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Abstract

Geometric sensor data alignment — the problem of finding the rigid transformation
that correctly aligns two sets of sensor data without prior knowledge of how the data
correspond — is a fundamental task in computer vision and robotics. It is inconvenient
then that outliers and non-convexity are inherent to the problem and present signifi-
cant challenges for alignment algorithms. Outliers are highly prevalent in sets of sensor
data, particularly when the sets overlap incompletely. Despite this, many alignment
objective functions are not robust to outliers, leading to erroneous alignments. In addi-
tion, alignment problems are highly non-convex, a property arising from the objective
function and the transformation. While finding a local optimum may not be difficult,
finding the global optimum is a hard optimisation problem. These key challenges have
not been fully and jointly resolved in the existing literature, and so there is a need for
robust and optimal solutions to alignment problems. Hence the objective of this thesis
is to develop tractable algorithms for geometric sensor data alignment that are robust
to outliers and not susceptible to spurious local optima.

This thesis makes several significant contributions to the geometric alignment liter-
ature, founded on new insights into robust alignment and the geometry of transforma-
tions. Firstly, a novel discriminative sensor data representation is proposed that has
better viewpoint invariance than generative models and is time and memory efficient
without sacrificing model fidelity. Secondly, a novel local optimisation algorithm is de-
veloped for nD–nD geometric alignment under a robust distance measure. It manifests
a wider region of convergence and a greater robustness to outliers and sampling arte-
facts than other local optimisation algorithms. Thirdly, the first optimal solution for
3D–3D geometric alignment with an inherently robust objective function is proposed.
It outperforms other geometric alignment algorithms on challenging datasets due to
its guaranteed optimality and outlier robustness, and has an efficient parallel imple-
mentation. Fourthly, the first optimal solution for 2D–3D geometric alignment with an
inherently robust objective function is proposed. It outperforms existing approaches on
challenging datasets, reliably finding the global optimum, and has an efficient parallel
implementation. Finally, another optimal solution is developed for 2D–3D geometric
alignment, using a robust surface alignment measure.

Ultimately, robust and optimal methods, such as those in this thesis, are necessary
to reliably find accurate solutions to geometric sensor data alignment problems.
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Chapter 1

Introduction

The human visual system is complex and multi-faceted, involving sensory apparatus
— the retina containing the rods and cones in the eyes — and processing apparatus —
a set of highly-connected neurons in the brain. It is capable of performing very sophis-
ticated tasks, including detection, recognition, tracking, prediction, learning, colour
constancy, noise removal, perception of depth and 3D structure, spatial awareness,
and many other high-level tasks. Among the capabilities of the human visual system
is three-dimensional perception and awareness. The ability to construct a model of
the environment, situate oneself inside it, and comprehend how the 3D objects and
structures therein fit together, corresponding to the tasks of mapping, localisation,
route-planning and 3D interaction, are of significant evolutionary advantage.

While the human visual system is very well equipped to perform tasks that are re-
quired frequently, it has many limitations. As visual sensors, the eyes are restricted to
the visible electromagnetic spectrum and 2D directional information, albeit including
a sensitivity to both light and colour. As a visual processor, the visual cortex cannot
directly perceive the 3D world, instead relying on a stereo pair of displaced 2D sensors,
motion and past experience. This indirect 3D information may be incorrect, misleading
or ambiguous, as certain illusions such as trompe-l’œil and forced perspective in Fig-
ure 1.1 illustrate. Other limitations of human vision processing arise from the fallibility
of memory and recall, a propensity towards ‘seeing’ from memory rather than sensor
stimulus, a tendency to take processing shortcuts and heuristics or make unwarranted
extrapolations, and a susceptibility to optical illusions. Moreover, the visual system is
subject to ocular and cortical deterioration and impairment, including the reduction
of visual acuity, field-of-view, and colour perception, as well as disorders that affect
higher-order visual processes such as face recognition.

In comparison to humans, several animals can perceive a wider range of the electro-
magnetic spectrum, including infrared (pit vipers) and ultraviolet (bees) frequencies.
Other animals have additional sensory equipment which may complement or replace
the visual system, including those that can sense the magnetic or electric fields, or use
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(a) Trompe-l’œil artwork (b) Ames room

(c) Gallery in the Palazzo Spada (d) The Electric Brae

Figure 1.1: Geometric optical illusions exploit ambiguities in the human binocular vision sys-
tem to subvert the viewer’s perception of depth and 3D structure. (a) Trompe-l’œil artwork
create a vivid illusion of depth by subverting viewer expectations and using perspective, fore-
shortening, and shading techniques. Attribution: Pere Borrell del Caso (left) and William
Harnett (right). (b) An Ames room creates an illusion of size disparity by creating an apparent
horizon that is not horizontal, typically by constructing a trapezoidal room that appears cubic
from the viewing position. Attribution: mosso. (c) The forced perspective gallery by Francesco
Borromini in the Palazzo Spada, Rome, is only 8m long but appears to be 37m due to the
shrinking columns and sloping floor and ceiling. Attribution: Livioandronico2013. (d) The
Electric Brae, a hill in Ayrshire, Scotland, has a road that slopes upwards but appears to be
sloping downhill due to the geometry of the landscape. Attribution: Mary and Angus Hogg.

auditory input for depth and velocity perception, a form of sonar common to many
bat species. While some of these fall outside the traditional visual system, the in-
terconnection of different sensory inputs can make it difficult to separate the visual
system from other sensor processing systems. Many animals, for example, incorpo-
rate information from their proprioceptive inner ears to make sense of visual input.
However, there is always an energy trade-off between developing sophisticated sensory
apparatus, especially those that perform active sensing, and other systems required
for life and reproduction. This trade-off is, to an extent, also a feature of computer
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vision and robotic systems. Nonetheless, the large variety of evolved visual and extra-
visual systems indicates that advanced sensing can be a good strategy in the calculus
of survival.

Computer vision systems attempt to emulate many of the capabilities of the human
visual system, but do not have all the limitations inherent to it. For example, they
have less fallible memory and recall processes; they can store much more data and
expand their storage capacity when required; they can reason about the observable
world in a mathematical framework without necessarily resorting to heuristics; they
can make accurate measurements in 2D and 3D; and they can systematically identify
ambiguities. Most importantly, they are not limited to the visible spectrum or the wider
electromagnetic spectrum, and can perceive 3D information directly. Whatever can be
detected by a sensor can be made accessible to a computer vision system. Common
modalities include visual data, hyperspectral data, 3D positional data, proprioceptive
data such as acceleration and angular velocity from an inertial measurement unit, and
geospatial data such as absolute position from a GPS.

However, even with access to sources of information unavailable to the human visual
system, current computer vision systems are in many ways inferior to that of humans
and other animals. This is largely because visual information is a data-intensive and
complex modality, despite the apparent ease with which humans process it. Visual data
is information-rich, with even a single image containing a potentially enormous amount
of information. For example, a one megapixel colour image consists of three million
variables, each of which can typically attain one of 256 discrete values. Even with the
processing power available to the modern computer, many computer vision algorithms
find sensible ways to quickly reduce the amount of information in an image before
performing the main computation. Furthermore, visual data is often highly complex,
imaging cluttered scenes with multiple moving or stationary objects that occlude other
objects or structures. Moreover, the appearance of objects may vary when viewed
from different directions or with different illumination conditions. Another source of
complexity is noise and distortions, a consequence of the physical measurements that
constitute visual data. Finally, 2D images, the predominant form of visual data, are
projections of 3D scenes into 2D, and the loss of dimensionality introduces geometric
ambiguities, such as the optical illusions shown in Figure 1.1. Any of these commonplace
complexities, which are inherent to the modality or violate an ideal vision model, may
cause an insufficiently robust computer vision algorithm to fail. Other modalities used
in computer vision share many of these same challenges, although the complexities of
3D reasoning can be simpler for 3D data such as point-sets or meshes.

A plurality of sensors have been used in computer vision systems, with the most
common ones being the colour camera, the depth camera, and the laser rangefinder or
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lidar sensor. The data types provided by these sensors have different properties: colour
cameras generate images that collect structured directional measurements of colour and
intensity at a low cost; depth cameras generate depth images that collect structured
directional and depth measurements, which can be converted into positional informa-
tion, using time-of-flight, structured light or stereopsis techniques; and lidar sensors
generate point-sets that collect unstructured positional measurements and associated
visual information such as reflectance, using time-of-flight or phase-shift techniques.
The distinction between directional and positional sensor data is important for this
thesis. To a lesser extent, so too is the distinction between structured data, such as an
image, and unstructured data, such as a point-set, whose elements can be permuted
without loss of information. Sensors and sensor data representations are discussed in
more detail in Section 3.3.

There are two complementary sources of information provided by images and some
point-sets: appearance and geometry. Appearance is the visual information, the way
something looks, whereas geometry is the structural information, the shape and rela-
tive arrangement. While a robust computer vision system should integrate as many
complementary sources of information as possible, it can be productive to investigate
each in isolation. This thesis focuses on geometric information and geometric methods.

The problem considered in this dissertation is geometric sensor data alignment:
the problem of finding the rigid transformation (rotation and translation) that cor-
rectly aligns one set of sensor data with another, without any prior knowledge about
how the data correspond. In many cases this is undertaken by jointly solving for the
transformation and correspondence set. The data may be of different dimensionality
or captured using different sensors but must provide geometric information. That is,
the spatial position or direction of each data element must be provided. The dual,
interpreted loosely, of the alignment problem is the sensor pose estimation problem,
where the focus is on recovering the pose instead of aligning the data. If one of the
datasets, often denoted as the map, is registered to the world or reference coordinate
frame, then the problem is absolute pose estimation. If there is no privileged frame
of reference, it is relative pose estimation. An example alignment problem is shown
in Figure 1.2. A vehicle has access to two sources of information: a pre-computed 3D
model of the surrounding area, and a photo from a calibrated camera mounted on the
vehicle. The problem is to align the 2D and 3D data in order to estimate the 6-DoF
absolute pose of the camera and hence the vehicle.

In this chapter, the problem of geometric sensor data alignment is outlined in
Section 1.1, the objective, scope and approach of this thesis are stated in Section 1.2,
the key technical contributions are summarised in Section 1.3, and the thesis structure
is outlined in Section 1.4.
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R,t

Figure 1.2: An example of geometric sensor data alignment. In this example, a vehicle has
access to a pre-computed 3D model of the surrounding area and a photo from a calibrated
camera mounted on the vehicle. The problem is to align the 2D and 3D data in order to
estimate the pose of the camera and hence the vehicle.

1.1 The Geometric Sensor Data Alignment Problem

Geometric sensor data alignment is the problem of finding the rigid transformation
(rotation and translation) that correctly aligns one set of sensor data with another,
without any prior knowledge about how the data correspond. An ideal alignment
solution would identify all outliers in the data and optimally align the inliers with
respect to a geometric error criterion that accounts for noise, such as the L2 error.
Note that the terms alignment and registration are used interchangeably in this thesis.

The optimisation problem for geometric sensor data alignment can be written as
follows. Given two sets of sensor data X1 and X2, a rigid transformation function T ,
and an objective function f that measures alignment quality, then

optimise
R,t

f(T (X1,R, t),X2) (1.1)

subject to R ∈ SO(n)
t ∈ Rn

where the rotation R and translation t are rigid transformations of nD Euclidean space.
At the optimum, the arguments R∗ and t∗ constitute the aligning transformation or,
from another perspective, the sensor pose. An example transformation function for a
point-set P = {pi}Ni=1 is the application of the transformation Rrpi + t to each point.
An example objective function for two point-sets P1 and P2 is the sum of the squared
closest-point residuals f(P1,P2) = ∑

p1∈P1 minp2∈P2 ‖p1 − p2‖22.
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1.1.1 Applications of Sensor Data Alignment

Geometric sensor data alignment is a fundamental task in computer vision, robotics,
computer graphics and medical imaging. The underlying tasks of sensor data alignment
and sensor pose estimation are themselves useful, and are frequently deployed as basic
units in computer vision and robotic systems.

Applications of positional sensor data alignment in 2D and 3D are extensive. They
include merging multiple partial scans into a complete model [Blais and Levine, 1995;
Huber and Hebert, 2003]; using registration results as fitness scores for object recog-
nition [Johnson and Hebert, 1999; Belongie et al., 2002]; registering a view into a
global coordinate system for sensor localisation [Nüchter et al., 2007; Pomerleau et al.,
2013]; fusing cross-modality data from different sensors [Makela et al., 2002; Zhao
et al., 2005]; acquiring shape data [Gelfand et al., 2005; Aiger et al., 2008]; and
finding relative poses between sensors [Yang et al., 2013a; Geiger et al., 2012]. Some
higher-level applications include recording cultural heritage [Remondino, 2011], map-
ping underground mine sites [Magnusson et al., 2007], and Simultaneous Localisation
And Mapping (SLAM) tasks in mobile robotics [Smith and Cheeseman, 1986; Leonard
and Durrant-Whyte, 1991].

Applications of directional and positional sensor data alignment (2D–3D registra-
tion) are also numerous, since the ability to find the pose of a camera and map visual
information onto a 3D model and vice versa is useful for many tasks. They include
visual localisation [Nöll et al., 2011; Svärm et al., 2014, 2016]; camera pose estima-
tion and tracking [Hartley and Kahl, 2009; Bazin et al., 2013; Kneip et al., 2015];
augmented reality [Marchand et al., 2016]; motion segmentation [Olson, 2001]; object
recognition [Huttenlocher and Ullman, 1990; Mundy, 2006; Aubry et al., 2014]; auto-
mated cartography [Fischler and Bolles, 1981]; and hand–eye calibration for robotics
[Horaud and Dornaika, 1995; Seo et al., 2009; Heller et al., 2012; Ruland et al., 2012].
Some higher-level commercial applications include autonomous vacuum cleaners such
as the Dyson 360 Eye, and augmented reality platforms such as the Microsoft Hololens,
the Oculus Rift, and the Google ARCore and Qualcomm Vuforia software development
kits [Zia et al., 2016].

