantum cryptography allows for some weaker primitives impossible in
the classical world. For example, quantum coin-flipping protocols with maxi-
mum bias of 1√

2
− 1

2 exist1 against any adversary [8] while remaining impossible
based solely on classical communication. A few other weak primitives are known
to be possible with quantum communication. For example, the generation of an
additive secret-sharing for the product xy of two bits, where Alice holds bit x and
Bob bit y, has been introduced by Popescu and Rohrlich as machines modeling
non-signaling non-locality (also called NL-boxes) [29]. If Alice and Bob share
an EPR pair, they can simulate an NL-box with symmetric error probability
sin2 π

8 [29,3]. Equivalently, Alice and Bob can implement 1-out-of-2 oblivious
transfer (1-2-ot) privately provided the receiver Bob gets the bit of his choice
only with probability of error sin2 π

8 [1]. It is easy to verify that even with such
imperfection these two primitives are impossible to realize in the classical world.
This discussion naturally leads to the following question:

– Which two-party cryptographic primitives are possible to achieve using quan-
tum communication?

Most standard classical two-party primitives have been shown impossible to im-
plement securely against weak quantum adversaries reminiscent to the classical
honest-but-curious (HBC) behavior [22]. The idea behind these impossibility
proofs is to consider parties that purify their actions throughout the protocol
execution. This behavior is indistinguishable from the one specified by the pro-
tocol but guarantees that the joint quantum state held by Alice and Bob at any
point during the protocol remains pure. The possibility for players to behave that
way in any two-party protocol has important consequences. For instance, the im-
possibility of quantum bit commitment follows from this fact [24,23]: After the
commit phase, Alice and Bob share the pure state |ψx〉 ∈ HA⊗HB corresponding
to the commitment of bit x. Since a proper commitment scheme provides no in-
formation about x to the receiver Bob, it follows that trA |ψ0〉〈ψ0| = trA |ψ1〉〈ψ1|.
In this case, the Schmidt decomposition guarantees that there exists a unitary
U0,1 acting only on Alice’s side such that |ψ1〉 = (U0,1⊗ IB)|ψ0〉. In other words,
if the commitment is concealing then Alice can open the bit of her choice by
applying a suitable unitary transform only to her part. A similar argument al-
lows to conclude that 1-2-ot is impossible [22]: Suppose Alice is sending the
pair of bits (b0, b1) to Bob through 1-2-ot. Since Alice does not learn Bob’s
selection bit, it follows that Bob can get bit b0 before undoing the reception of
b0 and transforming it into the reception of b1 using a local unitary transform
similar to U0,1 for bit commitment. For both these primitives, privacy for one
player implies that local actions by the other player can transform the honest
execution with one input into the honest execution with another input.

In this paper, we investigate the cryptographic power of two-party quan-
tum protocols against players that purify their actions. This quantum honest-
but-curious (QHBC) behavior is the natural quantum version of classical HBC

1 In fact, protocols with better bias are known for weak quantum coin flip-
ping [25,26,27].
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behavior. We consider the setting where Alice obtains random variable X and
Bob random variable Y according to the joint probability distribution PX,Y .
Any PX,Y models a two-party cryptographic primitive where neither Alice nor
Bob provide input. For the purpose of this paper, this model is general enough
since any two-party primitive with inputs can be randomized (Alice and Bob
pick their input at random) so that its behavior can be described by a suitable
joint probability distribution PX,Y . If the randomized version PX,Y is shown
to be impossible to implement securely by any quantum protocol then also the
original primitive with inputs is impossible.

Any quantum protocol implementing PX,Y must produce, when both parties
purify their actions, a joint pure state |ψ〉 ∈ HAA′⊗HBB′ that, when subsystems
of A and B are measured in the computational basis, leads to outcomes X and Y
according the distribution PX,Y . Notice that the registers A′ and B′ only provide
the players with extra working space and, as such, do not contribute to the output
of the functionality (so parties are free to measure them the way they want).
In this paper, we adopt a somewhat strict point of view and define a quantum
protocol π for PX,Y to be correct if and only if the correct outcomes X,Y are
obtained and the registers A′ and B′ do not provide any additional information
about Y and X respectively since otherwise π would be implementing a different
primitive PXX′,Y Y ′ rather than PX,Y .

The state |ψ〉 produced by any correct protocol for PX,Y is called a quantum
embedding of PX,Y . An embedding is called regular if the registers A′ and B′ are
empty. Any embedding |ψ〉 ∈ HAA′⊗HBB′ can be produced in the QHBC model
by the trivial protocol asking Alice to generate |ψ〉 before sending the quantum
state in HBB′ to Bob. Therefore, it is sufficient to investigate the cryptographic
power of embeddings in order to understand the power of two-party quantum
cryptography in the QHBC model.

Notice that if X and Y were provided privately to Alice and Bob—through
a trusted third party for instance—then the expected amount of information
one party gets about the other party’s output is minimal and can be quantified
by the Shannon mutual information I(X ;Y ) between X and Y . Assume that
|ψ〉 ∈ HAA′ ⊗ HBB′ is the embedding of PX,Y produced by a correct quantum
protocol. We define the leakage of |ψ〉 as

Δψ := max {S(X ;BB′) − I(X ;Y ) , S(Y ;AA′) − I(Y ;X) } , (1)

where S(X ;BB′) (resp. S(Y ;AA′)) is the information the quantum registers
BB′ (resp. AA′) provide about the outputX (resp. Y ). That is, the leakage is the
maximum amount of extra information about the other party’s output given the
quantum state held by one party. It turns out that S(X ;BB′) = S(Y ;AA′) holds
for all embeddings, exhibiting a symmetry similar to its classical counterpart
I(X ;Y ) = I(Y ;X) and therefore, the two quantities we are taking the maximum
of (in the definition of leakage above) coincide.

