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ABSTRACT 

Designers often create multiple iterations to evaluate alternatives. Today’s computer-

based tools do not support such easy exploration of a design space, despite the fact that 

such support has been advocated. The contributions of this dissertation are centered on 

this.  

I begin by investigating the effectiveness of various forms of difference visualizations 

and support for merging changes within a system targeted at diagrams with node and 

edge attributes. I evaluated the benefits of the introduced difference visualization 

techniques in two user studies. I found that the basic side-by-side juxtaposition 

visualization was not effective and also not well received. For comparing diagrams with 

matching node positions, participants preferred the side-by-side option with a difference 

layer. For diagrams with non-matching positions animation was beneficial, but the 

combination with a difference layer was preferred. Thus, the difference layer technique 

was useful and a good complement to animation.  

I continue by investigating if explicit support for design alternatives better supports 

exploration and creativity in a generative design system. Generative design—a design 

method in which the output is generated by a set of rules or an algorithm—builds on 

computer-aided design systems that provide tools to vary designs beyond direct 

manipulation of specific design elements. To investigate the new techniques to better 

support exploration, I built a new system that supports parallel exploration of alternative 

designs and generation of new structural combinations. I investigate the usefulness of my 

prototype in two user studies and interviews. The results and feedback suggest and 

confirm that supporting design alternatives explicitly enables designers to work more 

creatively.  

Generative models are often represented as DAGs (directed acyclic graphs) in a 

dataflow programming environment. Existing approaches to compare such DAGs do not 

generalize to multiple alternatives. Informed by and building on the first part of my 
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dissertation, I introduce a novel user interface that enables visual differencing and editing 

alternative graphs—specifically more than two alternatives simultaneously, something 

that has not been presented before. I also explore multi-monitor support to demonstrate 

that the difference visualization technique scales well to up to 18 alternatives. The novel 

jamming space feature makes organizing alternatives on a 2×3 monitor system easier.  To 

investigate the usability of the new difference visualization method I conducted an 

exploratory interview with three expert designers. The received comments confirmed that 

it meets their design goals.  
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Chapter 1  
Introduction 

Looking at multiple documents or objects for making a comparison is a common human 

activity, used in many areas, typically to decide among different alternatives. Humans relied 

on visual comparison, what they are able to observe directly, prior to the invention of 

computers. Thus, it was only a matter of time before computers would be used for this 

purpose. The first computer-based tools were targeted at text differencing. As technology 

advanced, comparison of graphical data, such as graphical hierarchies and vector graphics, 

became possible. One application area where comparing and managing multiple graphical 

instances is particularly important is design, as this discipline involves creating various 

alternative solutions to a given problem and then evaluating them against the design goals 

[100]. In my context I refer to difference visualization as a visual display of two or more 

artefacts (or their subsets) using techniques to support and facilitate the comparison of these 

artefacts to each other. Here I present new methods for difference visualization, but also look 

at their usage in design. Moreover, I also present a new system that makes it easier for users 

to generate and manage multiple alternatives in generative design. 

The first robust differencing tool was the Unix diff tool [58]. Modern tools for text 

differencing are much more user-friendly, incorporate visual interfaces and side-by-side 

views, and enable history tracking and merging. One example of such interfaces is the use of 

highlighting. Another, more recent feature, is the use of animation [25]. Also, there are many 

publicly available tools, such as GNU Emacs1, Kompare2, WinMerge3, Araxis Merge4, and 

Scooter Software Beyond Compare5. Some of these are not only capable of comparing plain 
                                                
1 http://www.gnu.org/software/emacs/ 
2 http://www.caffeinated.me.uk/kompare/ 
3 http://winmerge.org/ 
4 http://www.araxis.com/ 
5 http://scootersoftware.com/ 
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text, but can also deal with XML documents, file directory structures, and even binary files. 

Since then, approaches for difference visualizations of graphical hierarchies and other forms 

of graphics have also been developed, see the previous work section (Chapter 2). One 

important application area for difference visualizations is all kinds of processes where 

multiple alternatives are routinely considered, such as many forms of decision-making and 

design. 

The development of a design is conceptually a process where many threads of 

possibilities are developed in parallel. These concepts are then abandoned or re-combined 

until a satisfactory scheme emerges out of the exercise. Often, this exploration is directed by 

the outcomes of previous explorations [75]—a key characteristic of emergence [65] and of 

the personal history of the designer [93]. Thus, the search for alternatives and the 

exploration of the design space have very important roles in the design process. Indeed, 

experts typically generate sets of alternative solutions when solving ill-defined problems 

[100]. This has been shown to result in higher quality outcomes [30]. For example, it is 

common practice for web designers [78], architects [1,75] and software engineers [103] to 

generate alternatives of potential designs as they solve problems. 
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Figure 1-1. An example of a sketch provided by http://www.idsketching.com. 

Traditionally, sketching [2] is used in many disciplines to explore alternatives during the 

design process (e.g., Figure 1-1). Buxton [21] (p. 111) describes eleven qualities that define 

sketches. They should:  

• be quick to make, 
• be cheap to make, 
• be disposable, 
• be plentiful, 
• be distinguishable from other types of renderings, 
• be open and free rather than tight and precise, 
• be minimal, 
• provide appropriate degree of refinement, 
• suggest and explore rather than confirm, 
• be ambiguous, 
• be provided when needed. 

Figure 1-2 shows conjectural sketches created using an existing CAD tool. Sketches help 

designers externalize knowledge, better understand the problem, and explore the space of 
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potential solutions [2]. Sketching also facilitates what is now known as visual 

reasoning [84]. The existence of high level cognitive structures such as schemas and 

prototypes that help designers think visually has been experimentally verified [84].  

Computer-based conceptual design systems often do not support these qualities 

adequately, which has been shown experimentally, e.g., in the domain of Computer-Aided 

Design (CAD) [61]. The main obstacles for such support have been identified by Krish [65] 

as follows: 

• The invasiveness of frameworks impedes the thinking effort making it difficult to 

automate conceptual design. 

• CAD in its current form is unsuitable for representing and considering vague concepts 

and forms. 

• CAD does not provide the creative stimulation that designers derive from the process 

such as hand sketching. Essentially the tools ignore that designs are developed based on 

reactions to previously generated concepts. 

• Design is an iterative process of searching the design problem space as well as the 

solution space. Designs and solutions co-evolve, during the design process. This is not 

supported. 

• Many possibilities are considered and most of them are discarded at the early stages of 

design. In this context, designers need to represent a wide range of concepts efficiently. 

They are, therefore, reluctant to invest the additional effort required to represent such 

concepts in CAD. 

Despite these challenges, such conceptual design systems have nonetheless been widely 

advocated for. For example, Shneiderman [99] summarized design principles for creativity 

support tools: support for exploratory search, enabling collaboration, rich history-keeping 

and support of “design with low thresholds, high ceilings, and wide walls”. Shneiderman 

further emphasized the importance of exploring design solutions (what-if tools) and 

“reviewing and replaying session histories” as activities for creativity that should be 

adequately supported by computational tools. Besides emergence, Krish [65] also identifies 
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support for chaotic and unstructured work processes as a requirement that needs to be met 

for CAD to support conceptual design. Besides, studies have shown that parallel prototyping 

produces better design [30,31]. Despite many methods proposed by researchers for the use of 

CAD in early stage conceptual design [57,110], CAD is still mostly used in the final stages 

of design, though this is changing [113]. Due to this fact, an entire dimension of how 

designers actually work is largely missing from such tools, thus narrowing their scope of 

effective usage. It is possible to address one important aspect of conceptual design, namely, 

the parallel exploration of alternatives, in current CAD systems. However, this is not well 

supported in current tools. Typically, designers get around this limitation by various idioms 

of use, such as saving multiple files one for each different variations or exploring multiple 

ideas within the same document through conditional execution. Yet, designers already plan 

for and create alternatives with current tools, as this dissertation will demonstrate (Chapter 

4). In fact, CAMBRIA [64] is at the moment the only system that provides full explicit 

support for alternatives. Parallel exploration of alternatives is somewhat related to sketches 

with pencil and paper. However, the alternative documents explored in the systems such as 

CAMBRIA do not qualify as true sketches as characterized above as they lack some key 

qualities, namely they are neither open, nor minimal, nor ambiguous. Similarly, the 

alternatives that are explored in this work are not true sketches, either.  
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Figure 1-2. Conjectural sketches created using an existing CAD tool, http://rocker-

lange.com. 
 

In my work, I target CAD tools in the category of generative design as such tools include 

features that make the exploration of a design space easier. Generative design is a design 

method in which the output is generated by a set of rules or an algorithm. According to 

Krish [65] the generative process involves the following: 

• a design schema, i.e., a model, 

• a means of creating variations, 

• a means of selecting desirable outcomes. 

Generative design enables designers to create design variations based on a model. This 

model can vary just in parameters, be expressed as a network of computational nodes and/or 

constraints, or even full algorithms as in e.g., the earliest versions of NodeBox6 or the 

Processing programming language7. Because the system generates the solution from a 

model, the design process based on generative models is often referred to as generative 

design. By structuring design concepts as models, it is possible to explore a much larger 

                                                
6 http://www.emrg.be/software/nodebox-1.html 
7 http://processing.org 
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number of viable design options compared to what is manually possible. Generative 

modeling is a rapid method for exploring many design possibilities and is used in various 

design fields such as art, architecture, and product design. Adoption is widespread in avant-

garde practice and design schools and there are established textbooks and professional 

development courses. 

Generative design qualitatively changes the design process. The inherent capabilities of 

such systems also create new opportunities for design support tools. With generative design, 

it is possible to easily create a very large set of viable design options that satisfy a given set 

of constraints, as defined in the model. These options, the number of which is much larger 

compared to what is manually possible, represent points in a high-dimensional design space 

that must then be explored, narrowed, and filtered. The central role of the designer involves 

continuously modifying the generative model based on the resultant outcomes. Through this 

the designer navigates the solutions space in search of viable design solutions. A very simple 

approach is to just have the user repeatedly select attractive solutions to zero in on desirable 

options [73]. Better approaches give more control to the user. One of the key challenges in 

generative design is to facilitate the use of alternatives. 

In generative modeling, exploration of forms takes place within design spaces [113]. 

There, alternatives are defined as “structurally different solutions to a design”, while 

variations are “design solutions with identical model structure, but having different values 

assigned to parameters”. To compensate for the lack of adequate software features to support 

an easier, more efficient exploration of the design space, current designers rely on strategies, 

referred to as idioms of use [113]. Some common idioms for creating, comparing and 

managing design alternatives are opening file versions in different windows, copying within 

the same file, or using layers [107]. However, current computational design tools still do not 

support managing, viewing, exploring or comparing alternative solutions in an adequate 

manner. Moreover, these adaptations of the traditional workflow sometimes create more 

problems than they solve, e.g., when the file naming and window management overhead 

becomes large. In my work here, I argue for the explicit use of alternatives, instead. 
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Generative models require a computer-aided design system that provides tools to vary 

designs beyond direct manipulation of specific design elements. Such systems can be 

understood as lying along a spectrum from direct manipulation to fully automatic design. 

Thus I consider variational modeling, where changing parameters is a tool on top of manual 

model construction, to be a minimal generative system leaving most control with the 

designer. Genetic algorithms form an opposite and delegate exploration to the computer, 

while permitting user selection only at intermediary generations [117]. Here, I focus on the 

direct manipulation end of the spectrum, enabling designers to interactively control design 

decisions and provide “power tools” to make, modify, track, evaluate and visualize their 

work and to explore a larger number of design options. 

 Due to the ease with which parameters can be varied, variational modeling, where 

solutions are represented as models, is a particularly compelling technology to assist in 

exploring a design space. A variational model represents the structure and hierarchy of a 

solution, the result of which is determined by relationships, constraints, and choices of 

parameter values at a given time. While building such models requires more effort, 

variational modeling systems make variations easier and are now used in various domains. A 

prominent example is architectural design, as in the construction of the International 

Terminal Waterloo in London, England [113], pp. 43-45.  

Current systems represent generative models as DAGs as in, e.g., CATIA8, Inventor9, 

ProENGINEER 10 , and SpaceClaim 11 , or as networks of operations in a dataflow 

programming environment, as in, e.g.,  Grasshopper 3D 12  (Figure 1-3), Max/MSP 13 , 

                                                
8 http://www.3ds.com/products-services/catia/ 
9 http://www.autodesk.com/products/inventor/ 
10 http://www.ptc.com/product/creo/proengineer 
11 http://www.spaceclaim.com/ 
12 http://www.grasshopper3d.com 
13 http://cycling74.com/products/max/ 
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Houdini14 , GenerativeComponents15 , Dynamo16  and NodeBox 3 17 . Such network-based 

dataflow-programming systems are what my work focuses on.  

How alternatives should be supported in generative design, how they affect creativity, 

how designers navigate through a large space of design options produced by generative 

design systems, and how they evaluate alternatives has not been investigated in detail. 

Moreover, to my knowledge there are currently no tools that allow users to explicitly 

compare these design options. No tools currently exist to compare dataflow networks, either. 

The work described here addresses these questions. 

 
Figure 1-3. An example of a design created in Grasshopper 3D provided by 

http://digitalsubstance.wordpress.com. 

1.1 Objectives 

As discussed above design is an iterative process of searching the design problem space as 

well as the solution space where solutions co-evolve during the design process. In other 

                                                
14 http://www.sidefx.com 
15 http://www.bentley.com/ 
16 http://dynamobim.com 
17 http://www.nodebox.net 
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words, it is also a parallel process where concepts are abandoned or re-combined until a 

satisfactory scheme emerges out of the exercise, where, often, this exploration is directed by 

the outcomes of the previous ones. All this indicates that design space exploration is an 

important part of the design process. The primary objective of this dissertation is thus to 

facilitate this part of the design process. I accomplish this by investigating if the introduction 

of various forms of exploration with design alternatives into generative design, results in 

better support of creativity. As discussed above, support for such functionality is missing in 

today’s tools. One of the key challenges is to facilitate the fluidity of the design process 

where many threads of possibilities are developed in parallel. Another challenge is to keep a 

balance of features, user interactions, and workflows to enable designers to focus on 

exploring alternatives, as opposed to just managing them. To address this, I introduce these 

techniques in GEM-NI – a graph-based generative-design tool that I built. The system 

supports parallel exploration of alternative designs and is representative of a typical 

generative design system with a dataflow-programming environment. The new interaction 

techniques are parallel editing, recalling history, branching, merging, comparing, and 

Cartesian products of and for alternatives. Further, I introduce a modal graphical user 

interface and a design gallery, which both allow designers to control and manage their 

design exploration. Many of these introduced techniques are novel in the context of 

generative design and also in general. By introducing explicit support for parallel exploration 

of alternatives, GEM-NI comes one step closer towards to supporting conceptual design. 

Because of this, unsurprisingly, GEM-NI complies with all six key requirements that need to 

be met for CAD to support conceptual design as identified by Krish [65], namely: 

• makes minimal demands on and minimal disruption to designer’s work processes. 

• is flexible in allowing the designers to navigate the design space in the way they see fit. 

• is able to support chaotic and unstructured work processes. 

• is structured as an assistive tool, giving the designer the choice to either use it or not use 

it. 

• supports and enables emergence in order to stimulate the creativity of the designer. 
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• enables an efficient transition of design content to the detailed design phase. 

GEM-NI also addresses identified problems with user interfaces that directly hinder 

creative needs in design exploration tasks [106]. Further, I investigate the usefulness of my 

approach in two user studies. 

Managing, keeping track of and comparing multiple generative design solutions to each 

other becomes increasingly difficult as the number of them grows. Thus enhancing these 

processes is an important problem in generative design. I accomplish this by introducing 

MACE, – a new user interface for interactive comparisons of multiple alternatives in the 

context of generative design systems that use generative networks. The solution revolves 

around on the expectation that there is more similarity among the alternatives than there are 

differences. I confirm the validity of this assumption by performing a similarity analysis on 

the alternatives obtained from the participants of the second user study with GEM-NI. 

The growing number of design alternatives makes it also difficult to fit them onto a 

single monitor, if all alternatives are still to be view- and editable. As a solution to this issue, 

I extend GEM-NI and MACE to support multiple monitors to help the designer keep the 

overview of all alternatives.  

Part of my solutions for enhancing managing and comparing of design comparisons 

emerged through my earlier experiments with generic diagram differencing techniques. In 

those experiments my primary goal was to address the lack of previous quantitative research 

on diagram difference visualizations and on visualizations that support merging of diagram 

versions. For this, I built and evaluated a new system for differencing and merging diagrams 

that make use of Dual View, Animation, Re-Layout, Layers and a Storyboard, abbreviated as 

DARLS. The system is targeted at diagrams with node and edge attributes. Such diagrams are 

used frequently in architecture, information and concept visualization, software engineering, 

e.g., for UML diagrams, and in generative design as networks for dataflow programming. 

One can use the system to track the evolution of a course dependency diagram over the 

years, a particular course in a prerequisite visualization, or to visualize the evolution of any 
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diagram in general. It also can be used to merge versions of a diagram and to perform 

selective undo.  

1.2 Contributions 

In the scope of this dissertation, I implemented two systems DARLS, GEM-NI, and added the 

MACE interface as an extension of GEM-NI. Further, I conducted user studies and expert 

interviews to investigate the effectiveness of the introduced solutions. DARLS enables users 

to: 

• create new versions of graph, editing existing versions, and committing back into the 

repository, 

• access versions directly in the scrolling storyboard, 

• perform differencing of diagrams using dual views, animation, layering and toggling, 

with synchronized zooming and panning, 

• perform relative graph re-layout using two heuristic approaches: optimal and 

incremental,  

• perform version merging using selection through a context-sensitive right-click menu. 

I ran two user studies to investigate the benefits of the introduced difference visualization 

techniques and found that the basic dual-view visualization was not well received. The dual-

view option with a difference layer was most preferred for comparing diagrams with 

matching node positions. For diagrams with non-matching positions, I found evidence that 

animation is beneficial, but that the combination with a difference layer was liked best. In 

summary, I can say that the difference layer technique is useful and a good complement to 

animation for showing changes. This supports diagram merging in DARLS.  

GEM-NI is a graph-based 2D design tool that supports the exploration of design 

alternatives in various ways. GEM-NI is built as a branch of NodeBox 3, a vector graphics 

generative design tool that uses graphs to express the computation behind the design. 

NodeBox has been used for visualization and generative art. Examples include visualizations 

of real-time data, evolutionary art installations that react to users, documents in a single 
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visual style but with variations across pages, and customized wallpapers based on e-mail 

spam [101]. GEM-NI adds several novel features: 

• interactive, selective post-hoc merging in alternatives; 

• an enhanced interactive design gallery that explores ranges of parameters and structural 

changes to the model. 

In the context of generative design, GEM-NI presents the following new features:  

• methods to control parallel/linked editing: checkmarks and sandboxes; 

• a non-destructive method for resurrecting past states from history with undo lineage, via 

enhanced “skating” [107]; 

• methods to quickly generate alternatives via branching; 

• local and global undo; 

• tools to manage alternatives and visually compare them; 

GEM-NI’s design gallery interface, described later, employs elements of genetic algorithms, 

but enhances them through Cartesian products of generative networks. The exploration 

facilities of GEM-NI, also described later, enable designers, to explore a much larger number 

of design options than what is possible through manual interaction. To investigate my design 

choices, I evaluated my system with moderately and highly skilled users. Informed by the 

lessons learned from DARLS, GEM-NI also uses stable layouts to facilitate visual 

comparison of alternatives. 

Existing approaches to compare graphs do not generalize to multiple alternatives, 

because practically all of them compare only two graphs at a time. Animation can be used to 

compare the linear evolution of a graph. But this also does not apply to alternatives because 

alternatives do not necessarily evolve linearly with time. To address this issue, I introduce a 

technique that allows the visual comparison of more than two alternatives without using 

animation. This new difference visualization technique is fully interactive. As a result, 

MACE enhances GEM-NI’s approach with the following new contributions: 

• a new difference visualization that simultaneously compares more than one DAG 

against a given reference; 
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• subtractive encoding to hide common elements for better difference readability, 

encoding as well as scalability; 

• node-focused difference visualization for selected node(s) and a “diff exclusion” view 

to give the user the control over visual clutter; 

• a “reveal-to-edit” feature for difference visualizations; 

• group node difference visualization to enable scalability to larger networks; 

I also include the following minor enhancements: emphasizing differences in parameters 

using transparency for difference visualization of non-numerical data types; post-hoc 

merging of the state of a parameter across a set of alternatives; and multi-monitor support to 

show how my techniques scale to up to 20 alternatives. Multi-monitor support also includes 

a new technique called jamming spaces for designation of monitors to certain states to make 

organization of a large workspace easier. 

With these techniques MACE supports the non-linear evolution of alternatives in 

generative design by facilitating the comparison, management and editing of more than two 

alternatives. For the MACE interface, I re-implemented a variant of DARLS’s difference 

layer visualization within GEM-NI to enable the user to visually compare alternatives. Given 

that the networks used in generative design use directed edges to represent the data flow, my 

work in DARLS formed a good basis for MACE. 

1.3 Outline 

The outline of this dissertation is as follows. Chapter 2 provides an overview of literature 

related to difference and history visualization for graphs, generative design, graphical 

operation history, design space exploration, interacting with alternatives and multi-monitor 

user interfaces. These are concepts directly related to the topics in this dissertation. Chapter 3 

introduces DARLS. It then describes the objectives of the user studies, which I conducted to 

evaluate diagram-differencing techniques. The chapter concludes with the findings. Chapter 

4 introduces GEM-NI. It discusses how to evaluate open-ended creative tasks and reports the 

findings of two user studies and of an interview. Chapter 5 introduces the MACE interface. It 
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describes the rationale for the design choices made behind the interface backed by previous 

research and results of an informal exploratory interview with the expert users. The chapter 

also describes the multi-monitor interface, designed to address the scalability of the 

difference visualization in MACE. It also introduces the concept of jamming spaces to 

facilitate the organization of alternatives on multi-monitor systems. Chapter 6 engages in 

overall discussion. Chapter 7 concludes by highlighting the major contributions of this work. 

It proposes areas for future work. Appendix A shows the version pairs of a course 

prerequisites diagram that were used in the user studies with the DARLS system described in 

Chapter 3. Appendix B presents some of the interesting designs that were created by the 

participants of the second user study described in Chapter 4. 
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Chapter 2  
Related Work 

Here I discuss previous work relevant to this dissertation. To clarify the contributions better, 

I mention at the end of each subsection the differences of my work relative to the discussed 

previous work. 

2.1 Difference and History Visualization for Graphs 

Dynamic graph drawing deals with the problem of visualizing a graph that evolves over 

time. Therefore, dynamic graph drawing is directly related to the work in DARLS. MACE 

employs graph difference techniques to illustrate changes between alternatives in the 

dataflow networks and, therefore, it’s related to dynamic graph drawing as well. The 

concepts in dynamic graph drawing such as mental map and animation are relevant to my 

work in DARLS, time slice and difference map are also relevant to my work in both DARLS 

and MACE. Also, my work builds on side-by-side views for visual comparison (DARLS and 

MACE), storyboards for non-linear access (DARLS), as well as text and UML diagrams 

versioning (DARLS).  

2.1.1 Mental Map 

Graph layouts aim to preserve the user’s mental map, which refers to the structural cognitive 

information a user creates internally when observing the layout of a graph [27]. A mental 

map then facilitates navigation in the graph or comparison of it and other graphs. Purchase et 

al. [86] examined the effect of mental map preservation on dynamic graph readability for 

directed acyclic graphs drawn in a hierarchical manner. The authors found that the mental 

map was important for questions that required nodes of the graph to be identified by name, 

but less important for questions that focus on edges or do not require nodes to be 

differentiated. Maier and Minas [71] demonstrated that it is meaningful to define incremental 
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layout algorithms for visual languages with both graph-like and non-graph-like features, 

such as class diagrams. For other work on mental maps see, e.g., [87,91]. 

The findings of Purchase et al. and Maier and Minas motivated my use of relative graph 

re-layout in DARLS, as I target the same kind of diagrams. For the same reasons I also used 

incremental layout methods, instead of automatic (global) re-layouting, for differencing 

diagrams. 

2.1.2 Difference Map 

A difference map is a graph that encodes all of the differences between the node and edge 

sets between two graphs [7]. It presents the union of all nodes and edges in the two graphs 

for two different time slices [7,8]. Difference maps [8] were found to produce significantly 

fewer errors when determining the number of edges inserted or removed from a graph 

evolving over time. They were also significantly preferred on all tasks. Graham and 

Kennedy [41] summarize work on multi-tree visualization in their survey. They distinguish 

five methods of comparing nodes in two trees: edge drawing, coloring, animation, matrix 

representation, and agglomeration.  

The following work was published after DARLS but nonetheless is worth mentioning. 

Gleicher et al. [39] proposed a general taxonomy of visual designs for comparison that 

groups designs into three basic categories, which can be combined. They provide a survey of 

work in information visualization related to comparison. They conclude that all visual 

designs are assembled from the building blocks of juxtaposition, superposition and explicit 

encodings. Recently, Alper et al. [4] evaluated two techniques for weighted graphs 

comparison. Their results indicate that matrix representations are more effective than node-

link diagrams. Bach et al. [11] also explored matrix representations with their Matrix Cube 

visual representation and navigation model targeted at dynamic networks with undirected 

edges. They also describe Cubix—an interactive system for the exploration of Matrix Cubes. 

It visualizes dynamic networks by decomposing the cubes into meaningful 2D views. They 
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received positive feedback from the two domain experts who used Cubix to explore and 

report on their own network data.  

The difference visualization technique in MACE can be seen as a new variant of a 

difference map, which excludes nodes and edges common to the compared graphs. MACE 

employs, among other techniques, edge drawing and coloring for difference visualization. 

DARLS uses coloring and animation, which were identified to be critical by Graham and 

Kennedy [41]. Edge drawing and coloring are used in MACE. Although Graham and 

Kennedy present these techniques only for multi-tree visualization, the approaches are also 

directly applicable for the visualization of changes in DAGs (directed acyclic graphs), which 

define the data-flow networks in GEM-NI.  

In my research with DARLS, I explore the effect of using juxtaposition with stable 

layouts and superposition. A hybrid approach of juxtaposition and explicit encodings is used 

in the design of the MACE interface. From explicit encodings identified by Gleicher et al. 

[39] I use highlighting of the corresponding nodes. Gleicher et al. [39] also identified 

additive encoding, where the members of the intersection are added to one of the graphs. In 

contrast, I use subtractive encoding, where the members of the intersection are removed 

from one of the graphs. This is a reasonable choice, as I expect that there will be fewer 

differences among data-flow network of alternatives compared to the number of similarities. 

