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Random walks on mutual microRNA-target
gene interaction network improve the
prediction of disease-associated microRNAs
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Abstract

Background: MicroRNAs (miRNAs) have been shown to play an important role in pathological initiation, progression
and maintenance. Because identification in the laboratory of disease-related miRNAs is not straightforward, numerous
network-based methods have been developed to predict novel miRNAs in silico. Homogeneous networks (in which
every node is a miRNA) based on the targets shared between miRNAs have been widely used to predict their role in
disease phenotypes. Although such homogeneous networks can predict potential disease-associated miRNAs, they do
not consider the roles of the target genes of the miRNAs. Here, we introduce a novel method based on a heterogeneous
network that not only considers miRNAs but also the corresponding target genes in the network model.

Results: Instead of constructing homogeneous miRNA networks, we built heterogeneous miRNA networks consisting of
both miRNAs and their target genes, using databases of known miRNA-target gene interactions. In addition, as recent
studies demonstrated reciprocal regulatory relations between miRNAs and their target genes, we considered these
heterogeneous miRNA networks to be undirected, assuming mutual miRNA-target interactions. Next, we introduced a
novel method (RWRMTN) operating on these mutual heterogeneous miRNA networks to rank candidate disease-related
miRNAs using a random walk with restart (RWR) based algorithm. Using both known disease-associated miRNAs and their
target genes as seed nodes, the method can identify additional miRNAs involved in the disease phenotype. Experiments
indicated that RWRMTN outperformed two existing state-of-the-art methods: RWRMDA, a network-based method that
also uses a RWR on homogeneous (rather than heterogeneous) miRNA networks, and RLSMDA, a machine learning-based
method. Interestingly, we could relate this performance gain to the emergence of “disease modules” in the heterogeneous
miRNA networks used as input for the algorithm. Moreover, we could demonstrate that RWRMTN is stable, performing well
when using both experimentally validated and predicted miRNA-target gene interaction data for network construction.
Finally, using RWRMTN, we identified 76 novel miRNAs associated with 23 disease phenotypes which were present in a
recent database of known disease-miRNA associations.

Conclusions: Summarizing, using random walks on mutual miRNA-target networks improves the prediction of novel
disease-associated miRNAs because of the existence of “disease modules” in these networks.
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Background
MiRNAs are a class of small non-coding regulatory RNAs
that play an important role in the regulation of gene expres-
sion [1, 2]. Misregulation of miRNAs has been shown to
contribute to both common [3–7] and rare diseases [8]. Be-
cause the identification in the laboratory of miRNAs related
to a particular disease is non-trivial, computational methods
for the in silico identification of potential disease-miRNAs
associations have great potential for speeding up this process.
A number of computational methods, mostly network-

based or machine learning approaches, have been pro-
posed for the prediction of disease-associated miRNAs
[9]. The network-based methods mainly rely on the con-
struction of similarity networks expressing functional
similarities between miRNAs, after which specific algo-
rithms are used to detect novel disease-miRNA associa-
tions [10–20]. Recently, disease similarity matrices have
been additionally integrated with the miRNA functional
similarity network to construct heterogeneous networks
of diseases and miRNAs, using known disease-miRNA
associations [21–25].
Most often, the similarity networks used are functional

miRNA similarity networks, containing only miRNAs as
nodes (hereafter referred to as homogeneous miRNA
networks). In these networks, nodes represent miRNAs
and edges represent the degree of functional relatedness
between the miRNAs. This functional relatedness can be
derived from miRNA-target gene interactions in differ-
ent ways. For example, miRNA functional similarity in-
teractions were constructed based on the degree to
which miRNAs share the same targets [10] or by calcu-
lating the similarity of target gene regulation patterns for
each pair of miRNAs [11]. Additionally, Wang et al. [12]
assessed the functional similarity between two miRNAs
by comparing the gene functions (using gene ontologies)
of their respective sets of target genes. Similarly, Xu
et al. [13] constructed functional synergistic regulatory
interactions between miRNAs by considering common
target genes in the context of gene ontology and prox-
imity in a protein interaction network. All these methods
capture a different aspect of functional similarity, and
we demonstrated previously that there can be added
value in constructing a functional similarity network by
integrating functional similarity interactions obtained
using several of the aforementioned methods [14].
Once a homogeneous miRNA networks is available, asso-

ciations between miRNAs and diseases are subsequently
predicted by assuming that functionally related miRNAs
associate with phenotypically similar diseases, which is
referred to as the “disease module” principle [26, 27].
Specific methods that exploit this principle have been pro-
posed. Local similarity measures only assess direct neigh-
bours of known disease-associated miRNAs [10, 11] or
neighbours of candidate miRNAs (as used e.g. by HDMP

[17]) in homogeneous miRNA networks. Another state-of-
the-art method for disease miRNA prediction, RWRMDA
[14, 15], obtains a global network similarity metric by run-
ning a random walk with restart (RWR) algorithm (a net-
work propagation technique) on homogeneous miRNA
networks. RWR-based techniques were also applied on
different network types where either a phenotype similarity
network [20] or a protein interaction network [28] was used
as input for the analysis. In addition, we recently demon-
strated that network-based ranking algorithms, which were
successfully applied for either disease gene prediction or for
studying social networks and networks of interlinking web
pages, could also be used effectively for disease microRNA
prediction on homogeneous miRNA networks, achieving
comparable performance with the RWR-based method
[16]. For heterogeneous networks of diseases and miRNAs,
pathfinding-based methods were used [21, 22] that rely on
the assumption that the more paths exist between a
miRNA and a disease, the more likely it is that there exists
an association between them. In addition, based on the
assumption that functionally similar miRNAs tend to be
associated with similar diseases, other methods were
proposed relying on the identification of clusters of similar
diseases and similar miRNAs [23–25].
Next to network-based methods, machine learning-