Contributions. Our first contribution establishes that the notion of leakage
is well behaved. We show that the leakage of any embedding for PX,Y is lower
bounded by the leakage of some regular embedding of the same primitive. Thus,
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in order to lower bound the leakage of any correct implementation of a given
primitive, it suffices to minimize the leakage over all its regular embeddings. We
also show that the only non-leaking embeddings are the ones for trivial primi-
tives, where a primitive PX,Y is said to be (cryptographically) trivial if it can be
generated by a classical protocol against HBC adversaries2. It follows that any
quantum protocol implementing a non-trivial primitive PX,Y must leak infor-
mation under the sole assumption that it produces (X,Y ) with the right joint
distribution. This extends known impossibility results for two-party primitives
to all non-trivial primitives.

Embeddings of primitives arise from protocols where Alice and Bob have full
control over the environment. Having in mind that any embedding of a non-
trivial primitive leaks information, it is natural to investigate what tasks can be
implemented without leakage with the help of a trusted third party. The notion
of leakage can easily be adapted to this scenario. We show that no cryptographic
two-party primitive can be implemented without leakage with just one call to the
ideal functionality of a weaker primitive3. This new impossibility result does not
follow from the ones known since they all assume that the state shared between
Alice and Bob is pure.

We then turn our attention to the leakage of correct protocols for a few con-
crete universal primitives. From the results described above, the leakage of any
correct implementation of a primitive can be determined by finding the (regular)
embedding that minimizes the leakage. In general, this is not an easy task since
it requires to find the eigenvalues of the reduced density matrix ρA = trB |ψ〉〈ψ|
(or equivalently ρB = trA |ψ〉〈ψ|). As far as we know, no known results allow
us to obtain a non-trivial lower bound on the leakage (which is the difference
between the mutual information and accessible information) of non-trivial primi-
tives. One reason being that in our setting we need to lower bound this difference
with respect to a measurement in one particular basis. However, when PX,Y is
such that the bit-length of either X or Y is short, the leakage can be computed
precisely. We show that any correct implementation of 1-2-ot necessarily leaks
1
2 bit. Since NL-boxes and 1-2-ot are locally equivalent, the same minimal leak-
age applies to NL-boxes [38]. This is a stronger impossibility result than the
one by Lo [22] since he assumes perfect/statistical privacy against one party
while our approach only assumes correctness (while both approaches apply even
against QHBC adversaries). We finally show that for Rabin-OT and 1-2-ot of
r-bit strings (i.e. rotr and 1-2-otr respectively), the leakage approaches 1 ex-
ponentially in r. In other words, correct implementations of these two primitives
trivialize as r increases since the sender gets almost all information about Bob’s
2 We are aware of the fact that our definition of triviality encompasses cryptograph-

ically interesting primitives like coin-tossing and generalizations thereof for which
highly non-trivial protocols exist [27,8]. However, the important fact (for the pur-
pose of this paper) is that all these primitives can be implemented by trivial classical
protocols against HBC adversaries.

3 The weakness of a primitive will be formally defined in terms of entropic monotones
for classical two-party computation introduced by Wolf and Wullschleger [36], see
Section 4.2.
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reception of the string (in case of rotr) and Bob’s choice bit (in case of 1-2-otr).
These are the first quantitative impossibility results for these primitives and cer-
tainly the first time the hardness of implementing different flavors of string OTs
is shown to increase as the strings to be transmitted get longer.

Finally, we note that our lower bounds on the leakage of the randomized prim-
itives also lower-bound the minimum leakage for the standard versions of these
primitives4 where the players choose their inputs uniformly at random. While
we focus on the typical case where the primitives are run with uniform inputs,
the same reasoning can be applied to primitives with arbitrary distributions
of inputs.

Related Work. Our framework allows to quantify the minimum amount of
leakage whereas standard impossibility proofs as the ones of [23,24,22,2,7] do
not in general provide such quantification since they usually assume privacy
for one player in order to show that the protocol must be totally insecure for
the other player5. By contrast, we derive lower bounds for the leakage of any
correct implementation. At first glance, our approach seems contradictory with
standard impossibility proofs since embeddings leak the same amount towards
both parties. To resolve this apparent paradox it suffices to observe that in
previous approaches only the adversary purified its actions whereas in our case
both parties do. If a honest player does not purify his actions then some leakage
may be lost by the act of irreversibly and unnecessarily measuring some of his
quantum registers.

Our results complement the ones obtained by Colbeck in [10] for the set-
ting where Alice and Bob have inputs and obtain identical outcomes (called
single-function computations). [10] shows that in any correct implementation of
primitives of a certain form, an honest-but-curious player can access more in-
formation about the other party’s input than it is available through the ideal
functionality. Unlike [10], we deal in our work with the case where Alice and
Bob do not have inputs but might receive different outputs according to a joint
probability distributions. We show that only trivial distributions can be imple-
mented securely in the QHBC model. Furthermore, we introduce a quantitative
measure of protocol-insecurity that lets us answer which embedding allow the
least effective cheating.