As a result, this improves the readability of my difference encoding by keeping visual clutter 

low. Since DARLS involves only unweighted graphs and MACE further uses only directed 

edges, Alper et al.’s techniques are not an appropriate design choice for my context. Bach et 

al.’s [11] Matrix Cube approach is also not appropriate as it cannot handle directed edges. 

2.1.3 Static Techniques for Comparison 

Layering is commonly used in diagram differencing and merging, e.g., [26]. The layering 

technique superimposes multiple graphs, but can only handle a very small number 

simultaneously. Thus it is most useful to show pair-wise differences. A generalized approach 

to depict evolution of a dynamic graph in more than two versions is by using time slices. In 
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dynamic graph drawing, time slices display dynamically evolving data via a matrix of 

images that visualizes the differences between objects. Each image is a time slice [9].  

Side-by-side views have been used for visual comparison of objects long before 

computers were invented. One popular modern adaptation is a side-by-side view for 

comparing text documents. There are many publicly available tools, such as GNU Emacs, 

Kompare, WinMerge, Araxis Merge, and Scooter Software Beyond Compare. Some of these 

are not only capable of comparing plain text, but can also deal with XML documents, file 

directory structures, and even binary files.  

Side-by-side views are a special case of time slice visualization, which show only two 

versions. DualNet [77] visualizes sub-networks of node-link diagrams in side-by-side views. 

The work cited below, however, focuses only on trees, rather than graphs. As a result, most 

of these methods are not directly applicable to my context. TreeJuxtaposer [76] targets the 

comparison of large trees with side-by-side views. TreeVersity [47–50] is an interactive 

information visualization tool for comparing trees by showing changes in topology and node 

values. The system uses carefully designed color palettes to show positive/negative, 

absolute, and relative value changes; and glyphs that pre-attentively show these changes. 

TreeVersity also highlights created and removed nodes. TreeVersity2 [50,51] is an 

interactive data visualization tool that allows the exploration of changes in trees over time 

addressing the direction of a change, if it is an actual or relative change, starting and ending 

values, created and removed nodes, and inner nodes’ values, while keeping the hierarchy 

context. TreeVersity2 allows the exploration of change over time in trees using a novel 

interactive data visualizations for exploring changes in the tree between two time points 

(e.g., two years) coordinated with time based visualizations to explore the time context. 

Guerra-Gomez et al. [50] identified and classified the following five types of tree 

comparisons: 

• Type 0: topological differences between two trees where the nodes only contain a 

label, 
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• Type 1: positive and negative changes in leaf node values with aggregated values in 

the interior nodes (i.e., trees that can be visualized with a treemap) and no changes in 

topology, 

• Type 2: positive and negative changes in leaves and interior node values with no 

changes in topology, 

• Type 3: positive and negative changes in leaf node values with aggregated values in 

the interior nodes and with changes in topology, 

• Type 4: positive and negative changes in leaves and interior node values, with 

changes in topology. 

With the exception of type 0 none of these directly apply to the DAGs in GEM-NI. For 

type 0, instead of topological differences I identify structural differences between two or 

more DAGs in MACE. Guerra-Gomez et al. identify nodes as being 1) uniquely labeled in 

the tree, 2) contain one or more numeric variables, with values changing over time and 3) 

contain one or more categorical attributes that might have more than one value. This does 

not correspond to my work: Firstly, nodes in GEM-NI do not have categorical attributes in 

the same sense. Group nodes can be considered as categorical attributes, but in DAGs their 

use is optional. Moreover, I propose a special difference visualization technique for multi-

group-node difference visualization (see 5.1.3.5). Secondly, in addition to numeric values, 

the nodes in the DAGs I target contain set, string, Boolean, point, color or custom defined 

type values. As a result the techniques for numeric variables are not applicable for my 

context. Finally, while branches can be compared in trees, as they are distinct, in DAGs they 

are not distinct and thus solutions designed for trees will also not work.  

Another approach in the category of static visualization techniques is agglomeration. 

Graham and Kennedy [40] presented a DAG visualisation designed to allow interaction with 

a set of multiple classification trees to find overlaps and differences between groups of trees 

and individual trees. It merges the trees into a unified structure whilst preserving a global 

parent-child orientation of the nodes. This method of overlaying classifications allows nodes 

to be seen in the context of multiple trees, without the shrinking space problems of the small 
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multiple design. In one of the examples they were able to compare six classifications. 

Zoomology [56] compares two classification datasets where two trees are merged into a 

single overview. Isenberg and Carpendale [59] presented a new system that facilitates 

hierarchical data comparison in co-located collaborative environment using structural 

comparison through overlay. Their system dealt with up to six trees. CandidTree [68] that 

merges two trees into one and visualizes two types of structural uncertainty: location and 

sub-tree structure uncertainty. Yet, agglomeration is not applicable to (generative design) 

networks, as neither individual nodes nor sub-networks can be combined meaningfully into a 

hierarchy in DAGs.  

My new layering technique in DARLS is related to the concept of a difference map in 

dynamic graph drawing where two versions of a graph are compared to each other. In 

DARLS, layering is used in the side-by-side views. A layering technique depicting missing 

nodes is employed in MACE. In DARLS, the side-by-side views can be thought of as a base 

case of time slices, whereas in MACE multiple time slices are normally compared. However, 

in MACE I do not think of the diagrams as time slices but rather as of alternatives without 

time related semantics. Similar to previous work in this area, I use side-by-side views in 

MACE, but generalize previous work to the simultaneous comparison of more than one 

alternative against a given reference. 

2.1.4 Animation & Small Multiples 

Today, many visual systems utilize animation to help the user understand transitions. It has 

been shown that animation facilitates text document comparison [25], and enables users to 

better identify changes between versions. Examples include changes in node-link diagrams 

and structural relationships [95], perception of statistical data visualizations [55], and 

dynamically evolving data in graphs. A number of papers support the idea that animation can 

be beneficial for the purposes of visualization, e.g., [14,111]. The utility of animation has 

been questioned by Tversky et	al. [109], yet it was acknowledged that animation may be an 

effective way of presenting transitions. Robertson et al. [89] compared animation, trace line, 
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and small multiples visualization on multi-dimensional data. Animation was found least 

effective, whereas small multiples and trace lines were faster than animation, and small 

multiples were more accurate. Griffen et al. [43] suggest that animation can be helpful in 

discovering space-time clusters. 

Animation has also been used for communicating dynamically evolving data in graphs, 

which is directly related to my work. I’m aware of three user studies that explored the effects 

of difference maps, small multiples, slide shows, and mental map preservation. Farrugia et 

al. [36] compared animation and small multiples on two dynamic graph series. Small 

multiples were faster for most tasks. Archambault et al. [9] performed a user study where 

they investigated the effect of animation, small multiples, and mental map preservation for 

reading graphs that evolve over time. The study found that overall small multiples gave 

better performance than animation, but animation had fewer errors for some tasks. No effect 

for preserving the mental map was found, but this study used graphs with unlabeled nodes. 

The same authors also conducted a study to evaluate the effectiveness of difference maps in 

comparison  

to presenting the evolution of a dynamic graph over time in three interfaces (animation, 

slide show, and small multiples) [8]. Evidence was found that difference maps produced 

fewer errors when determining the number of edges inserted or removed from a graph as it 

evolves over time. Also, difference maps were preferred on all tasks.  

In Chapter 3 I investigate usefulness of animation for showing differences between 

graphs with matching and non-matching layouts. The following works were published after 

DARLS and are worth mentioning. Bach et al. [12] presented GraphDiaries, a visual 

interface designed to improve support for identifying, tracking and understanding changes in 

dynamic networks. The techniques in GraphDiaries were evaluated against techniques 

commonly found in visualization systems for temporal graph navigation. A minor increase 

was observed in task completion time that is compensated by a significant decrease in error 

rate in favor of animated transitions. The latter improve the perception of changes and 

provide users with a rich set of exploration strategies. Bach et al. [10] also presented a 
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review of techniques for temporally changing data by describing them as series of operations 

performed on a conceptual space-time cube. They introduced a taxonomy of elementary 

space-time cube operations, and explained how they can be combined to turn a three-

dimensional space-time cube into an easily-readable two-dimensional visualization. This 

model can describe many forms of difference visualization for graphs. Rufiange and 

McGuffin [90] presented DiffAni, a system that allows a graph to be visualized as a sequence 

of three kinds of tiles: diff tiles that show difference maps over some time interval, 

animation tiles that show the evolution of the graph over some time interval, and small 

multiple tiles that show the graph state at an individual time slice. This sequence of tiles is 

ordered by time and covers all time slices in the data. An experimental evaluation of DiffAni 

shows that their hybrid approach has advantages over non-hybrid techniques in certain cases. 

Small multiples have also been used for visualization of non-graph data. One of the recent 

examples is the work of Van den Elzen and van Wijk [34] who introduced a new visual 

exploration method for multivariate data analysis using small multiples. It is based on 

alternation between large singles and small multiples. They produced small multiples by 

applying split operations on large singles and also introduced a navigation mechanism based 

on explicitly showing the visual history of the exploration path. They tested the effectiveness 

of the exploration method in a user study comparing four different interaction methods. 

Their work did not find a significant difference for execution time of tasks and the number 

of errors that were made. However, they found users needed fewer steps in answering 

questions about the data and also explored a significantly larger part of the state space in the 

same amount of time. Overall, participants preferred the small multiple interaction methods 

rating them the most useful and easiest to use. Participants were faster without using the 

visual history. 

I use animation in DARLS. The technique is used with the full set of features for 

comparing diagrams with non-matching layouts. Fading only is used for matching layouts. 

In DARLS, animation can be used in conjunction with layering. Animation, however, is not 

appropriate for multi-graph difference visualization in MACE, as node positions are 
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synchronized across alternatives. More importantly, in GEM-NI alternatives can be created 

non-linearly and the user can create multiple, potentially fully independent alternatives. 

Thus, they cannot be thought of as time slices. Animation is best used for showing gradual 

transitions, i.e., it is suited to show successive graphs that represent an evolving change of a 

single data set. This has been previously pointed out, e.g., in [40]. Due to the unique features 

of sets of alternative solutions, I have to deal with situations well beyond the evolution of a 

single graph. Thus, I needed to extend previous work. The closest relevant work compares 

multiple graphs at the same time. It is important to highlight that in generative design non-

linear creation and editing of alternatives is the norm. In other words, generative design 

typically is ill described by a linear time flow. Thus time/history-based difference 

visualization techniques such as animation and small multiples are not directly applicable to 

the comparison of alternative designs. MACE employs new graph difference techniques to 

illustrate the changes between alternatives. Also, with respect to Bach et al.’s [10] taxonomy 

of data visualization, DARLS’s basic visualization uses juxtaposition, and a compound 

operation of time cutting, space scaling, space shifting, time flattening. However, this does 

not apply to the technique in MACE, where the compared artifacts are not temporal, due to 

the non-linear design process. 

2.1.5 Techniques to Access Versions 

A time slider can provide interactive access to different versions over time. This technique is 

used in the Diffamation System for text version differencing [25] and in TimeTree [22] for 

navigating hierarchies changing over time. Su [104,105] introduced a new interaction 

metaphor and visualization of the operation history for 2D illustrations, i.e., drawings 

changing over time. These are called storyboards. The user has access to the history via 

graphical depictions at the top of the document. Other approaches to storyboards have been 

presented as well [66].  
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Unlike the Diffamation System I use a scrollable storyboard in DARLS instead to enable 

the user to access all versions. In DARLS, the storyboard can be thought of as time slices 

(along with the side-by-side views discussed above). 

2.1.6 Generic and UML Diagram Differencing and Merging  

Difference visualization is also used in software engineering, typically for UML diagrams. 

Software engineering research on UML model versioning is extensive, e.g., [3,62,79,116]. 

However, this work focuses more on theoretical foundations, efficiency, robustness, and 

correctness. Often, the work is backed up by case studies using evolving software projects. 

Such work is typically not concerned with user interface issues, a gap that I am trying to 

address. Visual comparison of UML diagrams is rarely investigated. Nonetheless, Förtsch et 

al. [37] presented a survey on differencing and merging of software diagrams and listed 

requirements for UML diagram versioning tools. One of the main requirements identified is 

a user-friendly representation. They also point out that it is desirable for diagrams to be 

displayed side-by-side with differences marked graphically. If not enough space is available, 

a unified diagram may be constructed instead. Ohst et al. [82,83] introduced a unified 

document approach that highlights common and specific parts of two diagrams. 

Girschick [38] introduced a similar system using a unified approach, where eight colors were 

used to visualize eight different types of changes in class diagrams. As part of the work on 

the Pounamu system [74], the authors conducted a user survey and got positive feedback for 

response time for their difference visualization, the support for incremental changes, 

merging, and the overall support for diagram-based design activities. 

A single unified diagram for graph comparison was studied by Dadgari et al. [26]. They 

evaluated multiple graph differencing and merging techniques qualitatively with a 

questionnaire. A translucent layer approach was preferred for the simple examples they 

considered. Shireen et al.’s [97] conceptual prototype of a user interface for parallel work 

with design alternatives included a difference visualization. 
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Ohst’s approach, where graphs are displayed side by side with differences marked, 

influenced my decision to try side-by-side views for diagram versioning in DARLS. Most 

mentioned approaches for UML diagram differencing are applicable to other forms of node-

link diagrams and graphs. This is why in DARLS, differencing of generic diagrams is also 

supported in addition to UML diagrams. In contrast to Dadgari et al.’s work in DARLS, I 

present a side-by-side approach for graph differencing. DARLS displays two versions of a 

diagram side-by-side with differences marked appropriately, even if a node was moved. The 

system offers functionality to re-layout one version of the diagram relative to the other with 

stable node positions between the two versions. Moreover, DARLS offered the ability to 

accept/reject individual changes to facilitate reconciliation. In Shireen et al.’s work, they 

only showed nodes that are common. Also, they employed a concept of dragging of nodes to 

reveal them for editing. Yet, dragging of objects has a different meaning in GUIs and does 

not scale to multiple alternatives. MACE extends Shireen’s concept and previous work on 

layering by emphasizing (un)changed, added or subtracted nodes and edges using 

highlighting as in e.g., [38] and [82]. MACE also supports nested group nodes. To reveal 

(common) nodes that are omitted from the visualization, I present a new “reveal-to-edit” user 

interface technique. In summary, most previous work addresses the problem of showing 

pair-wise differences reasonably well. Animation and small multiples are used for visual 

comparisons of more than two DAGs. This is only effective for content that has evolved 

linearly, such as in DARLS. None of these approaches can handle the visual comparison of 

up to 20 data-flow networks that have evolved non-linearly or in parallel as in GEM-NI. 

Moreover, none of the above approaches supports editing in a difference visualization mode. 

2.2 Graphical Operation History 

According to Shneiderman [98], history mechanisms can play an important part in the design 

process, supporting iterative analysis by enabling users to review, retrieve, and revisit 

visualization states. Many recent systems provide history-keeping mechanisms in the form 

of a timeline [63]. Moreover, history tools can help users to create reports or presentations, 
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facilitating communication. When interactive [33], graphical histories can amplify the 

exploration capabilities of a system. Users then can not only go back in time [44] and defer 

decisions [114]; they have a mechanism to try out variations [107] by creating revisions [23] 

and versions [32,67] of the timeline.  Heer et al. [54] and Grossman et al. [44] together 

provide a comprehensive survey from an HCI perspective. Here I focus mainly on works that 

employ time sliders, graphical histories and histories of diagrams, as they are most relevant 

to histories that can be used in variational design. 

One of the earliest examples of graphical history is Chimera [66], which features an 

editable graphical history through panels depicting the results of each user operation. 

Chronicle [44] is a sophisticated system for exploring a document’s history via a zoomable 

and track-based video playback metaphor. The Diffamation System for text version 

differencing [25] employs a time slider that permits the user to explore differences over time. 

Diffamation [25], a system for text version differencing employs a time slider that permits 

the user to explore differences over time. Su [104,105] presented new pictorial visualizations 

for the operation history of 2D vector illustrations as interactive storyboards.  

GEM-NI keeps a history for each alternative and maintains it during cloning or a new 

feature that permits (non-destructive) resurrection of past states as new alternatives through a 

simple GUI that enables the user to scroll through previews of past states or to select specific 

operations.  

2.3 Design Space Exploration 

Woodbury and Burrow [115] argue that design activity is well-modeled by a network 

structure. This network reflects the strategies and structure of the designer’s exploration. 

They introduce the notion of design hysteresis, which points out that insights are discovered 

not just by explicitly visiting parts of a design space, but also through re-combination of 

visited alternatives in said hysterical design space. The term hysteresis refers to the lagged 

entry of an effect into a system. There, information needed to form a state exists in prior 

discovered states, which causes said lag. Design Galleries [73] explores the hysterical design 
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space by automatically generating and organizing variations of graphics or animations 

produced by a parametric model. Ma [72] introduces an interactive and dynamic graph 

representation of a database, which represents relationships between nodes, and argued that 

this type of visualization enhances the user experience in exploring the data. It presents 

multiple views of the data such as a local, global and summary view. Jankun-Kelly and 

Ma [60] introduce a 2D spreadsheet data visualization for multi-dimensional database 

exploration. Terry et al.‘s Parallel Pies [107] enhance the user experience in generating and 

comparing alternatives by displaying several alternatives of a model simultaneously. The 

system enables variation and alternative generation by changing the parameters. Lunzer and 

Hornbæk [70] propose a novel subjunctive interface where GUI elements can assume 

multiple states simultaneously. The three design principles on which the subjunctive 

interface is built on are as follows:  

• enable setting several, perhaps totally different scenarios independently; 

• display multiple scenarios simultaneously to facilitate comparison; 

• synchronous adjustment of multiple scenarios to escalate the exploration process. 

The authors realized these principles by presenting an interface with multiple sliders for each 

parameter with multiple handles each representing a different input value for the respective 

parameter resulting in multiple scenarios. Experimental results indicated higher user 

satisfaction, and shorter (up to 27%) task completion times. For this, they propose an 

interface with several multi-state sliders for each GUI element parameter.  

Sheikholeslami [96] implemented the Dialer interface in Bentley Systems’ 

GenerativeComponents. This interface is used for interacting with the hysterical space. The 

Dialer comprises concentric interactive rings where each ring represents one parameter and 

the divisions of the ring correspond to the explored values of that parameter. The outermost 

ring illustrates the items of the hysterical space. This is a compact visualization, but limited 

in the number of divisions that can be displayed and the number of parameters that can be 

visualized.  
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GEM-NI provides for design space exploration through an interactive design gallery to 

explore changes to both the parameters as well as the structure of the generative model. This 

interface improves previous work [96], by enabling users to select which parameters and/or 

parts of the generative network to use for populating the design gallery. Moreover, the 

design gallery of GEM-NI also supports ranges, in addition to sets, and network 

substitutions. Furthermore, I added the ability to create new alternatives from the product of 

generative networks. GEM-NI is the first system that does this allowing designers to explore 

the design space more quickly and widely than with other approaches. I believe this is a 

great addition to the design space exploration tools in GEM-NI. 

2.4 Interacting with Alternatives 

Minimal support for alternatives is found in industry tools such as Autodesk’s Showcase and 

Dassault Systèmes SolidWorks ([113], pp. 276-277). Both focus mainly on supporting 

alternatives through configuration management, alternative lineup features and side-by-side 

spreadsheet-like user interfaces. CATIA by Dassault Systèmes shows alternatives in 

Catalogs, a static gallery of assemblies and parts. It does not support interactive exploration. 

Work on subjunctive interfaces [70] introduced interaction techniques for side-by-side 

exploratory analysis. Their system supports viewing and editing of parallel parametric 

models with a multi-handle slider user interface.  

Terry et al. [106] presented techniques to better support systems for parametric 

variations; side views – an on-demand command preview, the parameter spectrum – a 

replacement for the traditional slider control to display a range of possible results, and the 

design horizon – a complementary design space visualization. 

In contrast to Heer et al.’s work [54], which describes branching history as a way to 

remember operations that have been undone, Terry et al. [107] describe undo as a tool for 

reflection-in-action, in other words, for exploring variations. In their Parallel Paths, when 

users duplicate a particular variation, its lineage is also duplicated. The copied history 

enables users to create variations after applying a command: when a result is not what was 
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anticipated, but still worth keeping, users can duplicate the current state then non-

destructively return to a previous state. They call this function skating. Skating also reduces 

ambiguity when working with multiple variations in the same workspace. The Parallel Paths 

model was implemented in Parallel Pies, a user interface for image manipulation that also 

supports side-by-side comparisons. GEM-NI supports a number of ways to create 

alternatives. In GEM-NI, I introduced a new method for creating alternatives from a 

graphical history via skating with support for lineage duplication, where previous states can 

be accessed and instantiated non-destructively. The method is the first of its kind in 

generative design and improves over previous work by providing previews. 

Hartmann et al.'s [53] Juxtapose presents a parallel code editor and a runtime parameter 

tuning environment for exploration of interaction design alternatives. The system enables its 

users to write sets of programs that can be executed in parallel. When alternatives are linked, 

any block of code written in one alternative is shared among the rest. The idea of being able 

to work with multiple linked programs is very exciting, but requires strong coding skills. 

Bueno et al. [20] propose a technique for managing variations and explorations of a design, 

via the metaphor of rewriting history. They demonstrate this by enabling users to change the 

design’s history, with common use cases of merging, generalizing and specializing. 

Alternatives, together with revision control, change tracking and annotations, feature in 

the design of the d.note tool [52]. In d.note, users can introduce alternatives, represented by 

duplicating the original state and visually encapsulating both the original and alternative.  

Smith et al. [102] conducted a user study on computational sketching tools. For this, they 

compared the effects of three interaction models for working with design alternatives in the 

early design stage: a tab interface, a layered canvas, and spatial maps. They found that 

spatial maps better support idea reflection, as they permit side-by-side comparisons.  

Shireen et al. [97] presented a conceptual prototype, a “sketch”, of a user interface to 

enable parallel generation and editing of design alternatives as an extension to existing 

variational CAD tools. It includes a dependency graph to enable simultaneous work on 

multiple design variations and difference visualization for alternatives.  
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GEM-NI enables interaction with multiple alternatives through parallel editing, history 

keeping, cloning, support for non-destructive resurrection, and new methods for easy 

management of alternatives. Parallel editing has been previously used for managing 

duplicated code in Codelink [108]. To enable designers to reuse their work more easily, 

GEM-NI adds a new method for post-hoc merging of (parts of) divergent alternatives. 

Moreover, GEM-NI is the first system to realize concepts proposed by Shireen et al. and to 

improve and extend this work in several ways. 

2.5 Multi-Monitor User Interfaces 

Many studies have investigated the effectiveness of large or multiple monitors in comparison 

to small or single screens. Grudin [45] emphasized the need to partition our digital world. He 

conducted a user study with various multi-monitor configurations and observed, among 

other things, that participants use one monitor for their primary task and treated a second 

monitor as additional space. 

Ball and North [13] analyzed the use of a large 3×3 tiled display in a longitudinal study. 

They identified a decrease in cognitive load in specific tasks due to the possibility of 

glancing at secondary information. Another example of decreased cognitive load is viewing 

large images and/or visualizations, due to the reduced need for navigation. With a large 

display there is no (or less) need to navigate, as the entire data set might be visible. After 

using the system for some time, users tended to dedicate certain regions of the screen for 

particular applications, such as e-mail, and then rely on spatial memory. The benefits of 

spatial memory were already explored in Robertson’s Data Mountain [88].  

Andrews et al. [5] examined how increased space affects the way displays are regarded 

and used for cognitively demanding sense making. Their work demonstrated how the spatial 

environment supports sense making, by providing both external memory and a semantic 

layer. With naïve users, they found a number of key behavioral differences suggesting a 

multi-monitor workstation to be more useful. With professional analysts, they identified 

clear evidence for users using the additional space both as a form of rapid access external 
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memory and as an added semantic layer in which meaning was encoded in the spatial 

relationships between data, documents, display, and analyst. Andrews et al. claim that even 

though the task was specific, the actual activities that they observed were primarily reading, 

identifying important information, categorizing, and arranging; common tasks across many 

domains.  

Bi et al. [16] conducted three controlled experiments to investigate how interior bezels on 

tiled-monitor large displays affect user performance and various tasks. They concluded, 

among other things, that tiled-monitor large displays are suitable for visual search tasks. 

However, if high accuracy is required, objects should not be placed across bezels. Bi et al. 

[18] also conducted a longitudinal diary study of a very large display (4.88m×1.83m) in 

comparison to single and dual monitors. The participants performed 3D modeling and 

graphical drawing activities in addition to a typical daily task. They found a strong 

preference for the large display. A subset of participants reported mentally partitioning the 

screen real estate into focal and peripheral regions when managing various windows. All 

participants tended to use more windows on the large display because it improved their 

workflow for complex, multi-window tasks, such as programming and graphic drawing. 

Guided by these results, Bi et al. [17] designed a set of interaction techniques that provide 

greater flexibility in managing multiple windows. Their Spread technique is of particular 

interest to the context of my work. A primary document is placed at the center and 

surrounded by supporting ones in a tiled layout.  

Multi-tiled visualizations have been proposed in the past. The following two are some of 

the examples: one early and one latest. Sandstrom et al. [92] presented the hyperwall, a 

visualization cluster that uses coordinated visualizations for interactive exploration of 

multidimensional data and simulations. Beaudouin-Lafon et al. [15] presented a multi-

surface interaction system for large datasets. It enables multiple users to easily and 

seamlessly create, share and manipulate digital content. Some of the uses for the system 

were identified to be comparison of large number of related images and juxtaposition of a 

variety of heterogeneous forms of data. 
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Based on the above-mentioned findings and with the intent of reducing window 

management overhead further, I designed GEM-NI to use a tiled user interface that presents 

many alternatives simultaneously in a tiled arrangement.  My new user interface uses the 

structure of the tiled multi-monitor display and facilitates designation of particular monitors 

for particular functions. My space redistribution feature is a generalization of the Spread 

method of Bi et al. [17] to tiled display arrangements. And the extension of the MACE 

interface for multi-tile visualization is a form of enhanced juxtaposition for the purpose of 

comparing multiple alternatives. 
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Chapter 3  
The Effect of Animation, Dual View, Difference Layers, and 
Relative Re-Layout in Hierarchical Diagram Differencing 

  

Figure 3-1. DARLS showing two versions of a diagram, which visualizes course pre-
requisites for an undergraduate computer science program. The visualization shows a 

difference layer and uses the relative optimal re-layout. 

3.1 Motivation 

A number of algorithms and interaction techniques have been proposed for effective 

dynamic graph visualization. Recently, user studies were conducted to evaluate these [8,9]. 

However, these user studies focused on generic graphs where attribute values associated 

with nodes or edges are irrelevant. Only a small fraction of research addresses diagrams 

where nodes in the graph are identified by name, see Purchase et al. [86]. Also, dynamic 

graph visualization research primarily targets differencing alone, and to my knowledge, no 
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previous quantitative research exists on visualizations that support merging of diagram 

versions. 