based methods that do not use miRNA-target interac-
tions have also been proposed. For example, a Naïve
Bayes model was used to integrate genomic data for pri-
oritizing disease-related miRNAs [29]. Qinghua et al.
[30] applied support vector machines for identifying
disease-associated miRNAs. In addition, Qabaja et al. [31]
used a Lasso regression model to infer disease-miRNA as-
sociations. The common limitation of these machine
learning methods is the necessity to compile a set of nega-
tive training samples consisting of non-disease-related
miRNAs. As the absence of an observed association does
not imply the non-existence of an association (there are
no proven negatives), obtaining such a negative training
set is not straightforward [32]. More recently, RLSMDA
[33], a semi-supervised classifier-based method, was pro-
posed to overcome this limitation, prioritizing candidate
miRNAs for all considered diseases without the need for
negative samples. Importantly, RLSMDA was reported to
outperform the aforementioned state-of-the-art methods
RWRMDA [15] and HDMP [17].
A common limitation of the homogeneous miRNA

network-based methods is that the knowledge of bio-
logical relationship between miRNAs and their target
genes might be used ineffectively because this relation-
ship is only partially integrated in the metric used to
capture degree of similarity between two miRNAs. Also,
the application of the RWR algorithm, underpinning several
state-of-the-art network-based algorithms, is not limited to
homogeneous networks containing only miRNA nodes. It
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can be applied to heterogeneous networks where both
miRNAs and their gene targets are present in the network
as nodes, and edges represent miRNA-target interactions.
With the human genome containing thousands of miR-
NAs [34, 35], regulating the expression of thousands of
genes [36, 37] and with these miRNA-target interactions
(predicted or experimentally validated) now being largely
available in a number of miRNA-target databases (as com-
prehensively reviewed in [38]), here we propose to use
heterogeneous networks as input for the identification of
disease-related miRNAs, in order to make optimal use of
this increased level of detail.
MiRNAs have emerged as key regulators of gene expres-

sion in diverse biological pathways; the relationship of a
miRNA and its target genes are usually considered as dir-
ect interactions between the miRNA and the target genes
(i.e., a miRNA regulates target genes by binding to target
sequences in mRNAs). Consequently, miRNA-target gene
regulatory interactions were used as directed interactions
in a number of studies [32, 39, 40]. However, recent devel-
opments introduced a new twist to this: targets can recip-
rocally control the level and function of miRNAs [41].
This mutual regulation of miRNAs and target genes in
combination with the large coverage of miRNA-target
interactions available in publicly available miRNA-target
databases [38] has inspired us to propose a novel
network-based method for disease miRNA prediction. In
this study, instead of constructing homogeneous miRNA
networks from target genes or using directed miRNA-
target gene interactions, we exploit the mutual regulatory
relations between miRNAs and their target genes to
construct mutual heterogeneous miRNA-target gene net-
works (hereafter, referred to as mutual heterogeneous
miRNA networks). Next, we propose a novel framework,
RWRMTN, in which we apply the RWR algorithm on
these heterogeneous miRNA networks to prioritize candi-
date disease miRNAs. In particular, based on a previous
study indicating that miRNAs regulate diseases through
their target genes [28], we hypothesize that the mutual
regulation between a miRNA and their targets leads to a
transfer of disease information between them. Therefore,
in the proposed method, we force the RWR algorithm to
start from a set of seed nodes, consisting not only of known
disease miRNAs but also of their target genes. To assess
and evaluate the predictive performance of RWRMTN, we
use a leave-one-out cross-validation scheme on a set of
experimentally verified disease phenotype-miRNA associa-
tions. Experimental results indicate that RWRMTN outper-
forms RWRMDA [15], a state-of-the-art network-based
method using RWR operating on homogeneous miRNA
networks. Additionally, we demonstrate that this superior
performance of our proposed method is because of the exist-
ence of “disease modules” in the heterogeneous miRNA net-
works used as input for our algorithm. Indeed, we observe

that (1) a large amount of known disease genes are present
in the heterogeneous miRNA networks and (2) most known
disease miRNAs in the network regulate at least one known
disease gene. Moreover, we showed that our method also
outperformed RLSMDA [33], a state-of-the-art machine
learning-based method that uses a semi-supervised learning
method. Furthermore, we demonstrated that our method is
stable and can achieve relative high performance for both
experimentally validated and predicted miRNA-target gene
interaction data. Finally, using RWRMTN, we identified 76
novel miRNAs associated with 23 disease phenotypes which
were present in an recent database of known disease-miRNA
associations HMDD [42].

Methods
Construction of heterogeneous miRNA networks
To construct heterogeneous miRNA networks, we selected
miRWalk [43], a database of experimentally validated
miRNA-target interactions and TargetScan [44], a database
containing predicted interactions. More specifically, we
downloaded experimentally validated human miRNAs-
target interactions from the miRWalk database and con-
structed a heterogeneous miRNA network consisting of
12,721 nodes (745 miRNAs and 11,976 genes) and 38,571
interactions (from now on referred to as HetermiRWal-
kNet) (See in Additional file 1: Table S1). This network can
be considered as either a mutual heterogeneous miRNA
network (HetermiRWalkNet-mutual) if the interactions
between miRNAs and target genes are considered to be
reciprocal, or alternatively as a directed heterogeneous
miRNA network (HetermiRWalkNet-directed) if miRNAs
are assumed to regulate target genes but not vice versa. In
addition, we downloaded predicted human miRNA-target
gene associations from TargetScan with non-conserved site
context++ scores, and constructed a second heterogeneous
miRNA network consisting of 16,568 nodes (1547 miRNAs
and 15,021 genes) and 520,526 interactions (HeterTargetS-
canNet) (See in Additional file 1: Table S2). Again, this net-
work can be considered as either a mutual heterogeneous
miRNA network (HeterTargetScanNet-mutual) or a
directed heterogeneous miRNA network (HeterTargetScan-
Net-directed). Figure 1a gives an overview of the different
types of miRNA networks used in this study.

