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ABSTRACT
OUT-TOURNAMENT ADJACENCY MATRICES WITH

EQUAL RANKS

Zachary Buelow

Marquette University, 2016

Much work has been done in analyzing various classes of tournaments, giving

a partial characterization of tournaments with adjacency matrices having equal and

full real, nonnegative integer, Boolean, and term ranks. Relatively little is known

about the corresponding adjacency matrix ranks of local out-tournaments, a larger

family of digraphs containing the class of tournaments. Based on each of several

structural theorems from Bang-Jensen, Huang, and Prisner, we will identify several

classes of out-tournaments which have the desired adjacency matrix rank properties.

First we will consider matrix ranks of out-tournament matrices from the perspective

of the structural composition of the strong component layout of the adjacency

matrix. Following that, we will consider adjacency matrix ranks of an

out-tournament based on the cycles that the out-tournament contains. Most of the

remaining chapters consider the adjacency matrix ranks of several classes of

out-tournaments based on the form of their underlying graphs. In the case of the

strong out-tournaments discussed in the final chapter, we examine the underlying

graph of a representation that has the strong out-tournament as its catch digraph.
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CHAPTER 1
Introduction, Brief Survey and Overview

1 Introduction

Many graph theory and linear algebra papers have addressed the topic of

matrix ranks of adjacency matrices for graphs and digraphs. In particular, there

have been numerous tournament matrix classes analyzed for matrix rank; perhaps

most notably, upset tournaments have been well studied. We will take a brief look

at some of these, because some of the results found in this paper follow in parallel to

existing tournament results, and use similar techniques. This paper will consider

matrix ranks of adjacency matrices of out-tournaments, a class of digraphs in which

each outset induces a tournament.

The {0, 1}-matrix ranks are important for graph theory because adjacency

matrix ranks reflect properties of the graph or digraph that produced them. We

consider the real rank (over <), term rank, nonnegative integer rank (over

{x ∈ Z|x ≥ 0}, denoted here as Z+ to follow previous literature), and Boolean rank

(1 + 1 = 1) of adjacency matrices of out-tournaments. We are interested in classes

of out-tournaments that have all four of these ranks full and equal, or equal and less

than full. These goals arise from previous work in {0,1}-matrix ranks, work in

tournament matrix ranks, and specifically the fairly well explored class of upset

tournaments and their adjacency matrix ranks.
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2 Recent Work on Related {0,1}-Matrix Ranks

Papers on {0,1}-matrix ranks go back to time immemorial, so we will only

mention some of the more recent papers which are relevant to the current work and

relevant to previous work in tournament ranks and adjacency matrix ranks in

general. In addition to the usual linear algebra techniques, two of the most

important matrix rank tools in this paper are independent sets of 1s and isolated

sets of 1s. An independent set of 1s in a {0, 1}-matrix has no two elements in the

same row or column. An isolated set of 1s is an independent set of 1s in which no

two elements are in a 2× 2 submatrix of all 1s. The maximum size of a set of

isolated 1s in a {0, 1}-matrix is the isolation number of the matrix, and the

maximum size of an independent set of 1s is the independence number of the

matrix. It is well known that the independence number of a matrix equals its term

rank. For example in Lundgren’s presentation [28], independence number as well as

its different characterizations are discussed.

The term rank of A can be found by identifying a set of independent 1s and

showing that it is of a maximum size.

(1.1) A =



0 0 1t 1 0

0 0 1 1t 1

0 0 0 1 1t

0 0 0 0 0

0 0 0 0 0



In matrix A given by (1.1), the set of three 1s with subscript t indicate a set

of independent 1s. Since 5× 5 matrix A has two columns of 0s, we know that this

set of independent 1s is of maximum size, and thus, we know that the term rank of

A is 3.
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The isolation number is a well known lower bound for Boolean rank of

{0, 1}-matrices. Lines (1.2), (1.3) and (1.4) show how isolated 1s are used to give a

lower bound on Boolean rank. Line (1.2) gives an example of a {0, 1}-matrix with

Boolean rank 2. The 1s with subscript s indicate a maximum set of isolated 1s in

matrix A. We can see that the two 1s cannot be together in a single rank 1 matrix.

Each must be in a distinct rank 1 submatrix. In that respect, isolated 1s are the

Boolean rank analog of pivot 1s, used in Gaussian elimination to find the real rank

of matrices.

A =



0 0 1 1 0

0 0 1s 1 1

0 0 0 1s 1

0 0 0 0 0

0 0 0 0 0


(1.2)

=



1 0

1 1

0 1

0 0

0 0


 0 0 1 1 0

0 0 0 1 1

(1.3)

=



0 0 1 1 0

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


+



0 0 0 0 0

0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0


(1.4)

A minimum Boolean factorization of A can be seen in (1.3), and (1.4)

expresses the same decomposition as the factorization, but in a different way.

Matrix A is represented in (1.4) as the Boolean sum of two rank 1 matrices. In
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practice, we are usually looking for sets of isolated 1s of a maximum size in the

original matrix, but the factorization or Boolean sum can be produced when

needed. In this simple rank 2 matrix, A, the reader will note that the choice of a

maximum set of isolated 1s indicated is not unique.

The isolation number of a {0, 1}-matrix has been analyzed in various

contexts. From a strictly linear algebra perspective, papers such as Beaseley [7]

from 2011 considered the isolation number and Boolean rank. Brown and Roy [11],

also from 2011, explored isolation number in the context of tournament matrices,

while Brown, Lundgren, Roy, and Siewert [12] investigated isolation number and

intersection number as they relate to upset tournament matrices. Beasley also has

other work on {0,1}-matrix ranks with various associates: e.g. Kirkland and Shader

[8] on rank comparisons, Guterman [9] on rank inequalities over semirings, and

Norm Pullman [10] comparing column ranks to factor ranks over semirings. Also

noteworthy, Hefner (K. Factor) and Lundgren [24] in 1990, explore minimum ranks

of k − regular {0, 1}-matrices. De Caen with Gregory and Pullman [16] also

considers Boolean rank of matrices in general. Gregory and Pullman [21] compare

Boolean and nonnegative integer ranks of {0, 1}-matrices, which are both of

particular interest in connection with adjacency matrices.

Many of the articles just mentioned were published in Linear Algebra and its

Applications and other similar journals. They are noteworthy because their authors

have also published papers in graph theory journals on the same topics as they have

related to tournament matrices in general, as well as tournament subclasses with

structures that allow more complete characterization of adjacency matrix ranks in

terms of natural graph theoretic properties. In the papers listed, these authors have

laid the foundation of proof techniques using independent and isolated sets of 1s to

give term rank and Boolean rank of adjacency matrices, as well as {0, 1}-matrices in

general. In particular, the investigations in Chapters 3 and 4 analyze the

{0, 1}-matrix structure to find ways to describe out-tournament matrices with equal

and full ranks. Chapter 3 of the current paper looks at reduction of out-tournament
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matrices suggested by out-tournament structure operations by Bang-Jensen [5] that

preserve full ranks. Chapter 4 examines the submatrices that allow the Boolean

rank and nonnegative integer rank to be different and attempts to find

out-tournament subdigraphs that produce such structures. These follow in the path

of the papers cited above in the use of isolated 1s and independent 1s, as well as

similar proof methods.

3 Coverings and Partitions of Digraphs

A covering of the edges of a graph is a family of subsets of edges whose union

is the entire edge set of the graph. A partition of the edges of a graph is a covering

in which the constituting subsets are pairwise disjoint. Coverings and partitions are

analogously defined for digraphs, but of course, the family consists of subsets of arcs

instead of edges.

Coverings and partitions usually require a particular form of subsets of

edges. For example, a clique is a complete subgraph, and the clique cover number of

a graph is the minimum number of cliques required to cover all the edges of a graph.

The idea of covering or partitioning the edges of a graph or the arcs of a

digraph with complete subgraphs or directed bicliques (respectively) goes back at

least to 1977, with Orlin’s paper [35]. That paper considers covering the edges of a

graph with cliques, and the minimum number of cliques required to do so for various

classes of graph.

Following in a progression from clique coverings, many authors have looked

at biclique coverings of graphs. A bipartite graph or bigraph, G, has two disjoint sets

of vertices, X and Y , and every edge in the graph connects a vertex in X to a

vertex in Y . A biclique in a graph is a complete bipartite subgraph in which every

vertex in X ′ ⊆ X is adjacent to every vertex in Y ′ ⊆ Y . Hence, it is natural to

consider the minimum number of bicliques required to cover all the edges of a

bigraph. In 1991 an important paper by Gregory, Jones, Pullman and Lundgren
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Figure 1. A directed biclique, with X represented by the left column
of vertices, and Y on the right.

[22] gave the connection between biclique coverings of bigraphs and their adjacency

matrix ranks. The biclique cover number of a bigraph is the minimum number of

bicliques needed to cover all the edges of the graph. The biclique partition number

is the minimum number of bicliques needed to partition the edges of the graph.

Gregory et al. [22] showed that the biclique partition number of a bigraph equals

the nonnegative integer rank of its adjacency matrix, and the biclique cover number

of the bigraph equals the biclique cover number of its adjacency matrix. A nice

consequence of this is the correspondence of a minimum biclique cover to a

minimum Boolean factorization of the adjacency matrix, and likewise, a minimum

biclique partition corresponds to a minimum nonnegative integer factorization. Due

to the work of Jones, Lundgren and Maybee [26], followed by a 1986 paper by

Barefoot, Hefner, Jones and Lundgren [6], the results with undirected bicliques were

brought into the realm of directed biclique coverings and partitions. The paper by

Barefoot et al. [6] looked at directed biclique coverings of the complements of cycles

and paths, which forms a vital part of the foundation for the current research, as

most of the Boolean rank proofs in the current paper rely on directed biclique cover

numbers of the classes of out-tournaments we are examining.
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Figure 2

Figure 3. Bicliques B1 and B2 of our digraph in Figure 2.

A directed biclique consists of two disjoint sets of vertices, X and Y , with

x −→ y for each x ∈ X and y ∈ Y (see Figure 1). Figure 2 shows a digraph

corresponding to adjacency matrix A in (1.2), and Figure 3 shows two bicliques of

the graph in Figure 2, which together form a minimum biclique covering of the arcs

of the graph in Figure 2. Note that the adjacency matrices of B1 and B2 are the two

rank 1 matrices in (1.5).
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(1.5) A =



0 0 1 1 0

0 0 1 1 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


B1

+



0 0 0 0 0

0 0 0 1 1

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0


B2

The rank 1 matrices in the Boolean sum of (1.5) are the adjacency matrices

for the subdigraphs B1 and B2, as the submatrices with all the nonzero entries.

The work done by Doherty, Lundgren and Siewert [17], for example, carried

out an investigation of undirected biclique covers and partitions of graphs and

directed biclique covers of digraphs, as well as considerations for the corresponding

ranks of their adjacency matrices. Monson, Pullman and Rees [34] gave a good

summary of clique and biclique coverings, biclique partitions and the corresponding

adjacency matrix ranks in 1995.

Henceforth in this paper, biclique will be used to mean directed biclique and

undirected will be used to differentiate a biclique in an undirected graph, since it is

only directed bicliques that are used in this research.

4 Upset Tournaments and Their Matrix Ranks

Upset tournaments are a particularly well studied class of tournaments with

respect to both their structure as well as their adjacency matrix ranks. Because

much is known about their properties, upset tournaments form a class of digraphs

that is desirable for use in studying adjacency matrix ranks. The score list of a

digraph is the multi-set of out-degrees of its vertices. An upset tournament on n

vertices has the score list (1, 1, 2, 3, ..., n− 2, n− 1, n− 1). Brualdi and Li [13] first

explored these tournaments in 1983. Later, a series of papers by Lundgren and
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Siewert ([30],[31],[32]), as well as Siewert’s papers [40] and [41] studied (directed)

biclique covers of upset tournaments, biclique partitions of upset tournaments, and

the matrix ranks of their adjacency matrices, giving a complete characterization of

the form of upset tournaments with singular adjacency matrices. Together with

work from de Caen [15], Poet and Shader [38], Shader [39], and Katzenberger and

Shader [27], Siewert gave a concise summary of previous matrix rank results on

upset tournaments as well as examples of upset tournaments with different

relationships between the four matrix ranks [41]. Bryan Shader’s dissertation [39] is

remarkable in this context because he showed that for any upset tournament

matrix, the nonnegative integer rank and real rank are equal. As we will discuss in

more detail, finding classes of digraphs with equal matrix ranks is difficult. Because

of this difficulty, Shader’s discovery regarding equal real and nonnegative integer

ranks for upset tournaments is highly significant.

5 Out-Tournament Properties

Out-tournaments were developed and explored by Jørgen Bang-Jensen in

1990 [2], giving some important structural properties of out-tournaments. The

central results of this paper are refined and brought into the later 1993 paper [5].

These two Bang-Jensen papers are actually centered around in-tournaments,

while our research revolves around out-tournaments. Thus, the theorems presented

in this paper are actually the out-tournament dual versions of the theorems given

for in-tournaments.

Additionally appearing in 1990, Bang-Jensen, Huang and Pavol Hell [4],

explored chordal proper circular arc graphs. These directly relate to the last few

chapters of the current work, in that they present open questions. One in particular

is: What are the catch digraph out-tournaments of representations in the form of

chordal proper circular arc graphs having full equal matrix ranks? This question
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spurred the classes of out-tournaments found in Chapters 6, 7, and 8 of the current

paper.

The following year, Bang-Jensen published [3] on digraphs with the path

merging property. This is important for our purposes, because out-tournaments are

the predominant digraph class with the out-path merging property. An xy-path in a

digraph is a subdigraph consisting of

(1.6) x −→ v1 −→ v2 −→ ... −→ vk −→ y,

where no vertex appears more than once, except for the possibility that x = y, in

which case the path is called a cycle. A Hamiltonian cycle contains all the vertices

of the digraph.

A digraph has the out-path merging property, or out-path mergeability if for

any internally disjoint xy-path and xz-path, the digraph has a path starting at x,

which incorporates all the vertices of both paths, and preserves the relative order of

those vertices in the merged path. Every out-tournament has this property, and it

will be instrumental to the construction of our out-tournament class in Chapter 8 of

this paper.

Some of the results of [3] were incorporated into Bang-Jensen, Huang and

Erich Prisner’s 1993 paper [5]. Likewise, the theorems we will be using from

Prisner’s dissertation [36], as well as a subsequent publication [37], which are used

in this paper were also included in the 1993 paper [5]. Specifically, Prisner gives a

characterization of in-tournaments as the catch digraph of a family of pointed sets,

such that the intersection graph of the family of pointed sets gives the underlying

graph of the in-tournament.

A pointed set is a set of vertices with one member of the set designated as

the point. The catch digraph of a family of pointed sets is a digraph with a vertex

representing each set in the family, and an arc x −→ y if x is in the set having y as

its point.
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The intersection graph Γ of a family of sets F consists of a vertex for each

set and an edge between two vertices if the intersection of the sets they represent is

nonempty. A representation of graph G is a graph H such that there exists a family

F of subsets of vertices where each subset induces a connected subgraph in H and

the intersection graph of the family of subsets, denoted Γ(F), is G. The idea of

representations of graphs by set intersection goes back at least as far as Erdös et al.

from 1966 [18]. This idea was important to the Bang-Jensen, Huang and Prisner

1993 paper because they went into some detail to characterize the orientability of a

graph as an in-tournament based on the form of its possible representations. These

possible forms of representations give the last few chapters of the current work a

starting point. We consider classes of out-tournaments based on the representations

given in [5] and build from there; namely, unicyclic representations (Chapter 6), and

cactus representations, with varying levels of complexity (Chapters 7, 8). This gives

a different perspective on out-tournaments than what had been done before in the

relatively unexplored area of out-tournament matrix ranks.

Jing Huang [25] went on to explore local tournaments. These are digraphs

with each outset and each inset inducing a tournament. These are obviously also

out-tournaments, but with some additional structure. Local tournament matrix

ranks do not play a role in the current paper, but leave open the possibility of

matrix rank results analogous to those reached here.

6 Out-Tournament Matrices

The summary of tournament matrix work above is certainly not

comprehensive, but gives a reasonable idea of the form that matrix rank results

have taken. A complete characterization of the matrix ranks of a class of

tournaments is sometimes feasible, but the more general the class, the less likely the

possibility of a characterization of matrix ranks of tournaments in the class.
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With tournaments, we have the lower bound of n− 1 on the real rank of the

adjacency matrix, and hence on nonnegative integer rank as well as term rank. As

soon as we move to out-tournaments, this nice lower bound on three of the ranks is

gone, as is much of the structure. Boolean rank, however, can be below n− 1, even

for tournament matrices. For example, Lundgren and Siewert [30] collect many

examples of tournaments where the different matrix ranks vary. Despite the fact

that there is less structure in an out-tournament, some characterization of

out-tournament adjacency matrix ranks is possible.

Factor et al. explored matrix ranks of out-tournaments with upset

tournament strong components ([19],[20]). These papers take advantage of the

wealth of knowledge available from previous work in upset tournament matrix

ranks. Thus, the papers by Factor et al. form the takeoff point for this research.

Specifically, they were the first papers examining out-tournament matrix ranks.

Papers [19] and [20] make use of theorems establishing the form of the

strong component digraph of any non-strong out-tournament. A strong component

is a maximal strongly connected subdigraph. The strong component digraph of any

digraph has a vertex for each strong component, and x −→ y if any vertex in strong

component X beats any vertex in strong component Y in the original digraph.

Because of the acycylic nature of the strong component digraph, some nice results

are available for the original out-tournament. The results in [19] and [20] are

generalized in Chapter 2 of the current paper by removing the requirement that

strong components are upset tournaments.

As mentioned above, then, this paper proceeds from Factor et al.([19],[20]),

as well as Bang-Jensen, Huang and Prisner [5] for out-tournament structure. It

gives a partial characterization of the very large class of out-tournaments by

considering smaller classes with nice properties, and generalizing whenever possible.



13

CHAPTER 2
Strong Components and Full Equal Ranks

1 Introduction

Recall from Chapter 1 the four {0, 1}-matrix ranks that we are considering.

• The real rank of An×n is the usual matrix rank. Real rank, r(A), is the

minimum k such that there are matrices Xn×k and Yk×n over < with

A = XY . Matrix ranks defined in this way are called factor ranks .

• The nonnegative integer rank of matrix A, rZ+(A), is defined in the same

way as real rank, but the factor matrices are over Z+ = {x ∈ Z|x ≥ 0}.

