
USER INTERFACES AND DIFFERENCE VISUALIZATIONS

 FOR ALTERNATIVES

LOUTFOUZ ZAMAN

A DISSERTATION SUBMITTED TO
THE FACULTY OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

GRADUATE PROGRAMME IN COMPUTER SCIENCE & ENGINEERING
YORK UNIVERSITY

TORONTO, ONTARIO

JUNE 2015

© LOUTFOUZ ZAMAN, 2015

 ii

ABSTRACT

Designers often create multiple iterations to evaluate alternatives. Today’s computer-

based tools do not support such easy exploration of a design space, despite the fact that

such support has been advocated. The contributions of this dissertation are centered on

this.

I begin by investigating the effectiveness of various forms of difference visualizations

and support for merging changes within a system targeted at diagrams with node and

edge attributes. I evaluated the benefits of the introduced difference visualization

techniques in two user studies. I found that the basic side-by-side juxtaposition

visualization was not effective and also not well received. For comparing diagrams with

matching node positions, participants preferred the side-by-side option with a difference

layer. For diagrams with non-matching positions animation was beneficial, but the

combination with a difference layer was preferred. Thus, the difference layer technique

was useful and a good complement to animation.

I continue by investigating if explicit support for design alternatives better supports

exploration and creativity in a generative design system. Generative design—a design

method in which the output is generated by a set of rules or an algorithm—builds on

computer-aided design systems that provide tools to vary designs beyond direct

manipulation of specific design elements. To investigate the new techniques to better

support exploration, I built a new system that supports parallel exploration of alternative

designs and generation of new structural combinations. I investigate the usefulness of my

prototype in two user studies and interviews. The results and feedback suggest and

confirm that supporting design alternatives explicitly enables designers to work more

creatively.

Generative models are often represented as DAGs (directed acyclic graphs) in a

dataflow programming environment. Existing approaches to compare such DAGs do not

generalize to multiple alternatives. Informed by and building on the first part of my

 iii

dissertation, I introduce a novel user interface that enables visual differencing and editing

alternative graphs—specifically more than two alternatives simultaneously, something

that has not been presented before. I also explore multi-monitor support to demonstrate

that the difference visualization technique scales well to up to 18 alternatives. The novel

jamming space feature makes organizing alternatives on a 2×3 monitor system easier. To

investigate the usability of the new difference visualization method I conducted an

exploratory interview with three expert designers. The received comments confirmed that

it meets their design goals.

 iv

ACKNOWLEDGEMENTS

I would like to express my sincerest gratitude to my supervisor, Wolfgang Stuerzlinger,

for his knowledge, guidance and outstanding commitment to support and steer me away

from trouble until the end of my journey as a PhD student. His generous funding though

GRAND NCE and NSERC grants made this research possible. I’m also very thankful for

him giving me an opportunity to supervise three international undergraduate student

interns. I also appreciate him to successfully nominate me for a student volunteer at CHI

2015 and to serve on the program committee of DChanges 2015. I’m also very thankful

to him for a granting me the exclusive access to the beautiful latest Mac Pro workstation

with a 2×3 multi-monitor setup throughout the final year of my studies. Also, I would

like to thank him for all other favours, which I likely forgot to mention, as there have

been far too many throughout the years and it’s hard to keep track of them all.

I would like to thank Vassilios Tzerpos and Burton Ma for taking time from their

busy schedule to serve on my supervisory committee, read my reports and my

dissertation, and to provide valuable feedback. I would like to thank Jia Xu, Burton Ma,

David Gelb and Ramesh Krishnamurti for taking time from their busy schedule to read

my dissertation, provide feedback, and serve on my examination committee on very short

notice.

I would like to thank Ashish Kalra and Christian Neugebauer for their outstanding

dedication to their work as interns. I would like to thank Robert Woodbury and Michael

Terry for their knowledge, guidance and valuable feedback on GEM-NI. I would also like

to thank Robert Woodbury for his invaluable help with organizing the workshops and for

ranking the quality of the participants’ designs. I would like to thank Brady Peters for

organizing the workshop at the University of Toronto with his students and for ranking

the quality of their designs. I would like to thank David Gelb for ranking these designs as

well. Thanks to Naghmi Shireen and Maher Elkhaldi for travelling all the way from

 v

Vancouver to give me feedback on GEM-NI. Also I would like to thank them for their

contributions towards GEM-NI and help with running the workshop at Simon Fraser

University. Thanks to Maher Elkhaldi for his invaluable assistance with conducting

lengthy in-depth interviews after the workshop. Thanks to Jeffrey Guenther, Siniša

Kolarić and Halil Erhan for their insightful feedback.

Thanks to Scott MacKenzie for encouraging me to publish the research that I did as a

project for his class. Thanks to his expertise I learned a lot about writing an HCI paper

through multiple iterations of editing our paper. Thanks also to him for funding my visit

to the conference to present this paper. Thanks to Dmitri Shuralyov for his help with

setting up the input devices for a 3D UI evaluation experiment. Thanks to Ouma Jaipaul

Gill for her guidance with administrative procedures, and Susan Cameron for ensuring I

received reimbursement for conference, travel and user study expenses as soon as

possible. Thanks to Foad Hamidi, Steven Castellucci, Robert Teather for their

constructive feedback on my research throughout the years. Thanks to Jaroslaw Szlichta

for opening up the world of adventure board sports to me on land and on water, which

diluted my unhealthy sedentary PhD life with these very demanding, exciting, mood

lifting, therapeutic and rewarding activities.

Finally, and most importantly, I would like to acknowledge the support of my family.

Thanks to my wife Salma, for continuous encouragement and support no matter what.

Thanks to my parents Marina and Asad for their support.

This dissertation would not have been possible without the contributions from all of

these people mentioned above.

 vi

DISSEMINATION OF THIS DISSERTATION

The following chapters of this dissertation have been previously published as peer-
reviewed papers:

Chapter 3: Zaman, L., Kalra, A., and Stuerzlinger, W. 2011. The effect of animation,
dual view, difference layers, and relative re-layout in hierarchical diagram
differencing. In Proceedings of Graphics Interface 2011 (GI '11).
Canadian Human-Computer Communications Society, School of
Computer Science, University of Waterloo, Waterloo, Ontario, Canada,
183-190.

Chapter 4: Zaman, L., Stuerzlinger W., Woodbury R., Neugebauer C., Elkhaldi M.,

Shireen N., Terry M., 2015. GEM-NI: A system for creating and
managing alternatives in generative design, In Proceedings of the 33rd
Annual ACM Conference on Human Factors in Computing Systems – CHI
’15, pages 1201–1210, ACM, New York, NY, USA.

The following chapter is currently in preparation:

Chapter 5: Zaman, L., Stuerzlinger W., Neugebauer C., (in preparation), MACE: A

New Interface for Comparing and Editing of Multiple Alternatives.

Additionally, the following extended abstract is based on this work:

Zaman, L., Kalra, A., and Stuerzlinger, W. 2011. DARLS: differencing and merging
diagrams using dual view, animation, re-layout, layers and a storyboard. CHI '11
Extended Abstracts on Human Factors in Computing Systems (CHI EA '11). ACM, New
York, NY, USA, 1657-1662.

Two more journal articles that are currently in preparation:

Zaman, L., Stuerzlinger W., Woodbury R., Neugebauer C., Elkhaldi M., Shireen N.,
Terry M., Peters B., (in preparation), Evaluation of GEM-NI: A system for creating and
managing alternatives in generative design.

Woodbury R., Elkhaldi M., Erhan H., Guenther J., Kolaric S., Sanchez R., Shaw C.,
Shireen N., Stuerzlinger W., Zaman L., (in preparation), Interacting with Alternatives:
Survey and Synthesis.

 vii

TABLE OF CONTENTS	
Abstract ... ii	

Acknowledgements .. iv	

Dissemination of This Dissertation .. vi	

Table of Contents .. vii	

List of Tables .. xii	

List of Figures .. xiii	

Chapter 1	 Introduction ... 1	

1.1	 Objectives ... 9	

1.2	 Contributions .. 12	

1.3	 Outline .. 14	

Chapter 2	 Related Work .. 16	

2.1	 Difference and History Visualization for Graphs ... 16	

2.1.1	 Mental Map ... 16	

2.1.2	 Difference Map ... 17	

2.1.3	 Static Techniques for Comparison .. 18	

2.1.4	 Animation & Small Multiples ... 21	

2.1.5	 Techniques to Access Versions .. 24	

2.1.6	 Generic and UML Diagram Differencing and Merging 25	

2.2	 Graphical Operation History .. 26	

2.3	 Design Space Exploration .. 27	

2.4	 Interacting with Alternatives .. 29	

2.5	 Multi-Monitor User Interfaces .. 31	

Chapter 3	 The Effect of Animation, Dual View, Difference Layers, and Relative

Re-Layout in Hierarchical Diagram Differencing .. 34	

 viii

3.1	 Motivation .. 34	

3.2	 The DARLS System .. 35	

3.2.1	 Accessing Versions and Navigating the Views .. 35	

3.2.2	 The Difference Layer .. 36	

3.2.3	 Version Merging using Selection .. 37	

3.2.4	 Animation and Other Techniques ... 37	

3.2.5	 Relative Graph Re-Layout .. 38	

3.2.6	 Differencing UML Class Diagrams .. 40	

3.3	 User Studies .. 40	

3.3.1	 The Diagrams .. 41	

3.3.2	 Statistical Models .. 42	

3.3.3	 Participants .. 43	

3.3.4	 Apparatus .. 43	

3.3.5	 Pilot Study ... 43	

3.3.6	 User Study I .. 44	

3.3.6.1	 Experimental Design .. 44	

3.3.6.2	 Procedure ... 44	

3.3.6.3	 Results .. 46	

3.3.6.4	 Feedback from Participants .. 48	

3.3.6.5	 Discussion .. 48	

3.3.7	 User Study II ... 49	

3.3.7.1	 Experimental Design .. 50	

3.3.7.2	 Procedure ... 50	

3.3.7.3	 Results .. 51	

3.3.7.4	 Feedback from Participants .. 52	

3.3.7.5	 Discussion .. 53	

3.3.8	 Overall Discussion .. 53	

 ix

3.4	 Summary ... 54	

Chapter 4	 GEM-NI: A System For Creating and Managing Alternatives In Generative

Design 56	

4.1	 GEM-NI .. 57	

4.1.1	 Parallel Editing .. 59	

4.1.2	 Local and Global Undo ... 60	

4.1.3	 Selective Merging ... 61	

4.1.4	 Creating Alternatives .. 64	

4.1.4.1	 Branches ... 65	

4.1.4.2	 Resurrection from History ... 66	

4.1.4.3	 Design Gallery ... 66	

4.2	 Evaluating GEM-NI ... 73	

4.3	 User Study I .. 74	

4.3.1	 Participants .. 74	

4.3.2	 Apparatus and Procedure .. 75	

4.3.3	 The Workshop ... 75	

4.3.3.1	 Results .. 76	

4.3.3.2	 Results of the CSI Questionnaire and Discussion 77	

4.3.4	 In-Depth Interviews .. 78	

4.4	 Discussion ... 80	

4.5	 User Study II ... 81	

4.5.1	 Participants .. 82	

4.5.2	 Apparatus .. 83	

4.5.3	 Procedure .. 83	

4.5.3.1	 L-system ... 84	

4.5.4	 Results ... 85	

4.5.5	 Discussion ... 90	

 x

4.5.5.1	 Results of the CSI Questionnaire ... 93	

4.5.5.2	 Freeform Feedback .. 95	

4.5.5.3	 Design Quality ... 96	

4.6	 Overall Discussion .. 98	

4.7	 Summary ... 100	

Chapter 5	 MACE: A New Interface for Comparing and Editing of Multiple Alternatives

 102	

5.1	 MACE ... 103	

5.1.1	 Design Motivation .. 103	

5.1.2	 Mechanisms to Facilitate Comparison of Alternatives 105	

5.1.3	 Difference Visualization ... 106	

5.1.3.1	 Network View .. 107	

5.1.3.2	 Node-focused Difference Visualization ... 113	

5.1.3.3	 Parameter View .. 113	

5.1.3.4	 Output View ... 113	

5.1.3.5	 Recursive Group Node Difference Visualization 114	

5.1.4	 Editing Alternatives in Diff Mode .. 119	

5.1.4.1	 Autosandboxing ... 119	

5.1.4.2	 Reveal-To-Edit ... 121	

5.1.4.3	 Parameter Synching ... 121	

5.2	 Multi-Monitor Support ... 122	

5.2.1	 Managing Alternatives in Multi-Monitor Environment 123	

5.2.2	 Jamming Spaces .. 124	

5.2.3	 Limitations .. 124	

5.3	 Implementation ... 125	

5.4	 Discussion ... 125	

5.5	 Summary ... 129	

 xi

Chapter 6	 Additional Discussion ... 131	

6.1	 Parallel Exploration of Alternatives in GEM-NI .. 131	

6.2	 GEM-NI as a Subjunctive Interface .. 134	

6.3	 Revision Control ... 134	

6.4	 Guidelines for Re-implementation: .. 134	

Chapter 7	 Conclusions ... 138	

7.1	 Generalization of the Introduced Approaches .. 140	

7.2	 Limitations and Future Work ... 141	

7.2.1	 DARLS ... 141	

7.2.2	 GEM-NI .. 142	

7.2.3	 MACE ... 142	

References ... 144	

Appendix A	 Version Pairs of a Course Prerequisites Diagram Used in the DARLS

User Studies 154	

Most Frequent False Negatives in User Study I .. 154	

Optimal Layout Heuristics ... 155	

Version Pair Summary ... 156	

Optimal Layout Snapshots ... 157	

Incremental Layout Snapshots ... 163	

Appendix B	 Noteworthy Designs of the Workshop Participants with Difference

Visualizations 169	

 xii

LIST OF TABLES

Table 4-1. User Study I: Average results from first task using NodeBox (top); second task

using GEM-NI (bottom). ... 77	

Table 4-2. Summary of number of created alternatives with NodeBox (NDB – task 1) and

GEM-NI (GMN - task 2). The larger of the two results per participant is highlighted in

red. .. 87	

Table 4-3. Summary of different methods for creating alternatives participants employed

in GEM-NI in task 2. A ‘*’ designates that the participant used the feature but did not

create any alternatives with it. Data for participant 10 indicates the minimum number of

alternatives created based on the data recorded before a logging failure. 88	

Table 4-4. Total number of revisited alternatives by participant. 88	

Table 4-5. Summary of other features employed by participants in GEM-NI in task 2.

Available data for participant 10 indicates the minimum number of times that the feature

was used based on the data recorded before the logging failure. 89	

Table 4-6. User Study II: Average results from first task using NodeBox (top); second

task using GEM-NI (bottom). ... 93	

Table A-1. Most frequent false negative nodes. ... 154	

Table A-2. Most frequent false negative edges. ... 154	

Table A-3. Summary of optimal layouter heuristics that were used during the User Study

I. .. 155	

Table A-4. Version Pair Summary. ... 156	

 xiii

LIST OF FIGURES

Figure 1-1. An example of a sketch provided by http://www.idsketching.com. 3	

Figure 1-2. Conjectural sketches created using an existing CAD tool, http://rocker-

lange.com. ... 6	

Figure 1-3. An example of a design created in Grasshopper 3D provided by

http://digitalsubstance.wordpress.com. ... 9	

Figure 3-1. DARLS showing two versions of a diagram, which visualizes course pre-

requisites for an undergraduate computer science program. The visualization shows a

difference layer and uses the relative optimal re-layout. .. 34	

Figure 3-2. The state of the diagrams after the reject operation in Figure 1 is invoked. .. 37	

Figure 3-3. (a) Incremental layout, (b) Optimal layout. ... 39	

Figure 3-4. Differencing UML class diagrams. .. 40	

Figure 3-5. Mean time in seconds and error rate for the techniques in User Study I. Error

bars: ±1 SE. ... 47	

Figure 3-6. Mean time in seconds and error rate for the techniques in User Study II. Error

bars: ±1 SE. ... 51	

Figure 3-7. Participants’ ranking of the differencing techniques in User Study I (left),

User Study II (right). Error bars: ±1 SE. ... 52	

Figure 4-1. GEM-NI enables users to work with alternative generative designs

simultaneously. Specifically, GEM-NI provides tools to manage the set of alternatives

affected by edit operations, post-hoc merging of (parts of) alternatives, and several ways

to create new alternatives, such as resurrection of past states with full undo lineage

duplication or selection from an enhanced design gallery implementation. The leftmost

alternative is the original design and is active, the center one is passive, and the rightmost

one is idle. ... 56	

Figure 4-2. The original interface of NodeBox 3. ... 58	

 xiv

Figure 4-3. The alternative on the right is sandboxed. The first two alternatives are

therefore idle. .. 60	

Figure 4-4. Merging and parallel editing: (a) Initial state with highlighted nodes selected

for merging. (b) Merging replicates new nodes and connections into all other alternatives

and overwrites parameters of existing nodes. The user then globally changes NUMBER1 to

15... 62	

Figure 4-5. Merging and parallel editing: (a) Initial state with new, selected node

highlighted. (b) Merging replicates the node and connections into all other alternatives.

The user then changed the parameter to 20. ... 63	

Figure 4-6. Dialog for creating an alternative from history: the history list on the left and

the state of the alternative at that time on the right. The current entry is highlighted. The

state can be selected from the list directly or by dragging the slider. 65	

Figure 4-7. Cartesian product dialog. (a) Cartesian product menu: all nodes of the

alternatives are in a nested list, second level denotes the parameters; (b)

inclusion/exclusion of parameters in Amount; (c) specifying range for Margin. 68	

Figure 4-8. Design gallery. (a) two previewed designs selected in the default network; (b)

two previewed designs selected in a network resulted from the product of all three

generative networks. ... 69	

Figure 4-9. The dialog for retrieving minimized alternatives. .. 82	

Figure 4-10. Parameter values of the LRULES (left) and LGEOMETRY (right) nodes for the

Sierpinski Triangle. ... 85	

Figure 4-11. The L-System examples that were available to participants for re-use in their

designs. The examples are (from left to right): Pythagoras Tree, Koch Curve, Sierpinski

Triangle, Dragon Curve, Fractal Plant #1, Fractal Plant #2. The Sierpinski Triangle was

also the final artefact that participants recreated during the training phase of the

workshop. .. 85	

 xv

Figure 4-12. Overall and protean quality ratings of participants’ designs by each of the

experts (E1-3). Higher is better. .. 97	

Figure 4-13. Average overall and protean design quality rankings by the three experts

(higher is better). Error Bars: ±1 SE. .. 98	

Figure 5-1. GEM-NI enables users to work with alternative generative designs

simultaneously. The leftmost alternative is active, the center one is passive, and the

rightmost one is idle. ... 102	

Figure 5-2. a) Node-focused difference visualization of SHAPE_ON_PATH. Left

document is the reference and is also active. (b) Difference visualization for the network

panels of the same content without node focusing. .. 106	

Figure 5-3. Difference visualization for changed connections. (a) no difference

visualization, (b) diff mode, (c) diff exclusion with cross-alternative connectors turned

off, middle alternative is active, (d) diff exclusion with cross-alternative connectors

turned off, right alternative is active. .. 109	

Figure 5-4. Three alternatives of Flower of Life. The design differs in the POLYGONS node

at level 1. ... 115	

Figure 5-5. Difference visualization at level 3 inside POLYGONS node. 116	

Figure 5-6. Difference visualization at level 2 inside POLYGON2_3 node. The right panel

is disabled, because the corresponding node does not exist in the network. 117	

Figure 5-7. Reveal-to-edit feature. (a) Initial state. (b) A common node, highlighted in

brown (de-saturated red) is revealed via a clicking with a modifier key in the alternative

on the right. That (compared) alternative is then active and the reference is made idle

through autosandboxing. (c) A parameter change results in a red difference visualization.

... 120	

Figure 5-8: My 2×3 multi-monitor setup displaying a total of 14 alternatives in a

difference visualization relative to the top middle (reference) alternative. 122	

 xvi

Figure 5-9. The same example as in Figure 5-8 with the bottom left monitor jammed into

an un-editable state and the bottom right monitor jammed into the state where cross-

alternative connectors are not displayed. .. 125	

Figure A-1. Optimal Layout, Version Pair #1 (1→3). .. 157	

Figure A-2. Optimal Layout, Version Pair #2 (3→4). .. 158	

Figure A-3. Optimal Layout, Version Pair #3 (4→5). .. 159	

Figure A-4. Optimal Layout, Version Pair #4 (5→8). .. 160	

Figure A-5. Optimal Layout, Version Pair #5 (8→10). .. 161	

Figure A-6. Optimal Layout, Version Pair #6 (10→12). .. 162	

Figure A-7. Incremental Layout, Version Pair #1 (1→3). .. 163	

Figure A-8. Incremental Layout, Version Pair #2 (3→4). .. 164	

Figure A-9. Incremental Layout, Version Pair #3 (4→5). .. 165	

Figure A-10. Incremental Layout, Version Pair #4 (5→8). .. 166	

Figure A-11. Incremental Layout, Version Pair #5 (8→10). .. 167	

Figure A-12. Incremental Layout, Version Pair #6 (10→12). .. 168	

Figure B-1. Design 1: unenhanced view. .. 170	

Figure B-2. Design 1: difference visualization view (with subtractive encoding). 171	

Figure B-3. Design 2: unenhanced view. .. 173	

Figure B-4. Design 2: difference visualization view (with subtractive encoding). 174	

Figure B-5. Design 3: unenhanced view. .. 174	

Figure B-6. Design 3: difference visualization view (with subtractive encoding). 175	

Figure B-7. Design 4: unenhanced view. .. 176	

Figure B-8. Design 4: difference visualization view (with subtractive encoding). 178	

Figure B-9. Design 5: unenhanced view. .. 178	

Figure B-10. Design 5: difference visualization view (with subtractive encoding). 179	

Figure B-11. Design 6: unenhanced view. .. 180	

Figure B-12. Design 6: difference visualization view (with subtractive encoding). 181	

 1

Chapter 1
Introduction

Looking at multiple documents or objects for making a comparison is a common human

activity, used in many areas, typically to decide among different alternatives. Humans relied

on visual comparison, what they are able to observe directly, prior to the invention of

computers. Thus, it was only a matter of time before computers would be used for this

purpose. The first computer-based tools were targeted at text differencing. As technology

advanced, comparison of graphical data, such as graphical hierarchies and vector graphics,

became possible. One application area where comparing and managing multiple graphical

instances is particularly important is design, as this discipline involves creating various

alternative solutions to a given problem and then evaluating them against the design goals

[100]. In my context I refer to difference visualization as a visual display of two or more

artefacts (or their subsets) using techniques to support and facilitate the comparison of these

artefacts to each other. Here I present new methods for difference visualization, but also look

at their usage in design. Moreover, I also present a new system that makes it easier for users

to generate and manage multiple alternatives in generative design.

The first robust differencing tool was the Unix diff tool [58]. Modern tools for text

differencing are much more user-friendly, incorporate visual interfaces and side-by-side

views, and enable history tracking and merging. One example of such interfaces is the use of

highlighting. Another, more recent feature, is the use of animation [25]. Also, there are many

publicly available tools, such as GNU Emacs1, Kompare2, WinMerge3, Araxis Merge4, and

Scooter Software Beyond Compare5. Some of these are not only capable of comparing plain

1 http://www.gnu.org/software/emacs/
2 http://www.caffeinated.me.uk/kompare/
3 http://winmerge.org/
4 http://www.araxis.com/
5 http://scootersoftware.com/

 2

text, but can also deal with XML documents, file directory structures, and even binary files.

Since then, approaches for difference visualizations of graphical hierarchies and other forms

of graphics have also been developed, see the previous work section (Chapter 2). One

important application area for difference visualizations is all kinds of processes where

multiple alternatives are routinely considered, such as many forms of decision-making and

design.

The development of a design is conceptually a process where many threads of

possibilities are developed in parallel. These concepts are then abandoned or re-combined

until a satisfactory scheme emerges out of the exercise. Often, this exploration is directed by

the outcomes of previous explorations [75]—a key characteristic of emergence [65] and of

the personal history of the designer [93]. Thus, the search for alternatives and the

exploration of the design space have very important roles in the design process. Indeed,

experts typically generate sets of alternative solutions when solving ill-defined problems

[100]. This has been shown to result in higher quality outcomes [30]. For example, it is

common practice for web designers [78], architects [1,75] and software engineers [103] to

generate alternatives of potential designs as they solve problems.

 3

Figure 1-1. An example of a sketch provided by http://www.idsketching.com.

Traditionally, sketching [2] is used in many disciplines to explore alternatives during the

design process (e.g., Figure 1-1). Buxton [21] (p. 111) describes eleven qualities that define

sketches. They should:

• be quick to make,
• be cheap to make,
• be disposable,
• be plentiful,
• be distinguishable from other types of renderings,
• be open and free rather than tight and precise,
• be minimal,
• provide appropriate degree of refinement,
• suggest and explore rather than confirm,
• be ambiguous,
• be provided when needed.

Figure 1-2 shows conjectural sketches created using an existing CAD tool. Sketches help

designers externalize knowledge, better understand the problem, and explore the space of

 4

potential solutions [2]. Sketching also facilitates what is now known as visual

reasoning [84]. The existence of high level cognitive structures such as schemas and

prototypes that help designers think visually has been experimentally verified [84].

Computer-based conceptual design systems often do not support these qualities

adequately, which has been shown experimentally, e.g., in the domain of Computer-Aided

Design (CAD) [61]. The main obstacles for such support have been identified by Krish [65]

as follows:

• The invasiveness of frameworks impedes the thinking effort making it difficult to

automate conceptual design.

• CAD in its current form is unsuitable for representing and considering vague concepts

and forms.

• CAD does not provide the creative stimulation that designers derive from the process

such as hand sketching. Essentially the tools ignore that designs are developed based on

reactions to previously generated concepts.

• Design is an iterative process of searching the design problem space as well as the

solution space. Designs and solutions co-evolve, during the design process. This is not

supported.

• Many possibilities are considered and most of them are discarded at the early stages of

design. In this context, designers need to represent a wide range of concepts efficiently.

They are, therefore, reluctant to invest the additional effort required to represent such

concepts in CAD.

Despite these challenges, such conceptual design systems have nonetheless been widely

advocated for. For example, Shneiderman [99] summarized design principles for creativity

support tools: support for exploratory search, enabling collaboration, rich history-keeping

and support of “design with low thresholds, high ceilings, and wide walls”. Shneiderman

further emphasized the importance of exploring design solutions (what-if tools) and

“reviewing and replaying session histories” as activities for creativity that should be

adequately supported by computational tools. Besides emergence, Krish [65] also identifies

 5

support for chaotic and unstructured work processes as a requirement that needs to be met

for CAD to support conceptual design. Besides, studies have shown that parallel prototyping

produces better design [30,31]. Despite many methods proposed by researchers for the use of

CAD in early stage conceptual design [57,110], CAD is still mostly used in the final stages

of design, though this is changing [113]. Due to this fact, an entire dimension of how

designers actually work is largely missing from such tools, thus narrowing their scope of

effective usage. It is possible to address one important aspect of conceptual design, namely,

the parallel exploration of alternatives, in current CAD systems. However, this is not well

supported in current tools. Typically, designers get around this limitation by various idioms

of use, such as saving multiple files one for each different variations or exploring multiple

ideas within the same document through conditional execution. Yet, designers already plan

for and create alternatives with current tools, as this dissertation will demonstrate (Chapter

4). In fact, CAMBRIA [64] is at the moment the only system that provides full explicit

support for alternatives. Parallel exploration of alternatives is somewhat related to sketches

with pencil and paper. However, the alternative documents explored in the systems such as

CAMBRIA do not qualify as true sketches as characterized above as they lack some key

qualities, namely they are neither open, nor minimal, nor ambiguous. Similarly, the

alternatives that are explored in this work are not true sketches, either.

 6

Figure 1-2. Conjectural sketches created using an existing CAD tool, http://rocker-

lange.com.

In my work, I target CAD tools in the category of generative design as such tools include

features that make the exploration of a design space easier. Generative design is a design

method in which the output is generated by a set of rules or an algorithm. According to

Krish [65] the generative process involves the following:

• a design schema, i.e., a model,

• a means of creating variations,

• a means of selecting desirable outcomes.

Generative design enables designers to create design variations based on a model. This

model can vary just in parameters, be expressed as a network of computational nodes and/or

constraints, or even full algorithms as in e.g., the earliest versions of NodeBox6 or the

Processing programming language7. Because the system generates the solution from a

model, the design process based on generative models is often referred to as generative

design. By structuring design concepts as models, it is possible to explore a much larger

6 http://www.emrg.be/software/nodebox-1.html
7 http://processing.org

 7

number of viable design options compared to what is manually possible. Generative

modeling is a rapid method for exploring many design possibilities and is used in various

design fields such as art, architecture, and product design. Adoption is widespread in avant-

garde practice and design schools and there are established textbooks and professional

development courses.

Generative design qualitatively changes the design process. The inherent capabilities of

such systems also create new opportunities for design support tools. With generative design,

it is possible to easily create a very large set of viable design options that satisfy a given set

of constraints, as defined in the model. These options, the number of which is much larger

compared to what is manually possible, represent points in a high-dimensional design space

that must then be explored, narrowed, and filtered. The central role of the designer involves

continuously modifying the generative model based on the resultant outcomes. Through this

the designer navigates the solutions space in search of viable design solutions. A very simple

approach is to just have the user repeatedly select attractive solutions to zero in on desirable

options [73]. Better approaches give more control to the user. One of the key challenges in

generative design is to facilitate the use of alternatives.

In generative modeling, exploration of forms takes place within design spaces [113].

There, alternatives are defined as “structurally different solutions to a design”, while

variations are “design solutions with identical model structure, but having different values

assigned to parameters”. To compensate for the lack of adequate software features to support

an easier, more efficient exploration of the design space, current designers rely on strategies,

referred to as idioms of use [113]. Some common idioms for creating, comparing and

managing design alternatives are opening file versions in different windows, copying within

the same file, or using layers [107]. However, current computational design tools still do not

support managing, viewing, exploring or comparing alternative solutions in an adequate

manner. Moreover, these adaptations of the traditional workflow sometimes create more

problems than they solve, e.g., when the file naming and window management overhead

becomes large. In my work here, I argue for the explicit use of alternatives, instead.

 8

Generative models require a computer-aided design system that provides tools to vary

designs beyond direct manipulation of specific design elements. Such systems can be

understood as lying along a spectrum from direct manipulation to fully automatic design.

Thus I consider variational modeling, where changing parameters is a tool on top of manual

model construction, to be a minimal generative system leaving most control with the

designer. Genetic algorithms form an opposite and delegate exploration to the computer,

while permitting user selection only at intermediary generations [117]. Here, I focus on the

direct manipulation end of the spectrum, enabling designers to interactively control design

decisions and provide “power tools” to make, modify, track, evaluate and visualize their

work and to explore a larger number of design options.

 Due to the ease with which parameters can be varied, variational modeling, where

solutions are represented as models, is a particularly compelling technology to assist in

exploring a design space. A variational model represents the structure and hierarchy of a

solution, the result of which is determined by relationships, constraints, and choices of

parameter values at a given time. While building such models requires more effort,

variational modeling systems make variations easier and are now used in various domains. A

prominent example is architectural design, as in the construction of the International

Terminal Waterloo in London, England [113], pp. 43-45.

Current systems represent generative models as DAGs as in, e.g., CATIA8, Inventor9,

ProENGINEER 10 , and SpaceClaim 11 , or as networks of operations in a dataflow

programming environment, as in, e.g., Grasshopper 3D 12 (Figure 1-3), Max/MSP 13 ,

8 http://www.3ds.com/products-services/catia/
9 http://www.autodesk.com/products/inventor/
10 http://www.ptc.com/product/creo/proengineer
11 http://www.spaceclaim.com/
12 http://www.grasshopper3d.com
13 http://cycling74.com/products/max/

 9

Houdini14 , GenerativeComponents15 , Dynamo16 and NodeBox 3 17 . Such network-based

dataflow-programming systems are what my work focuses on.

