56 research outputs found

    Past, Present, and Future of Simultaneous Localization And Mapping: Towards the Robust-Perception Age

    Get PDF
    Simultaneous Localization and Mapping (SLAM)consists in the concurrent construction of a model of the environment (the map), and the estimation of the state of the robot moving within it. The SLAM community has made astonishing progress over the last 30 years, enabling large-scale real-world applications, and witnessing a steady transition of this technology to industry. We survey the current state of SLAM. We start by presenting what is now the de-facto standard formulation for SLAM. We then review related work, covering a broad set of topics including robustness and scalability in long-term mapping, metric and semantic representations for mapping, theoretical performance guarantees, active SLAM and exploration, and other new frontiers. This paper simultaneously serves as a position paper and tutorial to those who are users of SLAM. By looking at the published research with a critical eye, we delineate open challenges and new research issues, that still deserve careful scientific investigation. The paper also contains the authors' take on two questions that often animate discussions during robotics conferences: Do robots need SLAM? and Is SLAM solved

    ์ฃผํ–‰๊ณ„ ๋ฐ ์ง€๋„ ์ž‘์„ฑ์„ ์œ„ํ•œ 3์ฐจ์› ํ™•๋ฅ ์  ์ •๊ทœ๋ถ„ํฌ๋ณ€ํ™˜์˜ ์ •ํ•ฉ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ)-- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2019. 2. ์ด๋ฒ”ํฌ.๋กœ๋ด‡์€ ๊ฑฐ๋ฆฌ์„ผ์„œ๋ฅผ ์ด์šฉํ•˜์—ฌ ์œ„์น˜ํ•œ ํ™˜๊ฒฝ์˜ ๊ณต๊ฐ„ ์ •๋ณด๋ฅผ ์ ๊ตฐ(point set) ํ˜•ํƒœ๋กœ ์ˆ˜์ง‘ํ•  ์ˆ˜ ์žˆ๋Š”๋ฐ, ์ด๋ ‡๊ฒŒ ์ˆ˜์ง‘ํ•œ ์ •๋ณด๋ฅผ ํ™˜๊ฒฝ์˜ ๋ณต์›์— ์ด์šฉํ•  ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ๋กœ๋ด‡์€ ์ ๊ตฐ๊ณผ ๋ชจ๋ธ์„ ์ •ํ•ฉํ•˜๋Š” ์œ„์น˜๋ฅผ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ฑฐ๋ฆฌ์„ผ์„œ๊ฐ€ ์ˆ˜์ง‘ํ•œ ์ ๊ตฐ์ด 2์ฐจ์›์—์„œ 3์ฐจ์›์œผ๋กœ ํ™•์žฅ๋˜๊ณ  ํ•ด์ƒ๋„๊ฐ€ ๋†’์•„์ง€๋ฉด์„œ ์ ์˜ ๊ฐœ์ˆ˜๊ฐ€ ํฌ๊ฒŒ ์ฆ๊ฐ€ํ•˜๋ฉด์„œ, NDT (normal distributions transform)๋ฅผ ์ด์šฉํ•œ ์ •ํ•ฉ์ด ICP (iterative closest point)์˜ ๋Œ€์•ˆ์œผ๋กœ ๋ถ€์ƒํ•˜์˜€๋‹ค. NDT๋Š” ์ ๊ตฐ์„ ๋ถ„ํฌ๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๊ณต๊ฐ„์„ ํ‘œํ˜„ํ•˜๋Š” ์••์ถ•๋œ ๊ณต๊ฐ„ ํ‘œํ˜„ ๋ฐฉ๋ฒ•์ด๋‹ค. ๋ถ„ํฌ์˜ ๊ฐœ์ˆ˜๊ฐ€ ์ ์˜ ๊ฐœ์ˆ˜์— ๋น„ํ•ด ์›”๋“ฑํžˆ ์ž‘๊ธฐ ๋•Œ๋ฌธ์— ICP์— ๋น„ํ•ด ๋น ๋ฅธ ์„ฑ๋Šฅ์„ ๊ฐ€์กŒ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ NDT ์ •ํ•ฉ ๊ธฐ๋ฐ˜ ์œ„์น˜ ์ถ”์ •์˜ ์„ฑ๋Šฅ์„ ์ขŒ์šฐํ•˜๋Š” ์…€์˜ ํฌ๊ธฐ, ์…€์˜ ์ค‘์ฒฉ ์ •๋„, ์…€์˜ ๋ฐฉํ–ฅ, ๋ถ„ํฌ์˜ ์Šค์ผ€์ผ, ๋Œ€์‘์Œ์˜ ๋น„์ค‘ ๋“ฑ ํŒŒ๋ผ๋ฏธํ„ฐ๋ฅผ ์„ค์ •ํ•˜๊ธฐ๊ฐ€ ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋ณธ ํ•™์œ„ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ์–ด๋ ค์›€์— ๋Œ€์‘ํ•˜์—ฌ NDT ์ •ํ•ฉ ๊ธฐ๋ฐ˜ ์œ„์น˜ ์ถ”์ •์˜ ์ •ํ™•๋„๋ฅผ ํ–ฅ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ํ‘œํ˜„๋ฒ•๊ณผ ์ •ํ•ฉ๋ฒ• 2๊ฐœ ํŒŒํŠธ๋กœ ๋‚˜๋ˆŒ ์ˆ˜ ์žˆ๋‹ค. ํ‘œํ˜„๋ฒ•์— ์žˆ์–ด ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์Œ 3๊ฐœ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ฒซ์งธ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋ถ„ํฌ์˜ ํ‡ดํ™”๋ฅผ ๋ง‰๊ธฐ ์œ„ํ•ด ๊ฒฝํ—˜์ ์œผ๋กœ ๊ณต๋ถ„์‚ฐ ํ–‰๋ ฌ์˜ ๊ณ ์œ ๊ฐ’์„ ์ˆ˜์ •ํ•˜์—ฌ ๊ณต๊ฐ„์  ํ˜•ํƒœ์˜ ์™œ๊ณก์„ ๊ฐ€์ ธ์˜ค๋Š” ๋ฌธ์ œ์ ๊ณผ ๊ณ ํ•ด์ƒ๋„์˜ NDT๋ฅผ ์ƒ์„ฑํ•  ๋•Œ ์…€๋‹น ์ ์˜ ๊ฐœ์ˆ˜๊ฐ€ ๊ฐ์†Œํ•˜๋ฉฐ ๊ตฌ์กฐ๋ฅผ ๋ฐ˜์˜ํ•˜๋Š” ๋ถ„ํฌ๊ฐ€ ํ˜•์„ฑ๋˜์ง€ ์•Š๋Š” ๋ฌธ์ œ์ ์„ ์ฃผ๋ชฉํ–ˆ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ฐ ์ ์— ๋Œ€ํ•ด ๋ถˆํ™•์‹ค์„ฑ์„ ๋ถ€์—ฌํ•˜๊ณ , ํ‰๊ท ๊ณผ ๋ถ„์‚ฐ์˜ ๊ธฐ๋Œ€๊ฐ’์œผ๋กœ ์ˆ˜์ •ํ•œ ํ™•๋ฅ ์  NDT (PNDT, probabilistic NDT) ํ‘œํ˜„๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๊ณต๊ฐ„ ์ •๋ณด์˜ ๋ˆ„๋ฝ ์—†์ด ๋ชจ๋“  ์ ์„ ๋ถ„ํฌ๋กœ ๋ณ€ํ™˜ํ•œ NDT๋ฅผ ํ†ตํ•ด ํ–ฅ์ƒ๋œ ์ •ํ™•๋„๋ฅผ ๋ณด์ธ PNDT๋Š” ์ƒ˜ํ”Œ๋ง์„ ํ†ตํ•œ ๊ฐ€์„์„ ๊ฐ€๋Šฅํ•˜๋„๋ก ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ •์œก๋ฉด์ฒด๋ฅผ ์…€๋กœ ๋‹ค๋ฃจ๋ฉฐ, ์…€์„ ์ค‘์‹ฌ์ขŒํ‘œ์™€ ๋ณ€์˜ ๊ธธ์ด๋กœ ์ •์˜ํ•œ๋‹ค. ๋˜ํ•œ, ์…€๋“ค๋กœ ์ด๋ค„์ง„ ๊ฒฉ์ž๋ฅผ ๊ฐ ์…€์˜ ์ค‘์‹ฌ์  ์‚ฌ์ด์˜ ๊ฐ„๊ฒฉ๊ณผ ์…€์˜ ํฌ๊ธฐ๋กœ ์ •์˜ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ์ •์˜๋ฅผ ํ† ๋Œ€๋กœ, ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์…€์˜ ํ™•๋Œ€๋ฅผ ํ†ตํ•˜์—ฌ ์…€์„ ์ค‘์ฒฉ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•๊ณผ ์…€์˜ ๊ฐ„๊ฒฉ ์กฐ์ ˆ์„ ํ†ตํ•˜์—ฌ ์…€์„ ์ค‘์ฒฉ์‹œํ‚ค๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๊ธฐ์กด 2D NDT์—์„œ ์‚ฌ์šฉํ•œ ์…€์˜ ์‚ฝ์ž…๋ฒ•์„ ์ฃผ๋ชฉํ•˜์˜€๋‹ค. ๋‹จ์ˆœ์ž…๋ฐฉ๊ตฌ์กฐ๋ฅผ ์ด๋ฃจ๋Š” ๊ธฐ์กด ๋ฐฉ๋ฒ• ์™ธ์— ๋ฉด์‹ฌ์ž…๋ฐฉ๊ตฌ์กฐ์™€ ์ฒด์‹ฌ์ž…๋ฐฉ๊ตฌ์กฐ์˜ ์…€๋กœ ์ด๋ค„์ง„ ๊ฒฉ์ž๊ฐ€ ์ƒ์„ฑํ•˜์˜€๋‹ค. ๊ทธ ๋‹ค์Œ ํ•ด๋‹น ๊ฒฉ์ž๋ฅผ ์ด์šฉํ•˜์—ฌ NDT๋ฅผ ์ƒ์„ฑํ•˜๋Š” ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์ด๋ ‡๊ฒŒ ์ƒ์„ฑ๋œ NDT๋ฅผ ์ •ํ•ฉํ•  ๋•Œ ๋งŽ์€ ์‹œ๊ฐ„์„ ์†Œ์š”ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋Œ€์‘์Œ ๊ฒ€์ƒ‰ ์˜์—ญ์„ ์ •์˜ํ•˜์—ฌ ์ •ํ•ฉ ์†๋„๋ฅผ ํ–ฅ์ƒํ•˜์˜€๋‹ค. ์…‹์งธ, ์ €์‚ฌ์–‘ ๋กœ๋ด‡๋“ค์€ ์ ๊ตฐ ์ง€๋„๋ฅผ NDT ์ง€๋„๋กœ ์••์ถ•ํ•˜์—ฌ ๋ณด๊ด€ํ•˜๋Š” ๊ฒƒ์ด ํšจ์œจ์ ์ด๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋กœ๋ด‡ ํฌ์ฆˆ๊ฐ€ ๊ฐฑ์‹ ๋˜๊ฑฐ๋‚˜, ๋‹ค๊ฐœ์ฒด ๋กœ๋ด‡๊ฐ„ ๋ž‘๋ฐ๋ทฐ๊ฐ€ ์ผ์–ด๋‚˜ ์ง€๋„๋ฅผ ๊ณต์œ  ๋ฐ ๊ฒฐํ•ฉํ•˜๋Š” ๊ฒฝ์šฐ NDT์˜ ๋ถ„ํฌ ํ˜•ํƒœ๊ฐ€ ์™œ๊ณก๋˜๋Š” ๋ฌธ์ œ๊ฐ€ ๋ฐœ์ƒํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•˜์—ฌ NDT ์žฌ์ƒ์„ฑ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ •ํ•ฉ๋ฒ•์— ์žˆ์–ด ๋ณธ ๋…ผ๋ฌธ์€ ๋‹ค์Œ 4๊ฐœ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ฒซ์งธ, ์ ๊ตฐ์˜ ๊ฐ ์ ์— ๋Œ€ํ•ด ๋Œ€์‘๋˜๋Š” ์ƒ‰์ƒ ์ •๋ณด๊ฐ€ ์ œ๊ณต๋  ๋•Œ ์ƒ‰์ƒ hue๋ฅผ ์ด์šฉํ•œ ํ–ฅ์ƒ๋œ NDT ์ •ํ•ฉ์œผ๋กœ ๊ฐ ๋Œ€์‘์Œ์— ๋Œ€ํ•ด hue์˜ ์œ ์‚ฌ๋„๋ฅผ ๋น„์ค‘์œผ๋กœ ์‚ฌ์šฉํ•˜๋Š” ๋ชฉ์ ํ•จ์ˆ˜๋ฅผ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ณธ ๋…ผ๋ฌธ์€์€ ๋‹ค์–‘ํ•œ ํฌ๊ธฐ์˜ ์œ„์น˜ ๋ณ€ํ™”๋Ÿ‰์— ๋Œ€์‘ํ•˜๊ธฐ ์œ„ํ•œ ๋‹ค์ค‘ ๋ ˆ์ด์–ด NDT ์ •ํ•ฉ (ML-NDT, multi-layered NDT)์˜ ํ•œ๊ณ„๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ํ‚ค๋ ˆ์ด์–ด NDT ์ •ํ•ฉ (KL-NDT, key-layered NDT)์„ ์ œ์•ˆํ•˜์˜€๋‹ค. KL-NDT๋Š” ๊ฐ ํ•ด์ƒ๋„์˜ ์…€์—์„œ ํ™œ์„ฑํ™”๋œ ์ ์˜ ๊ฐœ์ˆ˜ ๋ณ€ํ™”๋Ÿ‰์„ ์ฒ™๋„๋กœ ํ‚ค๋ ˆ์ด์–ด๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๋˜ํ•œ ํ‚ค๋ ˆ์ด์–ด์—์„œ ์œ„์น˜์˜ ์ถ”์ •๊ฐ’์ด ์ˆ˜๋ ดํ•  ๋•Œ๊นŒ์ง€ ์ •ํ•ฉ์„ ์ˆ˜ํ–‰ํ•˜๋Š” ๋ฐฉ์‹์„ ์ทจํ•˜์—ฌ ๋‹ค์Œ ํ‚ค๋ ˆ์ด์–ด์— ๋” ์ข‹์€ ์ดˆ๊ธฐ๊ฐ’์„ ์ œ๊ณตํ•œ๋‹ค. ์…‹์งธ, ๋ณธ ๋…ผ๋ฌธ์€ ์ด์‚ฐ์ ์ธ ์…€๋กœ ์ธํ•ด NDT๊ฐ„ ์ •ํ•ฉ ๊ธฐ๋ฒ•์ธ NDT-D2D (distribution-to-distribution NDT)์˜ ๋ชฉ์  ํ•จ์ˆ˜๊ฐ€ ๋น„์„ ํ˜•์ด๋ฉฐ ๊ตญ์†Œ ์ตœ์ €์น˜์˜ ์™„ํ™”๋ฅผ ์œ„ํ•œ ๋ฐฉ๋ฒ•์œผ๋กœ ์‹ ๊ทœ NDT์™€ ๋ชจ๋ธ NDT์— ๋…๋ฆฝ๋œ ์Šค์ผ€์ผ์„ ์ •์˜ํ•˜๊ณ  ์Šค์ผ€์ผ์„ ๋ณ€ํ™”ํ•˜๋ฉฐ ์ •ํ•ฉํ•˜๋Š” ๋™์  ์Šค์ผ€์ผ ๊ธฐ๋ฐ˜ NDT ์ •ํ•ฉ (DSF-NDT-D2D, dynamic scaling factor-based NDT-D2D)์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ, ๋ณธ ๋…ผ๋ฌธ์€ ์†Œ์Šค NDT์™€ ์ง€๋„๊ฐ„ ์ฆ๋Œ€์  ์ •ํ•ฉ์„ ์ด์šฉํ•œ ์ฃผํ–‰๊ณ„ ์ถ”์ • ๋ฐ ์ง€๋„ ์ž‘์„ฑ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ๋กœ๋ด‡์˜ ํ˜„์žฌ ํฌ์ฆˆ์— ๋Œ€ํ•œ ์ดˆ๊ธฐ๊ฐ’์„ ์†Œ์Šค ์ ๊ตฐ์— ์ ์šฉํ•œ ๋’ค NDT๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ์ง€๋„ ์ƒ NDT์™€ ๊ฐ€๋Šฅํ•œ ํ•œ ์œ ์‚ฌํ•œ NDT๋ฅผ ์ž‘์„ฑํ•œ๋‹ค. ๊ทธ ๋‹ค์Œ ๋กœ๋ด‡ ํฌ์ฆˆ ๋ฐ ์†Œ์Šค NDT์˜ GC (Gaussian component)๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ๋ถ€๋ถ„์ง€๋„๋ฅผ ์ถ”์ถœํ•œ๋‹ค. ์ด๋ ‡๊ฒŒ ์ถ”์ถœํ•œ ๋ถ€๋ถ„์ง€๋„์™€ ์†Œ์Šค NDT๋Š” ๋‹ค์ค‘ ๋ ˆ์ด์–ด NDT ์ •ํ•ฉ์„ ์ˆ˜ํ–‰ํ•˜์—ฌ ์ •ํ™•ํ•œ ์ฃผํ–‰๊ณ„๋ฅผ ์ถ”์ •ํ•˜๊ณ , ์ถ”์ • ํฌ์ฆˆ๋กœ ์†Œ์Šค ์ ๊ตฐ์„ ํšŒ์ „ ๋ฐ ์ด๋™ ํ›„ ๊ธฐ์กด ์ง€๋„๋ฅผ ๊ฐฑ์‹ ํ•œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณผ์ •์„ ํ†ตํ•ด ์ด ๋ฐฉ๋ฒ•์€ ํ˜„์žฌ ์ตœ๊ณ  ์„ฑ๋Šฅ์„ ๊ฐ€์ง„ LOAM (lidar odometry and mapping)์— ๋น„ํ•˜์—ฌ ๋” ๋†’์€ ์ •ํ™•๋„์™€ ๋” ๋น ๋ฅธ ์ฒ˜๋ฆฌ์†๋„๋ฅผ ๋ณด์˜€๋‹ค.The robot is a self-operating device using its intelligence, and autonomous navigation is a critical form of intelligence for a robot. This dissertation focuses on localization and mapping using a 3D range sensor for autonomous navigation. The robot can collect spatial information from the environment using a range sensor. This information can be used to reconstruct the environment. Additionally, the robot can estimate pose variations by registering the source point set with the model. Given that the point set collected by the sensor is expanded in three dimensions and becomes dense, registration using the normal distribution transform (NDT) has emerged as an alternative to the most commonly used iterative closest point (ICP) method. NDT is a compact representation which describes using a set of GCs (GC) converted from a point set. Because the number of GCs is much smaller than the number of points, with regard to the computation time, NDT outperforms ICP. However, the NDT has issues to be resolved, such as the discretization of the point set and the objective function. This dissertation is divided into two parts: representation and registration. For the representation part, first we present the probabilistic NDT (PNDT) to deal with the destruction and degeneration problems caused by the small cell size and the sparse point set. PNDT assigns an uncertainty to each point sample to convert a point set with fewer than four points into a distribution. As a result, PNDT allows for more precise registration using small cells. Second, we present lattice adjustment and cell insertion methods to overlap cells to overcome the discreteness problem of the NDT. In the lattice adjustment method, a lattice is expressed as the distance between the cells and the side length of each cell. In the cell insertion method, simple, face-centered-cubic, and body-centered-cubic lattices are compared. Third, we present a means of regenerating the NDT for the target lattice. A single robot updates its poses using simultaneous localization and mapping (SLAM) and fuses the NDT at each pose to update its NDT map. Moreover, multiple robots share NDT maps built with inconsistent lattices and fuse the maps. Because the simple fusion of the NDT maps can change the centers, shapes, and normal vectors of GCs, the regeneration method subdivides the NDT into truncated GCs using the target lattice and regenerates the NDT. For the registration part, first we present a hue-assisted NDT registration if the robot acquires color information corresponding to each point sample from a vision sensor. Each GC of the NDT has a distribution of the hue and uses the similarity of the hue distributions as the weight in the objective function. Second, we present a key-layered NDT registration (KL-NDT) method. The multi-layered NDT registration (ML-NDT) registers points to the NDT in multiple resolutions of lattices. However, the initial cell size and the number of layers are difficult to determine. KL-NDT determines the key layers in which the registration is performed based on the change of the number of activated points. Third, we present a method involving dynamic scaling factors of the covariance. This method scales the source NDT at zero initially to avoid a negative correlation between the likelihood and rotational alignment. It also scales the target NDT from the maximum scale to the minimum scale. Finally, we present a method of incremental registration of PNDTs which outperforms the state-of-the-art lidar odometry and mapping method.1 Introduction 1 1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Point Set Registration . . . . . . . . . . . . . . . . . . . . . 7 1.3.2 Incremental Registration for Odometry Estimation . . . . . . 16 1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.5 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2 Preliminaries 21 2.1 NDT Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2 NDT Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.3 NDT Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Transformation Matrix and The Parameter Vector . . . . . . . . . . . 27 2.5 Cubic Cell and Lattice . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.6 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.7 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.8 Evaluation of Registration . . . . . . . . . . . . . . . . . . . . . . . 31 2.9 Benchmark Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3 Probabilistic NDT Representation 34 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.2 Uncertainty of Point Based on Sensor Model . . . . . . . . . . . . . . 