394,648 research outputs found

    SPH simulations of turbulence in fixed and rotating boxes in two dimensions with no-slip boundaries

    Full text link
    In this paper we study decaying turbulence in fixed and rotating boxes in two dimen- sions using the particle method SPH. The boundaries are specified by boundary force particles, and the turbulence is initiated by a set of gaussian vortices. In the case of fixed boxes we recover the results of Clercx and his colleagues obtained using both a high accuracy spectral method and experiments. Our results for fixed boxes are also in close agreement with those of Monaghan1 and Robinson and Monaghan2 obtained using SPH. A feature of decaying turbulence in no-slip, square, fixed boundaries is that the angular momentum of the fluid varies with time because of the reaction on the fluid of the viscous stresses on the boundary. We find that when the box is allowed to rotate freely, so that the total angular momentum of box and fluid is constant, the change in the angular momentum of the fluid is a factor ~ 500 smaller than is the case for the fixed box, and the final vorticity distribution is different. We also simulate the behaviour of the turbulence when the box is forced to rotate with small and large Rossby number, and the turbulence is initiated by gaussian vortices as before. If the rotation of the box is maintained after the turbulence is initiated we find that in the rotating frame the decay of kinetic energy, enstrophy and the vortex structure is insensitive to the angular velocity of the box. On the other hand, If the box is allowed to rotate freely after the turbulence is initiated, the evolved vortex structure is completely different

    Initial Conditions for Models of Dynamical Systems

    Full text link
    The long-time behaviour of many dynamical systems may be effectively predicted by a low-dimensional model that describes the evolution of a reduced set of variables. We consider the question of how to equip such a low-dimensional model with appropriate initial conditions, so that it faithfully reproduces the long-term behaviour of the original high-dimensional dynamical system. Our method involves putting the dynamical system into normal form, which not only generates the low-dimensional model, but also provides the correct initial conditions for the model. We illustrate the method with several examples. Keywords: normal form, isochrons, initialisation, centre manifoldComment: 24 pages in standard LaTeX, 66K, no figure

    Magnetohydrodynamic activity inside a sphere

    Full text link
    We present a computational method to solve the magnetohydrodynamic equations in spherical geometry. The technique is fully nonlinear and wholly spectral, and uses an expansion basis that is adapted to the geometry: Chandrasekhar-Kendall vector eigenfunctions of the curl. The resulting lower spatial resolution is somewhat offset by being able to build all the boundary conditions into each of the orthogonal expansion functions and by the disappearance of any difficulties caused by singularities at the center of the sphere. The results reported here are for mechanically and magnetically isolated spheres, although different boundary conditions could be studied by adapting the same method. The intent is to be able to study the nonlinear dynamical evolution of those aspects that are peculiar to the spherical geometry at only moderate Reynolds numbers. The code is parallelized, and will preserve to high accuracy the ideal magnetohydrodynamic (MHD) invariants of the system (global energy, magnetic helicity, cross helicity). Examples of results for selective decay and mechanically-driven dynamo simulations are discussed. In the dynamo cases, spontaneous flips of the dipole orientation are observed.Comment: 15 pages, 19 figures. Improved figures, in press in Physics of Fluid

    On the resilience of helical magnetic fields to turbulent diffusion and the astrophysical implications