How alternatives should be supported in generative design, how they affect creativity,

how designers navigate through a large space of design options produced by generative

design systems, and how they evaluate alternatives has not been investigated in detail.

Moreover, to my knowledge there are currently no tools that allow users to explicitly

compare these design options. No tools currently exist to compare dataflow networks, either.

The work described here addresses these questions.

Figure 1-3. An example of a design created in Grasshopper 3D provided by

http://digitalsubstance.wordpress.com.

1.1 Objectives

As discussed above design is an iterative process of searching the design problem space as

well as the solution space where solutions co-evolve during the design process. In other

14 http://www.sidefx.com
15 http://www.bentley.com/
16 http://dynamobim.com
17 http://www.nodebox.net

 10

words, it is also a parallel process where concepts are abandoned or re-combined until a

satisfactory scheme emerges out of the exercise, where, often, this exploration is directed by

the outcomes of the previous ones. All this indicates that design space exploration is an

important part of the design process. The primary objective of this dissertation is thus to

facilitate this part of the design process. I accomplish this by investigating if the introduction

of various forms of exploration with design alternatives into generative design, results in

better support of creativity. As discussed above, support for such functionality is missing in

today’s tools. One of the key challenges is to facilitate the fluidity of the design process

where many threads of possibilities are developed in parallel. Another challenge is to keep a

balance of features, user interactions, and workflows to enable designers to focus on

exploring alternatives, as opposed to just managing them. To address this, I introduce these

techniques in GEM-NI – a graph-based generative-design tool that I built. The system

supports parallel exploration of alternative designs and is representative of a typical

generative design system with a dataflow-programming environment. The new interaction

techniques are parallel editing, recalling history, branching, merging, comparing, and

Cartesian products of and for alternatives. Further, I introduce a modal graphical user

interface and a design gallery, which both allow designers to control and manage their

design exploration. Many of these introduced techniques are novel in the context of

generative design and also in general. By introducing explicit support for parallel exploration

of alternatives, GEM-NI comes one step closer towards to supporting conceptual design.

Because of this, unsurprisingly, GEM-NI complies with all six key requirements that need to

be met for CAD to support conceptual design as identified by Krish [65], namely:

• makes minimal demands on and minimal disruption to designer’s work processes.

• is flexible in allowing the designers to navigate the design space in the way they see fit.

• is able to support chaotic and unstructured work processes.

• is structured as an assistive tool, giving the designer the choice to either use it or not use

it.

• supports and enables emergence in order to stimulate the creativity of the designer.

 11

• enables an efficient transition of design content to the detailed design phase.

GEM-NI also addresses identified problems with user interfaces that directly hinder

creative needs in design exploration tasks [106]. Further, I investigate the usefulness of my

approach in two user studies.

Managing, keeping track of and comparing multiple generative design solutions to each

other becomes increasingly difficult as the number of them grows. Thus enhancing these

processes is an important problem in generative design. I accomplish this by introducing

MACE, – a new user interface for interactive comparisons of multiple alternatives in the

context of generative design systems that use generative networks. The solution revolves

around on the expectation that there is more similarity among the alternatives than there are

differences. I confirm the validity of this assumption by performing a similarity analysis on

the alternatives obtained from the participants of the second user study with GEM-NI.

The growing number of design alternatives makes it also difficult to fit them onto a

single monitor, if all alternatives are still to be view- and editable. As a solution to this issue,

I extend GEM-NI and MACE to support multiple monitors to help the designer keep the

overview of all alternatives.

Part of my solutions for enhancing managing and comparing of design comparisons

emerged through my earlier experiments with generic diagram differencing techniques. In

those experiments my primary goal was to address the lack of previous quantitative research

on diagram difference visualizations and on visualizations that support merging of diagram

versions. For this, I built and evaluated a new system for differencing and merging diagrams

that make use of Dual View, Animation, Re-Layout, Layers and a Storyboard, abbreviated as

DARLS. The system is targeted at diagrams with node and edge attributes. Such diagrams are

used frequently in architecture, information and concept visualization, software engineering,

e.g., for UML diagrams, and in generative design as networks for dataflow programming.

One can use the system to track the evolution of a course dependency diagram over the

years, a particular course in a prerequisite visualization, or to visualize the evolution of any

 12

diagram in general. It also can be used to merge versions of a diagram and to perform

selective undo.

1.2 Contributions

In the scope of this dissertation, I implemented two systems DARLS, GEM-NI, and added the

MACE interface as an extension of GEM-NI. Further, I conducted user studies and expert

interviews to investigate the effectiveness of the introduced solutions. DARLS enables users

to:

• create new versions of graph, editing existing versions, and committing back into the

repository,

• access versions directly in the scrolling storyboard,

• perform differencing of diagrams using dual views, animation, layering and toggling,

with synchronized zooming and panning,

• perform relative graph re-layout using two heuristic approaches: optimal and

incremental,

• perform version merging using selection through a context-sensitive right-click menu.

I ran two user studies to investigate the benefits of the introduced difference visualization

techniques and found that the basic dual-view visualization was not well received. The dual-

view option with a difference layer was most preferred for comparing diagrams with

matching node positions. For diagrams with non-matching positions, I found evidence that

animation is beneficial, but that the combination with a difference layer was liked best. In

summary, I can say that the difference layer technique is useful and a good complement to

animation for showing changes. This supports diagram merging in DARLS.

GEM-NI is a graph-based 2D design tool that supports the exploration of design

alternatives in various ways. GEM-NI is built as a branch of NodeBox 3, a vector graphics

generative design tool that uses graphs to express the computation behind the design.

NodeBox has been used for visualization and generative art. Examples include visualizations

of real-time data, evolutionary art installations that react to users, documents in a single

 13

visual style but with variations across pages, and customized wallpapers based on e-mail

spam [101]. GEM-NI adds several novel features:

• interactive, selective post-hoc merging in alternatives;

• an enhanced interactive design gallery that explores ranges of parameters and structural

changes to the model.

In the context of generative design, GEM-NI presents the following new features:

• methods to control parallel/linked editing: checkmarks and sandboxes;

• a non-destructive method for resurrecting past states from history with undo lineage, via

enhanced “skating” [107];

• methods to quickly generate alternatives via branching;

• local and global undo;

• tools to manage alternatives and visually compare them;

GEM-NI’s design gallery interface, described later, employs elements of genetic algorithms,

but enhances them through Cartesian products of generative networks. The exploration

facilities of GEM-NI, also described later, enable designers, to explore a much larger number

of design options than what is possible through manual interaction. To investigate my design

choices, I evaluated my system with moderately and highly skilled users. Informed by the

lessons learned from DARLS, GEM-NI also uses stable layouts to facilitate visual

comparison of alternatives.

Existing approaches to compare graphs do not generalize to multiple alternatives,

because practically all of them compare only two graphs at a time. Animation can be used to

compare the linear evolution of a graph. But this also does not apply to alternatives because

alternatives do not necessarily evolve linearly with time. To address this issue, I introduce a

technique that allows the visual comparison of more than two alternatives without using

animation. This new difference visualization technique is fully interactive. As a result,

MACE enhances GEM-NI’s approach with the following new contributions:

• a new difference visualization that simultaneously compares more than one DAG

against a given reference;

 14

• subtractive encoding to hide common elements for better difference readability,

encoding as well as scalability;

• node-focused difference visualization for selected node(s) and a “diff exclusion” view

to give the user the control over visual clutter;

• a “reveal-to-edit” feature for difference visualizations;

• group node difference visualization to enable scalability to larger networks;

I also include the following minor enhancements: emphasizing differences in parameters

using transparency for difference visualization of non-numerical data types; post-hoc

merging of the state of a parameter across a set of alternatives; and multi-monitor support to

show how my techniques scale to up to 20 alternatives. Multi-monitor support also includes

a new technique called jamming spaces for designation of monitors to certain states to make

organization of a large workspace easier.

With these techniques MACE supports the non-linear evolution of alternatives in

generative design by facilitating the comparison, management and editing of more than two

alternatives. For the MACE interface, I re-implemented a variant of DARLS’s difference

layer visualization within GEM-NI to enable the user to visually compare alternatives. Given

that the networks used in generative design use directed edges to represent the data flow, my

work in DARLS formed a good basis for MACE.

1.3 Outline

The outline of this dissertation is as follows. Chapter 2 provides an overview of literature

related to difference and history visualization for graphs, generative design, graphical

operation history, design space exploration, interacting with alternatives and multi-monitor

user interfaces. These are concepts directly related to the topics in this dissertation. Chapter 3

introduces DARLS. It then describes the objectives of the user studies, which I conducted to

evaluate diagram-differencing techniques. The chapter concludes with the findings. Chapter

4 introduces GEM-NI. It discusses how to evaluate open-ended creative tasks and reports the

findings of two user studies and of an interview. Chapter 5 introduces the MACE interface. It

 15

describes the rationale for the design choices made behind the interface backed by previous

research and results of an informal exploratory interview with the expert users. The chapter

also describes the multi-monitor interface, designed to address the scalability of the

difference visualization in MACE. It also introduces the concept of jamming spaces to

facilitate the organization of alternatives on multi-monitor systems. Chapter 6 engages in

overall discussion. Chapter 7 concludes by highlighting the major contributions of this work.

It proposes areas for future work. Appendix A shows the version pairs of a course

prerequisites diagram that were used in the user studies with the DARLS system described in

Chapter 3. Appendix B presents some of the interesting designs that were created by the

participants of the second user study described in Chapter 4.

 16

Chapter 2
Related Work

Here I discuss previous work relevant to this dissertation. To clarify the contributions better,

I mention at the end of each subsection the differences of my work relative to the discussed

previous work.

2.1 Difference and History Visualization for Graphs

Dynamic graph drawing deals with the problem of visualizing a graph that evolves over

time. Therefore, dynamic graph drawing is directly related to the work in DARLS. MACE

employs graph difference techniques to illustrate changes between alternatives in the

dataflow networks and, therefore, it’s related to dynamic graph drawing as well. The

concepts in dynamic graph drawing such as mental map and animation are relevant to my

work in DARLS, time slice and difference map are also relevant to my work in both DARLS

and MACE. Also, my work builds on side-by-side views for visual comparison (DARLS and

MACE), storyboards for non-linear access (DARLS), as well as text and UML diagrams

versioning (DARLS).

2.1.1 Mental Map

Graph layouts aim to preserve the user’s mental map, which refers to the structural cognitive

information a user creates internally when observing the layout of a graph [27]. A mental

map then facilitates navigation in the graph or comparison of it and other graphs. Purchase et

al. [86] examined the effect of mental map preservation on dynamic graph readability for

directed acyclic graphs drawn in a hierarchical manner. The authors found that the mental

map was important for questions that required nodes of the graph to be identified by name,

but less important for questions that focus on edges or do not require nodes to be

differentiated. Maier and Minas [71] demonstrated that it is meaningful to define incremental

 17

layout algorithms for visual languages with both graph-like and non-graph-like features,

such as class diagrams. For other work on mental maps see, e.g., [87,91].

The findings of Purchase et al. and Maier and Minas motivated my use of relative graph

re-layout in DARLS, as I target the same kind of diagrams. For the same reasons I also used

incremental layout methods, instead of automatic (global) re-layouting, for differencing

diagrams.

2.1.2 Difference Map

A difference map is a graph that encodes all of the differences between the node and edge

sets between two graphs [7]. It presents the union of all nodes and edges in the two graphs

for two different time slices [7,8]. Difference maps [8] were found to produce significantly

fewer errors when determining the number of edges inserted or removed from a graph

evolving over time. They were also significantly preferred on all tasks. Graham and

Kennedy [41] summarize work on multi-tree visualization in their survey. They distinguish

five methods of comparing nodes in two trees: edge drawing, coloring, animation, matrix

representation, and agglomeration.

The following work was published after DARLS but nonetheless is worth mentioning.

Gleicher et al. [39] proposed a general taxonomy of visual designs for comparison that

groups designs into three basic categories, which can be combined. They provide a survey of

work in information visualization related to comparison. They conclude that all visual

designs are assembled from the building blocks of juxtaposition, superposition and explicit

encodings. Recently, Alper et al. [4] evaluated two techniques for weighted graphs

comparison. Their results indicate that matrix representations are more effective than node-

link diagrams. Bach et al. [11] also explored matrix representations with their Matrix Cube

visual representation and navigation model targeted at dynamic networks with undirected

edges. They also describe Cubix—an interactive system for the exploration of Matrix Cubes.

It visualizes dynamic networks by decomposing the cubes into meaningful 2D views. They

 18

received positive feedback from the two domain experts who used Cubix to explore and

report on their own network data.

The difference visualization technique in MACE can be seen as a new variant of a

difference map, which excludes nodes and edges common to the compared graphs. MACE

employs, among other techniques, edge drawing and coloring for difference visualization.

DARLS uses coloring and animation, which were identified to be critical by Graham and

Kennedy [41]. Edge drawing and coloring are used in MACE. Although Graham and

Kennedy present these techniques only for multi-tree visualization, the approaches are also

directly applicable for the visualization of changes in DAGs (directed acyclic graphs), which

define the data-flow networks in GEM-NI.

In my research with DARLS, I explore the effect of using juxtaposition with stable

layouts and superposition. A hybrid approach of juxtaposition and explicit encodings is used

in the design of the MACE interface. From explicit encodings identified by Gleicher et al.

[39] I use highlighting of the corresponding nodes. Gleicher et al. [39] also identified

additive encoding, where the members of the intersection are added to one of the graphs. In

contrast, I use subtractive encoding, where the members of the intersection are removed

from one of the graphs. This is a reasonable choice, as I expect that there will be fewer

differences among data-flow network of alternatives compared to the number of similarities.

As a result, this improves the readability of my difference encoding by keeping visual clutter

low. Since DARLS involves only unweighted graphs and MACE further uses only directed

edges, Alper et al.’s techniques are not an appropriate design choice for my context. Bach et

al.’s [11] Matrix Cube approach is also not appropriate as it cannot handle directed edges.

2.1.3 Static Techniques for Comparison

Layering is commonly used in diagram differencing and merging, e.g., [26]. The layering

technique superimposes multiple graphs, but can only handle a very small number

simultaneously. Thus it is most useful to show pair-wise differences. A generalized approach

to depict evolution of a dynamic graph in more than two versions is by using time slices. In

 19

dynamic graph drawing, time slices display dynamically evolving data via a matrix of

images that visualizes the differences between objects. Each image is a time slice [9].

Side-by-side views have been used for visual comparison of objects long before

computers were invented. One popular modern adaptation is a side-by-side view for

comparing text documents. There are many publicly available tools, such as GNU Emacs,

Kompare, WinMerge, Araxis Merge, and Scooter Software Beyond Compare. Some of these

are not only capable of comparing plain text, but can also deal with XML documents, file

directory structures, and even binary files.

Side-by-side views are a special case of time slice visualization, which show only two

versions. DualNet [77] visualizes sub-networks of node-link diagrams in side-by-side views.

The work cited below, however, focuses only on trees, rather than graphs. As a result, most

of these methods are not directly applicable to my context. TreeJuxtaposer [76] targets the

comparison of large trees with side-by-side views. TreeVersity [47–50] is an interactive

information visualization tool for comparing trees by showing changes in topology and node

values. The system uses carefully designed color palettes to show positive/negative,

absolute, and relative value changes; and glyphs that pre-attentively show these changes.

TreeVersity also highlights created and removed nodes. TreeVersity2 [50,51] is an

interactive data visualization tool that allows the exploration of changes in trees over time

addressing the direction of a change, if it is an actual or relative change, starting and ending

values, created and removed nodes, and inner nodes’ values, while keeping the hierarchy

context. TreeVersity2 allows the exploration of change over time in trees using a novel

interactive data visualizations for exploring changes in the tree between two time points

(e.g., two years) coordinated with time based visualizations to explore the time context.

Guerra-Gomez et al. [50] identified and classified the following five types of tree

comparisons:

• Type 0: topological differences between two trees where the nodes only contain a

label,

 20

• Type 1: positive and negative changes in leaf node values with aggregated values in

the interior nodes (i.e., trees that can be visualized with a treemap) and no changes in

topology,

• Type 2: positive and negative changes in leaves and interior node values with no

changes in topology,

• Type 3: positive and negative changes in leaf node values with aggregated values in

the interior nodes and with changes in topology,

• Type 4: positive and negative changes in leaves and interior node values, with

changes in topology.

With the exception of type 0 none of these directly apply to the DAGs in GEM-NI. For

type 0, instead of topological differences I identify structural differences between two or

more DAGs in MACE. Guerra-Gomez et al. identify nodes as being 1) uniquely labeled in

the tree, 2) contain one or more numeric variables, with values changing over time and 3)

contain one or more categorical attributes that might have more than one value. This does

not correspond to my work: Firstly, nodes in GEM-NI do not have categorical attributes in

the same sense. Group nodes can be considered as categorical attributes, but in DAGs their

use is optional. Moreover, I propose a special difference visualization technique for multi-

group-node difference visualization (see 5.1.3.5). Secondly, in addition to numeric values,

the nodes in the DAGs I target contain set, string, Boolean, point, color or custom defined

type values. As a result the techniques for numeric variables are not applicable for my

context. Finally, while branches can be compared in trees, as they are distinct, in DAGs they

are not distinct and thus solutions designed for trees will also not work.

Another approach in the category of static visualization techniques is agglomeration.

Graham and Kennedy [40] presented a DAG visualisation designed to allow interaction with

a set of multiple classification trees to find overlaps and differences between groups of trees

and individual trees. It merges the trees into a unified structure whilst preserving a global

parent-child orientation of the nodes. This method of overlaying classifications allows nodes

to be seen in the context of multiple trees, without the shrinking space problems of the small

 21

multiple design. In one of the examples they were able to compare six classifications.

Zoomology [56] compares two classification datasets where two trees are merged into a

single overview. Isenberg and Carpendale [59] presented a new system that facilitates

hierarchical data comparison in co-located collaborative environment using structural

comparison through overlay. Their system dealt with up to six trees. CandidTree [68] that

merges two trees into one and visualizes two types of structural uncertainty: location and

sub-tree structure uncertainty. Yet, agglomeration is not applicable to (generative design)

networks, as neither individual nodes nor sub-networks can be combined meaningfully into a

hierarchy in DAGs.

My new layering technique in DARLS is related to the concept of a difference map in

dynamic graph drawing where two versions of a graph are compared to each other. In

DARLS, layering is used in the side-by-side views. A layering technique depicting missing

nodes is employed in MACE. In DARLS, the side-by-side views can be thought of as a base

case of time slices, whereas in MACE multiple time slices are normally compared. However,

in MACE I do not think of the diagrams as time slices but rather as of alternatives without

time related semantics. Similar to previous work in this area, I use side-by-side views in

MACE, but generalize previous work to the simultaneous comparison of more than one

alternative against a given reference.

2.1.4 Animation & Small Multiples

Today, many visual systems utilize animation to help the user understand transitions. It has

been shown that animation facilitates text document comparison [25], and enables users to

better identify changes between versions. Examples include changes in node-link diagrams

and structural relationships [95], perception of statistical data visualizations [55], and

dynamically evolving data in graphs. A number of papers support the idea that animation can

be beneficial for the purposes of visualization, e.g., [14,111]. The utility of animation has

been questioned by Tversky et	al. [109], yet it was acknowledged that animation may be an

effective way of presenting transitions. Robertson et al. [89] compared animation, trace line,

 22

and small multiples visualization on multi-dimensional data. Animation was found least

effective, whereas small multiples and trace lines were faster than animation, and small

multiples were more accurate. Griffen et al. [43] suggest that animation can be helpful in

discovering space-time clusters.

Animation has also been used for communicating dynamically evolving data in graphs,

which is directly related to my work. I’m aware of three user studies that explored the effects

of difference maps, small multiples, slide shows, and mental map preservation. Farrugia et

al. [36] compared animation and small multiples on two dynamic graph series. Small

multiples were faster for most tasks. Archambault et al. [9] performed a user study where

they investigated the effect of animation, small multiples, and mental map preservation for

reading graphs that evolve over time. The study found that overall small multiples gave

better performance than animation, but animation had fewer errors for some tasks. No effect

for preserving the mental map was found, but this study used graphs with unlabeled nodes.

The same authors also conducted a study to evaluate the effectiveness of difference maps in

comparison

to presenting the evolution of a dynamic graph over time in three interfaces (animation,

slide show, and small multiples) [8]. Evidence was found that difference maps produced

fewer errors when determining the number of edges inserted or removed from a graph as it

evolves over time. Also, difference maps were preferred on all tasks.

In Chapter 3 I investigate usefulness of animation for showing differences between

graphs with matching and non-matching layouts. The following works were published after

DARLS and are worth mentioning. Bach et al. [12] presented GraphDiaries, a visual

interface designed to improve support for identifying, tracking and understanding changes in

dynamic networks. The techniques in GraphDiaries were evaluated against techniques

commonly found in visualization systems for temporal graph navigation. A minor increase

was observed in task completion time that is compensated by a significant decrease in error

rate in favor of animated transitions. The latter improve the perception of changes and

provide users with a rich set of exploration strategies. Bach et al. [10] also presented a

 23

review of techniques for temporally changing data by describing them as series of operations

performed on a conceptual space-time cube. They introduced a taxonomy of elementary

space-time cube operations, and explained how they can be combined to turn a three-

dimensional space-time cube into an easily-readable two-dimensional visualization. This

model can describe many forms of difference visualization for graphs. Rufiange and

McGuffin [90] presented DiffAni, a system that allows a graph to be visualized as a sequence

of three kinds of tiles: diff tiles that show difference maps over some time interval,

animation tiles that show the evolution of the graph over some time interval, and small

multiple tiles that show the graph state at an individual time slice. This sequence of tiles is

ordered by time and covers all time slices in the data. An experimental evaluation of DiffAni

shows that their hybrid approach has advantages over non-hybrid techniques in certain cases.

Small multiples have also been used for visualization of non-graph data. One of the recent

examples is the work of Van den Elzen and van Wijk [34] who introduced a new visual

exploration method for multivariate data analysis using small multiples. It is based on

alternation between large singles and small multiples. They produced small multiples by

applying split operations on large singles and also introduced a navigation mechanism based

on explicitly showing the visual history of the exploration path. They tested the effectiveness

of the exploration method in a user study comparing four different interaction methods.

Their work did not find a significant difference for execution time of tasks and the number

of errors that were made. However, they found users needed fewer steps in answering

questions about the data and also explored a significantly larger part of the state space in the

same amount of time. Overall, participants preferred the small multiple interaction methods

rating them the most useful and easiest to use. Participants were faster without using the

visual history.

I use animation in DARLS. The technique is used with the full set of features for

comparing diagrams with non-matching layouts. Fading only is used for matching layouts.

In DARLS, animation can be used in conjunction with layering. Animation, however, is not

appropriate for multi-graph difference visualization in MACE, as node positions are

 24

synchronized across alternatives. More importantly, in GEM-NI alternatives can be created

non-linearly and the user can create multiple, potentially fully independent alternatives.

Thus, they cannot be thought of as time slices. Animation is best used for showing gradual

transitions, i.e., it is suited to show successive graphs that represent an evolving change of a

single data set. This has been previously pointed out, e.g., in [40]. Due to the unique features

of sets of alternative solutions, I have to deal with situations well beyond the evolution of a

single graph. Thus, I needed to extend previous work. The closest relevant work compares

multiple graphs at the same time. It is important to highlight that in generative design non-

linear creation and editing of alternatives is the norm. In other words, generative design

typically is ill described by a linear time flow. Thus time/history-based difference

visualization techniques such as animation and small multiples are not directly applicable to

the comparison of alternative designs. MACE employs new graph difference techniques to

illustrate the changes between alternatives. Also, with respect to Bach et al.’s [10] taxonomy

of data visualization, DARLS’s basic visualization uses juxtaposition, and a compound

operation of time cutting, space scaling, space shifting, time flattening. However, this does

not apply to the technique in MACE, where the compared artifacts are not temporal, due to

the non-linear design process.

2.1.5 Techniques to Access Versions

A time slider can provide interactive access to different versions over time. This technique is

used in the Diffamation System for text version differencing [25] and in TimeTree [22] for

navigating hierarchies changing over time. Su [104,105] introduced a new interaction

metaphor and visualization of the operation history for 2D illustrations, i.e., drawings

changing over time. These are called storyboards. The user has access to the history via

graphical depictions at the top of the document. Other approaches to storyboards have been

presented as well [66].

 25

Unlike the Diffamation System I use a scrollable storyboard in DARLS instead to enable

the user to access all versions. In DARLS, the storyboard can be thought of as time slices

(along with the side-by-side views discussed above).

2.1.6 Generic and UML Diagram Differencing and Merging

Difference visualization is also used in software engineering, typically for UML diagrams.

Software engineering research on UML model versioning is extensive, e.g., [3,62,79,116].

However, this work focuses more on theoretical foundations, efficiency, robustness, and

correctness. Often, the work is backed up by case studies using evolving software projects.

Such work is typically not concerned with user interface issues, a gap that I am trying to

address. Visual comparison of UML diagrams is rarely investigated. Nonetheless, Förtsch et

al. [37] presented a survey on differencing and merging of software diagrams and listed

requirements for UML diagram versioning tools. One of the main requirements identified is

a user-friendly representation. They also point out that it is desirable for diagrams to be

displayed side-by-side with differences marked graphically. If not enough space is available,

a unified diagram may be constructed instead. Ohst et al. [82,83] introduced a unified

document approach that highlights common and specific parts of two diagrams.

Girschick [38] introduced a similar system using a unified approach, where eight colors were

used to visualize eight different types of changes in class diagrams. As part of the work on

the Pounamu system [74], the authors conducted a user survey and got positive feedback for

response time for their difference visualization, the support for incremental changes,

merging, and the overall support for diagram-based design activities.

A single unified diagram for graph comparison was studied by Dadgari et al. [26]. They

evaluated multiple graph differencing and merging techniques qualitatively with a

questionnaire. A translucent layer approach was preferred for the simple examples they

considered. Shireen et al.’s [97] conceptual prototype of a user interface for parallel work

with design alternatives included a difference visualization.

 26

Ohst’s approach, where graphs are displayed side by side with differences marked,

influenced my decision to try side-by-side views for diagram versioning in DARLS. Most

mentioned approaches for UML diagram differencing are applicable to other forms of node-

link diagrams and graphs. This is why in DARLS, differencing of generic diagrams is also

supported in addition to UML diagrams. In contrast to Dadgari et al.’s work in DARLS, I

present a side-by-side approach for graph differencing. DARLS displays two versions of a

diagram side-by-side with differences marked appropriately, even if a node was moved. The

system offers functionality to re-layout one version of the diagram relative to the other with

stable node positions between the two versions. Moreover, DARLS offered the ability to

accept/reject individual changes to facilitate reconciliation. In Shireen et al.’s work, they

only showed nodes that are common. Also, they employed a concept of dragging of nodes to

reveal them for editing. Yet, dragging of objects has a different meaning in GUIs and does

not scale to multiple alternatives. MACE extends Shireen’s concept and previous work on

layering by emphasizing (un)changed, added or subtracted nodes and edges using

highlighting as in e.g., [38] and [82]. MACE also supports nested group nodes. To reveal

(common) nodes that are omitted from the visualization, I present a new “reveal-to-edit” user

interface technique. In summary, most previous work addresses the problem of showing

pair-wise differences reasonably well. Animation and small multiples are used for visual

comparisons of more than two DAGs. This is only effective for content that has evolved

linearly, such as in DARLS. None of these approaches can handle the visual comparison of

up to 20 data-flow networks that have evolved non-linearly or in parallel as in GEM-NI.

Moreover, none of the above approaches supports editing in a difference visualization mode.

2.2 Graphical Operation History

According to Shneiderman [98], history mechanisms can play an important part in the design

process, supporting iterative analysis by enabling users to review, retrieve, and revisit

visualization states. Many recent systems provide history-keeping mechanisms in the form

of a timeline [63]. Moreover, history tools can help users to create reports or presentations,

 27

facilitating communication. When interactive [33], graphical histories can amplify the

exploration capabilities of a system. Users then can not only go back in time [44] and defer

decisions [114]; they have a mechanism to try out variations [107] by creating revisions [23]

and versions [32,67] of the timeline. Heer et al. [54] and Grossman et al. [44] together

provide a comprehensive survey from an HCI perspective. Here I focus mainly on works that

employ time sliders, graphical histories and histories of diagrams, as they are most relevant

to histories that can be used in variational design.

One of the earliest examples of graphical history is Chimera [66], which features an

editable graphical history through panels depicting the results of each user operation.

Chronicle [44] is a sophisticated system for exploring a document’s history via a zoomable

and track-based video playback metaphor. The Diffamation System for text version

differencing [25] employs a time slider that permits the user to explore differences over time.

Diffamation [25], a system for text version differencing employs a time slider that permits

the user to explore differences over time. Su [104,105] presented new pictorial visualizations

for the operation history of 2D vector illustrations as interactive storyboards.

GEM-NI keeps a history for each alternative and maintains it during cloning or a new

feature that permits (non-destructive) resurrection of past states as new alternatives through a

simple GUI that enables the user to scroll through previews of past states or to select specific

operations.

2.3 Design Space Exploration

Woodbury and Burrow [115] argue that design activity is well-modeled by a network

structure. This network reflects the strategies and structure of the designer’s exploration.

They introduce the notion of design hysteresis, which points out that insights are discovered

not just by explicitly visiting parts of a design space, but also through re-combination of

visited alternatives in said hysterical design space. The term hysteresis refers to the lagged

entry of an effect into a system. There, information needed to form a state exists in prior

discovered states, which causes said lag. Design Galleries [73] explores the hysterical design

 28

space by automatically generating and organizing variations of graphics or animations

produced by a parametric model. Ma [72] introduces an interactive and dynamic graph

representation of a database, which represents relationships between nodes, and argued that

this type of visualization enhances the user experience in exploring the data. It presents

multiple views of the data such as a local, global and summary view. Jankun-Kelly and

Ma [60] introduce a 2D spreadsheet data visualization for multi-dimensional database

exploration. Terry et al.‘s Parallel Pies [107] enhance the user experience in generating and

comparing alternatives by displaying several alternatives of a model simultaneously. The

system enables variation and alternative generation by changing the parameters. Lunzer and

Hornbæk [70] propose a novel subjunctive interface where GUI elements can assume

multiple states simultaneously. The three design principles on which the subjunctive

interface is built on are as follows:

• enable setting several, perhaps totally different scenarios independently;

• display multiple scenarios simultaneously to facilitate comparison;

• synchronous adjustment of multiple scenarios to escalate the exploration process.

The authors realized these principles by presenting an interface with multiple sliders for each

parameter with multiple handles each representing a different input value for the respective

parameter resulting in multiple scenarios. Experimental results indicated higher user

satisfaction, and shorter (up to 27%) task completion times. For this, they propose an

interface with several multi-state sliders for each GUI element parameter.

Sheikholeslami [96] implemented the Dialer interface in Bentley Systems’

GenerativeComponents. This interface is used for interacting with the hysterical space. The

Dialer comprises concentric interactive rings where each ring represents one parameter and

the divisions of the ring correspond to the explored values of that parameter. The outermost

ring illustrates the items of the hysterical space. This is a compact visualization, but limited

in the number of divisions that can be displayed and the number of parameters that can be

visualized.

 29

GEM-NI provides for design space exploration through an interactive design gallery to

explore changes to both the parameters as well as the structure of the generative model. This

interface improves previous work [96], by enabling users to select which parameters and/or

parts of the generative network to use for populating the design gallery. Moreover, the

design gallery of GEM-NI also supports ranges, in addition to sets, and network

substitutions. Furthermore, I added the ability to create new alternatives from the product of

generative networks. GEM-NI is the first system that does this allowing designers to explore

the design space more quickly and widely than with other approaches. I believe this is a

great addition to the design space exploration tools in GEM-NI.