36 3.3 Probabilistic NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.4 Generalization of NDT Registration Based on PNDT . . . . . . . . . 40 3.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.5.2 Evaluation of Representation . . . . . . . . . . . . . . . . . . 41 3.5.3 Evaluation of Registration . . . . . . . . . . . . . . . . . . . 46 3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4 Interpolation for NDT Using Overlapped Regular Cells 51 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.2 Lattice Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.3 Crystalline NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.4.1 Lattice Adjustment . . . . . . . . . . . . . . . . . . . . . . . 56 4.4.2 Performance of Crystalline NDT . . . . . . . . . . . . . . . . 60 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 5 Regeneration of Normal Distributions Transform 65 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 5.2 Mathematical Preliminaries . . . . . . . . . . . . . . . . . . . . . . . 67 5.2.1 Trivariate Normal Distribution . . . . . . . . . . . . . . . . . 67 5.2.2 Truncated Trivariate Normal Distribution . . . . . . . . . . . 67 5.3 Regeneration of NDT . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.1 Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 5.3.2 Subdivision of Gaussian Components . . . . . . . . . . . . . 70 5.3.3 Fusion of Gaussian Components . . . . . . . . . . . . . . . . 72 5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 5.4.1 Evaluation Metrics for Representation . . . . . . . . . . . . . 73 5.4.2 Representation Performance of the Regenerated NDT . . . . . 75 5.4.3 Computation Performance of the Regeneration . . . . . . . . 82 5.4.4 Application of Map Fusion . . . . . . . . . . . . . . . . . . . 83 5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 6 Hue-Assisted Registration 91 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 6.2 Preliminary of the HSV Model . . . . . . . . . . . . . . . . . . . . . 92 6.3 Colored Octree for Subdivision . . . . . . . . . . . . . . . . . . . . . 94 6.4 HA-NDT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 6.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 6.5.1 Evaluation of HA-NDT against nhue . . . . . . . . . . . . . . 97 6.5.2 Evaluation of NDT and HA-NDT . . . . . . . . . . . . . . . 98 6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 7 Key-Layered NDT Registration 103 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 7.2 Key-layered NDT-P2D . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.3.1 Evaluation of KL-NDT-P2D and ML-NDT-P2D . . . . . . . . 108 7.3.2 Evaluation of KL-NDT-D2D and ML-NDT-D2D . . . . . . . 111 7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 8 Scaled NDT and The Multi-scale Registration 113 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 8.2 Scaled NDT representation and L2 distance . . . . . . . . . . . . . . 114 8.3 NDT-D2D with dynamic scaling factors of covariances . . . . . . . . 116 8.4 Range of scaling factors . . . . . . . . . . . . . . . . . . . . . . . . . 120 8.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 8.5.1 Evaluation of the presented method without initial guess . . . 122 8.5.2 Application of odometry estimation . . . . . . . . . . . . . . 125 8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 9 Scan-to-map Registration 129 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 9.2 Multi-layered PNDT . . . . . . . . . . . . . . . . . . . . . . . . . . 130 9.3 NDT Incremental Registration . . . . . . . . . . . . . . . . . . . . . 132 9.3.1 Initialization of PNDT-Map . . . . . . . . . . . . . . . . . . 133 9.3.2 Generation of Source ML-PNDT . . . . . . . . . . . . . . . . 134 9.3.3 Reconstruction of The Target ML-PNDT . . . . . . . . . . . 134 9.3.4 Pose Estimation Based on Multi-layered Registration . . . . . 135 9.3.5 Update of PNDT-Map . . . . . . . . . . . . . . . . . . . . . 136 9.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 10 Conclusions 142 Bibliography 145 ์ดˆ๋ก 159 ๊ฐ์‚ฌ์˜ ๊ธ€ 162Docto

