85 research outputs found

    Clique versus Independent Set

    Get PDF
    Yannakakis' Clique versus Independent Set problem (CL-IS) in communication complexity asks for the minimum number of cuts separating cliques from stable sets in a graph, called CS-separator. Yannakakis provides a quasi-polynomial CS-separator, i.e. of size O(nlogn)O(n^{\log n}), and addresses the problem of finding a polynomial CS-separator. This question is still open even for perfect graphs. We show that a polynomial CS-separator almost surely exists for random graphs. Besides, if H is a split graph (i.e. has a vertex-partition into a clique and a stable set) then there exists a constant cHc_H for which we find a O(ncH)O(n^{c_H}) CS-separator on the class of H-free graphs. This generalizes a result of Yannakakis on comparability graphs. We also provide a O(nck)O(n^{c_k}) CS-separator on the class of graphs without induced path of length k and its complement. Observe that on one side, cHc_H is of order O(HlogH)O(|H| \log |H|) resulting from Vapnik-Chervonenkis dimension, and on the other side, ckc_k is exponential. One of the main reason why Yannakakis' CL-IS problem is fascinating is that it admits equivalent formulations. Our main result in this respect is to show that a polynomial CS-separator is equivalent to the polynomial Alon-Saks-Seymour Conjecture, asserting that if a graph has an edge-partition into k complete bipartite graphs, then its chromatic number is polynomially bounded in terms of k. We also show that the classical approach to the stubborn problem (arising in CSP) which consists in covering the set of all solutions by O(nlogn)O(n^{\log n}) instances of 2-SAT is again equivalent to the existence of a polynomial CS-separator

    On the fine-grained complexity of rainbow coloring

    Get PDF
    The Rainbow k-Coloring problem asks whether the edges of a given graph can be colored in kk colors so that every pair of vertices is connected by a rainbow path, i.e., a path with all edges of different colors. Our main result states that for any k2k\ge 2, there is no algorithm for Rainbow k-Coloring running in time 2o(n3/2)2^{o(n^{3/2})}, unless ETH fails. Motivated by this negative result we consider two parameterized variants of the problem. In Subset Rainbow k-Coloring problem, introduced by Chakraborty et al. [STACS 2009, J. Comb. Opt. 2009], we are additionally given a set SS of pairs of vertices and we ask if there is a coloring in which all the pairs in SS are connected by rainbow paths. We show that Subset Rainbow k-Coloring is FPT when parameterized by S|S|. We also study Maximum Rainbow k-Coloring problem, where we are additionally given an integer qq and we ask if there is a coloring in which at least qq anti-edges are connected by rainbow paths. We show that the problem is FPT when parameterized by qq and has a kernel of size O(q)O(q) for every k2k\ge 2 (thus proving that the problem is FPT), extending the result of Ananth et al. [FSTTCS 2011]

    Matchings, coverings, and Castelnuovo-Mumford regularity

    Full text link
    We show that the co-chordal cover number of a graph G gives an upper bound for the Castelnuovo-Mumford regularity of the associated edge ideal. Several known combinatorial upper bounds of regularity for edge ideals are then easy consequences of covering results from graph theory, and we derive new upper bounds by looking at additional covering results.Comment: 12 pages; v4 has minor changes for publicatio

    Out-Tournament Adjacency Matrices with Equal Ranks

    Get PDF
    Much work has been done in analyzing various classes of tournaments, giving a partial characterization of tournaments with adjacency matrices having equal and full real, nonnegative integer, Boolean, and term ranks. Relatively little is known about the corresponding adjacency matrix ranks of local out-tournaments, a larger family of digraphs containing the class of tournaments. Based on each of several structural theorems from Bang-Jensen, Huang, and Prisner, we will identify several classes of out-tournaments which have the desired adjacency matrix rank properties. First we will consider matrix ranks of out-tournament matrices from the perspective of the structural composition of the strong component layout of the adjacency matrix. Following that, we will consider adjacency matrix ranks of an out-tournament based on the cycles that the out-tournament contains. Most of the remaining chapters consider the adjacency matrix ranks of several classes of out-tournaments based on the form of their underlying graphs. In the case of the strong out-tournaments discussed in the final chapter, we examine the underlying graph of a representation that has the strong out-tournament as its catch digraph