While not a focus of this thesis, directional sensor data alignment also has many
applications. A commonly used application is panoramic image stitching [Bazin et al.,
2013; Enqvist et al., 2015; Parra Bustos et al., 2016], where the homography relating
two images can be obtained by rotation-only search if the camera is sufficiently distant
from the scene. A commercial application in this domain is Google Photo Sphere, an
application for creating 360◦ panoramas from photos.
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Figure 1.3: Two partially-overlapping observations (left and right) of the dragon model
(middle) from the Stanford Computer Graphics Laboratory. The pair of point-sets has more
structured outliers (in black) than inliers (in blue) because the overlapping region is small.

1.1.2 Key Challenges

There are two key challenges inherent to the alignment problem: outliers and non-
convexity. The former arises from the sensor data, whereas the latter arises from the
objective function and transformation.

Outliers are pervasive in sensor data and, for two sets of sensor data, consist of
those data elements in each set that do not correspond to any element in the other
set. They emanate from four major sources: sensor noise and error, sampling effects,
changes in the scene and changes in the sensor viewpoint. The first two sources gen-
erate random outliers. For example, impulsive noise, multipath errors, and sparse or
uneven sampling can produce random outliers. The last two sources generate struc-
tured outliers, which are typically more numerous. For example, a dynamic object
may be absent in one dataset but present and occluding surfaces behind it in another,
and parts of a scene may be visible from one viewpoint but absent or occluded from
another. In real data, partially-overlapping observations are the most frequent and
significant source of outliers, an example of which is shown in Figure 1.3. Outliers
are problematic to alignment algorithms because alignment is a joint transformation
and correspondence problem, and outliers invalidate the correspondence assumptions
common to many alignment objective functions. That is, many objective functions do
not model outliers or inadequately model them.

Non-convexity (or non-concavity for maximisation problems) is a property common
to most useful alignment objective functions, as illustrated by Figure 1.4. Furthermore,
rotation constraints also lead to non-convex optimisation problems. Hartley and Kahl
[2007], for example, showed that many quasi-convex objective functions in multiple
view geometry problems can be solved efficiently, unlike the many non-convex functions
that arise when rotation parameters are to be solved. While it may be relatively
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Figure 1.4: Alignment objective function non-convexity. In this example, the ICP objective
function [Besl and McKay, 1992] is plotted for 10 random 2D points undergoing a rotation-only
transformation with no outliers. The non-convexity of problems with outliers, sensor data of
higher dimension, or transformations with higher degrees-of-freedom is even more pronounced.

straightforward to find a local optimum of a non-convex alignment function, finding
the global optimum is a hard optimisation problem.

Although not necessarily inherent to the alignment problem, tractability is another
challenge for alignment algorithms. In particular, many optimal algorithms developed
to circumvent the non-convexity problem have exponential time complexity and there-
fore cannot be used for large datasets. However, recent work [Straub et al., 2017;
Campbell et al., 2017] has shown that under a slightly weakened optimality condition,
these algorithms can run in polynomial time. Moreover, sophisticated data structures,
data representations and parallel processing [Yang et al., 2016; Parra Bustos et al.,
2016; Campbell and Petersson, 2016] can greatly reduce the computational cost.

1.1.3 Existing Alignment Approaches

In this section, the state of the art in geometric alignment methods will be briefly
outlined, with an emphasis on how the literature handles the key challenges of outliers
and non-convexity as identified above. A full classification and review of the literature
is given in Chapter 2.

Algorithms that solve the alignment problem can be classified into two groups:
those that require a set of putative correspondences between elements of the sensor
datasets [Horn, 1987; Fischler and Bolles, 1981; Enqvist et al., 2009; Lepetit et al.,
2009; Svärm et al., 2016; Sattler et al., 2017] and those that do not [Besl and McKay,
1992; Fitzgibbon, 2003; Aiger et al., 2008; Breuel, 2003; Li and Hartley, 2007; Yang
et al., 2016; David et al., 2004; Brown et al., 2015]. This thesis focuses on solutions
to the more challenging and general problem of alignment without correspondences,
designated as geometric matching problems by Breuel [2003].



§1.1 The Geometric Sensor Data Alignment Problem 9

Foundational solutions to geometric matching problems applied local optimisation
techniques to non-robust objective functions and were therefore susceptible to local
optima and outliers. That is, the methods were liable to find only a locally-optimal
solution to a non-convex objective function whose measure of alignment quality was
unreliable when outliers were present in the data. The Iterative Closest Point (ICP)
algorithm, proposed by Besl and McKay [1992], became the technique de rigueur for
aligning positional sensor data due to its conceptual simplicity, ease of use and good
performance. It alternated between finding closest-point correspondences given the
current transformation and then finding the least squares transformation given the
current correspondences. For aligning directional and positional sensor data (2D–3D
alignment), the SoftPOSIT algorithm, proposed by David et al. [2004], was considered
the most computationally efficient approach [Moreno-Noguer et al., 2008]. It alternated
between probabilistic correspondence assignment given the current transformation and
iterative transformation update given the current correspondences, using a least squares
objective function.

To improve the robustness of these methods to outliers, different alignment objective
functions have been advanced. Fitzgibbon [2003] proposed Levenberg-Marquardt ICP
(LM-ICP), extending the ICP algorithm into the LM optimisation framework [Moré,
1978]. Modelling registration as a general optimisation problem enabled the use of
robust Lorentzian and Huber error functions that attenuate the influence of outlier
correspondences. The family of probabilistic alignment approaches [Chui and Ran-
garajan, 2003; Myronenko and Song, 2010; Tsin and Kanade, 2004; Jian and Vemuri,
2011] also enabled the use of robust objective functions. In particular, modelling point-
sets as probability distributions permits the closed-form L2 distance between densities
recommended by Jian and Vemuri [2011]. For 2D–3D alignment, Moreno-Noguer et al.
[2008] proposed the BlindPnP algorithm, which represented the region of expected
transformations (the pose prior) as a Gaussian mixture model from which a Kalman
filter was initialised to guide a local pose search routine. It derived its robustness to
outliers from a correspondence hypothesising step that was similar to the RANdom
SAmple Consensus (RANSAC) algorithm [Fischler and Bolles, 1981] but was restricted
to the subset of matches that were plausible from that pose guess.

Global optimisation approaches to geometric matching problems endeavour to avoid
incorrect locally-optimal alignments by expanding the search domain. Furthermore, op-
timality can be guaranteed by applying the Branch-and-Bound (BB) paradigm [Land
and Doig, 1960], conferring immunity to the non-convexity of the problem. Breuel
[2003] introduced the use of BB to optimally solve 2D geometric alignment problems,
proposing a family of bounding functions for different transformations and objective
functions. However, he identified tractability as the primary impediment to extending
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the work to 3D sensor data. Ceding outlier robustness was an early strategy to extend
optimality to 3D alignment problems. For example, Li and Hartley [2007] minimised a
non-robust Lipschitzised L2 error function using BB, but assumed the transformation
was pure rotation and that the point-sets were the same size with no outliers. More
recently, Yang et al. [2016] proposed the Go-ICP algorithm for 6-DoF 3D–3D align-
ment, which found the optimal solution to the closest-point L2 error between point-sets
using a nested BB scheme. Brown et al. [2015] proposed a similar solution for 6-DoF
2D–3D alignment. The last two methods proposed a trimming strategy to compensate
for their non-robust objective functions, however this required the inlier fraction to
be specified, which can rarely be known in advance. If the inlier fraction is over- or
under-estimated, the trimmed objective function may become distorted such that the
location of the global optimum does not occur at the correct pose.

While RANSAC approaches [Fischler and Bolles, 1981; Grimson, 1990], which ran-
domly hypothesise a minimal set of correspondences, compute a transformation and
evaluate its quality, are global search methods that can confer outlier robustness, they
do not guarantee optimality and quickly become intractable as the number of points
and outliers increases. The first globally-optimal 6-DoF geometric matching meth-
ods for 3D sensor data with inherently robust objective functions were proposed in
Parra Bustos et al. [2016], Campbell and Petersson [2016] and Campbell et al. [2017],
the latter two of which are presented in Chapters 5 and 6 of this thesis. Using the
Go-ICP framework, Parra Bustos et al. [2016] optimised the robust inlier set cardi-
nality maximisation objective function for optimal 3D–3D alignment. They achieved
efficient runtimes by exploiting stereographic projection techniques and sophisticated
data structures including circular R-trees and matchlists.

This brief summary of the geometric alignment literature highlights the need for
methods that are intrinsically robust to outliers and are not susceptible to local optima.
In the next section, these considerations will be formalised into an objective to be
pursued in this thesis.

1.2 Objective and Approach

In this section, the specific objective, scope and approach of this thesis will be outlined.
That is, the section will address the questions of what will and will not be investigated,
why the research is needed, and how it will be undertaken.

1.2.1 Objective

The objective of this thesis is to develop tractable algorithms for geometric sensor data

alignment that are robust to outliers and not susceptible to spurious local optima.
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This is a beneficial undertaking because alignment is a basic tool of computer vision
and robotics, used for sensor localisation and fusing geometric sensor data. Further-
more, outliers are highly prevalent in sensor data and alignment problems are highly
non-convex. As previously shown, these considerations are not fully addressed by the
literature. Hence, robust and optimal methods are necessary for geometric sensor data
alignment to handle unknown correspondences, outliers and non-convexity.

1.2.2 Scope

The scope of this thesis is restricted in several ways. Firstly, the alignment of directional
sensor data, which corresponds to rotation search, relative camera pose and structure-
from-motion problems, is not addressed in this thesis. Nonetheless, rotation search
problems, such as image stitching, can be solved by the 2D–3D alignment algorithm
developed in Chapter 6 by disabling translation search. In addition, the alignment
of directional and positional sensor data is limited to the 2D–3D alignment problem
and does not extend to arbitrary dimensions. Secondly, the raw sensor data types are
restricted to colour or greyscale images, depth images and point-sets. Since these are
common formats for raw data, this is not an onerous limitation. Finally, the scope is
restricted to rigid transformations, to the exclusion of affine, projective, piecewise-rigid
and non-rigid transformations. However, the nD–nD alignment algorithm developed
in Chapter 4 can be trivially extended to non-rigid and other transformations, using
the approach of Jian and Vemuri [2011]. Extending the algorithms of Chapters 5 and
6 to non-rigid transformations would not be tractable, since the dimensionality of the
problem is already very high for a branch-and-bound approach.

1.2.3 Approach

The approach taken in this thesis is to consider the challenges presented by outliers and
non-convexity from the outset when developing geometric alignment algorithms. That
is, robustness to outliers is built into the algorithms through intrinsically robust objec-
tive functions, and susceptibility to incorrect local optima is reduced by expanding the
basin of convergence (Chapter 4) or global optimisation (Chapters 5 and 6). In partic-
ular, the branch-and-bound algorithm is exploited to ensure that the optimal solution
is found, which is shown to be highly desirable for many geometric alignment problems.
As such, techniques for improving the efficiency of 6-DoF branch-and-bound search are
developed in order to produce tractable algorithms. A variety of objective functions,
algorithm structures, and implementation techniques are sampled in Chapters 4–6,
which are not intended to be exhaustive but to demonstrate different possibilities for
geometric sensor data alignment.
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1.3 Summary of Contributions

The major contributions of this thesis are:
1. A novel positional sensor data representation, the Support Vector–parametrised

Gaussian Mixture (SVGM), with a sparse parametrisation that is adaptive to
local surface complexity. As a discriminative model, it is more invariant to view-
point than a generative model since it does not model sampling artefacts, such
as distance-dependent point density and occlusions. See Chapter 4.

2. A novel local optimisation algorithm, Support Vector Registration (SVR), for
aligning positional sensor data under the robust L2 distance between densities,
which manifests strong robustness to outliers and sampling artefacts, and a wide
region of convergence. See Chapter 4.

3. A novel global optimisation algorithm, Globally-Optimal Gaussian Mixture Align-
ment (GOGMA), for optimally aligning 3D positional sensor data under the
robust L2 distance between densities. GOGMA is the first optimal solution pro-
posed for 3D–3D alignment with an inherently robust objective function. The
pivotal contribution is the derivation of novel bounds on the objective function
using the geometry of SE(3). See Chapter 5.

4. A novel global optimisation algorithm, Globally-Optimal Pose And Correspon-
dences (GOPAC), for optimally aligning 2D directional and 3D positional sensor
data under the robust inlier set cardinality objective function. GOPAC is the
first optimal solution proposed for 2D–3D alignment with an inherently robust
objective function. The pivotal contribution is the derivation of novel bounds on
the objective function using the geometry of SE(3). See Chapter 6.

5. A novel global optimisation algorithm for optimally aligning 2D directional and
3D positional sensor data under the robust L2 distance between densities. A
novel projection of Gaussian mixture models onto the unit sphere is derived and
analysed, and novel bounds on the closed-form objective function are found. See
Chapter 6.

1.4 Thesis Outline

This thesis comprises seven chapters. In Chapter 2, the literature on geometric sensor
data alignment is classified, outlined, and reviewed in order to determine the state of the
art. The historical progression of alignment methods is charted to establish a context
for the problem and the strengths and limitations of these methods are evaluated.
Particular attention is paid to how these methods handle outliers and non-convexity.
Chapter 3 presents the technical background for the geometric sensor data alignment
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problem. This background material consists of elements that are common to many
of the approaches proposed in later chapters, including rigid motion parametrisations,
distance measures, sensor data representations, objective functions and optimisation
techniques, and form a mathematical toolkit that will be referred to repeatedly.

