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Abstract 

A better understanding of rumen microbial interactions is crucial for the study of rumen 10 

metabolism and methane emissions. Metagenomics-based methods can explore the 

relationship between microbial genes and metabolites to clarify the effect of microbial 

function on the host phenotype. This study investigated the rumen microbial 

mechanisms of methane metabolism in cattle by combining metagenomic data and 

network-based methods. Based on the relative abundance of 1461 rumen microbial 15 

genes and the main volatile fatty acids (VFAs), a multilayer heterogeneous network 

was constructed, and the functional modules associated with metabolite-microbial 

genes were obtained by heat diffusion. The PLS model by integrating data from VFAs 

and microbial genes explained 72.98% variation of methane emissions. Compared with 

single-layer networks, more previously reported biomarkers of methane prediction can 20 

be captured by the multilayer network. More biomarkers with the rank of top 20 

topological centralities are from the PLS model of diffusion subset. The heat diffusion 

algorithm is different from the strategy used by the microbial metabolic system to 

understand methane phenotype. It inferred 24 novel biomarkers that were preferentially 

affected by changes in specific VFAs. Results showed that the heat diffusion multilayer 25 

network approach improved the understanding of the microbial patterns of VFA 

affecting methane emissions which represented by the functional genes. 
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1. Introduction 

Ruminants depend on most of their nutrient supply by the fact that the complex 

polysaccharides of plant biomass can be degraded into monosaccharides and then 

fermented to produce volatile fatty acids (VFA) by the rumen microbes. VFAs are the 

primary source of energy absorbed from the digestive tract of ruminants. Microbial 35 

fermentation generates a surplus of hydrogen, which is the precursor of methane, as a 

by-product [1]. Ruminant methane emissions cause energy losses for animals and 

increase greenhouse gas in the environment [2]. It is estimated that the total feed energy 

loss due to methane emissions of cattle is as high as 12%. Methane also accounts for 

about one-third of agricultural methane emissions from livestock [3].  40 

Methanogens are autotrophic microorganisms [4]. The metabolism of acetate and 

certain amino acids can promote the growth of methanogens [5]. The proportion and 

composition of diets will affect the content and composition of rumen VFA [6]. High-

concentrate diets result in a high proportion of propionic acid, whilst high forage diets 

often generate a high proportion of acetate. The acetate type fermentation of diets with 45 

a large proportion of fibrous materials also leads to increased methane production 

compared to propionate type fermentation. Supplementing ingredients rich in 

unsaturated fatty acids to the diet can suppress the production of methane and can also 

change the ratio of VFAs in the rumen [6]. VFA molar composition was a significant 

contributor to explaining variation in methane yields from individual cattle [7]. The 50 

current rumen models are unable to accurately predict individual VFA relationships 

with changes in methane emission [8]. In the rumen environment, VFA and rumen 

microbes are interconnected and interact with each other, however, the mechanisms 

affecting methane emissions through changing microbial community composition and 

function have not been elucidated [9]. 55 

The network-based systems biology perspective may help to reveal the key 

relationship between the microbes and different environmental factors. Prior studies 

have used co-occurrence or co-abundance networks to identify different types of 

taxonomic and functional correlations in various microbial environments. Roehe et al. 

and Wallace et al. succeeded in using microbial communities or microbial genes to 60 

predict methane emissions by the combination of partial least square analysis and 



network analysis [12,13]. Several studies have applied network-based approaches to 

reveal essential microbial genes associated with methane production [14,26,27]. By 

combining co-abundances networks of the microbial communities, Martínez-Álvaro et 

al. highlighted the importance of microbial interaction between different domains 65 

within functional niches and their changes explaining variations in methane emissions 

from bovine [30]. Ghanbari Maman et al. constructed the co-abundance networks in 

both the operational taxonomic unit and gene levels of the rumen metagenomics of 

sheep, which demonstrated the methane yield can be explained more precisely by used 

systemic views in different layers [10]. It is now clear that phenomena such as methane 70 

production are complex multi-factor traits. The interactions of different types of multi-

omics data relationships will provide more complementary knowledge and additional 

information for the study of phenotype-related mechanisms. Multilayer networks have 

great potential to reveal this systematic rumen phenotypic feature [17]. 