Construction of homogeneous miRNA networks
To compare the prediction performance of RWRMTN
with that of RWRMDA [15] on homogeneous miRNA
networks, we constructed two homogeneous miRNA net-
works based on miRNA-target gene interactions (Fig. 1b).
More specifically, based on an identical procedure of con-
struction of homogeneous miRNA network as in our pre-
vious study [16], we defined a functional relation between
two miRNAs as follows: two miRNAs are considered to
be functionally interacting if they share at least one target
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gene, with the degree of similarity defined as the number of
shared target genes normalized by the minimum number
of target genes of the two miRNAs under consideration. As
a result, two networks respectively containing 730 miRNAs
with 29,089 interactions (HomomiRWalkNet) and 1428
miRNAs with 46,118 interactions (HomoTargetScanNet)
are constructed from the miRNA-target gene interactions
in HetermiRWalkNet and HeterTargetScanNet.

Database of known disease phenotype-miRNA
associations
In order to be able to evaluate the performance of the
propose method, and to put the new method in perspective,
a database of known disease-miRNA associations is
required. Here we will use miR2Disease [45], a comprehen-
sive resource of miRNA - human disease associations that
is manually curated and maintained. We used 270 manually
curated disease phenotype–miRNAs associations between
53 disease phenotypes and 118 miRNAs from that database
(See in Additional file 1: Table S3).

Construction of a disease phenotype similarity matrix
To compare the performance of RWRMTN and
RLSMDA, we additionally collected a disease phenotype
similarity matrix of 5080 phenotypes from [46], where
an element of the matrix represents degree of similarity

between two disease phenotypes. The similarities in this
matrix were obtained by applying various text mining
algorithms to OMIM records [47].

RWRMTN: A random walk with restart algorithm applied
to heterogeneous miRNA networks
RWR is a variant of the random walk algorithm, simulating
a walker that either moves from a current node in a net-
work to a randomly selected adjacent node or alternatively
returns to the source node (also called the seed node)
where the random walk was started, with a fixed probability
of returning (restart probability) γ. This algorithm has been
used successfully in a number of related studies such as
prediction of disease-associated lncRNA [48], disease-
associated gene [49], drug target [50] and disease-related
microRNA-environmental factor interactions [51].
Given a connected weighted graph G(V, E) with a set

of nodes V = {v1, v2, …, vN} and a set of links E = {(vi, vj)|
vi, vj∈V}, a set of seed nodes S V, and a N×N adjacency
matrix W, the random walk with restart (RWR) can be
formally described as follows:

ptþ1 ¼ 1−γð ÞW 0
pt þ γp0 ð1Þ

Where W′ represents a transition probability matrix and
W’ij, the element in W′ on row i and column j, denotes the

Fig. 1 Illustration of the RWRMTN and RWRMDA methods. a Heterogeneous miRNA networks/MiRNA-target networks were constructed using
miRNA-target gene interactions. b Homogeneous miRNA networks/MiRNA functional similarity networks were constructed using target genes
shared among miRNAs. c Two miRNAs known to be associated with a disease under study are mapped as source/seed nodes in a homogeneous
miRNA network. In addition to these two known disease-associated miRNAs, their target genes are also used as source/seed nodes in a heterogeneous
miRNA network. d Ranking methods score all nodes in the heterogeneous or homogeneous miRNA network
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probability that a random walker at node vi moves to
neighboring node vj:

W 0
ij ¼

WijP
k∈ Voutð ÞiW ik

ð2Þ

Here

� (Vout)i is a set of outgoing nodes of vi. If an
unweighted graph (e.g., a heterogeneous miRNA
network) is used, all interactions are assigned a unity
weight.

� pt is a N×1 probability vector of |V| nodes at a time
step t of which the ith element represents the
probability of the walker being at node vi∈V.

� p0 is the N×1 initial probability vector.

In the RWRMDA method, the RWR technique is used
to rank miRNAs in homogeneous miRNA networks.
Therefore, the set of seed nodes S only contains known
disease miRNAs (i.e., S = Sm) and p0 is defined as follows:

p0ð Þi ¼
1
Smj j ifvi∈Sm

0 otherwise

8
<

:
ð3Þ

Alternatively, for RWRMTN we assume that the mu-
tual regulation between a miRNA and their targets leads
to an exchange of disease information between the two
entities participating in the interaction. Therefore, we
enlarge the set of seed node S by adding target genes Sg
of the known disease miRNAs (i.e., S = Sm∪Sg). The
initial probability vector p0 is defined as follows:

p0ð Þi ¼

α
1
Smj j ifvi∈Sm

1−αð Þ 1

Sg
�
�

�
� ifvi∈Sg

0 otherwise

8
>>>>><

>>>>>:

ð4Þ

where α∈[0, 1] is a weight parameter, controlling the
amount of disease information transferred between
miRNAs and their target genes.
For both methods, all miRNAs/genes in the network

are eventually ranked according to the steady-state prob-
ability vector p∞, which is obtained by repeating the
iterations until convergence is reached (in this study,
||pt + 1-pt|| <10

−6).
Note that, for directed heterogeneous miRNA net-

works such as HetermiRWalkNet-directed and HeterTar-
getScanNet-directed, the random walker is trapped at
seed target genes because there is no outgoing link at
these nodes. Therefore, non-seed nodes (including previ-
ously unidentified disease miRNAs and other target
genes) cannot be ranked as they are all assigned a zero

probability (Fig. 1d). Therefore, RWRMTN can only be
applied to mutual heterogeneous miRNA networks such
as HetermiRWalkNet-mutual and HeterTargetScanNet-
mutual. Figure 1 illustrates these two methods.