The next three chapters propose novel geometric alignment algorithms for different
types of sensor data. In Chapter 4, the problem of robustly aligning two sets of 2D or
3D positional sensor data, such as laser scans, is considered. An algorithm, Support
Vector Registration (SVR), is proposed for robustly aligning positional sensor data us-
ing a Support Vector–parametrised Gaussian mixture data representation. Chapter 5
extends the investigation of robust data representations and objective functions to the
optimal 3D–3D geometric alignment problem. An algorithm, Globally-Optimal Gaus-
sian Mixture Alignment (GOGMA), is proposed for robust and optimal 3D positional
sensor data alignment using the branch-and-bound framework with tight and novel
bounds. In Chapter 6, the same framework is applied to the 2D–3D geometric align-
ment problem. Novel bounds are derived for the robust inlier set cardinality objective
function and an algorithm, Globally-Optimal Pose And Correspondences (GOPAC), is
proposed for solving the camera pose estimation problem. In addition, the theoretical
framework is transferred to another robust objective function that measures the dis-
tance between mixture models on the sphere, linking back to mixture model approaches
recommended in Chapter 4.

Finally, Chapter 7 summarises the main contributions of the thesis, collects the
inferences made throughout, and discusses ongoing and future work stemming from
this research.
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Chapter 2

Literature Review

This chapter outlines and reviews the literature on geometric sensor data alignment.
The two key challenges identified by the literature as inherent to the alignment problem
are outliers and non-convexity. Outliers are pervasive and predominantly arise in sensor
data from sampling scenes or objects from different viewpoints, resulting in occlusions
and partial overlap. Non-convexity or non-concavity is a property common to all
alignment objective functions and, while it may be relatively straightforward to find
a local optimum of a non-convex alignment function, finding the global optimum is a
hard optimisation problem. Accordingly, two clear trends emerge from the literature:
towards a greater level of robustness to outliers and towards more sophisticated global
optimisation strategies. Moreover, recent advances in applying global optimisation
techniques to the alignment problem suggest that guaranteed optimal solutions can
be both tractable and highly desirable. The aims of this chapter are to chart the
historical progression of alignment methods to establish a context for the problem and
to evaluate their strengths and limitations, with an especial focus on how they handled
outliers and non-convexity. The techniques identified here to reduce the susceptibility
of alignment algorithms to outliers and local optima form the technical background to
the solutions proposed for several geometric alignment problems in Chapters 4, 5 and
6. In addition to this detailed survey, each of these chapters contain a summary of the
work relevant to the chapter in order to motivate the specific problems addressed and
re-introduce the state-of-the-art approaches.

The literature on geometric sensor data alignment can be grouped based on the
type of geometric information provided by each sensor. Geometric measurements from
a sensor can be positional or directional, that is, containing the spatial position or
direction of the sample with respect to the sensor. Hence there are three logical sub-
divisions of geometric alignment problems: those where both sets of sensor data are
positional, those where both sets are directional, and those where one set is positional
and the other is directional. In this thesis, the first and last of these subdivisions are
considered, which correspond to the point-set registration and absolute camera pose

15
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problems. The alignment of directional sensor data, which corresponds to the relative
camera pose and structure-from-motion problems, has a very large body of literature
but is not the focus of this work.

The next level of structure arises from whether or not the alignment problem pre-
supposes a set of correspondences between elements of the sensor datasets. For the first
class of problem, methods for generating correspondences will be surveyed briefly be-
fore considering methods for aligning the data given the correspondences. The second
class of problem, where a correspondence set is not available, is much more challenging.
Methods that address this problem must simultaneously solve for the transformation
and the correspondences between the sets of sensor data, although the correspondences
need not be explicit. Moreover, this class of problem is more general than the former,
with solutions to the first class being frequently used as sub-routines in approaches
that handle the second class.

Finally, the third level of structure relates to the type of optimisation used by
the alignment solution, including local, global and globally-optimal search techniques.
Local optimisation methods apply local changes in parameter space to find the local
optimum whose basin of convergence contains the parameter set at which the algorithm
was initialised. Global optimisation methods endeavour to find the global optimum by
searching over larger regions of parameter space. Globally-optimal methods are a subset
of global optimisation methods that provide a guarantee that the global optimum will
be attained within some specified precision.

2.1 Aligning Positional Sensor Data

The task of aligning two sets of positional sensor data has been studied extensively in
the computer vision and robotics communities. While the general registration problem
is not limited to 2D and 3D modalities, these modalities predominate in the literature
due to their many practical applications, including merging multiple partial scans into a
complete model [Blais and Levine, 1995; Huber and Hebert, 2003]; recognising objects
using measures of registration quality [Johnson and Hebert, 1999; Belongie et al.,
2002]; registering a single view into a global coordinate system for sensor localisation
[Nüchter et al., 2007; Pomerleau et al., 2013]; fusing cross-modality data from different
sensors [Makela et al., 2002; Zhao et al., 2005]; and finding the relative pose between
sensors [Yang et al., 2013a; Geiger et al., 2012]. The general problem also encompasses
both rigid and non-rigid registration, where the latter refers to the alignment of sensor
data sampled from deformable objects such as human bodies. However, this review
will focus primarily on the simpler case of finding the 3 or 6 degrees-of-freedom rigid
transformation between sets of positional sensor data.
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In this section, the literature will be divided into whether or not the alignment prob-
lem presupposes a set of correspondences between elements of the datasets. Methods
for aligning sensor data given a potentially noisy correspondence set will be surveyed
first, followed by methods for addressing the more challenging and general problem
of simultaneously solving for the transformation and the correspondences. For both
types, the progression towards methods that are more robust to noise, outliers and
local optima will be highlighted.

2.1.1 Alignment With Correspondences

A large body of work exists for solving the problem of aligning positional sensor data
when correspondences are available. For this problem, the literature identifies noise
and outliers in the correspondence set as the primary confounding factors in real data.
In addition, significant effort has gone towards developing optimal solutions that are
insensitive to noise and outliers. However, before these approaches can be applied, a
set of putative correspondences between the sensor data must be found.

Generating Correspondences

Keypoint or feature detection and feature description techniques provide a relatively
robust and repeatable way to detect interest points such as edges or corners and com-
pute likely correspondences between them. The recent literature on 3D keypoint de-
tectors and feature descriptors is extensive, motivated in part by efforts to solve the
correspondence problem for deformable or articulated objects such as the human face
and body, and will be only briefly summarised here. For 3D sensor data, including
point-sets, meshes and depth images, keypoint detectors and and feature descriptors
were surveyed and thoroughly evaluated in Tombari et al. [2013] and Boyer et al.
[2011] with respect to distinctiveness and repeatability, focussing on the applications
of 3D object recognition and 3D shape retrieval respectively. Methods for keypoint or
feature detection include Intrinsic Shape Signatures (ISS) [Zhong, 2009], Mesh-DoG
[Zaharescu et al., 2009], Heat Kernel Signatures (HKS) [Sun et al., 2009], Normal
Aligned Radial Features (NARF) [Steder et al., 2011], ShapeMSER [Litman et al.,
2011], and those derived from 2D image detectors such as the Harris operator [Harris
and Stephens, 1988; Sipiran and Bustos, 2010] and the Scale-Invariant Feature Trans-
form (SIFT) [Lowe, 2004; Maes et al., 2010]. Several of these detectors (ISS, HKS,
NARF) also provide feature descriptors. Methods for feature description include Spin
Images [Johnson and Hebert, 1999], 3D Shape Context [Frome et al., 2004], Point Fea-
ture Histograms (PFH) [Rusu et al., 2008b], Fast PFH [Rusu et al., 2009], Mesh-HoG
[Zaharescu et al., 2009], Signatures of Histograms of OrienTations (SHOT) [Tombari



18 Literature Review

et al., 2010], Scale-Invariant Heat Kernel Signatures [Bronstein and Kokkinos, 2010],
Wave Kernel Signatures (WKS) [Aubry et al., 2011], Blended Intrinsic Maps (BIM)
[Kim et al., 2011], Intrinsic Shape Context [Kokkinos et al., 2012], Scale-Invariant Spin
Image [Darom and Keller, 2012] and Local Depth SIFT [Darom and Keller, 2012].
However, the performance of these handcrafted descriptors has been largely surpassed
by machine learning approaches.

More recently, many learning-based approaches for feature description and corre-
spondence have emerged [Taylor et al., 2012; Pons-Moll et al., 2015; Windheuser et al.,
2014; Litman and Bronstein, 2014; Rodolà et al., 2014; Boscaini et al., 2016b; Masci
et al., 2015; Boscaini et al., 2015, 2016a; Vestner et al., 2017]. Rodolà et al. [2014] pro-
posed a random forest approach, applied to WKS features, to learn correspondences.
In contrast, Litman and Bronstein [2014] generalised the HKS and WKS feature de-
scriptors by learning optimal spectral descriptors, surpassing the performance of the
handcrafted features. This was extended in Boscaini et al. [2016b] using anisotropic
spectral kernels. Finally, Convolution Neural Networks (CNNs) were applied to this
problem in the Geodesic CNN architecture [Masci et al., 2015], followed by Localised
Spectral CNNs [Boscaini et al., 2015] and Anisotropic CNNs [Boscaini et al., 2016a],
which can be applied to both meshes and point-sets.

The correspondence problem is solved inherently by many of these approaches
[Rodolà et al., 2014; Masci et al., 2015; Boscaini et al., 2015, 2016a; Vestner et al.,
2017]. However, the traditional approach, surveyed in Van Kaick et al. [2011], is to
perform nearest neighbour matching in descriptor space using some similarity measure.
For rigid alignment, additional constraints that preserve the distances between points
can be applied. For non-rigid deformations, some measure of distortion between the
shapes is minimised.

From Correspondences to Alignment

The minimum number of correspondences required to find the rigid transformation
between two sets of positional sensor data is two for 2D data and three for 3D data
[Horn, 1987]. Given point correspondences {(xi,yi)}Ni=1 that are related by the rigid
transformation yi = Rxi + t, finding the rotation R and translation t is equivalent to
finding the transformation that relates the underlying Cartesian coordinate systems.
For the 3D case, Horn [1987] proposed constructing a triad from three corresponding
non-collinear points in each coordinate system and then the rotation that aligns the
triads is also the rotation that relates the underlying coordinate systems. The triad
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(̂ix, ĵx, k̂x) associated with the point-set X = {xi}Ni=1 was defined as

îx = x2 − x1
‖x2 − x1‖

(2.1)

ĵx = x3 − x1 − [(x3 − x1) · îx ]̂ix
‖x3 − x1 − [(x3 − x1) · îx ]̂ix‖

(2.2)

k̂x = îx × ĵx. (2.3)

The triad (̂iy, ĵy, k̂y) associated with the point-set Y = {yi}Ni=1 was defined analogously.
The rotation was then given by R = |̂iy ĵyk̂y||̂ixĵxk̂x|ᵀ where the | · | terms are the
matrices formed by adjoining the column vectors. The translation was found from any
correspondence using t = yi−Rxi. However, when the measurements are not exact, a
least-squares solution is more accurate, since there are more constraints than unknown
parameters even with the minimal number of correspondences.

When measurement noise is present in the data, a least-squares objective function
can be used to find a more accurate solution. Least-squares methods minimise the sum
of squared residuals, given by

min
R∈SO(n), t∈Rn

N∑
i=1
‖Rxi + t− yi‖2 (2.4)

for dimension n. Arun et al. [1987] proposed a least-squares solution using a Singular
Value Decomposition (SVD) of the cross-covariance matrix of the datasets. Another
closed-form solution was proposed by Horn [1987] using eigendecomposition and unit
quaternions to represent rotations. Although least-squares is useful when measurement
noise is present, it is not robust to outliers in the correspondence set. A high outlier
rate is common in real 3D data, since 3D feature detection and description techniques
are still less accurate than their 2D counterparts [Tombari et al., 2013], particularly
when the sampling resolution is insufficient or the overlapping region is small.

When outliers are present in the correspondence set, the L2 norm used in least-
squares can be replaced by a robust loss function. A recent solution was proposed by
Zhou et al. [2016], where a scaled Geman–McClure loss function is used to attenuate the
influence of outlier correspondences. A simulated annealing approach on the Geman–
McClure parameter smooths the non-convex objective function at the start of the
algorithm, allowing many correspondences to participate in the optimisation, before
gradually introducing non-convexity to encourage a tight alignment.

An alternative approach to outliers in the correspondence set is to maximise the
consensus set of correspondences, for which greedy algorithms [Johnson and Hebert,
1999; Rusu et al., 2008a], Hough transforms [Woodford et al., 2014], game theory
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[Albarelli et al., 2010], the RANdom SAmple Consensus (RANSAC) framework [Fis-
chler and Bolles, 1981; Torr and Zisserman, 2000; Chum and Matas, 2008], or robust
global optimisation [Gelfand et al., 2005; Olsson et al., 2008; Hartley and Kahl, 2009;
Enqvist et al., 2009, 2012; Bazin et al., 2012; Ask et al., 2013; Enqvist et al., 2015]
can be used. Maximising the cardinality of the consensus set I for an inlier threshold
θ with respect to a distance function d (typically the Euclidean distance) is given by

max
R,t

|I| (2.5)

subject to I = {i ∈ [1, N ] | d(Rxi + t,yi) 6 θ}
R ∈ SO(n), t ∈ Rn.

Greedy algorithms are commonly used to find a reasonable consensus set, although
they do not guarantee optimality. Johnson and Hebert [1999] proposed a feature-based
alignment method that exploited the transformation invariance of a local descriptor,
the spin image, to build sparse feature correspondences using a greedy algorithm with
geometric consistency constraints. A similar approach was used by Rusu et al. [2008a],
where a subset of distinctive PFH descriptors were used as an input for a greedy
alignment algorithm. Geometric constraints between the features were incorporated
by choosing spatially-constrained correspondences. Hough transforms can also be used
to determine the most likely transformation given a set of correspondences with outliers.
Feature correspondences are converted into votes in a Hough space parametrised by the
transformation and the modes in Hough space are selected, corresponding to the most
likely transformations. Woodford et al. [2014] showed that the process can be both
tractable and accurate for alignment tasks. Finding a consensus set of correspondences
can also be cast in a game-theoretic framework. Albarelli et al. [2010] proposed a
non-cooperative game that, starting with a set of feature correspondences, invoked a
natural selection process where correspondence sets that satisfied a mutual rigidity
constraint thrived while incompatible correspondences were eliminated.