Another notion of privacy in quantum protocols, generalizing its classical
counterpart from [9,21], is proposed by Klauck in [19]. Therein, two-party quan-
tum protocols with inputs for computing a function f : X×Y → Z, where X and
Y denote Alice’s and Bob’s respective input spaces, and privacy against QHBC

4 The definition of leakage of an embedding can be generalized to protocols with inputs,
where it is defined as max{supVB

S(X;VB) − I(X;Y ) , supVA
S(VA; Y ) − I(X;Y )},

where X and Y involve both inputs and outputs of Alice and Bob, respectively. The
supremum is taken over all possible (quantum) views VA and VB of Alice and Bob
obtained by their (QHBC-consistent) actions (and containing their inputs).

5 Trade-offs between the security for one and the security for the other player have
been considered before, but either the relaxation of security has to be very small [22]
or the trade-offs are restricted to particular primitives such as commitments [34,6].
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adversaries are considered. Privacy of a protocol is measured in terms of privacy
loss, defined for each round of the protocol and fixed distribution of inputs PX′,Y ′

by S(B;X |Y ) = H(X |Y )− S(X |B, Y ), where B denotes Bob’s private working
register, and X := (X ′, f(X ′, Y ′)), Y := (Y ′, f(X ′, Y ′)) represent the complete
views of Alice and Bob, respectively. Privacy loss of the entire protocol is then
defined as the supremum over all joint input distributions, protocol rounds,
and states of working registers. In our framework, privacy loss corresponds to
S(X ;Y B) − I(X ;Y ) from Alice point’s of view and S(Y ;XA) − I(X ;Y ) from
Bob’s point of view. Privacy loss is therefore very similar to our definition of
leakage except that it requires the players to get their respective honest outputs.
As a consequence, the protocol implementing PX,Y by asking one party to pre-
pare a regular embedding of PX,Y before sending her register to the other party
would have no privacy loss. Moreover, the scenario analyzed in [19] is restricted
to primitives which provide the same output f(X,Y ) to both players. Another
difference is that since privacy loss is computed over all rounds of a protocol,
a party is allowed to abort which is not considered QHBC in our setting. In
conclusion, the model of [19] is different from ours even though the measures of
privacy loss and leakage are similar. [19] provides interesting results concerning
trade-offs between privacy loss and communication complexity of quantum pro-
tocols, building upon similar results of [9,21] in the classical scenario. It would be
interesting to know whether a similar operational meaning can also be assigned
to the new measure of privacy, introduced in this paper.

A recent result by Künzler et al. [20] shows that two-party functions that are
securely computable against active quantum adversaries form a strict subset of
the set of functions which are securely computable in the classical HBC model.
This complements our result that the sets of securely computable functions in
both HBC and QHBC models are the same.

Roadmap. In Section 2, we introduce the cryptographic and information-theoretic
notions and concepts used throughout the paper. We define, motivate, and ana-
lyze the generality of modeling two-party quantum protocols by embeddings in
Section 3 and define triviality of primitives and embeddings. In Section 4, we de-
fine the notion of leakage of embeddings, show basic properties and argue that it is
a reasonable measure of privacy. In Section 5, we explicitly lower bound the leak-
age of some universal two-party primitives. Finally, in Section 6 we discuss possible
directions for future research and open questions.

2 Preliminaries

Quantum Information Theory. Let |ψ〉AB ∈ HAB be an arbitrary pure
state of the joint systems A and B. The states of these subsystems are ρA =
trB |ψ〉〈ψ| and ρB = trA |ψ〉〈ψ|, respectively. We denote by S(A) := S(ρA) and
S(B) := S(ρB) the von Neumann entropy (defined as the Shannon entropy of
the eigenvalues of the density matrix) of subsystem A and B respectively. Since
the joint system is in a pure state, it follows from the Schmidt decomposition
that S(A) = S(B) (see e.g. [28]). Analogously to their classical counterparts, we
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can define quantum conditional entropy S(A|B) := S(AB)−S(B), and quantum
mutual information S(A;B) := S(A) + S(B) − S(AB) = S(A) − S(A|B). Even
though in general, S(A|B) can be negative, S(A|B) ≥ 0 is always true if A is
a classical register. Let R = {(PX(x), ρxR}x∈X be an ensemble of states ρxR with
prior probability PX(x). The average quantum state is ρR =

∑
x∈X PX(x)ρxR.

The famous result by Holevo upper-bounds the amount of classical information
about X that can be obtained by measuring ρR:

Theorem 2.1 (Holevo bound [14,32]). Let Y be the random variable describ-
ing the outcome of some measurement applied to ρR for R = {PX(x), ρxR}x∈X .
Then, I(X ;Y ) ≤ S(ρR)−∑

x PX(x)S(ρxR), where equality can be achieved if and
only if {ρxR}x∈X are simultaneously diagonalizable.

Note that if all states in the ensemble are pure and all different then in order to
achieve equality in the theorem above, they have to form an orthonormal basis
of the space they span. In this case, the variable Y achieving equality is the
measurement outcome in this orthonormal basis.

Dependent Part. The following definition introduces a random variable de-
scribing the correlation between two random variables X and Y , obtained by
collapsing all values x1 and x2 for which Y has the same conditional distribu-
tion, to a single value.

Definition 2.2 (Dependent part [36]). For two random variables X,Y , let
fX(x) := PY |X=x. Then the dependent part of X with respect to Y is defined
as X ↘ Y := fX(X).

The dependent part X ↘ Y is the minimum random variable among the random
variables computable fromX for which X ↔ X ↘ Y ↔ Y forms a Markov chain
[36]. In other words, for any random variable K = f(X) such that X ↔ K ↔
Y is a Markov chain, there exists a function g such that g(K) = X ↘ Y .
Immediately from the definition we get several other properties of X ↘ Y [36]:
H(Y |X ↘ Y ) = H(Y |X), I(X ;Y ) = I(X ↘ Y ;Y ), and X ↘ Y = X ↘ (Y ↘
X). The second and the third formula yield I(X ;Y ) = I(X ↘ Y ;Y ↘ X).