2.4 Interacting with Alternatives

Minimal support for alternatives is found in industry tools such as Autodesk’s Showcase and

Dassault Systèmes SolidWorks ([113], pp. 276-277). Both focus mainly on supporting

alternatives through configuration management, alternative lineup features and side-by-side

spreadsheet-like user interfaces. CATIA by Dassault Systèmes shows alternatives in

Catalogs, a static gallery of assemblies and parts. It does not support interactive exploration.

Work on subjunctive interfaces [70] introduced interaction techniques for side-by-side

exploratory analysis. Their system supports viewing and editing of parallel parametric

models with a multi-handle slider user interface.

Terry et al. [106] presented techniques to better support systems for parametric

variations; side views – an on-demand command preview, the parameter spectrum – a

replacement for the traditional slider control to display a range of possible results, and the

design horizon – a complementary design space visualization.

In contrast to Heer et al.’s work [54], which describes branching history as a way to

remember operations that have been undone, Terry et al. [107] describe undo as a tool for

reflection-in-action, in other words, for exploring variations. In their Parallel Paths, when

users duplicate a particular variation, its lineage is also duplicated. The copied history

enables users to create variations after applying a command: when a result is not what was

 30

anticipated, but still worth keeping, users can duplicate the current state then non-

destructively return to a previous state. They call this function skating. Skating also reduces

ambiguity when working with multiple variations in the same workspace. The Parallel Paths

model was implemented in Parallel Pies, a user interface for image manipulation that also

supports side-by-side comparisons. GEM-NI supports a number of ways to create

alternatives. In GEM-NI, I introduced a new method for creating alternatives from a

graphical history via skating with support for lineage duplication, where previous states can

be accessed and instantiated non-destructively. The method is the first of its kind in

generative design and improves over previous work by providing previews.

Hartmann et al.'s [53] Juxtapose presents a parallel code editor and a runtime parameter

tuning environment for exploration of interaction design alternatives. The system enables its

users to write sets of programs that can be executed in parallel. When alternatives are linked,

any block of code written in one alternative is shared among the rest. The idea of being able

to work with multiple linked programs is very exciting, but requires strong coding skills.

Bueno et al. [20] propose a technique for managing variations and explorations of a design,

via the metaphor of rewriting history. They demonstrate this by enabling users to change the

design’s history, with common use cases of merging, generalizing and specializing.

Alternatives, together with revision control, change tracking and annotations, feature in

the design of the d.note tool [52]. In d.note, users can introduce alternatives, represented by

duplicating the original state and visually encapsulating both the original and alternative.

Smith et al. [102] conducted a user study on computational sketching tools. For this, they

compared the effects of three interaction models for working with design alternatives in the

early design stage: a tab interface, a layered canvas, and spatial maps. They found that

spatial maps better support idea reflection, as they permit side-by-side comparisons.

Shireen et al. [97] presented a conceptual prototype, a “sketch”, of a user interface to

enable parallel generation and editing of design alternatives as an extension to existing

variational CAD tools. It includes a dependency graph to enable simultaneous work on

multiple design variations and difference visualization for alternatives.

 31

GEM-NI enables interaction with multiple alternatives through parallel editing, history

keeping, cloning, support for non-destructive resurrection, and new methods for easy

management of alternatives. Parallel editing has been previously used for managing

duplicated code in Codelink [108]. To enable designers to reuse their work more easily,

GEM-NI adds a new method for post-hoc merging of (parts of) divergent alternatives.

Moreover, GEM-NI is the first system to realize concepts proposed by Shireen et al. and to

improve and extend this work in several ways.

2.5 Multi-Monitor User Interfaces

Many studies have investigated the effectiveness of large or multiple monitors in comparison

to small or single screens. Grudin [45] emphasized the need to partition our digital world. He

conducted a user study with various multi-monitor configurations and observed, among

other things, that participants use one monitor for their primary task and treated a second

monitor as additional space.

Ball and North [13] analyzed the use of a large 3×3 tiled display in a longitudinal study.

They identified a decrease in cognitive load in specific tasks due to the possibility of

glancing at secondary information. Another example of decreased cognitive load is viewing

large images and/or visualizations, due to the reduced need for navigation. With a large

display there is no (or less) need to navigate, as the entire data set might be visible. After

using the system for some time, users tended to dedicate certain regions of the screen for

particular applications, such as e-mail, and then rely on spatial memory. The benefits of

spatial memory were already explored in Robertson’s Data Mountain [88].

Andrews et al. [5] examined how increased space affects the way displays are regarded

and used for cognitively demanding sense making. Their work demonstrated how the spatial

environment supports sense making, by providing both external memory and a semantic

layer. With naïve users, they found a number of key behavioral differences suggesting a

multi-monitor workstation to be more useful. With professional analysts, they identified

clear evidence for users using the additional space both as a form of rapid access external

 32

memory and as an added semantic layer in which meaning was encoded in the spatial

relationships between data, documents, display, and analyst. Andrews et al. claim that even

though the task was specific, the actual activities that they observed were primarily reading,

identifying important information, categorizing, and arranging; common tasks across many

domains.

Bi et al. [16] conducted three controlled experiments to investigate how interior bezels on

tiled-monitor large displays affect user performance and various tasks. They concluded,

among other things, that tiled-monitor large displays are suitable for visual search tasks.

However, if high accuracy is required, objects should not be placed across bezels. Bi et al.

[18] also conducted a longitudinal diary study of a very large display (4.88m×1.83m) in

comparison to single and dual monitors. The participants performed 3D modeling and

graphical drawing activities in addition to a typical daily task. They found a strong

preference for the large display. A subset of participants reported mentally partitioning the

screen real estate into focal and peripheral regions when managing various windows. All

participants tended to use more windows on the large display because it improved their

workflow for complex, multi-window tasks, such as programming and graphic drawing.

Guided by these results, Bi et al. [17] designed a set of interaction techniques that provide

greater flexibility in managing multiple windows. Their Spread technique is of particular

interest to the context of my work. A primary document is placed at the center and

surrounded by supporting ones in a tiled layout.

Multi-tiled visualizations have been proposed in the past. The following two are some of

the examples: one early and one latest. Sandstrom et al. [92] presented the hyperwall, a

visualization cluster that uses coordinated visualizations for interactive exploration of

multidimensional data and simulations. Beaudouin-Lafon et al. [15] presented a multi-

surface interaction system for large datasets. It enables multiple users to easily and

seamlessly create, share and manipulate digital content. Some of the uses for the system

were identified to be comparison of large number of related images and juxtaposition of a

variety of heterogeneous forms of data.

 33

Based on the above-mentioned findings and with the intent of reducing window

management overhead further, I designed GEM-NI to use a tiled user interface that presents

many alternatives simultaneously in a tiled arrangement. My new user interface uses the

structure of the tiled multi-monitor display and facilitates designation of particular monitors

for particular functions. My space redistribution feature is a generalization of the Spread

method of Bi et al. [17] to tiled display arrangements. And the extension of the MACE

interface for multi-tile visualization is a form of enhanced juxtaposition for the purpose of

comparing multiple alternatives.

 34

Chapter 3
The Effect of Animation, Dual View, Difference Layers, and
Relative Re-Layout in Hierarchical Diagram Differencing

Figure 3-1. DARLS showing two versions of a diagram, which visualizes course pre-
requisites for an undergraduate computer science program. The visualization shows a

difference layer and uses the relative optimal re-layout.

3.1 Motivation

A number of algorithms and interaction techniques have been proposed for effective

dynamic graph visualization. Recently, user studies were conducted to evaluate these [8,9].

However, these user studies focused on generic graphs where attribute values associated

with nodes or edges are irrelevant. Only a small fraction of research addresses diagrams

where nodes in the graph are identified by name, see Purchase et al. [86]. Also, dynamic

graph visualization research primarily targets differencing alone, and to my knowledge, no

 35

previous quantitative research exists on visualizations that support merging of diagram

versions.

To address these shortcomings, I introduce a system for differencing and merging

diagrams, that makes use of Dual View, Animation, Re-Layout, Layers and a Storyboard,

abbreviated as DARLS. The system is targeted at diagrams with node and edge attributes.

Such diagrams are used frequently in architecture, design, information and concept

visualization, and in software engineering, i.e., software documents such as UML diagrams.

For example, the system can be used to track the evolution of class dependency diagram

over releases, a particular course in the prerequisite visualization, or to visualize the

evolution of any diagram in general. It also can be used to merge versions of a diagram and

to perform selective undo.

3.2 The DARLS System

I developed a new system capable of versioning and visualizing differences between

diagrams with a number of techniques. Nodes and edges are disambiguated with unique

identifiers. The system currently supports differencing and merging of generic and UML

class diagrams. It was implemented in Java using the yFiles18. To illustrate the user interface,

see Figure 3-1, where I use two versions of a course prerequisite diagram from two

subsequent years as an example.

3.2.1 Accessing Versions and Navigating the Views

The system features side-by-side views of two versions of a diagram. Zooming with the

mouse wheel and panning with the scroll bars is synchronized between the two main views.

Buttons on the panel allow toggling between the editing and selection modes. Diagram

repositories are accessed through the file menu. Both side-by-side graphs can be edited and

committed back into the repository. The user can directly access ten versions of the diagram

in the scrolling storyboard. Any version can be compared against any other version in a

18 http://yworks.com

 36

repository. Selecting a version from the storyboard and clicking on the arrow button pointing

to the desired view loads a version into that view.

3.2.2 The Difference Layer

Here, the differences between the two diagrams in the side-by-side views are visualized

using a transparent underlay pane in the background of either view, which shows the other

diagram. I call this a difference layer. This is similar to previous work on single-view

differencing [26], but different from Pounamu [74], which uses also a single merged view,

yet where the objects common to both compared diagrams are not shown. My difference

layer is also different from difference maps [8], as it displays the common nodes and edges

between two versions, even if a node was moved. The rationale is to also enable

accept/reject of node movements. A configuration dialog accommodates different color

schemes. If the visualization gets too cluttered, the types of objects displayed in the

difference layers can be customized, or they can be disabled completely.

By default, all missing nodes and edges for a diagram are shown in neutral transparent

grey in the difference layer. See e.g., COMP 3212 in the right view in Figure 3-1. Nodes that

are common to both diagrams but shifted, resized, or morphed are visualized with reduced

transparency, e.g., MAST 2090. This implicitly visualizes all differences between the

diagrams, as deleted nodes show up semi-transparent in the right diagram and changed nodes

are visualized with reduced transparency.

Moreover, if the user selects a node in the right view, the corresponding node in the left

view is shown selected as well, with different styles depending if the node exists in the other

diagram. The user can customize this, so that either the node on the foreground and the

difference layer is selected, or only the node on the foreground of the left view is selected.

Nodes in the difference layer in the right view also can be selected by clicking. This is used

for version merging see the next section. Also, everything described applies to edges as well.

 37

3.2.3 Version Merging using Selection

The ability to accept and reject graph edits was previously presented in Pounamu [74]. In my

system, a context-sensitive right-click menu provides easier access to this functionality. See

the popup next to COMP 3211 in the right view in Figure 3-1. In my system, a reject

operation can undo the creation or deletion of nodes and/or edges, shifting, and morph/resize

operations on nodes. For example, if the user “rejects” the change in Figure 3-1, node

COMP 3211 and its adjacent edge connecting to node COMP 2021 will be re-instantiated in

version 14. As other nodes are also selected, COMP 3530 will be re-instantiated and MAST

2090 will be shifted down to the same location as in version 13. Figure 3-2 shows the state

of the diagrams after the reject operation.

Figure 3-2. The state of the diagrams after the reject operation in Figure 1 is invoked.

3.2.4 Animation and Other Techniques

When the play/pause button is pressed in the top panel the differences between the diagrams

in the two views are animated in three phases. First, removed objects fade out, then moved

objects are shifted from the old to their new locations with morphed changes in shape and

color, and finally new nodes and edges fade in. The sequence and concurrency of these

events can be customized. Also, the system can highlight new nodes and edges with another

distinct color (blue by default), once all animations end, to assist the user in identifying

changes. Nodes that changed labels, such as COMP 3201/ENGR 3201, have a call-out added

for the change. An additional option gives access to an animation where new nodes and

 38

edges blink in a distinct color (red by default), once the first animation ends. Previously,

Plaisant et al. [85] proposed decomposing animation in their SpaceTree system into three

steps: trim, translate, and grow, which is similar to my method. Heer et al. [55] demonstrated

that staged animations are favored over “all at once” animations for statistical visualizations.

3.2.5 Relative Graph Re-Layout

As more nodes and edges are added to later versions of a diagram it may get difficult to

differentiate and merge different versions, even if the user has access to all provided

features, as the layout of the graph may have changed (too) much. Therefore, I added an

option to interactively re-layout a diagram relative to another to minimize visual differences

between them. I implemented two relative re-layout algorithms: incremental (Figure 3-3a),

which preserves the locations of nodes, and optimal (Figure 3-3b), which rearranges nodes to

better use the screen space and minimize edge crossings. The optimal layout thus minimizes

the need for zooming and panning. Through this, the algorithm creates a visual “rhyme” that

may help the user to better understand the structure of the dependency graph. Both layout

methods keep the positions of nodes and edges common to both diagrams stable and thus

preserve the mental map. I based my implementation on the hierarchic and incremental

hierarchic layouters in yFiles and adapted these to my diagram-differencing task as follows.

By default, I re-layout the left diagram relative to the right because I assume the diagram

in the right is the latest version. The incremental re-layout algorithm first adds all nodes

from the left graph that are missing in the right graph, to that right graph to generate a

composite graph. It then partitions space into horizontal lanes and fixes the positions of the

common and newly added nodes. The remaining nodes are assigned to these lanes so that the

number of edges pointing upward is minimized, while keeping the edges short. Then these

nodes are arranged within their lanes so that the number of edge crossings is also minimized,

and finally, they are arranged to minimize edge bends. Then the layout of the composite

graph is copied to the left and right graphs, but only for those nodes and edges that “belong”

to the respective graph.

 39

The optimal re-layout algorithm is similar to the one described above but with two

differences: nodes are not fixed in place and node and edge placement heuristics can be

specified through a menu. Figure 3-1 demonstrates two diagrams where optimal re-layout

was performed. Please note that COMP 2021 and MAST 2090 were manually raised higher

after the re-layout.

Currently, there is no propagation effect to keep the layout consistent across versions if

merging or other editing occurs.

(a)

(b)

Figure 3-3. (a) Incremental layout, (b) Optimal layout.

 40

3.2.6 Differencing UML Class Diagrams

Figure 3-4. Differencing UML class diagrams.

DARLS also allows UML class diagrams differencing. Here I used text differencing

techniques (strikethrough and underline) as well. Changes in association type, such as from

aggregation to composition, are visualized by highlighting edges in a different color. Classes

common to two diagrams are shown in one color, newly added ones – in another. Colors can

be customized and changes can again be animated. Deleted classes are displayed in the

difference layer with reduced transparency. New attributes and methods are highlighted in

red and underlined. Deleted ones are crossed out. The user can customize the differences to

be displayed in either view or both. Figure 3-4 demonstrates differences displayed in the

right view. Currently, my system can visualize class diagrams generated from any Java

application, with the help of a freely available UML diagram extractor.

3.3 User Studies

I ran two user studies on the new system. Both revolved around diagram differencing using

the techniques described above. There were a number of goals for the studies. The primary

 41

goal was to investigate the fitness of difference layers for diagram merging. In contrast to

previous work [26], I also wanted to quantify the user performance of diagram differencing

techniques. I also wanted to investigate the incremental and optimal re-layout techniques.

Finally, I wanted to confirm the validity of the proposed requirement by Förtsch et al. [37],

which states that diagrams should be displayed side-by-side with marked differences.

A secondary consideration was that the study by Archambault et al. [9] was performed

on graphs with no node or edge titles. Moreover, participants had to answer multiple-choice

questions, instead of asking participants to select nodes and edges directly. This effectively

removed any visual search time. The authors argued that such questions are preferable as

animated nodes may move rapidly, which would disadvantage some layouts. Therefore, and

as confirmed by the authors, their results cannot be generalized to tasks that involve named

nodes. I wanted to address this limitation, as named nodes are important in many

applications. The unenhanced dual view technique in my first user study targets this visual

search time issue.

Previous studies also investigated effects globally across multiple versions of a graph by

displaying everything simultaneously. My new difference layering technique compares only

two versions of a diagram. With my incremental layout the locations of nodes remain stable

across different versions. Hence, I investigate the effect of presenting the version pairs

sequentially in this condition, to see if participants can better trace the evolution of the

graph. In the first user study, I also ask participants to select nodes and edges, as I want to

observe how the techniques affect the understanding of the variations in layout. Finally,

unenhanced side-by-side text differencing is tedious and I wanted to investigate if this is also

true for diagrams.

3.3.1 The Diagrams

In both studies I used versions of a diagram, which depicts the evolution of a subset of

course prerequisites in Computer Science program at York University over the past two

decades. This is a classic real-world application for diagram evolution. I excluded almost all

 42

instances without a change in prerequisites, but kept one to serve as a control. In total, I

ended up with 12 versions of the diagram. From among these I selected a set of six version

pairs, which cover all qualities, such as the magnitude of change in the number of nodes and

edges: 1→3, 3→4, 4→5, 5→8, 8→10, 10→12. For brevity, I will refer to them as pairs 1 to

6 from here on. The second pair did not have any changes and is designed as a control. The

diagrams appearing in the left view had on average 26.5 nodes (δ = 1.52) and 23.66 edges

(δ = 1.21), and 27.33 nodes (δ = 1.21) and 24.17 edges (δ = 1.47) in the right. Figures of

diagram pairs for both optimal and incremental layouts are included in Appendix A. Videos

of the tasks are available at the DARLS website19. As I wanted to focus on the understanding

of graph structure, I did not include changes in node titles in the studies.

3.3.2 Statistical Models

Analysis of variance (ANOVA) is a collection of statistical models and their associated

procedures, in which the observed variance is partitioned into components due to different

explanatory variables. In all the analyses that appear in this chapter, I used a repeated

measures ANOVA model with significance level of 0.05 (α=0.05), i.e., a chance of 1 in 20

of making a type I error, i.e., incorrectly rejecting a true null hypothesis. This is the norm for

the field of Human-Computer Interaction research. The result of an ANOVA is based on the

F statistic, named after Sir Ronald A. Fisher, and the corresponding probability value p. If a

test of significance gives a p value lower than the α-level, the null hypothesis is rejected.

Such results are informally referred to as “statistically significant”. The Tukey–Kramer

method is a single-step post-hoc multiple comparison procedure and statistical test generally

used in conjunction with an ANOVA to identify which means are significantly different

from one another. It compares all possible pairs of means and identifies where the difference

between two means is greater than the standard error would be expected to allow. In my

analyses we used the Tukey-Kramer post-hoc test to reveal groupings, whenever the

ANOVA results were significant.

19 http://sites.google.com/site/thedarlssystem

 43

3.3.3 Participants

Sixteen participants (five females) were recruited for both studies. The participants were

between 18 and 35 years old with an average of 23.82. Four participants were left-handed

but all chose to use their right hand for the experiments. Seven participants indicated that

they were aware or had previous experience with text, diagram, source code differencing, or

versioning tools. One participant used them regularly. None of the participants had previous

experience with DARLS. None of the participants were color-blind or had difficulty reading

small text. Participants reported an average of 6.1 hours (δ = 2.8) of daily mouse use.

All participants performed both studies in counterbalanced order, but due to an

implementation issue, the data for the first four participants in the second study had to be

discarded.

3.3.4 Apparatus

The user study was conducted using a high-end laptop with a USB wheel mouse and a 22”

external display at 1920×1080 in full-screen mode. All events, timings and responses were

logged.

3.3.5 Pilot Study

In a pilot study, I asked four unpaid participants to select objects that were added in a newer

version of the diagram, similar to User Study I below. The results indicated that the dual-

view condition without layering was the slowest overall. Direct change highlighting was the

best, but here the task degenerated to selecting all highlighted targets, without requiring any

understanding of the diagram evolution. Hence, I removed this condition from User Study I.

This may limit ecological validity, as one wants the system to highlight differences, but I am

unaware of a good way to avoid this degeneration issue in experiments.

I also observed that when participants did not read the node labels, certain tasks became

unsolvable. A good example is the unenhanced pair 4 in the optimal layout, where the added

MAST 1090 node was often confused with the deleted MAST 2090 node due to both nodes

 44

appearing at the same level next to each other and having the same number of edges. As the

result, some participants could not identify the change. Hence, I instructed participants to

carefully pay attention to node labels in the studies.

3.3.6 User Study I

This user study investigated how different visualization techniques help in understanding the

evolution of diagrams with matching layout. At any time, two versions of a diagram were

shown and participants were asked to select all nodes and edges that were added to the newer

version relative to the older one.

3.3.6.1 Experimental Design

I used a 4×2×6 repeated measures design (4 differencing techniques, 2 layouts, 6 version

pairs). The four tested differencing techniques were single view with animation, single view

with toggling between versions, dual view with difference layer, dual view without

difference layer. The layouts used were incremental and optimal. In the incremental

condition, I used the layout as created by the original designer of the diagrams and only re-

arranged changes incrementally while keeping the original node positions. As the original

layouts were created manually in an incremental fashion, the node positions for any pair

matched in sequence. The optimal method re-arranged the whole layout and the settings for

that method are summarized on the DARLS website.

The intent was to compare four distinct differencing techniques in a use case with

matching node positions, while also investigating the effect of layout techniques. Especially

in the dual view technique with no difference layer, no visual aids were available to

participants, and any effect of layout should thus be most prominent in this condition.

3.3.6.2 Procedure

When the experiment started, all layouts for all version pairs were calculated and the zoom

level was set so that zooming and/or panning was not necessary. In fact, it was disabled to

remove a potential confound. This also guaranteed consistent size of nodes and edges across

 45

all layouts and diagrams. In the incremental layout condition, I presented pairs sequentially

to allow participants to trace the evolution since this is complimentary to fixing the node

positions. Otherwise, version pairs were presented randomly without replacement to combat

learning effects. Technique and layout were also counterbalanced, but I blocked the order of

techniques to reduce participant confusion.

In the single-view animation condition participants were asked to click on the nodes and

edges that were new to the latest version of the two diagrams displayed. Participants could

click on an object again to toggle selection. Moreover, a “deselect all” button was available

in the top panel. Rectangle and lasso selection methods were not available to limit the effect

of different experience and/or selection strategies. For the animation condition new nodes

and edges were faded in and the deleted ones faded out automatically upon first display. A

re-play of the animation happened whenever the users pressed the <Left Arrow> key.

Pausing was not provided due to the short animation duration. Selection of nodes and edges

was enabled even during the animation. During the pilot study all animations lasted about

2 seconds, and users found this duration appropriate. In all single-view conditions only the

right view was used and nothing was displayed on the left side. At any given time, no more

than 12 objects were animated (see the DARLS website for details).

In the single-view toggling condition, holding the <Left Arrow> key down switched the

right view to display the previous version of the diagram. Just like in the animation

condition, participants were allowed to toggle between versions as many times as needed.

Participants were instructed to select new nodes and edges when the newer version was

displayed. The dual-view without difference layer condition was basically the dual-view

equivalent of single-view toggling. The two versions of the diagram were displayed side-by-

side and participants had to select the new nodes in the right view. The dual-view with

difference layer condition featured a difference layer in both views, which illustrated all

differences. Since the positions of common nodes matched due to the relative re-layout, only

added and deleted objects were displayed on the difference layer. Moved, i.e., shifted nodes,

were excluded. When the participant clicked on any object in the right view, which was

 46

visible in the difference layer in the left view, the selection state was also shown on that left

view.

Participants were asked to press the <Right Arrow> key when they thought that they

were done with the task. If the current state did not match the expected result, the window

blinked red and a sound was played. Participants would then have to modify their selection

and submit the result again. I logged every such attempt. The submit key was disabled unless

at least one change to the selection was made to prevent abuse of this feature. Based on

observations from the pilot and if a participant was not able to complete the task within 2

minutes, the right side view would blink in yellow, a different sound would play and the next

task would start. If a participant selected everything correctly, the right view would blink in

green upon the key press and the next task would start. Whenever there was a change in the

differencing technique an appropriate message box would pop up with instructions.

Participants were allowed to take a break during that time. Logging only resumed once they

clicked the <OK> button.

In the pilot study, I found that it is important to inform the participants before the study

that there be could a situation when there is no change in the diagram, such as version pair 2,

and I informed participants accordingly. I also stressed in the initial training that common

nodes always had matching positions.

3.3.6.3 Results

No ordering effects were observed. For brevity, insignificant results or groupings are

reported only selectively below. The main effects of differencing technique,

F3,45 = 104.06, p < .0001, and version pairs, F5,75 = 53.15, p < .0001 on task completion time

were significant. The layout factor was insignificant, F1,15 = 0.03, ns. There was also a

significant interaction between differencing technique and version pair,

F15,225 = 6.93, p < .0001 and layout technique and version pair, F5,75 = 14.90, p < .0001. The

interaction between differencing technique and layout was not significant,

F3,45 = 1.18, p > .05, thus any hypothesis about the potential effect of layouts was not

confirmed.

 47

Figure 3-5. Mean time in seconds and error rate for the techniques in User Study I.
Error bars: ±1 SE.

A Tukey-Kramer analysis revealed that dual view with no difference layer was

significantly slower (average 65.5 s) than any of dual view with difference layer (18.3 s),

toggling (21.4 s) and single view with animation (23.3 s). See Figure 3-5 (left). Another

Tukey-Kramer analysis was performed to detect version pair groupings. Pair 2 (10.7 s), i.e.,

the unchanged one, was the fastest and different from the group of pairs 3 (21.4 s) and 5

(30.3 s), which again was different from the group with pairs 1 (50.6 s), 4 (50.7 s) and 6

(43.7 s). An analysis on the interaction between differencing technique and version pairs

revealed that the dual view without differences was slowest overall, except for pair 2.

A Tukey-Kramer analysis on the interaction between layout technique and version pair

revealed no difference between incremental (6.1 s) and optimal (7.2 s) layouts on pair 2, the

one without differences. However, pair 6 showed a marked interaction effect. Here,

incremental layout was significantly slower (40.2 s) than the optimal one (30.9 s). To

investigate this in more detail, I analysed the frequency of false negatives for each of the two

layouts. I found that for the incremental layout of pair 6, the top-ranked false negative nodes

were COMP 3403 (64 counts), COMP 3481 (47) and COMP 3214 (45). The same nodes in

the optimal layout were also ranked at the top, but with exactly 12 counts each. The top-

ranked false negative edges in the incremental layout were: COMP 2031→3215 (40 counts),

COMP 3213→ 3481 (32). The same edges in the optimal layout were also at the top and had

Animation TogglingDual viewDiff. layer

70

10

20

30

40

50

60

0

Differencing Technique

M
ea

n
Ti

m
e

Animation Diff. layer Dual view Toggling
0.0

0.5

1.0

1.5

Differencing Technique

M
ea

n
E

rr
or

s

 48

counts of 21 and 28, respectively. I did not perform the same analysis on false positive nodes

and edges due to insufficient sample size.

I used the number of “submit” attempts as a measure of error rate. For these, the main

effect of differencing technique, F3,45 = 25, p < .0001 was significant, but layout was not,

F1,15 = 0.06, ns. Tukey-Kramer revealed that dual-view with no difference layer had the most

attempts (1.16) on average, which was different from the group of dual view with difference

layer (0.23), toggling (0.43), and animation (0.43). See Figure 3-5 (right).

3.3.6.4 Feedback from Participants

Participants were asked to rank each of the four diagram differencing techniques on a Likert

scale from 1 to 7 (7 being the best). The results are summarized in Figure 3-7 (left).

In freeform feedback I received several interesting comments. One participant pointed

out that when the conditions changed, it took a few trials to get used to the new one, despite

the explicit instructions on each condition change. Another stated that the greyed-out objects

in the difference layer “caught his eye”, but that he found animation confusing. Yet another

identified the dual-view condition without a difference layer as particularly hard, but got

only gradually used to the difference layer visualization. One participant pointed out that

toggling was somewhat confusing. Another participant said that the dual view with the

difference layer was the easiest to use, as it was easier to see what was missing. The same

participant also stated that toggling made it easier to identify missing parts and animation

was sometimes confusing. Another found animation more difficult as he kept choosing the

nodes that were removed instead of the new nodes.

3.3.6.5 Discussion

Dual view without difference layer was the slowest technique, which is not surprising.

Similar to text differencing, showing two versions side-by-side does not make it easy to spot

differences. On the other hand and as underscored by the pilot, highlighting differences

makes identifying them easy, but helps little for understanding changes. Overall, the results

illustrate that toggling and animation are good techniques which are well liked, but not by

 49

everybody. For example, I noticed that some participants got confused about which state

permitted selection in the toggling condition. This was also reported in the feedback.

No significance was found for the layout factor. Thus, presenting pairs sequentially with

incremental layout either did not help or had only an insignificant effect. The effect of

differencing techniques on layout was also insignificant. The significant interaction with the

version pairs indicates that rigourously preserving node positions may even be detrimental to

understanding diagram evolution. One issue is that this can cause node overlap, which leads

to participant complaints. However, diagram creators may need this option, so it cannot be

discounted completely. To investigate the interaction of layout and version pair, I took a

closer look at pair 6 diagrams and found that participants missed the same nodes and edges

more often than any other pair in both layouts. However, the frequency of misses was much

higher with the incremental layout. The two most frequently missed nodes had no edges

attached. In the optimal layout, these two nodes were placed in a very conspicuous cluster at

the bottom. For edges the same pattern was observed. I speculate that the longer average

edge length in the incremental layout and/or more edge crossings and/or the absence of edge

bridge connectors resulted in higher miss rates. Yet, this may also point to fundamental

limitations of incremental layout techniques.

In hindsight, I should have considered shorter animations. Transition intervals of 0.25 to

1s have been found insignificant in zooming interfaces [94]. This finding may apply to my

tasks, too.

3.3.7 User Study II

This user study compared two visualization techniques to identify shifted nodes in two

versions of a diagram with non-matching layout. Participants were asked to select nodes that

moved in the newer version of the diagram relative to the older version. Here, selecting

edges was not investigated.

 50

3.3.7.1 Experimental Design

I used a 3×2×6 repeated measures design (3 techniques, 2 node randomization levels, 6

version sets). The 3 tested techniques were single-view animation, dual view with difference

layer, and the combination of dual view with difference layer with animation. The

motivation for including the difference layer is the reject/accept technique in DARLS. Unlike

the first user study I did not include view toggling or unenhanced dual views as initial

evaluations showed that those conditions take too much time to be used in my experiment.

For this study, I first laid out each diagram with the optimal hierarchical re-layout algorithm

with the same node placement heuristics as in the first user study. Then I used a graph

randomization algorithm, which shifts a percentage of random nodes in random directions

while retaining a minimal distance constraint between nodes to prevent overlap. For

simplicity, my algorithm does not employ any node placement heuristics and does not

optimize for edge crossings or bends. However, I do not believe this is a major issue since

my goal was to simulate scenarios when a user rearranges nodes in a diagram, which may

generate substantial edge crossings. I shifted 22% or 44% of all nodes. I used the same six

version sets as in the first study. I also used the same randomization seeds for all layouts to

keep them consistent across participants. Counterbalancing was done similarly as in the first

user study.

The intent of the design was to compare my difference layer method with animation and

to see if participants would use my method if given the choice between the two. Initially, I

intended to include more randomization levels but in the interest of keeping the experiment

length reasonable I selected to use only two.

3.3.7.2 Procedure

Similar to the first user study, participants were allowed to select nodes while they were

being animated. The <Left Arrow> key was also available for (re-)playing the animation in

the single and dual-view animation conditions. The dual-view with difference layer

condition was the same as in the first study. I informed participants during the training

session that one possible strategy is to use the difference layer to match the selection of the

 51

nodes on the foreground in the right view with the reduced yellow color nodes on the

background in the left view. Pair 2 was the one with the no structural changes and had 28

common nodes. This means that at any given time no more than 28 × 44% = 12 nodes were

animated. In the combined condition, animation played automatically when new diagrams

were loaded to remind participants that they could use animation. All the remaining aspects

of the procedure were identical to the first user study.