The RANSAC framework was proposed by Fischler and Bolles [1981] for robust
estimation in computer vision problems. It aims to maximise the cardinality of the
consensus set by stochastically generating solution hypotheses from minimal sets. For
3D positional sensor data alignment, RANSAC can be applied by sampling n = 3 point
correspondences, computing the transformation hypothesis using Horn’s method [Horn,
1987], transforming the point-set and counting the number of inliers. The number of
iterations K of this process can be estimated if the ratio of inliers to correspondences
w is known and is given by

K = log(1− p)
log(1− wn) (2.6)
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where p is the probability that at least one minimal set of size n contains only inlier cor-
respondences. Hence, K = 9206 iterations are required to almost certainly (p = 0.9999)
find a minimal set containing only inlier correspondences, for an inlier ratio of w = 10%.
It can be shown that the number of iterations increases exponentially with respect to
the outlier ratio (1 − w). Moreover, RANSAC is a stochastic method that does not
provide any guarantee of optimality. Rusu et al. [2009] applied RANSAC to the align-
ment problem, incorporating geometric constraints on the pairwise distances between
the points in the minimal set, a kd-tree to find nearest neighbour correspondences in
feature descriptor space, and a robust Huber loss function to measure the quality of the
transformation. Compared to a previously developed greedy algorithm [Rusu et al.,
2008a], this approach was two orders of magnitude faster and converged to the global
optimum more frequently.

Polynomial-time algorithms have also been proposed for the problem of optimally
maximising the cardinality of the consensus set [Olsson et al., 2008; Enqvist et al.,
2012; Ask et al., 2013; Enqvist et al., 2015]. The authors observed that the solution
to the consensus set maximisation problem is identical to the solution of the same
problem on a subset of the correspondences, of size 6 d, the dimensionality of the
parameter space. The optimal transformation is hence found by enumerating all

(N
k

)
subsets of correspondences for k 6 d and examining transformations at the Karush-
Kuhn-Tucker (KKT) [Enqvist et al., 2012] or Fritz-John (FJ) [Ask et al., 2013; Enqvist
et al., 2015] points related to the subset. However, full 3D–3D rigid registration is not
addressed by these methods, with quasiconvexity requirements [Olsson et al., 2008]
or tractability [Enqvist et al., 2012; Ask et al., 2013; Enqvist et al., 2015] precluding
6-DoF registration. Even for a small correspondence set with N = 100, the number
of subsets to enumerate for 3D–3D registration (d = 6) is 1 271 427 896, although in
practice not all subsets need to be examined for every problem. As a result, these
methods are more appropriate for applications such as 2D registration, triangulation,
image stitching and relative pose.

Branch-and-Bound (BB) algorithms for optimally maximising the cardinality of the
consensus set have also been proposed. Gelfand et al. [2005] employed BB to assign
each feature point in one point-set with the optimal corresponding feature point in the
other set in order to minimise the overall pairwise distance error. To make the search
more efficient, they used rigid transformation constraints and a measure of correspon-
dence quality based on intrinsic quantities of the data (internal pairwise distances).
Enqvist et al. [2009] similarly applied BB to find optimal correspondences by formu-
lating consensus set maximisation as an NP-hard graph vertex cover problem using
pairwise consistency constraints. Li [2009] reformulated the consensus set problem as
a mixed integer program that was solved using BB, with bounds computed from convex
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under-estimators of the mixed integer program. However, this approach was limited
to a linear algebraic error function and linear constraints, and was therefore unable to
handle nonlinear rotation models. A faster BB approach was proposed by Bazin et al.
[2012], extending the rotation search algorithm of Hartley and Kahl [2009] to solve
the consensus set maximisation problem. However, the bounds are not tight and the
approach is only applicable for rotation search problems, such as line clustering and
vanishing point detection. Moreover, these BB methods have exponential worst-case
time complexity.

In contrast to the work in this section, the solutions to positional sensor data
alignment proposed by this thesis in Chapters 4 and 5 do not require correspondences.
As a consequence, they are not reliant on the robust detection and description of
geometric features, which is an unsolved problem for unstructured 3D data, particularly
when it is noisy, occluded or not densely sampled. The next section investigates the
family of methods for positional sensor data alignment without correspondences, a
family that includes the solutions developed in this thesis.

2.1.2 Alignment Without Correspondences

When a set of correspondences is not available and is difficult to obtain, the problem
becomes much more challenging, as identified by Hartley and Kahl [2009]. Methods
that address this problem must jointly solve for the transformation and the correspon-
dences between the sets of positional sensor data. However, most algorithms do not
explicitly search over correspondence and transformation space simultaneously, instead
assuming that the correspondences determine the transformation or vice versa. More-
over, the correspondences themselves need not be explicit, with soft or probabilistic
assignment being frequently applied.

In addition to being more challenging, the correspondence-free class of problem
is more general than the class that assumes correspondences are known a priori and
therefore can be applied in more situations. Furthermore, solutions to the problem of
alignment given correspondences, such as Horn’s method [Horn, 1987], can be used as
time-efficient sub-algorithms in correspondence-free approaches after fixing the current
correspondence set. This can be helpful for finding a locally-optimal transformation
before re-optimising over the correspondences.

The alignment of positional sensor data without correspondences has previously
been addressed for 2D–2D and 3D–3D geometric matching problems [Besl and McKay,
1992; Fitzgibbon, 2003; Myronenko and Song, 2010; Jian and Vemuri, 2011; Irani and
Raghavan, 1999; Aiger et al., 2008; Yang et al., 2016]. While the non-rigid alignment of
deformable objects has received significant attention [Van Kaick et al., 2011], this review
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will focus on the 3- and 6-DoF rigid alignment problems in 2D and 3D respectively.
The methods for aligning positional sensor data without correspondences can use-

fully be classified based on the type of optimisation. The following sections will examine
approaches that employ local, global and globally-optimal search techniques.

Local Optimisation

The Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992; Chen and Medioni,
1992; Zhang, 1994] is the dominant solution for positional sensor data alignment with-
out correspondences due to its conceptual simplicity, ease of use and good performance.
Given an initial transformation, the algorithm alternates between constructing a cor-
respondence set under the current transformation and estimating the transformation
given these correspondences, until convergence. The correspondence set is generated
by choosing, for each point in one point-set, its Euclidean nearest neighbour in the
other point-set. While in general the nearest neighbour is not the real corresponding
point, ICP nonetheless often converges to a reasonable solution. The transformation is
estimated by minimising the sum of squared distances between corresponding points,
using a closed-form solution such as Horn’s method [Horn, 1987]. Usefully, ICP is able
to work on raw sensor data in the form of point-sets, irrespective of their intrinsic
properties, such as distribution, sampling density and noise intensity. However, the al-
gorithm is limited by its assumption that closest-point pairs should correspond, which
fails when the point-sets are not coarsely aligned or the moving ‘model’ point-set is
not a proper subset of the static ‘scene’ point-set. The latter occurs frequently, since
differing sensor viewpoints and dynamic objects lead to occlusion and partial-overlap.
Moreover, this closest-point assumption means that ICP is susceptible to missing cor-
respondences, which lead to incorrect data association, and local minima, in which the
optimisation gets trapped, producing erroneous estimates without a reliable means of
detecting failure.

The large quantity of work published on ICP, its variants and other local registration
techniques precludes a comprehensive review. For additional background, the reader is
directed to surveys on ICP variants [Rusinkiewicz and Levoy, 2001; Pomerleau et al.,
2013] and 3D point-set and mesh registration techniques [Castellani and Bartoli, 2012;
Tam et al., 2013]. To improve the speed of the ICP algorithm, Nüchter et al. [2007]
used a kd-tree and caching for closest-point search, Chen and Medioni [1992] proposed
the point-to-plane distance that typically reduces the number of iterations required,
and Fitzgibbon [2003] proposed the use of a distance transform for constant-time near-
est neighbour look-up. For this, the closest points in one point-set are pre-computed
for all grid centres of a discretised volume. While this pre-processing step can be time-
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consuming, it is amortised if many point-sets are to be aligned with the point-set that
has been processed. To improve the robustness of ICP to outliers from occlusion and
partial overlap, outlier rejection [Zhang, 1994; Granger and Pennec, 2002], trimming
[Chetverikov et al., 2005], and robust error functions [Fitzgibbon, 2003] have been
applied. These approaches perform robust statistical analysis of the residual errors,
removing or reducing the influence of those most likely to be outlier correspondences.
To enlarge the basin of convergence of ICP, Granger and Pennec [2002] proposed Ex-
pectation Maximisation ICP (EM-ICP) that used probabilistic correspondences with
Gaussian weights and an annealing scheme on the variance, and Minguez et al. [2005]
used a geometric distance measure for finding closest-point correspondences that si-
multaneously accounted for translational and rotational displacements, having made
the observation that a small rotational displacement caused points far from the sensor
to be displaced significantly from their correct correspondents. However, this distance
measure prevents the use of data structures for expediting the search for nearest neigh-
bours, such as a kd-tree or distance transform. Finally, to improve the speed, accuracy
and basin of convergence of ICP, Fitzgibbon [2003] proposed Levenberg-Marquardt
ICP (LM-ICP), applying the general-purpose LM optimisation algorithm [Moré, 1978].
This approach models registration as a general optimisation problem and is therefore
quite versatile, enabling the use of robust error functions to attenuate the influence
of points with large errors and distance transforms to compute the ICP error without
establishing explicit point correspondences.

The family of probabilistic alignment approaches also seeks to improve the robust-
ness of ICP to noise, outliers, and poor initialisations. Many of these approaches [Chui
and Rangarajan, 2003; Myronenko and Song, 2010; Tsin and Kanade, 2004; Jian and
Vemuri, 2011] can be used for both rigid and non-rigid registration, with non-rigid
deformations modelled by thin-plate splines [Bookstein, 1989; Chui and Rangarajan,
2003] or Gaussian radial basis functions [Yuille and Grzywacz, 1989; Myronenko and
Song, 2010]. Both Chui and Rangarajan [2003] and Myronenko and Song [2010] took a
probabilistic approach to correspondence assignment using a Gaussian affinity matrix.
Chui and Rangarajan [2003] proposed the Robust Point Matching algorithm that used
soft assignment and deterministic annealing to alternately update the correspondences
and estimate the transformation. Each point from one point-set is assumed to corre-
spond to a weighted sum of the points from the other point-set using the kernelised
pairwise distance affinity matrix. Myronenko and Song [2010] proposed the similar
Coherent Point Drift algorithm that interpreted the alternating update strategy using
the Expectation Maximisation (EM) framework [Dempster et al., 1977]. Horaud et al.
[2011] extended this EM interpretation using the Expectation Conditional Maximisa-
tion (ECM) algorithm that shares the desirable convergence properties of EM but is
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more suitable for use with anisotropic covariances. However, these algorithms used
maximum likelihood estimation, which is sensitive to outliers, and therefore required
an additional Gaussian component to model outliers.

A more versatile framework can be constructed by modelling both point-sets as
probability distributions and minimising a discrepancy measure between them, obviat-
ing the need for establishing explicit point correspondences. Indeed, the ICP algorithm
itself has been shown to be related to minimising the Kullback-Leibler divergence of
two Gaussian Mixture Models (GMMs) [Jian and Vemuri, 2011]. Tsin and Kanade
[2004] developed the Kernel Correlation algorithm that minimised an objective func-
tion that was proportional to the correlation of two kernel density estimates, implicitly
modelling the point-sets as GMMs. In a similar way, Glaunes et al. [2004] modelled
the point-sets as discrete distributions using weighted sums of Dirac measures and
then estimated the optimal diffeomorphic transformation between the distributions.
A more generic framework was proposed by Jian and Vemuri [2011] with the GMM
Registration algorithm. It modelled the point-sets as GMMs with equally-weighted
Gaussians centred at every point in the set with identical and isotropic covariances,
and minimised the robust L2 distance between densities. A very similar framework, the
Normal Distributions Transform (NDT) method, was developed by Biber and Straßer
[2003], Magnusson et al. [2007], and Stoyanov et al. [2012]. The method modelled
the point-sets as structured GMMs with full data-driven covariances, by computing
Gaussian parameters at each cell of a 3D grid, and one implementation minimised the
L2 distance between densities [Stoyanov et al., 2012]. The algorithm was shown to be
faster and more robust to poor initial alignments than ICP [Magnusson et al., 2009].
While these L2 methods are robust to outliers, they are not robust to some common
sampling artefacts, including occlusions and variable sampling densities, due to the
generative models used to construct the Gaussian mixtures.

The alignment solution proposed in Chapter 4 of this thesis, the Support Vector
Registration (SVR) algorithm [Campbell and Petersson, 2015], belongs to this family of
probabilistic approaches, exploiting the outlier robustness of the L2 distance between
probability densities. However, it also corrects a deficiency in existing approaches
by considering robustness to sampling artefacts as a critical feature. This robustness
is achieved by applying a discriminative model, a Support Vector Machine (SVM)
classifier, to efficiently construct the Gaussian mixtures, which regularises the sampled
points, creating a smooth, occlusion-resistant surface independent of point density and
adaptive to local structural complexity. Robustness to occlusions and variable sampling
densities improved the viewpoint-invariance of the models and therefore the alignment
accuracy. However, while this and the other probabilistic methods are more robust
to outliers and poor initialisations than ICP, they are still susceptible to local optima
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and are dependent on a good transformation initialisation. The next section explores
those works that are less susceptible to local optima through the application of global
optimisation techniques.

Global Optimisation

Global optimisation endeavours to avoid incorrect locally-optimal alignments by ex-
panding the search domain to cover a much greater region in correspondence or trans-
formation space. No guarantees are given by algorithms in this category that the global
optimum will be attained, although some approaches do specify the probability that a
certain number of iterations will find the optimum. In addition, while these approaches
solve for both the transformation and the correspondences, they typically alternate be-
tween the two spaces rather than solving them jointly. As such, the approaches can
be classified into those where the search is led by correspondence space search or by
transformation space search.