The notion of dependent part has been further investigated in [13,15,37].
Wullschleger and Wolf have shown that quantities H(X ↘ Y |Y ) and H(Y ↘
X |X) are monotones for two-party computation [37]. That is, none of these
values can increase during classical two-party protocols. In particular, if Al-
ice and Bob start a protocol from scratch then classical two-party protocols
can only produce (X,Y ) such that: H(X ↘ Y |Y ) = H(Y ↘ X |X) = 0,
since H(X ↘ Y |Y ) > 0 if and only if H(Y ↘ X |X) > 0 [37]. Conversely,
any primitive satisfying H(X ↘ Y |Y ) = H(Y ↘ X |X) = 0 can be imple-
mented securely in the honest-but-curious (HBC) model. We call such primitives
trivial6.

6 See Footnote 2 for a caveat about this terminology.
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Purification. All security questions we ask are with respect to (quantum)
honest-but-curious adversaries. In the classical honest-but-curious adversary
model (HBC), the parties follow the instructions of a protocol but store all in-
formation available to them. Quantum honest-but-curious adversaries (QHBC),
on the other hand, are allowed to behave in an arbitrary way that cannot be
distinguished from their honest behavior by the other player.

Almost all impossibility results in quantum cryptography rely upon a quantum
honest-but-curious behavior of the adversary. This behavior consists in purifying
all actions of the honest players. Purifying means that instead of invoking clas-
sical randomness from a random tape, for instance, the adversary relies upon
quantum registers holding all random bits needed. The operations to be exe-
cuted from the random outcome are then performed quantumly without fixing
the random outcomes. For example, suppose a protocol instructs a party to pick
with probability p state |φ0〉C and with probability 1 − p state |φ1〉C before
sending it to the other party through the quantum channel C. The purified ver-
sion of this instruction looks as follows: Prepare a quantum register in state√
p|0〉R+

√
1 − p|1〉R holding the random process. Add a new register initially in

state |0〉C before applying the unitary transform U : |r〉R|0〉C �→ |r〉R|φr〉C for
r ∈ {0, 1}, send register C through the quantum channel and keep register R.

From the receiver’s point of view, the purified behavior is indistinguishable
from the one relying upon a classical source of randomness because in both cases,
the state of register C is ρ = p|φ0〉〈φ0|+ (1 − p)|φ1〉〈φ1|. All operations invoking
classical randomness can be purified similarly [23,24,22,17]. The result is that
measurements are postponed as much as possible and only extract information
required to run the protocol in the sense that only when both players need
to know a random outcome, the corresponding quantum register holding the
random coin will be measured. If both players purify their actions then the joint
state at any point during the execution will remain pure, until the very last step
of the protocol when the outcomes are measured.

Secure Two-Party Computation. In Section 5, we investigate the leakage
of several universal cryptographic two-party primitives. By universality we mean
that any two-party secure function evaluation can be reduced to them. We in-
vestigate the completely randomized versions where players do not have inputs
but receive randomized outputs instead. Throughout this paper, the term prim-
itive usually refers to the joint probability distribution defining its randomized
version. Any protocol implementing the standard version of a primitive (with in-
puts) can also be used to implement a randomized version of the same primitive,
with the “inputs” chosen according to an arbitrary fixed probability distribution.

3 Two-Party Protocols and Their Embeddings

3.1 Correctness

In this work, we consider cryptographic primitives providing X to honest player
Alice and Y to honest player Bob according to a joint probability distribution
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PX,Y . The goal of this section is to define when a protocol π correctly implements
the primitive PX,Y . The first natural requirement is that once the actions of π are
purified by both players, measurements of registersA andB in the computational
basis7 provide joint outcome (X,Y ) = (x, y) with probability PX,Y (x, y).

Protocol π can use extra registers A′ on Alice’s and B′ on Bob’s side pro-
viding them with (quantum) working space. The purification of all actions of π
therefore generates a pure state |ψ〉 ∈ HAB ⊗ HA′B′ . A second requirement for
the correctness of the protocol π is that these extra registers are only used as
working space, i.e. the final state |ψ〉ABA′B′ is such that the content of Alice’s
working register A′ does not give her any further information about Bob’s out-
put Y than what she can infer from her honest output X and vice versa for B′.
Formally, we require that S(XA′;Y ) = I(X ;Y ) and S(X ;Y B′) = I(X ;Y ) or
equivalently, that A′ ↔ X ↔ Y and X ↔ Y ↔ B′ form Markov chains8.

Definition 3.1. A protocol π for PX,Y is correct if measuring registers A and
B of its final state in the computational basis yields outcomes X and Y with
distribution PX,Y and the final state satisfies S(X ;Y B′) = S(XA′;Y ) = I(X ;Y )
where A′ and B′ denote the extra working registers of Alice and Bob. The state
|ψ〉 ∈ HAB ⊗HA′B′ is called an embedding of PX,Y if it can be produced by the
purification of a correct protocol for PX,Y .

We would like to point out that our definition of correctness is stronger than the
usual classical notion which only requires the correct distribution of the output
of the honest players. For example, the trivial classical protocol for the primitive
PX,Y in which Alice samples both player’s outputs XY , sends Y to Bob, but
keeps a copy of Y for herself, is not correct according to our definition, because
it implements a fundamentally different primitive, namely PXY,Y .