Microbial interactions in the network are usually related to major changes in the 75 

structure of the entire community. Network cluster is a type of connectivity structure 

that forms with significantly higher frequency than random and plays important roles 

in complex biological networks [18]. The structure of the network is completely 

determined by the Laplace matrix corresponding to the network. The study found that 

the eigenvalues of the network Laplacian matrix can reflect some propagation dynamic 80 

characteristics of the network [19]. The heat diffusion network propagation algorithm 

is a node ranking and mining algorithm based on the network topology properties of 

the un-direct or direct graph. Theoretically, diffusion applies heat to each node in the 

set and lets the heat flow through connecting edges to adjacent nodes. It then produces 

a list of nodes ranked by the accumulated heat. The node with amount connections tends 85 

to have a higher ranking, while an isolated node tends to have a low ranking [20,21]. 

The Laplacian heat diffusion algorithm was applied to several studies [22-24] for the 

identification of latent phenotype-associated genes. 

Finding the modules most relevant to phenotypic features in complex biological 

networks is the focus of current research. Using a combination of graph theory, network 90 

analysis, and statistical inference, complex microbial clusters can be screened to 

identify core biomarkers that respond to rumen methane emissions. This study 

constructed a multilayer network of the microbial gene-microbial gene, microbial gene-



metabolite and microbial gene-KEGG function modules to improve the insight of 

fermentation-related mechanism of rumen methane emission. In comparison to 95 

traditional systems biology tools, the proposed methodology has several significant 

advantages. It is capable to correlate and integrate multiple data levels in a holistic 

manner which may be useful to capture the heterogeneity of biological processes and 

facilitate our understanding of the metabolic mechanism. As the main contributions of 

this research, the heat diffusion algorithm was adopted as a basic searching approach 100 

to a multilayer network to improve the effectiveness of phenotype-related biomarker 

identification. The novel inferred 24 biomarkers are providing further insight into the 

metabolic mechanism of rumen methane emission which is related to VFA. 

2. Materials and methods 

Based on the 7 metabolites from high-performance liquid chromatography 105 

technology (HPLC) and relative abundance of 1461 microbial genes identified in a 

metagenomics analysis, the network propagation-based approach has been developed 

to infer the key functional cluster in the multilayer network. By incorporating with 

partial least-squares analysis (PLS), the multilayer network was further investigated in 

terms of network propagation algorithm. 110 

2.1 Data Description 

 Data used in this study include methane emissions, the relative abundance of rumen 

microbial genes, and the rumen metabolites. The study included samples of different 

diets, feed additives, and breeds of beef cattle, and was balanced according to the two 

groups with high and low feed conversion ratio [13]. Methane emissions were measured 115 

individually for 48h in respiration chambers [25]. DNA was extracted from individual 

rumen fluid samples and sequenced. To identify the microbial genes, the metagenomic 

sequence reads were aligned to the KEGG (Kyoto Encyclopedia of Genes and 

Genomes) genes database [12]. In total 4828 KEGG gene orthologues were identified 

in rumen samples, of which 1461 genes showed a relative abundance of more than 120 

0.001%. VFAs of the rumen samples were determined using HPLC as in detailed 

described by the previous research [25]. The metabolites used in this study were: 



Acetate, Propionate, Butyrate, ISO-butyrate, ISO-valerate, Valerate, Branched-chain 

(concentrations mmol/Mol total VFA). After removing the samples with missing 

metabolite data, a total of 34 rumen fluid samples were included in the study.  125 

2.2 Methodology 

As illustrated in Fig. 1, this study is based on the quantitative associations among 

microbial genes, the interrelationships between microbial genes and metabolites, and 

the known biological function information of microbial genes, combined with complex 

network propagation algorithms to capture node association information based on edges 130 

of different properties. The methodology predicted the phenotypic characteristics of 

rumen methane emissions through tightly connected interrelationships of microbial 

metabolites and microbial gene biomarkers. 