Methods for which correspondence search leads can be divided into the hypothesise-
and-test and the hypothesise-and-vote frameworks. Many of these approaches can also
be applied to subsets of the original point-sets, such as those extracted by feature de-
tectors, to reduce their runtime. For the family of hypothesise-and-test algorithms,
also known as sample-and-verify algorithms, exhaustive search [Huttenlocher and Ull-
man, 1990] can be performed by hypothesising a transformation from all possible pairs
or triplets of points, for 2D or 3D respectively, in each dataset. As discussed in Sec-
tion 2.1.1, these are the minimal number of correspondences required to find the rigid
transformation between two sets of positional sensor data. Each hypothesis is tested
by transforming one point-set and measuring how well the point-sets align, using a
geometric distance or counting the number of inliers. Clearly the complexity of ex-
haustive search is higher when correspondences are not available, since every point in
one point-set could correspond to every point in the other point-set. For the 3D case
with point-sets of sizeM and N , the time complexity is O(M4N3 logN) for correspon-
dence sampling and transformation testing.

The RANSAC framework [Fischler and Bolles, 1981] can also be applied in the
correspondence-free case, adding randomisation to the correspondence sampling step.
Using a constant-sized set of random hypotheses for one point-set reduces the time
complexity to O(MN3 logN). That is, the runtime required for a high probability of
success scales polynomially with the size of the input. Nonetheless, the time complexity
is high, limiting the approach to datasets with a small number of points. Irani and
Raghavan [1999] further proposed the randomisation of the transformation testing step,
testing only a constant number of random points in the transformed set except when
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this initial test indicates a good quality match. This reduces the time complexity to
O(N3 logN) for 3D data, although Irani and Raghavan [1999] only tested 2D datasets
due to the still considerable time complexity. Chen et al. [1999] proposed improvements
to the RANSAC framework for 3D alignment, including rigidity constraints and wide
3-point bases to reduce the number of potential correspondences and improve their
robustness to noise and outliers.

Another set of approaches use geometric invariances to reduce the time complexity
of these hypothesise-and-test strategies [Huttenlocher, 1991; Aiger et al., 2008; Mel-
lado et al., 2014; Raposo and Barreto, 2017]. Huttenlocher [1991] observed that the
ratio of distances between three collinear point was preserved by rigid and affine trans-
formations and so, given a set of 4 coplanar points in one point-set and hence two
invariant ratios, all sets of approximately congruent 4-points in the other point-set can
be extracted efficiently. Aiger et al. [2008] extended this approach into 3D and, by
also pre-processing the invariants and storing them in an appropriate data structure,
reduced the time complexity of the problem to O(N2 + k), where the number of con-
gruent sets k in the second point-set is small in practice. Additional constraints for
rigid transformations further reduced the set of candidate congruent 4-points. The
approach used wide 4-point bases for noise and outlier resilience and operated on raw
sensor data, although feature descriptors could be used to further reduce the runtime.
More recently, a linear-time O(N) extension was proposed by Mellado et al. [2014]
that exploited a hash-table-based data structure tailored to the problem to reduce the
time complexity. Finally, Raposo and Barreto [2017] showed that the runtime can be
reduced further by using 2-point bases if the normal vector of one of the points is also
known. Moreover, using a line base instead of a quadrilateral base allowed wider bases
when the overlapping area was small, improving the runtime and noise and outlier
robustness.

Like hypothesise-and-test methods, hypothesise-and-vote or sample-and-vote algo-
rithms [Ballard, 1981; Stockman, 1987; Olson, 1997; Wolfson and Rigoutsos, 1997]
search stochastically over the set of correspondences to generate transformation hy-
potheses. However, instead of testing the hypotheses as they are generated, each
hypothesis generates a vote for its transformation in a discretised Hough space. At
the end, high-probability clusters in transformation space are identified, under the as-
sumption that hypotheses with correct correspondences will vote consistently for the
correct transformation. Pose clustering methods [Stockman, 1987; Olson, 1997] use an
accumulation table for the voting and have a O(MN3) time complexity when sampling
is randomised sampling. A geometric hashing method was proposed by Wolfson and
Rigoutsos [1997] to reduce the time complexity of voting methods to O(N3 logN) by
pre-processing configurations of one point-set using a hash table.
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Another class of correspondence-free global optimisation methods has transforma-
tion search lead. For this, heuristic or stochastic methods can be applied, although
they are not guaranteed to converge to the correct alignment. Sandhu et al. [2010]
employed a particle filtering strategy to expand the search domain of a local Gaus-
sian mixture correlation optimiser. This principled but stochastic approach defined
an uncertainty model for the transformation parameters to robustly predict the new
distribution from which to sample particles. A related approach was proposed by
Wachowiak et al. [2004] using particle swarm optimisation for the registration of 3D
biomedical image data. Robertson and Fisher [2002] and Silva et al. [2005] applied
genetic algorithms to the alignment problem, representing transformations as chromo-
somes with six genes corresponding to the transformation parameters. A population
of individuals (transformation hypotheses) with these chromosomes underwent an evo-
lutionary procedure, with fitter individuals having a greater chance of reproducing to
form new transformation hypotheses. Finally, Blais and Levine [1995] and Papazov
and Burschka [2011] used simulated annealing with robust loss functions to widen the
basin of convergence significantly, reducing the likelihood that the search will become
trapped in a local optimum near the point of initialisation. However, these methods
may not find the correct alignment without a good transformation prior distribution
or initialisation being provided, due to the stochastic nature of the search.

As with the local optimisation algorithms, some global optimisation methods rely
on the statistical properties of the point-sets. Principal Component Analysis (PCA)
has frequently been applied to coarsely align positional sensor data without correspon-
dences or transformation prior. Dorai et al. [1997] and Chung et al. [1998] registered
3D data by aligning the centroids of the data and then aligning the principal axes found
using PCA. This approach led to 180◦ rotation errors due to the sign ambiguity of the
principal axes and failed for symmetric objects and incompletely overlapping data. An
extension was proposed by Xiong et al. [2013b] to align eigenvectors in feature space
using Kernel PCA, but still required substantial overlap and minimal occlusion. Fre-
quency domain solutions, surveyed in Sun et al. [2014], provide an alternative approach.
Makadia et al. [2006] decoupled rotation and translation search using the observation
that the surface normal statistics are independent of translation. They obtained the
rotation by maximising the convolution of the Extended Gaussian Images (EGI) [Horn,
1984] of the two surface normal sets, using the spherical Fourier Transform, and then
estimated the translation using the fast Fourier Transform. However, discretisation
artefacts were introduced by the use of histogram density estimates and the reliance
on EGI peaks made the method susceptible to noise. Another 3D spectral registration
method was proposed by Bülow and Birk [2013] for partially-overlapping data, using
Phase Only Matched Filtering (POMF) to estimate the transformation parameters.
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However, the use of interpolation for rotation estimation limited the approach to small
angular deviations (±30◦).

Machine learning techniques have only had limited application to the problem of
positional sensor data alignment. An indirect approach for aligning RGB-D images
was proposed by Shotton et al. [2013], which used scene coordinate regression forests
to infer the camera pose and thereby align the data. However, the method required
a training set of RGB-D images and poses to localise new camera views and therefore
would not be able to align, even indirectly, two arbitrary depth images. End-to-end
deep learning architectures have not, as of yet, been applied to the 3D–3D registration
problem, due to the unstructured, permutation-invariant and size-varying nature of 3D
point-set data. However, neural networks have been applied to 3D feature detection
and matching [Ai et al., 2017], feature description to encode local geometry using a
dimensionality-reducing auto-encoder Elbaz et al. [2017], and a differentiable reformu-
lation of the RANSAC algorithm [Brachmann et al., 2017], which shows promise for
the correspondence-free alignment problem if the data problem can be solved.

In contrast to the work in this section, the solution to positional sensor data align-
ment proposed by this thesis in Chapter 5 provides a guarantee of optimality. Since
typical alignment problems have a very large search space in the correspondences or
transformations and a high level of non-convexity, it can be very difficult for methods
that do not guarantee optimality to find the global optimum or even a sufficiently
good local optimum. As a consequence, global-optimality is a very desirable and often
necessary attribute for reliable alignment algorithms. The next section examines this
class of globally-optimal algorithm and situates the work of this thesis in its research
context.

Global Optimality

There is a relatively small body of literature that is concerned with providing optimal-
ity guarantees for the problem of aligning positional sensor data without correspon-
dences. Globally-optimal methods find a transformation that is guaranteed to be an
optimiser of a suitable objective function without requiring a transformation prior. The
Branch-and-Bound (BB) paradigm, proposed by Land and Doig [1960], can be applied
to provide such optimality guarantees for non-convex alignment problems. However,
tractability has been the biggest challenge thus far for BB-based geometric alignment
algorithms, particularly when scaling to 3D problems [Breuel, 2003].

Historically, only a small number of studies into what was known as the geometric
matching problem provided optimality guarantees of any kind [Breuel, 1992; Mount
et al., 1999; Breuel, 2003]. Breuel [1992] pioneered the use of BB to optimally solve
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geometric alignment problems, proposing in Breuel [2003] a family of bounding func-
tions for different transformations and objective functions. However, like the work of
[Mount et al., 1999] and Pfeuffer et al. [2012] for satellite and biomedical imagery, the
transformations investigated were predominantly from R2 → R2, that is, 2D–2D align-
ment. A naïve extension to the six parameters required for 3D rigid transformations is
challenging, due to the vastly increased volume of the search space and the nonlinear-
ity of the rotation operator with respect to the rotation parameters. Breuel observed
that 3D transformations were “often impractical because the complexity is too high”
[Breuel, 2003, p. 24] — tractability being identified as the primary impediment.

More recently, branch-and-bound has also been applied to a variety of 3D geometric
alignment problems to provide guaranteed optimal solutions. Existing 3D methods
[Olsson et al., 2006, 2009; Bazin et al., 2013; Hartley and Kahl, 2009; Li and Hartley,
2007; Parra Bustos et al., 2014] are often very slow or make restrictive assumptions
about the point-sets, correspondences or transformations. For example, Olsson et al.
[2006] and Olsson et al. [2009] presented optimal algorithms for the 2D–3D (PnP) and
3D–3D registration problems respectively with known correspondences. In Olsson et al.
[2009], BB and the bilinear relaxation of rotation quaternions was used to find optimal
solutions to point-to-point, point-to-line, and point-to-plane registration. Bazin et al.
[2013] used BB for aligning directional sensor data to find optimal correspondences
between images using both geometry and appearance. Similarly, Hartley and Kahl
[2009] used BB for optimal relative pose estimation by bounding the group of 3D
rotations.

For 3D–3D registration problems without correspondences, Li and Hartley [2007]
minimised a Lipschitzised L2 error function using branch-and-bound with an octree
data structure to implement the search. However, they assumed that the transforma-
tion was pure rotation and that the point-sets were the same size and had a one-to-one
correspondence, and hence no random or structured outliers from partial overlap and
occlusion. Moreover, the reported runtimes were quite high for the size of the problems
solved. Parra Bustos et al. [2014] similarly assumed a pure rotation transformation but
did not restrict the point-sets for their optimal 3D–3D registration algorithm. They
achieved efficient runtimes by exploiting stereographic projection techniques, circular
R-trees and matchlists for optimal inlier set cardinality maximisation, a robust objec-
tive function. Moreover, they also improved the rotation bound from Hartley and Kahl
[2009] that restricted a point perturbed by a set of angle-axis rotations to lie within a
certain ball, with the observation that the point must also lie on a sphere, and hence
on a spherical patch.

Within the last few years, there have been a number of new methods proposed
for full 6-DoF 3D–3D rigid alignment without correspondences or restrictions on the
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point-sets [Yang et al., 2013b, 2016; Parra Bustos et al., 2016; Campbell and Peters-
son, 2016; Straub et al., 2017]. Yang et al. [2016] proposed the Go-ICP algorithm,
which found the optimal solution to the closest-point L2 error between point-sets, the
error measure used in the ICP algorithm. Further, they accelerated the algorithm
by encapsulating ICP as a local optimisation subroutine inside a nested BB scheme
over the translation and rotation domains. However, Go-ICP was sensitive to outliers
from occlusion and partial overlap, due to its non-robust objective function. The pro-
posed trimming strategy went some way to alleviating this, but increased the runtime,
required an estimate of the overlap ratio and led to potential ambiguities in the solu-
tions. Moreover, the implementation used a distance transform to make the problem
tractable. This approximation meant that ε-suboptimality could not be guaranteed
unless the resolution of the distance transform was sufficiently high. Parra Bustos
et al. [2016], extending their rotation search approach in Parra Bustos et al. [2014],
embedded their rotation search kernel into the nested Go-ICP framework for full 6-DoF
registration with a robust inlier set cardinality maximisation objective function. They
improved upon the time efficiency of Go-ICP with a tighter bounding function and
sophisticated projections and data structures that can not be easily exploited under
the least squares objective of Go-ICP.

Concurrently, the probabilistic mixture model approach developed in Chapter 5 of
this thesis was proposed in Campbell and Petersson [2016] for robust and optimal 3D–
3D registration using branch-and-bound. Unlike Yang et al. [2016], the work that im-
mediately preceded it, the Globally-Optimal Gaussian Mixture Alignment (GOGMA)
algorithm optimised an inherently robust objective function, the L2 distance between
probability densities. Tight bounds on the objective function were derived using the ge-
ometry of SE(3), with the rotation bound being tighter than, and directly transferable
to, the rotation bound in the Go-ICP algorithm. Both GOGMA and the concurrent
method of Parra Bustos et al. [2016] demonstrated that there was a need for inherently
robust objective functions to handle outliers in the data.

