4,096 research outputs found

    A Distance-Based Test of Association Between Paired Heterogeneous Genomic Data

    Full text link
    Due to rapid technological advances, a wide range of different measurements can be obtained from a given biological sample including single nucleotide polymorphisms, copy number variation, gene expression levels, DNA methylation and proteomic profiles. Each of these distinct measurements provides the means to characterize a certain aspect of biological diversity, and a fundamental problem of broad interest concerns the discovery of shared patterns of variation across different data types. Such data types are heterogeneous in the sense that they represent measurements taken at very different scales or described by very different data structures. We propose a distance-based statistical test, the generalized RV (GRV) test, to assess whether there is a common and non-random pattern of variability between paired biological measurements obtained from the same random sample. The measurements enter the test through distance measures which can be chosen to capture particular aspects of the data. An approximate null distribution is proposed to compute p-values in closed-form and without the need to perform costly Monte Carlo permutation procedures. Compared to the classical Mantel test for association between distance matrices, the GRV test has been found to be more powerful in a number of simulation settings. We also report on an application of the GRV test to detect biological pathways in which genetic variability is associated to variation in gene expression levels in ovarian cancer samples, and present results obtained from two independent cohorts

    Ranking to Learn: Feature Ranking and Selection via Eigenvector Centrality

    Full text link
    In an era where accumulating data is easy and storing it inexpensive, feature selection plays a central role in helping to reduce the high-dimensionality of huge amounts of otherwise meaningless data. In this paper, we propose a graph-based method for feature selection that ranks features by identifying the most important ones into arbitrary set of cues. Mapping the problem on an affinity graph-where features are the nodes-the solution is given by assessing the importance of nodes through some indicators of centrality, in particular, the Eigen-vector Centrality (EC). The gist of EC is to estimate the importance of a feature as a function of the importance of its neighbors. Ranking central nodes individuates candidate features, which turn out to be effective from a classification point of view, as proved by a thoroughly experimental section. Our approach has been tested on 7 diverse datasets from recent literature (e.g., biological data and object recognition, among others), and compared against filter, embedded and wrappers methods. The results are remarkable in terms of accuracy, stability and low execution time.Comment: Preprint version - Lecture Notes in Computer Science - Springer 201

    Algebraic Comparison of Partial Lists in Bioinformatics

    Get PDF
    The outcome of a functional genomics pipeline is usually a partial list of genomic features, ranked by their relevance in modelling biological phenotype in terms of a classification or regression model. Due to resampling protocols or just within a meta-analysis comparison, instead of one list it is often the case that sets of alternative feature lists (possibly of different lengths) are obtained. Here we introduce a method, based on the algebraic theory of symmetric groups, for studying the variability between lists ("list stability") in the case of lists of unequal length. We provide algorithms evaluating stability for lists embedded in the full feature set or just limited to the features occurring in the partial lists. The method is demonstrated first on synthetic data in a gene filtering task and then for finding gene profiles on a recent prostate cancer dataset

    A diagnostic methodology for Alzheimer’s disease

    Full text link

    Wavelet feature extraction and genetic algorithm for biomarker detection in colorectal cancer data

    Get PDF
    Biomarkers which predict patient’s survival can play an important role in medical diagnosis and treatment. How to select the significant biomarkers from hundreds of protein markers is a key step in survival analysis. In this paper a novel method is proposed to detect the prognostic biomarkers ofsurvival in colorectal cancer patients using wavelet analysis, genetic algorithm, and Bayes classifier. One dimensional discrete wavelet transform (DWT) is normally used to reduce the dimensionality of biomedical data. In this study one dimensional continuous wavelet transform (CWT) was proposed to extract the features of colorectal cancer data. One dimensional CWT has no ability to reduce dimensionality of data, but captures the missing features of DWT, and is complementary part of DWT. Genetic algorithm was performed on extracted wavelet coefficients to select the optimized features, using Bayes classifier to build its fitness function. The corresponding protein markers were located based on the position of optimized features. Kaplan-Meier curve and Cox regression model 2 were used to evaluate the performance of selected biomarkers. Experiments were conducted on colorectal cancer dataset and several significant biomarkers were detected. A new protein biomarker CD46 was found to significantly associate with survival time

    Random walks on mutual microRNA-target gene interaction network improve the prediction of disease-associated microRNAs

    Get PDF
    Background: MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous network that not only considers miRNAs but also the corresponding target genes in the network model. Results: Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based method. Interestingly, we could relate this performance gain to the emergence of "disease modules" in the heterogeneous miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well when using both experimentally validated and predicted miRNA-target gene interaction data for network construction. Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a recent database of known disease-miRNA associations. Conclusions: Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel disease-associated miRNAs because of the existence of "disease modules" in these networks
    corecore