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    Intelligent collision avoidance system for industrial manipulators

    Get PDF
    Mestrado de dupla diplomaรงรฃo com a UTFPR - Universidade Tecnolรณgica Federal do ParanรกThe new paradigm of Industry 4.0 demand the collaboration between robot and humans. They could help (human and robot) and collaborate each other without any additional security, unlike other conventional manipulators. For this, the robot should have the ability of acquire the environment and plan (or re-plan) on-the-fly the movement avoiding the obstacles and people. This work proposes a system that acquires the space of the environment, based on a Kinect sensor, verifies the free spaces generated by a Point Cloud and executes the trajectory of manipulators in these free spaces. The simulation system should perform the path planning of a UR5 manipulator for pick-and-place tasks, while avoiding the objects around it, based on the point cloud from Kinect. And due to the results obtained in the simulation, it was possible to apply this system in real situations. The basic structure of the system is the ROS software, which facilitates robotic applications with a powerful set of libraries and tools. The MoveIt! and Rviz are examples of these tools, with them it was possible to carry out simulations and obtain planning results. The results are reported through logs files, indicating whether the robot motion plain was successful and how many manipulator poses were needed to create the final movement. This last step, allows to validate the proposed system, through the use of the RRT and PRM algorithms. Which were chosen because they are most used in the field of robot path planning.Os novos paradigmas da Indรบstria 4.0 exigem a colaboraรงรฃo entre robรดs e seres humanos. Estes podem ajudar e colaborar entre si sem qualquer seguranรงa adicional, ao contrรกrio de outros manipuladores convencionais. Para isto, o robรด deve ter a capacidade de adquirir o meio ambiente e planear (ou re-planear) on-the-fly o movimento evitando obstรกculos e pessoas. Este trabalho propรตe um sistema que adquire o espaรงo do ambiente atravรฉs do sensor Kinect. O sistema deve executar o planeamento do caminho de manipuladores que possuem movimentos de um ponto a outro (ponto inicial e final), evitando os objetos ao seu redor, com base na nuvem de pontos gerada pelo Kinect. E devido aos resultados obtidos na simulaรงรฃo, foi possรญvel aplicar este sistema em situaรงรตes reais. A estrutura base do sistema รฉ o software ROS, que facilita aplicaรงรตes robรณticas com um poderoso conjunto de bibliotecas e ferramentas. O MoveIt! e Rviz sรฃo exemplos destas ferramentas, com elas foi possรญvel realizar simulaรงรตes e conseguir os resultados de planeamento livre de colisรตes. Os resultados sรฃo informados por meio de arquivos logs, indicando se o movimento do UR5 foi realizado com sucesso e quantas poses do manipulador foram necessรกrias criar para atingir o movimento final. Este รบltimo passo, permite validar o sistema proposto, atravรฉs do uso dos algoritmos RRT e PRM. Que foram escolhidos por serem mais utilizados no ramo de planeamento de trajetรณria para robรดs