Subsequent to this work, another mixture model approach was proposed by Straub
et al. [2017]. They decoupled rotation and translation search by first rotationally align-
ing the translation-invariant surface normal distributions, and then aligning the Gaus-
sian mixtures to estimate the translation given rotation. Tight bounds on the robust
L2 distance objective function were derived for a rectangular tessellation of translation
space R3 and a near-uniform tetrahedral tessellation of rotation space SO(3), which is
more efficient to optimise over than angle-axis tessellations. Decoupling rotation and
translation search improved the optimisation efficiency significantly, since the com-
plexity scales exponentially in the search space dimension, and made it possible to
use full covariance Gaussian mixtures for the translation search. However, decoupling
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meant that the solutions for rotation and translation were not jointly optimal, creat-
ing alignment failure modes as shown in their results. Moreover, the method required
surface normals, which limits the general applicability of the algorithm to smoother,
densely-sampled surfaces.

Collectively, the literature on aligning positional sensor data highlights the need for
tractable, robust and optimal solutions that solve for both the transformation and the
correspondences. Such solutions must consider robustness to outliers as a key tenet,
since outliers are pervasive and inherent to the problem. Also inherent to all useful
alignment objective functions is non-convexity. Therefore, global search, preferably
with optimality guarantees, is also a key tenet, to avoid converging on highly prevalent
local optima. The next section changes the focus to a different class of alignment
problem, that of aligning directional and positional sensor data/

2.2 Aligning Directional and Positional Sensor Data

The task of aligning directional and positional sensor data combines data that contains
the spatial position of the samples and data that contains only the direction of the sam-
ples with respect to the sensor. Consequently, the task has some unique challenges, as
reflected in the depth and breadth of the existing literature. While the general problem
is not limited to 2D and 3D modalities, 2D–3D alignment problems for directional and
positional data predominate in computer vision. These can be grouped into the linked
2D–3D geometric matching and absolute camera pose problems.

In this section, the literature will be divided into whether or not the alignment prob-
lem presupposes a set of correspondences between elements of the datasets. Methods
for aligning sensor data given a potentially noisy correspondence set will be surveyed
first, followed by methods for addressing the more challenging and general problem of
simultaneously solving for the transformation and the correspondences.

2.2.1 Alignment With Correspondences

A large body of work exists for solving the problem of aligning directional and positional
data when correspondences are available. However, before these approaches can be
applied, a set of putative correspondences between the sensor data must be found.

Generating Correspondences

For the 2D–3D alignment of an image and a point-set, it can often be difficult to
establish putative correspondences between 2D image features and 3D features. This
arises from the significantly different modalities of the 2D and 3D data since features
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that are salient in the appearance space of an image may not be salient in the structural
space of a point-set.

Keypoint or feature detection and feature description techniques provide a relatively
robust and repeatable way to detect interest points such as edges or corners within
each modality and compute likely correspondences between them. For images, these
techniques include Canny edges [Canny, 1986], Harris corners [Harris and Stephens,
1988], Scale-Invariant Feature Transform (SIFT) features [Lowe, 2004] and Maximally
Stable Extremum Regions (MSER) blob features [Matas et al., 2004]. For 3D sensor
data, keypoint detectors and feature descriptors include Intrinsic Shape Signatures
(ISS) [Zhong, 2009], Normal Aligned Radial Features (NARF) [Steder et al., 2011],
Spin Images [Johnson and Hebert, 1999], 3D Shape Context [Frome et al., 2004],
Point Feature Histograms (PFH) [Rusu et al., 2008b], Fast PFH [Rusu et al., 2009],
and Signatures of Histograms of OrienTations (SHOT) [Tombari et al., 2010]. See
Tombari et al. [2013] for an evaluation of the 3D keypoint detectors, including those
derived from 2D image detectors such as the Harris operator [Harris and Stephens,
1988; Sipiran and Bustos, 2010] and the Scale-Invariant Feature Transform (SIFT)
[Lowe, 2004; Maes et al., 2010], with respect to distinctiveness and repeatability.

Nonetheless, finding correspondences across the two modalities is much more chal-
lenging. In some cases the point-set has visual information associated with it, such as
colour, reflectance or SIFT features, making the cross-modality correspondence prob-
lem simpler [Sattler et al., 2017]. For these problems, the correspondence problem
becomes unimodal and a correspondence set can be generated using some similarity
measure between visual features. More recent approaches use machine learning tech-
niques to learn cross-modality correspondences from the data [Shotton et al., 2013;
Kendall et al., 2015; Brachmann et al., 2017]. However, the correspondence problem
remains inherently non-trivial. What is more, some image pixels, such as sky pixels,
will never correspond to 3D features since they are not geometrically meaningful.

From Correspondences to Alignment

Once a correspondence set has been generated, there are many algorithms that can
solve for the transformation between the sets of sensor data. For 2D–3D alignment,
Perspective-n-Point (PnP) solvers [Grunert, 1841; Haralick et al., 1994; Gao et al.,
2003; Olsson et al., 2006; Lepetit et al., 2009; Kneip et al., 2011; Hesch and Roume-
liotis, 2011; Penate-Sanchez et al., 2013; Kneip et al., 2014] are able to estimate the
pose of a calibrated camera given a set of noisy image points and their correspond-
ing 3D points. The minimal case (P3P), reviewed in Haralick et al. [1994], requires
n = 3 2D–3D correspondences, for which there may be up to four solutions that can
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be disambiguated using a fourth point. An efficient closed-form solution was derived
for the P3P problem in Kneip et al. [2011]. Linear solutions were proposed for n = 4
and n = 5 2D–3D correspondences in Quan and Lan [1999], and the Direct Linear
Transform (DLT) can be used for n > 6 correspondences [Sutherland, 1963; Hartley
and Zisserman, 2003] when the 3D points are in a general configuration. However,
these linear approaches optimised an algebraic error and are susceptible to local op-
tima. For an arbitrary number of correspondences n > 3, the general PnP problem
can be solved, with greater robustness to noise evident for larger values of n [Lepetit
et al., 2009; Hesch and Roumeliotis, 2011; Penate-Sanchez et al., 2013; Kneip et al.,
2014]. In particular, EPnP [Lepetit et al., 2009] is suitable for use with deformable
objects and UPnP [Penate-Sanchez et al., 2013] relaxes the calibration requirements
by also solving for focal length, as does the DLT method. Each of these methods can
be followed by non-linear optimisation to refine the camera pose, typically applying the
Levenberg–Marquardt algorithm [Levenberg, 1944]. Finally, to address the problem of
local optima, prevalent when the number of correspondences is small or the level of
noise is high, Olsson et al. [2006] proposed the first globally-optimal branch-and-bound
algorithm for the PnP problem. It used a geometric error norm and guaranteed that
the global minimum of the L2 norm of the reprojection errors would be attained. A
more efficient optimal algorithm was proposed by Hartley and Kahl [2009] using the
L∞ norm and solving a series of second-order cone programs. However, neither of
these optimal strategies were robust to outlier correspondences and therefore they may
converge to an incorrect pose, as with most PnP algorithms.

When outliers are present in the correspondence set, the RANdom SAmple Con-
sensus (RANSAC) framework [Fischler and Bolles, 1981; Chum and Matas, 2008] or
robust global optimisation [Enqvist and Kahl, 2008; Li, 2009; Enqvist et al., 2012; Ask
et al., 2013; Svärm et al., 2014; Enqvist et al., 2015; Svärm et al., 2016] can be used
to find the inlier set. RANSAC can be applied by sampling three 2D–3D point pairs,
computing the pose hypothesis using P3P, transforming the point-set and counting the
number of inliers [Kneip and Furgale, 2014], but does not provide any guarantee of op-
timality. In contrast, Enqvist and Kahl [2008] proposed a globally-optimal algorithm
that extended the L∞ norm approach of Hartley and Kahl [2009] to handle outliers
and reported runtimes an order of magnitude faster than the previous approaches. The
key insight was that their pairwise ‘pumpkin’ constraints were independent of camera
rotation, so branch-and-bound search over R3 was sufficient to determine the camera
translation. However, their formulation was unable to guarantee the convergence of the
bounds on the optimal solution. Nonetheless, this algorithm, and the mixed integer
formulation of Li [2009], were both capable of discarding outliers, improving the qual-
ity of the fitted solution. More recent works address optimality for model estimation
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problems such as image stitching, triangulation, relative pose and rigid 2D registra-
tion, generating polynomial-time algorithms that optimise a robust loss function such
as the number of inlier or the truncated L2 norm [Enqvist et al., 2012; Ask et al.,
2013; Svärm et al., 2014; Enqvist et al., 2015]. Finally, Svärm et al. [2016] extended
this body of work to the problem of absolute camera pose estimation for a large-scale
model, maximising the number of inliers in polynomial time. However, in order to
achieve a polynomial-time optimal algorithm, the vertical direction and height (within
an interval) of the camera is assumed to be known.

An alternative approach is afforded by outlier removal schemes [Sim and Hartley,
2006; Li, 2007; Ke and Kanade, 2007; Olsson et al., 2008, 2010; Yu et al., 2011;
Parra Bustos and Chin, 2015; Chin et al., 2016] that can make the problem more
tractable and are often used in conjunction with the global optimisation methods sur-
veyed above. Sim and Hartley [2006] proposed a method for detecting outliers in
quasiconvex problems using the L∞ framework, however the absolute calibrated cam-
era pose problem is not quasiconvex and the method removes all measurements in the
support set, including any inliers. Li [2007], Ke and Kanade [2007] and Olsson et al.
[2008] also presented methods for removing outliers in quasiconvex problems, such as
triangulation and camera resectioning, but all have high computational complexity,
restricting them to situations where outliers are rare. More recently, Parra Bustos and
Chin [2015] and Chin et al. [2016] derived methods that guaranteed that only true
outliers were removed, albeit only for quasiconvex problems.

Large-scale camera localisation, with its significant demands on outlier robustness
and computational efficiency, has received a lot of attention recently [Li et al., 2010;
Sattler et al., 2011, 2012; Li et al., 2012; Zeisl et al., 2015; Enqvist et al., 2015; Svärm
et al., 2016; Sattler et al., 2017]. These methods develop sophisticated matching strate-
gies to avoid outlier correspondences at the outset and may also incorporate RANSAC,
global optimisation and outlier removal stages in their sparse feature pipeline. A recent
state-of-the-art approach is Active Search [Sattler et al., 2017], which prioritises those
SIFT features that are more likely to yield inlier 2D–3D correspondences, and achieves
very high camera pose accuracy in feature-rich outdoor environments. Like these meth-
ods, state-of-the-art Simultaneous Localisation and Mapping (SLAM) systems [Klein
and Murray, 2007; Newcombe et al., 2011; Engel et al., 2014; Mur-Artal et al., 2015]
also solve the absolute camera pose estimation problem, however they work most effec-
tively in controlled environments because they are unable to handle large changes in
viewpoint or appearance. However, these methods share the assumption that there is
a reasonable expectation that 2D–3D correspondences can be found. For this reason,
they are often only practical for 3D models that have been constructed using stereopsis
or Structure-from-Motion (SfM). These models associate an image feature with each
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3D point, facilitating inter-modal feature matching. Generic point-sets do not have
this property; a point may lie anywhere on the underlying surfaces in a laser scan, not
just where strong image gradients occur. Moreover, these large databases of features
have their own disadvantages, being computationally expensive to generate, not scaling
well and lacking robustness to appearance changes due to environmental conditions.

It should be observed that some of these approaches [Fischler and Bolles, 1981;
Enqvist and Kahl, 2008] can be extended to the correspondence-free case by providing
the algorithm with all possible permutations of the correspondence set. However, this
leads to a hard combinatorial problem that quickly becomes infeasible.

In contrast to the work in this section, the solutions to aligning directional and
positional sensor data proposed by this thesis in Chapter 6 do not require correspon-
dences. As a consequence, they are not reliant on the robust detection and description
of cross-modal features, which is an unsolved problem for 2D and 3D data, particularly
when only geometric information is known. The next section investigates the family of
methods for aligning directional and positional sensor data without correspondences,
a family that includes the solutions developed in this thesis.

2.2.2 Alignment Without Correspondences

When a set of correspondences is not available and is difficult to obtain, the prob-
lem becomes much more challenging. Methods that address this problem must jointly
solve for the transformation and the correspondences between the sets of directional
and positional sensor data. However, most algorithms do not explicitly search over
correspondence and transformation space simultaneously, instead assuming that the
correspondences determine the transformation or vice versa. Moreover, the correspon-
dences themselves need not be explicit, with soft or probabilistic assignment being
frequently applied.

In addition to being more challenging, the correspondence-free class of problem is
more general than the class that assumes correspondences are available and can be
applied in more situations. Furthermore, solutions to the problem of alignment given
correspondences are regularly used as sub-algorithms in correspondence-free approaches
since they can be more time efficient.

The alignment of 2D directional sensor data without correspondences has previously
been addressed for problems such as correspondence-free Structure-from-Motion (SfM)
[Dellaert et al., 2000; Makadia et al., 2007; Lin et al., 2012] and relative camera pose
[Hartley and Kahl, 2009; Bazin et al., 2013; Fredriksson et al., 2016]. While SfM
and relative camera pose problems have received a lot of attention historically, there
has been a parallel investigation into 2D–3D geometric matching and absolute camera
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pose problems. These are alignment problems involving both directional and positional
sensor data, not directional data alone.

The alignment of 2D directional and 3D positional sensor data without correspon-
dences has previously been addressed for 2D–3D geometric matching and correspondence-
free absolute camera pose problems [Huttenlocher and Ullman, 1990; Cass, 1997; Ja-
cobs, 1997; Olson, 2001; Jurie, 1999; Breuel, 2003; David et al., 2002; Moreno-Noguer
et al., 2008; Brown et al., 2015]. While these approaches do not assume that a corre-
spondence set is available, many of them use simplified camera models such as linear
affine approximations [Huttenlocher and Ullman, 1990; Cass, 1997; Jacobs, 1997; Jurie,
1999; Breuel, 2003], which are only reasonable when the distances from the camera to
the 3D points are large in comparison to the relative depths of those points.