2.2.1 Heterogeneous multilayer network construction 

This study constructed three heterogeneous networks to represent different rumen 135 

microbial functional characteristics. The co-occurrence network of microbial gene 

abundance is used to represent the associations among microbial genes. Previous 

studies [26] have shown that the association based on the five measures can form 

different microbial gene function clusters and avoid false associations caused by the 

nature of the metagenomic data. The simultaneous linear and non-linear relationships 140 

between metabolites and microbial gene abundances can be represented by a similar 

co-occurrence network [15]. The co-occurrence network was constructed using the 

process in the previous report [27]. 

As shown in Table 1, the proposed method scored the associative strength by linear 

correlations (Pearson correlation and Spearman correlation), similarity (Mutual 145 

information) and dissimilarity (Kullback-Leibler dissimilarity and Jensen Shannon 

dissimilarity) [28].  

The biological associations between the microbial genes and the metabolic modules 

are represented by the network of the microbial gene and functional metabolic 

knowledge collected from the KEGG database. 150 



The multilayer network is composed of collections of networks sharing the same 

nodes, but in which the edges belong to different categories or represent interactions 

with different natures that each interaction source has its meaning, relevance and bias 

[17]. In this study, the sub-networks were connected by the shared microbial gene nodes 

to form a heterogeneous multilayer network, which including microbial gene 155 

association, microbial gene and metabolite association and microbial gene metabolic 

module association. 

Table 1 

Summary of Quantitative Analysis Methods 

Measurements Range Definition 

Pearson correlations [-1, +1] 𝜌𝑥,𝑦 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝜎𝑥𝜎𝑦

 

Spearman correlations [-1, +1] 𝜌𝑟𝑥,𝑟𝑦 =
𝑐𝑜𝑣(𝑟𝑥 , 𝑟𝑦)

𝜎𝑟𝑥𝜎𝑟𝑦

 

Mutual information [0, INF] I (x; y) = ∑ ∑ 𝑃(𝑥, 𝑦)log (
𝑃(𝑥,𝑦)

𝑃(𝑥),𝑃(𝑦)
)𝑦∈𝑌𝑥∈𝑋  

Kullback-Leibler dissimilarity [0, INF] D KL (x, y) =∑ 𝑃(𝑥)log (
𝑃(𝑥)

𝑄(𝑥)
) 

Jensen Shannon dissimilarity [0, INF] JSD (x|| y) =
1

2
𝐷(𝑥||𝑀) +

1

2
𝐷(𝑦||𝑀) 

a.𝑐𝑜𝑣(𝑥, 𝑦)is the covariance; 𝜎𝑥 is the standard deviation of X; 𝜎𝑦  is the standard deviation of Y. rx and ry are ranks of each observation.𝑃(𝑥, 𝑦) 160 
𝑖𝑠 𝑡ℎ𝑒 𝑗𝑜𝑖𝑛𝑡 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑚𝑎𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓  𝑋 𝑎𝑛𝑑 𝑌; P(x) and P(y) are the marginal probability mass functions of X and Y respectively. 

xi represents the Pearson correlation between the integral x and the integral i. 

2.2.2 Laplacian heat diffusion algorithm  

   The heat diffusion algorithm is based on the calculation process of Daniel E. et al. 

[20]. By default, the set of selected nodes is the heat sources with each node having the 165 

same initial heat. The initial heat diffusion vector h is a column vector, in which the 

entries corresponding to seed nodes were set to 1, otherwise 0. At the end of diffusion, 

the top 90% of heat nodes were selected. The calculation is given by: 

d = h*exp(−𝐿𝑡)   (1) 

Where 170 

• ℎ is a vector representing the original query, and 𝑑 is the result vector. 