RLSMDA: Regularized least squares for MiRNA-disease
association
RLSMDA is a semi-supervised and global method since it
can rank disease-miRNA associations for all diseases
under consideration simultaneously, without the need for
a negative training set. RLSMDA constructs a continuous
function that can determine the association probability
between each miRNA and a given disease. The higher this
probability is, the more a miRNA is related to a given
disease. To this end, RLSMDA relies on the minimization
of two cost functions, defined in respectively the miRNA
space and in the disease space, whose solutions are subse-
quently combined in a single continuous classification
function [33]. The optimal classifier in these two spaces
was defined as follows:

F� ¼ wF�T
M þ 1−wð ÞF�

D ð5Þ

where F�
M and F�

D are optimal classification functions in
the miRNA and disease phenotype spaces, respectively
defined as:

F�
M ¼ SM SM þ ηMIMð ÞAT ð6Þ

F�
D ¼ SD SD þ ηDIDð ÞA ð7Þ

with

� w is the weight between these two spaces. ηM and
ηD are trade-off parameters in the miRNA and disease
phenotype spaces, respectively.

� SD(m ×m) is the disease phenotype similarity matrix
containing m diseases. SM(n × n) is the
corresponding similarity matrix of the homogeneous
miRNA network containing n miRNAs, where SM(i,
j) is the degree of similarity between two miRNAs.

� IM and ID are identity matrices with the same size as
matrices SM and SD, respectively.

� A(m × n) is an association matrix, where A (i,j) = 1 if
disease phenotype i is known to be associated with
miRNA j, otherwise A (i,j) = 0.

Performance evaluation
To compare the potential of RWRMTN for associating
novel miRNAs with disease phenotypes with that of
RWRMDA and RLSMDA, we applied a leave-one-out
cross-validation (LOOCV) scheme on the set of disease
phenotypes with known miRNA associations in miR2Di-
sease [45]. For each disease phenotype d, in each round
of LOOCV, we held out one known miRNA associated
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with d. The rest of the known miRNAs associated with
disease d are used as seed nodes (Sm) in the RWRMDA
method. For the RWRMTN method, this set was
enlarged by adding the target genes Sg of the miRNAs in
Sm. The held-out miRNA and the remaining miRNAs in
the miRNA networks which were not known to be asso-
ciated with d, were ranked by both RWRMTN and
RWRMDA. For RLSMDA, A (i,j) is set to 0 correspond-
ing to d and the held-out miRNA. Then, receiver operat-
ing characteristic (ROC) curves are constructed and the
area under the curve (AUC) is used to compare the
performance of both methods. The ROC curve repre-
sents the relationship between sensitivity and (1-specifi-
city), where sensitivity refers to the percentage of
miRNAs known to be associated with d that were
ranked above a particular threshold and specificity refers
to the percentage of miRNAs that were not known to be
associated with d and ranked below this threshold.
Finally, the performance of each method was summa-
rized as the average of AUC values over the entire set of
disease phenotypes in the validation set.

Results and discussion
Parameter settings
To determine the best setting for RWRMTN, we varied
the weight parameter (α) in the range {0.1, 0.3, 0.5, 0.7,
0.9} and the restart probability γ in the range [0.1, 0.9] in
steps of 0.1. For each combination of parameter values,
we only assessed the performance of RWRMTN on
mutual heterogeneous miRNA networks as the method
cannot be applied to directed heterogeneous miRNA net-
works (See Materials and Methods). Performance was
assessed as the average AUC over the set of disease
phenotypes in the disease phenotype set (See Materials
and Methods). Fig. 2a and b shows that the performance
of RWRMTN slightly increased according to the change
of the weight parameter on mutual heterogeneous miRNA
networks constructed from miRWalk (HetermiRWalkNet-

mutual) and from TargetScan (HeterTargetScanNet-mu-
tual). This indicates that disease information contained in
known disease miRNAs is still more important than that
in their target genes when prioritizing candidate disease-
associated miRNAs. In addition, optimal performance was
achieved for both networks with α = 0.9 and γ = 0.7. For
the RLSMDA method, we used the parameter settings
(ηM = ηD = 1, w = 0.9) reported in the corresponding
study [33].

Performance comparison
In this section, we compare the performance of RWRMTN
with two state-of-the-art methods. We selected RWRMDA
[15] as a representative network-based method, as we
intended to demonstrate the added value of using heteroge-
neous miRNA networks over using homogeneous miRNA
networks. Additionally we compared with RLSMDA [33], a
state-of-the-art machine learning-based method, that does
not use a network as a basis for its analysis.