3.2 Regular Embeddings

We call an embedding |ψ〉ABA′B′ regular if the working registersA′, B′ are empty.
Formally, let Θn,m := {θ : {0, 1}n× {0, 1}m → [0 . . . 2π)} be the set of functions
mapping bit-strings of length m+ n to real numbers between 0 and 2π.

Definition 3.2. For a joint probability distribution PX,Y where X ∈ {0, 1}n
and Y ∈ {0, 1}m, we define the set

E(PX,Y ) :=

⎧
⎨

⎩
|ψ〉 ∈ HAB : |ψ〉 =

∑

x∈{0,1}n, y∈{0,1}m

eiθ(x,y)
√
PX,Y (x, y)|x, y〉AB , θ ∈ Θn,m

⎫
⎬

⎭
,

7 It is clear that every quantum protocol for which the final measurement (providing
(x, y) with distribution PX,Y to the players) is not in the computational basis can
be transformed into a protocol of the described form by two additional local unitary
transformations.

8 Markov chains with quantum ends have been defined in [11] and used in subse-
quent works such as [12]. It is straightforward to verify that the entropic condition
S(XA′;Y ) = I(X;Y ) is equivalent to A′ ↔ X ↔ Y being a Markov chain and
similarly for the other condition.
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and call any state |ψ〉 ∈ E(PX,Y ) a regular embedding of the joint probability
distribution PX,Y .

Clearly, any |ψ〉 ∈ E(PX,Y ) produces (X,Y ) with distribution PX,Y since the
probability that Alice measures x and Bob measures y in the computational basis
is |〈ψ|x, y〉|2 = PX,Y (x, y). In order to specify a particular regular embedding
one only needs to give the description of the phase function θ(x, y). We denote
by |ψθ〉 ∈ E(PX,Y ) the quantum embedding of PX,Y with phase function θ. The
constant function θ(x, y) := 0 for all x ∈ {0, 1}n, y ∈ {0, 1}m corresponds to
what we call canonical embedding |ψ0〉 :=

∑
x,y

√
PX,Y (x, y)|x, y〉AB .

In Lemma 4.3 below we show that every primitive PX,Y has a regular embed-
ding which is in some sense the most secure among all embeddings of PX,Y .

3.3 Trivial Classical Primitives and Trivial Embeddings

In this section, we define triviality of classical primitives and (bipartite) embed-
dings. We show that for any non-trivial classical primitive, its canonical quantum
embedding is also non-trivial. Intuitively, a primitive PX,Y is trivial if X and Y
can be generated by Alice and Bob from scratch in the classical honest-but-
curious (HBC) model9. Formally, we define triviality via an entropic quantity
based on the notion of dependent part (see Section 2).

Definition 3.3. A primitive PX,Y is called trivial if it satisfies H(X ↘ Y |Y ) =
0, or equivalently, H(Y ↘ X |X) = 0. Otherwise, the primitive is called
non-trivial.

Definition 3.4. A regular embedding |ψ〉AB ∈ E(PX,Y ) is called trivial if either
S(X ↘ Y |B) = 0 or S(Y ↘ X |A) = 0. Otherwise, we say that |ψ〉AB is
non-trivial.

Notice that unlike in the classical case, S(X ↘ Y |B) = 0 ⇔ S(Y ↘ X |A) =
0 does not hold in general. As an example, consider a shared quantum state
where the computational basis corresponds to the Schmidt basis for only one
of its subsystems, say for A. Let |ψ〉 = α|0〉A|ξ0〉B + β|1〉A|ξ1〉B be such that
both subsystems are two-dimensional, {|ξ0〉, |ξ1〉} �= {|0〉, |1〉}, 〈ξ0|ξ1〉 = 0, and
|〈ξ0|0〉| �= |〈ξ1|0〉|. We then have S(X |B) = 0 and S(Y |A) > 0 while X = X ↘ Y
and Y = Y ↘ X .

To illustrate this definition of triviality, we argue in the following that if a
primitive PX,Y has a trivial regular embedding, there exists a classical protocol
which generates X,Y securely in the HBC model. Let |ψ〉 ∈ E(PX,Y ) be trivial
and assume without loss of generality that S(Y ↘ X |A) = 0. Intuitively, this
means that Alice can learn everything possible about Bob’s outcome Y (Y could
include some private coin-flips on Bob’s side, but that is “filtered out” by the
dependent part). More precisely, Alice holding register A can measure her part of

9 See Footnote 2 for a caveat about this terminology.
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the shared state to completely learn a realization of Y ↘ X , specifying PX|Y=y.
She then chooses X according to the distribution PX|Y=y. An equivalent way of
trivially generating (X,Y ) classically is the following classical protocol:

1. Alice samples PX|Y=y′ from distribution PY↘X and announces its outcome
to Bob. She samples x from the distribution PX|Y=y′ .

2. Bob picks y with probability PY |Y↘X=PX|Y =y′ .

Of course, the same reasoning applies in case S(X ↘ Y |B) = 0 with the roles
of Alice and Bob reversed.

In fact, the following lemma (whose proof can be found in the full version [33])
shows that any non-trivial primitive PX,Y has a non-trivial embedding, i.e. there
exists a quantum protocol correctly implementing PX,Y while leaking less infor-
mation to QHBC adversaries than any classical protocol for PX,Y in the HBC
model.

Lemma 3.5. If PX,Y is a non-trivial primitive then the canonical embedding
|ψ0〉 ∈ E(PX,Y ) is also non-trivial.