• L is the graph Laplacian defined by D-A. 

• D is a diagonal matrix holding the degree of each node. 

• A is the graph adjacency matrix of the input network.  

• The scalar parameter t is the total time of diffusion, which used a default value of 175 

t = 0.1. 



• The expression exp (*) is the matrix exponential. 

2.3 Statistical analysis and tools     

The PLS analysis was used to identify the most correlated microbial genes associated 

with methane emissions and VFA [12]. The model selection was based on the variable 180 

importance for the projection (VIP) criterion (Wold, 1995), whereby microbial 

parameters with a VIP<0.8 contribute little to the prediction [13].  

The Pearson correlation between microbial gene abundances and methane emission, 

PLS model and cross-validation were obtained using Matlab 2019 [29]. Correlation 

(Pearson, Spearman), similarity (mutual information), and dissimilarity (Euclidean 185 

distance, Kullback-Leibler dissimilarity and Jensen Shannon dissimilarity) calculations 

were carried out with the CoNet app [28], which was also used to do data 

renormalisation, multiple tests, p-value correction, bootstrapping, and Brown's p-value 

voting process. The correlation among metabolites and methane emissions were 

calculated in this study, based on the linear correlation method of Pearson and 190 

Spearman, merged p-value with Brown’s method and corrected p-value by Bonferroni 

method (by Cytoscape. CoNet.). 

 
Fig. 1 Methodology pipeline 
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Fig. 2 Pipeline for construction of the multilayer network 

3. Results  

3.1 Analysis based on single-layer networks 

3.1.1 Microbial Gene Co-occurrence Network 200 

The relative abundance of 1461 microbial genes generated a microbial gene co-

occurrence network with 227 nodes and 1536 edges formed 17 clusters (Fig.3). The 

microbial genes in 17 clusters are all co-presence correlated with each other. In the 

microbial gene network, 174 microbial genes have significant positive correlations with 

methane emissions, and only 7 microbial genes significantly negative correlated with 205 

methane emissions (Table S1). In the network, the microbial genes with the degree of 

the top five are K01499, K14128, K00123, K00200 and K00581. They are all involved 

in the methane metabolism KEGG pathway (map00680). The four microbial genes 

(K01499, K00123, K00200 and K00581) which encoding enzymes for methanogenesis 

were also reported in the similar co-abundance network research of Wang et al. [26]. 210 

3.1.2 Microbial Gene and Metabolites Co-occurrence Network 

This study constructed a co-occurrence network of microbial gene and metabolite 

with 284 nodes and 458 edges (Fig. 4). Valerate and branched-chain fatty acid were 



excluded from the network because their association with microbial genes failed the 

threshold of multiple tests. The network showed methane emissions positive correlates 215 

with acetate while negative correlates with propionate. The node has the highest degree 

in the network is acetate, followed by propionate, which is connected to 213 and 111 

microbial genes, respectively. Iso-valerate negatively correlated with K00330 and 

K00340, which both encoding enzyme for NADH-quinone oxidoreductase subunit. The 

six microbial genes (K07240, K02996, K07133, K02956, K00784 and K00788) 220 

simultaneously associated with methane, acetate, butyrate and iso-butyrate, which 

functions correspond to Ribosome, RNA transport and Thiamine metabolism. 