Figure 3-6. Mean time in seconds and error rate for the techniques in User Study II.

Error bars: ±1 SE.

3.3.7.3 Results

No ordering effects were observed. The main effects of technique F2,22 = 11.08, p < .0005,

randomization level, F1,11 = 11.57, p < .001, and version pair, F5,55 = 4.15, p < .005 on task

completion time were significant. The interaction between randomization level and

technique was also significant, F5,55 = 4.94, p < .001. A Tukey-Kramer analysis revealed that

the difference layer alone (average 28.9 s) was slower than both animation (15 s) and

animation with difference layer (14.3 s). The 22% node randomization level (14.5 s) was

different from the 44% level (24.3 s), see Figure 3-6 (left). The error rate data in this

experiment was not normally distributed, therefore I decided to just report the averages, see

Figure 3-6 (right).

I used a Kruskal-Wallis test on the number of re-play key presses for both animated

conditions, as this data was not normally distributed. This identified a significant difference,

Animation Combined Diff. layer

Differencing Technique

10

20

30

0

M
ea

n
Ti

m
e

M
ea

n
E

rr
or

s

0.00

0.25

0.50

0.75

Animation Combined Diff. Layer

Differencing Technique

1.00

 52

H1 = 38.09, p < .0001. Animation alone had an average of 174 button presses while the

animation with difference layer had 114.

3.3.7.4 Feedback from Participants

Participants were asked to rank the techniques similar to User Study I. The results are

summarized in Figure 3-7 (right).

Figure 3-7. Participants’ ranking of the differencing techniques in User Study I (left),

User Study II (right). Error bars: ±1 SE.
Here are some of the most mention-worthy comments from the freeform feedback. One

participant stated that animation helped to see the changes and moving objects could be

identified even when he was not directly looking at them. Another participant found it

difficult in the difference layer condition to find a node shifted slightly because the

background node would be hidden under the foreground node due to overlap. Others pointed

out that nodes that moved a little in the animation condition were harder to identify as well.

Several participants said that for selecting the moved nodes it was easiest to use animation.

They also clicked on nodes as they moved. Relative to that they pointed out that the

difference layer method was harder to use, but still allowed one to check the “results” of the

animation. One participant found the animation speed a bit slow. Another participant said

that it would be nice to have a “shadowed” mouse cursor in the “dual-view” panel.

Animation Diff. layer Dual view Toggling
Differencing Technique

1

7

6

5

4

3

2

M
ea

n
R

an
k

Animation Combined Diff. layer

Differencing Technique

1

7

6

5

4

2

3M
ea

n
R

an
k

 53

3.3.7.5 Discussion

Although the difference layer method itself was the slowest, it still contributed positively

overall, as the combined method was both fastest overall, although not significantly so, and

most preferred. Another indication for the benefits of the difference layer is the result on the

re-play key presses. Also, and as revealed by the rankings, some participants found this to be

the easiest technique.

During the experiment, I noted that some participants were confused about how to use

the difference layer and were either trying to select objects on the background of the right

view or objects that were not different. This indicates that this method might not work well if

both views are fully interactive. On the other hand, I also saw that animation alone is not a

perfect solution to easily identify nodes that moved just a little. To investigate this, I

analysed all instances where participants failed to identify a moved node. For all 679 false

negatives, the average movement distance was 83 pixels while the median was only 69

pixels. A node in the experiment was 30×80 pixels large. Since the median is smaller than

the mean I can argue that participants had more trouble with nodes that moved less. This

indicates that none of the techniques are perfect in isolation.

3.3.8 Overall Discussion

In my first experiment where node positions matched, the dual-view technique with

difference visualization was the fastest technique overall and had the least amount of errors.

It was also ranked highest in terms of user preferences. In my second study with partially

non-matching node positions, animation and the combination with the difference

visualization technique was best.

It is not easy to compare my work directly with Archambault et al. [8,9], as many details

are different. But I do not believe that my findings contradict their work. The participants,

for example, also preferred the difference layers in the first study and made fewer errors with

them. However, the difference layer was not preferred in my second experiment.

Archambault et al. also stated in earlier work that a small number of timeslices (such as two)

 54

are not enough to represent the evolution of a graph adequately. My findings generalize this

insight to diagrams with named nodes.

Both of my layout methods were designed to preserve the mental map. The optimal

layout was based on aesthetics, but the incremental layout preserved the mental map more

faithfully. Hence, the incremental condition in the first study would show the effect of

mental map preservation best in my context. However, and as I did not find significant

effects of layout, this suggests that mental map preservation is not effective, similar to [9].

Heer and Robertson [55] found that animated transitions between statistical

visualizations work well and that staged transitions are preferred. Similarly, my first study

suggests that animated transitions in diagram differencing tasks are preferred.

Naturally, the results of the first user study are only directly valid for hierarchical

diagrams laid out top to bottom. My results may not generalize to other types of diagrams.

Many other factors can influence the results and I even observed an interaction between

layout and the version pair. On the other hand, I believe the results of the second study are

more generalizable, because they depend less on the layout technique.

3.4 Summary

In this chapter, I presented a new system for diagram difference visualization and

merging. It uses animation, dual views, a storyboard, relative re-layout, and difference

layers. I ran two user studies to investigate the benefits of the system and found that naïve

dual-view visualization is not desirable. The dual-view option with a difference layer was

most preferred for comparing diagrams with matching node positions. For diagrams with

non-matching positions, I found evidence that animation is beneficial, but that the

combination with a difference layer was liked best. In summary, I can say that my difference

layer technique is useful and is a good complement to animation. This has positive

implications for the diagram merging method introduced above. To better support dataflow

programming for alternatives, I re-implemented this method in GEM-NI. The findings of the

user studies here favour approaches that use a stable layout, which again informed their

 55

usage in GEM-NI. I also later adopted the difference layer with translucency technique for

difference visualizations in the subtractive encoding in MACE.

 56

Chapter 4
GEM-NI: A System For Creating and Managing Alternatives In
Generative Design

Figure 4-1. GEM-NI enables users to work with alternative generative designs

simultaneously. Specifically, GEM-NI provides tools to manage the set of alternatives
affected by edit operations, post-hoc merging of (parts of) alternatives, and several
ways to create new alternatives, such as resurrection of past states with full undo

lineage duplication or selection from an enhanced design gallery implementation. The
leftmost alternative is the original design and is active, the center one is passive, and the

rightmost one is idle.
In this section, I describe the GEM-NI system and my findings from its evaluations.

Using the example in Figure 4-1 I demonstrate the capabilities of GEM-NI. Imagine that

Ann, a designer, is tasked with creating a design for a book cover. To match the book

content, she initially selects the “Seed of Life” pattern and recreates it in GEM-NI, by using

three nodes (SAMPLE1, COORDNIATES1, CONNECT1) to create a circle. She then distributes

copies of the circle along the same circular path (SHAPE_ON_PATH1), Figure 4-1 left. As the

result does not seem complex enough, she goes back in the operation history and generates a

new clone from an earlier state. After some parameter variation, she arrives at the “Tube

Torus” design shown in Figure 4-1 center. Not entirely satisfied, she branches this design

 57

again to create a third, where she uses repeated polygons to arrange the circles in a more

complex pattern, the “Flower of Life”. She could also have initiated this design as a branch

from the history of the left-most design, which would then constitute a non-linear design

process. Next, Ann creates several more alternatives using the Cartesian product (not shown

in Figure 4-1) and uses individual and linked editing to tune the designs’ parameters and

manages them in the workspace. Throughout this, she uses local and global undo to correct

mistakes. Merging is illustrated with another worked example below.

Encouraging exploration of a design space with parallel alternatives in design tools is a

subject of current research. Outside of generative design, some of the concepts used in

GEM-NI, such as parallel editing, checking and sandboxing, were introduced in the recently

presented CAMBRIA system [64], where the authors apply these ideas to regular 2D vector

graphics design. However, I am not aware of any mainstream end-user tools that support this

approach to design exploration for generative design. Thus, I ran a user study with

moderately and highly skilled users to investigate the appropriateness of my approach by

gathering feedback and understanding the implications of parallel editing on their design

process.

4.1 GEM-NI

The name GEM-NI, Generative Many-Nodes Interpreter, is inspired by the many-worlds

interpretation in quantum physics. It implies that all possible alternative histories and futures

are real, each representing an actual “world”. I focused on 2D graphics, a domain that offers

sufficient complexity for common issues and patterns in generative modeling to emerge, yet

still practical for user studies. Also, GEM-NI supports exploratory design tasks widely used

in the design literature and in HCI in Green’s cognitive dimensions of notations [42].

 58

Figure 4-2. The original interface of NodeBox 3.

GEM-NI is capable of handling a large number of alternatives, the exploration of which

is only limited by screen size, processing power and memory. It is also limited by the

complexity of the models and the size of the dependency graphs. Each alternative is hosted

in a panel. Panels are contained in one or more workspace(s), which can be saved. Figure 4-1

shows such a workspace with three alternatives. Multiple workspaces may be open at the

same time. The panel for each alternative consists of three views: output, parameter, and

network view. To facilitate side-by-side viewing of alternatives, GEM-NI’s panel layout

differs from that of NodeBox 3 (Figure 4-2). In GEM-NI views are stacked vertically: output

on top, parameters in the middle, and network view at the bottom. The order in which

alternatives appear on screen can be re-arranged by drag and drop using a modifier key, with

preview and target location highlighting. In the conceptual design phase, designers routinely

generate dozens of sketches. That amount of content is difficult to fit onto a single monitor,

if all alternatives are still to be viewable and editable. To aid the designer in keeping an

overview of all considered alternatives, to organize them, and to view them side-by-side for

visual comparison, I support multi-monitor setups in GEM-NI. In a preferences menu, the

user can select from 1×1 to (currently) 2×3 monitors. The workspace is then re-arranged to

spread all alternatives as evenly as possible for the chosen monitor arrangement. Within each

monitor, horizontal space is evenly distributed.

 59

In GEM-NI the creation of nodes, their positions, parameter values as well as selection

state are synchronized by default across all editable alternatives. Thus, moving a node or

changing a node parameter affects all of its instances in other editable alternatives. Such

parallel editing can be enabled or disabled, see below. I found that uniformity in network

layout makes it easier for designers to identify common elements and to compare networks

visually across alternatives. E.g., SHAPE_ON_PATH1 in Figure 4-1 was selected in the

leftmost alternative and is now selected everywhere with the corresponding parameter views.

For the same reasons, zooming and panning on the network and output view are also

synchronized. Every operation is accessible through the menu bar. Important ones are also

accessible through GUI buttons or keyboard shortcuts.

4.1.1 Parallel Editing

The most common use case for parallel editing is parameter variation in a design. Ann might

use parallel editing to change the size of multiple alternatives, which saves having to repeat

the operation in each one. Or she might add a new node that adds a background rectangle to

all designs. In GEM-NI she can control which alternatives are idle, i.e., non-editable, through

checkmarks. Selecting an alternative makes it active. All other checked alternatives are

passive and thus subject to parallel edits. Often, Ann wants to focus only on a single

alternative, i.e., work in a sandbox.

A workspace typically contains multiple passive and idle alternatives. The active one,

Figure 4-1 left, is shown in bright gray. Passive alternatives, Figure 4-1 middle, are shown in

a mid-tone gray, and idle (unchecked) ones are dark gray, Figure 4-1 right. An alternative is

activated simply by clicking anywhere on its panel, or by switching to it via the TAB key.

Newly created alternatives are set to passive, permitting parallel editing. Editing an

alternative makes it active and pushes changes to all passive alternatives. Idle alternatives

remain unchanged. Pushed changes include all operations in the network view (e.g., creating,

renaming, deleting, connecting or disconnecting a node), all operations in the parameter

view (e.g., tweaking a parameter of the node), and all operations in the output view (e.g.,

 60

moving or resizing a shape by direct manipulation). Sandboxing addresses the case when the

designer wants to focus her edits on only a single alternative (Figure 4-3). This functionality

simply idles (unchecks) all other alternatives. Both checkmarks and sandboxing are

accessible through GUI buttons (and , see Figure 4-3) or through modifier keys when

clicking on an alternative. The “mute” and “solo” buttons in audio and video software, such

as Adobe Audition CC and Apple Final Cut Pro X, inspired my checkmarks and sandboxing.

Figure 4-3. The alternative on the right is sandboxed. The first two alternatives are

therefore idle.

4.1.2 Local and Global Undo

GEM-NI supports two types of undo: local and global. Local undo refers to undo in the

currently active alternative. Global undo undoes in all checked alternatives in the workspace.

A dedicated global undo and redo stack, in addition to local undo and redo stack, is used to

ensure the correct parallel sequence of local undo and redo operations on each involved

alternative, which compose the global undo or redo operation. Performing local undo or redo

 61

clears the global undo stack to avoid undo synchronization problems. A more powerful undo

system, e.g., [33], could address this limitation. I did not implement this for simplicity.

4.1.3 Selective Merging

Designers frequently branch out to explore different alternatives. Sometimes they then want

to re-use new parts in other alternatives. Figure 4-4 illustrates a merging scenario in GEM-

NI. Inspired by Brownian motion, Ann first created a grid with randomly displaced ellipses

(Figure 4-4a left). She then created an alternative that uses a compound of an ellipse and a

circle (center). Subsequently, she created a slightly more structured 10×10 grid of compound

circles (right). Looking at this, she likes the result of the GRID1, WIGGLE1, and ELLIPSE1

nodes in the right design as well as the capability of varying the size of the grid through the

new NUMBER1 node. Thus, she merges these four nodes into the other two alternatives. This

overwrites the parameters of existing nodes and creates the NUMBER1 node with connections

to GRID1 in the other two alternatives. Note that a copy operation would not recreate these

specific connections. She then changes the size of the grid in all three alternatives to 15×15

(Figure 4-4b) with parallel editing.

Consider another simple merging scenario in GEM-NI. Ann first created the color

spectrum design on the left in a 5×5 grid (Figure 4-5a). Subsequently she created two

gridded color palettes, each branching from the previous alternative. When working on the

last one in sandbox mode, Ann realizes that she can re-use the same number (5) as input for

five nodes. Thus, she creates the number node ROWS (highlighted with a red ellipse) and

connects it appropriately. This enables Ann to control the grid size and the detail level of her

design simultaneously. Instead of manually recreating this node in other alternatives, she

merges the change into the other ones. This creates ROWS in all other alternatives and also

connects it to all common nodes. Note that a copy operation would not recreate these

connections. A parallel edit of ROWS to 20 then creates a finer spectrum and palettes (Figure

4-5b).

 62

(a)

(b)

Figure 4-4. Merging and parallel editing: (a) Initial state with highlighted nodes
selected for merging. (b) Merging replicates new nodes and connections into all other

alternatives and overwrites parameters of existing nodes. The user then globally
changes NUMBER1 to 15.

 63

(a)

(b)

Figure 4-5. Merging and parallel editing: (a) Initial state with new, selected node
highlighted. (b) Merging replicates the node and connections into all other alternatives.

The user then changed the parameter to 20.
Selective merging is a new mechanism to ensure that parts of a design can be post-hoc

integrated into other alternatives. GEM-NI implements this by overwriting the state of the

selected nodes across all passive alternatives. This is different from standard copy & paste,

which will duplicate existing nodes. When merging, nodes that do not exist are created and

 64

connected suitably in the passive alternatives. Parameters of common nodes are overwritten

from the active alternative. This may create conflicts, which the user needs to address later.

Performing merging on the complete network essentially turns all alternatives into clones

(with potentially different undo history stacks). Ability to selectively overwrite individual

parameter states is also supported (see 5.1.4.3). My technique is inspired by the

corresponding functionality in source code management, mainly Git.

Below is pseudo code for the selective merging algorithm, without undo handling.

1: procedure merge()

2: for all passive alternatives passive

3: for all selected nodes node in passive

4: if passive is not idle

5: comment: overriding parameters and adding nodes and connectors

6: if node already exists in passive alternative

7: update node in passive alternative by overriding parameters

8: else

9: instantiate a new copy of the node (and its children, if applicable) in passive

alternative

10: end if

11: comment: connect this node

12: for all inbound or outbound connections of the node in the active alternative

13: duplicate connections in passive alternative

14: end for

15: end if

16: end for

17: end for

18: end procedure

4.1.4 Creating Alternatives

Creating new empty alternatives is standard functionality. During branching/cloning, and in

contrast to most other work, GEM-NI preserves the undo stack, which enables Ann to undo

operations in both alternatives. In the example in Figure 4-1, Ann branched an alternative

design from an intermediate version of her initial one. Usually this meant either relying on

intermediate saves or using (destructive) undo to go back in time. In GEM-NI, she can use

the resurrection dialog to scroll back in time and select a starting point for a new exploration.

 65

Also, the enhanced interactive design gallery in GEM-NI enables Ann not only to explore the

variational design space but also to create new variations for the structure of the network.

This makes it easier for Ann to quickly explore a larger set of designs.

Figure 4-6. Dialog for creating an alternative from history: the history list on the left

and the state of the alternative at that time on the right. The current entry is
highlighted. The state can be selected from the list directly or by dragging the slider.

4.1.4.1 Branches

An alternative can be created as a branch through cloning, where the entire network from the

active alternative is copied to the newly created alternative, along with its undo lineage. This

can be interpreted as an adaptation of skating [107] to generative design. The new alternative

then appears to the right of the active one. Preserving the undo stack upon cloning enables

new use cases, as the user can now undo operations in both alternatives.

 66

4.1.4.2 Resurrection from History

Creating alternatives from history, i.e., resurrecting past states, enables Ann to look through

her past work and to select particular points in time from which she intends to “branch out”

and to explore new alternatives. This happens in GEM-NI through a dialog (Figure 4-6).

There, all states from the undo history are listed on the left, with a time slider on the bottom.

Clicking on a list item or scrolling shows a preview of the corresponding state on the right.

Clicking the “Create Alternative” button then instantiates the selected state as a new

alternative in the workspace next to the active alternative. In Figure 4-6, the past state in the

history of the left design of Figure 4-1 is highlighted, from which the second alternative was

branched out. The dialog enables the user to create more than one alternative at a time. As

with branching, GEM-NI clones the history stack on a resurrection from history. Together

with the history previews this provides an enhanced form of skating [107].

4.1.4.3 Design Gallery

I implemented an interface for creating alternatives from a design gallery, inspired by the

parametric Cartesian product in Dialer [96]. My interface extends Dialer in several ways,

most importantly by supporting structural products. Figure 4-7 shows the Cartesian product

dialog and Figure 4-8 shows a design gallery for Figure 4-1. Starting with the scenario in

Figure 4-1, Ann now wants to explore the design space more widely. For this, Ann first

selects (with a modifier key) two or more alternatives as the basis for the Cartesian product.

This outlines these alternatives with a red frame. In the example in Figure 4-7 and Figure 4-8

all three alternatives from Figure 4-1 are included in the product. Upon modifier key release,

the main dialog appears (Figure 4-7a), which shows Ann all nodes of the alternatives in a

nested list, with the second level denoting the parameters. To streamline the workflow, only

common nodes whose parameters differ between the selected alternatives are selected for the

product by default and expanded. SHAPE_ON_PATH1 is the only common node with different

parameters (Amount and Margin) in the three alternatives in Figure 4-1. The GUI elements

then permit Ann to include or exclude nodes. Similar to Dialer [96], it also permits her to

include or exclude parameter values from the set of values that were identified as different

 67

among the three alternatives that were included in the Cartesian product. Clicking on the list

menu corresponding to the identified differing parameter displays the differing values

(Figure 4-7b). In this example Amount is differing in all three alternatives, so there are three

values to choose from for inclusion/exclusion in the Cartesian product. This mechanism is

similar to Dialer [96]. To give Ann an idea of how many potential results to expect, GEM-NI

shows the number of designs that would be generated at the bottom left. In Figure 4-7b, Ann

can expect a total of nine alternatives in the hysterical space, which is produced by matching

three values for Amount {6, 7, 12} with thee values for Margin {0, 25, 50}. Thus the

hysterical space H in this case is

𝐻 = 6, 0 , 6, 25 , 6, 50 , 7, 0 , 7, 25 , 7, 50 , 12, 0 , 12, 25 , 12, 50 . Going beyond

Dialer [96], GEM-NI also enables Ann to specify the range over which parameters should

vary. For ranges she can configure the minimum, maximum and step size. In Figure 4-7c,

Ann specifies a range of 0 to 50 with step 1 for Margin, instead of the initially detected set

{0, 25, 50}. Note that the number of expected alternatives has increased substantially to

𝐻 = 51×3 = 153. In general the algorithm for finding the hysterical space is described

below:

1: procedure findHystericalSpace()

2: Initialize set 𝐻 = ∅

3: Initialize set 𝑃 = ∅

4: find set 𝑁 of nodes 𝜈 ∈ 𝜈: 𝑣 ∈ 𝑁 such that 𝑁 = 𝑁!!
!!! , 𝑁! ∈ 𝐺! , where 𝐺 is a set of 𝑛 networks 𝐺! that were preselected for

inclusion in the Cartesian product

5: for each node 𝜈 ∈ 𝜈: 𝑣 ∈ 𝑁

6: for each parameter 𝑝 ∈ 𝑝: 𝑝 ∈ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑂𝑓(𝑣)

7: Find a subset 𝐺! ⊆ 𝐺, 𝐺! ≥ 2 of all networks 𝐺! each having unique 𝑣𝑎𝑙𝑢𝑒𝑂𝑓 𝑝

8: Initialize set 𝑆 = ∅

9: for each 𝛾 ∈ 𝐺!

10: 𝑆. 𝑎𝑑𝑑(𝛾. 𝑣𝑎𝑙𝑢𝑒𝑂𝑓 𝑝)

11: end for

12: 𝑃. 𝑎𝑑𝑑(𝑆)

13: end for

14: end for

15: Build hysterical space H by matching each element of 𝑆 ∈ 𝑃 to the other element of 𝑆 ∈ 𝑃 uniquely for all members of P.

16: end procedure

 68

(a)

(b)

(c)

Figure 4-7. Cartesian product dialog. (a) Cartesian product menu: all nodes of the
alternatives are in a nested list, second level denotes the parameters; (b)

inclusion/exclusion of parameters in Amount; (c) specifying range for Margin.

 69

(d)

(e)

Figure 4-8. Design gallery. (a) two previewed designs selected in the default network;
(b) two previewed designs selected in a network resulted from the product of all three

generative networks.
When satisfied with the settings, Ann presses the “Show gallery” button, which displays the

results of the Cartesian product (Figure 4-8a) in a dialog that enables the user to scroll

 70

through all pages of results with the “Previous” and “Next” buttons. She then selects two

previewed designs by clicking on them and presses the “Create” button to instantiate the

selected designs as new alternatives, which appends them as the last alternatives on the right

side of the workspace. For reference, the design gallery shows the network of the first

selected alternative in the middle, but enables Ann also to view other selected networks.

Optionally, the GEM-NI design gallery can be invoked on a single alternative. In this case

the gallery will operate in range only mode.

Finally, Ann can explore even more potential designs by exploring different structures

for the networks of the generative model. In other words, Ann can create candidates not only

for products on parameter values, but also for products of generative networks. For this my

new Cartesian product algorithm first identifies all nodes that are different in the

alternatives. Then GEM-NI constructs their power set and substitutes each into the network

common to the alternatives. I implemented this algorithm as follows. In order to create a

product of two networks G and their nodes N and edges E, 𝐺! = 𝑁! ,𝐸! , I create the union

𝑁!"## = 𝑁!\𝑁! ∪ 𝑁!\𝑁! of the two sets of node differences 𝑁!\𝑁! = 𝜈: 𝑣 ∈ 𝑁!, 𝑣 ∉ 𝑁!

and 𝑁!\𝑁! = 𝜈: 𝑣 ∉ 𝑁!, 𝑣 ∈ 𝑁! . I then calculate 𝑁!"## ’s power set ℘ 𝑁!"## of size

2 !!"## . Then, for each node in the set 𝜈! ∈ 𝑆: 𝑆 ∈ ℘ 𝑁!"## , I construct a generative

network 𝛾! ∈ 𝐺!×𝐺!, where we recreate connections via 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝐺! ∪ 𝐺! − 𝜈! . The

𝑐𝑜𝑛𝑛𝑒𝑐𝑡 procedure attempts to create connections from every port

𝑝! ∈ {𝜈!: 𝜈! ∈ 𝑖𝑛𝑝𝑢𝑡𝑁𝑜𝑑𝑒(𝜈!)} to all compatible ports 𝑝! ∈ {𝜈!: 𝜈! ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑁𝑜𝑑𝑒𝑠(𝜈!)}.

This procedure generalizes to more than two networks via 𝑁!"## = 𝑁!\𝑁! ∪ 𝑁!\𝑁!!
!!! (all

differences are determined relative to the first network 𝐺!) , 𝛾! ∈ 𝐺!!
!!! , and

𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝐺!!
!!! − 𝜈! . It’s worth mentioning that group nodes, which represent sub-

networks, are treated as completely different nodes between two or more alternatives, if at

least one difference in the parameter or structure of the sub-network or sub-sub-network (and

so on) is detected. Therefore, they are also part of 𝑁!"##. The cross product then substitutes

them just like any other node from 𝑁!"##. Since there are a total of six node differences

 71

among the three alternatives in Figure 4-1, 2! = 64 networks are created. Ann can then

scroll through all designs generated by varying both the network as well as the parameters or

select a specific network from a drop-down list. E.g., in Figure 4-8b, she has selected a

generated network that consists of three substituted nodes: POLYGON1, COPY1, POLYGON2,

and ROTATE1. In the example shown in Figure 4-8 there are 64 generated networks with 153

parameter variations. Thus this design gallery contains over ten thousand potential

alternatives.

Below is the pseudo code for the implementation of this algorithm in GEM-NI. This code

omits the generation of names for each new network created. The implementation consists of

two methods, which were added to the code base of NodeBox 3. These are

createPowerSets(), which create power set of alternatives from Cartesian products of

networks of selected alternatives, and deleteAndReconnect(), a method which deletes a given

nodes and reconnects its incoming and outgoing connectors to other nodes whenever

possible.

 72

1: procedure createPowerSets()

2: Initialize empty sets newSet, missingSet and diffGroupSet, which will contain new nodes, missing nodes, and group nodes that

changed.

3: Initialize a pointer to referenceAlternative, arbitrarily picked from the Cartesian product list of alternatives.

4: Initialize an empty set powerSetAlternatives, which will contain the result

5: for all selected alternatives alternative in Cartesian product other than the referenceAlternative

6: copyOfAlternative = make a copy of alternative;

7: Identify all new, missing nodes and changed group nodes of the copyOfAlternative relative to referenceAlternative

8: for all new nodes n

9: comment: re-use of the selective merging method

10: 𝑐𝑜𝑝𝑦𝑂𝑓𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒. overrideAndAddNodesAndConnectors 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒,𝑛

11: Add the found new, missing and changed group nodes to the sets initialized in the beginning (newSet, missingSet and

diffGroupSet)

12: Calculate the power set ℘ 𝑁!"## of changed group nodes.

13: Initialize groupNodeOccurences hashtable to keep track of group nodes with identical UUIDs.

14: for all sets of nodes 𝜈! in the power set ℘ 𝑁!"##

15: if this is a group node with previously encountered UUID

16: update groupNodeOccurences

17: continue

18: else

19: initialize groupNodeOccurences

20: copyOfReferenceAlternative = make a copy of referenceAlternatve;

21: for all nodes n in 𝜈!

22: if n is not a group node

23: 𝑐𝑜𝑝𝑦𝑂𝑓𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒. deleteAndReconnect(𝑛)

24: else

25: Replace the node with the same name as n in copyOfReferenceAlternative with n

26: 𝑝𝑜𝑤𝑒𝑟𝑆𝑒𝑡𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠. add(𝑐𝑜𝑝𝑦𝑂𝑓𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒)

27: return powerSetAlternatives;

 73

1: procedure deleteAndReconnect(Node 𝑛𝑜𝑑𝑒)

2: connections = get all connections for this network

3: comment: trying to connect as many connections as possible from the deleted to the new node

4: for all c in connections in this network

5: comment: incoming connections

6: if 𝑐. input() == 𝑛𝑜𝑑𝑒

7: comment: for all outgoing connectors

8: for all c2 in connections in this network

9: if 𝑐2. output() == 𝑛𝑜𝑑𝑒

10: try connect(𝑐. output(), 𝑐2. input())

11: comment: outgoing connections

12: else if 𝑐. output() == 𝑛𝑜𝑑𝑒

13: comment: for all incoming connectors

14: for all c2 in connections in this network

15: if 𝑐2. input() == 𝑛𝑜𝑑𝑒

16: try connect(𝑐2. output(), 𝑐. input())

17: removeNode(𝑛𝑜𝑑𝑒)

4.2 Evaluating GEM-NI

Evaluating specific features of the system, such as e.g., the difference visualization

techniques does little to confirm external validity and the benefits of the system as a tool for

generative design and creative work, as these are non-linear processes with a strong creative

component. Comparing each new feature in GEM-NI with the corresponding feature in

existing tools, similar to an evaluation of a new CAD system against another one (e.g., as in

[81]), does not seem possible because there is currently no roughly comparable system. So

one could only compare against the traditional workflow, where I hypothesize that dealing

with alternatives is associated with an increased workload due to the higher

management/interaction effort. This becomes evident when one considers the number of

operations necessary to achieve tasks associated with creating and managing several

alternatives simultaneously.

A more systematic approach for the evaluation of creative work systems has been

proposed by Cherry and Latulipe [24]. They developed the Creativity Support Index (CSI), a

psychometric survey designed for evaluating the ability of a creativity support tool to assist a

user engaged in creative work. It consists of a rating scale section and a paired-factor

 74

comparison section. The scale section of the CSI measures six factors of creativity support:

Exploration, Expressiveness, Immersion, Enjoyment, Results Worth Effort, and

Collaboration. For each factor, there are two agreement statements. Having two statements

per factor improves the statistical power of this survey, as it allows researchers to look at the

reliability for each factor by examining the similarity of the scores across the two different

statements. The paired-factor comparison section consists of each factor paired against every

other factor for a total of 15 comparisons. It is designed to reveal important factors.

Therefore, the CSI enables researchers to understand not just how well a tool supports

creative work overall, but what aspects of creativity support may need attention. From

among the CSI usage scenarios identified by Cherry and Latulipe, in my evaluation I am

using the scenario of tool comparison, same task, repeated measures. I designed a study in

which participants complete a somewhat similar creative task using NodeBox 3 and GEM-

NI. Participants complete the CSI’s agreement statements after completing the task in each

tool and complete the paired-comparison section once, at the end of the study.

4.3 User Study I

To confirm the appropriateness of the presented techniques for the design process, I

evaluated GEM-NI in two steps: a workshop with an exploratory design study, and follow-up

in-depth interviews. The workshop introduced NodeBox 3 and had the goal to gather

feedback on GEM-NI from a user group moderately experienced in generative design.

4.3.1 Participants

Five unpaid participants (2 female) from graduate students were recruited through a “session

on new generative design tools” announcement at Simon Fraser University. I targeted

participants experienced with generative design, since NodeBox is challenging to use for

non-designers. Coffee and cookies were offered as incentive. Participants design

backgrounds were: architectural, sound, visual, and information design, as well as arts. One

participant had to withdraw during the workshop due to an appointment. The participants

 75

were between 21 and 31 years old (µ=27.2). All were experienced designers (µ=5.7 years).

One participant reported experience with generative design tools, namely Grasshopper,

another knew Processing. None knew NodeBox. In the pre-questionnaire, all reported that

they routinely create multiple alternative designs as opposed to a single solution. All stated

that when they design, they regularly keep track of, review, and revisit their design

iterations. For that, participants reported the following methods: saving multiple files (even

for minor changes), creating files from scratch for major conceptual changes, using a stylus

with a note taking application, various combinations of shuffling between files, sketches,

tracing paper, and images, and keeping everything in a notebook and/or printouts, including

intermediate artifacts.