    Fractional coverings, greedy coverings, and rectifier networks

    Get PDF
    A rectifier network is a directed acyclic graph with distinguished sources and sinks; it is said to compute a Boolean matrix M that has a 1 in the entry (i,j) iff there is a path from the j-th source to the i-th sink. The smallest number of edges in a rectifier network that computes M is a classic complexity measure on matrices, which has been studied for more than half a century. We explore two techniques that have hitherto found little to no applications in this theory. They build upon a basic fact that depth-2 rectifier networks are essentially weighted coverings of Boolean matrices with rectangles. Using fractional and greedy coverings (defined in the standard way), we obtain new results in this area. First, we show that all fractional coverings of the so-called full triangular matrix have cost at least n log n. This provides (a fortiori) a new proof of the tight lower bound on its depth-2 complexity (the exact value has been known since 1965, but previous proofs are based on different arguments). Second, we show that the greedy heuristic is instrumental in tightening the upper bound on the depth-2 complexity of the Kneser-Sierpinski (disjointness) matrix. The previous upper bound is O(n^{1.28}), and we improve it to O(n^{1.17}), while the best known lower bound is Omega(n^{1.16}). Third, using fractional coverings, we obtain a form of direct product theorem that gives a lower bound on unbounded-depth complexity of Kronecker (tensor) products of matrices. In this case, the greedy heuristic shows (by an argument due to Lovász) that our result is only a logarithmic factor away from the "full" direct product theorem. Our second and third results constitute progress on open problem 7.3 and resolve, up to a logarithmic factor, open problem 7.5 from a recent book by Jukna and Sergeev (in Foundations and Trends in Theoretical Computer Science (2013)

    Interactions entre les Cliques et les Stables dans un Graphe

    Get PDF
    This thesis is concerned with different types of interactions between cliques and stable sets, two very important objects in graph theory, as well as with the connections between these interactions. At first, we study the classical problem of graph coloring, which can be stated in terms of partioning the vertices of the graph into stable sets. We present a coloring result for graphs with no triangle and no induced cycle of even length at least six. Secondly, we study the Erdös-Hajnal property, which asserts that the maximum size of a clique or a stable set is polynomial (instead of logarithmic in random graphs). We prove that the property holds for graphs with no induced path on k vertices and its complement.Then, we study the Clique-Stable Set Separation, which is a less known problem. The question is about the order of magnitude of the number of cuts needed to separate all the cliques from all the stable sets. This notion was introduced by Yannakakis when he studied extended formulations of the stable set polytope in perfect graphs. He proved that a quasi-polynomial number of cuts is always enough, and he asked if a polynomial number of cuts could suffice. Göös has just given a negative answer, but the question is open for restricted classes of graphs, in particular for perfect graphs. We prove that a polynomial number of cuts is enough for random graphs, and in several hereditary classes. To this end, some tools developed in the study of the Erdös-Hajnal property appear to be very helpful. We also establish the equivalence between the Clique-Stable set Separation problem and two other statements: the generalized Alon-Saks-Seymour conjecture and the Stubborn Problem, a Constraint Satisfaction Problem.Cette thèse s'intéresse à différents types d'interactions entre les cliques et les stables, deux objets très importants en théorie des graphes, ainsi qu'aux relations entre ces différentes interactions. En premier lieu, nous nous intéressons au problème classique de coloration de graphes, qui peut s'exprimer comme une partition des sommets du graphe en stables. Nous présentons un résultat de coloration pour les graphes sans triangles ni cycles pairs de longueur au moins 6. Dans un deuxième temps, nous prouvons la propriété d'Erdös-Hajnal, qui affirme que la taille maximale d'une clique ou d'un stable devient polynomiale (contre logarithmique dans les graphes aléatoires) dans le cas des graphes sans chemin induit à k sommets ni son complémentaire, quel que soit k.Enfin, un problème moins connu est la Clique-Stable séparation, où l'on cherche un ensemble de coupes permettant de séparer toute clique de tout stable. Cette notion a été introduite par Yannakakis lors de l’étude des formulations étendues du polytope des stables dans un graphe parfait. Il prouve qu’il existe toujours un séparateur Clique-Stable de taille quasi-polynomiale, et se demande si l'on peut se limiter à une taille polynomiale. Göös a récemment fourni une réponse négative, mais la question se pose encore pour des classes de graphes restreintes, en particulier pour les graphes parfaits. Nous prouvons une borne polynomiale pour la Clique-Stable séparation dans les graphes aléatoires et dans plusieurs classes héréditaires, en utilisant notamment des outils communs à l'étude de la conjecture d'Erdös-Hajnal. Nous décrivons également une équivalence entre la Clique-Stable séparation et deux autres problèmes  : la conjecture d'Alon-Saks-Seymour généralisée et le Problème Têtu, un problème de Satisfaction de Contraintes