3.1.3 Biomarkers in the single-layer network with literature evidence  

Previous studies identified methane prediction biomarkers [12,13,30], in which a 

total of 46 biomarkers were included in the network of this study. Specifically, the 225 

microbial genes of the 2016 and 2018 studies [12,13] are mostly included in the 

microbial gene co-occurrence network. The microbial genes reported in the 2020 study 

are associated with acetate (Fig. 5a). There are two microbial genes (K00584 and 

K14128) that are associated with acetate and iso-butyrate. Previously reported 

biomarkers for predicting methane phenotype are connected to different metabolites in 230 

the network. The microbial genes K00150, K01673 and K06937 are associated with 

acetate and methane. Only one microbial gene (K01499) associate with acetate, iso-

butyrate and methane. There are 21 previously reported biomarker positive correlate 

with acetate. The previously reported biomarker was found no association with 

propionate or iso-valerate in this research. 235 

There are 419 nodes and 722 edges in the microbial gene and KEGG module 

network. Of the biomarkers reported in 2016 and 2018 [12,13], 24 microbial genes were 

found in the KEGG module network (Fig. 5b). The microbial biomarkers reported in 

2020 were not found in the KEGG module network. These methane phenotype-related 

biomarkers come from several co-abundance networks based on microbial genes, but 240 

in this study, no single-layer network can fully cover all biomarkers. This result 

indirectly supports the necessity of an integrated heterogeneous multilayer network.  



 

Fig. 3. Microbial gene co-occurrence network. Nodes represent microbial genes. Green circular nodes 

represent microbial genes significantly positive correlate with methane emissions. Red triangle nodes 245 
represent microbial genes significantly negative correlate with methane emissions. Grey nodes represent 

microbial genes that have no significant correlation with methane emissions. Green edges represent the co-

presence relationship. Red edges represent the mutual-exclusion relationship. 



 
Fig. 4. Microbial gene and metabolite co-occurrence network. Nodes represent microbial genes and 250 

metabolites. Green circular nodes represent microbial genes significantly positive correlate with methane 

emissions. Red triangle nodes represent microbial genes significantly negative correlate with methane 

emissions. Grey nodes represent microbial genes have no significant correlation with methane emissions. 

Green edges represent the microbial genes in the co-presence relationship. Red edges represent the microbial 
genes in the mutual-exclusion relationship. 255 



 

Fig. 5. Co-occurrence network and multilayer network. a. Nodes are microbial genes and metabolites. 

Blue nodes represent literature biomarkers of 2016 and 2018 studies. Yellow nodes represent the biomarker 

of the 2020 research. The green edges represent the microbial genes in the co-presence relationship, and the 
red edges represent the microbial genes in the mutual-exclusion relationship. b. Blue nodes represent 260 

literature biomarkers of 2016 and 2018 studies. 



3.2 Methane emission biomarker identification based on multilayer 

network 

3.2.1 Multilayer network 

The microbial gene-metabolite network and microbial gene network were connected 265 

by the links between microbial genes and KEGG function modules to construct a 

multilayer network (Fig.7). The final network contained 663 nodes and 2418 edges. In 

the multilayer network, there are 99 microbial genes involved in central carbohydrate 

metabolism, and 97 microbial genes involved in the carbon fixation module reaction. 

Of the 25 microbial genes shared by each layer network together, 23 involved in the 270 

methane metabolism function module. Among these three-layer networks, the 

microbial gene network is the densest, while the KEGG module network contained the 

most nodes.  

3.2.2 Topological analysis of the multilayer network 

The multilayer network was evaluated with topological parameters including 275 

clustering coefficient (0.1764), diameter (11), centralization (0.1365) and path length 

(4.01). The degree distribution of the multilayer network was plotted in Fig. 7 which fit 

the power-law distribution. Priority connectivity is the most fundamental trait for the 

power law of scale-free network degree distribution which means that newly joined 

nodes have a higher probability of connecting to nodes with higher degrees. To 280 

investigate the topological relevance of each node, which may be linked to critical roles 

in biological mechanisms, the centrality metrics for each node including degree, 

betweenness, eigenvector, bridging and closeness were computed. The top 20 nodes of 

each centrality in the network were listed in Table 2. The central nodes in the multilayer 

network are acetate, methane, methane metabolism module, functional genes involved 285 

in methane biosynthesis and amino acid metabolism. 16 of the 25 microbial genes 

connected each layer sub-network were ranked in the top 20 in topological features 

(Table 2). This result indicated that the multilayer network can effectively represents 

the microbial components of the methane phenotype related to VFA fermentation.  