To address these shortcomings, I introduce a system for differencing and merging 

diagrams, that makes use of Dual View, Animation, Re-Layout, Layers and a Storyboard, 

abbreviated as DARLS. The system is targeted at diagrams with node and edge attributes. 

Such diagrams are used frequently in architecture, design, information and concept 

visualization, and in software engineering, i.e., software documents such as UML diagrams. 

For example, the system can be used to track the evolution of class dependency diagram 

over releases, a particular course in the prerequisite visualization, or to visualize the 

evolution of any diagram in general. It also can be used to merge versions of a diagram and 

to perform selective undo. 

3.2 The DARLS System 

I developed a new system capable of versioning and visualizing differences between 

diagrams with a number of techniques. Nodes and edges are disambiguated with unique 

identifiers. The system currently supports differencing and merging of generic and UML 

class diagrams. It was implemented in Java using the yFiles18. To illustrate the user interface, 

see Figure 3-1, where I use two versions of a course prerequisite diagram from two 

subsequent years as an example. 

3.2.1 Accessing Versions and Navigating the Views  

The system features side-by-side views of two versions of a diagram. Zooming with the 

mouse wheel and panning with the scroll bars is synchronized between the two main views. 

Buttons on the panel allow toggling between the editing and selection modes. Diagram 

repositories are accessed through the file menu. Both side-by-side graphs can be edited and 

committed back into the repository. The user can directly access ten versions of the diagram 

in the scrolling storyboard. Any version can be compared against any other version in a 
                                                
18 http://yworks.com 
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repository. Selecting a version from the storyboard and clicking on the arrow button pointing 

to the desired view loads a version into that view. 

3.2.2 The Difference Layer  

Here, the differences between the two diagrams in the side-by-side views are visualized 

using a transparent underlay pane in the background of either view, which shows the other 

diagram. I call this a difference layer. This is similar to previous work on single-view 

differencing [26], but different from Pounamu [74], which uses also a single merged view, 

yet where the objects common to both compared diagrams are not shown. My difference 

layer is also different from difference maps [8], as it displays the common nodes and edges 

between two versions, even if a node was moved. The rationale is to also enable 

accept/reject of node movements. A configuration dialog accommodates different color 

schemes. If the visualization gets too cluttered, the types of objects displayed in the 

difference layers can be customized, or they can be disabled completely. 

By default, all missing nodes and edges for a diagram are shown in neutral transparent 

grey in the difference layer. See e.g., COMP 3212 in the right view in Figure 3-1. Nodes that 

are common to both diagrams but shifted, resized, or morphed are visualized with reduced 

transparency, e.g., MAST 2090. This implicitly visualizes all differences between the 

diagrams, as deleted nodes show up semi-transparent in the right diagram and changed nodes 

are visualized with reduced transparency. 

Moreover, if the user selects a node in the right view, the corresponding node in the left 

view is shown selected as well, with different styles depending if the node exists in the other 

diagram. The user can customize this, so that either the node on the foreground and the 

difference layer is selected, or only the node on the foreground of the left view is selected. 

Nodes in the difference layer in the right view also can be selected by clicking. This is used 

for version merging see the next section. Also, everything described applies to edges as well. 
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3.2.3 Version Merging using Selection 

The ability to accept and reject graph edits was previously presented in Pounamu [74]. In my 

system, a context-sensitive right-click menu provides easier access to this functionality. See 

the popup next to COMP 3211 in the right view in Figure 3-1. In my system, a reject 

operation can undo the creation or deletion of nodes and/or edges, shifting, and morph/resize 

operations on nodes. For example, if the user “rejects” the change in Figure 3-1, node 

COMP 3211 and its adjacent edge connecting to node COMP 2021 will be re-instantiated in 

version 14. As other nodes are also selected, COMP 3530 will be re-instantiated and MAST 

2090 will be shifted down to the same location as in version 13. Figure 3-2 shows the state 

of the diagrams after the reject operation. 

 
Figure 3-2. The state of the diagrams after the reject operation in Figure 1 is invoked. 

3.2.4 Animation and Other Techniques 

When the play/pause button is pressed in the top panel the differences between the diagrams 

in the two views are animated in three phases. First, removed objects fade out, then moved 

objects are shifted from the old to their new locations with morphed changes in shape and 

color, and finally new nodes and edges fade in. The sequence and concurrency of these 

events can be customized. Also, the system can highlight new nodes and edges with another 

distinct color (blue by default), once all animations end, to assist the user in identifying 

changes. Nodes that changed labels, such as COMP 3201/ENGR 3201, have a call-out added 

for the change. An additional option gives access to an animation where new nodes and 
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edges blink in a distinct color (red by default), once the first animation ends. Previously, 

Plaisant et al. [85] proposed decomposing animation in their SpaceTree system into three 

steps: trim, translate, and grow, which is similar to my method. Heer et al. [55] demonstrated 

that staged animations are favored over “all at once” animations for statistical visualizations. 

3.2.5 Relative Graph Re-Layout 

As more nodes and edges are added to later versions of a diagram it may get difficult to 

differentiate and merge different versions, even if the user has access to all provided 

features, as the layout of the graph may have changed (too) much. Therefore, I added an 

option to interactively re-layout a diagram relative to another to minimize visual differences 

between them. I implemented two relative re-layout algorithms: incremental (Figure 3-3a), 

which preserves the locations of nodes, and optimal (Figure 3-3b), which rearranges nodes to 

better use the screen space and minimize edge crossings. The optimal layout thus minimizes 

the need for zooming and panning. Through this, the algorithm creates a visual “rhyme” that 

may help the user to better understand the structure of the dependency graph. Both layout 

methods keep the positions of nodes and edges common to both diagrams stable and thus 

preserve the mental map. I based my implementation on the hierarchic and incremental 

hierarchic layouters in yFiles and adapted these to my diagram-differencing task as follows. 

By default, I re-layout the left diagram relative to the right because I assume the diagram 

in the right is the latest version. The incremental re-layout algorithm first adds all nodes 

from the left graph that are missing in the right graph, to that right graph to generate a 

composite graph. It then partitions space into horizontal lanes and fixes the positions of the 

common and newly added nodes. The remaining nodes are assigned to these lanes so that the 

number of edges pointing upward is minimized, while keeping the edges short. Then these 

nodes are arranged within their lanes so that the number of edge crossings is also minimized, 

and finally, they are arranged to minimize edge bends. Then the layout of the composite 

graph is copied to the left and right graphs, but only for those nodes and edges that “belong” 

to the respective graph. 
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The optimal re-layout algorithm is similar to the one described above but with two 

differences: nodes are not fixed in place and node and edge placement heuristics can be 

specified through a menu. Figure 3-1 demonstrates two diagrams where optimal re-layout 

was performed. Please note that COMP 2021 and MAST 2090 were manually raised higher 

after the re-layout.  

Currently, there is no propagation effect to keep the layout consistent across versions if 

merging or other editing occurs. 

(a)

(b)

 

Figure 3-3. (a) Incremental layout, (b) Optimal layout. 
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3.2.6 Differencing UML Class Diagrams 

 
Figure 3-4. Differencing UML class diagrams. 

DARLS also allows UML class diagrams differencing. Here I used text differencing 

techniques (strikethrough and underline) as well. Changes in association type, such as from 

aggregation to composition, are visualized by highlighting edges in a different color. Classes 

common to two diagrams are shown in one color, newly added ones – in another. Colors can 

be customized and changes can again be animated. Deleted classes are displayed in the 

difference layer with reduced transparency. New attributes and methods are highlighted in 

red and underlined. Deleted ones are crossed out. The user can customize the differences to 

be displayed in either view or both. Figure 3-4 demonstrates differences displayed in the 

right view. Currently, my system can visualize class diagrams generated from any Java 

application, with the help of a freely available UML diagram extractor. 

3.3 User Studies  

I ran two user studies on the new system. Both revolved around diagram differencing using 

the techniques described above. There were a number of goals for the studies. The primary 
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goal was to investigate the fitness of difference layers for diagram merging. In contrast to 

previous work [26], I also wanted to quantify the user performance of diagram differencing 

techniques. I also wanted to investigate the incremental and optimal re-layout techniques. 

Finally, I wanted to confirm the validity of the proposed requirement by Förtsch et al. [37], 

which states that diagrams should be displayed side-by-side with marked differences. 

A secondary consideration was that the study by Archambault et al. [9] was performed 

on graphs with no node or edge titles. Moreover, participants had to answer multiple-choice 

questions, instead of asking participants to select nodes and edges directly. This effectively 

removed any visual search time. The authors argued that such questions are preferable as 

animated nodes may move rapidly, which would disadvantage some layouts. Therefore, and 

as confirmed by the authors, their results cannot be generalized to tasks that involve named 

nodes. I wanted to address this limitation, as named nodes are important in many 

applications. The unenhanced dual view technique in my first user study targets this visual 

search time issue. 

Previous studies also investigated effects globally across multiple versions of a graph by 

displaying everything simultaneously. My new difference layering technique compares only 

two versions of a diagram. With my incremental layout the locations of nodes remain stable 

across different versions. Hence, I investigate the effect of presenting the version pairs 

sequentially in this condition, to see if participants can better trace the evolution of the 

graph. In the first user study, I also ask participants to select nodes and edges, as I want to 

observe how the techniques affect the understanding of the variations in layout. Finally, 

unenhanced side-by-side text differencing is tedious and I wanted to investigate if this is also 

true for diagrams. 

3.3.1 The Diagrams 

In both studies I used versions of a diagram, which depicts the evolution of a subset of 

course prerequisites in Computer Science program at York University over the past two 

decades. This is a classic real-world application for diagram evolution. I excluded almost all 



 

  42 

instances without a change in prerequisites, but kept one to serve as a control. In total, I 

ended up with 12 versions of the diagram. From among these I selected a set of six version 

pairs, which cover all qualities, such as the magnitude of change in the number of nodes and 

edges: 1→3, 3→4, 4→5, 5→8, 8→10, 10→12. For brevity, I will refer to them as pairs 1 to 

6 from here on. The second pair did not have any changes and is designed as a control. The 

diagrams appearing in the left view had on average 26.5 nodes (δ = 1.52) and 23.66 edges 

(δ = 1.21), and 27.33 nodes (δ = 1.21) and 24.17 edges (δ = 1.47) in the right. Figures of 

diagram pairs for both optimal and incremental layouts are included in Appendix A. Videos 

of the tasks are available at the DARLS website19. As I wanted to focus on the understanding 

of graph structure, I did not include changes in node titles in the studies. 

3.3.2 Statistical Models 

Analysis of variance (ANOVA) is a collection of statistical models and their associated 

procedures, in which the observed variance is partitioned into components due to different 

explanatory variables. In all the analyses that appear in this chapter, I used a repeated 

measures ANOVA model with significance level of 0.05 (α=0.05), i.e., a chance of 1 in 20 

of making a type I error, i.e., incorrectly rejecting a true null hypothesis. This is the norm for 

the field of Human-Computer Interaction research. The result of an ANOVA is based on the 

F statistic, named after Sir Ronald A. Fisher, and the corresponding probability value p. If a 

test of significance gives a p value lower than the α-level, the null hypothesis is rejected. 

Such results are informally referred to as “statistically significant”. The Tukey–Kramer 

method is a single-step post-hoc multiple comparison procedure and statistical test generally 

used in conjunction with an ANOVA to identify which means are significantly different 

from one another. It compares all possible pairs of means and identifies where the difference 

between two means is greater than the standard error would be expected to allow. In my 

analyses we used the Tukey-Kramer post-hoc test to reveal groupings, whenever the 

ANOVA results were significant. 
                                                
19 http://sites.google.com/site/thedarlssystem 
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3.3.3 Participants 

Sixteen participants (five females) were recruited for both studies. The participants were 

between 18 and 35 years old with an average of 23.82. Four participants were left-handed 

but all chose to use their right hand for the experiments. Seven participants indicated that 

they were aware or had previous experience with text, diagram, source code differencing, or 

versioning tools. One participant used them regularly. None of the participants had previous 

experience with DARLS. None of the participants were color-blind or had difficulty reading 

small text. Participants reported an average of 6.1 hours (δ = 2.8) of daily mouse use. 

All participants performed both studies in counterbalanced order, but due to an 

implementation issue, the data for the first four participants in the second study had to be 

discarded. 

3.3.4 Apparatus 

The user study was conducted using a high-end laptop with a USB wheel mouse and a 22” 

external display at 1920×1080 in full-screen mode. All events, timings and responses were 

logged. 

3.3.5 Pilot Study 

In a pilot study, I asked four unpaid participants to select objects that were added in a newer 

version of the diagram, similar to User Study I below. The results indicated that the dual-

view condition without layering was the slowest overall. Direct change highlighting was the 

best, but here the task degenerated to selecting all highlighted targets, without requiring any 

understanding of the diagram evolution. Hence, I removed this condition from User Study I. 

This may limit ecological validity, as one wants the system to highlight differences, but I am 

unaware of a good way to avoid this degeneration issue in experiments. 

I also observed that when participants did not read the node labels, certain tasks became 

unsolvable. A good example is the unenhanced pair 4 in the optimal layout, where the added 

MAST 1090 node was often confused with the deleted MAST 2090 node due to both nodes 
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appearing at the same level next to each other and having the same number of edges. As the 

result, some participants could not identify the change. Hence, I instructed participants to 

carefully pay attention to node labels in the studies. 

3.3.6 User Study I  

This user study investigated how different visualization techniques help in understanding the 

evolution of diagrams with matching layout. At any time, two versions of a diagram were 

shown and participants were asked to select all nodes and edges that were added to the newer 

version relative to the older one. 

3.3.6.1 Experimental Design 

I used a 4×2×6 repeated measures design (4 differencing techniques, 2 layouts, 6 version 

pairs). The four tested differencing techniques were single view with animation, single view 

with toggling between versions, dual view with difference layer, dual view without 

difference layer. The layouts used were incremental and optimal. In the incremental 

condition, I used the layout as created by the original designer of the diagrams and only re-

arranged changes incrementally while keeping the original node positions. As the original 

layouts were created manually in an incremental fashion, the node positions for any pair 

matched in sequence. The optimal method re-arranged the whole layout and the settings for 

that method are summarized on the DARLS website. 

The intent was to compare four distinct differencing techniques in a use case with 

matching node positions, while also investigating the effect of layout techniques. Especially 

in the dual view technique with no difference layer, no visual aids were available to 

participants, and any effect of layout should thus be most prominent in this condition. 

3.3.6.2 Procedure 

When the experiment started, all layouts for all version pairs were calculated and the zoom 

level was set so that zooming and/or panning was not necessary. In fact, it was disabled to 

remove a potential confound. This also guaranteed consistent size of nodes and edges across 
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all layouts and diagrams. In the incremental layout condition, I presented pairs sequentially 

to allow participants to trace the evolution since this is complimentary to fixing the node 

positions. Otherwise, version pairs were presented randomly without replacement to combat 

learning effects. Technique and layout were also counterbalanced, but I blocked the order of 

techniques to reduce participant confusion. 

In the single-view animation condition participants were asked to click on the nodes and 

edges that were new to the latest version of the two diagrams displayed. Participants could 

click on an object again to toggle selection. Moreover, a “deselect all” button was available 

in the top panel. Rectangle and lasso selection methods were not available to limit the effect 

of different experience and/or selection strategies. For the animation condition new nodes 

and edges were faded in and the deleted ones faded out automatically upon first display. A 

re-play of the animation happened whenever the users pressed the <Left Arrow> key. 

Pausing was not provided due to the short animation duration. Selection of nodes and edges 

was enabled even during the animation. During the pilot study all animations lasted about 

2 seconds, and users found this duration appropriate. In all single-view conditions only the 

right view was used and nothing was displayed on the left side. At any given time, no more 

than 12 objects were animated  (see the DARLS website for details). 

In the single-view toggling condition, holding the <Left Arrow> key down switched the 

right view to display the previous version of the diagram. Just like in the animation 

condition, participants were allowed to toggle between versions as many times as needed. 

Participants were instructed to select new nodes and edges when the newer version was 

displayed. The dual-view without difference layer condition was basically the dual-view 

equivalent of single-view toggling. The two versions of the diagram were displayed side-by-

side and participants had to select the new nodes in the right view. The dual-view with 

difference layer condition featured a difference layer in both views, which illustrated all 

differences. Since the positions of common nodes matched due to the relative re-layout, only 

added and deleted objects were displayed on the difference layer. Moved, i.e., shifted nodes, 

were excluded. When the participant clicked on any object in the right view, which was 
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visible in the difference layer in the left view, the selection state was also shown on that left 

view. 

Participants were asked to press the <Right Arrow> key when they thought that they 

were done with the task. If the current state did not match the expected result, the window 

blinked red and a sound was played. Participants would then have to modify their selection 

and submit the result again. I logged every such attempt. The submit key was disabled unless 

at least one change to the selection was made to prevent abuse of this feature. Based on 

observations from the pilot and if a participant was not able to complete the task within 2 

minutes, the right side view would blink in yellow, a different sound would play and the next 

task would start. If a participant selected everything correctly, the right view would blink in 

green upon the key press and the next task would start. Whenever there was a change in the 

differencing technique an appropriate message box would pop up with instructions. 

Participants were allowed to take a break during that time. Logging only resumed once they 

clicked the <OK> button. 

In the pilot study, I found that it is important to inform the participants before the study 

that there be could a situation when there is no change in the diagram, such as version pair 2, 

and I informed participants accordingly. I also stressed in the initial training that common 

nodes always had matching positions. 

3.3.6.3 Results 

No ordering effects were observed. For brevity, insignificant results or groupings are 

reported only selectively below. The main effects of differencing technique, 

F3,45 = 104.06, p < .0001, and version pairs, F5,75 = 53.15, p < .0001 on task completion time 

were significant. The layout factor was insignificant, F1,15 = 0.03, ns. There was also a 

significant interaction between differencing technique and version pair, 

F15,225 = 6.93, p < .0001 and layout technique and version pair, F5,75 = 14.90, p < .0001. The 

interaction between differencing technique and layout was not significant, 

F3,45 = 1.18, p > .05, thus any hypothesis about the potential effect of layouts was not 

confirmed. 
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Figure 3-5. Mean time in seconds and error rate for the techniques in User Study I. 
Error bars: ±1 SE. 

A Tukey-Kramer analysis revealed that dual view with no difference layer was 

significantly slower (average 65.5 s) than any of dual view with difference layer (18.3 s), 

toggling (21.4 s) and single view with animation (23.3 s). See Figure 3-5 (left). Another 

Tukey-Kramer analysis was performed to detect version pair groupings. Pair 2 (10.7 s), i.e., 

the unchanged one, was the fastest and different from the group of pairs 3 (21.4 s) and 5 

(30.3 s), which again was different from the group with pairs 1 (50.6 s), 4 (50.7 s) and 6 

(43.7 s). An analysis on the interaction between differencing technique and version pairs 

revealed that the dual view without differences was slowest overall, except for pair 2. 

A Tukey-Kramer analysis on the interaction between layout technique and version pair 

revealed no difference between incremental (6.1 s) and optimal (7.2 s) layouts on pair 2, the 

one without differences. However, pair 6 showed a marked interaction effect. Here, 

incremental layout was significantly slower (40.2 s) than the optimal one (30.9 s). To 

investigate this in more detail, I analysed the frequency of false negatives for each of the two 

layouts. I found that for the incremental layout of pair 6, the top-ranked false negative nodes 

were COMP 3403 (64 counts), COMP 3481 (47) and COMP 3214 (45). The same nodes in 

the optimal layout were also ranked at the top, but with exactly 12 counts each. The top-

ranked false negative edges in the incremental layout were: COMP 2031→3215 (40 counts), 

COMP 3213→ 3481 (32). The same edges in the optimal layout were also at the top and had 
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counts of 21 and 28, respectively. I did not perform the same analysis on false positive nodes 

and edges due to insufficient sample size. 

I used the number of “submit” attempts as a measure of error rate. For these, the main 

effect of differencing technique, F3,45 = 25, p < .0001 was significant, but layout was not, 

F1,15 = 0.06, ns. Tukey-Kramer revealed that dual-view with no difference layer had the most 

attempts (1.16) on average, which was different from the group of dual view with difference 

layer (0.23), toggling (0.43), and animation (0.43). See Figure 3-5 (right). 

3.3.6.4 Feedback from Participants 

Participants were asked to rank each of the four diagram differencing techniques on a Likert 

scale from 1 to 7 (7 being the best). The results are summarized in Figure 3-7 (left).  

In freeform feedback I received several interesting comments. One participant pointed 

out that when the conditions changed, it took a few trials to get used to the new one, despite 

the explicit instructions on each condition change. Another stated that the greyed-out objects 

in the difference layer “caught his eye”, but that he found animation confusing. Yet another 

identified the dual-view condition without a difference layer as particularly hard, but got 

only gradually used to the difference layer visualization. One participant pointed out that 

toggling was somewhat confusing. Another participant said that the dual view with the 

difference layer was the easiest to use, as it was easier to see what was missing. The same 

participant also stated that toggling made it easier to identify missing parts and animation 

was sometimes confusing. Another found animation more difficult as he kept choosing the 

nodes that were removed instead of the new nodes. 

3.3.6.5 Discussion 

Dual view without difference layer was the slowest technique, which is not surprising. 

Similar to text differencing, showing two versions side-by-side does not make it easy to spot 

differences. On the other hand and as underscored by the pilot, highlighting differences 

makes identifying them easy, but helps little for understanding changes. Overall, the results 

illustrate that toggling and animation are good techniques which are well liked, but not by 
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everybody. For example, I noticed that some participants got confused about which state 

permitted selection in the toggling condition. This was also reported in the feedback. 

No significance was found for the layout factor. Thus, presenting pairs sequentially with 

incremental layout either did not help or had only an insignificant effect. The effect of 

differencing techniques on layout was also insignificant. The significant interaction with the 

version pairs indicates that rigourously preserving node positions may even be detrimental to 

understanding diagram evolution. One issue is that this can cause node overlap, which leads 

to participant complaints. However, diagram creators may need this option, so it cannot be 

discounted completely. To investigate the interaction of layout and version pair, I took a 

closer look at pair 6 diagrams and found that participants missed the same nodes and edges 

more often than any other pair in both layouts. However, the frequency of misses was much 

higher with the incremental layout. The two most frequently missed nodes had no edges 

attached. In the optimal layout, these two nodes were placed in a very conspicuous cluster at 

the bottom. For edges the same pattern was observed. I speculate that the longer average 

edge length in the incremental layout and/or more edge crossings and/or the absence of edge 

bridge connectors resulted in higher miss rates. Yet, this may also point to fundamental 

limitations of incremental layout techniques. 

In hindsight, I should have considered shorter animations. Transition intervals of 0.25 to 

1s have been found insignificant in zooming interfaces [94]. This finding may apply to my 

tasks, too. 

3.3.7 User Study II 

This user study compared two visualization techniques to identify shifted nodes in two 

versions of a diagram with non-matching layout. Participants were asked to select nodes that 

moved in the newer version of the diagram relative to the older version. Here, selecting 

edges was not investigated. 
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3.3.7.1 Experimental Design 

I used a 3×2×6 repeated measures design (3 techniques, 2 node randomization levels, 6 

version sets). The 3 tested techniques were single-view animation, dual view with difference 

layer, and the combination of dual view with difference layer with animation. The 

motivation for including the difference layer is the reject/accept technique in DARLS. Unlike 

the first user study I did not include view toggling or unenhanced dual views as initial 

evaluations showed that those conditions take too much time to be used in my experiment. 

For this study, I first laid out each diagram with the optimal hierarchical re-layout algorithm 

with the same node placement heuristics as in the first user study. Then I used a graph 

randomization algorithm, which shifts a percentage of random nodes in random directions 

while retaining a minimal distance constraint between nodes to prevent overlap. For 

simplicity, my algorithm does not employ any node placement heuristics and does not 

optimize for edge crossings or bends. However, I do not believe this is a major issue since 

my goal was to simulate scenarios when a user rearranges nodes in a diagram, which may 

generate substantial edge crossings. I shifted 22% or 44% of all nodes. I used the same six 

version sets as in the first study. I also used the same randomization seeds for all layouts to 

keep them consistent across participants. Counterbalancing was done similarly as in the first 

user study. 

The intent of the design was to compare my difference layer method with animation and 

to see if participants would use my method if given the choice between the two. Initially, I 

intended to include more randomization levels but in the interest of keeping the experiment 

length reasonable I selected to use only two. 

3.3.7.2 Procedure 

Similar to the first user study, participants were allowed to select nodes while they were 

being animated. The <Left Arrow> key was also available for (re-)playing the animation in 

the single and dual-view animation conditions. The dual-view with difference layer 

condition was the same as in the first study. I informed participants during the training 

session that one possible strategy is to use the difference layer to match the selection of the 
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nodes on the foreground in the right view with the reduced yellow color nodes on the 

background in the left view. Pair 2 was the one with the no structural changes and had 28 

common nodes. This means that at any given time no more than 28 × 44% = 12 nodes were 

animated. In the combined condition, animation played automatically when new diagrams 

were loaded to remind participants that they could use animation. All the remaining aspects 

of the procedure were identical to the first user study. 

 
Figure 3-6. Mean time in seconds and error rate for the techniques in User Study II. 

Error bars: ±1 SE. 

3.3.7.3 Results 

No ordering effects were observed. The main effects of technique F2,22 = 11.08, p < .0005, 

randomization level, F1,11 = 11.57, p < .001, and version pair, F5,55 = 4.15, p < .005 on task 

completion time were significant. The interaction between randomization level and 

technique was also significant, F5,55 = 4.94, p < .001. A Tukey-Kramer analysis revealed that 

the difference layer alone (average 28.9 s) was slower than both animation (15 s) and 

animation with difference layer (14.3 s). The 22% node randomization level (14.5 s) was 

different from the 44% level (24.3 s), see Figure 3-6 (left). The error rate data in this 

experiment was not normally distributed, therefore I decided to just report the averages, see 

Figure 3-6 (right). 

I used a Kruskal-Wallis test on the number of re-play key presses for both animated 

conditions, as this data was not normally distributed. This identified a significant difference, 
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H1 = 38.09, p < .0001. Animation alone had an average of 174 button presses while the 

animation with difference layer had 114. 

3.3.7.4 Feedback from Participants 

Participants were asked to rank the techniques similar to User Study I. The results are 

summarized in Figure 3-7 (right).  

 
Figure 3-7. Participants’ ranking of the differencing techniques in User Study I (left), 

User Study II (right). Error bars: ±1 SE. 
Here are some of the most mention-worthy comments from the freeform feedback. One 

participant stated that animation helped to see the changes and moving objects could be 

identified even when he was not directly looking at them. Another participant found it 

difficult in the difference layer condition to find a node shifted slightly because the 

background node would be hidden under the foreground node due to overlap. Others pointed 

out that nodes that moved a little in the animation condition were harder to identify as well. 