    Efficient Dense Registration, Segmentation, and Modeling Methods for RGB-D Environment Perception

    Get PDF
    One perspective for artificial intelligence research is to build machines that perform tasks autonomously in our complex everyday environments. This setting poses challenges to the development of perception skills: A robot should be able to perceive its location and objects in its surrounding, while the objects and the robot itself could also be moving. Objects may not only be composed of rigid parts, but could be non-rigidly deformable or appear in a variety of similar shapes. Furthermore, it could be relevant to the task to observe object semantics. For a robot acting fluently and immediately, these perception challenges demand efficient methods. This theses presents novel approaches to robot perception with RGB-D sensors. It develops efficient registration, segmentation, and modeling methods for scene and object perception. We propose multi-resolution surfel maps as a concise representation for RGB-D measurements. We develop probabilistic registration methods that handle rigid scenes, scenes with multiple rigid parts that move differently, and scenes that undergo non-rigid deformations. We use these methods to learn and perceive 3D models of scenes and objects in both static and dynamic environments. For learning models of static scenes, we propose a real-time capable simultaneous localization and mapping approach. It aligns key views in RGB-D video using our rigid registration method and optimizes the pose graph of the key views. The acquired models are then perceived in live images through detection and tracking within a Bayesian filtering framework. An assumption frequently made for environment mapping is that the observed scene remains static during the mapping process. Through rigid multi-body registration, we take advantage of releasing this assumption: Our registration method segments views into parts that move independently between the views and simultaneously estimates their motion. Within simultaneous motion segmentation, localization, and mapping, we separate scenes into objects by their motion. Our approach acquires 3D models of objects and concurrently infers hierarchical part relations between them using probabilistic reasoning. It can be applied for interactive learning of objects and their part decomposition. Endowing robots with manipulation skills for a large variety of objects is a tedious endeavor if the skill is programmed for every instance of an object class. Furthermore, slight deformations of an instance could not be handled by an inflexible program. Deformable registration is useful to perceive such shape variations, e.g., between specific instances of a tool. We develop an efficient deformable registration method and apply it for the transfer of robot manipulation skills between varying object instances. On the object-class level, we segment images using random decision forest classifiers in real-time. The probabilistic labelings of individual images are fused in 3D semantic maps within a Bayesian framework. We combine our object-class segmentation method with simultaneous localization and mapping to achieve online semantic mapping in real-time. The methods developed in this thesis are evaluated in experiments on publicly available benchmark datasets and novel own datasets. We publicly demonstrate several of our perception approaches within integrated robot systems in the mobile manipulation context.Effiziente Dichte Registrierungs-, Segmentierungs- und Modellierungsmethoden fรผr die RGB-D Umgebungswahrnehmung In dieser Arbeit beschรคftigen wir uns mit Herausforderungen der visuellen Wahrnehmung fรผr intelligente Roboter in Alltagsumgebungen. Solche Roboter sollen sich selbst in ihrer Umgebung zurechtfinden, und Wissen รผber den Verbleib von Objekten erwerben kรถnnen. Die Schwierigkeit dieser Aufgaben erhรถht sich in dynamischen Umgebungen, in denen ein Roboter die Bewegung einzelner Teile differenzieren und auch wahrnehmen muss, wie sich diese Teile bewegen. Bewegt sich ein Roboter selbstรคndig in dieser Umgebung, muss er auch seine eigene Bewegung von der Verรคnderung der Umgebung unterscheiden. Szenen kรถnnen sich aber nicht nur durch die Bewegung starrer Teile verรคndern. Auch die Teile selbst kรถnnen ihre Form in nicht-rigider Weise รคndern. Eine weitere Herausforderung stellt die semantische Interpretation von Szenengeometrie und -aussehen dar. Damit intelligente Roboter unmittelbar und flรผssig handeln kรถnnen, sind effiziente Algorithmen fรผr diese Wahrnehmungsprobleme erforderlich. Im ersten Teil dieser Arbeit entwickeln wir effiziente Methoden zur Reprรคsentation und Registrierung von RGB-D Messungen. Zunรคchst stellen wir