 290 

Fig. 6. Multilayer network. Nodes in the network represent microbial genes, metabolites and KEGG module 
respectively. Green edges represent co-presence relationships, red edges represent mutual exclusion 

relationships. Grey edges indicated microbial genes are involved in the KEGG metabolic module. 
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Table 2 

The Top 20 Nodes Ranked by 5 Centrality Metrics 

Top 20 ranked nodes in the multilayer network 

Degree Betweenness Eigenvector Bridging Closeness 

Acetate Acetate Acetate K03147 Acetate 

Propionate 
Cofactor and vitamin 

metabolism 
K14128 K03750 

Carbon 

fixation 

Iso-butyrate Propionate K01499 K04518 
Methane 

metabolism 

Cofactor and vitamin 
metabolism 

Carbon fixation K00584 K03525 K01681 

K01499 
Other carbohydrate 

metabolism 
K00581 K00954 K00788c 

Central carbohydrate 

metabolism 

Central carbohydrate 

metabolism 
K00200 K00975 K01810 

K14128 
Aromatic amino acid 

metabolism 
K02885 K00527 K00169 

Carbon fixation Methane metabolism K00201 K00600 K00244c 

K00200 K00626 K03242a K01712 K00150 

K00584 Iso-butyrate K03388 K01810 K00170 

K03388 Pyrimidine metabolism K00123 K01940b c K01959 

K00201 
Cysteine and methionine 

metabolism 
K01622 K00788c K01499 

K00123 Purine metabolism K03044 K01491 K00400 

K00581 ATP synthesis K02877 K01938 K00171 

Methane K00940 K03045 K01735b c K00200 

K01622 
Branched-chain amino acid 

metabolism 
K00399 K01681 K00975 

Other carbohydrate 
metabolism 

Butyrate K02929 K01756 K01961b c 

K02885 K00788c K02117 K00626 K02869 

K03242a K00133b K02869 K01658 K00580 

Methane metabolism K00172 K03237 K00014 K00581 

* a Biomarkers based on microbial gene networks. b Biomarkers based on the microbial gene-metabolite network. c Biomarkers 
based on diffusion subsets.  

 300 

Fig. 7. Degree distribution of multilayer network. The x-axis represents the degree of nodes. The y-axis 

represents the number of nodes. 



3.2.2 Heat diffusion on the multilayer network 

    According to the network propagation theory, nodes with a larger diffusion value 

may be affected preferentially [21]. This research assumed that the network-related 305 

nodes and corresponding interactions will change when each VFA node changing. The 

heat diffusion set of each metabolite as the seed node and methane as the endpoint 

represents the microbial genes or metabolites that have been preferentially affected 

before the changing of each metabolite affected methane. Finally, there are 6 KEGG 

module nodes and 280 microbial genes were captured. Only microbial gene K00788 310 

has been included in each diffusion set. 

    Comparing to the impact of acetate on methane emissions, the diffusion results 

indicated that acetate firstly affects the iso-butyrate. The results also showed that 

changes in propionate will first affect methane among all metabolites. Before methane 

emissions have been influenced, the changing of butyrate will first affect ATP 315 

synthesis, carbon fixation, central carbohydrate metabolism, polyamine biosynthesis, 

purine metabolism and cysteine and methionine metabolism, as well as propionate and 

iso-butyrate. Iso-butyrate preferentially affects acetate before it diffuses to methane. 

The propagation effect of iso-valerate on ATP synthesis, acetate and propionate are 

much greater than that on methane emissions. 320 

3.2.3 Biomarker identification of methane emission based on multilayer 

network 

Fig. 8 illustrated the relationship between biomarkers of methane emission 

phenotypes, diffusion sets and KEGG functional modules. Most of the biomarkers 

reported previously have positive correlations with methane emissions, while the 325 

biomarkers identified in this study have negative correlations with methane emissions. 