4 The Leakage of Quantum Embeddings

We formally define the leakage of embeddings and establish properties of the
leakage. The proofs of all statements in this section can be found in the full
version [33].

4.1 Definition and Basic Properties of Leakage

A perfect implementation of PX,Y simply provides X to Alice and Y to Bob and
does nothing else. The expected amount of information that one random vari-
able gives about the other is I(X ;Y ) = H(X)−H(X |Y ) = H(Y )−H(Y |X) =
I(Y ;X). Intuitively, we define the leakage of a quantum embedding |ψ〉ABA′B′

of PX,Y as the larger of the two following quantities: the extra amount of in-
formation Bob’s quantum registers BB′ provide about X and the extra amount
Alice’s quantum state in AA′ provides about Y respectively in comparison to
“the minimum amount” I(X ;Y ).10

Definition 4.1. Let |ψ〉 ∈ HABA′B′ be an embedding of PX,Y . We define the
leakage |ψ〉 as

Δψ(PX,Y ) := max {S(X ;BB′) − I(X ;Y ) , S(AA′;Y ) − I(X ;Y )} .
Furthermore, we say that |ψ〉 is δ-leaking if Δψ(PX,Y ) ≥ δ .
10 There are other natural candidates for the notion of leakage such as the difference in

difficulty between guessing Alice’s output X by measuring Bob’s final quantum state
B and based on the output of the ideal functionality Y . While such definitions do
make sense, they turn out not to be as easy to work with and it is an open question
whether the natural properties described later in this section can be established for
these notions of leakage as well.
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It is easy to see that the leakage is non-negative since S(X ;BB′) ≥ S(X ; B̃) for B̃
the result of a quantum operation applied toBB′. Such an operation could be the
trace over the extra working register B′ and a measurement in the computational
basis of each qubit of the part encoding Y , yielding S(X ; B̃) = I(X ;Y ).

We want to argue that our notion of leakage is a good measure for the privacy
of the player’s outputs. In the same spirit, we will argue that the minimum
achievable leakage for a primitive is related to the “hardness” of implementing
it. We start off by proving several basic properties about leakage.

For a general state in HABA′B′ the quantities S(X ;BB′) − I(X ;Y ) and
S(AA′;Y ) − I(X ;Y ) are not necessarily equal. Note though that they coincide
for regular embeddings |ψ〉 ∈ E(PX,Y ) produced by a correct protocol (where
the work spaces A′ and B′ are empty): Notice that S(X ;B) = S(X) + S(B) −
S(X,B) = H(X)+S(B)−H(X) = S(B) and because |ψ〉 is pure, S(A) = S(B).
Therefore, S(X ;B) = S(A;Y ) and the two quantities coincide. The following
lemma states that this actually happens for all embeddings and hence, the def-
inition of leakage is symmetric with respect to both players.

Lemma 4.2 (Symmetry). Let |ψ〉 ∈ HABA′B′ be an embedding of PX,Y . Then,

Δψ(PX,Y ) = S(X ;BB′) − I(X ;Y ) = S(AA′;Y ) − I(X ;Y ) .

The next lemma shows that the leakage of an embedding of a given primitive is
lower-bounded by the leakage of some regular embedding of the same primitive,
which simplifies the calculation of lower bounds for the leakage of embeddings.

Lemma 4.3. For every embedding |ψ〉 of a primitive PX,Y , there is a regular
embedding |ψ′〉 of PX,Y such that Δψ(PX,Y ) ≥ Δψ′(PX,Y ).

So far, we have defined the leakage of an embedding of a primitive. The natural
definition of the leakage of a primitive is the following.

Definition 4.4. We define the leakage of a primitive PX,Y as the minimal leak-
age among all protocols correctly implementing PX,Y . Formally,

ΔPX,Y
:= min

|ψ〉
Δψ(PX,Y ) ,

where the minimization is over all embeddings |ψ〉 of PX,Y .

Notice that the minimum in the previous definition is well-defined, because by
Lemma 4.3, it is sufficient to minimize over regular embeddings |ψ〉 ∈ E(PX,Y ).
Furthermore, the function Δψ(PX,Y ) is continuous on the compact (i.e. closed
and bounded) set [0, 2π]|X×Y| of complex phases corresponding to elements
|x, y〉AB in the formula for |ψ〉AB ∈ E(PX,Y ) and therefore it achieves
its minimum.

The following theorem shows that the leakage of any embedding of a prim-
itive PX,Y is lower-bounded by the minimal leakage achievable for primitive
PX↘Y,Y↘X (which due to Lemma 4.3 is achieved by a regular embedding).



82 L. Salvail, C. Schaffner, and M. Sotáková

Theorem 4.5. For any primitive PX,Y , ΔPX,Y ≥ ΔPX↘Y,Y ↘X
.

Proof (Sketch). The proof idea is to pre-process the registers storing X and Y
in a way allowing Alice and Bob to convert a regular embedding of PX,Y (for
which the minimum leakage is achieved) into a regular embedding of PX↘Y,Y↘X

by measuring parts of these registers. It follows that on average, the leakage of
the resulting regular embedding of PX↘Y,Y↘X is at most the leakage of the
embedding of PX,Y the players started with. Hence, there must be a regular
embedding of PX↘Y,Y↘X leaking at most as much as the best embedding of
PX,Y . See [33] for the complete proof. ��

4.2 Leakage as Measure of Privacy and Hardness of Implementation

The main results of this section are consequences of the Holevo bound
(Theorem 2.1).