Comparison between RWRMTN and RWRMDA
In a previous study [16], we demonstrated that other
homogeneous miRNA network-based methods achieve
performance similar to RWRMDA [15], a RWR-based
method. Therefore, in this study, we only compare the
prediction performance of RWRMTN on the heteroge-
neous miRNA networks with that of RWRMDA on the
homogeneous miRNA networks. More specifically, we
tested the performance of RWRMTN on the two mutual
heterogeneous miRNA networks, HetermiRWalkNet-mu-
tual and HeterTargetScanNet-mutual, and the performance
of RWRMDA on the two homogeneous miRNA networks,
HomomiRWalkNet and HomoTargetScanNet. In all experi-
ments, we varied the random walker’s restart probability γ
in a range of [0.1, 0.9] for both methods, and set the weight
parameter α of RWRMTN to 0.9. The performance of both
methods on each heterogeneous/homogeneous miRNA
network is expressed as the average AUC values over the

a b

Fig. 2 Performance of RWRMTN as a function of the algorithm parameters, using mutual heterogeneous miRNA networks. Performance is an
average of AUC values over a set of disease phenotypes collected from the miR2Disease database [45]. The restart probability γ was varied in the
range [0.1, 0.9]. The weight parameter α) was set to values in {0.1, 0.3, 0.5, 0.7, 0.9}. Results are reported for (a) HetermiRWalkNet-mutual and
(b) HeterTargetScanNet-mutual
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set of available disease phenotypes. Figure 3 shows the pre-
diction performance of the two methods on heteroge-
neous/homogeneous miRNA networks constructed from
miRWalk and TargetScan databases respectively. Analyzing
the performance of the two methods on different heteroge-
neous/homogeneous miRNAs networks, we observed that
the performance of RWRMDA on HomomiRWalkNet and
HomoTargetScanNet was respectively slightly better and
stable when the restart probability γ increased (the slopes
of regression line are respectively 0.045 and −0.006 with p
= 0.001 and p = 0.239, Fig. 3). This difference in perform-
ance response to the restart probability (increase vs. stable)
when using different networks as input can be explained by
the fact that when the restart probability is small, the ran-
dom walker is able to travel relatively far from the seed
nodes. This in turn allows for an improved exploitation of
the “disease module” principle since it tends to assign
higher scores to nodes close to the seed nodes. Therefore,
the stable performance of RWRMDA as a function of the
restart probability on homogeneous miRNA networks
suggests that disease miRNAs are relatively close or dir-
ectly connected to each other in the individual homoge-
neous miRNA networks. The increase in performance
(when varying γ) observed when using HomomiRWalkNet
suggests that disease miRNAs in this network are less
modularized than those in HomoTargetScanNet.
In contrast to the homogeneous miRNA networks, miR-

NAs connect to each other via target genes in the hetero-
geneous miRNA networks. In other words, disease
miRNAs are less modularized in these networks. Indeed,
Fig. 3 show that the performance of RWRMTN slightly
increased when the restart probability increased in both
networks (the slopes of regression lines are 0.029 and 0.004
with p = 0.004 and p = 0.011, respectively for HetermiRWal-
kNet-mutual and HeterTargetScanNet-mutual). It is also
slightly more positive on HetermiRWalkNet-mutual indi-
cating that disease miRNAs/genes in that network is less
modularized than those in HeterTargetScanNet-mutual.

Interestingly, the performance of RWRMTN on Heter-
miRWalkNet-mutual and HeterTargetScanNet-mutual is
consistently higher than that of RWRMDA on HomomiR-
WalkNet and HomoTargetScanNet (two sample t-Test, p
= 1.24 × 10−6 and 7.59 × 10−9, respectively). Average AUC
values of RWRMTN on HetermiRWalkNet-mutual and
HeterTargetScanNet-mutual are 0.819 and 0.853. Average
AUC values of RWRMDA on HomomiRWalkNet and
HomoTargetScanNet are 0.776 and 0.830. These results
suggest that using mutual biological relations between
miRNAs and their target genes helps improving the
disease miRNA prediction. In other words, information
contained in these biological relations is used less effect-
ively when it is integrated as the degree of similarity
between miRNAs in the homogeneous miRNA networks.
In addition, the “disease module” idea can be expected to
be more explicitly present in the heterogeneous miRNA
networks. This principle is generally accepted for both
miRNAs (functionally related miRNAs associate with
phenotypically similar diseases [26, 27]) and genes (func-
tionally related genes associate with phenotypically similar
diseases [52–54]). Two miRNAs in a heterogeneous
miRNA network are functionally related if they regulate
the same target genes, but conversely, we can assume that
two genes regulated by the same miRNAs can be func-
tionally related too. To illustrate this, we investigated how
many known disease genes are present as targets of
miRNAs in our heterogeneous miRNA networks. We
downloaded disease-gene associations from OMIM at the
NCBI website [55] and retrieved 4388 associations
between 3.284 disease phenotypes and 2,761 disease
genes. Figure 4a and b shows that from these disease
genes, 1,855 (~67.19%) and 2,262 (~81.93%) known
disease genes are found as target genes in the heteroge-
neous miRNA networks respectively built from miRWalk
and TargetScan. This implies that a large amount of
disease genes are regulated by miRNAs. In addition, we
investigated how many known disease miRNAs regulate

a b

Fig. 3 Performance comparison between RWRMTN and RWRMDA. The performance of each method on each heterogeneous/homogeneous
miRNA network is calculated as the average AUC values over a set of disease phenotypes collected from the miR2Disease database [45]. The
restart probability was varied from 0.1 to 0.9. The weight parameter was set to 0.1. a Comparison between RWRMTN (using HetermiRWalkNet-mutual)
and RWRMDA (using HomomiRWalkNet). b Comparison between RWRMTN (using HeterTargetScanNet-mutual) and RWRMDA (using HomoTargetScanNet)
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known disease genes in the heterogeneous miRNA
networks. Figure 4c and d shows that 92 (~77.97%) and
116 (~98.31%) out of 118 known disease miRNAs (see
Materials and Methods) regulate at least one known
disease gene in the heterogeneous miRNA networks
constructed from the miRWalk and TargetScan databases.
This indicates that a large amount of disease miRNAs regu-
late disease genes. The smaller fraction of known disease
miRNAs found in HetermiRWalkNet-mutual compared to
that in HeterTargetScanNet-mutual also indicates that dis-
ease miRNAs/genes in the former is less modularized com-
pared to those in the later. Taken together, these results
imply that disease-associated miRNAs and genes are
located closely to each other in the heterogeneous net-
works. Therefore, considering them together by using
heterogeneous miRNA networks when predicting novel
disease-associated miRNAs can be advantageous.