All microbial genes in the microbial gene network were subjected to methane prediction 

using the PLS model. The final selection of 20 microbial genes (Table S2) could explain 

50.55% of methane variation. Similarly, this study used acetate, butyrate, propionate, 

iso-butyrate and iso-valerate, as well as all microbial genes of the microbial gene and 330 

metabolite network to predict methane emissions by the PLS model. Based on different 

microbial genes and microbial gene-VFAs combinations, a PLS model with a higher 



interpretation of methane prediction and fewer variables was obtained. The explained 

variation of methane emission by the PLS model including acetate, propionate, butyrate 

and 15 microbial genes can reach 72.98% (Table S2). The biomarker information is 335 

summarized in Table S3. The PLS model of propionate diffusion set can explain the 

methane variation up to 62.7%. The PLS model of the acetate diffusion set contains the 

least variables, but it can explain 60% of the methane variation, and three of the 

microbial genes are also included in the iso-valerate PLS model. The seven biomarkers 

obtained by butyrate as the seed node are distributed in 6 different subsets, and the 340 

biomarkers of the propionate heat diffusion set also involve the iso-valerate diffusion 

set.  

Seven of all the biomarkers appeared in the top 20 rankings of topological properties 

(Table 2). Among them, four biomarkers from the PLS model of the microbial gene-

metabolite network, and one biomarker is based on the PLS model of microbial gene 345 

network (Table 2). Among the 24 biomarkers from the PLS model of the diffusion 

subset, five microbial genes are in the top 20 topological centralities and three of them 

also in the results of the microbial metabolite-gene PLS model (Table 2). The 

biomarkers involved in pyruvate metabolism (K00244, K01571, K01961) were only 

obtained in the diffusion set using propionate as the seed node. There were two 350 

biomarkers for methane emissions involved in amino acid biosynthesis, the positively 

correlated one (K01940) are in the acetate and iso-valerate diffusion set, while the 

negatively correlated one (K01735) are included in the diffusion cluster which 

propionate as the seed node. Two biomarkers related to thiamine metabolism (K00788 

and K04487) are in the diffusion set of butyrate. The four subunit ribosomal protein 355 

biomarkers are positively correlated with methane emissions, one (K02986) of which 

is in the diffusion subset of butyrate, and the other three (K02996, K02890 and K02864) 

are in iso-butyrate. In summary, 62 of the 88 biomarkers obtained in the literature and 

this study were included in the heat diffusion set of VFAs, indicating that these 

microbial genes were affected after the VFAs changed and eventually caused methane 360 

changes. The remaining 26 biomarkers have closely interacted with methane emissions, 

methane metabolism and other biomarkers. 
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Fig. 8. Summary of biomarker and heat diffusion subset network. Nodes represent microbial genes, 

metabolites and KEGG module. Blue solid nodes represent biomarkers reported in the literature. Red solid 

nodes represent biomarkers of G-G network of this study. Orange nodes represent the biomarkers of G-M 

network of this study. Black circle nodes represent the biomarkers involved in more than two diffusion set. 

Green circle nodes represent biomarkers in the propionate diffusion set. Blue circle nodes represent 370 
biomarkers in the butyrate diffusion set. Orange circle nodes represent biomarkers in the iso-butyrate 

diffusion set. Yellow elliptical shapes marked each heat diffusion set, and the blue labels represent the seed 

node of the set. Green edges represent co-presence relationships, red edges represent mutual exclusion 

relationships. Grey edges indicate that the KEGG metabolic module is associated with microbial genes. 
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4. Conclusion and Discussion 

One goal that has been pursued in research on complex networks is to solve the 

information redundancy while capturing as much effective information as possible. The 

three networks of the microbial gene, microbial gene-metabolite, and microbial gene-

KEGG functional module were connected into a multilayer heterogeneous network by 380 