4.3.2 Apparatus and Procedure

Workstations with dual monitors running Windows 7 were used. Blank sketch sheets and

pens were supplied. The workshop was split into two phases, followed by a one-on-one in-

depth interview with participants at a later date. Along with logging and interviews, I used

the Creativity Support Index (CSI), a quantitative, psychometric tool in form of a survey to

assess how well both systems assist creativity in the design process. In both phases

participants completed the CSI questionnaire after the creative task. Collaboration was not

rated.

4.3.3 The Workshop

In the first workshop phase participants were taught a basic version of GEM-NI, feature-wise

equivalent to NodeBox 3, i.e., without my new contributions, and called NodeBox for the

remainder of this section. I picked examples from a generative design book [19] as tasks. I

first demonstrated how to create six designs and asked participants to recreate them on their

workstations. This took about one hour. This familiarized participants with the system to

enable them to perform the main creative task. Said task was a design scenario, where

participants had a client that wanted them to come up with an “algorithmic shapes” design

 76

for a small front door window, about 20×20 cm. The client expected options to choose from.

Participants then used NodeBox to create a number of alternative designs and saved them as

different files. Participants were free to sketch with pen and paper, as necessary, and were

given 30 minutes for the task.

In the second phase, participants first learned how to use GEM-NI. All above-presented

features of the system were demonstrated on the example in Figure 4-1, which they recreated

from scratch. This took one hour. The second task stipulated that their client saw the

alternative designs for the door window and liked the designs so much that she asked the

participants to extend these designs to cover the entire door. Participants could reuse their

designs from the first task. This scenario was chosen for the task because it highlights the

iterative nature of the design process, since the designers in this case are required to re-

iterate on their previous creations through the feedback from their client. They were given 30

minutes to complete the task and again permitted to sketch. After completing the second CSI

questionnaire they also filled the paired comparison part of the CSI. Since the tasks in my

study were similar enough, I performed the CSI evaluation as a within subject tool

comparison with the same task.

4.3.3.1 Results

The small number of participants limits the strength of my results. Also, I evaluated the tools

in a fixed order. Yet, counterbalancing is difficult, as GEM-NI is based on NodeBox.

Looking at the first phase, I noted that several participants had already created alternatives in

a single document in NodeBox (without prompting!) through the ability to create multiple

output nodes. This likely reduces the “cool tool” bias and verifies that designers already plan

for alternatives, even in current tools. These participants had primed themselves to learn

GEM-NI quickly. Two participants, P1 and P4 created four alternatives with GEM-NI. All

designs of P1 differed only in parameters, but not structurally. P4 came up with several

designs that were structurally different. The logs showed that both P1 and P4 used branching

to create their alternatives and worked non-linearly, i.e., went back and forth between

alternatives. I also logged five instances where P1 rearranged the order of alternatives.

 77

Another participant, P3, created two alternatives and accessed the history and design gallery,

but did not create alternatives with those methods. Only one person was observed to use pen

and paper briefly.

4.3.3.2 Results of the CSI Questionnaire and Discussion

Task Factor \ Scale Enjoyment Exploration Expressiveness Immersion Results worth effort

1 Avg. Factor

counts (σ)

2.5 (1.7) 3.8 (1.5) 4.0 (0.8) 2.3 (1.3) 2.5 (1.3)

1 Avg. Factor

score (σ)

13 (2.5) 11.3 (2.5) 9.0 (4.3) 6.5 (1.3) 11.5 (2.4)

1 Avg. Weighted

factor score (σ)

34.8 (30.6) 41.0 (15.5) 36.5 (18.4) 15.3 (9.6) 27.0 (11.2)

2 Avg. Factor

counts (σ)

2.5 (1.7) 3.8 (1.5) 4.0 (0.8) 2.3 (1.3) 2.5 (1.3)

2 Avg. Factor

score (σ)

14.8 (2.8) 15.8 (1.5) 14.0 (3.2) 10.0 (7.1) 13.3 (5.0)

2 Avg. Weighted

factor score (σ)

37.0 (28.9) 59.8 (25.5) 56.8 (20.5) 28.8 (34.8) 32.3 (20.1)

Table 4-1. User Study I: Average results from first task using NodeBox (top); second
task using GEM-NI (bottom).
The CSI analysis, revealed an average score of 51.5 (σ = 13.5) in the first task and a

substantially higher score, 71.5 (σ = 12.84), for the one where GEM-NI was used (N = 4 for

both tasks). These results depend to some degree on individual’s preferences and their level

of expertise with the tool. Similar to [24], I report the results with respect to average factor

counts, factor score and weighted factor score (Table 4-1). Average counts express the

number of times that participants chose a particular factor as important to the task.

Expressiveness and exploration were ranked as most important. The factor score sums both

agreement statement responses for a factor. A higher number indicates better supports.

Weighted factor scores are more sensitive to the factors that are the most important ones for

 78

the given task. In both dimensions, GEM-NI scored again much higher for expressiveness

and exploration.

4.3.4 In-Depth Interviews

I ran in-depth interviews with three of the participants (P1-3) in the days after the workshop.

At the start of the interview, participants were given a short review of the features of

NodeBox and GEM-NI. Then they were asked to continue working on the second task with

GEM-NI. In a variant of a think-aloud protocol, I asked participants to express their opinions

during this, to make comments on the tools, to provide feedback on the overall workflow and

experience, and to explain why they made their decisions. P1 and P2 completed the interview

in a little over two hours. Participant P3 was only able to dedicate 30 minutes. Overall,

participants used many more features of GEM-NI.

P1 created two alternatives from history. When asked about this feature, P1 pointed out

“creating alternatives from history is superior because I like the idea of being able to pick

something from the actual history, which could contain ideas that were not further

developed”. This is in contrast to the alternative workflow of branching and deleting of

unwanted parts of the graph, where he added “[with this] some steps might not be captured,

such as creation and deletion of connectors and partial editing of nodes”. During the

interview, P1 produced designs that were different both structurally and in parameters. In the

end, P1 created seven designs in a non-linear way through branching. He also created an

alternative from a design gallery and two from scratch. I logged deletion of six alternatives.

He re-ordered alternatives 30 times and used global undo once. P2 created five designs in

two workspaces and saved some of his alternatives individually and then opened them in a

new workspace. He re-ordered alternatives seven times, created two alternatives from

scratch and five non-linearly as branches and used merging. P2 deleted six alternatives. P2

was not able to leverage design galleries, as his design had very subtle variations in only two

parameters and thus “the results shown in the gallery were [almost] identical”. P3 created

five alternatives in a single workspace in a short time, through a design gallery, which P3

 79

found to be “a great way to explore possibilities”. P3 deleted one alternative and rearranged

alternatives 21 times.

All participants were observed using the two available monitors. It was important to their

workflow to focus on a single alternative. Therefore, all dragged idle and passive alternatives

to the secondary monitor, to increase the workspace for the active alternative. This generated

many instances of rearranging. P1 and P2 had programming skills and stated: “GEM-NI is

like version control [systems]”. They drew on their experience with Git and used GEM-NI

somewhat like a version control system for design, which enabled them to experiment more.

P3 was not familiar with software version control and thus did not have the corresponding

mental model. P2 demonstrated an unexpected use of my system. He created multiple sub-

graphs as alternatives, where the output of all sub-graphs was rendered inside a single

GEM-NI alternative. Then, he started using the panels as means to explore even further

alternatives. In the freeform feedback, he later wrote: “I encountered some unexpected

designs while using [GEM-NI], which made things much more interesting than I had first

imagined. Interactive [parallel] editing had very interesting results”. P2 worked always on a

single alternative at a time and perceived parallel editing of multiple alternatives at the same

time “to be hard”, likely due to the increased cognitive effort required for such parallel tasks.

This corresponds to the experience with Juxtapose [53], which requires strong coding skills.

Only one participant was observed to use global undo.

All participants complained about aspects of NodeBox and to a lesser degree about

GEM-NI’s features. Most criticism revolved around the fact that focusing is not automated

enough. They found rearranging panels to be hard and wished for an easier workflow. I did

not focus on streamlining this specific task. Participants also asked for some difference

visualization that “would highlight changes in the rendered geometry and network”. They

also preferred that sandboxing be the default work mode, and that parallel editing only be

available on demand (opposite to my default). Finally, participants P2 and P3 wanted to

minimize or collapse alternatives, instead of being confronted with all of them

simultaneously. They suggested a side window or panel that “shows alternatives in a way

 80

similar to the design gallery”. They also identified that they would like alternatives that are

collapsed to automatically turn idle.

4.4 Discussion

Here I discuss some of the consequences of the design decisions behind GEM-NI, as backed

by the outcomes of the workshop and the in-depth interviews. GEM-NI supports a number of

ways to create alternatives. I include adapted and enhanced variations of results from

previous work, such as Parallel Pies [107]. I also introduced a new method for creating

alternatives from a graphical history with support for lineage duplication, i.e., graphical

skating, for generative design tools. The in-depth interviews indicate that this is an ideal

feature to easily explore what-if scenarios. Another noteworthy way of creating alternatives

in GEM-NI is the design gallery. This interface improves previous work [96], by enabling

users to select an arbitrary range of parameters and/or parts of the generative network to use.

Furthermore, I added the new ability to create alternatives from the product of generative

networks, which I believe to be a great addition to design space exploration tools and found

to be useful in my evaluation. Notably, participants stated that “[they] arrived at designs that

they did not expect or foresee directly”. They attributed this to both the design gallery and to

parallel editing. To control the scope of parallel editing, GEM-NI provides checkmarks and

sandboxing, which participants found very useful during my evaluation.

In GEM-NI, I also introduced a novel method for post-hoc merging of alternatives,

inspired by branch merging in Git. With post-hoc merging, a designer can easily “import”

the knowledge embedded in a sub-network into another alternative. Post-hoc merging is

particularly useful when a designer does not remember how he/she arrived at a particular

state or if someone else modified the design. Yet, I only observed and logged one participant

using the technique, potentially due to the limited design complexity explored in my

evaluation. Still, I believe that with time, users will realize the full potential of this feature,

similar to its pervasiveness in software projects.

 81

Two participants rearranged alternatives extensively to focus on a single one on one

monitor. This justifies my decision to support multi-monitors and to use such systems in the

evaluation. Participants requested minimizing and other methods to manage alternatives on

dual monitors. Participants also requested difference visualizations for alternatives, and

overlaid history steps. Such features have been advocated before [70]. GEM-NI was

implemented as a branch of NodeBox 3 by adding multiple-document model support via

universal unique identifiers. This enables consistent relationships between alternatives to

persist even when they are kept offline. Alternatives can then safely be included back into

the workspace at a later stage, without naming conflicts. GEM-NI supports versioning in this

way and P2 used this during the evaluation.

While the sample size of my evaluation is small, I believe it to be representative for what

moderately experienced designers can achieve with GEM-NI compared to traditional

solutions, in terms of better exploration of a design space and expressiveness. The fact that

participants even created alternative-supporting schemes in existing tools, underlines the

need for GEM-NI’s approach in generative design tools.

4.5 User Study II

My primary motivation to conduct another evaluation was to address the issue of the small

sample size in the first study. I also implemented several new features, some of which were

requested by participants in the first evaluation. The first feature adds the ability to minimize

alternatives and to later retrieve them again through a dialog. Some participants expressed

that this would help avoid being confronted with all (or too many) alternatives at once. This

dialog shows alternatives in a way similar to the design gallery (Figure 4-9). The second

feature enlarges the selected, currently active alternative by redistributing the horizontal

space within a monitor, so that the selected alternative occupies a larger part of the space,

more concretely, twice as much as other alternatives. This permits users to better focus on a

specific alternative. I also added support for L-systems [69], a powerful form of generative

graphics, to GEM-NI. In the evaluation described below I investigate the usefulness of these

 82

three features. This evaluation was conducted in the similar fashion to the first user study,

namely, as part of a workshop. In-depth interviews were not performed due to time

constraints. The goal of the workshop was to gather feedback from a group of users,

moderately experienced in generative design.

Figure 4-9. The dialog for retrieving minimized alternatives.

4.5.1 Participants

Ten unpaid participants (4 females) were recruited for the workshop from an advanced-level

generative design course for graduate students in architecture at the University of Toronto.

The workshop was conducted during the lab time of this class. Prior to the workshop, the

course instructor notified the participants that they would use a novel generative design tool,

perform tasks, and provide feedback. Coffee and cookies were offered as an incentive. The

students were targeted because of their experience with design in general and generative

 83

design in particular. One participant could not attend the first part of the workshop due to

other commitments, so I could not collect his feedback on NodeBox. The participants were

between 22 and 39 years of age (µ= 27.4). All were experienced with design (µ=8.5 years)

and generative design (µ=2.8 years). All were experienced with Grasshopper, two with

Processing. Some were experienced with Solid Edge, Inventor, CATIA, NX, Solid Works,

Rhino, RhinoPython, RhinoScript, ParaCloud Gem, Revit, Kangaroo, and Weaverbird. None

knew NodeBox. This is particularly important because NodeBox is easier to use for those

familiar with the concept of visual data-flow programming environments, as implemented in

systems such as Grasshopper 3D. In the pre-questionnaire, 8 participants reported that they

routinely create multiple alternative designs, and only 2 reported that they normally create a

single solution. All reported that when they design, they keep track, review and revisit their

design iterations. For such design iterations, participants reported the following methods:

creating scripted outputs of images and model files for later reference, paper and pencil,

saving multiple files (mentioned 4 times), saving files with different parameters or

definitions, saving multiple files with organized naming conventions to track the history

without opening every file, using sketch drawing, recording, pictures, 3D modelling, saving

multiple files, drawings, versioning of files, “baking multiple iterations in Grasshopper

[3D]”, as well as creating a play script with changing parameters in Rhino.

4.5.2 Apparatus

We used workstations with dual monitors running Windows 8.

4.5.3 Procedure

The workshop followed the same procedure as in User Study I (4.3), with the exception that

the last demonstrated example involved the use of an L-system. The teaching sessions also

took one hour and the tasks 30 minutes each.

 84

4.5.3.1 L-system

During the first phase of the workshop, the last artefact that I asked participants to recreate

involved a generative network with two custom nodes (LRULES and LGEOMETRY) that

generate an L-system [69]. In the LRULES node, the user specifies the number of generations,

a starting premise and up to three rules. In the LGEOMETRY node, the user specifies position,

angle and length of the segment, and the scale for angle, length and segment thickness.

Figure 4-10 illustrates this with parameters values for LRULES and LGEOMETRY nodes to

generate the Sierpinski Triangle.

My L-system implementation is based on an existing implementation for NodeBox 2

available on GitHub20. I made the L-system nodes available to participants because they

force the user to come up with recursive designs. This imposes further constraints on the

creative task and may further increase the internal validity of the experiment. I showed the

participants how to generate the Sierpinski Triangle and provided them with a set of other

examples: Pythagoras Tree, Koch Curve, Dragon Curve, and two variations of a fractal

plant (Figure 4-11). I encouraged them to use these examples as starting points in their

designs, from which they could branch out. Although all the participants were familiar with

L-systems, I recognized that requiring them to use L-systems in all their designs could

potentially frustrate them. Thus, although I encouraged them to use the L-system nodes in

their design, I explicitly identified that this was not required in this study.

20 http://github.com/nodebox/nodebox/issues/332

 85

Figure 4-10. Parameter values of the LRULES (left) and LGEOMETRY (right) nodes for

the Sierpinski Triangle.

Figure 4-11. The L-System examples that were available to participants for re-use in

their designs. The examples are (from left to right): Pythagoras Tree, Koch Curve,
Sierpinski Triangle, Dragon Curve, Fractal Plant #1, Fractal Plant #2. The Sierpinski
Triangle was also the final artefact that participants recreated during the training

phase of the workshop.

4.5.4 Results

With NodeBox, participants created 2.11 (σ=0.78) alternatives on average. This number

excludes all alternatives that were ultimately discarded. Almost all, 6 of 7 (86%),

participants created alternatives that were all structurally different, i.e., differed not only in

 86

node parameter values but also in the graph structure as well. Two of the three alternatives

created by P8 were also structurally different. So, all participants created structurally

different alternatives one way or the other. The L-system was used by 6 of 9 (67%)

participants. Almost half, 4 of 9 (44%), participants simulated some or all of their

alternatives with multiple render nodes and sub-graphs.

 87

Participa

nt No.↓

Total

number of

alternatives

Number of

structurally

different

alternatives

L-system

used in

alternatives

Creation of

alternatives via

multiple rendered

nodes in same

document

System→
ND

B

GM

N

NDB GMN ND

B

GMN NDB

1 2 4 All 0 0 0 Yes

2 2 3 All All 0 0 Yes

3 N/A 3 N/A 1 N/A 0 N/A

4 3 5 All 2 1 0 No

5 3 8 All 0 3 8 No

6 1 2 N/A All 1 2 No

7 1 2 N/A All 0 2 No

8 3 3 2 2 3 3 No

9 2 3 All All 1 3 Yes

10 2 8 All All 1 0 Yes

µ 2.11 4.22

σ 0.78 2.33

Summary 7 of 7 8 of 10 6 of

9

5 of

10

4 of 9

Table 4-2. Summary of number of created alternatives with NodeBox (NDB – task 1)
and GEM-NI (GMN - task 2). The larger of the two results per participant is

highlighted in red.

 88

Participan
t No.	

From
branching	

Non-
linear

branching	

From
scratch

By pre-
loading

from task
1

From
history

From
Design
Gallery	

1	 0	 	 0 1 4 6
2	 1	 0	 1 1 2 *
3	 0	 	 1 0 1 1
4	 4	 All	 1 6 0 *
5	 0	 	 0 5 0 1
6	 0	 	 2 2 2 *
7	 0	 	 0 6 1 *
8	 0	 	 0 6 * 3
9	 3	 0	 0 1 0 0
10	 N/A	 N/A	 N/A N/A N/A 1

Summary	 3 of 9	 1 of 3 4 of 9 8 of 9 6 of 9 5 of 10
Table 4-3. Summary of different methods for creating alternatives participants

employed in GEM-NI in task 2. A ‘*’ designates that the participant used the feature
but did not create any alternatives with it. Data for participant 10 indicates the

minimum number of alternatives created based on the data recorded before a logging
failure.

Participant
No.

1 2 3 4 5 6 7 8 9 10

Total
Number of
Revisited
Alternative
s

1 3 1 1 3 0 0 6 1 0

Table 4-4. Total number of revisited alternatives by participant.

 89

Partici-

pant No.

Merg-

ing

Globa

l

Undo

Sand-

Boxin

g

Chec

kmar

ks

Dual

monito

rs

Rearr

angin

g

Min-

imizi

ng

Max-

imizi

ng

Focusi

ng

1 1 0 3 13 No 0 0 0 0

2 0 8 9 2 Yes 1 0 0 0

3 2 0 0 3 Yes 1 0 0 0

4 0 0 15 29 No 1 3 0 0

5 0 0 6 2 Yes 3 0 0 0

6 0 0 7 1 No 1 1 0 0

7 0 0 4 4 Yes 1 1 0 0

8 1 0 0 31 Yes 3 0 0 0

9 0 0 9 2 Yes 3 0 0 1

10 N/A N/A 1 7 Yes 6 7 N/A 0

Summa

ry

3 of 9 1 of 9 8 of

10

All 7 of 10 9 of

10

4 of

10

0 of 9 1 of 9

Table 4-5. Summary of other features employed by participants in GEM-NI in task 2.
Available data for participant 10 indicates the minimum number of times that the

feature was used based on the data recorded before the logging failure.

Participant (P3), who could not attend the first part of the workshop, is not included in the

results for the first task (NodeBox). So all the results in this sub-section are for N=9. See

Table 4-2.

With GEM-NI, participants created 4.22 (σ=2.33) alternatives on average. A malfunction

occurred on the workstation of participant P10 during the second task and I could only

recover that participants’ session log partially. Therefore, some of the results for the second

task with GEM-NI, are also reported only for N=9. The partial results for this participant

indicate a conservative estimate of the minimum number of alternatives that were created

using the corresponding method (Table 4-3) and minimum numbers of times features were

used (Table 4-5).

 90

Almost all, 8 of 9 (89%), participants pre-loaded their designs from the first phase as a

starting point for the second task. Analysing the logs further reveals that some participants

abandoned their designs from the first tasks and created completely new content for the

second task.

Creating of alternatives: Branching was used by 3 of 9 participants (33%). Out of these 3

participants, one participant created all his branching alternatives in a non-linear fashion, i.e.,

branched all designs from a single source. Less than half, 4 of 9 (44%), participants created

some of their alternatives from scratch. More than half, 5 of 9 (56%), participants created

some of their alternatives from history, and an additional participant used the history, but did

not create any alternatives with it. Half, 5 of 10 (50%), created some of their alternatives via

the design gallery. Four additional participants were logged using it, without creating any

alternatives. Thus, only one participant did not show interest in the feature. See Table 4-3.

Besides counting incidents of non-linear branching, another way to observe non-linearity is

through the total number of times a participant abandoned an alternative and later revisited it

with further editing. Thanks to the checkmarks and sandbox functionality, tracing this

activity in the logs is easy. Table 4-4 summarizes such occurrences for each participant.

Overall, 7 of 10 (70%) participants revisited alternatives that they temporarily put on hold.

Managing alternatives: Merging was used by 3 of 9 (33%) participants. Global undo was

used rarely, by 1 of 9 (11%) participants. Sandboxing was used by most, 8 of 10 (80%),

participants, and checkmarks by all (100%). Dual monitors were used by 7 of 10 (70%)

participants. Alternatives were re-arranged by dragging at least once by almost all, 9 of 10

(90%), participants. Minimizing was used by 4 of 10 (40%) participants, however no

maximizing actions occurred. Only a single participant used focusing once. See Table 4-5.

4.5.5 Discussion

With GEM-NI, participants created more alternatives (µ=4.22, σ=2.33) than with NodeBox

(µ=2.11, σ=0.78). A repeated-measures ANOVA test indicates a significant effect of the tool

used, with Wilks’ Lamba = .45, F1,8 = 9.75, p < .05, η2 = .55, and observed power = .78. The

 91

data shown in Table 4-2 also confirms, as 7 of 9 participants created more alternatives

(highlighted in blue) with GEM-NI. Consistent with my first study, almost half (4 of 9)

participants created multiple alternatives even in the first task, where they were not prompted

to create alternatives. While only one of the tree participants who used branching used the

technique non-linearly (and also created all the alternatives that way), a majority of

participants (70%) revisited designs that they had worked on previously. This confirms that

designers do work non-linearly and that GEM-NI is able to support this type of workflow.

The number of structurally different alternatives created is overall consistent between the

two tasks. Proportionally they were slightly more popular in the first task with NodeBox, but

not significantly so. One possible explanation could be that due to the nature of NodeBox,

only a single alternative at a time can be created. Its interface may thus encourage creating

different designs, because participants may be more inclined not to consult previous design.

Another reason could be that in the second task, I logged that most of the participants, 89%,

pre-loaded existing designs into GEM-NI. Thus it is possible that this pre-loading approach

could have encouraged the creation of variations rather than structurally different

alternatives.

Only three participants did not use the L-system nodes. Those participants who used the

L-system in both tasks did create more alternatives with GEM-NI than with NodeBox. I made

L-systems available to the participants because this imposes further constraints on the

creative task. This could increase the internal validity of the experiment as participants, in

this case, are forced to use a variety of recursive approaches to design. It is fair to note that

because of the way I implemented the L-system in GEM-NI participants could not take full

advantage of the system’s comparing features when comparing the networks to each other,

since the major components of the L-system, namely the LRULES and LGEOMETRY nodes,

retain identical network structure. Using such an implementation of an L-system also limits

the usefulness of the MACE interface (Chapter 5). However, due to the limiting way

NodeBox handles support for extensions, I could not come up with a better way to

implement L-systems. This also weakened my ability to demonstrate that participants

 92

approach design non-linearly in GEM-NI: participants 6 and 7 used the L-system nodes, but

did not revisit their designs (see Table 4-4). At this moment I do not have sufficient

information to tell if this is a causal relation or not. It is also worth mentioning that, despite

all the limitations of the implementation of L-systems, one participant used the L-system

with other nodes, resulting in more diverse networks (see Appendix B).

The three most commonly used approaches to creating alternatives in GEM-NI turned out

to be the design gallery, the history dialog, and creation from scratch. The design gallery was

undoubtedly the approach that drew the most curiosity: 90% participants were logged using

it. Overall, most alternatives were created using this method (11 of 29, i.e., 38%). A total of

10 alternatives were created from history. Creating alternatives as a branch proved to be a bit

less moderately popular (28% of created alternatives). This did not confirm my expectations

for this approach. Possibly, participants preferred using the history dialog to branching, as

both can achieve the same result. The preference could be due to the ability to go back in

time and select past states, rather than planning ahead when to branch out. Another possible

approach would be to first branch out and then use undo or deletion to get the desired state.

Yet, the data I collected suggests that most participants branch out (through history) only in

a post-hoc manner, likely after reflection around their designs.

While I did not have high expectations for the merging feature, due to the relative

novelty of the concept, merging was interestingly used by at least a third of the participants.

This indicates the usefulness of such a feature for the design process. On the other hand,

global undo and focusing did not prove to be popular in the study. The same was true for

focusing, even though participants in the first user study had requested it. Minimizing,

another requested feature, was moderately popular, but none of the participants ever

retrieved their alternatives after minimizing. This indicates that participants used this mainly

as a lightweight mechanism for storage. It is not surprising to see that checkmarks and

sandboxing were used extensively, as these are the mechanisms in GEM-NI to control which

alternatives are affected by pushed edits. The fact that the majority of the participants used

both monitors and re-arranged and minimized alternatives frequently indicates that designers

 93

may benefit from more displays than afforded by the dual-monitor setups used during the

workshop. This is consistent with Grudin’s work [45]. Unsurprisingly, I also logged that

participants who created more alternatives tended to also minimize more of them, likely to

manage their limited space. This justifies my choice for adding support for up to six

monitors in the current version of GEM-NI. The popularity of dual-monitor use and re-

arranging also confirms previous findings that users tend to dedicate certain regions of the

screen for categories [13] and spatial memory [88].

4.5.5.1 Results of the CSI Questionnaire

The CSI questionnaire analysis revealed an average score of 55.7 (σ=13.1) in the first task of

this workshop and a higher score, 63.6 (σ=12.1), for the second task where GEM-NI was

used. Similar to [24], I report the results with respect to average factor counts, factor score

and weighted factor score (Table 4-6).

Task Factor \ Scale Enjoyment Exploration Expressiveness Immersion Results worth effort

1 Avg. Factor

counts (σ)

1.78 (1.39) 3.78 (1.30) 3.67 (1.22) 2.44 (0.88) 2.78 (0.83)

1 Avg. Factor

score (σ)

12.44 (2.55) 12 (3.50) 11.56 (2.88) 9.89 (2.76) 12.11 (3.22)

1 Avg. Weighted

factor score (σ)

22.12 (14.44) 44.11 (17.77) 42.89 (20.62) 24.44 (10.62) 34.67 (16.56)

2 Avg. Factor

counts (σ)

1.90 (1.37) 3.90 (1.29) 3.40 (1.43) 2.40 (0.84) 2.90 (0.88)

2 Avg. Factor

score (σ)

13.10 (3.03) 14.50 (2.46) 12.90 (2.13) 8.90 (4.09) 13.80 (2.20)

2 Avg. Weighted

factor score (σ)

24.89 (13.74) 56.55 (22.90) 43.86 (23.56) 21.36 (13.01) 40.02 (15.07)

Table 4-6. User Study II: Average results from first task using NodeBox (top); second
task using GEM-NI (bottom).

 94

The average counts are the number of times that participants choose a particular factor as

important to the task. The maximum possible for each factor count is 5. Exploration and

expressiveness were ranked as the more important factors. The factor score on the other hand

represents the sum of multiple agreement statement responses for a factor. A higher number

indicates that the tool better supports that factor. The maximum factor score is 20. Both tools

appear to support the factors fairly. GEM-NI, however appears to support exploration better.

Weighted factor scores are calculated by multiplying a participant’s factor agreement scale

score by the factor count, in order to make the weighted factor score more sensitive to the

factors that are the most important to the given task. The maximum possible weighted factor

score is 100. Here again, exploration scored higher with GEM-NI. These more qualitative

results are consistent with the quantitative results above, such as that more alternatives were

created with GEM-NI, where the design gallery and history were the most popular

techniques for creating alternatives. This further supports the higher ranking of GEM-NI’s

ability to support exploration.

Even though expressiveness was ranked as important, I argue that the reason this factor

was not ranked higher for GEM-NI is that participants had different expectations for the tool.

Given that my participants work primarily in the architectural domain, they expect more

from the tool, such as the ability to create 3D models. This can be contrasted with the results

of the first user study where participants from various backgrounds were recruited. Yet,

because of the small sample size, I cannot infer this to be a strong conclusion. Yet, GEM-NI

and NodeBox, both are limited to 2D domain. This was confirmed as an issue in the freeform

feedback, as discussed below. Results Worth Effort was ranked fairly high in GEM-NI. This

factor is associated with effort, work, productivity, performance and reward [24]. Arguably,

this factor does not directly affect creativity, but does so indirectly by contributing to the

motivation of a designer to purpose a task.

In addition to the CSI questionnaire I also added another post questionnaire, where I

asked the participants to contrast NodeBox with GEM-NI. Specifically, I asked how well

each tool supports the task with the set of features that were available in each tool.

 95

Participants ranked each tool on a Likert scale from 1 to 9 (1 being poor support, 9 being

excellent support). NodeBox was ranked on average 6 (σ=1.66), and GEM-NI 6.7 (σ=0.82)

out of 9.

4.5.5.2 Freeform Feedback

In the freeform feedback section on the post questionnaire I received mostly positive

comments. Three participants expressed that they would like to see the functionality

available in the tools that they use everyday and are more familiar with. The first participant

said: “[It] was very nice to see all options at the same time, but [I] couldn't help but feel that

the improvements made on NodeBox were significantly more useful than NodeBox itself. I

would love to see this type of design-space exploration in, say, Grasshopper - the 2D nature

of NodeBox is a little limiting.“ Another one speculated: “not sure if it works on 3D, which I

am interested most.” Yet another one stated: “there is a robust environment for non-

destructive editing and versioning based on history, which I have not experienced in other

software, but would be a desirable feature to aid in my workflow. I appreciate [GEM-NI’s]

feature of side-by-side viewing and capability of editing of multiple alternatives.

Additionally, the gallery view and outputs of multiple iterations streamlines an otherwise

tedious process of generating options, which tends to be an important part of my workflow

when using generative design software”.

Two other comments were also positive in general: “The idea is excellent … it would be

an extremely useful application”, “[These are] very useful tools to produce several case

studies with the different parameters”.

Three comments were more critical: “It was easy to create designs based on the functions

demonstrated in the tutorial; however, I struggled with using new functions and getting them

to generate the designs I wanted.” This comment may indicate that the learning curve

involved may be an obstacle. Another participant said: “I am very interested in the gallery

feature of the [GEM-NI]. It really allows designers to test out various combinations of

parameter settings. I think the user interface is a little less intuitive than ideal, and to have a

clear workflow is so important in the production process that the user really need[s] to have

 96

very high level of understanding of the program to maximize the power of it. I see a lot of

potential in this program overall! Thanks for showing us this!” This also emphasizes the

need to make a tool easy to learn. Yet another said: "if the multiple iterations can be changed

more intuitive[ly] that would be great. Thanks! "

4.5.5.3 Design Quality

Similarly to previous work [80,81], I recruited three experts to rate the designs produced by

each participant for quality. All were expert designers in academia with at least a decade of

experience in practicing design and with grading student work. The designs were ranked by

overall and protean design quality. Protean means “being able to change easily” or that a

design is versatile. Essentially, this quality is used in design to classify how worthy

something is to build upon. Ratings ranged from 0 to 5, with 5 being best. The results are

summarized in Figure 4-12. Figure 4-13 depicts the averages of these results. The overall

design quality of the outcomes with both systems was similar, which may be a consequence

of the limited time that participants had to work on their designs. Yet, Interestingly, the

results achieved with GEM-NI were ranked overall higher in terms of being protean, which I

interpret that their creativity potential is higher.