Several participants said that for selecting the moved nodes it was easiest to use animation. 

They also clicked on nodes as they moved. Relative to that they pointed out that the 

difference layer method was harder to use, but still allowed one to check the “results” of the 

animation. One participant found the animation speed a bit slow. Another participant said 

that it would be nice to have a “shadowed” mouse cursor in the “dual-view” panel.  
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3.3.7.5 Discussion 

Although the difference layer method itself was the slowest, it still contributed positively 

overall, as the combined method was both fastest overall, although not significantly so, and 

most preferred. Another indication for the benefits of the difference layer is the result on the 

re-play key presses. Also, and as revealed by the rankings, some participants found this to be 

the easiest technique.  

During the experiment, I noted that some participants were confused about how to use 

the difference layer and were either trying to select objects on the background of the right 

view or objects that were not different. This indicates that this method might not work well if 

both views are fully interactive. On the other hand, I also saw that animation alone is not a 

perfect solution to easily identify nodes that moved just a little. To investigate this, I 

analysed all instances where participants failed to identify a moved node. For all 679 false 

negatives, the average movement distance was 83 pixels while the median was only 69 

pixels. A node in the experiment was 30×80 pixels large. Since the median is smaller than 

the mean I can argue that participants had more trouble with nodes that moved less. This 

indicates that none of the techniques are perfect in isolation. 

3.3.8 Overall Discussion 

In my first experiment where node positions matched, the dual-view technique with 

difference visualization was the fastest technique overall and had the least amount of errors. 

It was also ranked highest in terms of user preferences. In my second study with partially 

non-matching node positions, animation and the combination with the difference 

visualization technique was best. 

It is not easy to compare my work directly with Archambault et al. [8,9], as many details 

are different. But I do not believe that my findings contradict their work. The participants, 

for example, also preferred the difference layers in the first study and made fewer errors with 

them. However, the difference layer was not preferred in my second experiment. 

Archambault et al. also stated in earlier work that a small number of timeslices (such as two) 
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are not enough to represent the evolution of a graph adequately. My findings generalize this 

insight to diagrams with named nodes.  

Both of my layout methods were designed to preserve the mental map. The optimal 

layout was based on aesthetics, but the incremental layout preserved the mental map more 

faithfully. Hence, the incremental condition in the first study would show the effect of 

mental map preservation best in my context. However, and as I did not find significant 

effects of layout, this suggests that mental map preservation is not effective, similar to [9]. 

Heer and Robertson [55] found that animated transitions between statistical 

visualizations work well and that staged transitions are preferred. Similarly, my first study 

suggests that animated transitions in diagram differencing tasks are preferred. 

Naturally, the results of the first user study are only directly valid for hierarchical 

diagrams laid out top to bottom. My results may not generalize to other types of diagrams. 

Many other factors can influence the results and I even observed an interaction between 

layout and the version pair. On the other hand, I believe the results of the second study are 

more generalizable, because they depend less on the layout technique. 

3.4 Summary 

In this chapter, I presented a new system for diagram difference visualization and 

merging. It uses animation, dual views, a storyboard, relative re-layout, and difference 

layers. I ran two user studies to investigate the benefits of the system and found that naïve 

dual-view visualization is not desirable. The dual-view option with a difference layer was 

most preferred for comparing diagrams with matching node positions. For diagrams with 

non-matching positions, I found evidence that animation is beneficial, but that the 

combination with a difference layer was liked best. In summary, I can say that my difference 

layer technique is useful and is a good complement to animation. This has positive 

implications for the diagram merging method introduced above. To better support dataflow 

programming for alternatives, I re-implemented this method in GEM-NI. The findings of the 

user studies here favour approaches that use a stable layout, which again informed their 
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usage in GEM-NI. I also later adopted the difference layer with translucency technique for 

difference visualizations in the subtractive encoding in MACE. 
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Chapter 4  
GEM-NI: A System For Creating and Managing Alternatives In 
Generative Design 

 
Figure 4-1. GEM-NI enables users to work with alternative generative designs 

simultaneously. Specifically, GEM-NI provides tools to manage the set of alternatives 
affected by edit operations, post-hoc merging of (parts of) alternatives, and several 
ways to create new alternatives, such as resurrection of past states with full undo 

lineage duplication or selection from an enhanced design gallery implementation. The 
leftmost alternative is the original design and is active, the center one is passive, and the 

rightmost one is idle. 
In this section, I describe the GEM-NI system and my findings from its evaluations.  

Using the example in Figure 4-1 I demonstrate the capabilities of GEM-NI. Imagine that 

Ann, a designer, is tasked with creating a design for a book cover. To match the book 

content, she initially selects the “Seed of Life” pattern and recreates it in GEM-NI, by using 

three nodes (SAMPLE1, COORDNIATES1, CONNECT1) to create a circle. She then distributes 

copies of the circle along the same circular path (SHAPE_ON_PATH1), Figure 4-1 left. As the 

result does not seem complex enough, she goes back in the operation history and generates a 

new clone from an earlier state. After some parameter variation, she arrives at the “Tube 

Torus” design shown in Figure 4-1 center. Not entirely satisfied, she branches this design 
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again to create a third, where she uses repeated polygons to arrange the circles in a more 

complex pattern, the “Flower of Life”. She could also have initiated this design as a branch 

from the history of the left-most design, which would then constitute a non-linear design 

process. Next, Ann creates several more alternatives using the Cartesian product (not shown 

in Figure 4-1) and uses individual and linked editing to tune the designs’ parameters and 

manages them in the workspace. Throughout this, she uses local and global undo to correct 

mistakes. Merging is illustrated with another worked example below. 

Encouraging exploration of a design space with parallel alternatives in design tools is a 

subject of current research. Outside of generative design, some of the concepts used in 

GEM-NI, such as parallel editing, checking and sandboxing, were introduced in the recently 

presented CAMBRIA system [64], where the authors apply these ideas to regular 2D vector 

graphics design. However, I am not aware of any mainstream end-user tools that support this 

approach to design exploration for generative design. Thus, I ran a user study with 

moderately and highly skilled users to investigate the appropriateness of my approach by 

gathering feedback and understanding the implications of parallel editing on their design 

process. 

4.1 GEM-NI 

The name GEM-NI, Generative Many-Nodes Interpreter, is inspired by the many-worlds 

interpretation in quantum physics. It implies that all possible alternative histories and futures 

are real, each representing an actual “world”. I focused on 2D graphics, a domain that offers 

sufficient complexity for common issues and patterns in generative modeling to emerge, yet 

still practical for user studies. Also, GEM-NI supports exploratory design tasks widely used 

in the design literature and in HCI in Green’s cognitive dimensions of notations [42].  
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Figure 4-2. The original interface of NodeBox 3. 

GEM-NI is capable of handling a large number of alternatives, the exploration of which 

is only limited by screen size, processing power and memory. It is also limited by the 

complexity of the models and the size of the dependency graphs. Each alternative is hosted 

in a panel. Panels are contained in one or more workspace(s), which can be saved. Figure 4-1 

shows such a workspace with three alternatives. Multiple workspaces may be open at the 

same time. The panel for each alternative consists of three views: output, parameter, and 

network view. To facilitate side-by-side viewing of alternatives, GEM-NI’s panel layout 

differs from that of NodeBox 3 (Figure 4-2). In GEM-NI views are stacked vertically: output 

on top, parameters in the middle, and network view at the bottom. The order in which 

alternatives appear on screen can be re-arranged by drag and drop using a modifier key, with 

preview and target location highlighting. In the conceptual design phase, designers routinely 

generate dozens of sketches. That amount of content is difficult to fit onto a single monitor, 

if all alternatives are still to be viewable and editable. To aid the designer in keeping an 

overview of all considered alternatives, to organize them, and to view them side-by-side for 

visual comparison, I support multi-monitor setups in GEM-NI. In a preferences menu, the 

user can select from 1×1 to (currently) 2×3 monitors. The workspace is then re-arranged to 

spread all alternatives as evenly as possible for the chosen monitor arrangement. Within each 

monitor, horizontal space is evenly distributed.  
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In GEM-NI the creation of nodes, their positions, parameter values as well as selection 

state are synchronized by default across all editable alternatives. Thus, moving a node or 

changing a node parameter affects all of its instances in other editable alternatives. Such 

parallel editing can be enabled or disabled, see below. I found that uniformity in network 

layout makes it easier for designers to identify common elements and to compare networks 

visually across alternatives. E.g., SHAPE_ON_PATH1 in Figure 4-1 was selected in the 

leftmost alternative and is now selected everywhere with the corresponding parameter views. 

For the same reasons, zooming and panning on the network and output view are also 

synchronized. Every operation is accessible through the menu bar. Important ones are also 

accessible through GUI buttons or keyboard shortcuts. 

4.1.1 Parallel Editing  

The most common use case for parallel editing is parameter variation in a design. Ann might 

use parallel editing to change the size of multiple alternatives, which saves having to repeat 

the operation in each one. Or she might add a new node that adds a background rectangle to 

all designs. In GEM-NI she can control which alternatives are idle, i.e., non-editable, through 

checkmarks. Selecting an alternative makes it active. All other checked alternatives are 

passive and thus subject to parallel edits. Often, Ann wants to focus only on a single 

alternative, i.e., work in a sandbox. 

A workspace typically contains multiple passive and idle alternatives. The active one, 

Figure 4-1 left, is shown in bright gray. Passive alternatives, Figure 4-1 middle, are shown in 

a mid-tone gray, and idle (unchecked) ones are dark gray, Figure 4-1 right. An alternative is 

activated simply by clicking anywhere on its panel, or by switching to it via the TAB key. 

Newly created alternatives are set to passive, permitting parallel editing. Editing an 

alternative makes it active and pushes changes to all passive alternatives. Idle alternatives 

remain unchanged. Pushed changes include all operations in the network view (e.g., creating, 

renaming, deleting, connecting or disconnecting a node), all operations in the parameter 

view (e.g., tweaking a parameter of the node), and all operations in the output view (e.g., 
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moving or resizing a shape by direct manipulation). Sandboxing addresses the case when the 

designer wants to focus her edits on only a single alternative (Figure 4-3). This functionality 

simply idles (unchecks) all other alternatives. Both checkmarks and sandboxing are 

accessible through GUI buttons (  and , see Figure 4-3) or through modifier keys when 

clicking on an alternative. The “mute” and “solo” buttons in audio and video software, such 

as Adobe Audition CC and Apple Final Cut Pro X, inspired my checkmarks and sandboxing. 

 
Figure 4-3. The alternative on the right is sandboxed. The first two alternatives are 

therefore idle. 

4.1.2 Local and Global Undo  

GEM-NI supports two types of undo: local and global. Local undo refers to undo in the 

currently active alternative. Global undo undoes in all checked alternatives in the workspace. 

A dedicated global undo and redo stack, in addition to local undo and redo stack, is used to 

ensure the correct parallel sequence of local undo and redo operations on each involved 

alternative, which compose the global undo or redo operation. Performing local undo or redo 
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clears the global undo stack to avoid undo synchronization problems. A more powerful undo 

system, e.g., [33], could address this limitation. I did not implement this for simplicity. 

4.1.3 Selective Merging  

Designers frequently branch out to explore different alternatives. Sometimes they then want 

to re-use new parts in other alternatives. Figure 4-4 illustrates a merging scenario in GEM-

NI. Inspired by Brownian motion, Ann first created a grid with randomly displaced ellipses 

(Figure 4-4a left). She then created an alternative that uses a compound of an ellipse and a 

circle (center). Subsequently, she created a slightly more structured 10×10 grid of compound 

circles (right). Looking at this, she likes the result of the GRID1, WIGGLE1, and ELLIPSE1 

nodes in the right design as well as the capability of varying the size of the grid through the 

new NUMBER1 node. Thus, she merges these four nodes into the other two alternatives. This 

overwrites the parameters of existing nodes and creates the NUMBER1 node with connections 

to GRID1 in the other two alternatives. Note that a copy operation would not recreate these 

specific connections. She then changes the size of the grid in all three alternatives to 15×15 

(Figure 4-4b) with parallel editing. 

Consider another simple merging scenario in GEM-NI. Ann first created the color 

spectrum design on the left in a 5×5 grid (Figure 4-5a). Subsequently she created two 

gridded color palettes, each branching from the previous alternative. When working on the 

last one in sandbox mode, Ann realizes that she can re-use the same number (5) as input for 

five nodes. Thus, she creates the number node ROWS (highlighted with a red ellipse) and 

connects it appropriately. This enables Ann to control the grid size and the detail level of her 

design simultaneously. Instead of manually recreating this node in other alternatives, she 

merges the change into the other ones. This creates ROWS in all other alternatives and also 

connects it to all common nodes. Note that a copy operation would not recreate these 

connections. A parallel edit of ROWS to 20 then creates a finer spectrum and palettes (Figure 

4-5b). 
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(a)  

(b)  

Figure 4-4. Merging and parallel editing: (a) Initial state with highlighted nodes 
selected for merging. (b) Merging replicates new nodes and connections into all other 

alternatives and overwrites parameters of existing nodes. The user then globally 
changes NUMBER1 to 15. 
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(a)  

(b)  

Figure 4-5. Merging and parallel editing: (a) Initial state with new, selected node 
highlighted. (b) Merging replicates the node and connections into all other alternatives. 

The user then changed the parameter to 20. 
Selective merging is a new mechanism to ensure that parts of a design can be post-hoc 

integrated into other alternatives. GEM-NI implements this by overwriting the state of the 

selected nodes across all passive alternatives. This is different from standard copy & paste, 

which will duplicate existing nodes. When merging, nodes that do not exist are created and 
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connected suitably in the passive alternatives. Parameters of common nodes are overwritten 

from the active alternative. This may create conflicts, which the user needs to address later. 

Performing merging on the complete network essentially turns all alternatives into clones 

(with potentially different undo history stacks). Ability to selectively overwrite individual 

parameter states is also supported (see 5.1.4.3). My technique is inspired by the 

corresponding functionality in source code management, mainly Git.  

Below is pseudo code for the selective merging algorithm, without undo handling.  
 

1: procedure merge() 

2: for all passive alternatives passive  

3:  for all selected nodes node in passive 

4:   if passive is not idle 

5:    comment: overriding parameters and adding nodes and connectors 

6:    if node already exists in passive alternative 

7:     update node in passive alternative by overriding parameters 

8:    else 

9:     instantiate a new copy of the node (and its children, if applicable) in passive 

alternative 

10:    end if 

11:    comment: connect this node 

12:    for all inbound or outbound connections of the node in the active alternative  

13:     duplicate connections in passive alternative 

14:    end for 

15:   end if 

16:  end for 

17: end for 

18: end procedure 

4.1.4 Creating Alternatives  

Creating new empty alternatives is standard functionality. During branching/cloning, and in 

contrast to most other work, GEM-NI preserves the undo stack, which enables Ann to undo 

operations in both alternatives. In the example in Figure 4-1, Ann branched an alternative 

design from an intermediate version of her initial one. Usually this meant either relying on 

intermediate saves or using (destructive) undo to go back in time. In GEM-NI, she can use 

the resurrection dialog to scroll back in time and select a starting point for a new exploration. 
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Also, the enhanced interactive design gallery in GEM-NI enables Ann not only to explore the 

variational design space but also to create new variations for the structure of the network. 

This makes it easier for Ann to quickly explore a larger set of designs. 

 
Figure 4-6. Dialog for creating an alternative from history: the history list on the left 

and the state of the alternative at that time on the right. The current entry is 
highlighted. The state can be selected from the list directly or by dragging the slider. 

4.1.4.1 Branches  

An alternative can be created as a branch through cloning, where the entire network from the 

active alternative is copied to the newly created alternative, along with its undo lineage. This 

can be interpreted as an adaptation of skating [107] to generative design. The new alternative 

then appears to the right of the active one. Preserving the undo stack upon cloning enables 

new use cases, as the user can now undo operations in both alternatives. 
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4.1.4.2 Resurrection from History  

Creating alternatives from history, i.e., resurrecting past states, enables Ann to look through 

her past work and to select particular points in time from which she intends to “branch out” 

and to explore new alternatives. This happens in GEM-NI through a dialog (Figure 4-6). 

There, all states from the undo history are listed on the left, with a time slider on the bottom. 

Clicking on a list item or scrolling shows a preview of the corresponding state on the right. 

Clicking the “Create Alternative” button then instantiates the selected state as a new 

alternative in the workspace next to the active alternative. In Figure 4-6, the past state in the 

history of the left design of Figure 4-1 is highlighted, from which the second alternative was 

branched out. The dialog enables the user to create more than one alternative at a time. As 

with branching, GEM-NI clones the history stack on a resurrection from history. Together 

with the history previews this provides an enhanced form of skating [107]. 

4.1.4.3 Design Gallery  

I implemented an interface for creating alternatives from a design gallery, inspired by the 

parametric Cartesian product in Dialer [96]. My interface extends Dialer in several ways, 

most importantly by supporting structural products. Figure 4-7 shows the Cartesian product 

dialog and Figure 4-8 shows a design gallery for Figure 4-1. Starting with the scenario in 

Figure 4-1, Ann now wants to explore the design space more widely. For this, Ann first 

selects (with a modifier key) two or more alternatives as the basis for the Cartesian product. 

This outlines these alternatives with a red frame. In the example in Figure 4-7 and Figure 4-8 

all three alternatives from Figure 4-1 are included in the product. Upon modifier key release, 

the main dialog appears (Figure 4-7a), which shows Ann all nodes of the alternatives in a 

nested list, with the second level denoting the parameters. To streamline the workflow, only 

common nodes whose parameters differ between the selected alternatives are selected for the 

product by default and expanded. SHAPE_ON_PATH1 is the only common node with different 

parameters (Amount and Margin) in the three alternatives in Figure 4-1. The GUI elements 

then permit Ann to include or exclude nodes. Similar to Dialer [96], it also permits her to 

include or exclude parameter values from the set of values that were identified as different 
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among the three alternatives that were included in the Cartesian product. Clicking on the list 

menu corresponding to the identified differing parameter displays the differing values 

(Figure 4-7b). In this example Amount is differing in all three alternatives, so there are three 

values to choose from for inclusion/exclusion in the Cartesian product. This mechanism is 

similar to Dialer [96]. To give Ann an idea of how many potential results to expect, GEM-NI 

shows the number of designs that would be generated at the bottom left. In Figure 4-7b, Ann 

can expect a total of nine alternatives in the hysterical space, which is produced by matching 

three values for Amount {6, 7, 12} with thee values for Margin {0, 25, 50}. Thus the 

hysterical space H in this case is 

𝐻 = 6, 0 , 6, 25 , 6, 50 , 7, 0 , 7, 25 , 7, 50 , 12, 0 , 12, 25 , 12, 50 . Going beyond 

Dialer [96], GEM-NI also enables Ann to specify the range over which parameters should 

vary. For ranges she can configure the minimum, maximum and step size. In Figure 4-7c, 

Ann specifies a range of 0 to 50 with step 1 for Margin, instead of the initially detected set 

{0, 25, 50}. Note that the number of expected alternatives has increased substantially to 

𝐻 = 51×3 = 153. In general the algorithm for finding the hysterical space is described 

below: 

 
1: procedure findHystericalSpace()  

2: Initialize set 𝐻 = ∅  

3: Initialize set 𝑃 = ∅  

4: find set 𝑁 of nodes 𝜈 ∈ 𝜈: 𝑣 ∈ 𝑁  such that 𝑁 = 𝑁!!
!!! , 𝑁! ∈ 𝐺! , where 𝐺 is a set of 𝑛 networks 𝐺!  that were preselected for 

inclusion in the Cartesian product 

5: for each node 𝜈 ∈ 𝜈: 𝑣 ∈ 𝑁   

6:  for each parameter 𝑝 ∈ 𝑝: 𝑝 ∈ 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑂𝑓(𝑣)  

7:   Find a subset 𝐺! ⊆  𝐺, 𝐺! ≥ 2 of all networks 𝐺!  each having unique 𝑣𝑎𝑙𝑢𝑒𝑂𝑓 𝑝  

8:   Initialize set 𝑆 = ∅  

9:   for each 𝛾 ∈ 𝐺!  

10:    𝑆. 𝑎𝑑𝑑( 𝛾. 𝑣𝑎𝑙𝑢𝑒𝑂𝑓 𝑝 ) 

11:   end for 

12:   𝑃. 𝑎𝑑𝑑(𝑆) 

13:  end for 

14: end for 

15: Build hysterical space H by matching each element of 𝑆 ∈ 𝑃 to the other element of 𝑆 ∈ 𝑃 uniquely for all members of P. 

16: end procedure 
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(a)  

(b)  

(c)  

Figure 4-7. Cartesian product dialog. (a) Cartesian product menu: all nodes of the 
alternatives are in a nested list, second level denotes the parameters; (b) 

inclusion/exclusion of parameters in Amount; (c) specifying range for Margin. 
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(d)  

(e)  

 

Figure 4-8. Design gallery. (a) two previewed designs selected in the default network; 
(b) two previewed designs selected in a network resulted from the product of all three 

generative networks. 
When satisfied with the settings, Ann presses the “Show gallery” button, which displays the 

results of the Cartesian product (Figure 4-8a) in a dialog that enables the user to scroll 
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through all pages of results with the “Previous” and “Next” buttons. She then selects two 

previewed designs by clicking on them and presses the “Create” button to instantiate the 

selected designs as new alternatives, which appends them as the last alternatives on the right 

side of the workspace. For reference, the design gallery shows the network of the first 

selected alternative in the middle, but enables Ann also to view other selected networks. 

Optionally, the GEM-NI design gallery can be invoked on a single alternative. In this case 

the gallery will operate in range only mode.  

Finally, Ann can explore even more potential designs by exploring different structures 

for the networks of the generative model. In other words, Ann can create candidates not only 

for products on parameter values, but also for products of generative networks. For this my 

new Cartesian product algorithm first identifies all nodes that are different in the 

alternatives. Then GEM-NI constructs their power set and substitutes each into the network 

common to the alternatives. I implemented this algorithm as follows. In order to create a 

product of two networks G and their nodes N and edges E, 𝐺! = 𝑁! ,𝐸! , I create the union 

𝑁!"## = 𝑁!\𝑁! ∪ 𝑁!\𝑁! of the two sets of node differences 𝑁!\𝑁! = 𝜈: 𝑣 ∈ 𝑁!, 𝑣 ∉ 𝑁!  

and 𝑁!\𝑁! = 𝜈: 𝑣 ∉ 𝑁!, 𝑣 ∈ 𝑁! . I then calculate 𝑁!"## ’s power set ℘ 𝑁!"##  of size 

2 !!"## . Then, for each node in the set 𝜈! ∈ 𝑆: 𝑆 ∈ ℘ 𝑁!"## , I construct a generative 

network 𝛾! ∈ 𝐺!×𝐺!, where we recreate connections via 𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝐺! ∪ 𝐺! − 𝜈! . The 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡  procedure attempts to create connections from every port 

𝑝! ∈ {𝜈!: 𝜈! ∈ 𝑖𝑛𝑝𝑢𝑡𝑁𝑜𝑑𝑒(𝜈!)} to all compatible ports 𝑝! ∈ {𝜈!: 𝜈! ∈ 𝑜𝑢𝑡𝑝𝑢𝑡𝑁𝑜𝑑𝑒𝑠(𝜈!)}. 

This procedure generalizes to more than two networks via 𝑁!"## = 𝑁!\𝑁! ∪ 𝑁!\𝑁!!
!!!  (all 

differences are determined relative to the first network 𝐺!) , 𝛾! ∈ 𝐺!!
!!! , and 

𝑐𝑜𝑛𝑛𝑒𝑐𝑡 𝐺!!
!!! − 𝜈! .  It’s worth mentioning that group nodes, which represent sub-

networks, are treated as completely different nodes between two or more alternatives, if at 

least one difference in the parameter or structure of the sub-network or sub-sub-network (and 

so on) is detected. Therefore, they are also part of 𝑁!"##. The cross product then substitutes 

them just like any other node from 𝑁!"##. Since there are a total of six node differences 
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among the three alternatives in Figure 4-1, 2! = 64 networks are created. Ann can then 

scroll through all designs generated by varying both the network as well as the parameters or 

select a specific network from a drop-down list. E.g., in Figure 4-8b, she has selected a 

generated network that consists of three substituted nodes: POLYGON1, COPY1, POLYGON2, 

and ROTATE1. In the example shown in Figure 4-8 there are 64 generated networks with 153 

parameter variations. Thus this design gallery contains over ten thousand potential 

alternatives. 

Below is the pseudo code for the implementation of this algorithm in GEM-NI. This code 

omits the generation of names for each new network created. The implementation consists of 

two methods, which were added to the code base of NodeBox 3. These are 

createPowerSets(), which create power set of alternatives from Cartesian products of 

networks of selected alternatives, and deleteAndReconnect(), a method which deletes a given 

nodes and reconnects its incoming and outgoing connectors to other nodes whenever 

possible.  
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1: procedure createPowerSets()  

2: Initialize empty sets newSet, missingSet and diffGroupSet, which will contain new nodes, missing nodes, and group nodes that 

changed. 

3: Initialize a pointer to referenceAlternative, arbitrarily picked from the Cartesian product list of alternatives. 

4: Initialize an empty set powerSetAlternatives, which will contain the result 

5: for all selected alternatives alternative in Cartesian product other than the referenceAlternative 

6:  copyOfAlternative = make a copy of alternative; 

7:  Identify all new, missing nodes and changed group nodes of the copyOfAlternative relative to referenceAlternative 

8:  for all new nodes n 

9:   comment: re-use of the selective merging method 

10:   𝑐𝑜𝑝𝑦𝑂𝑓𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒. overrideAndAddNodesAndConnectors 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒,𝑛  

11:  Add the found new, missing and changed group nodes to the sets initialized in the beginning (newSet, missingSet and 

diffGroupSet) 

12: Calculate the power set ℘ 𝑁!"##  of changed group nodes. 

13: Initialize groupNodeOccurences hashtable to keep track of group nodes with identical UUIDs. 

14: for all sets of nodes 𝜈!  in the power set ℘ 𝑁!"##   

15:  if this is a group node with previously encountered UUID 

16:   update groupNodeOccurences 

17:   continue 

18:  else 

19:   initialize groupNodeOccurences 

20:  copyOfReferenceAlternative = make a copy of referenceAlternatve; 

21:  for all nodes n in 𝜈!  