Comparison between RWRMTN and RLSMDA
In addition to comparing with a representative network-
based method, we also compared our method with
RLSMDA [33], a state-of-the-art machine learning-based
technique. To this end, we used the optimal set of pa-
rameters (α = 0.9 and γ = 0.7) for RWRMTN as obtained
in the previous experiment. For RLSMDA, we used the
parameter settings (ηM = ηD = 1 and w = 0.9) reported in
the corresponding study [33]. Again, we used the ROC
and AUC to compare these two methods on different da-
tabases of miRNA-target interactions. Figure 5 illustrates
that RWRMTN (average AUCs are 0.826 and 0.854 in

HetermiRWalkNet and HeterTargetScanNet respectively)
outperforms RLSMDA (average AUCs are 0.757 and 0.795
in HomomiRWalkNet and HomoTargetScanNet respect-
ively), suggesting that the explicit use of gene-miRNA in-
teractions has an added value when predicting novel
disease-related miRNAs. Comparing RWRMDA with
RLSMDA, we used the best settings for RWRMDA and
found the average AUCs of RWRMDA to be 0.789 (γ =
0.9) and 0.832 (γ = 0.3) in HomomiRWalkNet and Homo-
TargetScanNet respectively. This indicates that using func-
tional miRNA interactions in RWRMDA results in inferior
predictions compared to using miRNA-gene interactions in
RWRMTN, but these predictions still outperform RLSMDA
where no explicit network information is used.

Comparison between RWRMTN and RWRMDA, RLSMDA
using 10-fold cross-validation
In previous section, we compare the performance of
RWRMTN with that of RWRMDA and RLSMDA using
leave-one-out cross validation (LOOCV). Considering
that LOOCV is equivalent to n-fold cross validation
(where n is number of known miRNAs of a given dis-
ease), this evaluation method is flexible and can be used
to assess the prediction performance for any disease,
even for those with only two known associated miRNAs.
To show the robustness and stability of our method, we
further test it with 10-fold cross validation on the
TargetScan database. Due to this re-sampling method,
only diseases known to be associated with at least 10
miRNAs can be taken into account. Using this criterion,

a b

c d

Fig. 4 Heterogeneous miRNA networks contain known disease genes and known disease miRNAs, regulating known disease genes. a Percent of
known disease genes in HetermiRWalkNet-mutual. b Percent of known disease genes in HeterTargetScanNet-mutual. c Percent of known disease
miRNAs regulating disease genes in HetermiRWalkNet-mutual. d Percent of known disease miRNAs regulating disease genes in HeterTargetScanNet-mutual.
Known disease genes and known disease miRNAs were collected from the OMIM [47] and miR2Disease [45] databases, respectively
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only eight diseases in miR2Disease [45] were found to
be eligible for validation. Additional file 2: Figure S1
shows the performance of the three methods using their
respective optimal parameter settings (i.e., α = 0.9 and γ
= 0.7 for RWRMTN, γ = 0.7 for RWRMDA, and ηM = ηD
= 1, w = 0.9 for RLSMDA). It is obvious that RWRMTN
(AUC = 0.840) outperforms both RWRMDA (AUC =
0.792) and RLSMDA (AUC = 0.753). We additionally
used a larger disease-miRNA association database
HMDD (version 2.0 [42]), containing 57 diseases eligible
for performance assessment using 10-fold cross valid-
ation. Additional file 2: Figure S2 indicates that, again
with optimal parameter settings for each method, the
performance of RWRMTN (AUC = 0.896) is better than
that observed for both RWRMDA (AUC = 0.875) and
RLSMDA (AUC = 0.749).

Identification of novel disease-associated miRNAs
To illustrate the power of RWRMTN to identify novel
disease-associated miRNAs, we next tried to predict
newly reported disease miRNAs in the experimentally
verified disease-miRNA association HMDD database
(version 2.0 [42]). As input for this analysis, we used
known disease miRNAs as reported in the miR2Disease
database [45]. First, we selected 23 disease phenotypes
that were available in both databases. Then, for each dis-
ease phenotype, we used known associated miRNAs (as
reported in the miR2Disease database) and their target
genes as seed nodes in the HeterTargetScanNet-mutual
network. We used the optimal parameter settings identi-
fied in the previous experiments (α = 0.9 and γ = 0.7) and
ran our method to rank all remaining miRNAs in the
network. After ranking, we selected the 100 top-ranked
candidate miRNAs for each disease phenotype and checked