• The Boolean rank of A, rB(A), is also a factor rank, but the factor matrices

are over the Boolean semiring {0,1}, and Boolean algebra is used for the

matrix product.

• The term rank of A, rt(A), is the maximum size of a set of independent 1s

in A.

By the definitions of the matrix ranks that we are interested in, the following

chain of inequalities holds for all {0,1}-matrices.

(2.1) r(A) ≤ rZ+(A) ≤ rt(A) ≤ n.

However, there is no standard relationship between rB(A) and r(A); the

Boolean rank of a {0,1}-matrix can be higher, lower, or equal to the rank of A.
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Siewert [41] in 2007 gives examples of each case. Following from their definitions,

though, we know that for {0, 1}-matrix A, rB(A) ≤ rZ+(A) necessarily.

In Chapter 1, we referred to Gregory et al. [22], which gave a connection

between the undirected biclique cover number of a bigraph, bc(B), and the Boolean

rank of the adjacency matrix of the graph, and also gave the connection between

the biclique partition number, bp(B), and the nonnegative integer rank.

Theorem 2.1. [22] Let B be any bigraph and let A be its adjacency matrix.

Then

bc(B) = rB(A) and bp(B) = rZ+(A).

This result translates directly to directed biclique coverings and partitions of

arcs in a digraph.

Corollary 2.2. Let D be any digraph and let A be its adjacency matrix.

Then

~bc(D) = rB(A) and ~bp(D) = rZ+(A).

The corollary follows from the theorem because every n× n digraph

adjacency matrix is also the adjacency matrix of a bigraph on 2n vertices. Given

digraph D with adjacency matrix A, if the rows are assigned numbers 1, 2, ..., n and

columns are numbered with (n+ 1), (n+ 2), ..., 2n, then A represents the adjacency

matrix of bigraph B with each edge connecting a vertex in X = {1, 2, ..., n} to a

vertex of Y = {(n+ 1), (n+ 2), ..., 2n}. A biclique in B is represented by a

submatrix of all 1s of A, which also represents a directed biclique of D. Therefore,

bc(B) = ~bc(D) = rB(A) and bp(B) = ~bp(D) = rZ+(A). In fact, the class of digraph

matrices on n vertices is a subclass of bigraph matrices on 2n vertices. Given

digraph D, define f : A(D) −→ E(B) by f(i −→ j) = {i, n+ j} then f is a 1-1

function.

In this chapter, we will consider out-tournament matrices from the

perspective of the strong component structure of the out-tournaments. From this we
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are able to give the vertices an enumeration that creates a block upper triangular

matrix, allowing for fairly straightforward verification of its matrix ranks.

2 Strong Component Structure

Beginning with a series of theorems from Bang-Jensen, Huang, and Prisner

[5], the revealed structure became the basis for matrix rank theorems in [19] and

[20]. The generalization of that work was featured in [14].

We will be asking: when are the adjacency matrix ranks of a non-strong out-

tournament full and equal? In other words, when do we have:

rB(A) = r(A) = rZ+(A) = rt(A) = n?

In a digraph, we say vertex y is reachable from x if there is a directed path from x

to y. A digraph, D (or a subdigraph) is strongly connected, or simply strong, if each

vertex y in D is reachable from each vertex x in D, distinct from y. A strong

component of digraph D is a maximal, strongly connected subdigraph.

Thinking about the out-tournament in terms of its strong components and

grouping the vertices together accordingly reveals the highly structured nature of

the adjacency matrix of a digraph of this type. The digraph has several nice

properties which are reflected in the equally nice properties of its adjacency matrix.

Suppose that digraph D has strong components D1, D2, ..., Dk, which have

sizes n1, n2, ..., nk and the adjacency matrices of the components are A1, A2, ..., Ak,

respectively.

Theorem 2.3. [19] Let Di and Dj be distinct strong components of out-

tournament D. If vertex v ∈ Dj is dominated by some vertex in Di, then every

vertex in Di dominates vertex v.

Observe that there are no arcs from any vertex in Dj to any vertex in Di. To

visualize this, recall that the strong components are maximal, so there can only be
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arcs going in one direction, otherwise the components are not distinct. Since every

vertex in Di is reachable from any u ∈ Di and the parent digraph is an out-

tournament, then every vertex in Di must dominate v.

The notation Di −→ v will be used to denote that every vertex in Di beats

vertex v. The strong component digraph of a digraph D, SC(D), has a vertex for

each strong component, and an arc u −→ v if any vertex in the strong component

represented by u dominates any vertex in the component represented by v. Let the

notation Di =⇒ Dj mean that there is at least one arc from Di to Dj and there are

no arcs going from any vertex in Dj to any vertex in Di. Now we are able to say

that if vertex v in strong component Dj is dominated by any vertex in distinct

strong component Di in out-tournament D, then Di −→ v and Di =⇒ Dj.

Moreover, if di and dj represent strong components Di and Dj respectively in

SC(D), then di −→ dj.

If D is an out-tournament, then SC(D) is an out-tournament [5].

Furthermore, SC(D) is an acyclic digraph. As a corollary to Lemma 3.7 in Factor

et al. [19], we get the following proposition.

Proposition 2.4. Let Di, Dj and Dk be strong components of out-

tournament D. If Di =⇒ Dj and Di =⇒ Dk then Dj =⇒ Dk or Dk =⇒ Dj, but not

both.

Proof. Suppose that Di, Dj and Dk are distinct strong components of out-

tournament D and assume that Di =⇒ Dj and Di =⇒ Dk. Then there is a vertex

u ∈ Di that dominates some v ∈ Dj and some w ∈ Dk. Since {v, w} ⊆ N+(v), then

v and w are adjacent in D because D is an out-tournament. Suppose that v −→ w

then Dj −→ w and Dj =⇒ Dk. If w −→ v then Dk −→ v and Dk =⇒ Dj. We

cannot have both Dj =⇒ Dk and Dk =⇒ Dj because Dj and Dk are distinct strong

components. �

This proposition reveals a great deal of structure in the digraph. The

modified condensation digraph of an out-tournament, using ‘=⇒’ as arcs, is acyclic
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by Proposition 6.20. The result is that the strong components may be numbered in

such a way that for any components Dj and Dk, Dj =⇒ Dk implies that j < k.

Then, we can use this numbering to form A, a block adjacency matrix of the out-

tournament with the form given in (2.2). In the block matrix, ‘[0]’ will mean a block

of all 0s of the appropriate dimension.

The size of the blocks off the diagonal are determined by their row and

column in the block matrix. All the entries below the diagonal are blocks of all 0s.

The blocks above the diagonal are blocks composed of columns of 1s and columns of

0s, due to Theorem 2.3.

(2.2) A =


A1 ∗ · · · ∗

[0] A2
. . .

...
...

. . . . . . ∗

[0] · · · [0] Ak



3 An Out-Tournament Matrix with Full Ranks

If we assume that an out-tournament has the desired matrix ranks full and

equal, then the same must be true of the strong components. Note that throughout

this section, A will be the adjacency matrix of the specified out-tournament.

3.1 Real Rank of Components

Proposition 2.5. If A is the adjacency matrix of an out-tournament with

strong component matrices A1, ..., Ak and r(A) = n, then for each j ∈ {1, ..., k},

r(Aj) = nj.

Proof. To prove this, we need only consider the structure of A. Suppose that

the out-tournament has adjacency matrix A and has strong components D1, ..., Dk,
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numbered in the standard way. The resulting matrix with corresponding

submatrices A1, ..., Ak is shown in (2.2). Suppose that r(A) = n, the number of

vertices in D. Next consider the bottom row of the block matrix shown in (2.2). The

function f : Rn −→ Rnk given by f(0, ..., 0, a1, ..., ank
) = (a1, ..., ank

) is clearly a

bijection between the row space of [[0], .., [0], Ak] and the row space of Ak. Thus,

r(Ak) = nk and Ak is row equivalent to Ink
. Therefore, we have that

A '


A1 ∗ · · · ∗

[0]
. . . . . .

...
...

. . . Ak−1 ∗

[0] · · · [0] Ink



where ' represents row equivalence. Hence, by row elimination, we get

A ' A
′
=


A1 · · · ∗ [0]

[0]
. . . . . .

...
...

. . . Ak−1 [0]

[0] · · · [0] Ink

 .

Any 1s that lay above Ink
have been eliminated in this step. By the same

argument, the row second to the bottom of block matrix A1 indicates that

r(Ak−1) = nk−1. Continuing in this way, we see that for each j ∈ {1, ..., k}, we have

r(Aj) = nj. �

Now that we know each component has full real rank, by (2.1), we have

r(A) = rZ+(A) = rt(A) = n. That is, the only rank that remains to be calculated is

the Boolean rank for each of the components.
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3.2 Boolean Rank of Components

In our search for the Boolean ranks of the strong component submatrices of

our out-tournament matrix, it will be convenient to introduce a matrix related to A,

which will be useful in the results of this section. Define

A0 =


A1 [0] · · · [0]

[0] A2
. . .

...
...

. . . . . . [0]

[0] · · · [0] Ak

 .

Since A is a block diagonal matrix, then any pair of 1s in two different

component matrices cannot lie in a single rank 1 submatrix. Clearly,

rB(A0) =
k∑

j=1

rB(Aj).

Lemma 2.6. If for each j, r(Aj) = nj then rB(A) ≤ rB(A0).

Proof. Since r(Aj) = nj for each j, there are no rows or columns of 0s in A.

Hence, in each row, there are 1s that are covered in a minimum biclique covering of

A0. Thus, any minimum biclique cover of A0 extends to a biclique cover of A with

the same number of bicliques. This means that rB(A) ≤ rB(A0). �

Proposition 2.7. If rB(A) = n then for each j, rB(Aj) = nj.

Proof. Since n = rB(A) ≤ rB(A0) =
∑k

j=1 rB(Aj) ≤ n, then rB(Aj) = nj for

each j. �

Proposition 2.8. If r(A) = rZ+(A) = rB(A) = rt(A) = n, then for each j,

r(Aj) = rZ+(Aj) = rB(Aj) = rt(Aj) = nj.
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Proof. Since rB(A) = n implies that rB(Aj) = nj and r(A) = n implies that

r(Aj) = nj, we now get that

r(A) = rZ+(A) = rB(A) = rt(A) = n

implies that for each j,

r(Aj) = rZ+(Aj) = rB(Aj) = rt(Aj) = nj,

which completes the proof. �

4 Component Matrices with Equal, Full Ranks

Here we consider the converse of the previous situation and find that if we

assume full and equal matrix ranks for each of the strong components, then the

same must hold for the entire out-tournament.

Proposition 2.9. Let D be an out-tournament with k strong components

and adjacency matrix A. Let nj be the size of Dj, the jth component of D. If for

each j ∈ {1, 2, ..., k}, rB(Aj) = nj then rB(A) = n.

Proof. Consider a minimum biclique cover of D. If each biclique contains arcs

originating from only one component Dj, then there will be no fewer than∑
rB(Aj) = n bicliques. Suppose that rB(A) < rB(A0). Then there is a biclique in

that minimum cover of the form {vi, vj, ...} −→ {w1, w2, ...} where vi and vj are not

in the same strong component, and at least one of {w1, w2, ...} must be in Di and at

least one in Dj. We can assume, without loss of generality, that i < j and that w1 is

in Di and w2 is in Dj. If this were not the case, then the biclique we are considering

would be an extension of a biclique in A0, which would not be one of the bicliques

that could allow rB(A) < rB(A0). Clearly this is not a biclique in A0, so there must

be a column of 1s above Aj, in the column of w2. More precisely, it must be the case

that Di =⇒ Dj. However, since Di =⇒ Dj, there cannot be an arc from vj to w1, so
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the multi-component biclique cannot exist. For an illustration, see the block

diagonal matrix, (2.2). Recall that the upper triangular block matrix was possible

because of the acyclic enumeration of the strong components, and this is the fact

that prevents any bicliques from having arcs in more than one strong component.

Thus, rB(A) = rB(A0) = n. �

Proposition 2.10. Let D be an out-tournament with adjacency matrix A,

and k strong components with submatrices A1, ..., Ak. Let nj be the size of Dj, the

jth component of D. If for each j ∈ {1, 2, ..., k}, we have r(Aj) = nj, then r(A) = n.

Proof. Assume that r(Aj) = nj for each j. Then

(2.3) A '


In1 [0] · · · [0]

[0]
. . . . . .

...
...

. . . Ink−1
[0]

[0] · · · [0] Ink

 '

A1 [0] · · · [0]

[0]
. . . . . .

...
...

. . . Ak−1 [0]

[0] · · · [0] Ak

 = A0,

so r(A) = r(A0) =
∑
r(Aj) = n. �

5 Conclusion and Future Work

Assembling the preceding propositions, we arrive at a concise statement of

exactly when an out-tournament has equal, full ranks, in terms of the ranks of its

strong components’ adjacency matrices.

Theorem 2.11. Let D be an out-tournament with k strong components and

matrix A. Let nj be the size of Dj, the jth component of D, and Aj its matrix. Then,

rB(A) = r(A) = rZ+(A) = rt(A) = n
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if and only if

rB(Aj) = r(Aj) = rZ+(Aj) = rt(Aj) = nj

for each j.

Proof. (⇒) This is Proposition 2.8.

(⇐) Follows immediately from Propositions 2.9 and 2.10. �

Along with this result, the analog for in-tournaments comes in a dual

fashion. The circumstances under which the preceding matrix ranks are equal and

less than full remains to be investigated.

5.1 Related Open Questions, Future Work

This section has dealt with out-tournament matrices in terms of strong

component matrices. However, it does not address:

(1) Characterization of adjacency matrices of strong out-tournaments:

When are these equal and full?

When are these equal, and less than full?

(2) Adjacency matrix ranks of non-strong out-tournaments where D has one or

more single-vertex strong components.

These are big questions that give the most basic subdivisions of the equal

rank problem for out-tournament adjacency matrices in light of the current chapter.

Each of the following chapters in this paper fits into one of those categories. As

discussed in Chapter 1, partial characterizations will take a subclass from one of

these categories and analyze its matrix ranks to partially characterize and add to

the previous knowledge of equal rank adjacency matrices for out-tournaments.
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CHAPTER 3
Reduction and Substitution by a

Tournament

1 Substitution and Reduction of an Out-Tournament

Consider an out-tournament D, with a tournament subdigraph T , such that

if x ∈ V (D − T ) beats vertex v ∈ V (T ) then for each t ∈ V (T ), x −→ t. Likewise, if

there is a vertex t ∈ V (T ) with t −→ y for y ∈ V (D − T ), then for each v ∈ V (T ),

v −→ y. If these conditions hold, we say D is reducible by tournament T . See

Figure 4 below. Vertex x is a representative vertex in the X, the set of vertices that

beat T . Vertex y is a representative of the set of vertices dominated by T .

Definition 3.1. Let D be a digraph reducible by tournament T . The

reduction of digraph D by tournament T is D′ = [V ′]D where V ′ = V (D − T ) ∪ {v},

v is any vertex in T , and any arcs to or from removed vertices are also removed.

In, 1993 Bang-Jensen [2] introduced the idea of replacing a tournament with

a single vertex. It lends itself well to the discussion of the properties of

out-tournaments.

Informally, one vertex v ∈ D′ in the reduced digraph represents the

tournament that was in D. In a similar fashion, given any digraph D′ we can form a

‘larger’ digraph D by substituting a tournament T for any vertex v ∈ D′. Since we

will be talking about two related digraphs, D and D′, we will use a subscript on

arrows that represent arcs, in order to indicate which digraph the arc is in. E.g.,

‘x −→D y’ refers to arc (x, y) in the arc set of digraph D. When we refer to an

outset of a vertex, it is also necessary to state which digraph we mean. Similar to

the arc notation, the expression N+
D (v) is used to indicate the outset of vertex v in
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digraph D, and N−D (v) the inset of v in D. The adjacency matrix of digraph D on n

vertices is denoted A, and A′ is the adjacency matrix of D′ on n′ vertices.

Definition 3.2. Given digraph D′ = (V ′, A′), digraph D = (V ′ ∪ V (T ), A),

where [V (T )]D = T and x −→D′ v implies x −→D t for each t ∈ T . Likewise, if

v −→D′ y then t −→ y for each t ∈ T . Then D is formed from D′ by the

substitution of tournament T for vertex v in V ′.

As noted in [2], both substitution and reduction by a tournament are local

tournament preserving operations. Digraph D is a local tournament if and only if

D′ is a local tournament. As a corollary, both substitution by a tournament and

reduction by a tournament are out-tournament preserving. D is an out-tournament

if and only if D′ is an out-tournament.

Given these facts, perhaps a natural question is: do the operations of

substitution and reduction by a tournament preserve the full matrix ranks of the

out-tournament matrix? We will address this question for two matrix ranks that are

Figure 4. Subdigraph reducible by tournament on five vertices, and
the corresponding reduced subdigraph below. Arcs with solid lines are
within the reduced tournament.
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of particular interest for adjacency matrices of digraphs, namely term rank and

Boolean rank.

2 Substitution, Reduction and Full Term Rank

Let D be an out-tournament and D′ the reduction of D by tournament T .

2.1 Term Rank and Connectedness

Proposition 3.3. Out-tournament D is strong if and only if D′ is strong.

Proof. (⇒) Suppose that out-tournament D is strong. Let v be the vertex in

D′ to which a tournament T in D is reduced. For each vertex t ∈ T and x ∈ D′,

there is a path from t to x and a path from x to t in D. Therefore, in D′ there is a

path from t to v and a path from v to t. Thus, D′ is strong.

(⇐) Conversely, suppose that D′ is strong. Then for each x ∈ D′ there is an

xv-path and a vx-path. By the definition of substitution of tournament T for vertex

v ∈ D′, we have N−D (t) ∩ V (D′) = N−D′(v) and N+
D (t) ∩ V (D′) = N+

D′(v) for each

t ∈ T . There is an xt-path and a tx-path in D for each t ∈ T and each

x ∈ V (D′)− {v}. Any xy-path in D′ where neither x nor y is v, remains unaffected

by the substitution of the tournament T . �

Now, we recall that by out-path mergeability we know that an

out-tournament is strong if and only if it has a Hamiltonian cycle [5]. Thus,

following immediately from Proposition 3.3 we get the desired result.

Theorem 3.4. Let D be a strong out-tournament reducible by tournament T

and D′ the reduction of D by T . We have rt(A) = n if and only if rt(A
′) = n′.