22:    if n is not a group node 

23:    𝑐𝑜𝑝𝑦𝑂𝑓𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒. deleteAndReconnect(𝑛) 

24:   else 

25:    Replace the node with the same name as n in copyOfReferenceAlternative with n 

26:  𝑝𝑜𝑤𝑒𝑟𝑆𝑒𝑡𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠. add(𝑐𝑜𝑝𝑦𝑂𝑓𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝐴𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒) 

27: return powerSetAlternatives; 
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1: procedure deleteAndReconnect(Node 𝑛𝑜𝑑𝑒) 

2: connections = get all connections for this network 

3: comment: trying to connect as many connections as possible from the deleted to the new node 

4: for all c in connections in this network 

5:  comment: incoming connections 

6:  if 𝑐. input()  ==  𝑛𝑜𝑑𝑒 

7:   comment: for all outgoing connectors 

8:   for all c2 in connections in this network 

9:    if 𝑐2. output()  ==  𝑛𝑜𝑑𝑒 

10:     try connect(𝑐. output(), 𝑐2. input()) 

11:  comment: outgoing connections 

12:  else if 𝑐. output()  ==  𝑛𝑜𝑑𝑒 

13:   comment: for all incoming connectors 

14:   for all c2 in connections in this network 

15:    if 𝑐2. input()  ==  𝑛𝑜𝑑𝑒 

16:     try connect(𝑐2. output(), 𝑐. input()) 

17: removeNode(𝑛𝑜𝑑𝑒) 

4.2 Evaluating GEM-NI 

Evaluating specific features of the system, such as e.g., the difference visualization 

techniques does little to confirm external validity and the benefits of the system as a tool for 

generative design and creative work, as these are non-linear processes with a strong creative 

component. Comparing each new feature in GEM-NI with the corresponding feature in 

existing tools, similar to an evaluation of a new CAD system against another one (e.g., as in 

[81]), does not seem possible because there is currently no roughly comparable system. So 

one could only compare against the traditional workflow, where I hypothesize that dealing 

with alternatives is associated with an increased workload due to the higher 

management/interaction effort. This becomes evident when one considers the number of 

operations necessary to achieve tasks associated with creating and managing several 

alternatives simultaneously. 

A more systematic approach for the evaluation of creative work systems has been 

proposed by Cherry and Latulipe [24]. They developed the Creativity Support Index (CSI), a 

psychometric survey designed for evaluating the ability of a creativity support tool to assist a 

user engaged in creative work. It consists of a rating scale section and a paired-factor 
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comparison section. The scale section of the CSI measures six factors of creativity support: 

Exploration, Expressiveness, Immersion, Enjoyment, Results Worth Effort, and 

Collaboration. For each factor, there are two agreement statements. Having two statements 

per factor improves the statistical power of this survey, as it allows researchers to look at the 

reliability for each factor by examining the similarity of the scores across the two different 

statements. The paired-factor comparison section consists of each factor paired against every 

other factor for a total of 15 comparisons. It is designed to reveal important factors. 

Therefore, the CSI enables researchers to understand not just how well a tool supports 

creative work overall, but what aspects of creativity support may need attention. From 

among the CSI usage scenarios identified by Cherry and Latulipe, in my evaluation I am 

using the scenario of tool comparison, same task, repeated measures. I designed a study in 

which participants complete a somewhat similar creative task using NodeBox 3 and GEM-

NI. Participants complete the CSI’s agreement statements after completing the task in each 

tool and complete the paired-comparison section once, at the end of the study.  

4.3 User Study I 

To confirm the appropriateness of the presented techniques for the design process, I 

evaluated GEM-NI in two steps: a workshop with an exploratory design study, and follow-up 

in-depth interviews. The workshop introduced NodeBox 3 and had the goal to gather 

feedback on GEM-NI from a user group moderately experienced in generative design. 

4.3.1 Participants 

Five unpaid participants (2 female) from graduate students were recruited through a “session 

on new generative design tools” announcement at Simon Fraser University. I targeted 

participants experienced with generative design, since NodeBox is challenging to use for 

non-designers. Coffee and cookies were offered as incentive. Participants design 

backgrounds were: architectural, sound, visual, and information design, as well as arts. One 

participant had to withdraw during the workshop due to an appointment. The participants 
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were between 21 and 31 years old (µ=27.2). All were experienced designers (µ=5.7 years). 

One participant reported experience with generative design tools, namely Grasshopper, 

another knew Processing. None knew NodeBox. In the pre-questionnaire, all reported that 

they routinely create multiple alternative designs as opposed to a single solution. All stated 

that when they design, they regularly keep track of, review, and revisit their design 

iterations. For that, participants reported the following methods: saving multiple files (even 

for minor changes), creating files from scratch for major conceptual changes, using a stylus 

with a note taking application, various combinations of shuffling between files, sketches, 

tracing paper, and images, and keeping everything in a notebook and/or printouts, including 

intermediate artifacts. 

4.3.2 Apparatus and Procedure 

Workstations with dual monitors running Windows 7 were used. Blank sketch sheets and 

pens were supplied. The workshop was split into two phases, followed by a one-on-one in-

depth interview with participants at a later date. Along with logging and interviews, I used 

the Creativity Support Index (CSI), a quantitative, psychometric tool in form of a survey to 

assess how well both systems assist creativity in the design process. In both phases 

participants completed the CSI questionnaire after the creative task. Collaboration was not 

rated. 

4.3.3 The Workshop 

In the first workshop phase participants were taught a basic version of GEM-NI, feature-wise 

equivalent to NodeBox 3, i.e., without my new contributions, and called NodeBox for the 

remainder of this section. I picked examples from a generative design book [19] as tasks. I 

first demonstrated how to create six designs and asked participants to recreate them on their 

workstations. This took about one hour. This familiarized participants with the system to 

enable them to perform the main creative task. Said task was a design scenario, where 

participants had a client that wanted them to come up with an “algorithmic shapes” design 



 

  76 

for a small front door window, about 20×20 cm. The client expected options to choose from. 

Participants then used NodeBox to create a number of alternative designs and saved them as 

different files. Participants were free to sketch with pen and paper, as necessary, and were 

given 30 minutes for the task. 

In the second phase, participants first learned how to use GEM-NI. All above-presented 

features of the system were demonstrated on the example in Figure 4-1, which they recreated 

from scratch. This took one hour. The second task stipulated that their client saw the 

alternative designs for the door window and liked the designs so much that she asked the 

participants to extend these designs to cover the entire door. Participants could reuse their 

designs from the first task. This scenario was chosen for the task because it highlights the 

iterative nature of the design process, since the designers in this case are required to re-

iterate on their previous creations through the feedback from their client. They were given 30 

minutes to complete the task and again permitted to sketch. After completing the second CSI 

questionnaire they also filled the paired comparison part of the CSI. Since the tasks in my 

study were similar enough, I performed the CSI evaluation as a within subject tool 

comparison with the same task. 

4.3.3.1 Results 

The small number of participants limits the strength of my results. Also, I evaluated the tools 

in a fixed order. Yet, counterbalancing is difficult, as GEM-NI is based on NodeBox. 

Looking at the first phase, I noted that several participants had already created alternatives in 

a single document in NodeBox (without prompting!) through the ability to create multiple 

output nodes. This likely reduces the “cool tool” bias and verifies that designers already plan 

for alternatives, even in current tools. These participants had primed themselves to learn 

GEM-NI quickly. Two participants, P1 and P4 created four alternatives with GEM-NI. All 

designs of P1 differed only in parameters, but not structurally. P4 came up with several 

designs that were structurally different. The logs showed that both P1 and P4 used branching 

to create their alternatives and worked non-linearly, i.e., went back and forth between 

alternatives. I also logged five instances where P1 rearranged the order of alternatives. 
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Another participant, P3, created two alternatives and accessed the history and design gallery, 

but did not create alternatives with those methods. Only one person was observed to use pen 

and paper briefly. 

4.3.3.2 Results of the CSI Questionnaire and Discussion 

 
Task Factor \ Scale Enjoyment Exploration Expressiveness Immersion Results worth effort 

1 Avg. Factor 

counts (σ) 

2.5 (1.7) 3.8 (1.5) 4.0 (0.8) 2.3 (1.3) 2.5 (1.3) 

1 Avg. Factor 

score (σ) 

13 (2.5) 11.3 (2.5) 9.0 (4.3) 6.5 (1.3) 11.5 (2.4) 

1 Avg. Weighted 

factor score (σ) 

34.8 (30.6) 41.0 (15.5) 36.5 (18.4) 15.3 (9.6) 27.0 (11.2) 

2 Avg. Factor 

counts (σ) 

2.5 (1.7) 3.8 (1.5) 4.0 (0.8) 2.3 (1.3) 2.5 (1.3) 

2 Avg. Factor 

score (σ) 

14.8 (2.8) 15.8 (1.5) 14.0 (3.2) 10.0 (7.1) 13.3 (5.0) 

2 Avg. Weighted 

factor score (σ) 

37.0 (28.9) 59.8 (25.5) 56.8 (20.5) 28.8 (34.8) 32.3 (20.1) 

Table 4-1. User Study I: Average results from first task using NodeBox (top); second 
task using GEM-NI (bottom).  
The CSI analysis, revealed an average score of 51.5 (σ = 13.5) in the first task and a 

substantially higher score, 71.5 (σ = 12.84), for the one where GEM-NI was used (N = 4 for 

both tasks). These results depend to some degree on individual’s preferences and their level 

of expertise with the tool. Similar to [24], I report the results with respect to average factor 

counts, factor score and weighted factor score (Table 4-1). Average counts express the 

number of times that participants chose a particular factor as important to the task. 

Expressiveness and exploration were ranked as most important. The factor score sums both 

agreement statement responses for a factor. A higher number indicates better supports. 

Weighted factor scores are more sensitive to the factors that are the most important ones for 
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the given task. In both dimensions, GEM-NI scored again much higher for expressiveness 

and exploration. 

4.3.4 In-Depth Interviews 

I ran in-depth interviews with three of the participants (P1-3) in the days after the workshop. 

At the start of the interview, participants were given a short review of the features of 

NodeBox and GEM-NI. Then they were asked to continue working on the second task with 

GEM-NI. In a variant of a think-aloud protocol, I asked participants to express their opinions 

during this, to make comments on the tools, to provide feedback on the overall workflow and 

experience, and to explain why they made their decisions. P1 and P2 completed the interview 

in a little over two hours. Participant P3 was only able to dedicate 30 minutes. Overall, 

participants used many more features of GEM-NI. 

P1 created two alternatives from history. When asked about this feature, P1 pointed out 

“creating alternatives from history is superior because I like the idea of being able to pick 

something from the actual history, which could contain ideas that were not further 

developed”. This is in contrast to the alternative workflow of branching and deleting of 

unwanted parts of the graph, where he added “[with this] some steps might not be captured, 

such as creation and deletion of connectors and partial editing of nodes”. During the 

interview, P1 produced designs that were different both structurally and in parameters. In the 

end, P1 created seven designs in a non-linear way through branching. He also created an 

alternative from a design gallery and two from scratch. I logged deletion of six alternatives. 

He re-ordered alternatives 30 times and used global undo once. P2 created five designs in 

two workspaces and saved some of his alternatives individually and then opened them in a 

new workspace. He re-ordered alternatives seven times, created two alternatives from 

scratch and five non-linearly as branches and used merging. P2 deleted six alternatives. P2 

was not able to leverage design galleries, as his design had very subtle variations in only two 

parameters and thus “the results shown in the gallery were [almost] identical”. P3 created 

five alternatives in a single workspace in a short time, through a design gallery, which P3 
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found to be “a great way to explore possibilities”. P3 deleted one alternative and rearranged 

alternatives 21 times.  

All participants were observed using the two available monitors. It was important to their 

workflow to focus on a single alternative. Therefore, all dragged idle and passive alternatives 

to the secondary monitor, to increase the workspace for the active alternative. This generated 

many instances of rearranging. P1 and P2 had programming skills and stated: “GEM-NI is 

like version control [systems]”. They drew on their experience with Git and used GEM-NI 

somewhat like a version control system for design, which enabled them to experiment more. 

P3 was not familiar with software version control and thus did not have the corresponding 

mental model. P2 demonstrated an unexpected use of my system. He created multiple sub-

graphs as alternatives, where the output of all sub-graphs was rendered inside a single 

GEM-NI alternative. Then, he started using the panels as means to explore even further 

alternatives. In the freeform feedback, he later wrote: “I encountered some unexpected 

designs while using [GEM-NI], which made things much more interesting than I had first 

imagined. Interactive [parallel] editing had very interesting results”. P2 worked always on a 

single alternative at a time and perceived parallel editing of multiple alternatives at the same 

time “to be hard”, likely due to the increased cognitive effort required for such parallel tasks. 

This corresponds to the experience with Juxtapose [53], which requires strong coding skills. 

Only one participant was observed to use global undo. 

All participants complained about aspects of NodeBox and to a lesser degree about 

GEM-NI’s features. Most criticism revolved around the fact that focusing is not automated 

enough. They found rearranging panels to be hard and wished for an easier workflow. I did 

not focus on streamlining this specific task. Participants also asked for some difference 

visualization that “would highlight changes in the rendered geometry and network”. They 

also preferred that sandboxing be the default work mode, and that parallel editing only be 

available on demand (opposite to my default). Finally, participants P2 and P3 wanted to 

minimize or collapse alternatives, instead of being confronted with all of them 

simultaneously. They suggested a side window or panel that “shows alternatives in a way 
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similar to the design gallery”. They also identified that they would like alternatives that are 

collapsed to automatically turn idle. 

4.4 Discussion 

Here I discuss some of the consequences of the design decisions behind GEM-NI, as backed 

by the outcomes of the workshop and the in-depth interviews. GEM-NI supports a number of 

ways to create alternatives. I include adapted and enhanced variations of results from 

previous work, such as Parallel Pies [107]. I also introduced a new method for creating 

alternatives from a graphical history with support for lineage duplication, i.e., graphical 

skating, for generative design tools. The in-depth interviews indicate that this is an ideal 

feature to easily explore what-if scenarios. Another noteworthy way of creating alternatives 

in GEM-NI is the design gallery. This interface improves previous work [96], by enabling 

users to select an arbitrary range of parameters and/or parts of the generative network to use. 

Furthermore, I added the new ability to create alternatives from the product of generative 

networks, which I believe to be a great addition to design space exploration tools and found 

to be useful in my evaluation. Notably, participants stated that “[they] arrived at designs that 

they did not expect or foresee directly”. They attributed this to both the design gallery and to 

parallel editing. To control the scope of parallel editing, GEM-NI provides checkmarks and 

sandboxing, which participants found very useful during my evaluation. 

In GEM-NI, I also introduced a novel method for post-hoc merging of alternatives, 

inspired by branch merging in Git. With post-hoc merging, a designer can easily “import” 

the knowledge embedded in a sub-network into another alternative. Post-hoc merging is 

particularly useful when a designer does not remember how he/she arrived at a particular 

state or if someone else modified the design. Yet, I only observed and logged one participant 

using the technique, potentially due to the limited design complexity explored in my 

evaluation. Still, I believe that with time, users will realize the full potential of this feature, 

similar to its pervasiveness in software projects. 
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Two participants rearranged alternatives extensively to focus on a single one on one 

monitor. This justifies my decision to support multi-monitors and to use such systems in the 

evaluation. Participants requested minimizing and other methods to manage alternatives on 

dual monitors. Participants also requested difference visualizations for alternatives, and 

overlaid history steps. Such features have been advocated before [70]. GEM-NI was 

implemented as a branch of NodeBox 3 by adding multiple-document model support via 

universal unique identifiers. This enables consistent relationships between alternatives to 

persist even when they are kept offline. Alternatives can then safely be included back into 

the workspace at a later stage, without naming conflicts. GEM-NI supports versioning in this 

way and P2 used this during the evaluation.  

While the sample size of my evaluation is small, I believe it to be representative for what 

moderately experienced designers can achieve with GEM-NI compared to traditional 

solutions, in terms of better exploration of a design space and expressiveness. The fact that 

participants even created alternative-supporting schemes in existing tools, underlines the 

need for GEM-NI’s approach in generative design tools. 

4.5 User Study II 

My primary motivation to conduct another evaluation was to address the issue of the small 

sample size in the first study. I also implemented several new features, some of which were 

requested by participants in the first evaluation. The first feature adds the ability to minimize 

alternatives and to later retrieve them again through a dialog. Some participants expressed 

that this would help avoid being confronted with all (or too many) alternatives at once. This 

dialog shows alternatives in a way similar to the design gallery (Figure 4-9). The second 

feature enlarges the selected, currently active alternative by redistributing the horizontal 

space within a monitor, so that the selected alternative occupies a larger part of the space, 

more concretely, twice as much as other alternatives. This permits users to better focus on a 

specific alternative. I also added support for L-systems [69], a powerful form of generative 

graphics, to GEM-NI. In the evaluation described below I investigate the usefulness of these 
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three features. This evaluation was conducted in the similar fashion to the first user study, 

namely, as part of a workshop. In-depth interviews were not performed due to time 

constraints. The goal of the workshop was to gather feedback from a group of users, 

moderately experienced in generative design. 

 

 
Figure 4-9. The dialog for retrieving minimized alternatives. 

4.5.1 Participants 

Ten unpaid participants (4 females) were recruited for the workshop from an advanced-level 

generative design course for graduate students in architecture at the University of Toronto. 

The workshop was conducted during the lab time of this class. Prior to the workshop, the 

course instructor notified the participants that they would use a novel generative design tool, 

perform tasks, and provide feedback. Coffee and cookies were offered as an incentive. The 

students were targeted because of their experience with design in general and generative 
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design in particular. One participant could not attend the first part of the workshop due to 

other commitments, so I could not collect his feedback on NodeBox. The participants were 

between 22 and 39 years of age (µ= 27.4). All were experienced with design (µ=8.5 years) 

and generative design (µ=2.8 years). All were experienced with Grasshopper, two with 

Processing. Some were experienced with Solid Edge, Inventor, CATIA, NX, Solid Works, 

Rhino, RhinoPython, RhinoScript, ParaCloud Gem, Revit, Kangaroo, and Weaverbird. None 

knew NodeBox. This is particularly important because NodeBox is easier to use for those 

familiar with the concept of visual data-flow programming environments, as implemented in 

systems such as Grasshopper 3D. In the pre-questionnaire, 8 participants reported that they 

routinely create multiple alternative designs, and only 2 reported that they normally create a 

single solution. All reported that when they design, they keep track, review and revisit their 

design iterations. For such design iterations, participants reported the following methods: 

creating scripted outputs of images and model files for later reference, paper and pencil, 

saving multiple files (mentioned 4 times), saving files with different parameters or 

definitions, saving multiple files with organized naming conventions to track the history 

without opening every file, using sketch drawing, recording, pictures, 3D modelling, saving 

multiple files, drawings, versioning of files, “baking multiple iterations in Grasshopper 

[3D]”, as well as creating a play script with changing parameters in Rhino. 

4.5.2 Apparatus 

We used workstations with dual monitors running Windows 8. 

4.5.3 Procedure 

The workshop followed the same procedure as in User Study I (4.3), with the exception that 

the last demonstrated example involved the use of an L-system. The teaching sessions also 

took one hour and the tasks 30 minutes each. 
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4.5.3.1 L-system 

During the first phase of the workshop, the last artefact that I asked participants to recreate 

involved a generative network with two custom nodes (LRULES and LGEOMETRY) that 

generate an L-system [69]. In the LRULES node, the user specifies the number of generations, 

a starting premise and up to three rules. In the LGEOMETRY node, the user specifies position, 

angle and length of the segment, and the scale for angle, length and segment thickness. 

Figure 4-10 illustrates this with parameters values for LRULES and LGEOMETRY nodes to 

generate the Sierpinski Triangle. 

My L-system implementation is based on an existing implementation for NodeBox 2 

available on GitHub20. I made the L-system nodes available to participants because they 

force the user to come up with recursive designs. This imposes further constraints on the 

creative task and may further increase the internal validity of the experiment. I showed the 

participants how to generate the Sierpinski Triangle and provided them with a set of other 

examples: Pythagoras Tree, Koch Curve, Dragon Curve, and two variations of a fractal 

plant (Figure 4-11). I encouraged them to use these examples as starting points in their 

designs, from which they could branch out. Although all the participants were familiar with 

L-systems, I recognized that requiring them to use L-systems in all their designs could 

potentially frustrate them. Thus, although I encouraged them to use the L-system nodes in 

their design, I explicitly identified that this was not required in this study.  

                                                
20 http://github.com/nodebox/nodebox/issues/332 
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Figure 4-10. Parameter values of the LRULES (left) and LGEOMETRY (right) nodes for 

the Sierpinski Triangle. 

 
Figure 4-11. The L-System examples that were available to participants for re-use in 

their designs. The examples are (from left to right): Pythagoras Tree, Koch Curve, 
Sierpinski Triangle, Dragon Curve, Fractal Plant #1, Fractal Plant #2. The Sierpinski 
Triangle was also the final artefact that participants recreated during the training 

phase of the workshop. 

4.5.4 Results 

With NodeBox, participants created 2.11 (σ=0.78) alternatives on average. This number 

excludes all alternatives that were ultimately discarded. Almost all, 6 of 7 (86%), 

participants created alternatives that were all structurally different, i.e., differed not only in 
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node parameter values but also in the graph structure as well. Two of the three alternatives 

created by P8 were also structurally different. So, all participants created structurally 

different alternatives one way or the other. The L-system was used by 6 of 9 (67%) 

participants. Almost half, 4 of 9 (44%), participants simulated some or all of their 

alternatives with multiple render nodes and sub-graphs. 
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Participa

nt No.↓  

Total 

number of 

alternatives 

Number of 

structurally 

different 

alternatives 

L-system 

used in 

alternatives 

Creation of 

alternatives via 

multiple rendered 

nodes in same 

document 

System→  
ND

B 

GM

N 

NDB GMN ND

B 

GMN NDB 

1 2 4 All 0 0 0 Yes 

2 2 3 All All 0 0 Yes 

3 N/A 3 N/A 1 N/A 0 N/A 

4 3 5 All 2 1 0 No 

5 3 8 All 0 3 8 No 

6 1 2 N/A All 1 2 No 

7 1 2 N/A All 0 2 No 

8 3 3 2 2 3 3 No 

9 2 3 All All 1 3 Yes 

10 2 8 All All 1 0 Yes 

µ 2.11 4.22      

σ 0.78 2.33      

Summary   7 of 7 8 of 10 6 of 

9 

5 of 

10 

4 of 9 

Table 4-2. Summary of number of created alternatives with NodeBox (NDB – task 1) 
and GEM-NI (GMN - task 2). The larger of the two results per participant is 

highlighted in red. 
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Participan
t No.	

From 
branching	

Non-
linear 

branching	

From 
scratch 

By pre-
loading 

from task 
1 

From 
history 

From 
Design 
Gallery	

1	 0	 	 0 1 4 6 
2	 1	 0	 1 1 2 * 
3	 0	 	 1 0 1 1 
4	 4	 All	 1 6 0 * 
5	 0	 	 0 5 0 1 
6	 0	 	 2 2 2 * 
7	 0	 	 0 6 1 * 
8	 0	 	 0 6 * 3 
9	 3	 0	 0 1 0 0 
10	 N/A	 N/A	 N/A N/A N/A 1 

Summary	 3 of 9	 1 of 3 4 of 9 8 of 9 6 of 9 5 of 10 
Table 4-3. Summary of different methods for creating alternatives participants 

employed in GEM-NI in task 2. A ‘*’ designates that the participant used the feature 
but did not create any alternatives with it. Data for participant 10 indicates the 

minimum number of alternatives created based on the data recorded before a logging 
failure. 

 

Participant 
No. 

1 2 3 4 5 6 7 8 9 10 

Total 
Number of 
Revisited 
Alternative
s 

1 3 1 1 3 0 0 6 1 0 

Table 4-4.  Total number of revisited alternatives by participant. 
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Partici-

pant No. 

Merg-

ing 

Globa

l 

Undo 

Sand-

Boxin

g 

Chec

kmar

ks 

Dual 

monito

rs 

Rearr

angin

g 

Min-

imizi

ng 

Max-

imizi

ng 

Focusi

ng 

1 1 0 3 13 No 0 0 0 0 

2 0 8 9 2 Yes 1 0 0 0 

3 2 0 0 3 Yes 1 0 0 0 

4 0 0 15 29 No 1 3 0 0 

5 0 0 6 2 Yes 3 0 0 0 

6 0 0 7 1 No 1 1 0 0 

7 0 0 4 4 Yes 1 1 0 0 

8 1 0 0 31 Yes 3 0 0 0 

9 0 0 9 2 Yes 3 0 0 1 

10 N/A N/A 1 7 Yes 6 7 N/A 0 

Summa

ry 

3 of 9 1 of 9 8 of 

10 

All 7 of 10 9 of 

10 

4 of 

10 

0 of 9 1 of 9 

Table 4-5. Summary of other features employed by participants in GEM-NI in task 2. 
Available data for participant 10 indicates the minimum number of times that the 

feature was used based on the data recorded before the logging failure. 
 

Participant (P3), who could not attend the first part of the workshop, is not included in the 

results for the first task (NodeBox). So all the results in this sub-section are for N=9. See 

Table 4-2. 

With GEM-NI, participants created 4.22 (σ=2.33) alternatives on average. A malfunction 

occurred on the workstation of participant P10 during the second task and I could only 

recover that participants’ session log partially. Therefore, some of the results for the second 

task with GEM-NI, are also reported only for N=9. The partial results for this participant 

indicate a conservative estimate of the minimum number of alternatives that were created 

using the corresponding method (Table 4-3) and minimum numbers of times features were 

used (Table 4-5). 
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Almost all, 8 of 9 (89%), participants pre-loaded their designs from the first phase as a 

starting point for the second task. Analysing the logs further reveals that some participants 

abandoned their designs from the first tasks and created completely new content for the 

second task. 

Creating of alternatives: Branching was used by 3 of 9 participants (33%). Out of these 3 

participants, one participant created all his branching alternatives in a non-linear fashion, i.e., 

branched all designs from a single source. Less than half, 4 of 9 (44%), participants created 

some of their alternatives from scratch. More than half, 5 of 9 (56%), participants created 

some of their alternatives from history, and an additional participant used the history, but did 

not create any alternatives with it. Half, 5 of 10 (50%), created some of their alternatives via 

the design gallery. Four additional participants were logged using it, without creating any 

alternatives. Thus, only one participant did not show interest in the feature. See Table 4-3. 

Besides counting incidents of non-linear branching, another way to observe non-linearity is 

through the total number of times a participant abandoned an alternative and later revisited it 

with further editing. Thanks to the checkmarks and sandbox functionality, tracing this 

activity in the logs is easy. Table 4-4 summarizes such occurrences for each participant. 

Overall, 7 of 10 (70%) participants revisited alternatives that they temporarily put on hold. 