 97

Figure 4-12. Overall and protean quality ratings of participants’ designs by each of the

experts (E1-3). Higher is better.

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10

R
an

k

Participant

Design Quality Ratings

E1 Overall NodeBox

E1 Overall GEM-NI

E1 Protean NodeBox

E1 Protean GEM-NI

E2 Overall NodeBox

E2 Overall GEM-NI

E2 Protean NodeBox

E2 Protean GEM-NI

E3 Overall NodeBox

E3 Overall GEM-NI

E3 Protean NodeBox

E3 Protean GEM-NI

 98

Figure 4-13. Average overall and protean design quality rankings by the three experts

(higher is better). Error Bars: ±1 SE.

4.6 Overall Discussion

The results of the second user study shine more light on issues revealed in the first user

study. With a larger sample size, GEM-NI was confirmed to support exploration better with

the new features, as also supported by the results from the CSI questionnaire as well. As in

the first user study, a number of participants created alternatives in the first task, where they

did not know about GEM-NI’s features, without prompting. In the freeform feedback three

participants expressed that they wished they had the features of GEM-NI available in the

generative design tools they use daily. All this supports my initial hypothesis for the need for

GEM-NI’s approach in current generative design tools. Some freeform feedback revealed

that the learning curve for using a system that fully enables exploration through alternatives,

such as GEM-NI, is a potential issue.

Interestingly, some features that participants identified as desirable in the interviews in

the first study, such as focusing, did not prove to be popular with the participants in the

0

1

2

NodeBox GEM-NI NodeBox GEM-NI

Overall Overall Protean Protean

R
an

k

Ranking Category and System

Average Design Quality Rankings

 99

second user study. On the other hand, minimizing, one of the suggested features, was used at

least by a part of the participants. This underlines that user interface designers should

approach all requested features critically and consider them thoroughly. In contrast, the

major features that I decided to implement within GEM-NI proved to be more useful, with

the exception of global undo. The fact that global undo was not popular may potentially be

explained by the fact that few people can simultaneously design multiple alternatives in

parallel, due to the increased complexity of such a task. On the other hand, the ability to

perform post-hoc merging and resurrection from history was confirmed as useful, which

points out that considering multiple alternatives in linear or potentially non-linear fashion is

much more realistic. A participant from the interview in the first user study expressed

exactly this insight. In hindsight, I believe that if I had designed the user study and logging

specifically to reveal instances when parallel editing occurred and contributed to the design,

I would be able to state this more confidently. From the current logs it is difficult to say

whether parallel editing or global undo was accidental or desired. Merging, a concept novel

for generative design, but common in software development as part of version control (e.g.,

Git), received some interest. But as in the first user study only few used it in the second one.

One reason could be that the participants I worked with in the second study were not familiar

with the concept. In hindsight, I should have asked about experience with version control

systems in the pre-questionnaire. That might have enabled me to better analyze this issue. It

is also interesting to point out that beyond exploring alternatives, the mechanisms introduced

in GEM-NI permit designers to use the system as a version control system. Like in source

code version control systems, designers do not need to create multiple files and are not

restricted by the limitations of copy and paste. As in source code systems, branching and

borrowing of ideas is facilitated with the ability to resurrect from history. Through merging,

designers can save time by re-using existing parts of the design. I also can point out that in

GEM-NI alternatives and version control are effectively integrated into one user interface.

Based on these findings I speculate that the user interface of GEM-NI for managing

alternatives is not specific to generic design. All the newly introduced techniques can be

 100

applied to other design workflows. At least one of the participants already expressed the

wish that the alternative management techniques should be available in their more familiar

3D parametric modeling workflow. Though, adopting a design gallery into a system like

Processing, which is purely code-based, would arguably require a new interface.

I also believe that the techniques that were popular in GEM-NI in the evaluations will

likely also be popular in domains outside of design that involve problem solving, such as

visual analytics. Similarly, I expect the unpopular techniques (such as global undo) to be

unpopular in other domains as well. Finally, and beside all the benefits of the new

techniques, I expect that the obstacles that GEM-NI’s interface encountered to transfer as

well. For example, parallel editing should not be the default, regardless of domain.

Both user studies may suffer from a hidden skill transfer effect, because NodeBox was

presented and evaluated first and GEM-NI second. However, it is not easy to use

counterbalancing with a between-subject study since the two tasks used here are not exactly

the same. Moreover, if participants are alerted to the use of alternatives in the first phase

through GEM-NI, this would likely bias the results for NodeBox as well.

4.7 Summary

In this chapter I presented GEM-NI—a new system for creating and managing alternatives in

generative design. The system supports parallel editing via checkmarks and sandboxing, two

new methods to control which alternatives are affected by a parallel edit. Also, I introduced a

novel method for post-hoc merging of alternatives. Moreover, GEM-NI provides several

methods to create alternatives, including a new method for resurrecting alternatives from a

graphical history with previews, with full lineage preservation. Another way to create

alternatives is with a new design gallery, which enables users to select which ranges of

parameters and/or parts of the generative network model to use for exploration. Moreover,

my design gallery supports a new method to explore products of generative networks.

I also conducted two user studies to explore usefulness of the system. These user studies

were conducted as part of a workshop where participants first learned how to use the tool.

 101

The feedback from participants in the first workshop and in-depth interviews suggest that

GEM-NI, and more broadly the approach behind it, indeed enables designers to work more

creatively. The results indicate the direct applicability of the presented techniques for the

design process also via the CSI questionnaire. While the sample size of my user study is

small, it identified the potential for better creativity support through alternatives in design

tools. In the second user study, the tasks were refined and revisited with a larger sample of

participants. The results resolved the issues raised by the first user study. GEM-NI was found

to support exploration better due to the newly introduced features, which was also supported

through the CSI questionnaire. In the freeform feedback three participants expressed that

they wished they had the features of GEM-NI available in the generative design tools they

use daily. Three expert designers in academia evaluated the quality of the participants’

designs. I interpret the rankings as suggesting that the creativity potential of the results is

higher with the designs produced with GEM-NI.

 102

Chapter 5
MACE: A New Interface for Comparing and Editing of Multiple
Alternatives

Figure 5-1. GEM-NI enables users to work with alternative generative designs

simultaneously. The leftmost alternative is active, the center one is passive, and the
rightmost one is idle.

In this chapter I present a new interface for interactive comparisons and editing of multiple

alternatives in generative design. The interface is part of GEM-NI, a graph-based 2D design

tool that supports the exploration of design alternatives in various ways. GEM-NI is built on

NodeBox 3, a graph-based 2D generative design tool. GEM-NI adds to NodeBox 3 a number

of novel features and interactions that enable users, among other things, to quickly generate

sets of alternative solutions using a variety of mechanisms. GEM-NI is described in Chapter

4.

Here, I enhance GEM-NI with a novel difference visualization technique, which allows

users to compare more than two alternatives at a time. Moreover, my difference visualization

technique is fully interactive. To enable editing in difference visualizations, I introduce a

new “reveal-to-edit” feature, which I designed to improve parallel editing in GEM-NI. I

named this interface MACE (Multiple Alternatives – Comparing and Editing).

 103

5.1 MACE

I use a design with three alternatives in Figure 5-1 as the main example throughout this

paper to demonstrate the features of my system. Yet, MACE and GEM-NI are capable of

handling a much larger number of alternatives, limited only by screen estate, processing

power and memory. More examples of difference visualizations are presented in Appendix

B.

5.1.1 Design Motivation

Almost all previous approaches to graph differencing discussed in Chapter 2 reduce the

problem to showing at most pairwise differences. When timelines are compared in dynamic

graph drawing the differencing problem also reduces essentially to such pairwise

comparisons. Animation is one option that can be used to trace the evolution of a graph.

There, it may appear as if multiple graphs are compared. Yet, animation relies on the ability

of the user to memorize previous frames (time slices), since only a single frame can be

displayed at a time and compared against the time frames in the user’s memory. Another

option is to use superposition for comparing multiple graphs, even for graphs that have not

necessarily evolved linearly. Yet, displaying differences between more than two graphs in

the same non-partitioned space will result in a scalability problem, even for alternatives. The

approach I propose in this thesis is essentially a variation of aggregation where parts that are

different from the reference graph are displayed in different partitions or “lanes”

corresponding to the alternative, which is compared against the reference graph. This

difference visualization technique I present here has its roots in Shireen et al.’s [97] concept

for parallel generation and editing of alternatives. Yet, Shireen et al.’s interface was not

explicitly intended for difference visualization and misses a visualization of deleted and

common nodes and edges. I extend their original concept and thus enable full difference

visualization across multiple data-flow networks, i.e., DAGs. Still, the question remains if

 104

visualizing all differences across all alternatives at once is overall usable and can scale. I

employ subtractive encoding—a complementary approach to the additive encoding

identified by Gleicher et al. [39]. Subtractive encoding removes common nodes from the

compared graphs. This technique reduces visual clutter in the compared view and also

reveals and/or highlights changed, unchanged, added and removed nodes in the compared

network view relative to the reference. As a result, if there are no differences between a

reference and compared network and there is nothing to show in the compared view, visual

clutter is non-existent or minimal. On the other hand, if the overall number of changes is too

large, then the difference visualization might visually “overwhelm” the content. To

characterize this, I use the relative percentage of nodes shown in a given difference

visualization between two alternatives in MACE as an approximation for readability, R:

𝑅 = 1−
min (𝑛!"# ,𝑛! + 𝑛! + 𝑛! + 𝑛!)

𝑛!"#

where n! is the number of changed, n!—the unchanged, n!—the added and n!—the

removed nodes in the compared view, and n!"# is the total number of nodes in the reference

view. If the number of displayed nodes in the compared view is equal to or exceeds the

number of nodes in the reference view, readability becomes zero. If the number of

differences is small readability will approach one.

In order for my technique to be effective, the average readability R of typical designs

must be high. I believe that alternatives for a design problem will likely show substantial

similarities due to the shared goal. As a result, I expect fewer differences among data-flow

networks of alternatives compared to the number of similarities. To test this hypothesis I

measured the average readability R from the dataset of the User Study II (see 3.3.7). For the

outcomes I performed all pairwise comparisons of all their alternatives in both orders. Thus,

for a participant that generated 𝑛 alternatives, I performed 2 !
! comparisons and calculated

their average readability R. Averaging across all participants yielded a fairly high average

readability of 𝜇!=.68, 𝜎!=.26, 𝑁=146. Given that 68% is substantially closer to one, this

 105

motivates that showing differences instead of commonalities is an appropriate design choice

for difference visualization across multiple alternatives.

Beyond this I also explore node-focused difference visualization, i.e., showing

differences for a single node. This is unlikely to suffer from scalability issues, since only the

differences for a single node are shown at a given time.

5.1.2 Mechanisms to Facilitate Comparison of Alternatives

In my implementation, the positions of group nodes are synchronized by default across

alternatives. Thus, moving a node in one alternative also moves it in all other alternatives, if

it exists. This affects even alternatives that are not editable. In early pilot studies I identified

that the uniformity in network layout makes it much easier to visually compare networks

across multiple (read more than two) alternatives. The default is to keep this feature on. To

accommodate use cases where this is undesirable, the user can toggle this feature with a

button. One of the scenarios where turning this feature off could be useful is a situation

where the user compares networks with a lot of nodes on a small screen. In this case the

screen space may not be sufficient to show all encodings without zooming out substantially

beyond the threshold of being able to read node labels. In this case moving nodes around,

i.e., manual re-layout, at a moderate zoom level could solve this issue to some degree,

However, this is an exceptional scenario because I do not expect alternatives to have a lot of

changes. And even if a lot of changes appear, I expect the user to use node grouping to

reduce the visual complexity of the networks.

Selecting a node in one alternative also selects it in all other alternatives if the node exists

there, again to make it easy to identify commonalities. It also brings up the parameter view

for the selected node everywhere as well. In Figure 5-1 the node SHAPE_ON_PATH was

selected in the leftmost alternative and is thus selected in all other ones as well. The

corresponding parameter views are also shown. This also makes it easier for the user to

identify common elements between alternatives. Zooming and panning operations on the

network view and output view are also linked, again to facilitate visual comparison.

 106

(a)

(b)

Figure 5-2. a) Node-focused difference visualization of SHAPE_ON_PATH. Left
document is the reference and is also active. (b) Difference visualization for the

network panels of the same content without node focusing.

5.1.3 Difference Visualization

In GEM-NI interaction with alternatives happens in the default visualization shown in Figure

5-1. In MACE I added diff mode, which shows the differences of all the alternatives relative

to a reference alternative instead. The user can freely select which alternative to use as

reference. See Figure 5-2. This mode was inspired in part by the subjunctive interface

proposed (but not implemented) by Shireen et al. [97]. The power of diff mode is its ability

to show differences between multiple alternatives at the same time. To get into this mode,

one alternative has to be designated by the user as the reference through a GUI button,

clicking on a menu button, or a key short cut. The other alternatives (further referred to as

 107

compared alternatives) are then compared to it. In diff mode, differences are visualized in all

three views (output, parameter and network), as applicable. While Shireen et al.’s proposed

GUI shows differences only for nodes that are common, my implementation also visualizes

nodes and edges that have been added or deleted.

In Figure 5-2a, the leftmost alternative was chosen as reference. Its network starts with a

group node CIRCLE that is fed as both shape and path to the SHAPE_ON_PATH node generating

a circular formation of six circles. Moreover, two copies of the circle are then created at the

center, one of which is scaled up to form the outline of the design. The output of

SHAPE_ON_PATH and COPY are then combined into a single design through the COMBINE

node, which is the rendered node.

The center alternative starts with the same CIRCLE. This node is unchanged and thus is

not shown (as described below). The generative model increases the number of circles to 12

in SHAPE_ON_PATH, which now shows up as a changed node. The COPY and COMBINE nodes

were removed in this design, leaving the SHAPE_ON_PATH node as the rendered node. The

right alternative substitutes the path input of SHAPE_ON_PATH node (and only that input) with

a triple-recursive hexagon arrangement (shown in green with group node POLYGONS).

Instead of the COMBINE node, the whole design is also rotated by 30° with a final ROTATE

node.

5.1.3.1 Network View

Nodes common to the reference and at least one other alternative are only shown in the

reference. Phrased differently, for every compared alternative and in the network views, all

nodes that are common with the reference and which have identical parameter values are not

shown to reduce visual clutter. This potentially hides entire unmodified sub-graphs. In

Figure 5-2, the CIRCLE node is an example. It exists in all three alternatives. Common nodes

are highlighted with a brown (de-saturated red) outline in the reference.

Nodes that are common with the reference but have one or more different parameter value

appear in red color. A “≠” sign is displayed to the top left of the node to emphasize this

further through an inequality metaphor. If such a node has any incoming or outgoing

 108

connectors, they are connected to the corresponding nodes in the reference with lines that

cross the panels. The connectors are displayed in the same red color and appear as a dashed

curve. This style differentiates them from solid “within-document” connectors. In Figure

5-2a, node SHAPE_ON_PATH in both compared alternatives is an example for a node with

changed parameters.

This also works for group nodes, which contain sub-networks. If at least one difference

in either a parameter or structure exists between the sub-networks, then in the corresponding

compared views these group nodes also appear highlighted in red with a “≠” displayed next

to them. If a group node contains another group node, the same technique is applied

recursively. This is described in more detail in 5.1.3.5.

Nodes that do not exist in the reference are highlighted with a green color and are again

connected with dashed connectors to the reference. A “+” sign is displayed in the top left of

the node to emphasize this through an addition metaphor. In Figure 5-2a, nodes POLYGONS

and ROTATE in the rightmost alternative are such additions.

Nodes that exist in the reference, but don’t exist in a compared alternative are displayed

in a background semi-transparent layer and are connected with semi-transparent connectors

to the reference. A “−” sign in the top left of the node emphasize this further through a

reduction/subtraction metaphor. In Figure 5-2a, COPY and COMBINE in both compared

alternatives demonstrate this visualization technique.

 109

(a)

(b)

(c)

(d)

Figure 5-3. Difference visualization for changed connections. (a) no difference
visualization, (b) diff mode, (c) diff exclusion with cross-alternative connectors turned

off, middle alternative is active, (d) diff exclusion with cross-alternative connectors
turned off, right alternative is active.

I also implemented a new technique to illustrate differences in connections between

nodes. In this visualization, I highlight unchanged, common nodes that have one or more

changed connections, in brown (de-saturated red) color. An “=” sign is displayed in the top

left of such nodes to emphasize their unmodified state further. Figure 5-3 shows this

technique using dummy nodes. In this figure, four views of the network are presented as

follows: In the default mode shown in Figure 5-3a, the unenhanced networks of three

alternatives are presented. In Figure 5-3a, I show a scenario without difference visualization,

 110

where one of the connectors exists only in the reference, while others exist only in the

compared alternatives in the middle respectively right. In Figure 5-3b-d, I illustrate two

variants of my new connector difference visualization technique. In Figure 5-3b, the diff

mode visualization, the alternative on the left is the reference. All the cross-alternative

connectors are displayed. In diff mode, all three nodes are identified as common in the

middle and right alternatives. The changed connectors are then shown as dashed connectors

across panels. While this presentation emphasizes all the differences in connectors in the

three networks, it may appear confusing due to the number of cross-alternative connectors.

This leads to a more and more cluttered display with an increasing number of alternatives.

Below is the pseudo code for the implementation of the difference visualization in GEM-

NI. Cross-alternative connectors are painted onto the Java GlassPane, which is in front of

all GUI elements. The new method is paintGlassConnections(). The pseudo code

omits the details of the (earlier) creation of various sets of nodes, i.e.,

sameNodesInReference, newNodes, sameNodesThatChanged and

missingNodes. The pseudo code also handles the implementation of node-focused

difference visualisation, a feature that is described below.

 111

/**
 * This method paints cross alternative connectors with node-focused visualization.
 */
void paintGlassConnections(){
 Initialize pointer to singleNodeSelectedSomewhere. Non-null means active node-focused difference visualization.
 //this segment is for cases of node-focused difference visualization
 if active alternative ≠ reference {
 // singleNodeSelectedSomewhere is empty but a single node is selected
 if selectedNodes.size() == 1 and singleNodeSelectedSomewhere == null {
 Reinitialize newNodes, sameNodesThatChanged, missingNodes, missingNodes, and
 draggedNodesThatDidntChange to empty sets
 add the selected node appropriate sets and update singleNodeSelectedSomewhere.
 }
 // singleNodeSelectedSomewhere is not empty, sets needs to be re-initialzed
 else if singleNodeSelectedSomewhere ≠ null {
 Reinitialize newNodes, sameNodesThatChanged, missingNodes, missingNodes, and
 draggedNodesThatDidntChange to empty sets
 add singleNodeSelectedSomewhere to appropriate sets.
 }
 }

 //the actual visualization of differences of connectors for new, changed and dragged nodes
 for all connections c in the network {
 for all nodes n in sameNodesInReference{
 //input in newNodes
 if c.output()== n{ //output is in reference
 Set connection color to NEW_NODE_COLOR
 Draw connection to the node output in reference for all newNodes
 Set connection color to CHANGED_NODE_COLOR
 Draw connection to the node output in reference for all sameNodesThatChanged

 Set connection color to DRAGGED_NODE_COLOR
 Draw connection to the node output in reference for all draggedNodesThatDidntChange
 }
 //input in newNode
 if c.input()== n{ //input is in reference
 Set connection color to NEW_NODE_COLOR
 Draw connection to the node input in reference for all newNodes

 Set connection color to CHANGED_NODE_COLOR
 Draw connection to the node input in reference for all sameNodesThatChanged

 Set connection color to DRAGGED_NODE_COLOR
 Draw connection node to the input in reference for all draggedNodesThatDidntChange
 }
 }
 }
 //the actual visualization of differences of connectors for missing nodes
 for all connections c in reference{
 for all nodes n in reference {
 //input in missingNodes
 if c.output() == n { //output is in reference
 Draw a connection to the node output in reference for all missingNodes
 }

 //output in missingNodes
 if c.input()== n { //input is in reference
 Draw a connection to the node input in reference for all missingNodes
 }
 }
 }

}

 112

Certain changes such as, e.g., a change in the reference relative to all other alternatives

(in other words when the user modified the reference without pushing changes to all other

alternatives) create visual clutter proportional to the number of alternatives in the

visualization. To address this kind of visual clutter, we designed a new variant, called diff

exclusion, accessible through a GUI button or a shortcut. This mode does not show all cross-

alternative connectors to and from the excluded alternative. This makes missing connectors

more visible and we show them transparently in the compared alternatives relative to the

reference and other missing elements. Figure 5-3b, illustrates the clutter created by cross-

alternative connectors. In Figure 5-3c,d the missing connectors between NODE1 and NODE2

in the compared alternatives relative to the reference are more visible when diff exclusion is

applied to both compared alternatives. Another use case for diff exclusion is if the user

wants to see all differences between a small, say up to three, set of alternatives. Otherwise,

the user can temporarily hide undesired alternatives in the difference visualization or

compare one node at a time with node-focused difference visualization (described below).

Another option is to use group nodes, but this changes the structure of the network.

One way to see missing connectors in the reference relative to the compared alternative is

to select one of the compared alternatives as reference. To remove this extra step of

switching the reference, I implemented another technique where the system shows missing

connectors in the reference instead. The user simply switches the active alternative to the

desired compared alternative against which s/he wants to see missing connectors in the

reference. The missing connectors in the references, if such exist, are then shown

transparently. In Figure 5-3c, the middle alternative was set as active. The missing connector

between NODE2 and NODE3 is displayed transparently in the reference (on the left). In Figure

5-3d, the compared alternative on the right was set as active. The missing connector between

NODE1 and NODE3 is displayed transparently in the reference. While the idea of showing

missing connections was previously presented in the DARLS system (Chapter 3), that

technique could only handle two graphs at a time. The new diff mode and diff exclusion

techniques presented here generalize DARLS methods to more than two networks.

 113

To further reduce visual clutter, I do not show connections between all combinations of

deleted and common nodes inside each compared alternative. E.g., the connector between

COPY and COMBINE is not shown in the compared alternatives in Figure 5-2a (and b). The

user can toggle this via a menu command.

5.1.3.2 Node-focused Difference Visualization

Graham and Kennedy [41] point out that a potential disadvantage of using edges for a visual

comparison of two trees is that if there are too many lines displayed at once then individual

edges become impossible to distinguish from the mass of drawn lines. Such visual clutter is

a known concern in graph visualization. MACE includes a novel interaction method to

overcome this problem. Whenever the user selects a node (via clicking on it) in diff mode,

the system hides all the cross-alternative connectors that are not connected to the selected

node. Figure 5-2a illustrates an example where SHAPE_ON_PATH is selected in the reference

alternative. Thus, only connectors involving the SHAPE_ON_PATH node in the reference are

shown. If there are still too many dependencies visible, the user can apply diff exclusion to

exclude certain unwanted alternatives to reduce visual clutter further. Deselecting the node

(by clicking on any empty area) then shows all other connectors again. See Figure 5-2b.

5.1.3.3 Parameter View

In the parameter view, I emphasize parameters changed relative to the reference for the

currently selected node. For this, each changed parameter “row” is highlighted in the

compared alternatives. In Figure 5-2a, the “Amount” and “Margin” parameters are different

in both alternatives relative to the reference and are thus highlighted in red.

5.1.3.4 Output View

To illustrate the differences in the output of the generative design, the geometry produced by

the rendered node of the reference is displayed transparently in the output view in a bottom

layer for all compared alternatives. This directly superimposes the geometry of compared

alternatives over the reference to enable simple visual comparisons. To deal with cases

 114

where this is visually too intrusive, I provide an option to disable this functionality by

unchecking the corresponding “diff” checkbox. Figure 5-2a shows a case where the direct

overlap of the curves makes it advisable to turn this feature off. Figure 5-7c shows a case

where the difference visualization in the output view is not as intrusive. Here the offset

parameter of the WIGGLE node was changed. The default option is to keep this checkbox on.

I leave it up to the user to determine when this feature gets too intrusive since it depends on

the content that the user is working with.

5.1.3.5 Recursive Group Node Difference Visualization

I implemented a technique to visualize differences between group nodes. The technique

supports visualization of differences between recursive/nested variations of these nodes as

well. Figure 5-4 demonstrates an example where three alternatives were created from an

earlier “Flower of Life” design from Figure 5-1. The top part of the figure shows the status

of the workspace with difference visualization turned off. The bottom part of the figure

shows a difference visualization highlighting the node POLYGONS in the network view as

described above. This indicates that there is a difference between these nodes. However, on

this level, it is not revealed. Entering the POLYGONS presents the view in Figure 5-5. All three

views are now displaying the contents of the POLYGONS node in each alternative. The top

part of the figure shows contents with difference visualizing turned off. The bottom part

shows a difference visualization highlighting the node POLYGON1 and POLYGON2_3.

POLYGON1 appears in all three alternatives and is also selected, which enables node-focused

difference visualization on it. This highlights the “Sides” parameter emphasizing that the

value of 3 is different from the reference value of 6. The “Sides” parameter of POLYGON2_3

also has the same value of 3 in the middle alternative (not shown). POLYGON2_3 is the last

network not in this branch. Entering it presents the view in Figure 5-6. Here, the right

alternative is completely disabled because the node doesn’t exist there. This is indicated by

highlighting the whole alternative in red. Note that the alternative is highlighted in both the

regular mode (shown on top) and the difference visualization mode (shown at the bottom).

 115

Figure 5-4. Three alternatives of Flower of Life. The design differs in the POLYGONS

node at level 1.

 116

Figure 5-5. Difference visualization at level 3 inside POLYGONS node.

 117

Figure 5-6. Difference visualization at level 2 inside POLYGON2_3 node. The right panel

is disabled, because the corresponding node does not exist in the network.
Below is the pseudo code for the implementation of the recursive comparison method for

group nodes in GEM-NI. The code consists of a single static method

groupNodesEqual(), which was added to the code base of NodeBox 3.

 118

/**
* The method compares if the two group nodes are identical, or there exist difference in at least one parameter of a node, or missing/new
node or connection
 * @param groupNode1 is in the compared alternative
 * @param groupNode2 is the reference
 */
boolean groupNodesEqual(Node groupNode1, Node groupNode2) {
 Initialize empty sets: newNodesInGroup1, changedNodesInGroup1, missingNodesInGroup1
 Initialize subgroupNodesEqual = true; //initially we assume that subSubNetworks are equal

 //look for new and changed nodes
 for all nodes group1Node in groupNode1.getChildren() { // all nodes in this groupNode1
 Initialize foundSameNode = false;
 for all nodes group2Node in groupNode2.getChildren()) { // all nodes in groupNode2
 if UUID of group1Node == UUID of group2Node{
 Initialize foundSameNodeThatChanged = false;
 for all nodes inputs g2Input of group2Node {
 If g1Input not g2Input{
 foundSameNodeThatChanged = true;
 break; //node was matched
 }
 }
 if (not foundSameNodeThatChanged) {
 changedNodesInGroup1.add(group1Node);

}
else if (group1Node is a group node) {

subgroupNodesEqual &= groupNodesEqual(group1Node,group2Node);
}
foundSameNode = true;
break;

}
}

 if (not foundSameNode) {
 newNodesInGroup1.add(group1Node);
 }
 }

 //looking for missing nodes
 for all children of group2Node { //for all nodes in reference document
 Initialize found = false;
 for all children of group1Node { //for all nodes in this network view
 if UUID of group1Node.child == UUID of group2Node.child {
 found = true;
 break;
 }
 }
 if (not found){
 missingNodesInGroup1.add(group2Node);
 }
 }

// comparing connections
connectionsNewInGroup2 = Find all connections that are in groupNode1 but not in groupNode2
connectionsNewInGroup1 = Find all connections that are in groupNode2 but not in groupNode1

 return subgroupNodesEqual and newNodesInGroup1.isEmpty() and changedNodesInGroup1.isEmpty() and
 missingNodesInGroup1.isEmpty() and connectionsNewInGroup1.isEmpty() and
 connectionsNewInGroup2.isEmpty();
}

 119

5.1.4 Editing Alternatives in Diff Mode

My difference visualization mode is fully interactive. This means that all above-mentioned

visualizations are not just static, but can be used directly during parallel editing.

5.1.4.1 Autosandboxing

In diff mode, switching to another alternative automatically sandboxes the newly active

alternative (making all others idle). This feature can be enabled in the preferences.

Autosandboxing saves the user an extra step when editing alternatives in diff mode.

Currently, the default is to keep this feature turned on, because many users work with one

alternative at a time. After all, non-sandboxed, i.e., parallel editing is more challenging.

 120

(a)

(b)

(c)
Figure 5-7. Reveal-to-edit feature. (a) Initial state. (b) A common node, highlighted in

brown (de-saturated red) is revealed via a clicking with a modifier key in the
alternative on the right. That (compared) alternative is then active and the reference is
made idle through autosandboxing. (c) A parameter change results in a red difference

visualization.

 121

5.1.4.2 Reveal-To-Edit

One drawback of any difference visualization that hides common nodes is that these nodes

are then inaccessible for editing and other operations. To address this shortcoming and

inspired by the user interface concept proposed by Shireen et al.’s [97], I implemented a new

reveal-to-edit feature. Shireen’s concept used dragging of nodes to reveal them. Yet,

dragging of objects has a different meaning in GUI’s and does not scale well to multiple

alternatives and monitors. Thus, I implemented a new reveal-to-edit feature through clicking

while holding down a modifier key in a compared alternative. This action shows the selected

nodes in the active and compared alternatives (temporarily) in brown (de-saturated red) and

with a ‘=’ sign in the top right to emphasize the commonality. This visualization is

consistent with other visualizations of common nodes mentioned above. Alternatively, the

user can click while holding the modifier key on nodes in the reference alternative to reveal

the selected nodes in all alternatives. This interface is only accessible in diff mode.

 Consider the following typical scenario. The user starts with a design consisting of three

nodes: GRID, WIGGLE and ELLIPSE connected to each other in a chain. This network produces

a 10×10 grid of ellipses. The user then creates a clone through branching and enables the diff

editing mode with the alternative on the left as reference. As a result, all the elements of the

cloned alternative become hidden (as described above). See Figure 5-7a. To edit the

parameter for the selected WIGGLE node in the other alternative, the user then clicks in the

compared (right-hand) alternative while holding the modifier key. This then changes the

display to Figure 5-7b, also because autosandboxing makes the reference alternative idle.

Subsequently, the user can now edit the “offset” parameter of the WIGGLE node of the

compared alternative on the right (Figure 5-7c). In this scenario, only the WIGGLE node is

revealed because it is the only selected node in the reference alternative.

5.1.4.3 Parameter Synching

To facilitate post-hoc (re-)synchronization of parameters, I offer a simple shortcut for nodes

with changed parameters. For each changed parameter, a “sync” button is shown to the right

of the field (Figure 5-2a). Clicking it synchronizes the state in all passive alternatives to the

 122

state of the current alternative. Higher level synchronization on the structure of the graph is

possible through merging and is described in Chapter 4.

5.2 Multi-Monitor Support

Figure 5-8: My 2×3 multi-monitor setup displaying a total of 14 alternatives in a

difference visualization relative to the top middle (reference) alternative.

In the conceptual design phase, designers routinely generate dozens of alternatives. That

amount of content is difficult to fit onto a single monitor, if all alternatives are still to be

view- and editable. Consequently, I extended GEM-NI to support multiple monitors to help

the designer keep the overview of all alternatives they are considering. Multi-monitor

support in MACE helps to support scalability as more alternatives can be shown at full scale

at the same time.

I enhanced GEM-NI to take advantage of the increasingly popular multi-monitor setups.

In the preferences menu, the user can select the preferred monitor usage from between 1×1

and (currently up to) 2×3 monitors. The workspace is then re-arranged to spread all

alternatives as evenly as possible according to the newly chosen monitor arrangement.

Within each monitor, horizontal space is evenly redistributed depending on the number of

alternatives in that monitor. In a sense, this is an adaptation of the Spread technique of Bi et

 123

al. [17] to tiled applications. The user still has thus the flexibility of using only a subset of

available monitors.