Proof. Since D is strong, D has a Hamiltonian cycle. Likewise, by Proposition

3.3 on page 25, D′ also has a Hamiltonian cycle. The 1s of a Hamiltonian cycle in
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the adjacency matrix represent a set of independent 1s of size n, so rt(A) = n and

rt(A
′) = n′. �

3 Boolean Rank and Substitution

As it turns out, a result similar to Theorem 6.13 for term rank holds for

Boolean rank as well. However, as has been noted in previous literature, it is often a

bit more difficult to find than the term rank. As before, let D be an out-tournament

reducible by T , and let D′ denote the reduction of D by T . Recall that this also

means D is the result of substituting tournament T for vertex v ∈ D′.

3.1 Reduction Preserves Full Boolean Rank

First, let us consider an out-tournament adjacency matrix A of a digraph D

reducible by tournament T . Our goal in this section is to show that if A has full

Boolean rank, then A′ also has full Boolean rank.

From the Chapter 1, recall that the arcs represented by any rank 1

submatrix form a biclique in the digraph, so we will refer to the rank 1 submatrix of

A as a biclique matrix. Observe that if biclique Bi is given as Bi = (Xi, Yi) where

Xi −→ Yi, then Xi gives the row labels and Yi gives the column labels of the

nonzero entries of the rank 1 matrix that represents Bi in matrix A.

Given a particular biclique covering or partition, B = {(Xi, Yi)}ki=1, it may

be possible for a biclique Bi ∈ B to be extended horizontally to B′i = (Xi, Y
′
i ) where

Y ′i ⊇ Yi or Bi may be reduced horizontally if it can be replaced in collection B by

B′i = (Xi, Y
′
i ) where Y ′i ⊆ Yi.

Similarly, it may be possible for a biclique Bi ∈ B in collection B to be

extended vertically to B′i = (X ′i, Yi) with X ′i ⊇ Xi or reduced vertically to

B′i = (X ′i, Yi) with X ′i ⊆ Xi. In any of these cases of reduction or extension, the
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presumption is that the modified collection B is still a biclique covering or partition,

respectively, of D.

Proposition 3.5. Let D be an out-tournament reducible by a tournament

T . If rB(A) = n, then rB(AT ) = nT , where nT = |V (T )|.

Proof. Suppose not. If rB(AT ) < nT , then there is a set ST of rows of AT that

may be covered by fewer than |ST | rank 1 matrices. Let |S| = j, and define the ith

biclique as B
′
i = (Xi, Yi), whose matrix covers these rows of AT . Now, we extend

these biclique matrices to cover the corresponding set of rows in A. Let Y = N−(T )

(note that we can refer to this set without ambiguity) then define Bi = (Xi, Yi ∪ Y ).

Then the set of rows S of A corresponding to the set ST of rows in AT is covered by

j < |S| biclique matrices, which then implies that rB(A) < n. �

Now, in a similar fashion, we can say that a result analogous to Proposition

3.5 holds for A′, the reduction of A by tournament matrix AT .

Theorem 3.6. Let A be a connected out-tournament matrix reducible by

tournament matrix AT , and matrix A′ its reduction. Then rB(A) = n implies that

rB(A′) = n′.

Proof. Suppose that rB(A′) < n′. Then there exists a set with minimum size,

of j rows of A′ coverable with j − q biclique matrices B′1, B
′
2, . . . , B

′
j−q for some

q > 0. These may be extended to biclique matrices of A as follows. If B′i = (X ′i, Y
′
i )

then define Bi = (X ′i, Y
′
i ∪ V (T )) if v ∈ Y ′i and Bi = B′i otherwise. This extends the

biclique matrices in A′ horizontally. Thus, the corresponding j − q rows of A are

covered by B1, B2, . . . , Bj−q, showing that rB(A) < n. �

3.2 Substitution and Full Boolean Rank

Now, we may question whether the converse of Theorem 3.6 also holds.

Suppose that we have out-tournament matrix A′ and substitute tournament matrix
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AT . As we have seen in the proofs of Theorem 3.6 and Proposition 3.5, if

rB(A′) < n′ or rB(AT ) < nT , then rB(A) < n. If we assume that we are substituting

a tournament with a full Boolean rank matrix, does rB(A′) = n′ imply rB(A) = n?

The answer is: not in general.

The matrix A in (3.1) serves as a counterexample. For ease of visualization,

we have vertex v as 6, at the end of the enumeration of vertices of D′. Note that D′

is a strong out-tournament, with a cyclic enumeration of its six vertices. Then

D′ = [{1, 2 . . . , 6}]D, with A′ consisting of the 6× 6 matrix in the upper left hand

corner of A. See (3.2) for matrix A′ and (3.3) for AT . Tournament

T = [{5, 6, . . . , 11}]D consists of the induced subdigraph of D on the last six

vertices.

(3.1) A =



0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

1 0 0 0 0 1 1 1 1 1 1

1 0 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 1 0 0 1 0 0

1 0 0 0 0 1 1 0 0 1 1

1 0 0 0 0 1 1 1 0 0 1

1 0 0 0 0 1 1 1 0 0 0


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(3.2) A′ =



0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 1

1 0 0 0 0 0


.

(3.3) AT =



0 1 0 0 0 0

0 0 1 0 0 0

1 0 0 1 0 0

1 1 0 0 1 1

1 1 1 0 0 1

1 1 1 0 0 0



In (3.3) note that the set {(6, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} forms an

isolated set of 1s. Since this set has size 6, it is therefore a maximum set for a 6× 6

matrix. Therefore, rB(AT ) = nT = 6. Likewise, the same set of locations

{(6, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6)} forms an isolated set of 1s in matrix A′.

Thus, rB(A′) = n′ = 6 as well.

Now, despite the fact that A′ and AT each have full Boolean rank, the matrix

A, which is the adjacency matrix resulting from the substitution of tournament T

for vertex 6 in D′, does not have full Boolean rank. Indeed, consider rows 5 through

11 of matrix A, together with the following six bicliques, given as Bi = (Xi, Yi),

where Xi −→D Yi. We use the insets N−(v) as Xi because it is a convenient way to

refer to the set of row indices of all the nonzero entries in column v.

• B1 = (N−(6), {1, 6})

• B2 = (N−(7), {1, 7})
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• B3 = (N−(8), {1, 8})

• B4 = (N−(9), {1, 9})

• B5 = (N−(10), {1, 10})

• B6 = (N−(11), {1, 11})

In matrix A, column 1 is the Boolean sum of columns 6, 7, 8, 9, 10 and 11.

So, we have seven rows (or seven columns) of A coverable in fewer than seven

biclique matrices.

3.3 A Case in which Full Boolean Rank is Preserved through

Substitution.

In Section 3.2, we considered when it might be possible to subsitute a full

Boolean rank tournament T into a full Boolean rank digraph D′ and obtain a full

Boolean rank digraph. The counterexample, (3.1), was constructed in a specific way

in order to allow a minimum covering of A in which there was at least one

multi-row, multi-column biclique covering 1s of both A′ and 1s of AT . In order for

this to happen, we substituted T for a vertex with N+(N−(v)) ∪N+(v) 6= ∅. That

is, 5 ∈ N+(N−(v)) ∪N+(v) allowed a horizontal extension of a column biclique

cover of the 1s of columns 6 through 11 in the submatrix of A consisting of the rows

5 through 11.

There may certainly be other cases in which a substitution of this kind

preserves full Boolean rank, but we will consider a particular case, which was

perhaps hinted at in the previous counterexample.

This method revolves around an appropriate choice of vertex v in D′ for

which we will substitute tournament T . Our assumptions are as follows:

Criterion 3.7. Matrix A′ has rB(A′) = n′, digraph D is formed by

substituting tournament T for vertex v, and rB(AT ) = nT .
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We want to give a condition such that these three items guarantee full

Boolean rank will be preserved by the substitution. Lundgren and Stewart [32] give

us the following useful result.

Lemma 3.8. If rB(A) < n, then there exists a set, S, of rows of A such that

these rows of A may be covered by less than |S| bicliques, and S is of a minimum

size.

Thus, if we assume Criterion 3.7 holds, and assuming that rB(A) < n, there

must exist such a set S. It will be convenient for us to be able to refer to another

related digraph, D∗, which we will define as D′ − {v} or [V − {v}]D′ , and A∗ will be

its adjacency matrix. Let M be a minimum biclique covering of the rows of S. Note

that there are no single row biclique matrices in M . If there were, then S was not of

a minimum size.

Lemma 3.9. The set S defined above may not consist only of rows

corresponding to A∗

Proof. Since rB(A′) = n′, no collection of rows S in A corresponding to A∗

may be covered by less than S bicliques. If there were such a collection of rows S in

A, then the corresponding rows of A′ could be covered in that same number of

bicliques, by horizontal reduction of any minimum cover of the corresponding rows

in A, which would make rB(A′) < n′. By assumption, this is not so. �

Likewise, such a set S cannot consist only of rows corresponding to AT , for

precisely the same reason: we have assumed that rB(AT ) = nT .

Now, because of the ranks of A∗ and AT , a similar result holds for any

minimum biclique cover, M .

Lemma 3.10. In any minimum biclique matrix cover of the 1s in rows of S,

there must exist a biclique B0 whose matrix involves rows of both A∗ and AT , as well

as involving columns of both A∗ and AT .
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Proof. Suppose that every biclique matrix of minimum biclique covering M

involving rows of A∗ does not involve rows of AT . Let S∗ denote the part of S in the

rows of A corresponding to A∗, and analogously for ST . Note that S∗ alone requires

|S∗| bicliques, since rB(A′) = n′. Likewise, ST requires |ST | bicliques since

rB(AT ) = nT . But, S was coverable by fewer than |S| bicliques, by assumption. Now

let M ′ be the subset of the covering consisting only of the bicliques involving rows of

both AT and A∗. Suppose that all of the elements of M ′ involving columns of A∗ did

not involve columns of AT . Then M itself is nothing more than a vertical extension

of the union of a minimum covering for each of S∗ and ST , which as we have noted

would make |M | > |S|. Thus, such a biclique matrix with rows of both A∗ and AT ,

and columns of both A∗ and AT must exist, given our assumptions above. �

We have been talking about a multi-row, multi-column biclique matrix that

has at least one column in common with each of two submatrices that we are

looking at, as well as having at least one row in common with each of the two

submatrices. If biclique B has that property, we will call it a crossover biclique.

Finalizing the above argument, we get the following proposition.

Proposition 3.11. Let D be an out-tournament formed by substitution,

following Criterion 3.7. Then rB(A) < n implies that crossover biclique B0 must

exist in any minimum biclique cover.

Proof. Let Z ⊆ V (D′) be the vertices in D′ not adjacent to v. Define set X to

be the set of vertices {x ∈ D∗|x −→ T}, and define set Y as {y ∈ D∗|T −→ y}. To

illustrate the block form of A using this partition of vertices, rows corresponding to

X, Y, Z, and T are labelled accordingly in (3.4). We give the matrix A in a way

that allows easier visualization of the above concepts. The vertices are grouped by

categories above, and D is given an appropriate enumeration to make the block

form of A appear as



33

(3.4) A =



Z X Y T

Z [0]

X [1]

Y [0]

T [0] [0] [1] AT

.

Block entries not relevant are left blank. Note that the submatrix consisting

of rows and columns X, Y, Z is exactly matrix A∗. A [0] block is a submatrix of A

consisting of all 0s, and a [1] entry in the block is a submatrix of A consisting of all

1s. Notice that we cannot use Jk notation here, since the blocks are not necessarily

square. Now, keeping this block form in mind, consider the locations of the 1s that

would be involved in any crossover biclique, B0.

(3.5) A =



Z X Y T

Z [0]

X A1 A2

Y [0]

T [0] [0] A3 A4



Since B0 involves 1s in AT , there must be at least one in A4, see (3.5). Now,

recall that B0 also must involve at least one row of A∗, and thus B0 must cover a 1

in block A2, the only other nonzero block in column T . Since B0 also involves

columns of A∗, those must be contained in column Y in the block matrix, (3.5),

since column Y contains the only nonzero blocks in row T and the columns of A∗.

Therefore, B0 must also cover the appropriate 1s in block A1. �

Of course, it could happen that the configuration of 1s in A1 and A4 does

not, in fact, allow such a biclique. In such a case, we would have preservation of full
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Boolean rank, but in an ad hoc manner. If D is formed from D′ by substitution of a

tournament, T , with adjacency matrices A, A′ and AT , respectively, then

rB(A′) = n′ and rB(AT ) = nT are together not sufficient to guarantee that

rB(A) = n. One universal way to assure preservation of full Boolean rank with

substitution is to not allow any 1s in submatrix A1. Or, to phrase it differently, to

substitute T only for a vertex that does not let this happen. The following theorem

covers that case. Theorem 3.12 gives a sufficient condition such that full Boolean

rank is preserved under tournament substitution. All of the outset and inset

operators in this theorem are with respect to digraph D′. Leaving off the subscripts

will make the conditions easier to read.

Theorem 3.12. Let D′ be an out-tournament with rB(A′) = n′, T be a

tournament with rB(AT ) = nT , and D the digraph formed by substituting

tournament T for vertex v ∈ D′. Let A be the adjacency matrix of D. If

N+(N−(v)) ∩N+(v) = ∅, then rB(A) = n.

Proof. Assume that the conditions are satisfied. The requirement that

N+(N−(v)) ∩N+(v) = ∅ precludes the possibility that there may be any multi-row,

multi-column biclique matrix with at least one arc in tournament T and at least one

arc outside of tournament T . Consider any aij = 1 in submatrix AT . For any akj = 1

in the same column, but not in the rows representing T , k −→ j means k ∈ N−(v).

Any other 1 in row k not in the columns representing T , say in column `, means

that k −→ v in D′. Our assumption, N+(N−(v)) ∩N+(v) = ∅, guarantees that any

row t (including row i) of the rows of AT has entry 0 in column `. Thus, there can

be no reduction of Boolean rank from full when tournament T is substituted for

vertex v. Furthermore, rB(A) = rB(A′)− 1 + rB(AT ) = n′ − 1 + nT = n. �
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(3.6) A =

` j
k 1 ← 1

↓ ↑

i 0 1

In (3.6), we see an illustration of the progression of the proof of Theorem 3.12,

where all labels are those used in the proof. Only important row and column labels

are shown, while most of the matrix entries are left out. Arrows indicate the order

of the 1s appearance in the proof. The entry aij is in A4 of block matrix (3.5), akj is

in A2, and ak` cannot be in A1, which is all 0s. Finally, any at` must be 0 since

columns Y and T of the block matrix contain the only nonzero entries.

The condition this theorem relies on, N+(N−(v)) ∩N+(v) = ∅, assures us

that A1 in (3.5) is a block of 0s. Hence, there can be no biclique matrix covering

part of A∗ and part of AT that allows rB(A) to be less than rB(A∗) + rB(AT ).

4 Conclusion and Future Work

Although the condition N+(N−(v)) ∩N+(v) = ∅ is a narrow constraint, it

does achieve the desired effect, albeit in a brute force manner. It appears that if we

wanted to weaken the conditions on the theorem, the results would be a series of

classes of out-tournaments that do not necessarily lend themselves to a more natural

characterization. That does not mean that there isn’t such a characterization, only

that it seems unlikely to reveal itself in this context, based on previous and current

research results and limitations. Thus, we must settle for the reduction result,

Theorem 3.6, which should be much easier to apply to other theorems and

investigations of out-tournament matrix ranks.
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The effect of the above results may assist in characterizing full term rank

adjacency matrices and their out-tournaments as well as full Boolean rank

adjacency matrices and their out-tournaments. Theorem 3.6 allows us to assume

that the digraphs are fully reduced, which gives a potentially simpler form with

which to work.
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CHAPTER 4
Digraph Matrix Classes with Equal

Boolean and Nonnegative Integer Ranks

1 Introduction

As discussed previously, papers [6] and [22] found that for any adjacency

matrix A arising from digraph D, ~bc(D) = rB(A) and ~bp(D) = rZ+(A); for

illustration see Figures 2 and 3, and the Boolean sum in (1.5). Recall that Boolean

rank and nonnegative integer ranks of {0, 1}-matrices are defined as factor ranks,

whose factorizations may alternately be thought of as sums of rank 1 matrices. The

central idea with regard to the matrices is that in both cases, a rank 1 matrix has

all 0s, except for a single maximal submatrix of all 1s.

A biclique covering of the arcs of digraph D appears in the adjacency matrix

A as a collection of submatrices of all 1s. Since this is a covering, 1s may be used in

more than one rank 1 submatrix. A biclique partition of the arcs of D appears in

the matrix in a similar way, except, as the name suggests, each 1 in the matrix is in

exactly one rank 1 submatrix.

The motivation for this chapter lies in the differences between covers of arcs

and partitions of the arcs in the digraph. When are the biclique cover and biclique

partition numbers equal? That is the question we will explore here. The question is

not an easy one to answer. It is relevant to the current paper, as a whole, because

as we see in Siewert [41], there are examples where the Boolean rank of a digraph

matrix is above real rank as well as examples with Boolean rank below. Here we

look for conditions such that Boolean and nonnegative integer ranks are equal. If we

find out-tournaments that fit these requirements, then for that class of out-

tournaments, the question of finding equal full ranks reduces to that of finding out-
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tournaments with full real rank. So, if satisfactory conditions can be found, then

this will be an important step toward characterizing all out-tournament matrices

with equal full ranks.

2 On Boolean Rank

For any {0,1}-matrix A, Boolean rank is more difficult to analyze than real

rank because there is a simple process to find a basis over < of the row space of A.

Although in some ways we can treat the Boolean rank similarly, we don’t have

subtraction over Boolean semiring, β. Hence, finding Boolean rank becomes much

more difficult than finding real rank.

2.1 Reduction and Extension of Bicliques and Biclique Matri-

ces

In this chapter, we use ‘reduction’ exclusively in the sense of reduction of

bicliques given in Section 3.1. Before proceeding to the main result of this section,

we need to develop some language to clarify the successive discussion. Whether we

are talking about a biclique partition or a biclique cover, the bicliques in digraph D

correspond to rank 1 submatrices of A, the adjacency matrix of D. Also recall the

introduction of the biclique operations of extension and reduction, and their matrix

equivalents, which was presented in Section 3.1. Observe that a covering of a

minimum size is not necessarily fully reduced. There are times when maximum

bicliques are required in a minimum covering. In order to simplify the following

explanations, we will assume that the minimum biclique coverings are also minimal

in the sense that any reduction of any biclique in the cover results in a modified

collection B′ that is no longer a covering. That is, any possible reduction leaves at

least one arc uncovered.
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Given any minimum cover of 1s in a matrix A, we will call the covering fully

reduced if any single row or single column elements of a cover are extended to cover

all 1s in their row/column (respectively) and all other elements of the cover are

reduced accordingly.

