1,761 research outputs found

    On Class Diagrams, Crossings and Metrics

    Get PDF
    As a standardized software engineering diagram, the UML class diagram provides various information on the static structure of views on software while design, implementation and maintenance phase. This talk gives an overview on drawing UML class diagrams in hierarchical fashion. Therefore, common elements of class diagrams are introduced and aesthetic rules for drawing UML class diagrams are given. These rules are based on four disciplines involved in the reading process of diagrams. After a brief introduction to our drawing algorithm, an extensive extension of the well-known Sugiyama algorithm, two details are highlighted: A new crossing reduction algorithm is presented and compared to existing ones and issues on measuring the quality of a layout are discussed

    A Collaborative Multi-Touch UML Design Tool

    Full text link
    The design and development of software projects is usually done in teams today. Collaborative systems based on multi-touch walls or large table-top screens could support these highly interactive tasks. We present a novel collaborative design tool which allows several developers to jointly create complex UML (Unified Modeling Language) diagrams. We have developed new algorithms to recognize the gestures drawn by the users, to create the respective elements of the diagram, to adjust the edges between classes, and to improve the layout of the classes automatically. Auxiliary lines provide the user with means to align classes precisely so a more consistent layout is achieved. Export functionality for XML and Java code skeletons completes the application; the UML diagram can thus be used in further steps of the software design process. User evaluations confirm considerable benefits of our proposed system

    05191 Abstracts Collection -- Graph Drawing

    Get PDF
    From 08.05.05 to 13.05.05, the Dagstuhl Seminar 05191 ``Graph Drawing\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Extending constrained hierarchical layout for drawing UML activity diagrams

    Get PDF
    Ankara : The Department of Computer Engineering and Institute Engineering and Science of Bilkent University, 2002.Thesis (Master's) -- Bilkent University, 2002.Includes bibliographical references leaves 48-51.While modeling an object-oriented software, a visual language called Unified Modeling Language (UML) may be used. UML is a language and notation for specification, construction, visualization, and documentation of models of software systems. It consists of a variety of diagrams including class diagrams and activity diagrams. Graph layout has become an important area of research in Computer Science for the last couple of decades. There is a wide range of applications for graph layout including data structures, databases, software engineering, VLSI technology, electrical engineering, production planning, chemistry, and biology. Diagrams are more effective means of expressing relational information and automatic graph layout makes them to be more comprehensible. In other words, with graph layout techniques, the readability and the comprehensibility of the graphs increases and the complexity is reduced. UML diagrams are no exception. In this thesis, we present graph layout algorithms for UML activity diagrams based on constrained hierarchical layout. We use an existing implementation of constrained hierarchical layout to draw UML activity diagrams. We analyze and present the results of these new layout algorithms.Yüksel, H MehmetM.S

    A framework for the analysis and evaluation of enterprise models

    Get PDF
    Bibliography: leaves 264-288.The purpose of this study is the development and validation of a comprehensive framework for the analysis and evaluation of enterprise models. The study starts with an extensive literature review of modelling concepts and an overview of the various reference disciplines concerned with enterprise modelling. This overview is more extensive than usual in order to accommodate readers from different backgrounds. The proposed framework is based on the distinction between the syntactic, semantic and pragmatic model aspects and populated with evaluation criteria drawn from an extensive literature survey. In order to operationalize and empirically validate the framework, an exhaustive survey of enterprise models was conducted. From this survey, an XML database of more than twenty relatively large, publicly available enterprise models was constructed. A strong emphasis was placed on the interdisciplinary nature of this database and models were drawn from ontology research, linguistics, analysis patterns as well as the traditional fields of data modelling, data warehousing and enterprise systems. The resultant database forms the test bed for the detailed framework-based analysis and its public availability should constitute a useful contribution to the modelling research community. The bulk of the research is dedicated to implementing and validating specific analysis techniques to quantify the various model evaluation criteria of the framework. The aim for each of the analysis techniques is that it can, where possible, be automated and generalised to other modelling domains. The syntactic measures and analysis techniques originate largely from the disciplines of systems engineering, graph theory and computer science. Various metrics to measure model hierarchy, architecture and complexity are tested and discussed. It is found that many are not particularly useful or valid for enterprise models. Hence some new measures are proposed to assist with model visualization and an original "model signature" consisting of three key metrics is proposed.Perhaps the most significant contribution ofthe research lies in the development and validation of a significant number of semantic analysis techniques, drawing heavily on current developments in lexicography, linguistics and ontology research. Some novel and interesting techniques are proposed to measure, inter alia, domain coverage, model genericity, quality of documentation, perspicuity and model similarity. Especially model similarity is explored in depth by means of various similarity and clustering algorithms as well as ways to visualize the similarity between models. Finally, a number of pragmatic analyses techniques are applied to the models. These include face validity, degree of use, authority of model author, availability, cost, flexibility, adaptability, model currency, maturity and degree of support. This analysis relies mostly on the searching for and ranking of certain specific information details, often involving a degree of subjective interpretation, although more specific quantitative procedures are suggested for some of the criteria. To aid future researchers, a separate chapter lists some promising analysis techniques that were investigated but found to be problematic from methodological perspective. More interestingly, this chapter also presents a very strong conceptual case on how the proposed framework and the analysis techniques associated vrith its various criteria can be applied to many other information systems research areas. The case is presented on the grounds of the underlying isomorphism between the various research areas and illustrated by suggesting the application of the framework to evaluate web sites, algorithms, software applications, programming languages, system development methodologies and user interfaces