whether they were reported in HMDD. Table 1 shows the
results of this analysis. In total, 76 distinct novel disease
miRNAs were predicted for the 23 disease phenotypes. We
further tested per disease whether the selected 100 miRNAs
were significant enriched for miRNAs reported in HMDD
using a hypergeometric test [56]. For 18 out of the 23 dis-
ease phenotypes, we found the enrichment of the 100 pre-
dicted miRNAs for miRNAs reported in HMDD to be
statistically significant (p ≤ 0.05). The remaining highly
ranked miRNAs, for which no evidence about the associ-
ation with the considered disease phenotypes yet exists, are
candidates for further exploration in future studies (See in
Additional file 1: Table S4). For several diseases, no signifi-
cant enrichment of disease related miRNAs could be found.
As Table 1 illustrates, this is due to the very small
number of miRNAs that were associated with these
diseases in the HMDD database. However, our top-
ranked predictions contained miRNAs that have pre-
viously been associated with a disease, even though
these associations were not present in HMDD. For
example, hsa-miR-137 regulates the expression of the
HTT gene, whose mutation leads to Huntington’s dis-
ease [57]. hsa-miR-15a and hsa-miR-27a are involved
in human adipocyte differentiation and obesity [58].
Nicholas et al. [59] found that exposure to maternal
obesity resulted in increased hepatic hsa-miR-29b.
While investigating kidney tissue, which is known to
be invoked in the etiology of essential hypertension,
hsa-miR-181a and hsa-let-7c were found to be differ-
entially expressed between kidneys of 15 untreated
hypertensive and 7 normotensive white male subjects
[60]. hsa-miR-181b and hsa-miR-181d were found to
be differentially expressed between invasive and non-
invasive non-functional pituitary adenoma [61]. Finally,

a b

Fig. 5 Comparison between RWRMTN and RLSMDA. The set of disease phenotypes and their associated miRNAs were collected from the miR2Disease
database [45]. a MiRNA networks were constructed using the miRWalk database. b MiRNA networks were constructed using TargetScan
database. Weight parameter α and restart probability γ were set to the optimal settings (α = 0.9 and γ = 0.7) for RWRMTN. For RLSMDA, we used the
parameter settings (ηM = ηD = 1 and w = 0.9) reported in the study [33]
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Table 1 MiRNAs present in the top-100 ranked candidate miRNAs that are known to be associated with diseases, as reported in the
HMDD database. P-value is the result of the hypergeometric enrichment test

MIM ID Disease Overlap Total in
HMDD

p-value Known disease miRNAs

150699 leiomyoma 2 3 0.012 hsa-miR-106b, hsa-miR-93

109800 bladder cancer 6 27 0.006 hsa-miR-17, hsa-miR-182, hsa-miR-200b, hsa-miR-200c, hsa-miR-20a, hsa-miR-27a

143100 huntington disease 1 7 0.376 hsa-miR-200c

601665 obesity 2 7 0.091 hsa-miR-17, hsa-miR-30e

145500 hypertension 3 15 0.069 hsa-let-7e, hsa-miR-17, hsa-miR-20a

600634 pituitary adenoma 1 14 0.065 hsa-miR-107

133239 esophageal cancer 8 51 0.017 hsa-let-7a, hsa-let-7b, hsa-let-7c, hsa-miR-19a, hsa-miR-200c, hsa-miR-203, hsa-miR-29c,
hsa-miR-98

181500 schizophrenia 17 29 2.19×10−13 hsa-miR-106b, hsa-miR-137, hsa-miR-15a, hsa-miR-15b, hsa-miR-17, hsa-miR-181b, hsa-miR-195,
hsa-miR-20b, hsa-miR-26b, hsa-miR-29a, hsa-miR-29b, hsa-miR-29c, hsa-miR-30a, hsa-miR-30b,
hsa-miR-30d, hsa-miR-30e, hsa-miR-9

603956 cervical cancer 2 3 0.023 hsa-miR-20a, hsa-miR-424

155601 melanoma 34 130 8.97×10−14 hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7 g, hsa-let-7i, hsa-miR-106a, hsa-miR-106b,
hsa-miR-137, hsa-miR-15a, hsa-miR-15b, hsa-miR-16, hsa-miR-17, hsa-miR-181a, hsa-miR-182,
hsa-miR-195, hsa-miR-196a, hsa-miR-19a, hsa-miR-19b, hsa-miR-200b, hsa-miR-200c,
hsa-miR-20a, hsa-miR-20b, hsa-miR-218, hsa-miR-23b, hsa-miR-27b, hsa-miR-30a,
hsa-miR-30b, hsa-miR-30d, hsa-miR-30e, hsa-miR-429, hsa-miR-506, hsa-miR-9, hsa-miR-93

151400 leukemia 6 26 0.009 hsa-miR-17, hsa-miR-181a, hsa-miR-19a, hsa-miR-19b, hsa-miR-20a, hsa-miR-27a

268210 rhabdomyosarcoma 2 7 0.112 hsa-miR-106a, hsa-miR-29a

104300 alzheimer disease 10 16 9.36×10−8 hsa-miR-106b, hsa-miR-124, hsa-miR-125b, hsa-miR-128, hsa-miR-137, hsa-miR-17, hsa-miR-181c,
hsa-miR-195, hsa-miR-20a, hsa-miR-9

256700 neuroblastoma 10 29 1.23×10−5 hsa-miR-106b, hsa-miR-124, hsa-miR-128, hsa-miR-19a, hsa-miR-19b, hsa-miR-20a, hsa-miR-27b,
hsa-miR-340, hsa-miR-9, hsa-miR-93

113970 burkitt lymphoma 5 10 2.05×10−4 hsa-miR-17, hsa-miR-19a, hsa-miR-19b, hsa-miR-20a, hsa-miR-93

114500 colorectal cancer 26 120 3.04×10−8 hsa-let-7b, hsa-let-7c, hsa-let-7e, hsa-miR-106a, hsa-miR-137, hsa-miR-17, hsa-miR-181a,
hsa-miR-181b, hsa-miR-182, hsa-miR-195, hsa-miR-19a, hsa-miR-19b, hsa-miR-200b, hsa-miR-200c,
hsa-miR-20a, hsa-miR-218, hsa-miR-23a, hsa-miR-26a, hsa-miR-26b, hsa-miR-27b, hsa-miR-29a,
hsa-miR-340, hsa-miR-497, hsa-miR-9, hsa-miR-93, hsa-miR-96