One may observe that for any given biclique Bi in collection B, a maximal

extension vertically followed by maximal extension horizontally may well produce a

different B′i than that produced by doing the extensions in the other order. A similar

statement holds for reductions. The order of multi-stage extensions or reductions

will be mentioned explicitly when it makes a difference to a particular proof.

2.2 A Matrix with Full Nonnegative Integer Rank and Singu-

lar Boolean Rank

Recall that term rank, rt(A), of a matrix A is equal to the independence

number of A, the size of a maximum set of independent 1s in the matrix.

Alternatively, this has been referred to as the minumum size of a line cover of the 1s

of the matrix, or in [39] as the minimum size of a claw cover of the arcs of digraph

D, where D is digraph with adjacency matrix A. A claw cover of the arcs of D is a

collection of bicliques that we can write as B = {(Xi, Yi)}ki=1 in which for each i,

|Xi| = 1 or |Yi| = 1. Recall (2.1), and the fact that rB(A) ≤ rZ+(A) for any

{0, 1}-matrix, the inequalities rB(A) ≤ rZ+(A) ≤ rt(A) always hold. This should

also seem plausible since a claw cover is more restrictive than a more general

biclique cover.

Now, we are interested in describing matrices that have rB(A) = rZ+(A) = n.

Because of their relationship, if Boolean rank is full, then the nonnegative integer

rank is full as well. In this section, we approach the problem by considering

matrices with full nonnegative integer rank and identify sufficient conditions to

guarantee that Boolean rank is also full.

To accomplish this, first we look at matrices that have rB(A) < rZ+(A) = n.
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Theorem 4.1. If a square {0, 1}-matrix A has rB(A) < rZ+(A) = n, then

there is a submatrix of the form

(4.1) C =


1 1 0

1 1 1

0 1 1



or some permutation of PCQ of the rows and columns of C, where P and Q

are permutation matrices.

Proof. By assumption, a minimum partition of the 1s in matrix A has size n,

but a minimum cover of the 1s of A has size n− k, with k > 0. Note that there

cannot be any rows of 0s. Since the Boolean rank is less than n, given any minimum

covering B = {B1, B2, ..., Bn−k}, there exists a minimal set S of rows of A that are

covered by |S| − k rank 1 submatrices. Within this subcover, there exists an axy = 1

that lies in at least two distinct elements of the cover, say Bi = (Xi, Yi) and

Bj = (Xj, Yj), which is to say that x ∈ Xi ∩Xj and y ∈ Yi ∩ Yj. If not, then the 1s

in the rows of S are actually partitioned by the subcover lying in these rows. Since

the 1s in these rows are partitioned by less than |S| rank 1 matrices, rZ+(A) < n,

contradicting our assumption.

Without loss of generality, we may suppose that minimum covering B is fully

reduced. For ease of discussion, we will refer to only the part of the subcover that

lies in the rows of S. Let bi = (xi, Yi), where xi consists of Xi ∩ S. The biclique bi is

a sub-biclique matrix of Bi. The collection of b = {bi|Bi ∩ S 6= ∅} forms a minimum

cover of the 1s of rows of S. Suppose not. Then A itself may be covered in less than

n− k rank 1 matrices, contradicting our assumption.

Observe that every bi lies in multiple rows, that is |xi| > 1 for each i. If we

were to have a single row b0, then this rank 1 matrix could be extended to cover all

the 1s in that row, and the other bi reduced accordingly. We have now modified the
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subcover, but it still has the same number of elements. However, the minimality of

S is violated, as the removal of that row from S produces a set of |S| − 1 rows

covered by (|S| − 1)− k rank 1 matrices.

Now, going back to the 1 that is in bi and bj, if bi is in only column y, then bi

may be extended to cover every 1 in that column, and since they are covered, bj

may be reduced to b′j = (xi, Yi − y). But, we assumed that the covering b was fully

reduced.

If ri and ci stand for a row vector index of A and a column vector index,

respectively, we know that there is r1 ∈ Xi −Xj and r2 ∈ Xj −Xi, and likewise,

there is c1 ∈ Yi − Yj and c2 ∈ Yj − Yi. The submatrix of A consisting of rows r1, x, r2

and columns c1, y, c2 has two rank 1 matrices, each lying in two rows and two

columns, with exactly one nonzero entry in both rank 1 matrices, which we named

axy. Therefore the submatrix of A consisting of rows r1, x, r2 and columns c1, y, c2 is

a permutation of matrix C given by (4.1). �

Corollary 4.2. If A has rZ+(A) = n and contains no submatrix PCQ

where P and Q are any 3× 3 permutation matrices, and C is


1 1 0

1 1 1

0 1 1

 ,

then rB(A) = rZ+(A) = n.

Proof. This follows from the contrapositive of Theorem 4.1. �

Note that we have a sufficient condition that rB(A) = rZ+(A) = n, but the

condition is not necessary. A full nonnegative integer rank matrix may have a

submatrix of the given form, and still have full Boolean rank as well.

The essential feature of matrix C is that the 1 at c2,2 is in two distinct

maximal Ji matrices. As a result, even though rB(C) = 2, clearly rZ+(C) = 3. Up
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to isomorphism, this is the smallest square {0, 1}-matrix with Boolean rank less

than nonnegative integer rank.

We may look at the cause for the difference in the two ranks of matrix C

above by giving a proposition extending a remark in [35]. Orlin’s remark was about

decompositions of undirected graphs, whereas ours follows a similar line of

reasoning, but for digraphs and bicliques. Although we have not yet talked about C

as part of an adjacency matrix, that is where this line of inquiry is leading.

Proposition 4.3. Let A be the adjacency matrix of digraph D. If every arc

in digraph D belongs to a unique maximal biclique, then

rZ+(A) = rB(A) = ~bc(D) = ~bp(D) and this common rank equals the number of

distinct maximal bicliques in D as well as the number of distinct maximal Ji in A.

Proof. Let B = {Bi} be any minimum biclique covering of D. Suppose that

(x, y) ∈ Bj ∩Bk. But (x, y) is in a unique maximal biclique, so Bj = Bk otherwise B

is not a minimum cover. Thus, the collection B is disjoint, making it a partition.

Since ~bc(D) ≤ ~bp(D), we have ~bc(D) = ~bp(D). �

Although this is an interesting result in itself, consider that every 1 in matrix

C is in a unique maximal Ji, or biclique matrix, with the notable exception of c2,2.

3 Digraphs with Matrices Containing C and Their

Ranks

Theorem 4.1 gives a submatrix C that must be in any {0, 1}-matrix with

differing Boolean and nonnegative integer ranks. We will use that result and apply

it to adjacency matrices. The reader will observe that matrix C is not a digraph

matrix as it is usually interpreted. It can represent a submatrix of an adjacency

matrix, however. The rows and columns of C could be numbered in a way that

allow it to be the submatrix of an adjacency matrix. We consider the different ways
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that this can be done. As noted by Corollary 4.2, if a {0, 1}-matrix A does not have

submatrix C, then rB(A) = rZ+(A). But the presence of submatrix C does not

guarantee that rB(A) < rZ+(A). To explore some possibilities, we will consider

classes of tournaments and out-tournaments whose adjacency matrices contain at

least one submatrix C and yet has rB(A) = rZ+(A). We will do this by considering

the vertices involved in that part of the matrix containing submatrix C. That is, we

look at the submatrix C consisting of row set X and column set Y , which is exactly

the submatrix representing biclique (X, Y ). Then, with the restriction that the

matrices must be adjacency matrices of a digraph, we consider [X ∪Y ]D, the induced

subdigraph of parent digraph D on vertices in X ∪ Y , which generated submatrix C.

First consider that for any digraph adjacency matrix, C arises on a

subdigraph consisting of a minimum of five vertices, and no more than six are

necessary. Of course, it can appear in matrices of digraphs on more than 6 vertices,

but we will only consider adjacency matrices of the induced subdigraph adjacency

matrix of the vertices actually involved in the substructure.

3.1 Five-Vertex Subdigraphs

Consider the form of a digraph on five vertices that causes submatrix C to

appear in its adjacency matrix.

Refer to digraph D1 in Figure 5. This five vertex digraph is the basic unit

that allows Boolean rank to fall below nonnegative integer rank. As we noted above,

if the parent digraph has an adjacency matrix that is free of submatrix C, then

rB(A) = rZ+(A). Now, we will consider possible configurations of induced

subdigraphs on the vertices D1 in a tournament, and their effects on the matrix

ranks of a parent digraph.

Up to isomorphism, the D1-induced out-tournament digraph adjacency

matrices are as follows.
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Figure 5. Digraph D1.

(4.2) E1 =



0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

1 0 0 0 0



(4.3) E2 =



0 1 1 1 0

0 0 1 1 1

0 0 0 1 1

0 0 0 0 0

1 0 0 1 0



(4.4) E3 =



0 0 1 1 0

1 0 1 1 1

0 0 0 1 1

0 0 0 0 1

1 0 0 0 0


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(4.5) E4 =



0 0 1 1 0

1 0 1 1 1

0 0 0 1 1

0 0 0 0 0

1 0 0 1 0



Now, to make use of these matrices, observe the following, where D(A)

represents the digraph D with adjacency matrix A.

(1) rB(E1) = rZ+(E1) = 5, H1 = D(E1) is strong and is ~C3-free.

(2) rB(E2) = rZ+(E2) = 4, H2 = D(E2) is not strong and contains ~C3.

(3) rB(E3) = rZ+(E3) = 4, H3 = D(E3) is not strong and contains ~C3.

(4) 3 = rB(E4) 6= rZ+(E4) = 4, H4 = D(E4) is not strong and contains ~C3.

There are some direct conclusions that we can draw from this information.

Theorem 4.4. Let T be a tournament with matrix A such that every

instance of submatrix C arises from subdigraph D1.

(1) If each occurrence of D1 induces H1, then rB(A) = rZ+(A).

(2) If each occurrence of D1 induces a strong subdigraph, then rB(A) = rZ+(A).

Notice that in (1) above, we cannot include H2 and H3 since the fact that

their ranks are not full allows the possibility of rB(A) < rZ+(A).

For an example that illustrates the previous theorem, consider the following

construction.

Corollary 4.5. If T is an out-tournament with matrix A on 5k vertices

with k strong components consisting of H1, then rB(A) = rZ+(A) = 5k.

Proof. Let out-tournament T have k strong components, each consisting of H1.

Then there are no other induced copies of D1 in the digraph, because SC(D) is

acyclic. Since every copy of D1 induces H1, then rB(A) = rZ+(A). Due to the fact
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that rB(Aj) = 5 and rB(A) =
∑k

j=1 r(Aj), where Aj is the adjacency matrix of

component j, we have rB(A) = rZ+(A) = 5k. �

Along the same lines, we may extend a similar result to a class of strong out-

tournaments. Consider the rotational tournaments on n ≥ 7 vertices, defined by

N+(x) = {x+ 1, x+ 2, x+ 3} with all entries (mod n)+1. If T is such an out-

tournament with adjacency matrix A, there are many submatrices of the form C;

each is generated by a subdigraph on five vertices, and each of those subdigraphs

induce H1. For example,

(4.6) A =



0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 0 1 1 1

1 0 0 0 0 1 1

1 1 0 0 0 0 1

1 1 1 0 0 0 0


.

This example is a tournament, but the form of the matrix will be the same for higher

n, which will form proper out-tournaments. Note that D is strong in this case, and

the 1s that represent the Hamiltonian cycle, {x −→ [(x mod n) + 1]|x ∈ V (D)},

form a full set of isolated 1s. Hence, rB(A) = rZ+(A) = n.

3.2 Some Six-Vertex Subdigraphs

An induced subdigraph D on six vertices with matrix A containing C has

many more possible configurations than with five vertices. We can nevertheless

make some observations of classes, which despite having such induced digraphs,

have full, equal Boolean and nonnegative integer ranks.
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Proposition 4.6. Let D be a tournament with adjacency matrix A having

full nonnegative integer rank. If C is a submatrix of A produced by an induced

subdigraph on six vertices, and no five vertex subdigraph produces C, then D has at

least one ~C4 subdigraph.

Proof. Consider matrix C again, produced by a subdigraph on six vertices and

no five vertex subdigraph produces C. The removal of any of the six vertices causes

C to no longer be a submatrix of A. Then by definition the rows and columns

represent disjoint sets of vertices. Up to isomorphism, the vertices are as labeled in

(4.7).

(4.7) C =


4 5 6

1 1 1 0

2 1 1 1

3 0 1 1



Since D is a tournament and a1,6 = 0, then 6 −→ 1. Likewise, 4 −→ 3. Thus,

1 −→ 4 −→ 3 −→ 6 −→ 1. �

Now, we can say the following.

Corollary 4.7. If D is a tournament with adjacency matrix A having

(1) full nonnegative integer rank,

(2) every submatrix C generated by a subdigraph on six vertices, and

(3) no ~C4 subdigraph,

then rB(A) = n = rZ+(A).

Proof. This follows directly from Proposition 4.6. �
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4 Possible Direction of Future Work

It is possible that a more general characterization of out-tournament

matrices with equal Boolean and nonnegative integer ranks could arise by

considering other matrices with submatrix C, yet having full Boolean rank. What

we have done in this chapter gives a partial answer to the difficult question of

characterizing out-tournament matrices, and digraph matrices in general, with equal

Boolean and nonnegative integer ranks. In the cases where matrix C was generated

on five vertices, the possible forms were limited for the induced subdigraph that

produced submatrix C. We were able to deal with them on a case by case basis.

The work in this chapter leaves open the analogous question for six vertex induced

subdigraphs generating C, in which no five vertex subdigraph generates C. There

are many more possibilities here, as well as different ways in which the induced

subdigraphs may overlap. Because of that, methods used in the five vertex cases

may not generalize well to the six vertex cases. There may be a more efficient way

to reach a similar characterization of the digraphs containing six vertex generators

of matrix C. What was done here laid the foundation for future investigations for

the six vertex case, and illustrated the difficulty of identifying digraph structures

producing matrices with a particular Boolean rank.
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CHAPTER 5
Out-Tournaments with a Relative

Minimum Cycle Length

1 Introduction

This chapter will focus first on non-strong out-tournament matrices,

identifying several classes which have determinate matrix ranks. The second part

turns to a family of strong out-tournaments that build on the properties established

in [5].

Recall that for any out-tournament, the adjacency matrix has full, equal

ranks if and only if the strong component matrices have full and equal ranks, which

was Theorem 2.11.

This provides a good deal of information about out-tournaments with

multiple strong components. However, if an out-tournament has any single-vertex

strong components, then the submatrix for that strong component is simply [0],

which of course has rank 0. Likewise, if we are considering a single strong

component whether the out-tournament itself or a component of a larger out-

tournament, then Theorem 2.11 gives no information whatsoever. It is precisely

those two cases that begin the current investigation.

In this section, we need to refer to the size of the inset and outset of a vertex.

The out-degree of vertex v is the size of its outset, denoted d+(v) = |N+(v)|. The

in-degree of v is d−(v) = |N−(v|. If we talk about the same vertex in the context of

different digraphs, a subscript indicates which digraph we mean. For example,

d+(v)D denotes the out-degree of vertex v in digraph D. If the digraph is clear from

the context, the subscript is omitted.
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Lemma 5.1. Let D be an out-tournament with adjacency matrix A. Then

rt(A) = n if and only if D has no trivial strong components.

Proof. ( ⇒ ) By definition, rt(A) = n if and only if there is an independent set

of 1s of size n. Suppose that

S = {(i1, j1), (i2, j2), ..., (in, jn)}

is the set of arcs represented by a set of independent 1s in A of size n. Since each

row and each column is represented in the set of 1s, then each of 1, 2, ..., n appears

in the first coordinate of exactly one ordered pair in S and, likewise, each of

1, 2, ..., n appears in the second coordinate of exactly one ordered pair in S. If this

set of arcs constitutes a Hamiltonian cycle in D, then we are done. Suppose not.

Let D′ be the subgraph of D containing only the arcs of S. In D′, each vertex v has

d+(v) = d−(v) = 1. Let s(y) be the successor function: s(y) = z if y −→ z. The

function is well defined in D′. Consider the list y, s(y), s2(y), ..., sn−1(y), sn(y), with

n+ 1 entries. With only n possible indices, we know that there is a repeated index

in the list, implying that there is a cycle represented in the list. Suppose that v is

repeated in the list. There is a yv-path, however, and so working backwards from

v = sj(y), vertex y must be on that cycle. If y is not on the cycle then we have

paths y, w1, w2, ..., wk, v and v, v1, v2, ..., vm, v, with only vertex v in common. Then

wk and vm both dominate v in D′, which cannot happen, as we noted that all the

in-degrees must be 1 in D′. Now, y was an arbitrary vertex, so every vertex in D′

lies on a cycle and there are no trivial strong components. Thus, the same holds in

D since D′ ⊆ D.

( ⇐ ) Assume that there are no trivial strong components. Then each vertex

lies on a cycle. Consider the strong component D0 containing y. By [5], a digraph is

strong if and only if it has a Hamiltonian cycle. Thus, D0 has a Hamiltonian cycle,

as does every strong component. The collection of all the arcs on these Hamiltonian

cycles forms a set of n independent 1s, so rt(A) = n. �
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2 Acyclic Out-Tournaments

Throughout the current work, we are concerned only with connected

digraphs. We can assume that the underlying graph is connected without any loss

of generality, since any rank of a disconnected digraph is simply the sum of the

respective ranks for each of the components of the digraph.

Let us consider out-tournaments that have one or more single-vertex

strong-components. The simplest possible case is the digraph in which there are

only single-vertex strong components. What does a connected out-tournament

without any non-trivial strong-components look like? An important structural

theorem from Bang-Jensen et al. below begins to answer the question. An

in-branching is a spanning tree rooted at vertex r oriented in such a way that every

other vertex has exactly one arc out of it.

Theorem 5.2. [5] Every connected out-tournament has an in-branching.

Thus, we first consider a digraph D that is an in-branching, i.e., a digraph in

which there are only single-vertex strong components. Note that since the under-

lying graph UG(D) is a tree, D must be acyclic. Often, a particular enumeration of

the vertices will reveal patterns in the adjacency matrix of the digraph that would

otherwise not be obvious.