    Full text link
    The extent to which large scale magnetic fields are susceptible to turbulent diffusion is important for interpreting the need for in situ large scale dynamos in astrophysics and for observationally inferring field strengths compared to kinetic energy. By solving coupled equations for magnetic energy and magnetic helicity in a system initiated with isotropic turbulence and an arbitrarily helical large scale field, we quantify the decay rate of the latter for a bounded or periodic system. The energy associated with the non-helical magnetic field rapidly decays by turbulent diffusion, but the decay rate of the helical component depends on whether the ratio of its magnetic energy to the turbulent kinetic energy exceeds a critical value given by M_{1,c} =(k_1/k_2)^2, where k_1 and k_2 are the wave numbers of the large and forcing scales. Turbulently diffusing helical fields to small scales while conserving magnetic helicity requires a rapid increase in total magnetic energy. As such, only when the helical fields are sub-critical can they so diffuse. When super-critical, the large scale helical field decays slowly, at a rate determined by microphysical dissipation even when macroscopic turbulence is present. Amplification of small scale magnetic helicity abates the turbulent diffusion. Two implications are that: (1) Standard arguments supporting the need for in situ large scale dynamos based on the otherwise rapid turbulent diffusion of large scale fields require re-thinking since only the non-helical field is so diffused in a closed system. Boundary terms could however provide potential pathways for rapid change of the large scale helical field. (2) Since M_{1,c} <<1 for k_1 << k_2, the presence of long-lived ordered large scale helical fields, as in extragalactic jets, does not guarantee that the magnetic field dominates the kinetic energy.Comment: published in MNRAS (in this replacement, the missing .bbl file has been added

    Experiments and analyses of upstream-advancing solitary waves generated by moving disturbances

    Get PDF
    In this joint theoretical, numerical and experimental study, we investigate the phenomenon of forced generation of nonlinear waves by disturbances moving steadily with a transcritical velocity through a layer of shallow water. The plane motion considered here is modelled by the generalized Boussinesq equations and the forced Korteweg-de Vries (fKdV) equation, both of which admit two types of forcing agencies in the form of an external surface pressure and a bottom topography. Numerical results are obtained using both theoretical models for the two types of forcings. These results illustrate that within a transcritical speed range, a succession of solitary waves are generated, periodically and indefinitely, to form a procession advancing upstream of the disturbance, while a train of weakly nonlinear and weakly dispersive waves develops downstream of an ever elongating stretch of a uniformly depressed water surface immediately behind the disturbance. This is a beautiful example showing that the response of a dynamic system to steady forcing need not asymptotically tend to a steady state, but can be conspicuously periodic, after an impulsive start, when the system is being forced at resonance. A series of laboratory experiments was conducted with a cambered bottom topography impulsively started from rest to a constant transcritical velocity U, the corresponding depth Froude number F = U/(gh[sub]0)^1/2 (g being the gravitational constant and h[sub]0 the original uniform water depth) being nearly the critical value of unity. For the two types of forcing, the generalized Boussinesq model indicates that the surface pressure can be more effective in generating the precursor solitary waves than the submerged topography of the same normalized spatial distribution. However, according to the fKdV model, these two types of forcing are entirely equivalent. Besides these and some other rather refined differences, a broad agreement is found between theory and experiment, both in respect of the amplitudes and phases of the waves generated, when the speed is nearly critical (0.9 F > 0.2, finally disappear at F ~= 0.2. In the other direction, as the Froude number is increased beyond F ~= 1.2, the precursor soliton phenomenon was found also to evanesce as no finite-amplitude solitary waves can outrun, nor can any two-dimensional waves continue to follow, the rapidly moving disturbance. In this supercritical range and for asymptotically large times, all the effects remain only local to the disturbance. Thus, the criterion of the fascinating phenomenon of the generation of precursor solitons is ascertained

    Nonlinear structural vibrations by the linear acceleration method

    Get PDF
    Numerical integration method for calculating dynamic response of nonlinear elastic structure

    A global optimization approach to solve multi-aircraft routing problems

    Get PDF
    "This chapter appears in Computational Models, Software Engineering and Advanced Technologies in Air Transportation edited by Dr. Li Weigang and Dr. Alexandre G. de Barros. Chap.12 pp.237-259. Copyright 2009. Posted by permission of the publisher."This paper describes the formulation and solution of a multi-aircraft routing problem which is posed as a global optimization calculation. The paper extends previous work (involving a single aircraft using two dimensions) which established that the algorithm DIRECT is a suitable solution technique. The present work considers a number of ways of dealing with multiple routes using different problem decompositions. A further enhancement is the introduction of altitude to the problems so that full three-dimensional routes can be produced. Illustrative numerical results are presented involving up to three aircraft and including examples which feature routes over real-life terrain data
    corecore