260350 pancreatic cancer 23 89 6.42×10−9 hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7 g, hsa-let-7i, hsa-miR-106a,
hsa-miR-128, hsa-miR-15a, hsa-miR-15b, hsa-miR-17, hsa-miR-181b, hsa-miR-182, hsa-miR-200a,
hsa-miR-200c, hsa-miR-20a, hsa-miR-23a, hsa-miR-26a, hsa-miR-27a, hsa-miR-30c, hsa-miR-429,
hsa-miR-96

211980 lung cancer 26 96 5.79×10−9 hsa-let-7i, hsa-miR-106a, hsa-miR-181a, hsa-miR-181b, hsa-miR-181c, hsa-miR-182, hsa-miR-19b,
hsa-miR-200b, hsa-miR-200c, hsa-miR-206, hsa-miR-23a, hsa-miR-25, hsa-miR-27b, hsa-miR-301a,
hsa-miR-30a, hsa-miR-30b, hsa-miR-30c, hsa-miR-30d, hsa-miR-30e, hsa-miR-32, hsa-miR-497,
hsa-miR-9, hsa-miR-92a, hsa-miR-93, hsa-miR-96, hsa-miR-98

168600 parkinson disease 7 24 9.43×10−4 hsa-miR-19b, hsa-miR-29a, hsa-miR-29b, hsa-miR-29c, hsa-miR-30a, hsa-miR-30b, hsa-miR-30c

114480 breast cancer 41 170 1.96×10−13 hsa-let-7b, hsa-let-7c, hsa-let-7d, hsa-let-7e, hsa-let-7f, hsa-let-7 g, hsa-let-7i, hsa-miR-1,
hsa-miR-106b, hsa-miR-137, hsa-miR-15a, hsa-miR-16, hsa-miR-181a, hsa-miR-181b, hsa-miR-182,
hsa-miR-195, hsa-miR-19a, hsa-miR-19b, hsa-miR-202, hsa-miR-20b, hsa-miR-23a, hsa-miR-23b,
hsa-miR-27b, hsa-miR-29a, hsa-miR-29b, hsa-miR-29c, hsa-miR-302a, hsa-miR-302b, hsa-miR-302c,
hsa-miR-302d, hsa-miR-30a, hsa-miR-30b, hsa-miR-30c, hsa-miR-30d, hsa-miR-340, hsa-miR-497,
hsa-miR-519d, hsa-miR-520b, hsa-miR-9, hsa-miR-93, hsa-miR-96

236000 lymphoma 14 47 5.64×10−7 hsa-miR-124, hsa-miR-133b, hsa-miR-15a, hsa-miR-17, hsa-miR-181a, hsa-miR-19a, hsa-miR-19b,
hsa-miR-200b, hsa-miR-200c, hsa-miR-20a, hsa-miR-20b, hsa-miR-218, hsa-miR-26a, hsa-miR-29c

155255 medulloblastoma 9 57 0.013 hsa-miR-106a, hsa-miR-17, hsa-miR-181b, hsa-miR-182, hsa-miR-19a, hsa-miR-19b, hsa-miR-20a,
hsa-miR-30a, hsa-miR-96

137215 gastric cancer 27 123 3.56×10−9 hsa-let-7f, hsa-let-7 g, hsa-miR-106a, hsa-miR-107, hsa-miR-124, hsa-miR-130a, hsa-miR-17,
hsa-miR-181a, hsa-miR-181b, hsa-miR-182, hsa-miR-195, hsa-miR-200b, hsa-miR-200c,
hsa-miR-20a, hsa-miR-27a, hsa-miR-27b, hsa-miR-29a, hsa-miR-30b, hsa-miR-30c, hsa-miR-340,
hsa-miR-372,
hsa-miR-373, hsa-miR-429, hsa-miR-497, hsa-miR-503, hsa-miR-519a, hsa-miR-9
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hsa-let-7c-5p facilitated enterovirus 71 replication through
viral subversion of cell signaling in rhabdomyosarcoma
cells [62].

Conclusions
MiRNAs are known to have a strong impact on biological
processes and play a pathogenic role in human diseases [63].
Therefore, the identification of novel disease-associated
miRNAs is an essential part of biomedical research studying
the underlying mechanisms of human diseases. Here we
proposed a novel approach using a random walk with restart-
based algorithm applied on mutual heterogeneous miRNA
networks (RWRMTN), where contrary to previous efforts,
miRNA-target gene relations were considered as bidirectional
interactions, and the network used as input explicitly incorpo-
rates miRNA-target interactions. Experimental results dem-
onstrate that our method achieves higher performance than a
state-of-the-art network-based method (RWRMDA) that uses
homogeneous miRNA networks, only containing miRNA
nodes. We motivated that the superior performance of the
proposed method can be partially attributed to the im-
proved exploitation of the “disease module” principle. This
concept is explicitly present in the heterogeneous miRNA
networks used as input for our analysis, and we showed
that a large amount of disease-associated miRNAs and dis-
ease related genes mutually interact with each other. Add-
itionally, our method outperformed RLSMDA [33], a state-
of-the-art machine learning-based method, confirming the
added value of using network information when predicting
novel disease related miRNAs. MiRNA-target interaction
data predicted by in silico prediction tools typically have a
high rate of false positive and false negative results. There-
fore, we applied our method to two databases containing
respectively predicted and experimentally validated
miRNAs-target interactions. We could show that our
method can achieve stable and high performance for both
experimentally validated and predicted interaction data.
Finally, using RWRMTN, we identified 76 miRNAs
which were reported to be associated with 23 disease
phenotypes in HMDD, an recent disease-miRNA asso-
ciation database.
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