Rather than naming vertices v1, v2, ..., vn we will usually refer to vertices by

their index alone, 1,2,...,n, which will make the notation slightly less cluttered.

Thus, an arc from v1 to v2 is written as 1 −→ 2 or (1,2) interchangeably. The

ordered pair form is particularly useful in this context, since if i −→ j is an arc in D

with adjacency matrix A, then entry aij = 1 and the ordered pair (i, j) may be

thought of as the coordinates in the matrix of the 1 that indicates this arc.

An acyclic enumeration is an ordering of the vertices with i −→ j only if

i < j. If D is an in-branching, it is acyclic. And, since any partial order may be

embedded in a linear order, preserving relationships, an acyclic enumeration exists.
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A transitive tournament is a tournament such that the relation ‘−→’ is

transitive. Observe that for any transitive tournament, there exists an acyclic

enumeration. If out-tournament D is acyclic, and UG(D) = Kn, where Kn is the

complete graph on n vertices, then D is a transitive tournament. The transitive

tournament on n vertices is unique, up to isomorphism.

Proposition 5.3. If out-tournament D is acyclic and UG(D) 6= Kn, then D

is a subdigraph of a transitive tournament.

Proof. An acyclic out-tournament is a partial order of vertices under relation

‘−→’. Let D be an acyclic out-tournament on n vertices. Assign the vertices an

enumeration that preserves relations so that i −→ j only if i < j. Then D is a

subdigraph of the transitive tournament on n vertices with an acyclic

enumeration. �

Since our main interest is out-tournaments that are not tournaments, we

focus on those that aren’t transitive tournaments. The argument below applies in

that case as well, however.

For an in-branching D, it will be convenient to refer to the vertices j with

d−(j) = 0 as the leaves of D. Let L denote the set of all leaves, and |L| the

cardinality of L.

As well as in-branchings, the following results apply to all acyclic out-

tournaments.

Remark 5.4. Let D be an acyclic out-tournament with L the set of leaves of

D. Then rt(A) ≤ n− |L|.

This can be seen by observing that for each l ∈ L, column l is all 0s. Thus,

there cannot be a set of independent 1s bigger than rt(A) ≤ n− |L| and each of the

matrix ranks is now bounded above by n− |L|.

Consider the set of S 1s in A consisting of the ‘lowest’ non-zero entry in each

column.
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Lemma 5.5. Let D be an acyclic out-tournament with an acyclic

enumeration and adjacency matrix A and set S = {aij = 1 | akj = 0 for each k > i}.

Then S is a maximum set of isolated 1s of A.

Proof. First, observe that no two elements of S lie in the same column of A,

by definition. Second, no two may lie in the same row. Indeed, suppose that

s1 = aij and s2 = aik are both elements of S. Then i −→ j and i −→ k. Since D is

an out-tournament, j and k are adjacent. Without loss of generality, assume that

j < k. Since D has an acyclic enumeration, it cannot be the case that k −→ j, so

we must have that j −→ k and ajk = 1, which therefore implies that aik was not

actually an element of S. Therefore, S is an independent set of 1s.

Suppose that two elements of S lie in a 2× 2 submatrix of A containing all

1s. Let the elements of S be aij and ak`. We know that they must be in different

rows and different columns, so, without loss of generality, suppose that i < k and

j < `. However, recall that each element aij of S was chosen in such a way that

there are no non-zero entries below aij in column j. So, no two elements of S lie in a

2× 2 submatrix of all 1s, which means that S is a set of isolated 1s. �

Note that for any out-tournament D with adjacency matrix A, the following

are equivalent:

(1) an acyclic enumeration of V (D) exists,

(2) D is acyclic, and

(3) A is upper triangular.

Theorem 5.6. If D is a connected acyclic digraph with adjacency matrix A,

and L ⊆ V (D) is the set of leaves of D, then

rB(A) = r(A) = rZ+(A) = rt(A) = n− |L|.

Proof. Note that column j is all 0s if and only if j is a leaf of acyclic digraph

D. There is an element of S for each column that is not all 0s, so |S| = n− |L|.

Since S is an isolated set of 1s, then S = n− |L| ≤ rB(A) and because there are |L|
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columns of 0s in A, we know rt(A) ≤ n− |L|. Thus we have rB(A) = rZ+(A) =

rt(A) = n− |L|. To find r(A), note that S is a set of leading 1s and that A is in row

echelon form, so |S| = n− |L| ≤ r(A), and since r(A) ≤ rZ+(A), we get

r(A) = n− |L|. �

3 Strongly Connected Out-Tournaments

In much the same way as we proceeded in the previous section for out-

tournaments with single-vertex strong-components, we now consider strongly

connected out-tournaments. Here again, we find a helpful structural theorem in [5].

Theorem 5.7. [5] An out-tournament has a Hamiltonian cycle if and only if

it is strongly connected.

Using Theorem 5.7 as guidance, we begin our study of strong out-

tournaments by considering cycles themselves. Consider out-tournament D =
→
Cn,

with n ≥ 3. Out-tournament D is strongly connected if and only if there is a cyclic

enumeration of the vertices. Let D have a cyclic enumeration. Let A be the

adjacency matrix of D. Matrix A has 1s on the superdiagonal and in the position

(n, 1) only. For any digraph D, let M(D) be the adjacency matrix of D.

Remark 5.8. Let A = M(~Cn). Then rB(A) = r(A) = rZ+(A) = rt(A) = n.

This follows from the fact that A ' In, which makes r(A) = n and the fact

that the set of all 1s in A forms a set of isolated 1s of size n. Note that unless n = 3,

~Cn is not a tournament.

Now, we relax the constraints on D a bit. Suppose we take a strong out-

tournament D and put a restriction on the minimum size of the cycles it contains.

In this way, we can keep some of the structure of those acyclic out-tournaments.

Here, we will cause all subdigraphs of a size smaller than the minimum cycle size to

be acyclic.
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We will say that A is nearly upper-triangular if A′ = PAQ, and A′ is

upper-triangular, with permutation matrices P and Q . Defined in this way, for any

n, M(
→
Cn) is nearly upper-triangular.

Lemma 5.9. If out-tournament D has a Hamiltonian cycle and the removal

of one arc makes it acyclic with an acyclic enumeration, then A = M(D) is nearly

upper-triangular.

Proof. Consider permutation matrix family P0 given by

P0 =



0 · · · · · · 0 1

1
. . .

... 0

0
. . . . . .

...
...

...
. . . 0

...

0 · · · 0 1 0


.

Let D be a strong out-tournament. Assume that the removal of some arc on

that cycle produces an acyclic digraph D′. Give the vertices of D′ an acyclic

enumeration and use the same enumeration for D. Let A = M(D), then P0A is

upper triangular. �

Lemma 5.10. Let out-tournament D have a Hamiltonian cycle such that the

removal of one arc makes it acyclic. Let D have a cyclic enumeration that is also an

acyclic enumeration under the removal of (n, 1). If A = M(D) then the set of 1s on

the superdiagonal and an,1 is a set of isolated 1s.

Proof. The 1s representing the Hamiltonian cycle arcs lie on the superdiagonal

and (n, 1) under a cyclic enumeration. The removal of arc (n, 1) makes the

enumeration acyclic, and hence if an,1 = 0, then A would be upper-triangular.

Therefore P0A is upper triangular. Then, the collection of all the 1s on the diagonal
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of P0A is a set of isolated 1s because each element aij has only 0s below it. That is,

akj = 0 for each k > i. Hence, the corresponding set of 1s in A is also isolated. �

We are going to consider a digraph D with shortest cycle length of n− k,

which also contains an arc i −→ j, where j = i+ k + 1. These assumptions will lead

to an out-tournament with adjacency matrices having ranks that can be easily

evaluated. First, we make the following observation.

Lemma 5.11. Let out-tournament D have a cyclic enumeration, a shortest

cycle length of n− k, where k ≥ 3, and let 1, k + 2, . . . , n− 1, n, 1 be one such cycle.

Let W ⊆ V (D) be the set of vertices {2, . . . , k + 1}. Take any i and j such that

{i, j} ∩W = ∅. Then i −→ j only if j = i+ 1.

Proof. Take i and j in WC (the complement of set W ). If j − i > 1, then

i, j, j + 1, . . . , n− 1, n, 1, 1 + k + 2, . . . , i would be a cycle with length l < n− k,

which contradicts our assumption. �

Figure 6. With 6 −→ 9, cycle 1, 5, 6, 9, 1 is created that is shorter
than the minimum length.

For illustration, where n = 9 and k = 3, see Figure 6. The i and j referred to

in Lemma 5.11 are vertices 6 and 9, respectively. This example shows why in that

part of the digraph, a vertex only beats its successor on the Hamiltonian cycle. This

condition occurs because of the assumption of the form of the shortest cycle in
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relation to the Hamiltonian cycle. Specifically, it is due to the assumption of arc

i −→ j, which we will consider in more detail. Let strong out-tournament D on n

vertices have a cyclic vertex enumeration. Let n− k be the length of the shortest

cycle in D. If there is an arc of the form i −→ i+ k + 1, just as arc 1 −→ 5 is in

Figure 6, then we refer to that arc as a skip arc, with respect to some cycle. Here,

the reference cycle will be the Hamiltonian cycle that gave rise to the cyclic

enumeration we are using. These arcs create a cycle that skips over some of the

other vertices.

Lemma 5.12. Let D be a strong out-tournament. If the shortest cycle of D

has length n− k and k < n−3
2

, then A = M(D) is nearly upper-triangular.

Proof. There are many possible cases; we will consider the limiting cases first.

Let D have a cyclic enumeration and have n− k as the length of its shortest cycle.

Further, assume that D has an arc of the form i −→ j where j = i+ k + 1, see

Figure 7.

Figure 7. The dashed arc indicates i −→ j.

Without loss of generality, we can take i = 1. Then 1, k + 2, . . . , n− 1, n, 1 is

a cycle of the shortest length in D. By Lemma 5.11, there can be no arcs i −→ j for

j > i+ 1 if i, j /∈ W = {2, . . . , k + 1}, other than the assumed skip arc, 1 −→ k + 2.

However, there may be more arcs of the form i −→ i+ k + 1 that are incident on set

W . Again, without loss of generality, we may assume that if there is any arc
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i −→ i+ k + 1 with at least one of i and i+ k + 1 in W , then i > 1. Let i be the

vertex with the highest index that has i −→ i+ k + 1. We claim that i ≤ 2. To

observe this, note the following.

Given a cyclic enumeration, skip arc i −→ j creates the cycle

i, j, j + 1, j + 2, . . . , n, 1, 2, . . . , i. The vertices i+ 1, i+ 2, . . . , j − 1 are left out of

this cycle, so its length is n− (j − i− 1) = n− k.

Each skip arc, i −→ i+ k + 1 implies that arcs j −→ i+ k + 1 also must

exist,for each i < j < i+ k + 1. This happens because D is an out-tournament and

W induces an acyclic digraph. Note that by our construction, subdigraph [W ]D

already has an acyclic enumeration. Recall that we assumed skip arc 1 −→ k + 2

was present. If i −→ i+ k + 1 also exists, with i ≥ 3, then cycle 1, i, i+ k + 1,

..., n− 1, n, 1 is shorter than n− k, which contradicts the assumption. Therefore, if

there are two skip arcs in D, then they are of the form i −→ i+ k + 1 and

(i+ 1) −→ (i+ k + 2).

Suppose that D has two skip arcs, 1 −→ k + 2 and 2 −→ k + 3. Since we

assumed that k < n−3
2

, then 2k < n− 3, giving us k + 3 < n− k. Induced sub-

digraphs [{1, 2, . . . , k + 2}], [{2, 3, . . . , k + 3}] as well as [{1, 2, . . . , k + 3}] each has

fewer than n− k vertices, and so they must be acyclic. Furthermore, the cyclic

enumeration we used is an acyclic enumeration for each of these induced sub-

digraphs. The removal of arc (n, 1) creates an acyclic graph, and the enumeration

already assigned is an acyclic enumeration. Therefore, A = M(D) is nearly upper-

triangular and P0A is upper-triangular with all 1s on the main diagonal. The form

of the adjacency matrix of D with two skip arcs i −→ i+ k + 1 is given in (5.1).

The two skip arcs are indicated by bold 1s in the adjacency matrix. �
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(5.1) A =



1 2 3 · · · k + 2 k + 3 k + 4 · · · n− 1 n

1 0 1 1 · · · 1 0 0 · · · 0 0

2 0 0 1 · · · 1 1 0 0

3 0 0
. . . 1 1 0

...
... 0

. . . 1
...

...
...

k + 2
... 0 1 0

...

k + 3
... 0 0 1

k + 4 0 0 0
. . . 0

... 0
...

...
...

... 1 0

n− 1 0 0 0 · · · 0 0 0 · · · 0 1

n 1 0 0 · · · 0 0 0 · · · 0 0



The benefit of this careful enumeration shows in the form of the adjacency

matrix. It allows us to show that A has full, equal ranks in a straightforward

manner.

Corollary 5.13. Let out-tournament D have a Hamiltonian cycle such that

the removal of one arc makes it acyclic. Let D have a cyclic enumeration that is also

an acyclic enumeration under the removal of (n, 1). If A = M(D), then rB(A) = n.

Proof. This corollary follows from Lemma 5.10. Since the 1s in the matrix

representing the Hamiltonian cycle form a full set of isolated 1s, we know that the

Boolean rank is full. �

Theorem 5.14. Let D be a strong out-tournament with shortest cycle length

of n− k where k < n−3
2

and matrix A = M(D). If there is a skip arc of the form

i −→ i+ k + 1, then adjacency matrix A has equal full ranks:

rB(A) = r(A) = rZ+(A) = rt(A) = n.



60

Proof. By Corollary 5.13 and the basic rank inequalities, we know rB(A) =

rZ+(A) = rt(A) = n. Recall the proof of Lemma 5.10, in which we observed that

P0A was upper-triangular with all 1s on the main diagonal. Then

r(P0A) = r(A) = n. �

4 Conclusion and Future Work

In the strong out-tournaments we considered, a certain number of vertices

are ‘skipped’ on the shortest cycle. Specifically, all the skipped vertices were in one

connected subgraph of D. The other extreme case would be if the sets of vertices

skipped on a cycle of the shortest length were in as many small connected

subdigraphs as possible. For instance, consider an out-tournament on n vertices

with a cyclic enumeration, and arcs defined as A(D) = {j −→ j + ` | ` = 1, 2, ...,m},

where the number of skipped vertices in a shortest cycle dictates the value of m

relative to the number of vertices in the digraph. The value of m, in turn, dictates

whether or not the real and Boolean ranks are full in the adjacency matrix. For any

shortest cycle, the skipped vertices induce multiple connected graphs in the

underlying graph, in contrast to the type discussed in Theorem 5.14. Each diagonal

of the matrix would be either all 1s or all 0s, which should lend itself to both

Boolean rank and real rank calculations. A ‘diagonal’ of square matrix A means a

set of entries {(j, (j mod n) + k) | j = 1, 2, ..., n} for some 0 ≤ k ≤ n− 1.

In this chapter, we have identified a class of out-tournament with

determinate adjacency matrix ranks, including cycles, in-branchings, and acyclic

digraphs. Particularly we looked in-depth at a class with a great deal of structure

due to the fairly large minimum cycle length and the connectedness of the set of

vertices skipped on a shortest cycle.



61

CHAPTER 6
Out-Tournament Orientations of Unicyclic

Graphs

1 Introduction

In the remainder of the paper we will look at constructing classes of out-

tournaments that are based on representation theorems given in Bang-Jensen et al.

[5], where the authors explored the idea of a local in-tournament, giving structural

theorems as well as many propositions on the orientability of graphs with specific

structures as in-tournaments. The representations give a perspective on out-

tournaments and their matrices that is different from previous work. For example,

none of the works cited in the Chapter 1 have investigated tournament or out-

tournament matrices based on representations and catch digraphs.

The following definitions are a necessary foundation upon which the results

in this chapter are built. A graph G = (V,E) is orientable as an out-tournament if

there is an assignment of an arc (x, y) or (y, x) to each edge {x, y} ∈ E for which

the digraph (V,A) is an out-tournament, where arc set A is the image of E under

the assignment. A pointed set is an ordered pair (X, a) consisting of a set X and an

element a ∈ X, designated as the point. Athough there may be other uses of pointed

sets, for our purposes, the pointed sets will always represent sets of vertices of a

connected subdigraph of H. Let F = {(Hx, px)|x ∈ V } be a family of pointed sets.

A catch digraph Ω−(F) is a digraph with vertex set V and arc (x, y) if px ∈ Hy and

x, y are distinct.

The intersection graph Γ(F) of a family of sets F = {Hx|x ∈ V } has vertex

set V and edge xy whenever Hx ∩Hy 6= ∅. A graph G is representable in graph H if

G is isomorphic to the intersection graph of a family of connected subsets of vertices
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F = {Hx|x ∈ V (G)} which induce a connected subgraph in H. The family F is a

representation of G in H. So far, we have used Bang-Jensen et al. [5] notation

exactly. In this paper, we can simplify it somewhat, for better clarity.

Bang-Jensen et al. used the subscript of Hx to indicate the vertex of the

catch digraph to which Hx corresponds. This leaves open the possibility that the

pointed sets may represent something other than vertices of the underlying graph.

Here, the vertices of the representation graph and its catch digraph are the same

set. Thus, we will use Hx as the pointed set that has x as its point, where x ∈ V (G)

and x ∈ V (Ω−(F)). That is, the vertex sets of the three objects in question – graph

G, representation graph H, and catch digraph Ω−(F) = D – are identical.

This chapter, in particular, will consider a class of catch digraphs produced

by unicyclic representations of a graph G. All unicyclic graphs are orientable as out-

tournaments and can be used to construct out-tournaments that are more complex

than the orientations are. Out-tournament orientations are the simplest out-

tournaments obtainable by a catch digraph from the graph H, whatever the form of

H. Refer to Figure 8, which shows a unicyclic graph, G, and Figure 9 shows an out-

tournament orientation of G.

Figure 8. A unicyclic graph, G.
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Figure 9. Out-tournament orientation of G.

We will also consider the intersection number of a digraph and equivalent

notions. The intersection graph is, loosely speaking, the inverse operation of

representation. The intersection number of a digraph is related to the Boolean rank

of the adjacency matrix, which is a central theme in this paper.

