If the states of spins in solids can be created, manipulated, and measured at
the single-quantum level, an entirely new form of information processing,
quantum computing, will be possible. We first give an overview of quantum
information processing, showing that the famous Shor speedup of integer
factoring is just one of a host of important applications for qubits, including
cryptography, counterfeit protection, channel capacity enhancement, distributed
computing, and others. We review our proposed spin-quantum dot architecture for
a quantum computer, and we indicate a variety of first generation materials,
optical, and electrical measurements which should be considered. We analyze the
efficiency of a two-dot device as a transmitter of quantum information via the
ballistic propagation of carriers in a Fermi sea.Comment: 13 pages, latex, one eps figure. Prepared for special issue of J.
Mag. Magn. Matl., "Magnetism beyond 2000". Version 2: small revisions and
correction