Managing alternatives: Merging was used by 3 of 9 (33%) participants. Global undo was 

used rarely, by 1 of 9 (11%) participants. Sandboxing was used by most, 8 of 10 (80%), 

participants, and checkmarks by all (100%). Dual monitors were used by 7 of 10 (70%) 

participants. Alternatives were re-arranged by dragging at least once by almost all, 9 of 10 

(90%), participants. Minimizing was used by 4 of 10 (40%) participants, however no 

maximizing actions occurred. Only a single participant used focusing once. See Table 4-5. 

4.5.5 Discussion 

With GEM-NI, participants created more alternatives (µ=4.22, σ=2.33) than with NodeBox 

(µ=2.11, σ=0.78). A repeated-measures ANOVA test indicates a significant effect of the tool 

used, with Wilks’ Lamba = .45, F1,8 = 9.75, p < .05, η2 = .55, and observed power = .78. The 
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data shown in Table 4-2 also confirms, as 7 of 9 participants created more alternatives 

(highlighted in blue) with GEM-NI. Consistent with my first study, almost half (4 of 9) 

participants created multiple alternatives even in the first task, where they were not prompted 

to create alternatives. While only one of the tree participants who used branching used the 

technique non-linearly (and also created all the alternatives that way), a majority of 

participants (70%) revisited designs that they had worked on previously. This confirms that 

designers do work non-linearly and that GEM-NI is able to support this type of workflow. 

The number of structurally different alternatives created is overall consistent between the 

two tasks. Proportionally they were slightly more popular in the first task with NodeBox, but 

not significantly so. One possible explanation could be that due to the nature of NodeBox, 

only a single alternative at a time can be created. Its interface may thus encourage creating 

different designs, because participants may be more inclined not to consult previous design. 

Another reason could be that in the second task, I logged that most of the participants, 89%, 

pre-loaded existing designs into GEM-NI. Thus it is possible that this pre-loading approach 

could have encouraged the creation of variations rather than structurally different 

alternatives.  

Only three participants did not use the L-system nodes. Those participants who used the 

L-system in both tasks did create more alternatives with GEM-NI than with NodeBox. I made 

L-systems available to the participants because this imposes further constraints on the 

creative task. This could increase the internal validity of the experiment as participants, in 

this case, are forced to use a variety of recursive approaches to design. It is fair to note that 

because of the way I implemented the L-system in GEM-NI participants could not take full 

advantage of the system’s comparing features when comparing the networks to each other, 

since the major components of the L-system, namely the LRULES and LGEOMETRY nodes, 

retain identical network structure. Using such an implementation of an L-system also limits 

the usefulness of the MACE interface (Chapter 5). However, due to the limiting way 

NodeBox handles support for extensions, I could not come up with a better way to 

implement L-systems. This also weakened my ability to demonstrate that participants 
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approach design non-linearly in GEM-NI: participants 6 and 7 used the L-system nodes, but 

did not revisit their designs (see Table 4-4). At this moment I do not have sufficient 

information to tell if this is a causal relation or not. It is also worth mentioning that, despite 

all the limitations of the implementation of L-systems, one participant used the L-system 

with other nodes, resulting in more diverse networks (see Appendix B). 

The three most commonly used approaches to creating alternatives in GEM-NI turned out 

to be the design gallery, the history dialog, and creation from scratch. The design gallery was 

undoubtedly the approach that drew the most curiosity: 90% participants were logged using 

it. Overall, most alternatives were created using this method (11 of 29, i.e., 38%). A total of 

10 alternatives were created from history. Creating alternatives as a branch proved to be a bit 

less moderately popular (28% of created alternatives). This did not confirm my expectations 

for this approach. Possibly, participants preferred using the history dialog to branching, as 

both can achieve the same result. The preference could be due to the ability to go back in 

time and select past states, rather than planning ahead when to branch out. Another possible 

approach would be to first branch out and then use undo or deletion to get the desired state. 

Yet, the data I collected suggests that most participants branch out (through history) only in 

a post-hoc manner, likely after reflection around their designs. 

While I did not have high expectations for the merging feature, due to the relative 

novelty of the concept, merging was interestingly used by at least a third of the participants. 

This indicates the usefulness of such a feature for the design process. On the other hand, 

global undo and focusing did not prove to be popular in the study. The same was true for 

focusing, even though participants in the first user study had requested it. Minimizing, 

another requested feature, was moderately popular, but none of the participants ever 

retrieved their alternatives after minimizing. This indicates that participants used this mainly 

as a lightweight mechanism for storage. It is not surprising to see that checkmarks and 

sandboxing were used extensively, as these are the mechanisms in GEM-NI to control which 

alternatives are affected by pushed edits. The fact that the majority of the participants used 

both monitors and re-arranged and minimized alternatives frequently indicates that designers 
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may benefit from more displays than afforded by the dual-monitor setups used during the 

workshop. This is consistent with Grudin’s work [45]. Unsurprisingly, I also logged that 

participants who created more alternatives tended to also minimize more of them, likely to 

manage their limited space. This justifies my choice for adding support for up to six 

monitors in the current version of GEM-NI. The popularity of dual-monitor use and re-

arranging also confirms previous findings that users tend to dedicate certain regions of the 

screen for categories [13] and spatial memory [88]. 

4.5.5.1 Results of the CSI Questionnaire 

The CSI questionnaire analysis revealed an average score of 55.7 (σ=13.1) in the first task of 

this workshop and a higher score, 63.6 (σ=12.1), for the second task where GEM-NI was 

used. Similar to [24], I report the results with respect to average factor counts, factor score 

and weighted factor score (Table 4-6). 

 
Task Factor \ Scale Enjoyment Exploration Expressiveness Immersion Results worth effort 

1 Avg. Factor 

counts (σ) 

1.78 (1.39) 3.78 (1.30) 3.67 (1.22) 2.44 (0.88) 2.78 (0.83) 

1 Avg. Factor 

score (σ) 

12.44 (2.55) 12 (3.50) 11.56 (2.88) 9.89 (2.76) 12.11 (3.22) 

1 Avg. Weighted 

factor score (σ) 

22.12 (14.44) 44.11 (17.77) 42.89 (20.62) 24.44 (10.62) 34.67 (16.56) 

2 Avg. Factor 

counts (σ) 

1.90 (1.37) 3.90 (1.29) 3.40 (1.43) 2.40 (0.84) 2.90 (0.88) 

2 Avg. Factor 

score (σ) 

13.10 (3.03) 14.50 (2.46) 12.90 (2.13) 8.90 (4.09) 13.80 (2.20) 

2 Avg. Weighted 

factor score (σ) 

24.89 (13.74) 56.55 (22.90) 43.86 (23.56) 21.36 (13.01) 40.02 (15.07) 

Table 4-6. User Study II: Average results from first task using NodeBox (top); second 
task using GEM-NI (bottom).  
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The average counts are the number of times that participants choose a particular factor as 

important to the task. The maximum possible for each factor count is 5. Exploration and 

expressiveness were ranked as the more important factors. The factor score on the other hand 

represents the sum of multiple agreement statement responses for a factor. A higher number 

indicates that the tool better supports that factor. The maximum factor score is 20. Both tools 

appear to support the factors fairly. GEM-NI, however appears to support exploration better. 

Weighted factor scores are calculated by multiplying a participant’s factor agreement scale 

score by the factor count, in order to make the weighted factor score more sensitive to the 

factors that are the most important to the given task. The maximum possible weighted factor 

score is 100. Here again, exploration scored higher with GEM-NI. These more qualitative 

results are consistent with the quantitative results above, such as that more alternatives were 

created with GEM-NI, where the design gallery and history were the most popular 

techniques for creating alternatives. This further supports the higher ranking of GEM-NI’s 

ability to support exploration. 

Even though expressiveness was ranked as important, I argue that the reason this factor 

was not ranked higher for GEM-NI is that participants had different expectations for the tool. 

Given that my participants work primarily in the architectural domain, they expect more 

from the tool, such as the ability to create 3D models. This can be contrasted with the results 

of the first user study where participants from various backgrounds were recruited. Yet, 

because of the small sample size, I cannot infer this to be a strong conclusion. Yet, GEM-NI 

and NodeBox, both are limited to 2D domain. This was confirmed as an issue in the freeform 

feedback, as discussed below. Results Worth Effort was ranked fairly high in GEM-NI. This 

factor is associated with effort, work, productivity, performance and reward [24]. Arguably, 

this factor does not directly affect creativity, but does so indirectly by contributing to the 

motivation of a designer to purpose a task. 

In addition to the CSI questionnaire I also added another post questionnaire, where I 

asked the participants to contrast NodeBox with GEM-NI. Specifically, I asked how well 

each tool supports the task with the set of features that were available in each tool. 
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Participants ranked each tool on a Likert scale from 1 to 9 (1 being poor support, 9 being 

excellent support). NodeBox was ranked on average 6 (σ=1.66), and GEM-NI 6.7 (σ=0.82) 

out of 9. 

4.5.5.2 Freeform Feedback 

In the freeform feedback section on the post questionnaire I received mostly positive 

comments. Three participants expressed that they would like to see the functionality 

available in the tools that they use everyday and are more familiar with. The first participant 

said: “[It] was very nice to see all options at the same time, but [I] couldn't help but feel that 

the improvements made on NodeBox were significantly more useful than NodeBox itself. I 

would love to see this type of design-space exploration in, say, Grasshopper - the 2D nature 

of NodeBox is a little limiting.“ Another one speculated: “not sure if it works on 3D, which I 

am interested most.” Yet another one stated: “there is a robust environment for non-

destructive editing and versioning based on history, which I have not experienced in other 

software, but would be a desirable feature to aid in my workflow. I appreciate [GEM-NI’s] 

feature of side-by-side viewing and capability of editing of multiple alternatives. 

Additionally, the gallery view and outputs of multiple iterations streamlines an otherwise 

tedious process of generating options, which tends to be an important part of my workflow 

when using generative design software”. 

Two other comments were also positive in general: “The idea is excellent … it would be 

an extremely useful application”, “[These are] very useful tools to produce several case 

studies with the different parameters”. 

Three comments were more critical: “It was easy to create designs based on the functions 

demonstrated in the tutorial; however, I struggled with using new functions and getting them 

to generate the designs I wanted.” This comment may indicate that the learning curve 

involved may be an obstacle. Another participant said: “I am very interested in the gallery 

feature of the [GEM-NI]. It really allows designers to test out various combinations of 

parameter settings. I think the user interface is a little less intuitive than ideal, and to have a 

clear workflow is so important in the production process that the user really need[s] to have 
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very high level of understanding of the program to maximize the power of it. I see a lot of 

potential in this program overall! Thanks for showing us this!” This also emphasizes the 

need to make a tool easy to learn. Yet another said: "if the multiple iterations can be changed 

more intuitive[ly] that would be great. Thanks! " 

4.5.5.3 Design Quality 

Similarly to previous work [80,81], I recruited three experts to rate the designs produced by 

each participant for quality. All were expert designers in academia with at least a decade of 

experience in practicing design and with grading student work. The designs were ranked by 

overall and protean design quality. Protean means “being able to change easily” or that a 

design is versatile. Essentially, this quality is used in design to classify how worthy 

something is to build upon. Ratings ranged from 0 to 5, with 5 being best. The results are 

summarized in Figure 4-12. Figure 4-13 depicts the averages of these results. The overall 

design quality of the outcomes with both systems was similar, which may be a consequence 

of the limited time that participants had to work on their designs. Yet, Interestingly, the 

results achieved with GEM-NI were ranked overall higher in terms of being protean, which I 

interpret that their creativity potential is higher. 
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Figure 4-12. Overall and protean quality ratings of participants’ designs by each of the 

experts (E1-3). Higher is better. 
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Figure 4-13. Average overall and protean design quality rankings by the three experts 

(higher is better). Error Bars: ±1 SE. 

4.6 Overall Discussion 

The results of the second user study shine more light on issues revealed in the first user 

study. With a larger sample size, GEM-NI was confirmed to support exploration better with 

the new features, as also supported by the results from the CSI questionnaire as well. As in 

the first user study, a number of participants created alternatives in the first task, where they 

did not know about GEM-NI’s features, without prompting. In the freeform feedback three 

participants expressed that they wished they had the features of GEM-NI available in the 

generative design tools they use daily. All this supports my initial hypothesis for the need for 

GEM-NI’s approach in current generative design tools. Some freeform feedback revealed 

that the learning curve for using a system that fully enables exploration through alternatives, 

such as GEM-NI, is a potential issue. 

Interestingly, some features that participants identified as desirable in the interviews in 

the first study, such as focusing, did not prove to be popular with the participants in the 
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second user study. On the other hand, minimizing, one of the suggested features, was used at 

least by a part of the participants. This underlines that user interface designers should 

approach all requested features critically and consider them thoroughly. In contrast, the 

major features that I decided to implement within GEM-NI proved to be more useful, with 

the exception of global undo. The fact that global undo was not popular may potentially be 

explained by the fact that few people can simultaneously design multiple alternatives in 

parallel, due to the increased complexity of such a task. On the other hand, the ability to 

perform post-hoc merging and resurrection from history was confirmed as useful, which 

points out that considering multiple alternatives in linear or potentially non-linear fashion is 

much more realistic. A participant from the interview in the first user study expressed 

exactly this insight. In hindsight, I believe that if I had designed the user study and logging 

specifically to reveal instances when parallel editing occurred and contributed to the design, 

I would be able to state this more confidently. From the current logs it is difficult to say 

whether parallel editing or global undo was accidental or desired. Merging, a concept novel 

for generative design, but common in software development as part of version control (e.g., 

Git), received some interest. But as in the first user study only few used it in the second one. 

One reason could be that the participants I worked with in the second study were not familiar 

with the concept. In hindsight, I should have asked about experience with version control 

systems in the pre-questionnaire. That might have enabled me to better analyze this issue. It 

is also interesting to point out that beyond exploring alternatives, the mechanisms introduced 

in GEM-NI permit designers to use the system as a version control system. Like in source 

code version control systems, designers do not need to create multiple files and are not 

restricted by the limitations of copy and paste. As in source code systems, branching and 

borrowing of ideas is facilitated with the ability to resurrect from history. Through merging, 

designers can save time by re-using existing parts of the design. I also can point out that in 

GEM-NI alternatives and version control are effectively integrated into one user interface. 

Based on these findings I speculate that the user interface of GEM-NI for managing 

alternatives is not specific to generic design. All the newly introduced techniques can be 
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applied to other design workflows. At least one of the participants already expressed the 

wish that the alternative management techniques should be available in their more familiar 

3D parametric modeling workflow. Though, adopting a design gallery into a system like 

Processing, which is purely code-based, would arguably require a new interface. 

I also believe that the techniques that were popular in GEM-NI in the evaluations will 

likely also be popular in domains outside of design that involve problem solving, such as 

visual analytics. Similarly, I expect the unpopular techniques (such as global undo) to be 

unpopular in other domains as well. Finally, and beside all the benefits of the new 

techniques, I expect that the obstacles that GEM-NI’s interface encountered to transfer as 

well. For example, parallel editing should not be the default, regardless of domain. 

Both user studies may suffer from a hidden skill transfer effect, because NodeBox was 

presented and evaluated first and GEM-NI second. However, it is not easy to use 

counterbalancing with a between-subject study since the two tasks used here are not exactly 

the same. Moreover, if participants are alerted to the use of alternatives in the first phase 

through GEM-NI, this would likely bias the results for NodeBox as well. 

4.7 Summary 

In this chapter I presented GEM-NI—a new system for creating and managing alternatives in 

generative design. The system supports parallel editing via checkmarks and sandboxing, two 

new methods to control which alternatives are affected by a parallel edit. Also, I introduced a 

novel method for post-hoc merging of alternatives. Moreover, GEM-NI provides several 

methods to create alternatives, including a new method for resurrecting alternatives from a 

graphical history with previews, with full lineage preservation. Another way to create 

alternatives is with a new design gallery, which enables users to select which ranges of 

parameters and/or parts of the generative network model to use for exploration. Moreover, 

my design gallery supports a new method to explore products of generative networks. 

I also conducted two user studies to explore usefulness of the system. These user studies 

were conducted as part of a workshop where participants first learned how to use the tool. 
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The feedback from participants in the first workshop and in-depth interviews suggest that 

GEM-NI, and more broadly the approach behind it, indeed enables designers to work more 

creatively. The results indicate the direct applicability of the presented techniques for the 

design process also via the CSI questionnaire. While the sample size of my user study is 

small, it identified the potential for better creativity support through alternatives in design 

tools. In the second user study, the tasks were refined and revisited with a larger sample of 

participants. The results resolved the issues raised by the first user study. GEM-NI was found 

to support exploration better due to the newly introduced features, which was also supported 

through the CSI questionnaire. In the freeform feedback three participants expressed that 

they wished they had the features of GEM-NI available in the generative design tools they 

use daily. Three expert designers in academia evaluated the quality of the participants’ 

designs. I interpret the rankings as suggesting that the creativity potential of the results is 

higher with the designs produced with GEM-NI. 
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Chapter 5  
MACE: A New Interface for Comparing and Editing of Multiple 
Alternatives  

 
Figure 5-1. GEM-NI enables users to work with alternative generative designs 

simultaneously. The leftmost alternative is active, the center one is passive, and the 
rightmost one is idle. 

In this chapter I present a new interface for interactive comparisons and editing of multiple 

alternatives in generative design. The interface is part of GEM-NI, a graph-based 2D design 

tool that supports the exploration of design alternatives in various ways. GEM-NI is built on 

NodeBox 3, a graph-based 2D generative design tool. GEM-NI adds to NodeBox 3 a number 

of novel features and interactions that enable users, among other things, to quickly generate 

sets of alternative solutions using a variety of mechanisms. GEM-NI is described in Chapter 

4.  

Here, I enhance GEM-NI with a novel difference visualization technique, which allows 

users to compare more than two alternatives at a time. Moreover, my difference visualization 

technique is fully interactive. To enable editing in difference visualizations, I introduce a 

new “reveal-to-edit” feature, which I designed to improve parallel editing in GEM-NI. I 

named this interface MACE (Multiple Alternatives – Comparing and Editing). 
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5.1 MACE 

I use a design with three alternatives in Figure 5-1 as the main example throughout this 

paper to demonstrate the features of my system. Yet, MACE and GEM-NI are capable of 

handling a much larger number of alternatives, limited only by screen estate, processing 

power and memory. More examples of difference visualizations are presented in Appendix 

B. 

5.1.1 Design Motivation 

Almost all previous approaches to graph differencing discussed in Chapter 2 reduce the 

problem to showing at most pairwise differences. When timelines are compared in dynamic 

graph drawing the differencing problem also reduces essentially to such pairwise 

comparisons. Animation is one option that can be used to trace the evolution of a graph. 

There, it may appear as if multiple graphs are compared. Yet, animation relies on the ability 

of the user to memorize previous frames (time slices), since only a single frame can be 

displayed at a time and compared against the time frames in the user’s memory. Another 

option is to use superposition for comparing multiple graphs, even for graphs that have not 

necessarily evolved linearly. Yet, displaying differences between more than two graphs in 

the same non-partitioned space will result in a scalability problem, even for alternatives. The 

approach I propose in this thesis is essentially a variation of aggregation where parts that are 

different from the reference graph are displayed in different partitions or “lanes” 

corresponding to the alternative, which is compared against the reference graph. This 

difference visualization technique I present here has its roots in Shireen et al.’s [97] concept 

for parallel generation and editing of alternatives. Yet, Shireen et al.’s interface was not 

explicitly intended for difference visualization and misses a visualization of deleted and 

common nodes and edges. I extend their original concept and thus enable full difference 

visualization across multiple data-flow networks, i.e., DAGs. Still, the question remains if 



 

  104 

visualizing all differences across all alternatives at once is overall usable and can scale. I 

employ subtractive encoding—a complementary approach to the additive encoding 

identified by Gleicher et al. [39]. Subtractive encoding removes common nodes from the 

compared graphs. This technique reduces visual clutter in the compared view and also 

reveals and/or highlights changed, unchanged, added and removed nodes in the compared 

network view relative to the reference. As a result, if there are no differences between a 

reference and compared network and there is nothing to show in the compared view, visual 

clutter is non-existent or minimal. On the other hand, if the overall number of changes is too 

large, then the difference visualization might visually “overwhelm” the content. To 

characterize this, I use the relative percentage of nodes shown in a given difference 

visualization between two alternatives in MACE as an approximation for readability, R: 

𝑅 = 1−
min (𝑛!"# ,𝑛! + 𝑛! + 𝑛! + 𝑛!)

𝑛!"#
 

where n!  is the number of changed, n!—the unchanged, n!—the added and n!—the 

removed nodes in the compared view, and n!"# is the total number of nodes in the reference 

view. If the number of displayed nodes in the compared view is equal to or exceeds the 

number of nodes in the reference view, readability becomes zero. If the number of 

differences is small readability will approach one. 

In order for my technique to be effective, the average readability R of typical designs 

must be high. I believe that alternatives for a design problem will likely show substantial 

similarities due to the shared goal. As a result, I expect fewer differences among data-flow 

networks of alternatives compared to the number of similarities. To test this hypothesis I 

measured the average readability R from the dataset of the User Study II (see 3.3.7). For the 

outcomes I performed all pairwise comparisons of all their alternatives in both orders. Thus, 

for a participant that generated 𝑛 alternatives, I performed 2 !
!  comparisons and calculated 

their average readability R. Averaging across all participants yielded a fairly high average 

readability of 𝜇!=.68, 𝜎!=.26, 𝑁=146. Given that 68% is substantially closer to one, this 
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motivates that showing differences instead of commonalities is an appropriate design choice 

for difference visualization across multiple alternatives. 

Beyond this I also explore node-focused difference visualization, i.e., showing 

differences for a single node. This is unlikely to suffer from scalability issues, since only the 

differences for a single node are shown at a given time. 

5.1.2 Mechanisms to Facilitate Comparison of Alternatives  

In my implementation, the positions of group nodes are synchronized by default across 

alternatives. Thus, moving a node in one alternative also moves it in all other alternatives, if 

it exists. This affects even alternatives that are not editable. In early pilot studies I identified 

that the uniformity in network layout makes it much easier to visually compare networks 

across multiple (read more than two) alternatives. The default is to keep this feature on. To 

accommodate use cases where this is undesirable, the user can toggle this feature with a 

button. One of the scenarios where turning this feature off could be useful is a situation 

where the user compares networks with a lot of nodes on a small screen. In this case the 

screen space may not be sufficient to show all encodings without zooming out substantially 

beyond the threshold of being able to read node labels. In this case moving nodes around, 

i.e., manual re-layout, at a moderate zoom level could solve this issue to some degree, 

However, this is an exceptional scenario because I do not expect alternatives to have a lot of 

changes. And even if a lot of changes appear, I expect the user to use node grouping to 

reduce the visual complexity of the networks. 

Selecting a node in one alternative also selects it in all other alternatives if the node exists 

there, again to make it easy to identify commonalities. It also brings up the parameter view 

for the selected node everywhere as well. In Figure 5-1 the node SHAPE_ON_PATH was 

selected in the leftmost alternative and is thus selected in all other ones as well. The 

corresponding parameter views are also shown. This also makes it easier for the user to 

identify common elements between alternatives. Zooming and panning operations on the 

network view and output view are also linked, again to facilitate visual comparison.  
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(a) 

 
(b)

 
Figure 5-2. a) Node-focused difference visualization of SHAPE_ON_PATH. Left 
document is the reference and is also active. (b) Difference visualization for the 

network panels of the same content without node focusing. 

5.1.3 Difference Visualization 

In GEM-NI interaction with alternatives happens in the default visualization shown in Figure 

5-1. In MACE I added diff mode, which shows the differences of all the alternatives relative 

to a reference alternative instead. The user can freely select which alternative to use as 

reference. See Figure 5-2. This mode was inspired in part by the subjunctive interface 

proposed (but not implemented) by Shireen et al. [97]. The power of diff mode is its ability 

to show differences between multiple alternatives at the same time. To get into this mode, 

one alternative has to be designated by the user as the reference through a GUI button, 

clicking on a menu button, or a key short cut. The other alternatives (further referred to as 
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compared alternatives) are then compared to it. In diff mode, differences are visualized in all 

three views (output, parameter and network), as applicable. While Shireen et al.’s proposed 

GUI shows differences only for nodes that are common, my implementation also visualizes 

nodes and edges that have been added or deleted. 

In Figure 5-2a, the leftmost alternative was chosen as reference. Its network starts with a 

group node CIRCLE that is fed as both shape and path to the SHAPE_ON_PATH node generating 

a circular formation of six circles. Moreover, two copies of the circle are then created at the 

center, one of which is scaled up to form the outline of the design. The output of 

SHAPE_ON_PATH and COPY are then combined into a single design through the COMBINE 

node, which is the rendered node. 

The center alternative starts with the same CIRCLE. This node is unchanged and thus is 

not shown (as described below). The generative model increases the number of circles to 12 

in SHAPE_ON_PATH, which now shows up as a changed node. The COPY and COMBINE nodes 

were removed in this design, leaving the SHAPE_ON_PATH node as the rendered node. The 

right alternative substitutes the path input of SHAPE_ON_PATH node (and only that input) with 

a triple-recursive hexagon arrangement (shown in green with group node POLYGONS). 

Instead of the COMBINE node, the whole design is also rotated by 30° with a final ROTATE 

node.  

5.1.3.1 Network View 

Nodes common to the reference and at least one other alternative are only shown in the 

reference. Phrased differently, for every compared alternative and in the network views, all 

nodes that are common with the reference and which have identical parameter values are not 

shown to reduce visual clutter. This potentially hides entire unmodified sub-graphs. In 

Figure 5-2, the CIRCLE node is an example. It exists in all three alternatives. Common nodes 

are highlighted with a brown (de-saturated red) outline in the reference. 

Nodes that are common with the reference but have one or more different parameter value 

appear in red color. A “≠” sign is displayed to the top left of the node to emphasize this 

further through an inequality metaphor. If such a node has any incoming or outgoing 
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connectors, they are connected to the corresponding nodes in the reference with lines that 

cross the panels. The connectors are displayed in the same red color and appear as a dashed 

curve. This style differentiates them from solid “within-document” connectors. In Figure 

5-2a, node SHAPE_ON_PATH in both compared alternatives is an example for a node with 

changed parameters.  

This also works for group nodes, which contain sub-networks. If at least one difference 

in either a parameter or structure exists between the sub-networks, then in the corresponding 

compared views these group nodes also appear highlighted in red with a “≠” displayed next 

to them. If a group node contains another group node, the same technique is applied 

recursively. This is described in more detail in 5.1.3.5. 

Nodes that do not exist in the reference are highlighted with a green color and are again 

connected with dashed connectors to the reference. A “+” sign is displayed in the top left of 

the node to emphasize this through an addition metaphor. In Figure 5-2a, nodes POLYGONS 

and ROTATE in the rightmost alternative are such additions.  