    User Interfaces and Difference Visualizations for Alternatives

    Get PDF
    Designers often create multiple iterations to evaluate alternatives. Todays computer-based tools do not support such easy exploration of a design space, despite the fact that such support has been advocated. This dissertation is centered on this. I begin by investigating the effectiveness of various forms of difference visualizations and support for merging changes within a system targeted at diagrams with node and edge attributes. I evaluated the benefits of the introduced difference visualization techniques in two user studies. I found that the basic side-by-side juxtaposition visualization was not effective and also not well received. For comparing diagrams with matching node positions, participants preferred the side-by-side option with a difference layer. For diagrams with non-matching positions animation was beneficial, but the combination with a difference layer was preferred. Thus, the difference layer technique was useful and a good complement to animation. I continue by investigating if explicit support for design alternatives better supports exploration and creativity in a generative design system. To investigate the new techniques to better support exploration, I built a new system that supports parallel exploration of alternative designs and generation of new structural combinations. I investigate the usefulness of my prototype in two user studies and interviews. The results and feedback suggest and confirm that supporting design alternatives explicitly enables designers to work more creatively. Generative models are often represented as DAGs (directed acyclic graphs) in a dataflow programming environment. Existing approaches to compare such DAGs do not generalize to multiple alternatives. Informed by and building on the first part of my dissertation, I introduce a novel user interface that enables visual differencing and editing alternative graphsspecifically more than two alternatives simultaneously, something that has not been presented before. I also explore multi-monitor support to demonstrate that the difference visualization technique scales well to up to 18 alternatives. The novel jamming space feature makes organizing alternatives on a 23 monitor system easier. To investigate the usability of the new difference visualization method I conducted an exploratory interview with three expert designers. The received comments confirmed that it meets their design goals

    A Taxonomy of Workflow Management Systems for Grid Computing

    Full text link
    With the advent of Grid and application technologies, scientists and engineers are building more and more complex applications to manage and process large data sets, and execute scientific experiments on distributed resources. Such application scenarios require means for composing and executing complex workflows. Therefore, many efforts have been made towards the development of workflow management systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various approaches for building and executing workflows on Grids. We also survey several representative Grid workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.Comment: 29 pages, 15 figure

    Perceptual organization in user-generated graph layouts

    Get PDF
    Many graph layout algorithms optimize visual characteristics to achieve useful representations. Implicitly, their goal is to create visual representations that are more intuitive to human observers. In this paper, we asked users to explicitly manipulate nodes in a network diagram to create layouts that they felt best captured the relationships in the data. This allowed us to measure organizational behavior directly, allowing us to evaluate the perceptual importance of particular visual features, such as edge crossings and edge-lengths uniformity. We also manipulated the interior structure of the node relationships by designing data sets that contained clusters, that is, sets of nodes that are strongly interconnected. By varying the degree to which these clusters were ldquomaskedrdquo by extraneous edges we were able to measure observerspsila sensitivity to the existence of clusters and how they revealed them in the network diagram. Based on these measurements we found that observers are able to recover cluster structure, that the distance between clusters is inversely related to the strength of the clustering, and that users exhibit the tendency to use edges to visually delineate perceptual groups. These results demonstrate the role of perceptual organization in representing graph data and provide concrete recommendations for graph layout algorithm

    Model inference for spreadsheets

    Get PDF
    Many errors in spreadsheet formulas can be avoided if spreadsheets are built automati- cally from higher-level models that can encode and enforce consistency constraints in the generated spreadsheets. Employing this strategy for legacy spreadsheets is dificult, because the model has to be reverse engineered from an existing spreadsheet and existing data must be transferred into the new model-generated spreadsheet. We have developed and implemented a technique that automatically infers relational schemas from spreadsheets. This technique uses particularities from the spreadsheet realm to create better schemas. We have evaluated this technique in two ways: First, we have demonstrated its appli- cability by using it on a set of real-world spreadsheets. Second, we have run an empirical study with users. The study has shown that the results produced by our technique are comparable to the ones developed by experts starting from the same (legacy) spreadsheet data. Although relational schemas are very useful to model data, they do not t well spreadsheets as they do not allow to express layout. Thus, we have also introduced a mapping between relational schemas and ClassSheets. A ClassSheet controls further changes to the spreadsheet and safeguards it against a large class of formula errors. The developed tool is a contribution to spreadsheet (reverse) engineering, because it lls an important gap and allows a promising design method (ClassSheets) to be applied to a huge collection of legacy spreadsheets with minimal effort.We would like to thank Orlando Belo for his help on running and analyzing the empirical study. We would also like to thank Paulo Azevedo for his help in conducting the statistical analysis of our empirical study. We would also like to thank the anonymous reviewers for their suggestions which helped us to improve the paper. This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundacao para a Ciencia e a Tecnologia (Portuguese Foundation for Science and Technology) within project FCOMP-01-0124-FEDER-010048. The first author was also supported by FCT grant SFRH/BPD/73358/2010
    • …
    corecore