Note that the following lemma is modified for out-tournaments from the

cited lemma.

Lemma 6.1. [5] If D is an out-tournament, then Ω−{(N−[x], x)|x ∈ V } = D

and Γ{(N−[x], x)|x ∈ V } = UG(D).

This lemma tells us that if we start with an out-tournament, take closed

insets as the pointed sets and form the catch digraph, we arrive back at the same

out-tournament itself. It also tells us that the intersection graph of that family of

insets is the underlying graph of the out-tournament we started with. An immediate

consequence, which may or may not be obvious, is that any out-tournament is

representable in its own underlying graph.

The following theorem puts together all of the pieces. It insures that every

out-tournament can be written as a catch digraph of a representation, which opens
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the door for the representation-based investigation of out-tournament structure as

well as orientability of graphs as out-tournaments found in [5].

Theorem 6.2. [23] A digraph D = (V,E) is an out-tournament if and only

if it is the catch digraph of a family {(Sx, px)|x ∈ V } such that UG(D) is

Γ (Sx|x ∈ V ).

We now have a foundation in representations, but before proceeding to the

constructions and matrices in this chapter, we must take a look at intersection

graphs and the intersection number.

2 Intersection Number of a Digraph

The intersection graph of a family of sets will be an important tool for this

paper because, as we have seen, there is an important characterization of out-

tournaments based on their representations in families of sets. Closely related is the

concept of an intersection digraph. Let F be a family of ordered pairs (Si, Tj), with

Si, Tj subsets of some parent set S. Digraph D is an intersection digraph of family

F means that u −→ v if and only if Su ∩ Tv 6= ∅. Any digraph D is an intersection

digraph of a set. The intersection number of D, denoted int(D), is the minimum

size of a set S such that D is the intersection graph of family F as defined above.

The proof given below is different from that in Brown and Roy [11].

Theorem 6.3. [11] Let D be a digraph and M = A(D). Then

int(D) = rB(M).

Proof. Let D be a digraph, A its adjacency matrix and rB(A) = k. Let

XY = A be a Boolean factorization of A with X being n× k and Y being k × n.

Using the notation and results from Shader [39], let Xj be the jth column of matrix

X and Yj the jth row of matrix Y . If we interpret these as characteristic vectors,

then the collection {Bi|1 ≤ i ≤ k} is a biclique cover with Bi = Xi −→ Yi. To follow
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the previous notation, let Mi = XiY
T
i . Conversely, starting with the collection

{Mi}mi=1 we can construct X and Y . Now, consider the sets Svi = {k|(∃j)(mk
i,j = 1)}

and Tvj = {k|(∃i)(mk
i,j = 1)} as given above. Then,

Svi ∩ Tvi 6= ∅ ⇔ {k|i ∈ Xk} ∩ {l|j ∈ Yl} 6= ∅

⇔ (∃k)(i ∈ Xk ∧ j ∈ Yk)

⇔ (i −→ j) in D.

The set of matrices {M1,M2, . . . ,Mm} determines a factorization XY and

vice versa. Since int(D) is the minimum such m, then m is also the minimum

positive integer with XY T = A and X is n×m, Y T is m× n. This is the definition

of Boolean rank of A, int(A) = rB(A). �

2.1 Equivalence of Intersection Number

So far, we have considered the parallel notions of

• a family of ordered pairs F = {(Svi , Tvj)} as defined above,

• a Boolean factorization A = XY T ,

• a biclique cover {Bi = (Xi −→ Yi)} of D, and

• a collection of minimum-size of rank 1 matrices whose Boolean sum is A.

There is a 1-1 correspondence between any two items in the list. The

different perspectives given by these alternate characterizations of the same

principle can give insight into properties of out-tournaments and their matrix ranks.

3 Orientability of Graphs

In the process of demonstrating the orientability of graphs representable in

unicyclic graphs as out-tournaments, the proofs from [36] quoted in [5] have thereby

drawn attention to a class of out-tournament whose matrices have completely
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determinate ranks, based on the structure of the representation. This class is the

focus of the current chapter.

A unicyclic graph has only one cycle. Recall, a graph G is representable in

graph H with family F = {(Hx, px)|x ∈ V } of pointed sets of vertices of connected

subgraphs of H if Γ(F) = G.

(6.1)

G −→ H

↘ ↓

D

The relationship between graph G, a representation of G in graph H, and D,

the catch digraph of the representation, is shown in (6.1). By the definition of a

representation of G in H, digraph D is also an orientation of G.

The following theorem forms the foundation upon which the current section

builds.

Theorem 6.4. [36] If graph G is representable in a unicylic graph, then G is

orientable as an out-tournament.

However, note that the converse of this theorem is false. A counterexample is

given in [5]. There are graphs that are orientable as an out-tournament but are not

representable in a unicyclic graph. The authors of that paper put forward a

conjecture that any graph orientable as an out-tournament is representable in a

cactus, which is an interesting subject for further study. Here we focus more on the

matrix ranks of these out-tournaments, which result from their structured nature.

We will first consider the simplest representation of this type. Once we

determine the structure of our catch digraph, we look for an enumeration to allow

computation of the adjacency matrix ranks.
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3.1 Orientations of Graphs Representable in a Cycle.

Clearly, a cycle is, itself, unicyclic. Following the notation of Prisner in [36]

and [5], let G be a graph representable in cycle C, with vertices z0, z1, ..., zi−1

numbered sequentially in a clockwise direction.

Recall that a representation of graph G in H consists of a family of subsets

Hx of vertices in H that induce a connected subgraph of H. The representation

graph H need not be the same as graph G. However, every graph is representable in

some subgraph of itself.

On our cycle, the connected subgraphs are paths on the cycle. If our

representation graph H has trees rooted on the cycle, then each connected subgraph

is either entirely in a tree, or it contains at least one vertex on the cycle.

Given representation F = {Hx|x ∈ V } in H, define the point px

corresponding to Hx as the element farthest left (counterclockwise) on the cycle, if

it contains any, and if there are none, then define px to be the vertex of Hx whose

removal would separate the remaining vertices of Hx from the rest of H. This is the

vertex of Hx that is closest to the cycle. Note that in both cases, the point is

uniquely defined if we make the convention that when Hx contains the entire cycle

C, we designate the point as z0.

Refer to Figure 10, where a sample element Hx of family F is indicated. The

set of white vertices {4, 3, 2, 1, 9} induces a connected subgraph. The furthest left

element is vertex 4, so this construction assigns vertex 4 as px, the point of set Hx.

Since we would map vertex 4 in H to vertex 4 in D, we can write

H4 = {4, 3, 2, 1, 9}. Recall that the catch digraph uses Hx as the inset of the point

of Hx. Thus, in the catch digraph D, N−(4) = {3, 2, 1, 9}.

Lemma 6.5. If graph G is representable by family F = Hx in cycle C, then

the subgraph induced by each Hx induces a path, [zj, zj+1, ..., zj+k]H .
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Figure 10. Vertex set {4, 3, 2, 1, 9} induces a connected subgraph, so
this set can be an element, Hx, of family F .

Proof. This can be seen by recalling that the subgraphs Hx must be

connected. �

Lemma 6.6. Let graph G be representable in cycle Cn with family F = Hx.

At most one of Hx contains all the vertices of C.

Proof. If H1 and H2 both contain the entire graph H, then the sets of vertices

are the same, so H1=H2 is actually just one element of the family. �

To facilitate the following theorem and proof, we will need to have the

following definition. This definition will only be useful for H = Cn. A predecessor of

vertex x ∈ D is the vertex y ∈ Hx such that xy is an edge in H. Recall that Hx

includes px. It may be convenient to define H ′x = Hx − px, which is pointed set Hx

but without the point. In the catch digraph D, the sets Hx are closed insets of the

point, x. That is Hx = N−[x]D, the closed inset of x in digraph D. Then

H ′x = N−(x)D is the standard inset of x in D.

Theorem 6.7. If G is representable in cycle Cn, such that 1 < |Hx| < n for

each x, and family F is formed by assigning the leftmost vertex of each Hx as its

point, then A = M(Ω−(F)) has full Boolean rank. Furthermore, if Cn is of a

minimum size to represent G, then rB(A) = |V (Cn)| = |V (D)|.
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Proof. Observe that since G is representable in Cn, which is clearly unicyclic,

if Hx ∩Hy 6= ∅, then px ∈ Hy or py ∈ Hx. By assumption, H ′x 6= ∅. Take any

y ∈ H ′x, then y is a predecessor of px in H. Each of these predecessor edges ypx in H

correspond to arcs y −→ x in D. Define P to be a set of predecessors. Note that

this set is well defined for H = Cn. Suppose that y is a predecessor of both x and z.

Now, y ∈ Hx ∩Hz implies (WLOG) that px ∈ Hz. Thus, in H there is a pxpz-path,

not going through y. Also, ypz is in H, which forms a cycle that is completely

contained in Hz. But, since we assumed that 1 < |Hx| < n for each x, this cannot

happen. Let S = {(y, x)|y ∈ P, {ypx} ∈ E(H), y ∈ Hx}. We claim that the set S of

representative predecessor arcs form a set of isolated 1s in the matrix A = M(D).

Since there is one arc (y, x) in S for each vertex x in D, the 1s in A are

independent, recalling that the set P is well defined. Next, we need to verify that

the set of 1s in question is actually an isolated set of 1s. Suppose that tx ∈ Hx and

ty ∈ Hy are elements of S. Now, by way of contradiction assume that (X, Y ) is a

biclique of D, where X = {tx, ty} and Y = {px, py}. Observe that tx ∈ Hy, so there

is a path from tx to py and a path from tx to px. As noted above Hx ∩Hy 6= ∅, then

px ∈ Hy or py ∈ Hx. Because of the two paths above, if px ∈ Hy then the pxpy-path

completes a cycle, which is impossible given our assumption that 1 < |Hx| < n for

each x. So, the arcs of D corresponding to the elements of S form a set of isolated

1s in the adjacency matrix A of out-tournament D. Since |S| = n ≤ rB(A) ≤ n,

matrix A has full Boolean rank.

For the second claim of the theorem, note that a representation of a graph is

not unique, and that a representation with a minimum number of subgraphs has n

elements, the number of vertices of G as well as that for D, which is an orientation

of G under the construction given. �

The class of out-tournaments referred to in Theorem 6.7 is strong and has

cyclic enumeration by construction. It has arc set A(D) = {i −→ j|j = i+ ` for

` = 1, 2, ...mi} where mi varies for each i, but mi < n− 1 because of the condition

1 < |Hx| < n, which prevents any source vertices and sink vertices.
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Lemma 6.8. If there is an Hx = {x}, then rB(A) < n.

Proof. This can be seen by considering the fact that if Hx contains only x,

then d−(x)D = 0 – vertex x is a source vertex in D. Thus, column x in matrix A is

all 0s. �

Lemma 6.9. If there is an Hx = V (D), then rB(A) < n.

Proof. Observe that Hx = V (D) implies that for every vertex y in D, y −→ x,

which is to say that d+(x) = 0 (x is a sink) and row x of matrix A is all 0s. �

3.2 Unicyclic Representations with Trees

Next, we allow trees ‘growing’ out of the cycle. That is, there are tree

subgraphs having cycle vertices as a cut vertex. See Figure 9 for an orientation of a

unicyclic graph with two trees ‘growing’ out of the cycle. In other words, there are

two maximal tree subgraphs of H = UG(D) with root vertices on the cycle. A cut

vertex or articulation vertex of a connected graph is a vertex whose removal

separates the graph into two or more components. As we shall see, constructing

family F in the way we have defined leads to similarly predictable adjacency matrix

ranks, as it did for the representation graphs that are cycles.

Proposition 6.10. Let H be a unicyclic representation of graph G of

minimum size, which has at least one tree growing out of the cycle. Let L be the set

of all leaves of H, with |L| = `. Also, define K = {x ∈ H | H ′x = ∅ and x is not a

leaf}, with |K| = k. If A is the adjacency matrix of the catch digraph of F , then

rB(A) ≥ n− `− k.

Proof. Similarly to the previous use of predecessors, the only vertices for which

we cannot produce a predecessor are those that have none – namely, those vertices x

that have Hx = {x}. These are exactly the vertices of the disjoint union, L ∪̇ K.

However, for the remaining vertices of H, we can choose a predecessor as shown in
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Section 3.1 of this chapter. Since the 1s of A corresponding to a maximum set of

predecessors S form a set of isolated 1s of A, we have n− `− k ≤ rB(A), and this

completes the proof. �

The result of Proposition 6.10 gives a lower bound for the Boolean rank of

the adjacency matrix of the out-tournament. The upper bound that results from the

structure of the digraph allows us to give the Boolean rank of the matrix exactly.

Theorem 6.11. Let H be a unicyclic representation of graph G of minimum

size, which has at least one tree growing out of the cycle. Let L be the set of all

leaves of H, with |L| = `. Also, define K = {x ∈ H|H ′x = ∅ and x is not a leaf},

with |K| = k. If A is the adjacency matrix of the catch digraph of F , then

rB(A) = n− `− k.

Proof. By Proposition 6.10, we know that n− `− k ≤ rB(A). Observe that for

each of the vertices in L ∪̇ K, there is a column of 0s in the corresponding column

of A. Thus, rB(A) ≤ n− `− k, and we have rB(A) = n− `− k. �

Corollary 6.12. rB(A) = n if and only if 0 < |H ′x| < n− 1 for each x.

Proof. (⇐) Assume that 0 < |H ′x| < n− 1 for each x. This guarantees that H

has no trees growing out of the cycle, since any tree has a leaf and |H ′x| = 0 for any

leaf x. It is also necessary to assume that n− 1 > |H ′x| for each vertex, to prevent

rows of 0s in A. Further, since every vertex has a predecessor, by Theorem 6.11, we

have rB(A) = n.

(⇒) Full Boolean rank implies that A has no rows or columns of 0s. Thus,

0 < |H ′x| < n− 1 for each x. �

3.3 Other Matrix Ranks for Unicyclic Representations

We have found the Boolean rank for adjacency matrices of out-tournament

catch digraphs of unicyclic graphs. We now explore the other matrix ranks.
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Theorem 6.13. Let D be the catch digraph of unicyclic graph H, which itself

is a representation of graph G. Let A = M(D) Then rt(A) = n− `− k.

Proof. Recall that rB(A) = n− `− k ≤ rt(A). Now referring to the sets L and

K, which are disjoint, we have ` columns of 0s and k other rows of 0s, so

rt(A) ≤ n− `− k. Therefore rt(A) = rB(A) = n− `− k. �

Corollary 6.14. Let D be the catch digraph of unicyclic H, which itself is

a representation of G. Let A = M(D) Then rZ+(A) = n− `− k

Proof. This follows immediately from (2.1) and Theorem 6.13. �

3.4 Relation of Rank Over R with the Other Matrix Ranks

Now we will consider the remaining matrix rank, the real rank. Although

this is the matrix rank we are (usually) most acquainted with, recall that there is

not a standard relationship between the real rank and Boolean rank of a

{0, 1}-matrix. However, the following theorem gives a bit of insight to the

relationship for this class of matrices.

For real rank of the adjacency matrix of the catch digraph of unicyclic H and

family of subgraphs F constructed as above, we will need a careful enumeration of

the vertices. Set S was made in such a way that each vertex v that is not a source

was represented by exactly one arc u −→ v in S, where u, v were adjacent in H. We

claim that it is possible to number the vertices so that x −→ v implies that x ≥ u,

where u is the vertex with u −→ v in set S. Note that this already occurs on the

cycle. Next, number all vertices at a distance of 1 away from the cycle, in any order.

Then all vertices at a distance of 2, and so on, until all vertices are numbered.

Theorem 6.15. For unicyclic graph H and family of subgraphs F

constructed as above, with D = Ω−(H,F), define R as the set of all source vertices

in D. Then A = M(D) has r(A) = |S| = n− |R|.
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Proof. To see this, we need only consider the 1s representing the arcs

contained in set S. As we observed, this set S represents a set of isolated arcs of

maximum size. There is an element of S represented in the inset of every nonsource

vertex. Furthermore, in A, each nonzero entry aij = 1 for i −→ j in S is the highest

nonzero entry in its column. So, the set of 1s in A representing the arcs of S form

leading 1s in each of their respective columns, where no two are in the same row,

and there is one in every column not equal to ~0. Therefore, r(A) = |S| = n− r. �

Corollary 6.16. Let D be the catch digraph of unicyclic H, which itself is

a representation of G. Let A = M(D). Then r(A) = n− `− k.

Proof. Refer to Proposition 6.10 and Theorem 6.15. We observe that

|R| = `+ k = |L ∪̇ K|. �

4 Structure and Connectedness of D

The construction used above is very specific. For this class of out-

tournament, we can say a great deal about the structure and matrix ranks of an

out-tournament oriented unicyclic graph.

Theorem 6.17. Let D be an out-tournament oriented unicyclic graph. The

following are equivalent:

(1) D is strong.

(2) A has full matrix ranks.

(3) H = UG(D) is a cycle.

(4) D is a directed cycle.

Proof. (1⇒ 3) If D is strong, then it has no sources, so H has no trees, since

every tree has at least one source. (3⇒ 4) As we have seen previously, the only out-

tournament orientation of a cycle is a directed cycle. (4⇒ 2) Recall from Remark

5.8 that the matrix of a directed cycle is a permutation of In. (2⇒ 1) If A has full
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matrix ranks, then it has no rows of 0s, meaning that D has no sources, and D is a

directed cycle, making D strongly connected. �

4.1 Out-Tournament Orientation of a Unicyclic Graph

From Theorem 6.17, we can see a great deal of structure in a strong digraph

of this type. This section asks: what are the strong components of an out-

tournament orientation of a unicyclic graph? We are not able to answer that

question for catch digraphs of unicyclic representations in general, but we can

describe the class of oriented unicyclic graphs in terms of connectedness.

Lemma 6.18. Let G = UG(D) be a unicyclic graph, and let D be an out-

tournament orientation of G. If G has a cycle v1, v2, ..., vk, v1 then the set

{v1, v2, ..., vk} induces directed cycle ~Ck in D.

Proof. Since G is unicyclic, the set {v1, v2, ..., vk} induces Ck in G, which is to

say that there are no chords between non-consecutive vertices of the cycle.