Multi-Resolutions-Oberflรคchenelement-Karten (engl. multi-resolution surfel maps, MRSMaps) als eine kompakte Reprรคsentation von RGB-D Messungen vor, die unseren effizienten Registrierungsmethoden zugrunde liegt. Bilder kรถnnen effizient in dieser Reprรคsentation aggregiert werde, wobei auch mehrere Bilder aus verschiedenen Blickpunkten integriert werden kรถnnen, um Modelle von Szenen und Objekte aus vielfรคltigen Ansichten darzustellen. Fรผr die effiziente, robuste und genaue Registrierung von MRSMaps wird eine Methode vorgestellt, die Rigidheit der betrachteten Szene voraussetzt. Die Registrierung schรคtzt die Kamerabewegung zwischen den Bildern und gewinnt ihre Effizienz durch die Ausnutzung der kompakten multi-resolutionalen Darstellung der Karten. Die Registrierungsmethode erzielt hohe Bildverarbeitungsraten auf einer CPU. Wir demonstrieren hohe Effizienz, Genauigkeit und Robustheit unserer Methode im Vergleich zum bisherigen Stand der Forschung auf Vergleichsdatensรคtzen. In einem weiteren Registrierungsansatz lรถsen wir uns von der Annahme, dass die betrachtete Szene zwischen Bildern statisch ist. Wir erlauben nun, dass sich rigide Teile der Szene bewegen dรผrfen, und erweitern unser rigides Registrierungsverfahren auf diesen Fall. Unser Ansatz segmentiert das Bild in Bereiche einzelner Teile, die sich unterschiedlich zwischen Bildern bewegen. Wir demonstrieren hohe Segmentierungsgenauigkeit und Genauigkeit in der Bewegungsschรคtzung unter Echtzeitbedingungen fรผr die Verarbeitung. SchlieรŸlich entwickeln wir ein Verfahren fรผr die Wahrnehmung von nicht-rigiden Deformationen zwischen zwei MRSMaps. Auch hier nutzen wir die multi-resolutionale Struktur in den Karten fรผr ein effizientes Registrieren von grob zu fein. Wir schlagen Methoden vor, um aus den geschรคtzten Deformationen die lokale Bewegung zwischen den Bildern zu berechnen. Wir evaluieren Genauigkeit und Effizienz des Registrierungsverfahrens. Der zweite Teil dieser Arbeit widmet sich der Verwendung unserer Kartenreprรคsentation und Registrierungsmethoden fรผr die Wahrnehmung von Szenen und Objekten. Wir verwenden MRSMaps und unsere rigide Registrierungsmethode, um dichte 3D Modelle von Szenen und Objekten zu lernen. Die rรคumlichen Beziehungen zwischen Schlรผsselansichten, die wir durch Registrierung schรคtzen, werden in einem Simultanen Lokalisierungs- und Kartierungsverfahren (engl. simultaneous localization and mapping, SLAM) gegeneinander abgewogen, um die Blickposen der Schlรผsselansichten zu schรคtzen. Fรผr das Verfolgen der Kamerapose bezรผglich der Modelle in Echtzeit, kombinieren wir die Genauigkeit unserer Registrierung mit der Robustheit von Partikelfiltern. Zu Beginn der Posenverfolgung, oder wenn das Objekt aufgrund von Verdeckungen oder extremen Bewegungen nicht weiter verfolgt werden konnte, initialisieren wir das Filter durch Objektdetektion. AnschlieรŸend wenden wir unsere erweiterten Registrierungsverfahren fรผr die Wahrnehmung in nicht-rigiden Szenen und fรผr die รœbertragung von Objekthandhabungsfรคhigkeiten von Robotern an. Wir erweitern unseren rigiden Kartierungsansatz auf dynamische Szenen, in denen sich rigide Teile bewegen. Die Bewegungssegmente in Schlรผsselansichten werden zueinander in Bezug gesetzt, um ร„quivalenz- und Teilebeziehungen von Objekten probabilistisch zu inferieren, denen die Segmente entsprechen. Auch hier liefert unsere Registrierungsmethode die Bewegung der Kamera bezรผglich der Objekte, die wir in einem SLAM Verfahren optimieren. Aus diesen Blickposen wiederum kรถnnen wir die Bewegungssegmente in dichten Objektmodellen vereinen. Objekte einer Klasse teilen oft eine gemeinsame Topologie von funktionalen Elementen, die durch Formkorrespondenzen ermittelt werden kann. Wir verwenden unsere deformierbare Registrierung, um solche Korrespondenzen zu finden und die Handhabung eines Objektes durch einen Roboter auf neue Objektinstanzen derselben Klasse zu รผbertragen. SchlieรŸlich entwickeln wir einen echtzeitfรคhigen Ansatz, der Kategorien von Objekten in RGB-D Bildern erkennt und segmentiert. Die Segmentierung basiert auf Ensemblen randomisierter Entscheidungsbรคume, die Geometrie- und Texturmerkmale zur Klassifikation verwenden. Wir fusionieren Segmentierungen von Einzelbildern einer Szene aus mehreren Ansichten in einer semantischen Objektklassenkarte mit Hilfe unseres SLAM-Verfahrens. Die vorgestellten Methoden werden auf รถffentlich verfรผgbaren Vergleichsdatensรคtzen und eigenen Datensรคtzen evaluiert. Einige unserer Ansรคtze wurden auch in integrierten Robotersystemen fรผr mobile Objekthantierungsaufgaben รถffentlich demonstriert. Sie waren ein wichtiger Bestandteil fรผr das Gewinnen der RoboCup-Roboterwettbewerbe in der RoboCup@Home Liga in den Jahren 2011, 2012 und 2013