Some approaches sidestep the full 2D–3D problem by utilising a collection of images
[Paudel et al., 2015b] or multiple cameras [Paudel et al., 2015a] to first obtain 3D
positional information from the 2D data, which is then registered against a 3D point-
set. Paudel et al. [2015b] align a scanned 3D point-set with a sparse SfM point-set
of unknown scale, generated from a collection of images. The method is restricted to
scenes with predominantly planar surfaces, a Manhattan world assumption, for which
an optimal assignment of SfM points to extracted planar surfaces is performed using
the branch-and-bound paradigm. However, a general solution must be able to handle
the case of aligning 2D points from a single image or camera with a 3D point-set.

The methods for aligning directional and positional sensor data without correspon-
dences can be usefully classified based on the type of optimisation. The following
sections will examine approaches that employ local, global and globally-optimal search
techniques.

Local Optimisation

For the most general problem of aligning directional and positional sensor data with-
out correspondences, there are several approaches that employ local optimisation [Bev-
eridge and Riseman, 1995; Wunsch and Hirzinger, 1996; David et al., 2002; Moreno-
Noguer et al., 2008]. These methods share a common iterative approach that alternates
between searching over the transformation and correspondence spaces and use a full
perspective model. They also all require a transformation prior and may only find a
locally-optimal solution within the convergence basin of the prior. To alleviate this,
these methods are frequently used within a global optimisation framework, with the
methods of Beveridge and Riseman [1995] and Moreno-Noguer et al. [2008] incorpo-
rating global search natively.
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Wunsch and Hirzinger [1996] optimised a 2D–3D alignment objective function that
combined constraints on the camera pose with constraints on the correspondences. The
algorithm proceeded by finding the point on a line of sight of a 2D feature that was
closest to each 3D feature, analogously to the iterative closest point algorithm. Then
a 3D–3D pose problem was solved to find the pose that best aligned these points with
the 3D features. These two steps were iterated until some convergence criteria were
satisfied.

This approach is not dissimilar to the SoftPOSIT algorithm of David et al. [2002],
which also solves the camera pose estimation problem from a single image using local
optimisation. However, they represented the correspondence constraints analytically,
solving the full 2D–3D problem at each iteration. SoftPOSIT alternates correspondence
assignment using SoftAssign [Gold and Rangarajan, 1996] with an iterative pose update
algorithm POSIT [Dementhon and Davis, 1995], applying deterministic annealing to
encourage a large basin of convergence. A least squares objective function is used
in the pose update step and is therefore not robust to outliers in the data. The time
complexity of the algorithm isO(MN2) forM 3D points andN image points. However,
both of these methods use non-robust objective functions and are susceptible to local
optima, require a pose prior and cannot guarantee global optimality.

In contrast to the work in this section, the solutions to aligning directional and
positional sensor data proposed by this thesis in Chapter 6 are not susceptible to
local optima and do not require a pose prior. Since a good estimate of the pose is not
known in advance for many alignment problems other than tracking, local optimisation
algorithms are often unsuitable. Hence, global optimisation techniques that search
beyond the local region are often required. The next section examines the application
of these techniques to the geometric sensor data alignment problem.

Global Optimisation

Global optimisation endeavours to avoid incorrect locally-optimal alignments by ex-
panding the search domain to cover a much greater region in correspondence or trans-
formation space. No guarantees are given by algorithms in this category that the global
optimum will be attained, although some approaches do specify the probability that a
certain number of iterations will find the optimum.

Grimson [1990] applied a hypothesise-and-test approach to the simultaneous pose
and correspondence problem, removing the need for a pose prior. The approach hy-
pothesised a small set of 2D–3D correspondences from which the transformation was
computed. The 3D points were then back-projected into the image using this transfor-
mation and the quality of the pose hypothesis was measured. This approach searched
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the entire domain of feasible transformations, but did not guarantee that the optimal
pose would be found and quickly became intractable as the number of points increased.

The hypothesise-and-test principle is shared by the more general RANdom SAm-
ple Consensus (RANSAC) algorithm proposed in Fischler and Bolles [1981]. Unlike
Grimson [1990], the RANSAC algorithm can be applied even when no information is
available to constrain the correspondences in the hypothesis generation step. To do so,
sets of three 2D–3D correspondences can be drawn randomly from the set of all pos-
sible correspondences in order to determine the hypothesis transformation. The time
complexity of RANSAC applied to the 2D–3D correspondence-free alignment problem
is O(MN3 logN) for M 3D points and N image points [David et al., 2004]. That is,
the runtime required for a high probability of success scales polynomially with the size
of the input. Heuristic criteria to terminate the search early have been introduced to
address this prohibitive time complexity [Ayache and Faugeras, 1986; Grimson, 1991],
but the approach remains limited to small numbers of points.

Like hypothesise-and-test methods, pose clustering or generalised Hough transform
approaches [Stockman, 1987; Breuel, 1992; Cass, 1997; Olson, 1997] search stochas-
tically over the full set of correspondences to generate pose hypotheses. However,
instead of testing the pose hypotheses as they are generated, these methods generate
all hypotheses before identifying high-probability clusters in 6D pose space, under the
assumption that these will contain only hypotheses with correct correspondences. Due
to the highly combinatorial nature of searching the set of 2D–3D correspondences,
these methods are limited to small input sizes. This can be seen by the O(MN3) time
complexity of the method of Olson [1997], which is one of the most efficient algorithms
of this type.

Global search can also be achieved by applying heuristic and stochastic optimisation
techniques. Beveridge and Riseman [1995] use random-start local search to find the
optimal correspondences with a certain confidence, initialising a hybrid pose estimation
algorithm at randomly sampled points in the transformation domain. The algorithm
searches in the direction of the greatest gradient in the space of 2D–3D line segment
correspondences. It uses a weak-perspective camera model to rank neighbouring points
in this space and a full-perspective model to update the pose given the correspondences.
The time complexity of the local search is O(M2N2) for M 3D points and N image
points. In a similar way, a stochastic global search variant of SoftPOSIT was proposed
by David et al. [2004], named Random Start SoftPOSIT. It extends the search domain
of the original local optimisation algorithm by initialising multiple runs at different ran-
domly sampled points in the transformation domain and terminating when a threshold
of inliers is exceeded. A more sophisticated approach was proposed by Moreno-Noguer
et al. [2008] with the BlindPnP algorithm, which represents the region of expected
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transformations (the pose prior) as a Gaussian mixture model from which a Kalman
filter is initialised. This guides a local correspondence hypothesising step incorporating
the PnP algorithm, which explores the space of correspondences within the subset of
matches that are plausible from that pose guess. BlindPnP has been shown to outper-
form SoftPOSIT when large amounts of clutter, occlusions and repetitive patterns are
present but is otherwise comparable in accuracy and time complexity. However, these
stochastic techniques are still susceptible to local optima and require a pose prior that
contains the true transformation. Moreover they cannot guarantee that the optimal
solution was found.

Research into learning-based approaches for 2D–3D alignment has a long history
[Lamdan and Wolfson, 1988; Burns et al., 1993; Beis and Lowe, 1999]. These indexing
methods require a training set of images and camera poses to learn 2D–3D correspon-
dences and thereby estimate pose. Specifically, they learn groupings of hand-crafted
2D features for each 3D object and store the associated vectors in hash tables [Lamdan
and Wolfson, 1988; Burns et al., 1993] or kd-trees [Beis and Lowe, 1999]. At runtime,
feature groupings are extracted from the test image and are used to index into the data
structure, extracting the learned 2D–3D correspondence hypotheses. These hypothe-
ses are used for pose estimation and verification. The geometric hashing approach
[Lamdan and Wolfson, 1988; Burns et al., 1993] is limited to planar scenes due to the
requirements that the hashing metric is viewpoint invariant and the image features are
viewpoint invariant for a general 3D point-set. The approach of Beis and Lowe [1999]
does not have this restriction. However, these techniques are not able to handle large
pose variations.

In the years since these early learning approaches, there has been some work on
applying more sophisticated machine learning techniques to the problem of RGB-D
camera pose estimation [Shotton et al., 2013; Glocker et al., 2013]. Shotton et al. [2013]
proposed scene coordinate regression forests to infer the pose of an RGB-D camera.
The algorithm used a training set of depth images to generate scene coordinate labels
that map pixels from the camera coordinate frame to the global coordinate frame.
A regression forest was trained with these labels to regress over the labels and thus
localise the camera accurately. However, these approaches require RGB-D cameras,
limiting their applicability in outdoor environments.

More recently, there have been a number of works that introduce deep learning to
the problem of camera pose estimation and 2D–3D alignment [Kendall et al., 2015;
Brachmann et al., 2017; Kendall and Cipolla, 2017]. These approaches require a large
training set of images and camera poses to learn 2D–3D correspondences and thereby
regress pose. Unlike the hand-crafted 2D features of the indexing methods, these
approaches learn the correspondences directly from the data. Kendall et al. [2015]
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introduced a Convolutional Neural Network (CNN) for regressing the six degree of
freedom pose of a camera from a single RGB image. It localised the camera using high-
level features and was robust to lighting conditions, motion blur and other situations
where point-based SIFT registration methods fail. However, it was unable to achieve
the metric accuracy of geometry-based methods, largely because it used a naïve loss
function that did not consider geometry. To remedy this, Kendall and Cipolla [2017]
introduced a geometric loss function, learning an optimal weighting between position
and orientation, and thereby achieving improved localisation accuracy. Concurrently,
Brachmann et al. [2017] showed how to reformulate the RANSAC algorithm such that
it is differentiable and hence end-to-end trainable in a deep learning pipeline. This
formulation was applied to the problem of camera localisation, providing robust es-
timation of the camera poses. However, these CNN-based approaches, in addition to
requiring a large training set of images and poses, do not estimate the pose with respect
to an explicit 3D model. 3D point-set data is notoriously difficult to handle for deep
learning architectures, due to its lack of regular structure, permutation invariance and
size variation.

Unlike these global optimisation algorithms, the solutions to aligning directional
and positional sensor data proposed by this thesis in Chapter 6 provide a guarantee
of optimality and do not require training data. Since typical alignment problems have
a very large search space in the correspondences or transformations and a high level
of non-convexity, it can be very difficult for methods that do not guarantee optimality
to find the global optimum or even a sufficiently good local optimum. Consequently,
global-optimality is a very desirable and often necessary attribute for reliable alignment
algorithms. The next section examines this class of globally-optimal algorithm and
situates the work of this thesis in its research context.

Global Optimality

There is a relatively small body of literature that is concerned with providing optimality
guarantees for the problem of aligning positional and directional sensor data without
correspondences. Globally-optimal methods find a transformation that is guaranteed
to be an optimiser of a suitable objective function without requiring a transformation
prior. The Branch-and-Bound (BB) paradigm, proposed by Land and Doig [1960], can
be applied to provide such optimality guarantees. However, tractability has been the
biggest challenge thus far for BB-based geometric alignment algorithms, particularly
when scaling to 3D problems.

Historically, only a small number of studies into what was known as the geometric
matching problem provided optimality guarantees of any kind [Jurie, 1999; Breuel,
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2003]. Jurie [1999] used a probabilistic approach with similarities to BB for 2D–3D
alignment under a Gaussian error model. However, the method does not provide a
strong optimality guarantee and used a simplified camera model that linearly approx-
imated perspective projection. Breuel [2003] used BB to optimally solve geometric
alignment problems, proposing a family of bounding functions for different transfor-
mations and objective functions. However, the transformations investigated were pre-
dominantly from R2 → R2, that is, 2D–2D alignment. While the author also proposed
a weak bound for 2D–3D geometric alignment under the simplified orthogonal projec-
tion model, they observe that 2D–3D point alignment “is often impractical because
the complexity is too high” [Breuel, 2003, p. 24] – tractability being identified as the
primary impediment.

More recently, branch-and-bound has also been applied to a variety of other geo-
metric alignment settings to provide guaranteed optimal solutions. For example, Bazin
et al. [2013] used BB for aligning directional sensor data to find optimal correspon-
dences between images, Hartley and Kahl [2009] for optimal relative pose estimation
by bounding the group of 3D rotations, Li and Hartley [2007] for rotation-only 3D–
3D registration, Olsson et al. [2006, 2009] for 2D–3D or 3D–3D registration with
known correspondences, Yang et al. [2016] for full 3D–3D registration and Campbell
and Petersson [2016] for robust 3D–3D registration.

However, only Brown et al. [2015] and Campbell et al. [2017] have explored the
problem of optimally aligning directional and positional sensor data (2D–3D alignment)
without correspondences. Brown et al. [2015] proposed a global and ε-suboptimal
method using the branch-and-bound framework. Their approach found a camera pose
whose geometric error, the sum of angular distances between the bearings and their
rotationally-closest 3D points, was within ε of the global minimum. This objective
function is not inherently robust to outliers and therefore a trimming strategy was
applied, as used in Yang et al. [2013b]. Such a strategy has the disadvantage of requiring
that the inlier fraction be specified in order to trim outliers. This can rarely be known
in advance and, if it is over- or under-estimated, the global optimum of the function
may not occur at the correct pose. In contrast, an ideal approach would optimise
the untrimmed geometric error after having identified and removed the outliers. In
addition, the use of ε annealing in their framework invalidates the guarantee of ε-
suboptimality, since branches containing the correct pose may be pruned early.

In contrast, the alignment solutions presented in Chapter 6 of this thesis optimise in-
herently robust objective functions. The Globally Optimal Pose And Correspondences
(GOPAC) algorithm for camera pose estimation [Campbell et al., 2017] is guaranteed
to find the exact optimum of the robust inlier set cardinality objective function. Tight
bounds on the cardinality of the inlier set for branches of rotation and translation
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space are derived in Chapter 6 and an algorithm that integrates local optimisation
to accelerate convergence is developed. Moreover, many of the results derived in this
thesis can be directly transferred to other geometric alignment algorithms that used
BB [Brown et al., 2015; Yang et al., 2016; Campbell and Petersson, 2016] to improve
the quality of their bounds and the runtime of their implementations.