Otherwise, that would form another cycle. Consider three consecutive vertices

vi−1, vi, vi+1 on the cycle in D and the possible orientations of the edges between

them in out-tournament D. Suppose that vi −→ vi−1 and vi −→ vi+1 in D. But, D

is an out-tournament, and this assumption leads to the conclusion that vi−1, vi+1 are

adjacent in D. However, this cannot be the case, since UG(D) = G had no edges

between non-consecutive vertices on this cycle. Thus, no vertex on the cycle beats

more than one other vertex on the cycle. Since there are k vertices and k edges to

orient, each vertex on the cycle must dominate exactly one other vertex on the

cycle. Without loss of generality, we can assume that (v1, v2, ..., vk, v1) is the

corresponding directed cycle in D, or we may enumerate the vertices of G so that

1 −→ 2 −→ ... −→ (k − 1) −→ k −→ 1.

�
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Proposition 6.19. Let D be an out-tournament orientation of unicylic

graph H. Then any edges not on the central cycle are oriented toward the cycle.

Proof. Suppose that vertex c on the cycle is the root vertex of a tree. As seen

in Lemma 6.18, c −→ c+ 1 in D, where vertex c+ 1 is the next vertex on the cycle.

Let x be in the tree rooted at c, and let x be adjacent to c. Edge {c, x} in H must be

oriented toward c, otherwise {c, c+ 1, x} induce a cycle in H that is not the central

cycle, contradicting our assumption that H is unicyclic. If there are more vertices

adjacent to x in the tree, then the same argument applies, since x already has a

non-empty outset in D and we cannot create any new cycle in UG(D) = H. �

Proposition 6.20. Let H be a unicyclic graph with at least one tree, and D

its out-tournament orientation. Each vertex of H not on the cycle is a one-vertex

strong component.

Proof. To show this, observe that any vertex in a tree is not reachable from

any vertex on the directed cycle in D. Refer also to Figure 9. �

For an orientation of a unicyclic graph, if there are any trees growing out of

the cycle, the central cycle is one strong component and each vertex off the central

cycle is its own strong component.

More generally, however, if D is a catch digraph of a family of subsets of

vertices in unicyclic graph H, there are many more possibilities for both form of D

and relations of its matrix ranks. The following proposition essentially rephrases

Theorem 6.7 in terms of a more general construction.

Proposition 6.21. Let D be the catch digraph of unicyclic representation H

with some family of connected subgraphs. Then the induced subdigraph on C, [C]D,

need not be strong. Let the points of the sets Hx be assigned as the leftmost cycle

vertex in Hx, and if there is no cycle vertex in Hx, then the point is the vertex

closest to the cycle. Then 1 < |Hz| < n for each z on the cycle in H implies that the

image of C in D is strong.
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Proof. Follows from Theorem 6.7. �

Proposition 6.21 tells us that as long as there are no source or sink vertices

on Ck, then the induced digraph on Ck must be strong in the catch digraph D.

5 Going Forward From Here

The result of Proposition 6.20 is that D may have many single vertex strong

components. Because of that, the results from Chapter 2 do not apply. But further

exploration could prove fruitful in finding more general classes of out-tournaments

that are catch digraphs of unicyclic graphs. Relaxing the restrictions on the family

of connected subgraphs is the natural direction in which to take this line of

investigation. Generalization may begin with allowing in-degree d−(v) to be

restricted to two or three. In this chapter, out-degree was limited to two, in effect.

That restriction wasn’t stated explicitly, since it was implied by the construction

itself. However, despite the fact that the class of catch digraphs from unicyclic

representations is also very large, a partial characterization may be possible in terms

of matrix ranks.
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CHAPTER 7
Out-Tournament Orientation of a Cactus

1 Introduction

Chapter 6 started with a representation graph and carefully assigned pointed

sets such that the adjacency matrix of the resulting catch digraph had some very

nice properties, and its ranks were then characterized in terms of the representation

graph properties.

Here, we will start at a different point and consider different objects, so the

proof techniques differ from previous methods. Note that we will bypass the

representation family of subsets entirely, since it’s unnecessary in this case. Thus,

starting with an underlying graph of the appropriate form, we give the graph an

out-tournament orientation and consider the form and ranks of its resulting

adjacency matrix.

2 An Oriented Cactus

In Chapter 6, we considered a class of digraphs based on its representation in

a unicyclic graph. Now, we take a different approach and look at a known class of

underlying graph that lends itself well to out-tournament orientation. A cactus is a

graph in which no two cycles share an edge.

From Theorem 6.4, we know that any graph representable in a unicyclic

graph is orientable as an out-tournament. The class of cactus graphs contains the

class of unicyclic graphs.
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Figure 11. A cactus that is not orientable as an out-tournament.

The basis for this approach is the conjecture in [5] that every graph

orientable as an out-tournament is representable in a cactus. The converse, however,

is false.

Remark 7.1. [5] Any cactus with more than one cycle of length k ≥ 4 is not

orientable as an out-tournament.

Note that every cactus is representable in a subgraph of itself, which must,

therefore, also be a cactus. The class of representations of graphs orientable as out-

tournaments is only a subset of the class of all cactus graphs. For example, the

graph in Figure 11 is a cactus, but it is not orientable as an out-tournament.

However, the graph in Figure 12 is orientable as an out-tournament, as we will see.

Likewise, any graph that may be represented in that graph is also orientable as an

out-tournament. This accounts for a rather large class of graphs. To see that, one
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must only consider all the possible families F of connected subgraphs of the cactus

in Figure 12.

Figure 12. A cactus graph orientable as an out-tournament

Also observe that the cactus representation (H,F) of any graph G resembles

the unicyclic graph of Chapter 6, which had only one cycle. Our cactus may have

only one cycle Ck with k ≥ 4. Any other cycles in the cactus are triangles, in the

branches off of any Ck, k ≥ 4, there may be.

If any cactus is the underlying graph of an out-tournament, it must have no

more than one cycle of length four or more, and it is representable in a cactus, since

it is representable in some subgraph of itself. We consider the form of an out-

tournament oriented cactus, then consider the ranks of its adjacency matrix.
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2.1 Structure of an Out-Tournament Orientation of a Cactus

Let D be an out-tournament with UG(D) = G and let G be a cactus. Much

like the class of oriented unicyclic graphs in Chapter 6, the form of out-tournament

D is almost completely determined by the assumption of the form of its underlying

graph. The following results characterize the form that D must take.

Corollary 7.2. Let G = UG(D) be a cactus, and let D be an out-

tournament. If G has a cycle v1, v2, ..., vk, v1 with k ≥ 4, then the set {v1, v2, ..., vk}

induces directed cycle ~Ck in D.

Proof. This follows from Lemma 6.18. Although that lemma was dealing with

the out-tournament orientation of a cycle in a unicyclic graph, the result applies to

all out-tournament oriented cycles. The only out-tournament orientation of Ck is

~Ck. �

Now that the structure of what we will refer to as ‘the big cycle,’ and

alternately ‘the main cycle,’ has been established, we consider the form of the

remaining structures in D. The other cycles may only be triangles, and none may

share an edge, by definition. Thus, the remainder of G, outside of the big cycle, if

one exists, resembles the trees growing out of the central cycle in the unicyclic

representations of Section 4.1. To facilitate the following discussion, define distance

d′(v) to be the distance in G of vertex v to the nearest vertex on Ck. We can define

d′(v) = 0 for any vertex v on the cycle, and refer to the distance classes of vertices,

which will prove useful in upcoming results.

First, consider all those vertices that have d′(v) = 1, that is, those adjacent

to a vertex of Ck.

Lemma 7.3. Let G = UG(D) be a cactus with cycle Ck, k ≥ 4, and D an

out-tournament. Let v not on Ck be adjacent to vertex j on Ck in H. Then v −→ j

in D.
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Proof. Suppose that j −→ v in D. Then (j + 1) −→ v in D and j, (j + 1) and

v form a triangle in G sharing edge {j, (j + 1)} with Ck, which is impossible. �

Now, observe the following about cactus G.

Lemma 7.4. If u, v, w lie in the same triangle in G, then at least two of these

vertices are not on Ck. Those two vertices must have the same distance d′ from Ck.

Furthermore, the shortest path to the cycle from each of these two must pass through

the third vertex.

Proof. The first part of the lemma follows directly from the assumption that G

is a cactus, as no two cycles share an edge. Thus, at least two of the vertices of the

triangle are not on Ck. For the second part of the lemma, consider that one vertex

of the triangle is a cut vertex, with its removal separating G into a component with

Ck, and a second component consisting of one edge of the triangle with anything

that is adjacent to that edge. If not, then G is not a cactus. Thus, the shortest path

to Ck from each of the two other vertices of the triangle is through that cut vertex

and the two vertices are the same distance from Ck. �

Corollary 7.5. In any triangle of cactus G, two vertices of the triangle

have d′(v) = d′(u) = `+ 1 where the third vertex has d′(w) = `.

We have defined distance d′(v) from Ck. It is also critical to refer to edges

{x, y} of cactus H with d′(x) = d′(y) as level edges and their orientations as level

arcs. Similarly, if d′(x) 6= d′(y) then {x, y} is a trans-level edge and its orientation is

a trans-level arc. The set of all vertices with a particular distance from Ck is a level.

Now, by the same argument as Lemma 7.4, we can state the following.

Lemma 7.6. If u, v are adjacent in G with d′(u) = d′(v)− 1 then v −→ u in

D.

Proof. Assume that {u, v} ∈ E(G), and d′(u) = d′(v) + 1. By Lemma 7.3 , we

know that if d′(u) = 1, then the conclusion holds. Suppose that the conclusion holds
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for all levels up to level ` ≥ 1. Then assume d′(u) = `+ 1, d′(v) = `, with edge

{u, v} in G. Suppose v −→ u in D. But, there must exist w adjacent to v in G with

d′(w) = `− 1 and by the induction hypothesis, v −→ w in D. Then u,w are

adjacent in G since {u,w} ⊆ N+(v) and D is an out-tournament. Vertex w is

adjacent to another vertex, x, either on the same level or one level lower. If w −→ u,

then {u, x} ∈ E(G), creating a cycle on {u,w, x} that shares an edge with the

triangle on {u, v, w}. On the other hand, if u −→ w, then d′(u) = d′(v) contradicting

our assumption. Therefore, u −→ v and the lemma holds for all levels `. �

To paraphrase: except for triangles, any trans-level edges in G are all oriented

toward ~Ck in D. That is to say that other than the orientation of the level edges in

G, the form of the out-tournament orientation of G is completely determined by our

assumption that D has a cactus as an underlying graph. Furthermore, the

orientations of the level edges do not matter, until we are assigning an enumeration.

Remember that the motivation to look at this class of digraph is to analyze

its adjacency matrix ranks. Now that we understand the structure of the digraph,

we are well equipped to do just that.

2.2 Adjacency Matrix Ranks of Out-tournament Oriented Cacti

The underlying graph UG(D) = G resembles the unicyclic representations of

Section 4.1: there is potentially only one big cycle and something like trees growing

out of the cycle. The difference here is that triangles may exist in the trees. If each

of those triangles were condensed to a single vertex, then the branches of G off the

cycle would indeed be trees. If we call a cactus having no cycle larger than C3 a

triangle cactus, then we can say that D consists of a directed cycle, ~Ck, with a

number of directed triangle cacti, each rooted at a cycle vertex. Recall that an

in-branching is an oriented spanning tree subdigraph with exactly one vertex having

out-degree zero.
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Remark 7.7. Let U be the induced subdigraph on a triangle cactus branch of

an out-tournament oriented cactus. If each triangle is condensed to a single point

then U becomes an in-branching.

Each triangle cactus in G may have leaves, or it may have triangles at the

end of branches. In this case, we will refer to such a triangle as a terminal triangle.

In the same way that we have begun previous matrix rank investigations,

consider the source vertices in D. Each leaf vertex in G represents a source in D, by

Lemma 7.3. Let {u, v, w} induce a terminal triangle in G, with {u, v} being its same

level edge. Now, either u −→ v or v −→ u in D, but either way, the terminal

triangle contains exactly one source. Let the set of all leaves have size `, and the set

of all terminal triangles have size t.

Lemma 7.8. Let D be an out-tournament orientation of cactus G. Let T be

the set of all terminal triangles in G, L be the set of all leaves in G and A = M(D).

Then rt(A) ≤ |V (D)| − |L| − |T |.

Proof. In each terminal triangle of G there is a vertex representing a source

vertex in D, and each leaf of G is also a source in D. For each of these vertices, the

column representing its inset in A is ~0. Thus, term rank of A cannot exceed

n− `− t. �

Next we make an observation important for the term rank and Boolean rank,

the ranks that are analogous to line cover number and biclique cover number of the

corresponding digraph, respectively. A biclique X −→ Y is substantial if |X| > 1

and |Y | > 1; in other words, a substantial biclique is a non-claw biclique.

Lemma 7.9. Let D be an out-tournament oriented cactus. Then D has no

substantial bicliques.

Proof. For each vertex v, d+(v) ≤ 2. And, for each u, v, |N+(u) ∩N+(v)| ≤ 1.

If the intersection of any two outsets were 2 or greater, then UG(D) = G is not a

cactus, contradicting our assumption. �
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Following immediately from Lemma 7.9, we have a corollary relating the

term and Boolean ranks.

Corollary 7.10. If D is an out-tournament oriented cactus, then any

minimum biclique cover of the arcs of D corresponds to a line cover of the 1s of

A = M(D). Thus rt(A) = rB(A).

Proof. Since there are no substantial bicliques in D, then the arcs of any

biclique in a minimum cover represent the non-zero entries in a single row or single

column of A. Therefore rt(A) ≤ rB(A). By the matrix rank inequalities given in

(2.1), rB(A) ≤ rt(A). Therefore, rt(A) = rB(A). �

So far, we have an upper bound for term rank, and we know that term rank

and Boolean rank are the same. The next proposition addresses the Boolean rank

problem using independent/isolated sets of 1s in A, thus giving a lower bound.

In order to accomplish this, we will build up a set sequentially. At the same

time, we will give the vertices an enumeration that will lend itself to the clarity of

the proof of a theorem below.

Algorithm 7.11. Stage 0 Assuming that the vertices are given a cyclic

enumeration for the central cycle ~Ck, put each arc j + 1 −→ j (j = 2, 3, ..., k) and

arc 1 −→ k into set S, which is the opposite of the usual convention, but the reason

will become clear in the next section.

Stage ` ≥ 1

(1) If there is a level `− 1 vertex y reachable from level ` in D without an arc

x −→ y in S so far, then add one such arc for each such vertex y.

(2) Add every arc u −→ v where d′(u) = d′(v) = `.

As each arc u −→ v is put into S, if it becomes the ith element of S, then v

is given the label i.

The steps are repeated until the last stage z is completed, where z is the

level of the tallest triangle cactus growing out of the cycle.
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Note that at the finish of the construction of set S, not every vertex will have

been assigned an index. The remaining vertices are numbered in any satisfactory

manner. For our purposes, it is only important that they are numbered last. As we

will see below, it is exactly the set of sources of D that are not indexed until the

end. So, if there are n vertices in all, and s sources, the sources will have labels

n− s+ 1, n− s+ 2, ..., n.

Proposition 7.12. The set S represents a maximum set of independent 1s

in A = M(D), and |S| = |{v ∈ V |N−(v) 6= ∅}|. Then rt(A) = |S ′|.

Proof. The set S is independent if no two arcs have the same starting point,

and no two arcs have the same ending point. Because of the way we have chosen

arcs and the order in which we have chosen them, neither of these things happen.

For the size of S, we will use a function f : S −→ V given by f(x, y) −→ y.

Function f maps each arc in S to its ending point. Since we noted above that no

two arcs in S have the same starting point, f is well-defined. Likewise, f is 1-1 since

no two arcs in S have the same ending point.

For convenience, define S ′ = {v ∈ V |N−(v) 6= ∅}, which is the set of all

vertices of D except for the sources. Our goal is to show that f(S) = S ′.

Take y ∈ f(S). There is x ∈ V such that (x, y) ∈ S. Hence, y is not a source,

and we have that f(S) ⊆ S ′. Choose any y ∈ S ′. By definition, N−(y) 6= ∅.

Suppose that d+(y) = `. At stage ` in the construction of S, if y were dominated by

another level ` vertex, x, then that arc would have been added to set S at this

stage. Suppose that there were no such x on level `. By assumption, y is dominated

by some vertex and by Lemma 7.3, x −→ y implies that 0 ≤ d′(x)− d′(y) ≤ 1. So

there must be an x on level `+ 1 with x −→ y, which would be added to S at stage

`+ 1. So, S ′ ⊆ f(S), which gives the desired result.

The only thing yet to demonstrate is that S is a maximum set of

independent arcs in D. We know that rt(A) = |S| for any set S of independent 1s of

maximum size. Earlier, we showed that rt(A) ≤ |S ′| with Lemma 7.8 , and since the
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size of any independent set of 1s forms a lower bound for the term rank, we have

|S ′| = |S| ≤ rt(A) ≤ |S ′|. Therefore, we know that S is of a maximum size, and

rt(A) = |S ′|. �

Therefore, we can make the following statement immediately, combining the

results of Corollary 7.10 and Proposition 7.12.

Theorem 7.13. Let D be an out-tournament oriented cactus, with

A = M(D) and r source vertices. Then rB(A) = rZ+(A) = rt(A) = n− r.

Proof. Consider the set S, represented in A by a maximum set of independent

1s. By Corollary 7.10, there are no substantial bicliques in D. Therefore, any

independent set of 1s is automatically an isolated set of 1s. Now s ≤ rB(A) ≤ s,

thus rB(A) = s = n− r. By (2.1), rB(A) ≤Z+ (A) ≤ rt(A) for any {0, 1}-matrix,

therefore the nonnegative integer rank of A is also n− r. �

As we have observed in the past, real rank is a bit different from the others,

as the graph property corresponding to a singular matrix is frequently less obvious

than that for other ranks. Thus, to find this common rank for a given digraph class

frequently requires different techniques than the other ranks.

However, as often is the case, a strategic enumeration of the vertices can

place the adjacency matrix in a form that makes identification of its real rank a very

simple matter. In our case, all the hard labor has already been done. At this point,

just sit back and let the enumeration do all the work!

2.3 Real Rank of Adjacency Matrix of Out-tournament Ori-

ented Cacti

Given the enumeration in Algorithm 7.11, the form of A can be visualized by

first observing the following:
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Lemma 7.14. Let D be any out-tournament orientation of a cactus, with

vertex enumeration given by Algorithm 7.11. If i −→ j in D, then i > j, with the

exception of 1 −→ k on ~Ck, the central cycle.