25 shared microbial genes, containing edges and nodes of different properties. Different 

types of omics data often introduce problems such as false associations due to their 

different nature [27]. Using different measurement methods to construct an effective 

single-layer network according to data characteristics can better extract the correlations 

among individuals. In this study, when constructing each single-layer network, the 385 



effective measures for constructing microbial gene networks and microbial gene-

metabolite network were derived based on our previous research [26,27]. The obtained 

multilayer network not only fully contained the methane emission biomarkers reported 

by other studies but also include 90% of the known methane metabolism pathway 

genes.  390 

The heat diffusion algorithm is equivalent to the random walk model with restart, but 

it has faster calculation efficiency [16]. Some studies have shown that this large-scale 

network structure comprehensive algorithm can mine microbial functional associations 

more than the network-based node topology property analysis [19]. Besides, the 

network propagation algorithm based on the Laplacian matrix can obtain the ranking of 395 

nodes that have close relationships with specific nodes according to the network 

structure. The multilayer network of this study demonstrates the ability to identify 

microbial gene biomarkers for methane emissions based on abundances of the microbial 

genes, the concentration of the metabolites and functional KEGG pathways. The 

network propagation algorithm indicates the propagation path of different metabolites 400 

in the network through the network structure priority. This study used each VFA as a 

seed node that diffused heat to methane emissions as the end node to obtain a candidate 

set of potential biomarkers that represent all nodes have been affected when the seed 

node propagated to methane. Based on different microbial genes and microbial gene-

VFAs combinations, a PLS model with a higher interpretation of methane prediction 405 

and fewer variables was obtained. In summary, 62 of the 88 biomarkers obtained in the 

literature and in this study were included in the heat diffusion set of VFAs, indicating 

that these microbial genes were affected after the VFAs were changed and eventually 

caused methane changes. 

It has been reported that the methane phenotype and the rumen microbial community 410 

are partially heritable. Therefore, the microbial functional units clustered together 

within a genetic network suggests the feasibility of genetic selection for low methane 

emitting phenotypes. The biomarkers to predict methane productions based on rumen 

microbial multi-omics have complex interactions [31]. Therefore, reliable knowledge 

about the interactions of methane emissions and both the microbiome and 415 

metabolomics improved the identification of reliable biomarkers in this research 

[32,33]. Previous studies have shown VFA concentrations and ratios were significantly 



correlated with methane emission, but these factors were not as robust enough for 

prediction. In particular, the use of microbiome information helped the development of 

efficient methane mitigation strategies. The improved knowledge about the rumen 420 

metabolomics is essential to explain the relevance of each domain associated with the 

variance of methane emissions. The systemic results of this study covered the 

deficiencies of previous studies by using multi-omics information in a multilayer 

network analysis to understand the complex interactions in biological processes and to 

improve the identification of reliable biomarkers associated with methane emissions. 425 

Volatile fatty acids are the most representative rumen fermentation products, but 

their volatilization characteristics and wide associations make it difficult to accurately 

reflect the metabolic status of rumen microbes. Compared with the KEGG module 

information, the more detailed microbial function data (i.e. the reconstruction metabolic 

network) is expected to demonstrate the actual metabolic process. From the perspective 430 

of network propagation, the diffusion algorithm largely depends on the node position 

in the network. However, the weight and causal basis of the edge are also very valuable 

information and are expected to be integrated into the network in the future. By the 

limitation of the PLS model, when predicting the quantitative phenotype (i.e. methane 

emission), it should be very careful to select the variables that enter the model to avoid 435 

overfitting. In the future, we look forward to constructing a multi-level network of 

microbial gene abundance, microbial community information and microbial 

metabolomics on methane phenotypic characteristics. Another potential direction is to 

reveal the hidden key metabolites related to the methane phenotype through a dynamic 

network approach. The current study was based on the analysis of 34 rumen fluid 440 

samples with different diets and feed additive. Applying the proposed methodology to 

analyses a larger cohort with different diets and feed additive would be an important 

part of our future work. 
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