For all monitor layouts with two rows, i.e., 2×1, 2×2 and 2×3, the model and network

views are swapped on the bottom row. That way, cross-alternative node connectors in diff

mode do not cross the model and parameter views of the bottom row alternatives.

To demonstrate how GEM-NI works on more than one monitor, I created a multi-monitor

setup with six Dell U2414H monitors, in a 2×3 formation in an Ergotech multi-monitor stand

(Figure 5-8) with a total resolution of 5760×2160 pixels. These monitors have thin bezels on

three sides. To minimize the overall seams, I rotated the top row of monitors 180°. In Figure

5-8, 14 alternatives are being edited in GEM-NI on this system.

5.2.1 Managing Alternatives in Multi-Monitor Environment

Alternatives can be dragged across different monitors to rearrange the layout. Each time an

alternative is dragged between monitors, the horizontal space in the two involved monitors

gets redistributed accordingly. When an alternative is dragged from a monitor on the top to a

monitor at the bottom and vice versa, the model and network views swap places. If all

alternatives are dragged out of a monitor, or if a setup in the preferences is chosen leaving

some monitors empty, a plus sign is displayed in the middle of the empty monitor. This

widget enables quick creation of a new empty alternative. Instead, an alternative from

another monitor can be dragged into this empty area.

Figure 5-8 shows an example when an alternative in the middle was chosen as reference.

This reference is the Seed of Life from Figure 4-1, which was initially positioned as the first

alternative in the top left corner. In fact, this alternative was first dragged to the middle to

demonstrate how placing the reference alternative in the middle makes it easier to compare it

against all others in the diff mode.

 124

5.2.2 Jamming Spaces

Ball and North [13] identified that users tend to dedicate certain regions of a large display

for certain applications and then rely on spatial memory. I believe this can be generalized to

how screen space can be used for alternatives in GEM-NI and consequently implemented a

corresponding feature that supports the adaptation of the space to the current use case.

Moreover, space is an important resource in parallel exploration tasks. In GEM-NI, I permit

users to “jam spaces”, i.e., monitors, into the following states: idle/non-idle; enable/disable

display of cross-alternative node connectors; and all combinations thereof.

This functionality is available through a menu and directly affects all alternatives in a

given monitor. When a monitor is jammed, a red frame is displayed around the border as a

visual clue (Figure 5-9). Dragging an alternative into a “jammed” monitor affects the state of

said alternative corresponding to the “jam” settings. In Figure 5-9 the two monitors at the

left and right bottom respectively are both jammed. The one on the left is jammed in an idle

state. The one on the right is jammed in the state where cross-alternative node connectors are

not displayed.

5.2.3 Limitations

It is important to point out that the approach for multi-monitor support in GEM-NI and

MACE does not scale to a large number of alternatives, say substantially more than 20. The

reason for this is the physical limitations of the average user to see sufficient detail. Objects

appear smaller proportionally to their distance from the user due to perspective. Thus, a user

can only keep track visually of all alternatives that appear in the center of the field of view.

In order to accommodate hundreds of alternatives, a different interface will be necessary.

 125

Figure 5-9. The same example as in Figure 5-8 with the bottom left monitor jammed
into an un-editable state and the bottom right monitor jammed into the state where

cross-alternative connectors are not displayed.

5.3 Implementation

MACE builds on GEM-NI, which in turn was implemented as a major branch of NodeBox 3

by adding support for a multiple-document model based on universal unique identifiers

(UUIDs) for nodes. Such UUIDs enable us to perform robust comparisons and difference

visualization between alternatives. UUIDs also enable consistent relationships between

alternatives to persist even in the situation when certain alternatives are kept “offline” (i.e.,

stored on disk during editing sessions). These stored alternatives can then safely be re-

included in the workspace at a later stage without naming conflicts.

5.4 Discussion

Here I discuss the differences to previous work and the consequences of the design decisions

behind the difference visualization interface of MACE in more detail.

The problem of showing differences is important for generative design because designers

typically create several alternatives based on a single idea, which they use as a reference.

Designers also tend to work on multiple design alternatives concurrently [70]. Then

 126

management of these alternatives becomes an issue. Transferring ideas among alternatives

and saving multiple files or creating multiple designs in a single document are current

solutions for this. Yet, these approaches make it harder for the designer to compare designs.

MACE presents a solution to difference visualization for alternative graphs: added, deleted,

(un)changed and recursive group nodes in both the reference and all compared graphs as

well as added and deleted connections. As my technique is fully interactive, it permits

editing directly in the difference visualization, which reduces the number of mode switches.

I have previously presented pair-wise difference visualization for directed graphs with

nodes identifiable by name in DARLS (Chapter 3). Comparing more than two such graphs of

the evolution of a single data set can be done with animation and/or time slices, e.g., [90]. In

generative design where parallel and non-linear creation and editing of alternatives is the

norm we deal with situations well beyond the evolution of a single graph. Thus animation

and other traditional techniques are not directly applicable. Agglomeration is also not

appropriate because I am dealing with DAGs, not trees. My work is the first to propose a

solution to the problem of showing differences between more than two such graphs. In other

words, MACE’s approach extends a) the layering approach used in several instances of

previous work, such as [6,26] and DARLS, by hiding unchanged nodes to reduce clutter and

drawing connectors to the reference to enhance juxtaposition; b) side-by-side views

[46,76,77] by going beyond pair-wise comparisons; c) existing work on subjunctive

interfaces [97], TreeVersity [47–50] and TreeVersity2 [50,51] to show a larger variety of

difference visualizations; and d) the parallel editing interface of GEM-NI (see 4.1.1) to allow

the user to keep difference visualization enabled during editing. MACE also shows a

difference visualization of multiple group nodes. This supports scalability to generative

networks with many nodes, where node grouping becomes a necessity as otherwise the

graph becomes much too large for a single screen.

Also, my technique proposes subtractive encoding—a new form of explicit encoding

where members of the intersection are removed from the compared graph. This extends

Gleicher et al.’s taxonomy work [39]. As a result, this improves the readability of my

 127

difference encoding by keeping visual clutter low. Subtractive encoding is as an extension to

Shireen et al.’s [97] concept for parallel creation and editing of alternatives. Given that

alternatives for a design problem will likely be similar due to the shared goal, I expect fewer

differences among the data-flow networks of alternatives compared to the number of

similarities. This assumption underlies the design of the MACE interface. I performed an

analysis on the alternatives obtained through a user study to test this assumption. Using an

introduced readability measure, based on the measuring the similarity of the alternatives

networks, I obtained a fair degree of readability of the difference visualizations, which

confirms the appropriateness of the design choice of the technique (for at least this dataset). I

also presented a new user interface mechanism to interact with omitted unchanged nodes in

difference view visualizations, via a “reveal-to-edit” feature. In part, these techniques were

inspired by Shireen et al.’s [97] conceptual sketch of a user interface to enable parallel

generation and editing of design alternatives as an extension to existing variational CAD

tools. MACE is the first realization of these concepts and includes several substantial

extensions. Shireen et al.’s prototype only concentrated on changed nodes. Their work was

focused on the creation of alternatives and not truly on visualizing differences. MACE

suggests a solution to both issues and thus can be used for creating alternatives and for

visualizing differences or both together. I also introduced new difference visualizations for

edges and parameters as well as a parameter post-hoc synching method within the difference

visualization. In MACE differences are illustrated in all: the output, parameter and network

views in different ways. The “reveal-to-edit” feature is also an improvement relative to

Shireen et al.’s work, as it avoids the problem that dragging of nodes to reveal them does not

scale to multiple alternatives. Clicking while holding a modifier key is a better option and is

also more consistent with standard conventions. Creating and editing alternatives via the

MACE interface has the advantage over the visually unenhanced parallel editing (see 4.1.1)

in that the differences between the original (reference alternative) and the compared

alternative are immediately visible. Finally, by tuning the interface for multi-monitor setups

I demonstrate that our approach is scalable.

 128

In my difference visualization technique, nodes in a compared alternative view with any

type of change (new, deleted or modified) are connected with the corresponding nodes in the

reference view. Unless a connector to an unchanged node is added or removed (relative to

the reference), I chose to omit unchanged nodes from the difference visualization, as we

expect more commonalities among the alternatives compared to differences. After all, a

designer will generally work on alternatives for a single design goal. I believe that this

design choice, along with synchronized node positioning, zooming and panning,

substantially reduces the eccentricity effect [112] when comparing networks. This effect

suggests that the farther two pieces of information are from each other in the visual field, the

harder it is to divide attention between them. In multi-monitor environments, compared

alternatives may be located far apart from each other. This effect was also one of the

motivations why I reversed the positioning of the network and output views in the bottom

monitor row. By favoring close positioning of networks, I put the output views at a relative

disadvantage because they are now further apart. The ability to re-arrange the alternatives

suggests a solution to this problem when side-by-side comparison of models is needed.

The difference visualization technique that I propose here can scale to displaying

differences of many alternatives with any number of changes, thanks to the node-focused

visualization and diff exclusion. However, the effectiveness of the approach decreases as the

number of changes and alternatives increases because of the clutter that is generated as a

result of comparing many alternatives with multiple changes. The user still can perform

comparisons but may be required to use the node-focused visualization and diff exclusion

extensively.

To investigate the usability of my approach I conducted an exploratory interview with

three expert designers having 5–30 years of experience in generative design on an earlier

version of MACE. I first introduced the interface and its components, let them experiment

with it, and then asked for feedback on each feature. Most of their feedback was positive and

confirmatory towards the major motivations for this system. A number of issues were

pointed out, which were addressed. These included the need for fine-tuning of the GUI. One

 129

expert suggested that beyond node coloring it would be nice to add “+” and “-” symbols, for

added and removed nodes respectively. I took this thought further and added the “=” and “≠”

symbols to highlight parameter changes better. This then supports red-green colorblind users

as well. When playing with the reveal-to-edit and other features of our interface, one of the

users pointed out that parameter synching at the node level would be useful and I added this

feature. All the experts rearranged the alternatives within the workspace and selected

different alternatives and/or nodes to more rapidly identify differences between the models.

The idea of jamming spaces as realized in our system was also very well received. Users

more or less immediately identified how this was useful to their workflow. One commented:

“This way I can easily focus only on a subset and don’t have to see every [difference] at the

same time”.

I believe that the ideas behind MACE generalize to other visual programming

environments, including 3D modeling (e.g., Grasshopper 3D, Houdini). For other types of

media, such as video or audio (e.g., Max/MSP), a different approach to illustrating

differences may be necessary.

5.5 Summary

In this chapter I presented MACE—novel interface for differencing and editing alternatives

in a generative design system. This was implemented as an extension of GEM-NI—a system

for creating and managing alternatives in generative design. My new difference visualization

technique enables comparison of more than two alternatives at a time. The technique is

based on the idea of subtractive encoding which I identified as being useful in data that has

more similarities than the differences, such as alternatives. I used a readability measure to

confirm the appropriateness of the approach for at least one dataset of alternatives produced

by designers. My new user interface enables the user to interact with omitted unchanged

nodes in difference view visualizations, via a new “reveal-to-edit” feature. This feature

improves parallel editing in that the differences between the original (reference alternative)

and a clone are immediately visible during editing. The autosandboxing further facilitates

 130

alternative exploration I introduced new ways to emphasize added, deleted, (un)changed

nodes, recursive group nodes, as well as edges. Finally, I implemented multi-monitor

support to demonstrate that my difference visualization technique scales well to up to 20

alternatives. Finally, I introduced a new “jamming spaces” technique for assigning

individual monitors into different visualization states. This makes organization of a large

workspace easier.

 131

Chapter 6
Additional Discussion

Beyond the discussions mentioned in the above chapters, I discuss here a couple of

additional insights from my presented work.

6.1 Parallel Exploration of Alternatives in GEM-NI

In Chapter 1 as identified by Krish [65], I stated that GEM-NI (together with the MACE

interface) through explicit support for parallel exploration of alternatives complies with all

the requirements that need to be met for computer-aided design tools to support conceptual

design. Here, I clarify how I achieved this.

• GEM-NI makes minimal demands on and minimal disruption to the designer’s work

processes. Alternative creation, checkmarks and sandboxes along with merging,

minimizing and retrieval are mechanisms that are minimally intrusive to the designer’s

workflow for alternatives. While in my findings checkmarks and sandboxes happen to

be used quite extensively, this could potentially become intrusive. But this issue can be

resolved (see Section 6.4)

• GEM-NI is flexible in allowing the designers to navigate the design space in the way

they see fit. The decision to use stable network layouts with synched zooming and

panning enable seamless navigation of many design options simultaneously. The MACE

interface further makes comparison of these design options much easier. The ability to

quickly generate new alternatives, to minimize and retrieve them as well as the multi-

monitor support facilitates the organization of the workspace. The design gallery and

history interfaces further enable easy exploration of “what if” scenarios without

commitment.

• GEM-NI is able to support chaotic and unstructured work processes. GEM-NI

supports such non-linear processes by enabling the generation of alternatives through

branching and resurrection from history. Merging further enables post-hoc reintegration

 132

of changes across alternatives. All these mechanisms support unstructured work

processes in a seamless manner.

• GEM-NI is an assistive tool, giving the designer the choice to either use it or not use

it. All the features that define GEM-NI and MACE do not interfere if the designer

chooses to use the tool for creating a single design document, i.e., if s/he chooses not to

take advantage of the explicit alternatives support the tool provides.

• GEM-NI supports and enables emergence in order to stimulate the creativity of the

designer. In the second user study, participants created more alternatives with GEM-NI.

The analysis of the CSI questionnaires in the user studies underscored that GEM-NI was

particularly highly ranked for exploration. It can be argued, that this in turn enables

emergence. Another feature that supports emergence is the novel design gallery.

• GEM-NI enables an efficient transition of design content from the conceptual to the

detailed design phase. Elements of the conceptual design process are supported in

GEM-NI through the support of alternatives. Nodebox, and consequently GEM-NI,

which inherits its functionality inherently supports detailed designs. First, it is fairly

easy to construct simple designs. Yet, the large palette of computational nodes in

NodeBox 3 together with the seemingly limitless possibility for combinations enables

almost limitless refinement of any given design. Furthermore, the ability to implement

custom nodes with Python scripting permits users of GEM-NI to create even more

detailed designs. In fact, the L-system functionality described in Chapter 4 is an

example where custom created extensions were employed. Appendix B presents

examples of some of the noteworthy designs that were created by participants in a short

amount of time allocated for the workshop. Some of them already show signs of

detailed design.

Besides, GEM-NI through explicit support for parallel exploration of alternatives addresses

the following obstacles for conceptual design support of computer-aided design as also

identified by Krish [65]:

 133

• The invasiveness of frameworks impedes the thinking effort making it difficult to

automate conceptual design. To counter this, GEM-NI gives the designer the “freedom

to create, modify and discard” (Krish [65]). Freedom to create is enhanced with a

selection of alternative generation methods. Editing is enhanced with merging and the

MACE interface. GEM-NI supports both: destructive discarding and non-destructive

minimizing of currently unwanted content.

• CAD in its current form is unsuitable for representing and considering vague

concepts and forms. GEM-NI introduces support for creating and managing multiple

alternatives, which reduces the need for premature commitment. Yet, I acknowledge

that the system in its current form cannot yet approach the vagueness of sketching.

• CAD does not provide the creative stimulation that designers derive from the process

of hand sketching. Essentially the tools ignore that designs are developed based on

reactions to previously generated concepts. GEM-NI addresses this by supporting a

highly non-linear workflow through branching, resurrection from history, the design

gallery and merging. All these features are used to enable designers to react to and build

on previously generated concepts.

• Design is an iterative process of searching the design problem space as well as the

solution space. Designs and solutions co-evolve, during the design process. This is not

supported. GEM-NI supports iterative and parallel exploration of design options. The

link between the design and solution spaces is always guaranteed, as changes to the

model always immediately update the output view. GEM-NI supports iterative

exploration through its ability to branch off, merge, and reorganize alternatives, as well

as their minimization and retrieval.

• Many possibilities are considered and most of them are discarded at the early stages

of design. In this context, designers need to represent a wide range of concepts

efficiently. They are, therefore reluctant to invest the additional effort required to

represent such concepts in CAD. History, branching, the design gallery and merging

 134

are the mechanisms that aim to ensure that concepts created with GEM-NI are “cheap”

to create in terms of effort.

6.2 GEM-NI as a Subjunctive Interface

GEM-NI also supports the three design principles on which subjunctive interfaces are built,

as identified by Lunzer and Hornbæk [70]:

• Enabling setting several, perhaps totally different scenarios independently. This is

primarily achieved through the support for multiple alternatives, which can potentially

be totally independent. In fact, one of GEM-NI’s strengths is that it seamlessly supports

the full spectrum from completely independent to fully identical alternatives.

• Displaying multiple scenarios simultaneously to facilitate comparison. This is

supported explicitly through juxtaposition. Moreover, the MACE interface is designed

to further facilitate comparison.

• Synchronous adjustment of multiple scenarios to escalate the exploration process.

This is achieved through parallel editing, using checkmarks and sandboxes.

6.3 Revision Control

GEM-NI was designed with the goal of supporting alternatives. However, the same ideas can

also be used for revision control, similar to Doboš and Steed’s [28,29] approach for 3D

models and Chen et al.’s [23] approach for images. In this sense, alternatives can be thought

of as significant events, which can be committed. Workspaces are then equivalent to

repositories. The MACE interface, designed to compare alternatives, can then be re-

envisioned as a tool to compare versions.

6.4 Guidelines for Re-implementation:

GEM-NI and the MACE interface were implemented as a branch NodeBox 3. For

convenience, I chose NodeBox 3 as a foundation because of the many provided features.

NodeBox 3 is representative of a generative design system. It uses dataflow programming. It

 135

has been previously used for visualization and generative art [101]. This choice enables the

potential use of my results in a wider spectrum of applications, compared to a tool more

targeted at a single domain.

Unsurprisingly, NodeBox 3 was not designed with supporting alternatives in mind. The

code follows, what Terry and Mynatt [106] refer to as, the single state document interaction

model which recognizes and requires a document to be in one, and only one, state at any

particular time. This is a poor match to the non-linear, experimental processes characteristic

of creative endeavours [106]. To work around this limitation, I had to implement the features

of GEM-NI and MACE in an intrusive manner, where I sometimes had to violate good

software-engineering principles. E.g., each method that affects the state of the document had

to be modified to push changes to all alternatives. This was further made worse by the fact

that some alternatives may be idle. Global undo adds another layer of complexity. As a

result, the implementation was not efficient. Because NodeBox 3 follows the single

document state model, I also had to introduce UUIDs for the nodes to distinguish the states

of nodes in different alternatives. In hindsight, this approach is only suitable for retrofitting

into existing systems.

A better approach is to design the system from scratch by including support for

alternatives from the start. One example of such an approach, currently work-in-progress, is

the Shiro21 dataflow programming language designed to be embedded into applications that

support reuse and the exploration of alternatives. The language provides designers with

syntax to describe alternative designs or analysis solutions. In Shiro nodes can be

subjunctive, i.e., exist in multiple states. This allows a cleaner implementation with less

shared data. This approach should be considered by those re-implementing GEM-NI’s

approach in their application domain.

NodeBox 3 utilizes the standard undo manager from javax.swing.undo. To enable

undo history duplication, I created a custom undo manager, which supports duplication of

the undo stack. This functionality is used when creating branches and alternatives from

21 http://github.com/jrguenther/shiro

 136

history. To support global undo, I use another stack, which keeps track of every undoable

operation that was done and the alternatives that were affected by this to enable me to

identify potential undo conflicts and to clear the global undo stack if such a conflict occurs.

This is a simplified implementation that may not handle all use cases. Yet, in the user

studies, global undo was used only infrequently, also because participants did little parallel

editing. Thus, I currently see little need for a more sophisticated global undo/redo-method in

a system such as GEM-NI. The majority of the participants focussed on one design at a time,

and if necessary, re-integrated ideas from previous work through merging. Thus, I believe

that one area for future development in GEM-NI should focus on better methods for post-hoc

merging, e.g., by coming up with visualizations that identify which parts of the merge could

not be completed.

During the workshops some participants pointed out that GEM-NI’s interface is

unintuitive with regards to parallel editing. In a future re-implementation parallel editing

should be offered as an option rather than imposed on the user. Passive alternatives should

appear only when desired explicitly by the user and not by default. This will leave merging

as the main mechanism of pushing changes. To make the merging mechanism more

versatile, future implementations should introduce the concept of a timeline and allow the

user to merge the timeline of one alternative with that of one or more other(s). The history

mechanism is currently limiting in that it only permits the creation of alternatives from

history and not the merging of parts of history. Also history is based on undo and, as a result,

the history of edits from earlier application sessions is not available, as the undo stack is

currently not preserved during saving and re-opening.

Finally, there are limitations in NodeBox 3 that future implementations should address.

One example is the inability to embed recursion into the data-flow programming model that

is employed in NodeBox 3. As discussed in Section 4.5.5 this prevented me from taking full

advantage of the GEM-NI’s comparison features when relating networks with recursive

nodes to each other. Moreover, NodeBox contributors decided to abandon the support for the

“tweaking” of existing nodes since version 3. In NodeBox 2, it was possible to directly

 137

modify and display the python code, which stands behind each node in the system. Although

I acknowledge that this may not be a feature that the majority of designers must have, I

disagree that it was necessary to remove this feature from the latest version. Power users

generally appreciate such a feature and use it to solve many interesting problems. In addition

to that, I could have added in GEM-NI the ability to merge differences between different

alternatives directly in python code. Then, I could also have augmented the MACE interface

to perform difference visualization also on the code of the python-based nodes.

 138

Chapter 7
Conclusions

The work towards this dissertation started with the objective to address the lack of previous

quantitative research on generic diagram visualizations that support merging of diagram

versions. To investigate this, I introduced a new system for differencing and merging

diagrams that use of Dual View, Animation, Re-Layout, Layers and a Storyboard,

abbreviated DARLS. The system is targeted at diagrams with node and edge attributes. Such

diagrams, among other areas, are used frequently in generative design for dataflow

programming. I ran two user studies to investigate the benefits of the introduced difference

visualization techniques and found that naïve dual-view visualization was not well received.

The dual-view option with a difference layer was most preferred for comparing diagrams

with matching node positions. For diagrams with non-matching positions, I found evidence

that animation is beneficial, but that the combination with a difference layer was liked best.

In summary, this dissertation reveals that the difference layer technique is useful and a good

complement to animation. This had positive implications for the diagram merging method

that was introduced. The findings of the user studies suggested that stable layouts across the

network views of alternatives in GEM-NI should be used for facilitating comparison of

dataflow programming. As a result, I implemented this technique. Also, I implemented the

merging method of DARLS in GEM-NI in the context of generative design and multiple

alternatives to support merging of dataflow programming models. I evaluate the technique

later. The evaluation revealed that the technique could be useful for complex models. The

layering technique that I explored with DARLS I revisited in MACE and adopted it for

showing differences for more than two alternatives.

This dissertation investigated how introducing various forms of exploration with design

alternatives into generative design seen in manual sketching affects creativity support. To

address this, I introduced the techniques in GEM-NI—a graph-based generative-design tool

that I built, which supports parallel exploration of alternative designs. These techniques

 139

were: parallel editing, recalling history, branching, merging, comparing, and Cartesian

products of and for alternatives. Further, I introduce a modal graphical user interface and a

design gallery, which both allow designers to control and manage their design exploration.

Many of the introduced techniques are novel in the context of generative design and in

general. I investigated the usefulness of my approach through user studies and interviews.

The feedback from participants in the first study and in-depth interviews suggest that

GEM-NI, and more broadly the approach behind it, indeed enables designers to work more

creatively. The results indicate the direct applicability of the presented techniques for the

design process also via the CSI questionnaire. While the sample size of my first user study

was small, it identified the potential for better creativity support through alternatives in

design tools. I repeated the study with a larger sample of participants. GEM-NI was found to

support exploration better with the new features. This was clarified in the CSI questionnaire.

In the freeform feedback, three participants expressed that they wished they had the features

of GEM-NI available in the generative design tools they use daily.

One of the missing features that I identified early on as necessary in GEM-NI was the

ability to compare alternatives effectively and easily. I identified that it would be useful to

have the ability to compare more than two alternatives at the same time because in the open-

ended design tasks a lot of alternatives are created and being able to compare and edit them

in an interactive manner is important. To offer a solution to this I extended GEM-NI with

MACE – novel interface for differencing and editing alternatives in a generative design

system. My new difference visualization technique enables comparison of more than two

alternatives at a time. Using an introduced measure I confirmed the appropriateness of the

approach for at least the dataset of alternatives produced by designers in my studies. My new

user interface enables the user to interact with omitted unchanged nodes in difference view

visualizations, via a new “reveal-to-edit” feature. This feature improves parallel editing in

that the differences between the original (reference alternative) and a clone are immediately

visible during editing. The autosandboxing further facilitates alternative exploration. I

introduced new ways to emphasize added, deleted nodes, (un)changed nodes, recursive

 140

group nodes, as well as edges. Here, my work builds on a previously introduced, but never

implemented concept [97]. The approach extends previous approaches for layering, side-by-

side views by going beyond pair-wise comparisons, and shows larger variety of difference

visualizations. It also improves my previous parallel editing approach by allowing parallel

editing and difference visualization simultaneously in an interactive manner. In the second

user study involving GEM-NI, I found evidence that users might benefit from more display

space than afforded by a dual-monitor setup. As a result, I implemented multi-monitor

support in MACE to demonstrate that my difference visualization technique scales well to up

to 20 alternatives. My novel jamming space feature takes advantage of the multi-monitor

support to ease organizing a large workspace by assigning individual monitors into different

states. It has been already known that users tend to organize their space [13,88]. The

jamming space technique, therefore, takes this natural human behaviour to the next level by

supporting forced states to enable better organization. To investigate the usability of my

approach I conducted an exploratory interview with three expert designers having 5-30 years

of experience in generative design on an earlier version of MACE. The comments I received

were confirmatory towards the major motivations of the interface. Their feedback resulted in

the addition of the sandboxing, autosandboxing, parameter synching and the improvement of

the visualization that addresses color-blind users.

7.1 Generalization of the Introduced Approaches

I am confident that the techniques introduced in this work can be used not only for

generative design in 2D vector graphics, but in other domains as well. This has been

confirmed in the second user study of GEM-NI, since some participants expressed their

desire to have the features available in their everyday workflow. This, first of all, applies to

visual programming environments in 3D modeling (e.g., Grasshopper 3D, Houdini and

GenerativeComponents). Here, different visualization techniques would have to be

employed for comparing the 3D output. Generally speaking, any system where graph driven

visual programming is used, including multimedia (e.g., Max/MSP), could benefit from my

 141

approach. But for comparing other types of media, such as audio or video, a different

approach to output difference visualization may be necessary.

Moreover, outside generative design, some of the concepts used here, such as e.g.,

parallel editing, checking and sandboxing can be used in other domains as well. In fact,

recently a system called CAMBRIA [64] has been introduced, where the authors apply the

idea to regular 2D vector graphics design.

7.2 Limitations and Future Work

I envision several extensions as follows.

7.2.1 DARLS

Some of my findings indicate that the interaction between differencing techniques and

layouts is a rich area for future work. In other words, a closer look is needed at the combined

effect of layout techniques, such as my optimal layout method, and specific visualization

features. Another direction is the generalization of the work to UML diagrams, with their

information-rich nodes and edges. The storyboard can be investigated in more details, e.g., if

it can be directly used for difference visualization, similar to small multiples. One idea is to

use highlighting on the small views in combination with difference layers in the large ones.

Yet another direction is to investigate merging. My findings are positive for animation, but

more can be done. With larger sets of changes, animating all changes at once may be

counterproductive. It can also be investigated whether it makes general sense to break

change visualizations into smaller sets for easier comprehension. Currently the system is

targeted at diagrams with up to 50 nodes. However, I do not see any major obstacles to

enhancing the system to deal with larger diagrams, such as the hierarchies described in

[22,76].

 142

7.2.2 GEM-NI

Currently, the network layout is not kept consistent across versions if merging or other

editing occurs. The design gallery creates far too many candidates that are too similar. One

solution could be to filter candidates by structure and visual similarity. It would also help to

display the design gallery next to the Cartesian product menu, so that the changes in the

Cartesian product are reflected interactively instead of switching between the two views.

Erhan et al. [35] proposed a method based on similarity metrics for making it easier to

manage the design space. The method includes parameter selection, computation of

similarity between pairs of design alternatives and visualization of their similarity on various

forms, clustering and applying filters on the clusters to narrow the scope. One future option

is to integrate this method into the system. Also, the multi-monitor aspects of GEM-NI can

be evaluated on a 2×3 multi-monitor setup through further experiments and interviews.

One direction of future research could be to investigate how versioning can be made

more explicit and integrated with alternatives in a design system. One idea is to show the

history of how alternatives were created through a tree visualization.

Currently, GEM-NI allows parallel editing of all operations and selective merging of all

types of states. While all of these operations and types of merging are usable, it remains an

open question if supporting all of them makes sense. Future research can target this question.

It would also be interesting to investigate how to deal with merging conflicts, and if

detecting them helps the users.

7.2.3 MACE

Given that my preliminary usability analysis produced confirmatory results towards the

major design decisions, I believe that investigating the effect of the difference visualization

techniques in MACE would most likely produce trivial results. Also, I had already learned

from the user studies with DARLS that unenhanced juxtaposition is less effective than

highlighting. Moreover, most of the features in MACE explicitly highlight things that are

otherwise not easily visible and/or have to be understood by repeatedly glancing back and

 143

forth, which is less efficient. One potentially interesting user study would be to investigate

the scalability of the difference visualization technique to more than 18 alternatives. This

number corresponds to three alternatives each, on 2×3 monitors. On the other hand, I believe

that such large numbers of alternatives are not that frequent in design. In my user studies, for

example, I observed that eight was the maximum number of alternatives participants

produced. However, in a different context, such as longer design sessions, the number of

alternatives may well exceed this. Another potential study could also investigate if and how

the effectiveness of the basic juxtaposition visualization, the diff visualization with and

without node focusing, as well as the diff exclusion mode all deteriorate as the number of

alternatives increases. Yet another study could investigate the effectiveness of the edge

drawing technique in MACE that shows connectors back to the reference alternative in

comparison to the side-by-side visualization technique with highlighting in DARLS.

However, this last technique would need to be generalized to more than two views. Another

idea is to evaluate the usefulness of the reveal-to-edit approach when creating alternatives.

 144

References

1. Ömer Akin. 1978. How do architects design? Artificial Intelligence and Pattern
Recognition in Computer Aided Design: 65–103.

2. Ömer Akin. 2001. Variants in design cognition. Design knowing and learning: Cognition
in design education: 105–124.

3. Marcus Alanen and Ivan Porres. 2003. Difference and Union of Models. In «UML» 2003
- The Unified Modeling Language. Modeling Languages and Applications, Perdita
Stevens, Jon Whittle and Grady Booch (eds.). Springer Berlin / Heidelberg, 2–17.
Retrieved from http://dx.doi.org/10.1007/978-3-540-45221-8_2

4. Basak Alper, Benjamin Bach, Nathalie Henry Riche, Tobias Isenberg, and Jean-Daniel
Fekete. 2013. Weighted Graph Comparison Techniques for Brain Connectivity Analysis.
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ACM, 483–492. http://doi.org/10.1145/2470654.2470724

5. Christopher Andrews, Alex Endert, and Chris North. 2010. Space to Think: Large High-
resolution Displays for Sensemaking. CHI 2010, ACM, 55–64.
http://doi.org/10.1145/1753326.1753336

6. K. Andrews, M. Wohlfahrt, and G. Wurzinger. 2009. Visual Graph Comparison.
Information Visualisation, 2009 13th International Conference, 62–67.
http://doi.org/10.1109/IV.2009.108

7. Daniel Archambault. 2009. Structural differences between two graphs through
hierarchies. Graphics Interface 2009, 87–94. Retrieved July 11, 2011 from
http://portal.acm.org/citation.cfm?id=1555880.1555905

8. Daniel Archambault, Helen C. Purchase, and Bruno Pinaud. 2011. Difference Map
Readability for Dynamic Graphs. In Graph Drawing, Ulrik Brandes and Sabine
Cornelsen (eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 50–61. Retrieved July
11, 2011 from http://www.springerlink.com/content/j31w7820351x1l34/

9. Daniel Archambault, Helen Purchase, and Bruno Pinaud. 2011. Animation, Small
Multiples, and the Effect of Mental Map Preservation in Dynamic Graphs. IEEE
Transactions on Visualization and Computer Graphics 17, 4: 539–552.
http://doi.org/10.1109/TVCG.2010.78

10. Benjamin Bach, Pierre Dragicevic, Daniel Archambault, Christophe Hurter, and
Sheelagh Carpendale. 2014. A review of temporal data visualizations based on space-
time cube operations. Eurographics Conference on Visualization.