Proof. Clearly the result holds for every j on ~Ck except for 1 −→ k. Take any

j with N−(j) 6= ∅. As we noted in Lemma 7.3, for any out-tournament oriented

cactus, all trans-level arcs are directed toward the central cycle, ~Ck. As the set S

was constructed in Algorithm 7.11, every level ` vertex has a lower label than any

level `+ 1 vertex. Suppose that i −→ j and i ≤ j. Then d′(i) = d′(j) = `. If i was

labeled first, then there was an arc x −→ i added to S before i −→ j. However,

(x, i) cannot be a level arc, because G is a cactus, and that would cause two cycles

to share an edge. But x cannot be a level `+ 1 vertex since in that case, i would not

have been labeled until stage `+ 1, after j. Thus, the conclusion holds for all arcs in

D. �

We will define set Lj as the set of all level j vertices with nonempty insets,

and R the set of all source vertices. Let x be any vertex with d′(x) = z a maximum

in H. Then there are z stages in the construction of set S, and the vertices V of D

are partitioned into L0, L1, ..., Lz, R. Let |Lj| = `j for each 0 ≤ j ≤ z, and define R

to be the set of source vertices in D, with |R| = r.

Define Aj = M [Lj]D, the adjacency matrix of the induced subdigraph on

vertices Lj in digraph D. Then A has the block form shown below. Also, A(i+1)i

contains all of the arcs from a level i+ 1 vertex to a level i vertex. All the blocks

below the first subdiagonal and those above the main diagonal are blocks of all 0s.

The bottom right corner block, labeled AR, represents the matrix of the induced

subdigraph on the set of all sources, which were numbered last. This is, of course, a

subdigraph with no arcs. So AR is an r × r block of all 0s.
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A =



A0 [0] . . . . . . [0]

A1,0 A1
. . .

...

[0] A2,1
. . . . . .

...
...

. . . . . . Az [0]

[0] . . . [0] Ar,z AR



Each block Aj contains relatively few nonzero entries. Each 1 in submatrix

Aj represents a level arc in level j. Each of these arcs are represented in the set S,

constructed in Algorithm 7.11.

Theorem 7.15. Let A = M(D) be the adjacency matrix of an out-

tournament oriented cactus D, with r sources. Then r(A) = n− r.

Proof. Consider the 1s in matrix A that represent the arcs in set S. As we

noted earlier, no two are in the same row, and no two are in the same column. By

our enumeration, each of these 1s is also the highest nonzero entry in its column,

which we can think of as leading 1s in their respective columns. Then the column

rank is greater than or equal to n− r, the number of linearly independent columns

with leading 1s, and less than or equal to n− r, since A has r columns of 0s on the

far right. Therefore r(A) = n− r. �

Theorem 7.16. Let A = M(D) be the adjacency matrix of an out-

tournament oriented cactus D, with r sources. Then

r(A) = rB(A) = rZ+(A) = rt(A) = n− r.

Proof. Follows from Theorems 7.13 and 7.15. �
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3 Conclusion and Future Work

The work in this chapter goes together with that in Chapter 6. The next

investigation in both unicyclic and in cactus representations would be some

determinate way of assigning the family of pointed sets such that the catch digraph

produces an out-tournament with predictable adjacency matrix ranks. A second

possible direction is the following.

Conjecture 1. [5] Every graph orientable as an out-tournament has a

cactus representation.

This remains to be seen, while this chapter produced particular out-

tournament cactus orientations, it was not designed to verify the conjecture. Note

that Prisner [36] in his dissertation did extensive work with representations, and

together with Bang-Jensen and Jing Huang [5], produced results but were unable to

verify the conjecture. Another direction might be to consider, in light of the current

chapter, families of subgraphs of a cactus that have strong out-tournaments as their

catch digraphs. Perhaps some similar adjacency matrix rank properties will hold

such as those for oriented cactus graphs. For example, several classes given in

Bang-Jensen, Huang and Prisner [5] seem promising. The immediate results of

Theorem 7.17 were given in the same paper.

Theorem 7.17. [5] Any graph representable in a cactus with no more than

one cycle of length 4 or greater is orientable as an out-tournament.

Each of the following is orientable as an out-tournament:

(1) Chordal graphs;

(2) Circular arc graphs; and

(3) Graphs with exactly one induced cycle length of 4 or greater.
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Thus, these classes all merit a closer look because they may well lend

themselves to an analysis of the matrix ranks of out-tournament catch digraphs

from their representations.
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CHAPTER 8
A Strong Catch Digraph of a Cactus

Representation

1 Introduction

Following in a progression through the last two chapters, we have considered

underlying graphs of increasing levels of complexity to give classes of

out-tournaments having adjacency matrices with full ranks. In each of those

chapters, because of our constructions, there has not been the possibility of a

strongly connected out-tournament. So this chapter attempts to find a class of

out-tournaments as simple as possible that can be shown to have full, equal matrix

ranks, and is strongly connected. Recall that:

Proposition 8.1. [5] An out-tournament is strong if and only if it has a

Hamiltonian cycle.

Since our primary goals here are strong connectedness and equal matrix

ranks, we must necessarily be looking for cases in which the four matrix ranks are

full. If our out-tournament is strong, the term rank of its matrix is automatically

full, due to the fact that the matrix must have a full set of independent 1s,

representing the Hamiltonian cycle that is guaranteed to exist. Therefore, equal

ranks means equal and full ranks in this case.

As it is usually desirable to start with simpler cases and generalize from

there, our goals in this chapter will be to:

(1) add the fewest arcs necessary to an oriented cactus to make a strong

out-tournament, and

(2) avoid creating any substantial bicliques.
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If we can achieve items 1 and 2, assigning the vertices a cyclic enumeration

based on a Hamiltonian cycle, then Boolean rank of the matrix will automatically be

full. As we shall see, the cyclic enumeration reveals a well-organized pattern in the

adjacency matrix, which will allow easy evaluation of the real rank of the matrix.

2 Cactus-Based Strong Out-Tournament

Let H be a cactus with at most one cycle of length 4 or greater. We will

assume that the cactus has this central cycle of length at least 4. If not, then one of

the triangles serves as the central cycle. Recall that a triangle cactus is a cactus

with no cycle larger than C3. If there are no triangles, then the cactus is a tree, and

we will need a different construction in that case, which we will not address at this

time. Suppose that Ck is the big cycle, and T1, T2, ..., Tk are the triangle cacti whose

roots are the cycle vertices. Cactus Tj has cycle vertex cj as its root. The root

vertex cj is a cut vertex, separating Tj from the remainder of graph H (see Figure

13).

The following construction differs from those in the previous chapters.

Because we want a strong out-tournament as the catch digraph, we can no longer

simply orient a cactus. The graph H will be the basis of a representation of UG(D),

where D will be our out-tournament. In fact, the only cactus orientable as a strong

out-tournament is a cycle Ck, which we have already addressed in a Chapter 6,

Lemma 6.18.

In this construction, we will orient Ck as a directed cycle ~Ck in D, because

that allows UG[Ck]D = Ck.

Recall our distance measure d′(v), which gives distance to the nearest cycle

vertex in graph H. Along with that, if d′(v) = `, then we may say that vertex v is in

a level `. Since this is a cactus, it is completely possible that H has two vertices

adjacent that are on the same level. For example, see Figure 13. Vertices u and v

are both on level 1, so {u, v} is a level edge.
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Figure 13. A cactus orientable as an out-tournament, with cj labeled Root.

Recalling the oriented cactus in the previous chapter, note that since all of

the trans-level edges were oriented toward the central cycle by Lemma 7.3, we ended

up with a source vertex at each end of a branch. Rather than adding arcs from the

cycle out to those sources, which would be one way to make the resulting digraph

strong, here we will take a different approach.

This construction will orient all trans-level arcs away from the central cycle.

That is, any trans-level arc is oriented from a lower level vertex to a higher level

vertex. Now every vertex is at least reachable from somewhere else in the digraph

and there are no more source vertices in the digraph. If possible, we would like

UG[Tj]D = Tj, which is to say that Tj induces an orientation of itself in D. This

limits the form of Tj in that it must be a path, with the possibility that some of the

edges are replaced with triangles (refer to Figure 14).

Figure 14. Example of Tj satisfying our principles.
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Lemma 8.2. Let H be a cactus that is orientable as an out-tournament, with

Tj the triangle cactus having cycle vertex c as its root. If UG[Tj]D = Tj and the

trans-level edges of Tj are oriented outward, then Tj is a path, possibly with some

edges replaced with triangles.

Proof. Suppose that vertex c is adjacent to 3 or more vertices in Tj. Then the

set of vertices dominated by c in Tj, represented by N+[cj] ∩ Tj, induces a

tournament in D.

As shown in Figure 15, the underlying graph is not a cactus. By our

assumption, we wanted UG[Tj]D = Tj, where Tj is a cactus. �

Figure 15. Underlying graph of [(N+[cj] ∩ Tj)]D

At this point, the forms of [Ck]D and [Tj]D have been determined, but D is

not yet an out-tournament. To see this, consider the outset of any cycle vertex that

is a root vertex of a cactus in H.

Before adding arcs to create a strong out-tournament, we make an

observation about the triangle cactus, Tj, rooted on the central cycle.

Lemma 8.3. Let Dj be an orientation of triangle cactus Tj rooted at vertex cj

with all trans-level arcs directed away from cj. The orientation Dj is an

out-tournament. Furthermore, there is a directed path in Dj containing all the

vertices of Tj.
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Figure 16. The long cz-path, with all vertices (left), and the shortest
cz-path (right). Dashed arcs indicate exclusion from the path.

Proof. To prove this, refer to Figure 14 to see the form that Tj must take: a

path with some edges replaced by triangles. The distance of any vertex v ∈ Tj from

root vertex cj is exactly the d′(v) distance measure in the larger digraph D. With

all trans-level arcs oriented away from cj, any vertex that dominates more than one

vertex in the orientation automatically induces a tournament on its outset. Observe

that every vertex in Dj is reachable from cj. By out-path mergeability, Dj has a

directed path that includes all of the vertices of Dj. �

Note that in each branch Dj off of the central cycle, there will be exactly one

sink vertex. We will denote that vertex z. As noted in Lemma 8.3, each Dj has a

path that includes all of its vertices. This path, therefore, ends at z. There is also a

shortest path from c to z that skips a vertex at each triangle, if there is one. For an

example of the shortest path and the Hamiltonian path of a sample Dj, see Figure

16.

We now have the necessary understanding of our orientation of H to add a

relatively small number of arcs to complete the digraph D as a strong

out-tournament. Recall that each triangle cactus Tj grows out of the central cycle

at vertex cj. We need a path for the jth sink vertex, zj, to reach the vertices on the

central cycle. So, we add arc (zj, s(cj)) where s(c) represents the successor of a

cycle vertex on the orientation of the central cycle. But, observe that the pointed

set for s(cj) does not represent a connected subgraph of H. Currently, it consists of

cj and zj. To achieve connectedness in the pointed sets (closed insets in D), we need

arcs from each vertex on the shortest cjzj-path to s(cj). Adding those arcs makes D

strongly connected, but the presence of these arcs causes the digraph to cease to be
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an out-tournament. Specifically, consider the outset of any vertex x containing a

vertex of Tj, say y, that was not included in the shortest cjzj-path. That outset

contains y and s(cj), which are not adjacent in Tj or in Dj. The solution is to add

an arc from every vertex in Tj to cycle vertex s(cj). This creates a strong

out-tournament without adding any unneccessary arcs to our oriented cactus.

3 Connectedness and Enumeration of Vertices

At this point, we have a strong out-tournament that has a minimal number

of arcs that are not oriented edges from the representation H. The goal is to find

the cyclic enumeration to assist in matrix rank evaluations. In this construction, the

Hamiltonian cycle is unique, so we can refer to ‘the cyclic enumeration’ without

ambiguity. The following proposition verifies that D is strong by giving the cyclic

enumeration.

Proposition 8.4. Let H be a cactus orientable as an out-tournament. Let

Ck be the central cycle, and Tj any cactus subgraph growing out of the cycle at

vertex cj. Let each Tj induce an out-tournament orientation of itself in D, with all

trans-level edges of each Tj oriented away from the central cycle. Let Ck induce ~Ck

in D. Add arcs x −→ s(cj) for each x ∈ Tj. Then D is a strong out-tournament.

Proof. Consider outsets of the different types of vertices in D. For any cycle

vertex, cj, we have N+(cj) containing s(cj) and there are at most two level 1

vertices in Tj. By the construction, this outset must induce a tournament. The level

1 vertices must be adjacent, because of the form of Tj and any level 1 vertices of Tj

must beat s(cj), so [N+(cj)]D is a tournament for each 1 ≤ j ≤ k. For any vertex zj

which is the sink vertex for Dj, the outset is the single vertex s(cj). Take any vertex

v in Tj other than cj and zj. Observe that the form of Dj dictates that

N+(v) ∩ V (Tj) has either one or two vertices. If two, then those vertices are
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adjacent in D, as well as both beating s(cj), thus N+(v) induces a tournament.

Since every outset induces a tournament in D, digraph D is an out-tournament.

If we can provide a Hamiltonian cycle, then clearly D is strong. For use in

the next section, addressing the ranks of the adjacency matrix, we will assign a

cyclic enumeration to the vertices at the same time as identifying the Hamiltonian

cycle. Take any cycle vertex cj as vertex 1. If cj has a cactus growing out of it, we

number those vertices next, in order, following the long path through Tj to zj. From

zj, zj −→ s(cj) takes us back to the cycle at the next cycle vertex s(cj). If cj did

not have a cactus, then we proceed directly to s(cj). Repeat for vertex s(cj) and so

on, until arriving back at starting point cycle vertex, cj. Then

1 −→ 2 −→ ... −→ n −→ 1

represents a Hamiltonian cycle, so D is strong. �

4 Adjacency Matrix and Matrix Ranks

The cyclic enumeration provided in Proposition 8.4 gives an adjacency matrix

with characteristics that allow us to identify the matrix ranks. Let D be the strong

out-tournament constructed from cactus H as discussed in the last section. Recall

that Dj denotes the induced digraph on cactus Tj. Following previous convention,

let A be the adjacency matrix of D and Aj the adjacency matrix of subdigraph Dj.

Figure 17 gives an example of the construction we have been discussing. The

dashed arcs are the added arcs, in the sense that those are the only ones that are

not orientations of the edges in H.

It was critical that we started the enumeration at a cycle vertex to enable us

to represent the block form of matrix A as:
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Figure 17. Example of construction, with enumeration.

A =



A1 X1 [0] . . . [0]

[0] A2 X2
. . .

...
...

. . . . . . . . . [0]

[0]
. . . . . . Ak−1 Xk−1

Xk [0] . . . [0] Ak


.

Since n usually refers to the number of vertices in digraph D, let nj represent

the number of vertices in subdigraph Dj. In the block matrix above, the matrices

Aj are upper triangular. In fact, in each Aj, the superdiagonal, excluding anj ,1, is all

1s. The superdiagonal of A is all 1s, including an,1. Those 1s represent the

Hamiltonian cycle. In each Aj, the second superdiagonal may have some 1s,
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representing the arcs that were left out of the long path through Tj, as in Figure 16.

All other entries are 0s.

The matrices Xj represent the added arcs originating in the jth triangle

cactus, Dj, and ending at the next cycle vertex. Thus, each Xj has its first column

consiting of all 1s, and the rest of the matrix all 0s.

Proposition 8.5. For each Aj, 1 ≤ j ≤ k,

r(Aj) = rB(Aj) = rZ+(Aj) = rt(Aj) = nj − 1.

Proof. Consider the subdigraph Dj with the path we used for the

enumeration. No vertex in Dj beats a vertex with a lower index. Thus, Aj has all 0s

below the first superdiagonal. The set of nj − 1 1s on the superdiagonal form a

maximum isolated set of 1s, a maximum independent set of 1s and a maximum set

of pivot 1s (for real rank). Thus, the four matrix ranks are all equal to nj − 1. �

Recall that any out-tournament oriented cactus has no substantial bicliques,

and so we automatically get

rB(A) = rZ+(A) = rt(A)

if A is the adjacency matrix of any out-tournament oriented cactus. With the

current strong out-tournament construction, we made note of the fact that the

resulting digraph is no longer an orientation of a cactus, however it nearly is. The

only arcs not that do not appear as edges in the graph H are the added arcs

Tj −→ cj+1. Adding these arcs does not create any substantial bicliques, and so the

Boolean, nonnegative integer, and term ranks of our adjaency matrices also must be

equal to each other.

Theorem 8.6. Let H be a cactus orientable as an out-tournament. Let Ck

be the central cycle, and Tj any cactus subgraph growing out of the cycle at vertex cj.

Let each Tj induce an out-tournament orientation of itself in D, with all trans-level

edges of each Tj oriented away from the central cycle. Let Ck induce ~Ck in D. Add
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arcs x −→ s(cj) for each x ∈ Tj. The adjacency matrix A of strong out-tournament

D has full, equal matrix ranks.

Proof. Observe that the 1s corresponding to the arcs of the Hamiltonian cycle

represent a full set of n isolated 1s in adjacency matrix A. These 1s are in each of

the positions aj,j+1 for j = 1, 2, ..., n− 1 and an,1. Matrix A is nearly upper

triangular: relabeling columns by cyclic permutation (n, n− 1, ..., 2, 1) produces an

upper triangular matrix with all 1s on the main diagonal. So r(A) = n. �

As an illustration, consider matrix A, in (8.1), which corresponds to our

example digraph shown in Figure 17.

(8.1) A =



0 1 1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0

0 0 0 1 1 0 1 0 0 0

0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0 0 0



5 Conclusion and Future Work

In this chapter, we have found a class of strong out-tournaments with full

and equal ranks of their adjacency matrices. Consider that for each vertex in our

finished digraph, with the exception of cycle vertices, the insets (whose closures

form the pointed sets for the catch digraph) have size 1 or 2. Each vertex off the big

cycle can only be dominated by a vertex on the same level or one level higher, and
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cannot be dominated by a vertex in another branch, Tj. Each of those conditions

can be eased, one at a time, to see what generalizations can be made. There

undoubtedly are limitations to the approach of starting with an out-tournament

orientable cactus, but as we observed before, it offers a new perspective on the

problem of classifying out-tournament matrices by their ranks. Ultimately, the

limitations lie in the fact that the class of out-tournaments is huge, even for fairly

small n. Any foothold we can find, however, gets us closer to the complete

characterization of all out-tournament matrices by the four matrix ranks.
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