Theorem 4.6. If a two-party quantum protocol provides the correct outcomes
of PX,Y to the players without leaking extra information, then PX,Y must be a
trivial primitive.

Proof. Theorem 4.5 implies that if there is a 0–leaking embedding of PX,Y than
there is also a 0–leaking embedding of PX↘Y,Y↘X . Let us therefore assume
that |ψ〉 is a non-leaking embedding of PX,Y such that X = X ↘ Y and Y =
Y ↘ X . We can write |ψ〉 in the form |ψ〉 =

∑
x

√
PX(x)|x〉|ϕx〉 and get ρB

=
∑
x PX(x)|ϕx〉〈ϕx|. For the leakage of |ψ〉 we have: Δψ(PX,Y ) = S(X ;B) −

I(X ;Y ) = S(ρB)− I(X ;Y ) = 0. From the Holevo bound (Theorem 2.1) follows
that the states {|ϕx〉}x form an orthonormal basis of their span (since X = X ↘
Y , they are all different) and that Y captures the result of a measurement in
this basis, which therefore is the computational basis. Since Y = Y ↘ X , we get
that for each x, there is a single yx ∈ Y such that |ϕx〉 = |yx〉. The primitives
PX↘Y,Y↘X and PX,Y are therefore trivial. ��
In other words, the only primitives that two-party quantum protocols can imple-
ment correctly (without the help of a trusted third party) and without leakage
are the trivial ones! We note that it is not necessary to use the strict notion of
correctness from Definition 3.1 in this theorem, but a more complicated proof
can be done solely based on the correct distribution of the values. This result
can be seen as a quantum extension of the corresponding characterization for the
cryptographic power of classical protocols in the HBC model. Whereas classical
two-party protocols cannot achieve anything non-trivial, their quantum counter-
parts necessarily leak information when they implement non-trivial primitives.

The notion of leakage can be extended to protocols involving a trusted third
party (see [33]). A special case of such protocols are the ones where the players
are allowed one call to a black box for a certain non-trivial primitive. It is
natural to ask which primitives can be implemented without leakage in this case.
As it turns out, the monotones H(X ↘ Y |Y ) and H(Y ↘ X |X), introduced
in [36], are also monotones for quantum computation, in the sense that all joint
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random variables X ′, Y ′ that can be generated by quantum players without
leakage using one black-box call to PX,Y satisfyH(X ′ ↘ Y ′|Y ′) ≤ H(X ↘ Y |Y )
and H(Y ′ ↘ X ′|X ′) ≤ H(Y ↘ X |X).

Theorem 4.7. Suppose that primitives PX,Y andPX′,Y ′ satisfyH(X ′ ↘ Y ′|Y ′)>
H(X ↘ Y |Y ) or H(Y ′ ↘ X ′|X ′) > H(Y ↘ X |X). Then any implementation of
PX′,Y ′ using just one call to the ideal functionality for PX,Y leaks information.

4.3 Reducibility of Primitives and Their Leakage

This section is concerned with the following question: Given two primitives PX,Y
and PX′,Y ′ such that PX,Y is reducible to PX′,Y ′ , what is the relationship be-
tween the leakage of PX,Y and the leakage of PX′,Y ′? We use the notion of
reducibility in the following sense: We say that a primitive PX,Y is reducible in
the HBC model to a primitive PX′,Y ′ if PX,Y can be securely implemented in
the HBC model from (one call to) a secure implementation of PX′,Y ′ . The above
question can also be generalized to the case where PX,Y can be computed from
PX′,Y ′ only with certain probability. Notice that the answer, even if we assume
perfect reducibility, is not captured in our previous result from Lemma 4.3, since
an embedding of PX′,Y ′ is not necessarily an embedding of PX,Y (it might vi-
olate the correctness condition). However, under certain circumstances, we can
show that ΔPX′,Y ′ ≥ ΔPX,Y .

Theorem 4.8. Assume that primitives PX,Y and PX′,Y ′ = PX′
0X

′
1,Y

′
0Y

′
1

satisfy
the condition:

∑

x,y:PX′
0,Y ′

0 |X′
1=x,Y ′

1=y�PX,Y

PX′
1,Y

′
1
(x, y) ≥ 1 − δ,

where the relation � means that the two distributions are equal up to relabeling
of the alphabet. Then, ΔPX′,Y ′ ≥ (1 − δ)ΔPX,Y .

This theorem allows us to derive a lower bound on the leakage of 1-out-of-2
Oblivious Transfer of r-bit strings in Section 5.

5 The Leakage of Universal Cryptographic Primitives

In this section, we exhibit lower bounds on the leakage of some universal two-
party primitives. In the following table, rotr denotes the r-bit string version
of randomized Rabin OT, where Alice receives a random r-bit string and Bob
receives the same string or an erasure symbol, each with probability 1/2. Sim-
ilarly, 1-2-otr denotes the string version of 1-2-ot, where Alice receives two
r-bit strings and Bob receives one of them. By 1-2-otp we denote the noisy
version of 1-2-ot, where the 1-2-ot functionality is implemented correctly only
with probability 1 − p. Table 1 summarizes the lower bounds on the leakage of
these primitives (the derivations can be found in the full version [33]). We note
that Wolf and Wullschleger [38] have shown that a randomized 1-2-ot can be
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Table 1. Lower bounds on the leakage for universal two-party primitives

primitive leaking at least comments

rot1 (h( 1
4
) − 1

2
) ≈ 0.311 same leakage for all regular embeddings

rotr (1 −O(r2−r)) same leakage for all regular embeddings

1-2-ot, sand 1
2

minimized by canonical embedding

1-2-otr (1 −O(r2−r)) (suboptimal) lower bound

1-2-otp

(
1/2−p−

√
p(1−p)

)2

8 ln 2
if p < sin2(π/8) ≈ 0.15, (suboptimal) lower bound

transformed by local operations into an additive sharing of an AND (here called
sand). Therefore, our results for 1-2-ot below also apply to sand.