Nodes that exist in the reference, but don’t exist in a compared alternative are displayed 

in a background semi-transparent layer and are connected with semi-transparent connectors 

to the reference. A “−” sign in the top left of the node emphasize this further through a 

reduction/subtraction metaphor. In Figure 5-2a, COPY and COMBINE in both compared 

alternatives demonstrate this visualization technique. 



 

  109 

(a)  

(b)  

(c)  

(d)  

Figure 5-3. Difference visualization for changed connections. (a) no difference 
visualization, (b) diff mode, (c) diff exclusion with cross-alternative connectors turned 

off, middle alternative is active, (d) diff exclusion with cross-alternative connectors 
turned off, right alternative is active. 

I also implemented a new technique to illustrate differences in connections between 

nodes. In this visualization, I highlight unchanged, common nodes that have one or more 

changed connections, in brown (de-saturated red) color. An “=” sign is displayed in the top 

left of such nodes to emphasize their unmodified state further. Figure 5-3 shows this 

technique using dummy nodes. In this figure, four views of the network are presented as 

follows: In the default mode shown in Figure 5-3a, the unenhanced networks of three 

alternatives are presented. In Figure 5-3a, I show a scenario without difference visualization, 
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where one of the connectors exists only in the reference, while others exist only in the 

compared alternatives in the middle respectively right. In Figure 5-3b-d, I illustrate two 

variants of my new connector difference visualization technique. In Figure 5-3b, the diff 

mode visualization, the alternative on the left is the reference. All the cross-alternative 

connectors are displayed. In diff mode, all three nodes are identified as common in the 

middle and right alternatives. The changed connectors are then shown as dashed connectors 

across panels. While this presentation emphasizes all the differences in connectors in the 

three networks, it may appear confusing due to the number of cross-alternative connectors. 

This leads to a more and more cluttered display with an increasing number of alternatives. 

Below is the pseudo code for the implementation of the difference visualization in GEM-

NI. Cross-alternative connectors are painted onto the Java GlassPane, which is in front of 

all GUI elements. The new method is paintGlassConnections(). The pseudo code 

omits the details of the (earlier) creation of various sets of nodes, i.e., 

sameNodesInReference, newNodes, sameNodesThatChanged and 

missingNodes. The pseudo code also handles the implementation of node-focused 

difference visualisation, a feature that is described below. 
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/** 
 * This method paints cross alternative connectors with node-focused visualization. 
 */ 
void paintGlassConnections(){ 
 Initialize pointer to singleNodeSelectedSomewhere. Non-null means active node-focused difference visualization. 
 //this segment is for cases of node-focused difference visualization 
 if active alternative ≠  reference { 
  // singleNodeSelectedSomewhere is empty but a single node is selected 
  if selectedNodes.size() == 1 and singleNodeSelectedSomewhere == null { 
   Reinitialize newNodes, sameNodesThatChanged, missingNodes, missingNodes, and  
        draggedNodesThatDidntChange to empty sets 
   add the selected node appropriate sets and update singleNodeSelectedSomewhere. 
  } 
  // singleNodeSelectedSomewhere is not empty, sets needs to be re-initialzed 
  else if singleNodeSelectedSomewhere ≠  null { 
   Reinitialize newNodes, sameNodesThatChanged, missingNodes, missingNodes, and 
         draggedNodesThatDidntChange to empty sets 
   add singleNodeSelectedSomewhere to appropriate sets. 
  } 
 } 
 
 //the actual visualization of differences of connectors for new, changed and dragged nodes   
 for all connections c in the network { 
  for all nodes n in sameNodesInReference{ 
   //input in newNodes 
   if c.output()== n{ //output is in reference 
    Set connection color to NEW_NODE_COLOR 
    Draw connection to the node output in reference for all newNodes 
    Set connection color to CHANGED_NODE_COLOR 
    Draw connection to the node output in reference for all sameNodesThatChanged 
 
    Set connection color to DRAGGED_NODE_COLOR 
    Draw connection to the node output in reference for all draggedNodesThatDidntChange 
   } 
   //input in newNode 
   if c.input()== n{ //input is in reference 
    Set connection color to NEW_NODE_COLOR 
    Draw connection to the node input in reference for all newNodes 
 
    Set connection color to CHANGED_NODE_COLOR 
    Draw connection to the node input in reference for all sameNodesThatChanged 
 
    Set connection color to DRAGGED_NODE_COLOR 
    Draw connection node to the input in reference for all draggedNodesThatDidntChange 
   } 
  } 
 } 
 //the actual visualization of differences of connectors for missing nodes   
 for all connections c in reference{ 
  for all nodes n in reference { 
   //input in missingNodes 
   if c.output() == n { //output is in reference 
    Draw a connection to the node output in reference for all missingNodes 
   } 
    
   //output in missingNodes 
   if c.input()== n { //input is in reference 
    Draw a connection to the node input in reference for all missingNodes 
   } 
  } 
 } 

} 
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Certain changes such as, e.g., a change in the reference relative to all other alternatives 

(in other words when the user modified the reference without pushing changes to all other 

alternatives) create visual clutter proportional to the number of alternatives in the 

visualization. To address this kind of visual clutter, we designed a new variant, called diff 

exclusion, accessible through a GUI button or a shortcut. This mode does not show all cross-

alternative connectors to and from the excluded alternative. This makes missing connectors 

more visible and we show them transparently in the compared alternatives relative to the 

reference and other missing elements. Figure 5-3b, illustrates the clutter created by cross-

alternative connectors. In Figure 5-3c,d the missing connectors between NODE1 and NODE2 

in the compared alternatives relative to the reference are more visible when diff exclusion is 

applied to both compared alternatives. Another use case for diff exclusion is if the user 

wants to see all differences between a small, say up to three, set of alternatives. Otherwise, 

the user can temporarily hide undesired alternatives in the difference visualization or 

compare one node at a time with node-focused difference visualization (described below). 

Another option is to use group nodes, but this changes the structure of the network. 

One way to see missing connectors in the reference relative to the compared alternative is 

to select one of the compared alternatives as reference. To remove this extra step of 

switching the reference, I implemented another technique where the system shows missing 

connectors in the reference instead. The user simply switches the active alternative to the 

desired compared alternative against which s/he wants to see missing connectors in the 

reference. The missing connectors in the references, if such exist, are then shown 

transparently. In Figure 5-3c, the middle alternative was set as active. The missing connector 

between NODE2 and NODE3 is displayed transparently in the reference (on the left). In Figure 

5-3d, the compared alternative on the right was set as active. The missing connector between 

NODE1 and NODE3 is displayed transparently in the reference. While the idea of showing 

missing connections was previously presented in the DARLS system (Chapter 3), that 

technique could only handle two graphs at a time. The new diff mode and diff exclusion 

techniques presented here generalize DARLS methods to more than two networks. 
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To further reduce visual clutter, I do not show connections between all combinations of 

deleted and common nodes inside each compared alternative. E.g., the connector between 

COPY and COMBINE is not shown in the compared alternatives in Figure 5-2a (and b). The 

user can toggle this via a menu command. 

5.1.3.2 Node-focused Difference Visualization 

Graham and Kennedy [41] point out that a potential disadvantage of using edges for a visual 

comparison of two trees is that if there are too many lines displayed at once then individual 

edges become impossible to distinguish from the mass of drawn lines. Such visual clutter is 

a known concern in graph visualization. MACE includes a novel interaction method to 

overcome this problem. Whenever the user selects a node (via clicking on it) in diff mode, 

the system hides all the cross-alternative connectors that are not connected to the selected 

node. Figure 5-2a illustrates an example where SHAPE_ON_PATH is selected in the reference 

alternative. Thus, only connectors involving the SHAPE_ON_PATH node in the reference are 

shown. If there are still too many dependencies visible, the user can apply diff exclusion to 

exclude certain unwanted alternatives to reduce visual clutter further. Deselecting the node 

(by clicking on any empty area) then shows all other connectors again. See Figure 5-2b. 

5.1.3.3 Parameter View 

In the parameter view, I emphasize parameters changed relative to the reference for the 

currently selected node. For this, each changed parameter “row” is highlighted in the 

compared alternatives. In Figure 5-2a, the “Amount” and “Margin” parameters are different 

in both alternatives relative to the reference and are thus highlighted in red.  

5.1.3.4 Output View 

To illustrate the differences in the output of the generative design, the geometry produced by 

the rendered node of the reference is displayed transparently in the output view in a bottom 

layer for all compared alternatives. This directly superimposes the geometry of compared 

alternatives over the reference to enable simple visual comparisons. To deal with cases 



 

  114 

where this is visually too intrusive, I provide an option to disable this functionality by 

unchecking the corresponding “diff” checkbox. Figure 5-2a shows a case where the direct 

overlap of the curves makes it advisable to turn this feature off. Figure 5-7c shows a case 

where the difference visualization in the output view is not as intrusive. Here the offset 

parameter of the WIGGLE node was changed. The default option is to keep this checkbox on. 

I leave it up to the user to determine when this feature gets too intrusive since it depends on 

the content that the user is working with. 

5.1.3.5 Recursive Group Node Difference Visualization 

I implemented a technique to visualize differences between group nodes. The technique 

supports visualization of differences between recursive/nested variations of these nodes as 

well. Figure 5-4 demonstrates an example where three alternatives were created from an 

earlier “Flower of Life” design from Figure 5-1. The top part of the figure shows the status 

of the workspace with difference visualization turned off. The bottom part of the figure 

shows a difference visualization highlighting the node POLYGONS in the network view as 

described above. This indicates that there is a difference between these nodes. However, on 

this level, it is not revealed. Entering the POLYGONS presents the view in Figure 5-5. All three 

views are now displaying the contents of the POLYGONS node in each alternative. The top 

part of the figure shows contents with difference visualizing turned off. The bottom part 

shows a difference visualization highlighting the node POLYGON1 and POLYGON2_3. 

POLYGON1 appears in all three alternatives and is also selected, which enables node-focused 

difference visualization on it. This highlights the “Sides” parameter emphasizing that the 

value of 3 is different from the reference value of 6. The “Sides” parameter of POLYGON2_3 

also has the same value of 3 in the middle alternative (not shown). POLYGON2_3 is the last 

network not in this branch. Entering it presents the view in Figure 5-6. Here, the right 

alternative is completely disabled because the node doesn’t exist there. This is indicated by 

highlighting the whole alternative in red. Note that the alternative is highlighted in both the 

regular mode (shown on top) and the difference visualization mode (shown at the bottom). 
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Figure 5-4. Three alternatives of Flower of Life. The design differs in the POLYGONS 

node at level 1. 
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Figure 5-5. Difference visualization at level 3 inside POLYGONS node. 
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Figure 5-6. Difference visualization at level 2 inside POLYGON2_3 node. The right panel 

is disabled, because the corresponding node does not exist in the network. 
Below is the pseudo code for the implementation of the recursive comparison method for 

group nodes in GEM-NI. The code consists of a single static method 

groupNodesEqual(), which was added to the code base of NodeBox 3. 
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/** 
* The method compares if the two group nodes are identical, or there exist difference in at least one parameter of a node, or missing/new 
node or connection 
 * @param groupNode1 is in the compared alternative 
 * @param groupNode2 is the reference 
 */ 
boolean groupNodesEqual(Node groupNode1, Node groupNode2) {   
 Initialize empty sets: newNodesInGroup1, changedNodesInGroup1, missingNodesInGroup1 
 Initialize subgroupNodesEqual = true; //initially we assume that subSubNetworks are equal 
  
 //look for new and changed nodes 
 for all nodes group1Node in groupNode1.getChildren() { // all nodes in this groupNode1 
  Initialize foundSameNode = false; 
  for all nodes group2Node in groupNode2.getChildren()) { // all nodes in groupNode2 
   if UUID of group1Node == UUID of group2Node{ 
    Initialize foundSameNodeThatChanged = false; 
    for all nodes inputs g2Input of group2Node {  
     If g1Input not g2Input{ 
      foundSameNodeThatChanged = true; 
      break; //node was matched 
     } 
    } 
    if (not foundSameNodeThatChanged) { 
     changedNodesInGroup1.add(group1Node); 

} 
else if (group1Node is a group node) { 

subgroupNodesEqual &= groupNodesEqual(group1Node,group2Node); 
} 
foundSameNode = true; 
break; 

} 
} 

  if (not foundSameNode) { 
   newNodesInGroup1.add(group1Node); 
  } 
 } 
  
 //looking for missing nodes 
 for all children of group2Node { //for all nodes in reference document 
  Initialize found = false; 
  for all children of group1Node { //for all nodes in this network view 
   if UUID of group1Node.child == UUID of group2Node.child { 
    found = true; 
    break; 
   } 
  } 
  if (not found){ 
   missingNodesInGroup1.add(group2Node); 
  } 
 } 
  
  

// comparing connections 
connectionsNewInGroup2 = Find all connections that are in groupNode1 but not in groupNode2 
connectionsNewInGroup1 = Find all connections that are in groupNode2 but not in groupNode1 
 

 return subgroupNodesEqual and newNodesInGroup1.isEmpty() and changedNodesInGroup1.isEmpty() and 
   missingNodesInGroup1.isEmpty() and connectionsNewInGroup1.isEmpty() and 
   connectionsNewInGroup2.isEmpty(); 
} 
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5.1.4 Editing Alternatives in Diff Mode 

My difference visualization mode is fully interactive. This means that all above-mentioned 

visualizations are not just static, but can be used directly during parallel editing.  

5.1.4.1 Autosandboxing 

In diff mode, switching to another alternative automatically sandboxes the newly active 

alternative (making all others idle). This feature can be enabled in the preferences. 

Autosandboxing saves the user an extra step when editing alternatives in diff mode. 

Currently, the default is to keep this feature turned on, because many users work with one 

alternative at a time. After all, non-sandboxed, i.e., parallel editing is more challenging. 
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(a)  

(b)  

(c)  
Figure 5-7. Reveal-to-edit feature. (a) Initial state. (b) A common node, highlighted in 

brown (de-saturated red) is revealed via a clicking with a modifier key in the 
alternative on the right. That (compared) alternative is then active and the reference is 
made idle through autosandboxing. (c) A parameter change results in a red difference 

visualization. 
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5.1.4.2 Reveal-To-Edit 

One drawback of any difference visualization that hides common nodes is that these nodes 

are then inaccessible for editing and other operations. To address this shortcoming and 

inspired by the user interface concept proposed by Shireen et al.’s [97], I implemented a new 

reveal-to-edit feature. Shireen’s concept used dragging of nodes to reveal them. Yet, 

dragging of objects has a different meaning in GUI’s and does not scale well to multiple 

alternatives and monitors. Thus, I implemented a new reveal-to-edit feature through clicking 

while holding down a modifier key in a compared alternative. This action shows the selected 

nodes in the active and compared alternatives (temporarily) in brown (de-saturated red) and 

with a ‘=’ sign in the top right to emphasize the commonality. This visualization is 

consistent with other visualizations of common nodes mentioned above. Alternatively, the 

user can click while holding the modifier key on nodes in the reference alternative to reveal 

the selected nodes in all alternatives. This interface is only accessible in diff mode. 

 Consider the following typical scenario. The user starts with a design consisting of three 

nodes: GRID, WIGGLE and ELLIPSE connected to each other in a chain. This network produces 

a 10×10 grid of ellipses. The user then creates a clone through branching and enables the diff 

editing mode with the alternative on the left as reference. As a result, all the elements of the 

cloned alternative become hidden (as described above). See Figure 5-7a. To edit the 

parameter for the selected WIGGLE node in the other alternative, the user then clicks in the 

compared (right-hand) alternative while holding the modifier key. This then changes the 

display to Figure 5-7b, also because autosandboxing makes the reference alternative idle. 

Subsequently, the user can now edit the “offset” parameter of the WIGGLE node of the 

compared alternative on the right (Figure 5-7c). In this scenario, only the WIGGLE node is 

revealed because it is the only selected node in the reference alternative. 

5.1.4.3 Parameter Synching 

To facilitate post-hoc (re-)synchronization of parameters, I offer a simple shortcut for nodes 

with changed parameters. For each changed parameter, a “sync” button is shown to the right 

of the field (Figure 5-2a). Clicking it synchronizes the state in all passive alternatives to the 
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state of the current alternative. Higher level synchronization on the structure of the graph is 

possible through merging and is described in Chapter 4. 

5.2 Multi-Monitor Support 

 
Figure 5-8: My 2×3 multi-monitor setup displaying a total of 14 alternatives in a 

difference visualization relative to the top middle (reference) alternative. 
 

In the conceptual design phase, designers routinely generate dozens of alternatives. That 

amount of content is difficult to fit onto a single monitor, if all alternatives are still to be 

view- and editable. Consequently, I extended GEM-NI to support multiple monitors to help 

the designer keep the overview of all alternatives they are considering. Multi-monitor 

support in MACE helps to support scalability as more alternatives can be shown at full scale 

at the same time.  

I enhanced GEM-NI to take advantage of the increasingly popular multi-monitor setups. 

In the preferences menu, the user can select the preferred monitor usage from between 1×1 

and (currently up to) 2×3 monitors. The workspace is then re-arranged to spread all 

alternatives as evenly as possible according to the newly chosen monitor arrangement. 

Within each monitor, horizontal space is evenly redistributed depending on the number of 

alternatives in that monitor. In a sense, this is an adaptation of the Spread technique of Bi et 



 

  123 

al. [17] to tiled applications. The user still has thus the flexibility of using only a subset of 

available monitors.  

For all monitor layouts with two rows, i.e., 2×1, 2×2 and 2×3, the model and network 

views are swapped on the bottom row. That way, cross-alternative node connectors in diff 

mode do not cross the model and parameter views of the bottom row alternatives.  

To demonstrate how GEM-NI works on more than one monitor, I created a multi-monitor 

setup with six Dell U2414H monitors, in a 2×3 formation in an Ergotech multi-monitor stand 

(Figure 5-8) with a total resolution of 5760×2160 pixels. These monitors have thin bezels on 

three sides. To minimize the overall seams, I rotated the top row of monitors 180°. In Figure 

5-8, 14 alternatives are being edited in GEM-NI on this system. 

5.2.1 Managing Alternatives in Multi-Monitor Environment 

Alternatives can be dragged across different monitors to rearrange the layout. Each time an 

alternative is dragged between monitors, the horizontal space in the two involved monitors 

gets redistributed accordingly. When an alternative is dragged from a monitor on the top to a 

monitor at the bottom and vice versa, the model and network views swap places. If all 

alternatives are dragged out of a monitor, or if a setup in the preferences is chosen leaving 

some monitors empty, a plus sign is displayed in the middle of the empty monitor. This 

widget enables quick creation of a new empty alternative. Instead, an alternative from 

another monitor can be dragged into this empty area.  

Figure 5-8 shows an example when an alternative in the middle was chosen as reference. 

This reference is the Seed of Life from Figure 4-1, which was initially positioned as the first 

alternative in the top left corner. In fact, this alternative was first dragged to the middle to 

demonstrate how placing the reference alternative in the middle makes it easier to compare it 

against all others in the diff mode. 
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5.2.2 Jamming Spaces 

Ball and North [13] identified that users tend to dedicate certain regions of a large display 

for certain applications and then rely on spatial memory. I believe this can be generalized to 

how screen space can be used for alternatives in GEM-NI and consequently implemented a 

corresponding feature that supports the adaptation of the space to the current use case. 

Moreover, space is an important resource in parallel exploration tasks. In GEM-NI, I permit 

users to “jam spaces”, i.e., monitors, into the following states: idle/non-idle; enable/disable 

display of cross-alternative node connectors; and all combinations thereof. 

This functionality is available through a menu and directly affects all alternatives in a 

given monitor. When a monitor is jammed, a red frame is displayed around the border as a 

visual clue (Figure 5-9). Dragging an alternative into a “jammed” monitor affects the state of 

said alternative corresponding to the “jam” settings. In Figure 5-9 the two monitors at the 

left and right bottom respectively are both jammed. The one on the left is jammed in an idle 

state. The one on the right is jammed in the state where cross-alternative node connectors are 

not displayed. 

5.2.3 Limitations 

It is important to point out that the approach for multi-monitor support in GEM-NI and 

MACE does not scale to a large number of alternatives, say substantially more than 20. The 

reason for this is the physical limitations of the average user to see sufficient detail. Objects 

appear smaller proportionally to their distance from the user due to perspective. Thus, a user 

can only keep track visually of all alternatives that appear in the center of the field of view. 

In order to accommodate hundreds of alternatives, a different interface will be necessary. 



 

  125 

 
Figure 5-9. The same example as in Figure 5-8 with the bottom left monitor jammed 
into an un-editable state and the bottom right monitor jammed into the state where 

cross-alternative connectors are not displayed. 

5.3 Implementation 

MACE builds on GEM-NI, which in turn was implemented as a major branch of NodeBox 3 

by adding support for a multiple-document model based on universal unique identifiers 

(UUIDs) for nodes. Such UUIDs enable us to perform robust comparisons and difference 

visualization between alternatives. UUIDs also enable consistent relationships between 

alternatives to persist even in the situation when certain alternatives are kept “offline” (i.e., 

stored on disk during editing sessions). These stored alternatives can then safely be re-

included in the workspace at a later stage without naming conflicts.  

5.4 Discussion 

Here I discuss the differences to previous work and the consequences of the design decisions 

behind the difference visualization interface of MACE in more detail.  

The problem of showing differences is important for generative design because designers 

typically create several alternatives based on a single idea, which they use as a reference. 

Designers also tend to work on multiple design alternatives concurrently [70]. Then 
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management of these alternatives becomes an issue. Transferring ideas among alternatives 

and saving multiple files or creating multiple designs in a single document are current 

solutions for this. Yet, these approaches make it harder for the designer to compare designs. 

MACE presents a solution to difference visualization for alternative graphs: added, deleted, 

(un)changed and recursive group nodes in both the reference and all compared graphs as 

well as added and deleted connections. As my technique is fully interactive, it permits 

editing directly in the difference visualization, which reduces the number of mode switches. 

I have previously presented pair-wise difference visualization for directed graphs with 

nodes identifiable by name in DARLS (Chapter 3). Comparing more than two such graphs of 

the evolution of a single data set can be done with animation and/or time slices, e.g., [90]. In 

generative design where parallel and non-linear creation and editing of alternatives is the 

norm we deal with situations well beyond the evolution of a single graph. Thus animation 

and other traditional techniques are not directly applicable. Agglomeration is also not 

appropriate because I am dealing with DAGs, not trees. My work is the first to propose a 

solution to the problem of showing differences between more than two such graphs. In other 

words, MACE’s approach extends a) the layering approach used in several instances of 

previous work, such as [6,26] and DARLS, by hiding unchanged nodes to reduce clutter and 

drawing connectors to the reference to enhance juxtaposition; b) side-by-side views 

[46,76,77] by going beyond pair-wise comparisons; c) existing work on subjunctive 

interfaces [97], TreeVersity [47–50] and TreeVersity2 [50,51] to show a larger variety of 

difference visualizations; and d) the parallel editing interface of GEM-NI (see 4.1.1) to allow 

the user to keep difference visualization enabled during editing. MACE also shows a 

difference visualization of multiple group nodes. This supports scalability to generative 

networks with many nodes, where node grouping becomes a necessity as otherwise the 

graph becomes much too large for a single screen.  

Also, my technique proposes subtractive encoding—a new form of explicit encoding 

where members of the intersection are removed from the compared graph. This extends 

Gleicher et al.’s taxonomy work [39]. As a result, this improves the readability of my 
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difference encoding by keeping visual clutter low. Subtractive encoding is as an extension to 

Shireen et al.’s [97] concept for parallel creation and editing of alternatives. Given that 

alternatives for a design problem will likely be similar due to the shared goal, I expect fewer 

differences among the data-flow networks of alternatives compared to the number of 

similarities. This assumption underlies the design of the MACE interface. I performed an 

analysis on the alternatives obtained through a user study to test this assumption. Using an 

introduced readability measure, based on the measuring the similarity of the alternatives 

networks, I obtained a fair degree of readability of the difference visualizations, which 

confirms the appropriateness of the design choice of the technique (for at least this dataset). I 

also presented a new user interface mechanism to interact with omitted unchanged nodes in 

difference view visualizations, via a “reveal-to-edit” feature. In part, these techniques were 

inspired by Shireen et al.’s [97] conceptual sketch of a user interface to enable parallel 

generation and editing of design alternatives as an extension to existing variational CAD 

tools.  MACE is the first realization of these concepts and includes several substantial 

extensions. Shireen et al.’s prototype only concentrated on changed nodes. Their work was 

focused on the creation of alternatives and not truly on visualizing differences.  MACE 

suggests a solution to both issues and thus can be used for creating alternatives and for 

visualizing differences or both together. I also introduced new difference visualizations for 

edges and parameters as well as a parameter post-hoc synching method within the difference 

visualization. In MACE differences are illustrated in all: the output, parameter and network 

views in different ways. The “reveal-to-edit” feature is also an improvement relative to 

Shireen et al.’s work, as it avoids the problem that dragging of nodes to reveal them does not 

scale to multiple alternatives. Clicking while holding a modifier key is a better option and is 

also more consistent with standard conventions. Creating and editing alternatives via the 

MACE interface has the advantage over the visually unenhanced parallel editing (see 4.1.1) 

in that the differences between the original (reference alternative) and the compared 

alternative are immediately visible. Finally, by tuning the interface for multi-monitor setups 

I demonstrate that our approach is scalable. 
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In my difference visualization technique, nodes in a compared alternative view with any 

type of change (new, deleted or modified) are connected with the corresponding nodes in the 

reference view. Unless a connector to an unchanged node is added or removed (relative to 

the reference), I chose to omit unchanged nodes from the difference visualization, as we 

expect more commonalities among the alternatives compared to differences. After all, a 

designer will generally work on alternatives for a single design goal. I believe that this 

design choice, along with synchronized node positioning, zooming and panning, 

substantially reduces the eccentricity effect [112] when comparing networks. This effect 

suggests that the farther two pieces of information are from each other in the visual field, the 

harder it is to divide attention between them. In multi-monitor environments, compared 

alternatives may be located far apart from each other. This effect was also one of the 

motivations why I reversed the positioning of the network and output views in the bottom 

monitor row. By favoring close positioning of networks, I put the output views at a relative 

disadvantage because they are now further apart. The ability to re-arrange the alternatives 

suggests a solution to this problem when side-by-side comparison of models is needed.  

The difference visualization technique that I propose here can scale to displaying 

differences of many alternatives with any number of changes, thanks to the node-focused 

visualization and diff exclusion. However, the effectiveness of the approach decreases as the 

number of changes and alternatives increases because of the clutter that is generated as a 

result of comparing many alternatives with multiple changes. The user still can perform 

comparisons but may be required to use the node-focused visualization and diff exclusion 

extensively. 