    Automatic Reconstruction of Textured 3D Models

    Get PDF
    Three dimensional modeling and visualization of environments is an increasingly important problem. This work addresses the problem of automatic 3D reconstruction and we present a system for unsupervised reconstruction of textured 3D models in the context of modeling indoor environments. We present solutions to all aspects of the modeling process and an integrated system for the automatic creation of large scale 3D models

    High-level environment representations for mobile robots

    Get PDF
    In most robotic applications we are faced with the problem of building a digital representation of the environment that allows the robot to autonomously complete its tasks. This internal representation can be used by the robot to plan a motion trajectory for its mobile base and/or end-effector. For most man-made environments we do not have a digital representation or it is inaccurate. Thus, the robot must have the capability of building it autonomously. This is done by integrating into an internal data structure incoming sensor measurements. For this purpose, a common solution consists in solving the Simultaneous Localization and Mapping (SLAM) problem. The map obtained by solving a SLAM problem is called ``metric'' and it describes the geometric structure of the environment. A metric map is typically made up of low-level primitives (like points or voxels). This means that even though it represents the shape of the objects in the robot workspace it lacks the information of which object a surface belongs to. Having an object-level representation of the environment has the advantage of augmenting the set of possible tasks that a robot may accomplish. To this end, in this thesis we focus on two aspects. We propose a formalism to represent in a uniform manner 3D scenes consisting of different geometric primitives, including points, lines and planes. Consequently, we derive a local registration and a global optimization algorithm that can exploit this representation for robust estimation. Furthermore, we present a Semantic Mapping system capable of building an \textit{object-based} map that can be used for complex task planning and execution. Our system exploits effective reconstruction and recognition techniques that require no a-priori information about the environment and can be used under general conditions

    3D Scene Reconstruction with Micro-Aerial Vehicles and Mobile Devices

    Full text link
    Scene reconstruction is the process of building an accurate geometric model of one\u27s environment from sensor data. We explore the problem of real-time, large-scale 3D scene reconstruction in indoor environments using small laser range-finders and low-cost RGB-D (color plus depth) cameras. We focus on computationally-constrained platforms such as micro-aerial vehicles (MAVs) and mobile devices. These platforms present a set of fundamental challenges - estimating the state and trajectory of the device as it moves within its environment and utilizing lightweight, dynamic data structures to hold the representation of the reconstructed scene. The system needs to be computationally and memory-efficient, so that it can run in real time, onboard the platform. In this work, we present three scene reconstruction systems. The first system uses a laser range-finder and operates onboard a quadrotor MAV. We address the issues of autonomous control, state estimation, path-planning, and teleoperation. We propose the multi-volume occupancy grid (MVOG) - a novel data structure for building 3D maps from laser data, which provides a compact, probabilistic scene representation. The second system uses an RGB-D camera to recover the 6-DoF trajectory of the platform by aligning sparse features observed in the current RGB-D image against a model of previously seen features. We discuss our work on camera calibration and the depth measurement model. We apply the system onboard an MAV to produce occupancy-based 3D maps, which we utilize for path-planning. Finally, we present our contributions to a scene reconstruction system for mobile devices with built-in depth sensing and motion-tracking capabilities. We demonstrate reconstructing and rendering a global mesh on the fly, using only the mobile device\u27s CPU, in very large (300 square meter) scenes, at a resolutions of 2-3cm. To achieve this, we divide the scene into spatial volumes indexed by a hash map. Each volume contains the truncated signed distance function for that area of space, as well as the mesh segment derived from the distance function. This approach allows us to focus computational and memory resources only in areas of the scene which are currently observed, as well as leverage parallelization techniques for multi-core processing

    Robust and Optimal Methods for Geometric Sensor Data Alignment

    Get PDF
    Geometric sensor data alignment - the problem of finding the rigid transformation that correctly aligns two sets of sensor data without prior knowledge of how the data correspond - is a fundamental task in computer vision and robotics. It is inconvenient then that outliers and non-convexity are inherent to the problem and present significant challenges for alignment algorithms. Outliers are highly prevalent in sets of sensor data, particularly when the sets overlap incompletely. Despite this, many alignment objective functions are not robust to outliers, leading to erroneous alignments. In addition, alignment problems are highly non-convex, a property arising from the objective function and the transformation. While finding a local optimum may not be difficult, finding the global optimum is a hard optimisation problem. These key challenges have not been fully and jointly resolved in the existing literature, and so there is a need for robust and optimal solutions to alignment problems. Hence the objective of this thesis is to develop tractable algorithms for geometric sensor data alignment that are robust to outliers and not susceptible to spurious local optima. This thesis makes several significant contributions to the geometric alignment literature, founded on new insights into robust alignment and the geometry of transformations. Firstly, a novel discriminative sensor data representation is proposed that has better viewpoint invariance than generative models and is time and memory efficient without sacrificing model fidelity. Secondly, a novel local optimisation algorithm is developed for nD-nD geometric alignment under a robust distance measure. It manifests a wider region of convergence and a greater robustness to outliers and sampling artefacts than other local optimisation algorithms. Thirdly, the first optimal solution for 3D-3D geometric alignment with an inherently robust objective function is proposed. It outperforms other geometric alignment algorithms on challenging datasets due to its guaranteed optimality and outlier robustness, and has an efficient parallel implementation. Fourthly, the first optimal solution for 2D-3D geometric alignment with an inherently robust objective function is proposed. It outperforms existing approaches on challenging datasets, reliably finding the global optimum, and has an efficient parallel implementation. Finally, another optimal solution is developed for 2D-3D geometric alignment, using a robust surface alignment measure. Ultimately, robust and optimal methods, such as those in this thesis, are necessary to reliably find accurate solutions to geometric sensor data alignment problems
    • โ€ฆ
    corecore