1-2-otr and 1-2-otp are primitives where the direct evaluation of the leakage
for a general embedding |ψθ〉 is hard, because the number of possible phases
increases exponentially in the number of qubits. Instead of computing S(A)
directly, we derive (suboptimal) lower bounds on the leakage.

Based on the examples of rotr and 1-2-ot, it is tempting to conjecture that
the leakage is always minimized for the canonical embedding, which agrees with
the geometric intuition that the minimal pairwise distinguishability of quantum
states in a mixture minimizes the von Neumann entropy of the mixture. However,
Jozsa and Schlienz have shown that this intuition is sometimes incorrect [16].
In a quantum system of dimension at least three, we can have the following
situation: For two sets of pure states {|ui〉}ni=1 and {|vi〉}ni=1 satisfying |〈ui|uj〉| ≤
|〈vi|vj〉| for all i, j, there exist probabilities pi such that for ρu :=

∑n
i=1 pi|ui〉〈ui|,

ρv :=
∑n

i=1 pi|vi〉〈vi|, it holds that S(ρu) < S(ρv). As we can see, although each
pair |ui〉, |uj〉 is more distinguishable than the corresponding pair |vi〉, |vj〉, the
overall ρu provides us with less uncertainty than ρv. It follows that although
for the canonical embedding |ψ0〉 =

∑
y |ϕy〉|y〉 of PX,Y the mutual overlaps

|〈ϕy|ϕy′〉| are clearly maximized, it does not necessarily imply that S(A) in
this case is minimal over E(PX,Y ). It is an interesting open question to find a
primitive whose canonical embedding does not minimize the leakage or to prove
that no such primitive exists.

For the primitive P otp

X,Y , our lower bound on the leakage only holds for p <
sin2(π/8) ≈ 0.15. Notice that in reality, the leakage is strictly positive for any
embedding of P otp

X,Y with p < 1/4, since for p < 1/4, P otp

X,Y is a non-trivial
primitive. On the other hand, P

ot1/4
X,Y is a trivial primitive implemented securely

by the following protocol in the classical HBC model:

1. Alice chooses randomly between her input bits x0 and x1 and sends the
chosen value xa to Bob.

2. Bob chooses his selection bit c uniformly at random and sets y := xa.

Equality xc = y is satisfied if either a = c, which happens with probability
1/2, or if a �= c and xa = x1−a, which happens with probability 1/4. Since the
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two events are disjoint, it follows that xc = y with probability 3/4 and that
the protocol implements P

ot1/4

X,Y . The implementation is clearly secure against
honest-but-curious Alice, since she does not receive any message from Bob. It
is also secure against Bob, since he receives only one bit from Alice. By letting
Alice randomize the value of the bit she is sending, the players can implement
P

otp

X,Y securely for any value 1/4 < p ≤ 1/2.

6 Conclusion and Open Problems

We have provided a quantitative extension of qualitative impossibility results
for two-party quantum cryptography. All non-trivial primitives leak information
when implemented by quantum protocols. Notice that demanding a protocol to
be non-leaking does in general not imply the privacy of the players’ outputs.
For instance, consider a protocol implementing 1-2-ot but allowing a curious
receiver with probability 1

2 to learn both bits simultaneously or with probability
1
2 to learn nothing about them. Such a protocol for 1-2-ot would be non-leaking
but nevertheless insecure. Consequently, Theorem 4.6 not only tells us that any
quantum protocol implementing a non-trivial primitive must be insecure, but
also that a privacy breach will reveal itself as leakage. Our framework allows to
quantify the leakage of any two-party quantum protocol correctly implementing
a primitive. The impossibility results obtained here are stronger than standard
ones since they only rely on the cryptographic correctness of the protocol. Fur-
thermore, we present lower bounds on the leakage of some universal two-party
primitives.

A natural open question is to find a way to identify good embeddings for a
given primitive. In particular, how far can the leakage of the canonical embedding
be from the best one? Such a characterization, even if only applicable to special
primitives, would allow to lower bound their leakage and would also help to
understand the power of two-party quantum cryptography in a more concise way.

It would also be interesting to find a measure of cryptographic non-triviality
for two-party primitives and to see how it relates to the minimum leakage of any
implementation by quantum protocols. For instance, is it true that quantum
protocols for primitive PX,Y leak more if the minimum (total variation) distance
between PX,Y and any trivial primitive increases?

Another question we leave for future research is to define and investigate other
notions of leakage, e.g. in the one-shot setting instead of in the asymptotic regime
(as outlined in Footnote 10). Results in the one-shot setting have already been
established for data compression [30], channel capacities [31], state-merging [35,5]
and other (quantum-) information-theoretic tasks.

Furthermore, it would be interesting to find more applications for the concept
of leakage, considered also for protocols using an environment as a trusted third
party. In this direction, we have shown in Theorem 4.7 that any two-party quan-
tum protocol for a given primitive, using a black box for an “easier” primitive,
leaks information. Lower-bounding this leakage is an interesting open question.
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We might also ask how many copies of the “easier” primitive are needed to
implement the “harder” primitive by a quantum protocol, which would give us
an alternative measure of non-triviality of two-party primitives.
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