To investigate the usability of my approach I conducted an exploratory interview with 

three expert designers having 5–30 years of experience in generative design on an earlier 

version of MACE. I first introduced the interface and its components, let them experiment 

with it, and then asked for feedback on each feature. Most of their feedback was positive and 

confirmatory towards the major motivations for this system. A number of issues were 

pointed out, which were addressed. These included the need for fine-tuning of the GUI. One 
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expert suggested that beyond node coloring it would be nice to add “+” and “-” symbols, for 

added and removed nodes respectively. I took this thought further and added the “=” and “≠” 

symbols to highlight parameter changes better. This then supports red-green colorblind users 

as well. When playing with the reveal-to-edit and other features of our interface, one of the 

users pointed out that parameter synching at the node level would be useful and I added this 

feature. All the experts rearranged the alternatives within the workspace and selected 

different alternatives and/or nodes to more rapidly identify differences between the models. 

The idea of jamming spaces as realized in our system was also very well received. Users 

more or less immediately identified how this was useful to their workflow. One commented: 

“This way I can easily focus only on a subset and don’t have to see every [difference] at the 

same time”. 

I believe that the ideas behind MACE generalize to other visual programming 

environments, including 3D modeling (e.g., Grasshopper 3D, Houdini). For other types of 

media, such as video or audio (e.g., Max/MSP), a different approach to illustrating 

differences may be necessary. 

5.5 Summary 

In this chapter I presented MACE—novel interface for differencing and editing alternatives 

in a generative design system. This was implemented as an extension of GEM-NI—a system 

for creating and managing alternatives in generative design. My new difference visualization 

technique enables comparison of more than two alternatives at a time. The technique is 

based on the idea of subtractive encoding which I identified as being useful in data that has 

more similarities than the differences, such as alternatives. I used a readability measure to 

confirm the appropriateness of the approach for at least one dataset of alternatives produced 

by designers. My new user interface enables the user to interact with omitted unchanged 

nodes in difference view visualizations, via a new “reveal-to-edit” feature. This feature 

improves parallel editing in that the differences between the original (reference alternative) 

and a clone are immediately visible during editing. The autosandboxing further facilitates 
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alternative exploration I introduced new ways to emphasize added, deleted, (un)changed 

nodes, recursive group nodes, as well as edges. Finally, I implemented multi-monitor 

support to demonstrate that my difference visualization technique scales well to up to 20 

alternatives.  Finally, I introduced a new “jamming spaces” technique for assigning 

individual monitors into different visualization states. This makes organization of a large 

workspace easier. 
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Chapter 6  
Additional Discussion 

Beyond the discussions mentioned in the above chapters, I discuss here a couple of 

additional insights from my presented work. 

6.1 Parallel Exploration of Alternatives in GEM-NI 

In Chapter 1 as identified by Krish [65], I stated that GEM-NI (together with the MACE 

interface) through explicit support for parallel exploration of alternatives complies with all 

the requirements that need to be met for computer-aided design tools to support conceptual 

design. Here, I clarify how I achieved this. 

• GEM-NI makes minimal demands on and minimal disruption to the designer’s work 

processes. Alternative creation, checkmarks and sandboxes along with merging, 

minimizing and retrieval are mechanisms that are minimally intrusive to the designer’s 

workflow for alternatives. While in my findings checkmarks and sandboxes happen to 

be used quite extensively, this could potentially become intrusive. But this issue can be 

resolved (see Section 6.4) 

• GEM-NI is flexible in allowing the designers to navigate the design space in the way 

they see fit. The decision to use stable network layouts with synched zooming and 

panning enable seamless navigation of many design options simultaneously. The MACE 

interface further makes comparison of these design options much easier. The ability to 

quickly generate new alternatives, to minimize and retrieve them as well as the multi-

monitor support facilitates the organization of the workspace. The design gallery and 

history interfaces further enable easy exploration of “what if” scenarios without 

commitment. 

• GEM-NI is able to support chaotic and unstructured work processes. GEM-NI 

supports such non-linear processes by enabling the generation of alternatives through 

branching and resurrection from history. Merging further enables post-hoc reintegration 
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of changes across alternatives. All these mechanisms support unstructured work 

processes in a seamless manner. 

• GEM-NI is an assistive tool, giving the designer the choice to either use it or not use 

it. All the features that define GEM-NI and MACE do not interfere if the designer 

chooses to use the tool for creating a single design document, i.e., if s/he chooses not to 

take advantage of the explicit alternatives support the tool provides. 

• GEM-NI supports and enables emergence in order to stimulate the creativity of the 

designer. In the second user study, participants created more alternatives with GEM-NI. 

The analysis of the CSI questionnaires in the user studies underscored that GEM-NI was 

particularly highly ranked for exploration. It can be argued, that this in turn enables 

emergence. Another feature that supports emergence is the novel design gallery. 

• GEM-NI enables an efficient transition of design content from the conceptual to the 

detailed design phase. Elements of the conceptual design process are supported in 

GEM-NI through the support of alternatives. Nodebox, and consequently GEM-NI, 

which inherits its functionality inherently supports detailed designs. First, it is fairly 

easy to construct simple designs. Yet, the large palette of computational nodes in 

NodeBox 3 together with the seemingly limitless possibility for combinations enables 

almost limitless refinement of any given design. Furthermore, the ability to implement 

custom nodes with Python scripting permits users of GEM-NI to create even more 

detailed designs. In fact, the L-system functionality described in Chapter 4 is an 

example where custom created extensions were employed. Appendix B presents 

examples of some of the noteworthy designs that were created by participants in a short 

amount of time allocated for the workshop. Some of them already show signs of 

detailed design. 

Besides, GEM-NI through explicit support for parallel exploration of alternatives addresses 

the following obstacles for conceptual design support of computer-aided design as also 

identified by Krish [65]: 
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• The invasiveness of frameworks impedes the thinking effort making it difficult to 

automate conceptual design. To counter this, GEM-NI gives the designer the “freedom 

to create, modify and discard” (Krish [65]). Freedom to create is enhanced with a 

selection of alternative generation methods. Editing is enhanced with merging and the 

MACE interface. GEM-NI supports both: destructive discarding and non-destructive 

minimizing of currently unwanted content. 

• CAD in its current form is unsuitable for representing and considering vague 

concepts and forms. GEM-NI introduces support for creating and managing multiple 

alternatives, which reduces the need for premature commitment. Yet, I acknowledge 

that the system in its current form cannot yet approach the vagueness of sketching. 

• CAD does not provide the creative stimulation that designers derive from the process 

of hand sketching. Essentially the tools ignore that designs are developed based on 

reactions to previously generated concepts. GEM-NI addresses this by supporting a 

highly non-linear workflow through branching, resurrection from history, the design 

gallery and merging. All these features are used to enable designers to react to and build 

on previously generated concepts. 

• Design is an iterative process of searching the design problem space as well as the 

solution space. Designs and solutions co-evolve, during the design process. This is not 

supported. GEM-NI supports iterative and parallel exploration of design options. The 

link between the design and solution spaces is always guaranteed, as changes to the 

model always immediately update the output view. GEM-NI supports iterative 

exploration through its ability to branch off, merge, and reorganize alternatives, as well 

as their minimization and retrieval. 

• Many possibilities are considered and most of them are discarded at the early stages 

of design. In this context, designers need to represent a wide range of concepts 

efficiently. They are, therefore reluctant to invest the additional effort required to 

represent such concepts in CAD. History, branching, the design gallery and merging 
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are the mechanisms that aim to ensure that concepts created with GEM-NI are “cheap” 

to create in terms of effort. 

6.2 GEM-NI as a Subjunctive Interface 

GEM-NI also supports the three design principles on which subjunctive interfaces are built, 

as identified by Lunzer and Hornbæk [70]:  

• Enabling setting several, perhaps totally different scenarios independently. This is 

primarily achieved through the support for multiple alternatives, which can potentially 

be totally independent. In fact, one of GEM-NI’s strengths is that it seamlessly supports 

the full spectrum from completely independent to fully identical alternatives. 

• Displaying multiple scenarios simultaneously to facilitate comparison. This is 

supported explicitly through juxtaposition. Moreover, the MACE interface is designed 

to further facilitate comparison. 

• Synchronous adjustment of multiple scenarios to escalate the exploration process. 

This is achieved through parallel editing, using checkmarks and sandboxes. 

6.3 Revision Control 

GEM-NI was designed with the goal of supporting alternatives. However, the same ideas can 

also be used for revision control, similar to Doboš and Steed’s [28,29] approach for 3D 

models and Chen et al.’s [23] approach for images. In this sense, alternatives can be thought 

of as significant events, which can be committed. Workspaces are then equivalent to 

repositories. The MACE interface, designed to compare alternatives, can then be re-

envisioned as a tool to compare versions. 

6.4 Guidelines for Re-implementation: 

GEM-NI and the MACE interface were implemented as a branch NodeBox 3. For 

convenience, I chose NodeBox 3 as a foundation because of the many provided features. 

NodeBox 3 is representative of a generative design system. It uses dataflow programming. It 
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has been previously used for visualization and generative art [101]. This choice enables the 

potential use of my results in a wider spectrum of applications, compared to a tool more 

targeted at a single domain. 

Unsurprisingly, NodeBox 3 was not designed with supporting alternatives in mind. The 

code follows, what Terry and Mynatt [106] refer to as, the single state document interaction 

model which recognizes and requires a document to be in one, and only one, state at any 

particular time. This is a poor match to the non-linear, experimental processes characteristic 

of creative endeavours [106]. To work around this limitation, I had to implement the features 

of GEM-NI and MACE in an intrusive manner, where I sometimes had to violate good 

software-engineering principles. E.g., each method that affects the state of the document had 

to be modified to push changes to all alternatives. This was further made worse by the fact 

that some alternatives may be idle. Global undo adds another layer of complexity. As a 

result, the implementation was not efficient. Because NodeBox 3 follows the single 

document state model, I also had to introduce UUIDs for the nodes to distinguish the states 

of nodes in different alternatives. In hindsight, this approach is only suitable for retrofitting 

into existing systems. 

A better approach is to design the system from scratch by including support for 

alternatives from the start. One example of such an approach, currently work-in-progress, is 

the Shiro21 dataflow programming language designed to be embedded into applications that 

support reuse and the exploration of alternatives. The language provides designers with 

syntax to describe alternative designs or analysis solutions. In Shiro nodes can be 

subjunctive, i.e., exist in multiple states. This allows a cleaner implementation with less 

shared data. This approach should be considered by those re-implementing GEM-NI’s 

approach in their application domain. 

NodeBox 3 utilizes the standard undo manager from javax.swing.undo. To enable 

undo history duplication, I created a custom undo manager, which supports duplication of 

the undo stack. This functionality is used when creating branches and alternatives from 
                                                
21 http://github.com/jrguenther/shiro 
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history. To support global undo, I use another stack, which keeps track of every undoable 

operation that was done and the alternatives that were affected by this to enable me to 

identify potential undo conflicts and to clear the global undo stack if such a conflict occurs. 

This is a simplified implementation that may not handle all use cases. Yet, in the user 

studies, global undo was used only infrequently, also because participants did little parallel 

editing. Thus, I currently see little need for a more sophisticated global undo/redo-method in 

a system such as GEM-NI. The majority of the participants focussed on one design at a time, 

and if necessary, re-integrated ideas from previous work through merging. Thus, I believe 

that one area for future development in GEM-NI should focus on better methods for post-hoc 

merging, e.g., by coming up with visualizations that identify which parts of the merge could 

not be completed. 

During the workshops some participants pointed out that GEM-NI’s interface is 

unintuitive with regards to parallel editing. In a future re-implementation parallel editing 

should be offered as an option rather than imposed on the user. Passive alternatives should 

appear only when desired explicitly by the user and not by default. This will leave merging 

as the main mechanism of pushing changes. To make the merging mechanism more 

versatile, future implementations should introduce the concept of a timeline and allow the 

user to merge the timeline of one alternative with that of one or more other(s). The history 

mechanism is currently limiting in that it only permits the creation of alternatives from 

history and not the merging of parts of history. Also history is based on undo and, as a result, 

the history of edits from earlier application sessions is not available, as the undo stack is 

currently not preserved during saving and re-opening. 

Finally, there are limitations in NodeBox 3 that future implementations should address. 

One example is the inability to embed recursion into the data-flow programming model that 

is employed in NodeBox 3. As discussed in Section 4.5.5 this prevented me from taking full 

advantage of the GEM-NI’s comparison features when relating networks with recursive 

nodes to each other. Moreover, NodeBox contributors decided to abandon the support for the 

“tweaking” of existing nodes since version 3. In NodeBox 2, it was possible to directly 
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modify and display the python code, which stands behind each node in the system. Although 

I acknowledge that this may not be a feature that the majority of designers must have, I 

disagree that it was necessary to remove this feature from the latest version. Power users 

generally appreciate such a feature and use it to solve many interesting problems. In addition 

to that, I could have added in GEM-NI the ability to merge differences between different 

alternatives directly in python code. Then, I could also have augmented the MACE interface 

to perform difference visualization also on the code of the python-based nodes.  
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Chapter 7  
Conclusions 

The work towards this dissertation started with the objective to address the lack of previous 

quantitative research on generic diagram visualizations that support merging of diagram 

versions. To investigate this, I introduced a new system for differencing and merging 

diagrams that use of Dual View, Animation, Re-Layout, Layers and a Storyboard, 

abbreviated DARLS. The system is targeted at diagrams with node and edge attributes. Such 

diagrams, among other areas, are used frequently in generative design for dataflow 

programming. I ran two user studies to investigate the benefits of the introduced difference 

visualization techniques and found that naïve dual-view visualization was not well received. 

The dual-view option with a difference layer was most preferred for comparing diagrams 

with matching node positions. For diagrams with non-matching positions, I found evidence 

that animation is beneficial, but that the combination with a difference layer was liked best. 

In summary, this dissertation reveals that the difference layer technique is useful and a good 

complement to animation. This had positive implications for the diagram merging method 

that was introduced. The findings of the user studies suggested that stable layouts across the 

network views of alternatives in GEM-NI should be used for facilitating comparison of 

dataflow programming. As a result, I implemented this technique. Also, I implemented the 

merging method of DARLS in GEM-NI in the context of generative design and multiple 

alternatives to support merging of dataflow programming models. I evaluate the technique 

later. The evaluation revealed that the technique could be useful for complex models. The 

layering technique that I explored with DARLS I revisited in MACE and adopted it for 

showing differences for more than two alternatives.  

This dissertation investigated how introducing various forms of exploration with design 

alternatives into generative design seen in manual sketching affects creativity support. To 

address this, I introduced the techniques in GEM-NI—a graph-based generative-design tool 

that I built, which supports parallel exploration of alternative designs. These techniques 



 

  139 

were: parallel editing, recalling history, branching, merging, comparing, and Cartesian 

products of and for alternatives. Further, I introduce a modal graphical user interface and a 

design gallery, which both allow designers to control and manage their design exploration. 

Many of the introduced techniques are novel in the context of generative design and in 

general. I investigated the usefulness of my approach through user studies and interviews. 

The feedback from participants in the first study and in-depth interviews suggest that 

GEM-NI, and more broadly the approach behind it, indeed enables designers to work more 

creatively. The results indicate the direct applicability of the presented techniques for the 

design process also via the CSI questionnaire. While the sample size of my first user study 

was small, it identified the potential for better creativity support through alternatives in 

design tools. I repeated the study with a larger sample of participants. GEM-NI was found to 

support exploration better with the new features. This was clarified in the CSI questionnaire. 

In the freeform feedback, three participants expressed that they wished they had the features 

of GEM-NI available in the generative design tools they use daily. 

One of the missing features that I identified early on as necessary in GEM-NI was the 

ability to compare alternatives effectively and easily. I identified that it would be useful to 

have the ability to compare more than two alternatives at the same time because in the open-

ended design tasks a lot of alternatives are created and being able to compare and edit them 

in an interactive manner is important. To offer a solution to this I extended GEM-NI with 

MACE – novel interface for differencing and editing alternatives in a generative design 

system. My new difference visualization technique enables comparison of more than two 

alternatives at a time. Using an introduced measure I confirmed the appropriateness of the 

approach for at least the dataset of alternatives produced by designers in my studies. My new 

user interface enables the user to interact with omitted unchanged nodes in difference view 

visualizations, via a new “reveal-to-edit” feature. This feature improves parallel editing in 

that the differences between the original (reference alternative) and a clone are immediately 

visible during editing. The autosandboxing further facilitates alternative exploration. I 

introduced new ways to emphasize added, deleted nodes, (un)changed nodes, recursive 
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group nodes, as well as edges. Here, my work builds on a previously introduced, but never 

implemented concept [97]. The approach extends previous approaches for layering, side-by-

side views by going beyond pair-wise comparisons, and shows larger variety of difference 

visualizations. It also improves my previous parallel editing approach by allowing parallel 

editing and difference visualization simultaneously in an interactive manner. In the second 

user study involving GEM-NI, I found evidence that users might benefit from more display 

space than afforded by a dual-monitor setup. As a result, I implemented multi-monitor 

support in MACE to demonstrate that my difference visualization technique scales well to up 

to 20 alternatives. My novel jamming space feature takes advantage of the multi-monitor 

support to ease organizing a large workspace by assigning individual monitors into different 

states. It has been already known that users tend to organize their space [13,88]. The 

jamming space technique, therefore, takes this natural human behaviour to the next level by 

supporting forced states to enable better organization. To investigate the usability of my 

approach I conducted an exploratory interview with three expert designers having 5-30 years 

of experience in generative design on an earlier version of MACE. The comments I received 

were confirmatory towards the major motivations of the interface. Their feedback resulted in 

the addition of the sandboxing, autosandboxing, parameter synching and the improvement of 

the visualization that addresses color-blind users.  

7.1 Generalization of the Introduced Approaches 

I am confident that the techniques introduced in this work can be used not only for 

generative design in 2D vector graphics, but in other domains as well. This has been 

confirmed in the second user study of GEM-NI, since some participants expressed their 

desire to have the features available in their everyday workflow. This, first of all, applies to 

visual programming environments in 3D modeling (e.g., Grasshopper 3D, Houdini and 

GenerativeComponents). Here, different visualization techniques would have to be 

employed for comparing the 3D output. Generally speaking, any system where graph driven 

visual programming is used, including multimedia (e.g., Max/MSP), could benefit from my 
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approach. But for comparing other types of media, such as audio or video, a different 

approach to output difference visualization may be necessary.  

Moreover, outside generative design, some of the concepts used here, such as e.g., 

parallel editing, checking and sandboxing can be used in other domains as well. In fact, 

recently a system called CAMBRIA [64] has been introduced, where the authors apply the 

idea to regular 2D vector graphics design. 

7.2 Limitations and Future Work 

I envision several extensions as follows. 

7.2.1 DARLS 

Some of my findings indicate that the interaction between differencing techniques and 

layouts is a rich area for future work. In other words, a closer look is needed at the combined 

effect of layout techniques, such as my optimal layout method, and specific visualization 

features. Another direction is the generalization of the work to UML diagrams, with their 

information-rich nodes and edges. The storyboard can be investigated in more details, e.g., if 

it can be directly used for difference visualization, similar to small multiples. One idea is to 

use highlighting on the small views in combination with difference layers in the large ones. 

Yet another direction is to investigate merging. My findings are positive for animation, but 

more can be done. With larger sets of changes, animating all changes at once may be 

counterproductive. It can also be investigated whether it makes general sense to break 

change visualizations into smaller sets for easier comprehension. Currently the system is 

targeted at diagrams with up to 50 nodes. However, I do not see any major obstacles to 

enhancing the system to deal with larger diagrams, such as the hierarchies described in 

[22,76]. 
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7.2.2 GEM-NI 

Currently, the network layout is not kept consistent across versions if merging or other 

editing occurs. The design gallery creates far too many candidates that are too similar. One 

solution could be to filter candidates by structure and visual similarity. It would also help to 

display the design gallery next to the Cartesian product menu, so that the changes in the 

Cartesian product are reflected interactively instead of switching between the two views. 

Erhan et al. [35] proposed a method based on similarity metrics for making it easier to 

manage the design space. The method includes parameter selection, computation of 

similarity between pairs of design alternatives and visualization of their similarity on various 

forms, clustering and applying filters on the clusters to narrow the scope. One future option 

is to integrate this method into the system. Also, the multi-monitor aspects of GEM-NI can 

be evaluated on a 2×3 multi-monitor setup through further experiments and interviews. 

One direction of future research could be to investigate how versioning can be made 

more explicit and integrated with alternatives in a design system. One idea is to show the 

history of how alternatives were created through a tree visualization. 

Currently, GEM-NI allows parallel editing of all operations and selective merging of all 

types of states. While all of these operations and types of merging are usable, it remains an 

open question if supporting all of them makes sense. Future research can target this question. 

It would also be interesting to investigate how to deal with merging conflicts, and if 

detecting them helps the users. 

7.2.3 MACE 

Given that my preliminary usability analysis produced confirmatory results towards the 

major design decisions, I believe that investigating the effect of the difference visualization 

techniques in MACE would most likely produce trivial results. Also, I had already learned 

from the user studies with DARLS that unenhanced juxtaposition is less effective than 

highlighting. Moreover, most of the features in MACE explicitly highlight things that are 

otherwise not easily visible and/or have to be understood by repeatedly glancing back and 
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forth, which is less efficient. One potentially interesting user study would be to investigate 

the scalability of the difference visualization technique to more than 18 alternatives. This 

number corresponds to three alternatives each, on 2×3 monitors. On the other hand, I believe 

that such large numbers of alternatives are not that frequent in design. In my user studies, for 

example, I observed that eight was the maximum number of alternatives participants 

produced. However, in a different context, such as longer design sessions, the number of 

alternatives may well exceed this. Another potential study could also investigate if and how 

the effectiveness of the basic juxtaposition visualization, the diff visualization with and 

without node focusing, as well as the diff exclusion mode all deteriorate as the number of 

alternatives increases. Yet another study could investigate the effectiveness of the edge 

drawing technique in MACE that shows connectors back to the reference alternative in 

comparison to the side-by-side visualization technique with highlighting in DARLS. 

However, this last technique would need to be generalized to more than two views. Another 

idea is to evaluate the usefulness of the reveal-to-edit approach when creating alternatives. 
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Appendix A  
Version Pairs of a Course Prerequisites Diagram Used in the 
DARLS User Studies 

Most Frequent False Negatives in User Study I 

Incremental Layout Optimal Layout 

Node Frequency Node Frequency 

COMP 3403 64 COMP 3403 12 

COMP 3481 47 COMP 3481 12 

COMP 3214 45 COMP 3214 12 

COMP 3431 18 MAST 1025 10 

MAST 1025 13 COMP 3431 10 

MAST 1310 10 MAST 1310 10 

ENGR 3150 2    

COMP 3215 2    

Table A-1. Most frequent false negative nodes. 
 

Incremental Layout Optimal Layout 

Edge Frequency Edge Frequency 

COMP 2031 -> COMP 3215 40 COMP 3213 -> COMP 3481 28 

COMP 3213 -> COMP 3481 32 COMP 2031 -> COMP 3215 21 

MAST 1025 -> COMP 3431 20 MAST 1025 -> COMP 3431 19 

MAST 1310 -> COMP 3101 10 MAST 1310 -> COMP 3451 18 

MAST 1310 -> COMP 3451 8 MAST 1310 -> COMP 3213 18 

MAST 1310 -> COMP 3213 5 MAST 1310 -> COMP 3101 14 

COMP 3201 -> COMP 3215 2    

ENGR 3150 -> COMP 3201 2    

Table A-2. Most frequent false negative edges. 
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Optimal Layout Heuristics 

Heuristic Value 

Minimal Node 

Distance 

20 (pixels) 

Minimal Edge 

Distance 

10 (pixels) 

First Minimal 

Segment Length 

20 (pixels) 

Orientation Top to Bottom 

Node Placement Linear Segments 

Node Ranking Policy Hierarchical – Tight 

Tree 

Node Order Weight Barycenter 

Transposition Yes 

Removed False 

Crossings 

Yes 

Randomization 

Rounds 

40 

Table A-3. Summary of optimal layouter heuristics that were used during the User 
Study I. 
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Version Pair Summary 

No. 1 2 3 4 5 6 
Version Pair 1→3 3→4 4→5 5→8 8→10 10→12 
Num. of Node in Left View 24 28 28 26 27 26 
Num. of Edges in Left View 23 25 25 22 24 23 
Num. of Nodes in Right View 28 28 26 27 26 29 
Num. of Edges in Right View 25 25 22 24 23 26 
Num. of Common Nodes 23 28 25 23 26 23 
Num. of Common Edges 23 25 25 23 26 23 
Num. of New Nodes 5 0 1 4 0 6 
Num. of New Edges 5 0 0 4 2 6 
Num. of Deleted Nodes 1 0 3 3 1 3 
Num. of Deleted Edges 3 0 3 4 3 3 
Total Added 10 0 1 8 2 12 
Total Deleted  4 0 6 7 4 6 

Table A-4. Version Pair Summary. 
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Optimal Layout Snapshots 

 
Figure A-1. Optimal Layout, Version Pair #1 (1→3). 
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Figure A-2. Optimal Layout, Version Pair #2 (3→4). 
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Figure A-3. Optimal Layout, Version Pair #3 (4→5). 
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Figure A-4. Optimal Layout, Version Pair #4 (5→8). 
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Figure A-5. Optimal Layout, Version Pair #5 (8→10). 
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Figure A-6. Optimal Layout, Version Pair #6 (10→12). 
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Incremental Layout Snapshots 

 
Figure A-7. Incremental Layout, Version Pair #1 (1→3). 
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Figure A-8. Incremental Layout, Version Pair #2 (3→4). 
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Figure A-9. Incremental Layout, Version Pair #3 (4→5). 
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Figure A-10. Incremental Layout, Version Pair #4 (5→8). 
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Figure A-11. Incremental Layout, Version Pair #5 (8→10). 
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Figure A-12. Incremental Layout, Version Pair #6 (10→12). 
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Appendix B  
Noteworthy Designs of the Workshop Participants with Difference Visualizations 



 

  170 

 
Figure B-1. Design 1: unenhanced view. 
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Figure B-2. Design 1: difference visualization view (with subtractive encoding). 
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Figure B-3. Design 2: unenhanced view.  
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Figure B-4. Design 2: difference visualization view (with subtractive encoding). 
 

 
Figure B-5. Design 3: unenhanced view. 
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Figure B-6. Design 3: difference visualization view (with subtractive encoding). 
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Figure B-7. Design 4: unenhanced view. 
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Figure B-8. Design 4: difference visualization view (with subtractive encoding). 

 
Figure B-9. Design 5: unenhanced view. 
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Figure B-10. Design 5: difference visualization view (with subtractive encoding). 
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Figure B-11. Design 6: unenhanced view. 
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Figure B-12. Design 6: difference visualization view (with subtractive encoding). 

 