11. Benjamin Bach, Emmanuel Pietriga, and Jean-Daniel Fekete. 2014. Visualizing
Dynamic Networks with Matrix Cubes. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, 877–886.
http://doi.org/10.1145/2556288.2557010

 145

12. Benjamin Bach, Emmanuel Pietriga, and Jean-Daniel Fekete. 2014. GraphDiaries:
Animated Transitions and Temporal Navigation for Dynamic Networks. IEEE
Transactions on Visualization and Computer Graphics 20, 5: 740–754.
http://doi.org/10.1109/TVCG.2013.254

13. Robert Ball and Chris North. 2005. Analysis of User Behavior on High-resolution Tiled
Displays. INTERACT ’05, Springer-Verlag, 350–363.
http://doi.org/10.1007/11555261_30

14. Lyn Bartram and Colin Ware. 2002. Filtering and brushing with motion. Information
Visualization 1, 1: 66–79. http://doi.org/10.1057/palgrave/ivs/9500005

15. Michel Beaudouin-Lafon, Stéphane Huot, Mathieu Nancel, et al. 2012. Multisurface
interaction in the WILD room. Computer 45, 4: 48–56.

16. Xiaojun Bi, Seok-Hyung Bae, and Ravin Balakrishnan. 2010. Effects of Interior Bezels
of Tiled-monitor Large Displays on Visual Search, Tunnel Steering, and Target
Selection. CHI 2010, ACM, 65–74. http://doi.org/10.1145/1753326.1753337

17. Xiaojun Bi, Seok-Hyung Bae, and Ravin Balakrishnan. 2014. WallTop: Managing
Overflowing Windows on a Large Display. Human–Computer Interaction 29, 2: 153–
203.

18. Xiaojun Bi and Ravin Balakrishnan. 2009. Comparing Usage of a Large High-resolution
Display to Single or Dual Desktop Displays for Daily Work. CHI 2009, ACM, 1005–
1014. http://doi.org/10.1145/1518701.1518855

19. Hartmut Bohnacker. 2012. Generative Design: Visualize, Program, and Create with
Processing. Princeton Architectural Press, New York.

20. Carlo Bueno, Sarah Crossland, Christof Lutteroth, and Gerald Weber. Rewriting History:
More Power to Creative People. OzCHI 2011, 62–71.

21. Bill Buxton. 2007. Sketching User Experiences: Getting the Design Right and the Right
Design. Morgan & Kaufmann.

22. S. K Card, Bongwon Sun, B. A Pendleton, J. Heer, and J. W Bodnar. 2006. Time Tree:
Exploring Time Changing Hierarchies. Visual Analytics Science and Technology, 2006
IEEE Symposium On, IEEE, 3–10. http://doi.org/10.1109/VAST.2006.261450

23. Hsiang-Ting Chen, Li-Yi Wei, and Chun-Fa Chang. 2011. Nonlinear revision control for
images. ACM SIGGRAPH 2011 papers, ACM, 105:1–105:10.
http://doi.org/10.1145/1964921.1965000

24. Erin Cherry and Celine Latulipe. 2014. Quantifying the Creativity Support of Digital
Tools Through the Creativity Support Index. TOCHI 2014 21, 4: 21:1–21:25.
http://doi.org/10.1145/2617588

25. Fanny Chevalier, Pierre Dragicevic, Anastasia Bezerianos, and Jean-Daniel Fekete.
2010. Using text animated transitions to support navigation in document histories. CHI
2010, ACM, 683–692. http://doi.org/10.1145/1753326.1753427

 146

26. Darius Dadgari and Wolfgang Stuerzlinger. 2010. Novel User Interfaces for Diagram
Versioning and Differencing. British HCI.

27. Stephan Diehl and Carsten Görg. 2002. Graphs, They Are Changing. Revised Papers
from the 10th International Symposium on Graph Drawing, Springer-Verlag, 23–30.
Retrieved July 11, 2011 from http://portal.acm.org/citation.cfm?id=647554.729718

28. Jozef Doboš and Anthony Steed. 2012. 3D Revision Control Framework. Proceedings of
the 17th International Conference on 3D Web Technology, ACM, 121–129.
http://doi.org/10.1145/2338714.2338736

29. Jozef Doboš and Anthony Steed. 2012. 3D Diff: An Interactive Approach to Mesh
Differencing and Conflict Resolution. SIGGRAPH Asia 2012 Technical Briefs, ACM,
20:1–20:4. http://doi.org/10.1145/2407746.2407766

30. Steven Dow, Julie Fortuna, Dan Schwartz, Beth Altringer, Daniel Schwartz, and Scott
Klemmer. 2011. Prototyping Dynamics: Sharing Multiple Designs Improves
Exploration, Group Rapport, and Results. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems, ACM, 2807–2816.
http://doi.org/10.1145/1978942.1979359

31. Steven P. Dow, Alana Glassco, Jonathan Kass, Melissa Schwarz, Daniel L. Schwartz,
and Scott R. Klemmer. 2010. Parallel Prototyping Leads to Better Design Results, More
Divergence, and Increased Self-efficacy. ACM Trans. Comput.-Hum. Interact. 17, 4:
18:1–18:24. http://doi.org/10.1145/1879831.1879836

32. Steven M. Drucker, Georg Petschnigg, and Maneesh Agrawala. 2006. Comparing and
managing multiple versions of slide presentations. UIST 2006, ACM, 47–56.
http://doi.org/10.1145/1166253.1166263

33. W. Keith Edwards, Takeo Igarashi, Anthony LaMarca, and Elizabeth D. Mynatt. 2000.
A temporal model for multi-level undo and redo. UIST 2000, ACM, 31–40.

34. Stef van den Elzen and Jarke J. van Wijk. 2013. Small Multiples, Large Singles: A New
Approach for Visual Data Exploration. Proceedings of the 15th Eurographics
Conference on Visualization, Eurographics Association, 191–200.
http://doi.org/10.1111/cgf.12106

35. Halil Erhan, Ivy Wang, and Naghmi Shireen. Harnessing Design Space: A Similarity-
Based Exploration Method for Generative Design. International Journal of Architectural
Computing 12, 4: 217–236.

36. Michael Farrugia and Aaron Quigley. 2011. Effective Temporal Graph Layout: A
Comparative Study of Animation versus Static Display Methods. Information
Visualization 10, 1: 47–64. http://doi.org/10.1057/ivs.2010.10

37. Sabrina Förtsch and Bernhard Westfechtel. 2007. Differencing and Merging of Software
Diagrams - State of the Art and Challenges. ICSOFT (SE), INSTICC Press, 90–99.
Retrieved from http://dblp.uni-trier.de/db/conf/icsoft/icsoft2007-2.html#FortschW07

 147

38. Martin Girschick. 2006. Difference Detection and Visualization in UML Class
Diagrams. TU Darmstadt. Retrieved from internal-pdf://difference detection and
visualization in UML class diagrams-3293822208/difference detection and visualization
in UML class diagrams.pdf

39. Michael Gleicher, Danielle Albers, Rick Walker, Ilir Jusufi, Charles D. Hansen, and
Jonathan C. Roberts. 2011. Visual comparison for information visualization. Information
Visualization 10, 4: 289–309. http://doi.org/10.1177/1473871611416549

40. Martin Graham and Jessie Kennedy. 2007. Exploring multiple trees through DAG
representations. IEEE transactions on visualization and computer graphics 13, 6: 1294–
1301. http://doi.org/10.1109/TVCG.2007.70556

41. Martin Graham and Jessie Kennedy. 2010. A survey of multiple tree visualisation.
Information Visualization 9, 4: 235–252.
http://doi.org/http://dx.doi.org/10.1057/ivs.2009.29

42. Thomas RG Green. 1989. Cognitive dimensions of notations. People and computers V:
443–460.

43. Amy L. Griffin, Alan M. MacEachren, Frank Hardisty, Erik Steiner, and Bonan Li.
2010. A Comparison of Animated Maps with Static Small-Multiple Maps for Visually
Identifying Space-Time Clusters. Annals of the Association of American Geographers
96, 4: 740–753.

44. Tovi Grossman, Justin Matejka, and George Fitzmaurice. 2010. Chronicle: capture,
exploration, and playback of document workflow histories. UIST 2010, ACM, 143–152.
http://doi.org/http://doi.acm.org.proxy.lib.sfu.ca/10.1145/1866029.1866054

45. Jonathan Grudin. 2001. Partitioning digital worlds: focal and peripheral awareness in
multiple monitor use. CHI 2001, ACM, 458–465.

46. John Alexis Guerra Gómez. Exploring Differences in Multivariate Datasets Using
Hierarchies: An Interactive Information Visualization Approach. Retrieved February 25,
2014 from http://hcil2.cs.umd.edu/trs/2013-12/2013-12.pdf

47. John Alexis Guerra-Gómez, A. Buck-Coleman, C. Plaisant, and B. Shneiderman. 2011.
TreeVersity: Comparing tree structures by topology and node’s attributes differences.
2011 IEEE Conference on Visual Analytics Science and Technology (VAST), 275–276.
http://doi.org/10.1109/VAST.2011.6102471

48. John Alexis Guerra-Gómez, Audra Buck-coleman, Michael L. Pack, Catherine Plaisant,
and Ben Shneiderman. 2013. TreeVersity: Interactive Visualizations for Comparing
Hierarchical Datasets. Transportation Research Record (TRR), Journal of the
Transportation Research Board (2013): 21.

49. John Alexis Guerra-Gómez, Audra Buck-coleman, Catherine Plaisant, and Ben
Shneiderman. 2012. TreeVersity: Visualizing Hierarchal Data for Value with Topology
Changes. Proceedings of the Digital Research Society 2012 2: 640–653.

 148

50. John Alexis Guerra-Gómez, Michael L. Pack, Catherine Plaisant, and Ben Shneiderman.
2013. Visualizing Change over Time Using Dynamic Hierarchies: TreeVersity2 and the
StemView. IEEE Transactions on Visualization and Computer Graphics 19, 12: 2566–
2575. http://doi.org/10.1109/TVCG.2013.231

51. John Alexis Guerra-Gómez, M. L. Pack, C. Plaisant, and B. Shneiderman. 2013.
Discovering temporal changes in hierarchical transportation data: Visual analytic & text
reporting tools. Transportation Research Part C: Emerging Technologies 51: 167–179.

52. Björn Hartmann, Sean Follmer, Antonio Ricciardi, Timothy Cardenas, and Scott R
Klemmer. 2010. d.note: revising user interfaces through change tracking, annotations,
and alternatives. CHI 2010, ACM, 493–502. http://doi.org/10.1145/1753326.1753400

53. Björn Hartmann, Loren Yu, Abel Allison, Yeonsoo Yang, and Scott R Klemmer. 2008.
Design as exploration: creating interface alternatives through parallel authoring and
runtime tuning. UIST 2008, ACM, 91–100.
http://doi.org/http://doi.acm.org.proxy.lib.sfu.ca/10.1145/1449715.1449732

54. Jeffrey Heer, Jock Mackinlay, Chris Stolte, and Maneesh Agrawala. 2008. Graphical
histories for visualization: supporting analysis, communication, and evaluation. TVCG
14, 6: 1189–1196. http://doi.org/10.1109/TVCG.2008.137

55. J. Heer and G. G Robertson. 2007. Animated Transitions in Statistical Data Graphics.
IEEE Transactions on Visualization and Computer Graphics 13, 6: 1240–1247.
http://doi.org/10.1109/TVCG.2007.70539

56. Jin Young Hong, Jonathan D’Andries, Mark Richman, and Maryann Westfall. 2003.
Zoomology: ComparingTwo Large Hierarchical Trees. Poster at Compendium of InfoVis
2003: 120–121.

57. Wynne Hsu and Irene M. Y. Woon. 1998. Current research in the conceptual design of
mechanical products. Computer-Aided Design 30, 5: 377 – 389.
http://doi.org/http://dx.doi.org/10.1016/S0010-4485(97)00101-2

58. James W. Hunt and Douglas McIlroy. 1976. An algorithm for differential file
comparison. AT&T Bell Laboratories, Murray Hill, NJ.

59. Petra Isenberg and Sheelagh Carpendale. 2007. Interactive Tree Comparison for Co-
located Collaborative Information Visualization. IEEE Transactions on Visualization
and Computer Graphics 13, 6: 1232–1239. http://doi.org/10.1109/TVCG.2007.70568

60. T. J. Jankun-Kelly and Kwan-Liu Ma. 2000. A spreadsheet interface for visualization
exploration. Visualization ’00, IEEE Computer Society Press, 69–76. Retrieved April 12,
2014 from http://dl.acm.org/citation.cfm?id=375213.375220

61. H. J. Jun and J. S. Gero. 1998. Emergence of shape semantics of architectural shapes.
Environment and Planning B: Planning and Design 25, 4: 577 – 600.
http://doi.org/10.1068/b250577

 149

62. Udo Kelter and Maik Schmidt. 2008. Comparing state machines. Workshop on
Comparison and versioning of software models, ACM, 1–6. Retrieved from internal-
pdf://p1-kelter-2831806464/p1-kelter.pdf

63. Scott R. Klemmer, Michael Thomsen, Ethan Phelps-Goodman, Robert Lee, and James
A. Landay. 2002. Where do web sites come from?: capturing and interacting with design
history. CHI 2002, ACM, 1–8. http://doi.org/http://doi.acm.org/10.1145/503376.503378

64. Siniša Kolarić, Robert Woodbury, and Halil Erhan. 2014. CAMBRIA: A Tool for
Managing Multiple Design Alternatives. Proceedings of the 2014 Companion
Publication on Designing Interactive Systems, ACM, 81–84.
http://doi.org/10.1145/2598784.2602788

65. Sivam Krish. 2011. A practical generative design method. Computer-Aided Design 43:
88–100. http://doi.org/http://dx.doi.org.proxy.lib.sfu.ca/10.1016/j.cad.2010.09.009

66. David Kurlander and Steven Feiner. 1990. A visual language for browsing, undoing, and
redoing graphical interface commands. In S. K. Chang (ed.). ed. Plenum Press, NY,
257–275.

67. Sandeep K. Kuttal, Anita Sarma, and Gregg Rothermel. 2014. On the benefits of
providing versioning support for end users: an empirical study. ACM TOCHI 21, 2: 9:1–
9:43. http://doi.org/10.1145/2560016

68. Bongshin Lee, George G. Robertson, Mary Czerwinski, and Cynthia Sims Parr. 2007.
CandidTree: Visualizing Structural Uncertainty in Similar Hierarchies. In Human-
Computer Interaction – INTERACT 2007, Cécilia Baranauskas, Philippe Palanque, Julio
Abascal and Simone Diniz Junqueira Barbosa (eds.). Springer Berlin Heidelberg, 250–
263. Retrieved March 10, 2015 from http://link.springer.com/chapter/10.1007/978-3-
540-74800-7_20

69. Aristid Lindenmayer. 1968. Mathematical models for cellular interactions in
development II. Simple and branching filaments with two-sided inputs. Journal of
Theoretical Biology 18, 3: 300–315. http://doi.org/10.1016/0022-5193(68)90080-5

70. Aran Lunzer and Kasper Hornbæk. 2008. Subjunctive Interfaces: Extending
Applications to Support Parallel Setup, Viewing and Control of Alternative Scenarios.
ACM TOCHI 14, 4: 17:1–17:44. http://doi.org/10.1145/1314683.1314685

71. Sonja Maier and Mark Minas. 2010. Interactive diagram layout. Extended Abstracts of
the ACM Conference on Human Factors in Computing Systems - CHI 2010, ACM,
4111–4116. http://doi.org/10.1145/1753846.1754111

72. Kwan-Liu Ma. 1999. Image graphs - a novel approach to visual data exploration.
Visualization ’99, 81–88. http://doi.org/10.1109/VISUAL.1999.809871

73. J. Marks, B. Andalman, P. A. Beardsley, et al. 1997. Design galleries: a general
approach to setting parameters for computer graphics and animation. SIGGRAPH ’97,
ACM, 389–400. http://doi.org/10.1145/258734.258887

 150

74. Akhil Mehra, John Grundy, and John Hosking. 2005. A generic approach to supporting
diagram differencing and merging for collaborative design. ASE 2005, ACM, 204–213.
http://doi.org/10.1145/1101908.1101940

75. Alexandre Menezes and Bryan Lawson. 2006. How designers perceive sketches. Design
Studies 27, 5: 571–585. http://doi.org/10.1016/j.destud.2006.02.001

76. Tamara Munzner, François Guimbretière, Serdar Tasiran, Li Zhang, and Yunhong Zhou.
2003. TreeJuxtaposer: scalable tree comparison using Focus+Context with guaranteed
visibility. SIGGRAPH 2003 22, 3: 453–462. http://doi.org/10.1145/882262.882291

77. Galileo Mark Namata, Brian Staats, Lise Getoor, and Ben Shneiderman. 2007. A dual-
view approach to interactive network visualization. CIKM 2007, ACM, 939–942.
http://doi.org/10.1145/1321440.1321580

78. Mark W. Newman and James A. Landay. 2000. Sitemaps, Storyboards, and
Specifications: A Sketch of Web Site Design Practice. DIS 2000, ACM, 263–274.
http://doi.org/10.1145/347642.347758

79. E. Ogasawara, P. Rangel, L. Murta, C. Werner, and M. Mattoso. 2009. Comparison and
versioning of scientific workflows. ICSE Workshop on Comparison and Versioning of
Software Models, 2009. CVSM ’09, IEEE, 25–30.
http://doi.org/10.1109/CVSM.2009.5071718

80. Ji-Young Oh, Wolfgang Stuerzlinger, and John Danahy. 2005. Comparing SESAME and
Sketching for Conceptual 3D Design. Sketch Based Interfaces and Modeling, 81–88.

81. Ji-Young Oh, Wolfgang Stuerzlinger, and John Danahy. 2006. SESAME: Towards
Better 3D Conceptual Design Systems. Proceedings of the 6th Conference on Designing
Interactive Systems, ACM, 80–89. http://doi.org/10.1145/1142405.1142419

82. Dirk Ohst, Michael Welle, and Udo Kelter. 2003. Differences between versions of UML
diagrams. ACM SIGSOFT Software Engineering Notes 28, 5: 227–236.
http://doi.org/10.1145/949952.940102

83. Dirk Ohst, Michael Welle, and Udo Kelter. Difference tools for analysis and design
documents. International Conference on Software Maintenance 2003 ICSM 2003
Proceedings: 13–22. http://doi.org/10.1109/ICSM.2003.1235402

84. Rivka Oxman. 2002. The thinking eye: visual re-cognition in design emergence. Design
Studies 23, 2: 135–164. http://doi.org/10.1016/S0142-694X(01)00026-6

85. Catherine Plaisant, Jesse Grosjean, and Benjamin B Bederson. 2002. SpaceTree:
Supporting Exploration in Large Node Link Tree, Design Evolution and Empirical
Evaluation. Proceedings of the IEEE Symposium on Information Visualization
(InfoVis’02), IEEE, 57–64. Retrieved July 12, 2011 from
http://portal.acm.org/citation.cfm?id=857191.857752

86. Helen C Purchase, Eve Hoggan, and Carsten Görg. 2007. How important is the “Mental
map”?: an empirical investigation of a dynamic graph layout algorithm. Proceedings of

 151

the 14th International Conference on Graph Drawing, Springer-Verlag, 184–195.
Retrieved July 12, 2011 from http://portal.acm.org/citation.cfm?id=1758612.1758633

87. Helen C Purchase and Amanjit Samra. 2008. Extremes Are Better: Investigating Mental
Map Preservation in Dynamic Graphs. Proceedings of the 5th International Conference
on Diagrammatic Representation and Inference, Springer-Verlag, 60–73.
http://doi.org/http://dx.doi.org/10.1007/978-3-540-87730-1_9

88. George Robertson, Mary Czerwinski, Kevin Larson, Daniel C. Robbins, David Thiel,
and Maarten van Dantzich. 1998. Data Mountain: Using Spatial Memory for Document
Management. UIST ’98, ACM, 153–162. http://doi.org/10.1145/288392.288596

89. G. Robertson, R. Fernandez, D. Fisher, B. Lee, and J. Stasko. 2008. Effectiveness of
Animation in Trend Visualization. IEEE Transactions on Visualization and Computer
Graphics 14, 6: 1325–1332. http://doi.org/10.1109/TVCG.2008.125

90. S. Rufiange and M.J. McGuffin. 2013. DiffAni: Visualizing Dynamic Graphs with a
Hybrid of Difference Maps and Animation. IEEE Transactions on Visualization and
Computer Graphics 19, 12: 2556–2565. http://doi.org/10.1109/TVCG.2013.149

91. Peter Saffrey and Helen Purchase. 2008. The “mental map” versus “static aesthetic”
compromise in dynamic graphs: a user study. Proceedings of the Ninth Conference on
Australasian User Interface - Volume 76, Australian Computer Society, Inc., 85–93.
Retrieved July 11, 2011 from http://portal.acm.org/citation.cfm?id=1378337.1378354

92. Timothy A. Sandstrom, Chris Henze, and Creon Levit. 2003. The Hyperwall.
Proceedings of the Conference on Coordinated and Multiple Views In Exploratory
Visualization, IEEE Computer Society, 124–. Retrieved January 28, 2015 from
http://dl.acm.org/citation.cfm?id=937938.937953

93. Donald A. Schon. 1984. The Reflective Practitioner: How Professionals Think In Action.
Basic Books.

94. Maruthappan Shanmugasundaram and Pourang Irani. 2008. The effect of animated
transitions in zooming interfaces. Proceedings of the Working Conference on Advanced
Visual Interfaces, ACM, 396–399. http://doi.org/10.1145/1385569.1385642

95. Maruthappan Shanmugasundaram, Pourang Irani, and Carl Gutwin. 2007. Can smooth
view transitions facilitate perceptual constancy in node-link diagrams? Proceedings of
Graphics Interface 2007, ACM, 71–78. http://doi.org/10.1145/1268517.1268531

96. Mehdi Sheikholeslami. 2011. You can get more than you make. Retrieved from
www.synergiescanada.org/theses/bvas/11176

97. Naghmi Shireen, Halil Erhan, David Botta, and Robert Woodbury. 2012. Parallel
development of parametric design models using subjunctive dependency graphs.
ACADIA 2012, 57–66.

98. Ben Shneiderman. 1996. The eyes have it: a task by data type taxonomy for information
visualizations. Visual Languages 1996, IEEE, 336–343. Retrieved July 18, 2011 from
http://portal.acm.org/citation.cfm?id=832277.834354

 152

99. Ben Shneiderman. 2000. Creating creativity: user interfaces for supporting innovation.
ACM Trans. Comput.-Hum. Interact. 7, 1: 114–138.
http://doi.org/10.1145/344949.345077

100. Herbert Alexander Simon. 1996. The sciences of the artificial. MIT press.
101. Tom De Smedt, Ludivine Lechat, and Walter Daelemans. 2011. Generative Art

Inspired by Nature, Using NodeBox. In Applications of Evolutionary Computation,
Cecilia Di Chio, Anthony Brabazon, Gianni A. Di Caro, et al. (eds.). Springer Berlin
Heidelberg, 264–272. Retrieved February 27, 2014 from
http://link.springer.com/chapter/10.1007/978-3-642-20520-0_27

102. Brittany N Smith, Anbang Xu, and Brian P Bailey. 2010. Improving interaction
models for generating and managing alternative ideas during early design work.
Graphics Interface 2010, 121–128. Retrieved April 25, 2011 from
http://portal.acm.org.proxy.lib.sfu.c℀itation.cfm?id=1839214.1839236

103. Matthew Stephan and James R Cordy. 2013. A survey of model comparison
approaches and applications. Conference on Model-Driven Engineering and Software
Development: 265–277.

104. Sara L Su. 2007. Visualizing, editing, and inferring structure in 2D graphics. Adjunct
UIST 2007, ACM, 29–32.

105. Sara L Su, Sylvain Paris, Frederick Aliaga, Craig Scull, Steve Johnson, and Fredo
Durand. 2009. Interactive Visual Histories for Vector Graphics. MIT. Retrieved July 11,
2011 from http://dspace.mit.edu/handle/1721.1/45600

106. Michael Terry and Elizabeth D Mynatt. 2002. Recognizing creative needs in user
interface design. Creativity and Cognition 2002, ACM, 38–44.
http://doi.org/10.1145/581710.581718

107. Michael Terry, Elizabeth D. Mynatt, Kumiyo Nakakoji, and Yasuhiro Yamamoto.
2004. Variation in element and action: supporting simultaneous development of
alternative solutions. CHI 2004, ACM, 711–718. http://doi.org/10.1145/985692.985782

108. M. Toomim, A. Begel, and S.L. Graham. 2004. Managing Duplicated Code with
Linked Editing. 2004 IEEE Symposium on Visual Languages and Human Centric
Computing, 173–180. http://doi.org/10.1109/VLHCC.2004.35

109. Barbara Tversky, Julie Bauer Morrison, and Mireille Betrancourt. 2002. Animation:
can it facilitate? International Journal of Human-Computer Studies - Special Issue:
Interactive Graphical Communication 57, 4: 247–262.
http://doi.org/10.1006/ijhc.2002.1017

110. Lihui Wang, Weiming Shen, Helen Xie, Joseph Neelamkavil, and Ajit Pardasani.
2002. Collaborative conceptual design—state of the art and future trends. Computer-
Aided Design 34, 13: 981 – 996. http://doi.org/http://dx.doi.org/10.1016/S0010-
4485(01)00157-9

 153

111. Colin Ware and Robert Bobrow. 2004. Motion to support rapid interactive queries on
node–link diagrams. ACM Transactions on Applied Perception (TAP) 1, 1: 3–18.
http://doi.org/10.1145/1008722.1008724

112. Jeremy M Wolfe, Patricia O’Neill, and Sara C Bennett. 1998. Why are there
eccentricity effects in visual search? Visual and attentional hypotheses. Perception &
Psychophysics 60, 1: 140–156.

113. Robert Woodbury. 2010. Elements of Parametric Design. Routledge.
114. Robert Woodbury, Sambit Datta, and Andrew Burrow. 2000. Erasure in Design

Space Exploration. In AID ’00, John S. Gero (ed.). Springer Netherlands, 521–543.
Retrieved February 24, 2014 from http://link.springer.com/chapter/10.1007/978-94-011-
4154-3_26

115. Robert F. Woodbury and Andrew L. Burrow. 2006. Whither design space? Artif.
Intell. Eng. Des. Anal. Manuf. 20, 2: 63–82. http://doi.org/10.1017/S0890060406060057

116. Zhenchang Xing and Eleni Stroulia. 2007. Differencing logical UML models.
Automated Software Engineering 14, 2: 215–259.

117. Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. 2012. Fit and diverse: set
evolution for inspiring 3D shape galleries. SIGGRAPH 31, 4: 57:1–57:10.

 154

Appendix A
Version Pairs of a Course Prerequisites Diagram Used in the
DARLS User Studies

Most Frequent False Negatives in User Study I

Incremental Layout Optimal Layout

Node Frequency Node Frequency

COMP 3403 64 COMP 3403 12

COMP 3481 47 COMP 3481 12

COMP 3214 45 COMP 3214 12

COMP 3431 18 MAST 1025 10

MAST 1025 13 COMP 3431 10

MAST 1310 10 MAST 1310 10

ENGR 3150 2

COMP 3215 2

Table A-1. Most frequent false negative nodes.

Incremental Layout Optimal Layout

Edge Frequency Edge Frequency

COMP 2031 -> COMP 3215 40 COMP 3213 -> COMP 3481 28

COMP 3213 -> COMP 3481 32 COMP 2031 -> COMP 3215 21

MAST 1025 -> COMP 3431 20 MAST 1025 -> COMP 3431 19

MAST 1310 -> COMP 3101 10 MAST 1310 -> COMP 3451 18

MAST 1310 -> COMP 3451 8 MAST 1310 -> COMP 3213 18

MAST 1310 -> COMP 3213 5 MAST 1310 -> COMP 3101 14

COMP 3201 -> COMP 3215 2

ENGR 3150 -> COMP 3201 2

Table A-2. Most frequent false negative edges.

 155

Optimal Layout Heuristics

Heuristic Value

Minimal Node

Distance

20 (pixels)

Minimal Edge

Distance

10 (pixels)

First Minimal

Segment Length

20 (pixels)

Orientation Top to Bottom

Node Placement Linear Segments

Node Ranking Policy Hierarchical – Tight

Tree

Node Order Weight Barycenter

Transposition Yes

Removed False

Crossings

Yes

Randomization

Rounds

40

Table A-3. Summary of optimal layouter heuristics that were used during the User
Study I.

 156

Version Pair Summary

No. 1 2 3 4 5 6
Version Pair 1→3 3→4 4→5 5→8 8→10 10→12
Num. of Node in Left View 24 28 28 26 27 26
Num. of Edges in Left View 23 25 25 22 24 23
Num. of Nodes in Right View 28 28 26 27 26 29
Num. of Edges in Right View 25 25 22 24 23 26
Num. of Common Nodes 23 28 25 23 26 23
Num. of Common Edges 23 25 25 23 26 23
Num. of New Nodes 5 0 1 4 0 6
Num. of New Edges 5 0 0 4 2 6
Num. of Deleted Nodes 1 0 3 3 1 3
Num. of Deleted Edges 3 0 3 4 3 3
Total Added 10 0 1 8 2 12
Total Deleted 4 0 6 7 4 6

Table A-4. Version Pair Summary.

 157

Optimal Layout Snapshots

Figure A-1. Optimal Layout, Version Pair #1 (1→3).

 158

Figure A-2. Optimal Layout, Version Pair #2 (3→4).

 159

Figure A-3. Optimal Layout, Version Pair #3 (4→5).

 160

Figure A-4. Optimal Layout, Version Pair #4 (5→8).

 161

Figure A-5. Optimal Layout, Version Pair #5 (8→10).

 162

Figure A-6. Optimal Layout, Version Pair #6 (10→12).

 163

Incremental Layout Snapshots

Figure A-7. Incremental Layout, Version Pair #1 (1→3).

 164

Figure A-8. Incremental Layout, Version Pair #2 (3→4).

 165

Figure A-9. Incremental Layout, Version Pair #3 (4→5).

 166

Figure A-10. Incremental Layout, Version Pair #4 (5→8).

 167

Figure A-11. Incremental Layout, Version Pair #5 (8→10).

 168

Figure A-12. Incremental Layout, Version Pair #6 (10→12).

 169

Appendix B
Noteworthy Designs of the Workshop Participants with Difference Visualizations

 170

Figure B-1. Design 1: unenhanced view.

 171

Figure B-2. Design 1: difference visualization view (with subtractive encoding).

 172

 173

Figure B-3. Design 2: unenhanced view.

 174

Figure B-4. Design 2: difference visualization view (with subtractive encoding).

Figure B-5. Design 3: unenhanced view.

 175

Figure B-6. Design 3: difference visualization view (with subtractive encoding).

 176

Figure B-7. Design 4: unenhanced view.

 177

 178

Figure B-8. Design 4: difference visualization view (with subtractive encoding).

Figure B-9. Design 5: unenhanced view.

 179

Figure B-10. Design 5: difference visualization view (with subtractive encoding).

 180

Figure B-11. Design 6: unenhanced view.

 181

Figure B-12. Design 6: difference visualization view (with subtractive encoding).