    Graph Sparsification, Spectral Sketches, and Faster Resistance Computation, via Short Cycle Decompositions

    Get PDF
    We develop a framework for graph sparsification and sketching, based on a new tool, short cycle decomposition -- a decomposition of an unweighted graph into an edge-disjoint collection of short cycles, plus few extra edges. A simple observation gives that every graph G on n vertices with m edges can be decomposed in O(mn)O(mn) time into cycles of length at most 2logn2\log n, and at most 2n2n extra edges. We give an m1+o(1)m^{1+o(1)} time algorithm for constructing a short cycle decomposition, with cycles of length no(1)n^{o(1)}, and n1+o(1)n^{1+o(1)} extra edges. These decompositions enable us to make progress on several open questions: * We give an algorithm to find (1±ϵ)(1\pm\epsilon)-approximations to effective resistances of all edges in time m1+o(1)ϵ1.5m^{1+o(1)}\epsilon^{-1.5}, improving over the previous best of O~(min{mϵ2,n2ϵ1})\tilde{O}(\min\{m\epsilon^{-2},n^2 \epsilon^{-1}\}). This gives an algorithm to approximate the determinant of a Laplacian up to (1±ϵ)(1\pm\epsilon) in m1+o(1)+n15/8+o(1)ϵ7/4m^{1 + o(1)} + n^{15/8+o(1)}\epsilon^{-7/4} time. * We show existence and efficient algorithms for constructing graphical spectral sketches -- a distribution over sparse graphs H such that for a fixed vector xx, we have w.h.p. xLHx=(1±ϵ)xLGxx'L_Hx=(1\pm\epsilon)x'L_Gx and xLH+x=(1±ϵ)xLG+xx'L_H^+x=(1\pm\epsilon)x'L_G^+x. This implies the existence of resistance-sparsifiers with about nϵ1n\epsilon^{-1} edges that preserve the effective resistances between every pair of vertices up to (1±ϵ).(1\pm\epsilon). * By combining short cycle decompositions with known tools in graph sparsification, we show the existence of nearly-linear sized degree-preserving spectral sparsifiers, as well as significantly sparser approximations of directed graphs. The latter is critical to recent breakthroughs on faster algorithms for solving linear systems in directed Laplacians. Improved algorithms for constructing short cycle decompositions will lead to improvements for each of the above results.Comment: 80 page

    Algebraic Properties of Chromatic Polynomials and Their Roots

    Get PDF
    In this thesis we examine chromatic polynomials from the viewpoint of algebraic number theory. We relate algebraic properties of chromatic polynomials of graphs to structural properties of those graphs for some simple families of graphs. We then compute the Galois groups of chromatic polynomials of some sub-families of an infinite family of graphs (denoted {Gp,q }) and prove a conjecture posed in [15] concerning the Galois groups of one specific sub-family. Finally we investigate a conjecture due to Peter Cameron [8] that says that for any algebraic integer α there is some n ∈ ℕ such that α + n is the root of some chromatic polynomial. We prove the conjecture for quadratic and cubic integers and provide strong computational evidence that it is true for quartic and quintic integers
    corecore