Collectively, the literature highlights the need for tractable, robust and optimal
solutions to the 2D–3D geometric alignment problem, simultaneously solving for the
transformation and the correspondences. Such solutions must consider robustness to
(structured) outliers as a key tenet, since outliers are pervasive in this domain. Another
key tenet is global search, preferably with optimality guarantees, to avoid converging
on local optima that are highly prevalent in alignment objective functions.

The following chapter will present the technical background for the geometric sensor
data alignment problem. This background material includes basic elements such as the
parametrisations of rigid motions, distance measures and sensor data representations,
in addition to objective functions and optimisation techniques for geometric alignment
problems.
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Chapter 3

Geometric Sensor Data
Alignment

This chapter presents the background material for the geometric sensor data alignment
problem. The technical background consists of elements that are common to many or all
of the approaches proposed in later chapters, forming a mathematical toolkit that will
be referred to repeatedly. For completion, this chapter will also cover related concepts
that are not used in the work, but are nonetheless important to discuss. The areas of
mathematics that are covered span geometry, statistics and optimisation. These areas
are linked by their utility to the problem of sensor data alignment.

The chapter starts with a discussion of ways to parametrise the space of rigid mo-
tions in two and three dimensions, that is, the space of translations and rotations. The
limitations of each approach with respect to computation and memory efficiency is also
discussed. Next, the different distance measures in each space are introduced formally,
followed by an overview of common sensor data representations. The central part of
the chapter introduces objective functions for alignment when correspondences are not
available. The discussion tracks a progression from non-robust objective functions to
those that are more robust to noise and outliers. Next, local optimisation methods are
briefly outlined, followed by methods for optimising over the global domain. The chap-
ter ends with a detailed discussion of the branch-and-bound algorithm, a formalism for
optimal global search.

While this chapter will provide the tools for understanding the research field of
geometric sensor data alignment and will precisely define the problem in each instance,
it is worthwhile to state the problem in general terms at the outset. The problem of
geometrically aligning sensor data is the problem of finding the rigid transformation
that correctly aligns two sets of sensor data without any prior knowledge about how the
data corresponds. Where the concept of corresponding data elements is meaningful,
the problem can profitably be thought of as jointly solving for the transformation and
correspondence set. The data may be of different dimensionality or captured using
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different sensors but must provide positional or directional information. That is, each
data element must contain the spatial position of the element or the direction of the
element with respect to the sensor.

While some of this material may apply to alignment problems where some or all of
the correspondences between elements in the datasets are known, this thesis does not
focus on those methods. It is important to distinguish between the two problem types,
since they are related and sometimes interlinked. For example, methods that solve
for transformation using correspondences are often used as subroutines in geometric
alignment algorithms. However, the geometric alignment problem is the more general
and challenging form, and does not assume that a satisfactory set of correspondences
can be extracted from the sensor data.

3.1 Parametrisations of Rigid Motions

A rigid motion is a transformation that can be undertaken by a rigid body, that is,
any combination of translations and rotations, excluding scaling and reflections. Also
referred to as rigid transformations or isometries, rigid motions are elements of the
Special Euclidean group SE(n) = Rn × SO(n) of dimension n under the group oper-
ation of matrix multiplication. In this chapter, only rigid motions in two and three
dimensions are considered, since they correspond to the physical motions relevant to
the sensor data alignment problem. For example, while the intrinsic properties of a
camera may change, the sensor itself is only subject to 3D translations and rotations.
Hence, rigid motions include transformations undertaken by a sensor, such as a camera
or laser scanner, or a rigid multi-sensor system. Rigid transformations also relate all
Cartesian coordinate systems in Rn to one another, independent of a sensor. This be-
comes useful in the application of map merging, where the original sensor viewpoints
may no longer be relevant.

Non-rigid transformations of sensor data are also relevant to many alignment prob-
lems, since objects that are observed by sensors may deform and the intrinsic parame-
ters of the sensors may also change. However, these types of transformations will not
be considered in this thesis. Instead, the rigid transformation of the sensor or the co-
ordinate system is the focus. For a detailed survey of non-rigid alignment techniques,
the reader is directed to Van Kaick et al. [2011].

In this section, parametrisations of translation and rotation space will be treated
separately. Since the parametrisation of translation space is trivial, the majority of this
section introduces the different rotation parametrisations and discusses the advantages
and disadvantages of each.
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3.1.1 Parametrisations of Translation

Translation space Rn may be parametrised in several ways, depending on the dimension.
The 2D Euclidean space R2 may be parametrised by 2-vectors using a Cartesian, polar
or other coordinate system. In a similar way, the 3D Euclidean space R3 may be
parametrised by 3-vectors using a Cartesian, spherical or other coordinate system. In
this work, Cartesian coordinates are used predominantly, being in many cases the most
appropriate choice for geometry problems. Nonetheless, polar and spherical coordinate
systems can simplify the equations in certain situations.

The domain of all translations is unbounded. However, some optimisation ap-
proaches require a bounded transformation domain. For these approaches, the space of
translations is restricted to be within the bounded set Ωt, which is typically a cuboid,
for ease of manipulation.

3.1.2 Parametrisations of Rotation

Rotation space SO(n) has a wide variety of parametrisations, which can be applied
in different contexts and for different purposes. Three important considerations are
computational efficiency, memory efficiency and theoretical insight. Computational
efficiency refers to how long it takes a computer to perform operations with a given
rotation representation, such as composing rotations together or applying the rota-
tion to a vector or set of vectors. Memory efficiency refers to how much memory is
required to store the rotation and how much temporary memory is required to store
additional variables when the rotation is applied. Theoretical insight is more nebulous
and refers to the observation that mathematical relationships may be more apparent
in one parametrisation than another.

The Special Orthogonal group SO(n) specifically refers to the group of n × n or-
thogonal matrices with determinant equal to 1 under the group operation of matrix
multiplication. That is, an element of SO(3) is a rotation in matrix representation
form. In this work, the notation SO(3) is often used as a shorthand to denote the
group of (proper) rotations in the abstract, regardless of the rotation representation.
This is justified by the existence of mappings between the matrix representation and
the other rotation representations.

Three parametrisations are presented in this section: matrices, angle-axis vectors
and quaternions. The last two only apply to three dimensional rotations. There are
many other parametrisations that will not be discussed, including the scalar angle θ
for 2D rotations and the Euler and Tait-Bryan angles for 3D rotations. The former
is self-evident and the latter two provide no advantage over the other representations,
are ambiguous without careful definition and are susceptible to singularities. Known
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as gimbal lock, this susceptibility occurs because the map from the Euler angles to the
rotations is not a covering map, therefore there are points in the parameter space where
a change in rotation space cannot be realised by a change in the parameter space. As a
generalisation, matrix or quaternion parametrisations are most suitable for applications
that require computational efficiency and angle-axis or quaternion parametrisations
are most suitable for applications that require memory efficiency. Any representation,
however, may be useful for facilitating theoretical insight.

Matrix Representation

A rotation is frequently represented by an n×n orthogonal matrix with a determinant
equal to 1. Matrices of this form are elements of the Special Orthogonal group SO(n)
under the group operation of matrix multiplication. Therefore, the set of all rotations
is given by {

R ∈ Rn×n | RᵀR = RRᵀ = I, det(R) = 1
}

(3.1)

where I is the n×n identity matrix and det(R) denotes the determinant of the matrix
R. While all orthogonal matrices have a determinant of ±1, the condition on the
determinant ensures that reflections in 2D and inversions and rotoinversions in 3D are
not admitted.

In two dimensions, an arbitrary rotation matrix can be written as

R =
(

cos θ − sin θ
sin θ cos θ

)
(3.2)

where θ is the angle of (anti-clockwise) rotation. In three dimensions, there are many
ways of writing a given rotation. One common form uses Euler angles, an example of
which is given by

R =


cosϕ cosψ − cos θ sinϕ sinψ − cosϕ sinψ − cos θ sinϕ cosψ sinϕ sin θ
sinϕ cosψ + cos θ cosϕ sinψ − sinϕ sinψ + cos θ cosϕ cosψ − cosϕ sin θ

sinψ sin θ cosψ sin θ cos θ


(3.3)

where the Euler angles are (ϕ, θ, ψ) and the rotation can be decomposed as the product
of three elemental intrinsic rotations about the X and Z axes: R = Z(ϕ)X(θ)Z(ψ).

The matrix representation of rotations is related to the angle-axis and quaternion
representations using results from Lie group theory. Restricting the analysis to three
dimensions, SO(3) is a Lie group, a manifold of dimension 3 embedded in R3×3, that is
associated with a Lie algebra so(3) of all 3× 3 skew-symmetric matrices. Any member
of so(3) can be represented by a 3-vector x ∈ R3, with the mapping from R3 → so(3)
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given by the cross-product matrix

x 7→ [x]× =


0 −z y

z 0 −x
−y x 0

 (3.4)

with x = [x, y, z]ᵀ. The mapping from so(3)→ SO(3) is given by the exponential map

A 7→ exp(A) =
∞∑
k=0

1
k!A

k (3.5)

where exp(·) is the matrix exponential function and A0 is defined to be the identity
matrix I with the same dimensions as A. For any skew-symmetric matrix A ∈ so(3),
the matrix exponential has a closed form arising from Rodrigues’ rotation formula.
The mapping from so(3)→ SO(3) is therefore given in closed form by

A 7→ exp(A) = exp(‖a‖Â) = I + (sin ‖a‖)Â + (1− cos ‖a‖)Â2. (3.6)

where [a]× = A, ‖a‖ is the Euclidean norm of a, and Â = A‖a‖−1. This formula will
be revisited in the context of the angle-axis representation. The maps (3.4) and (3.6)
together form a many-to-one mapping from R3 → SO(3).

The inverse mapping from SO(3) → so(3) is given by the logarithm map, where
A is the matrix logarithm of R if exp A = R. Observing that the first and third
terms of the right-hand side of Rodrigues’ rotation formula (3.6) are symmetric, the
skew-symmetric part of both sides can be isolated. From this a closed form of the
matrix logarithm for any rotation matrix R ∈ SO(3) can be found. The mapping from
SO(3)→ so(3) is therefore given in closed form by

R 7→ log(R) =



arcsin(‖b‖)
‖b‖ B if 1 6 trace(R) < 3

π − arcsin(‖b‖)
‖b‖ B if − 1 < trace(R) < 1

0 if trace(R) = 3

π sgn(R) ◦
[√

1
2 diag(R + I)

]
×

if trace(R) = −1

(3.7)

where B = 1
2(R −Rᵀ) is the skew-symmetric part of the rotation matrix, B = [b]×

for the 3-vector b = [b1, b2, b3]ᵀ, 0 is the zero matrix, sgn(·) is the element-wise sign
function, ◦ is the Hadamard (element-wise) matrix product and diag(M) is a function
that extracts the diagonal elements of M into a vector [m11,m22,m33]ᵀ. The last case
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occurs when R has two eigenvalues equal to −1 and therefore represents a rotation of
±π, for which there is not a unique logarithm. A simpler approach for this case is to
find the unit eigenvector v̂ of R corresponding to the eigenvalue λ = 1 and then the
matrix logarithm is given by π[v̂]

×
. An alternative, more compact form of the mapping

from SO(3)→ so(3), incorporating eigendecomposition, is given by

R 7→ log(R) =



θ(R −Rᵀ)
2 sin(θ) if − 1 < trace(R) < 3

0 if trace(R) = 3

π[v̂]
×

if trace(R) = −1

(3.8)

where θ = arccos
(

1
2(trace(R)− 1)

)
is the rotation angle. Irrespective of which form is

used, the matrix log(R) from (3.7) or (3.8) is skew-symmetric in all cases. Therefore,
together with the inverse mapping of (3.4), there exists a mapping from SO(3)→ R3.

The matrix representation is the most computationally efficient choice in many
situations, particularly when applied to a set of vectors, such as a point-set. In three
dimensions, it requires 9N multiplications and 6N additions when applied to a set of N
vectors. However, it is less efficient than quaternions for composing rotations, requiring
27 multiplications and 18 additions. The matrix representation is over-parametrised,
containing n2 parameters in an n-dimensional space. The orthogonality constraints
reduce the degrees of freedom to 1

2n(n − 1). Therefore, the memory efficiency of this
representation is poor, requiring 2n

n−1 times the degrees of freedom in storage. For
2D space, 1 rotational degree of freedom requires 4 parameters. For 3D space, 3
rotational degrees of freedom require 9 parameters. In terms of theoretical insight, the
matrix representation has been studied extensively and has well-known properties. In
particular, the rotation angle of a rotation matrix is well-defined using the trace, as is
the angle between two rotation matrices. Moreover, several theorems exist that relate
the angle between rotation matrices to other angle measures. See Section 3.2.2 for
further details.

Angle-Axis Representation

The angle-axis representation arises from Euler’s rotation theorem that proves the
equivalence of a sequence of rotations in three-dimensional space to a single rotation
about a fixed axis. The representation provides an intuitive way of thinking about rota-
tions while also being a minimal parametrisation that is not susceptible to singularities,
unlike the minimal Euler angle parametrisations.

Therefore, every rotation in SO(3) can be represented as an angle-axis 3-vector r
with a rotation angle θ = ‖r‖, the Euclidean norm of r, about a unit rotation axis
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r̂ = r/‖r‖, encoded in R3 as
r = θr̂. (3.9)

The angle-axis representation can also be written as an ordered scalar–vector pair
(θ, r̂). The parameters of the angle-axis representation, also known as the Rodrigues
parameters, are in S1 × S2, that is a scalar angle (parametrising a vector on the unit
1-sphere) multiplied by a rotation axis (a vector on the unit 2-sphere).

The mapping from angle-axis vectors to rotation matrices R3 → SO(3) is given by
the exponential map over the Lie algebra matrix induced by the angle-axis vector, as
previously discussed. That is, matrix exponentiation is applied to the skew-symmetric
matrix [r]× induced by r in order to retrieve the rotation matrix, denoted Rr. For
angle-axis vectors, the Rodrigues’ rotation formula can be used to efficiently calculate
the exponential map in closed form [Hartley and Zisserman, 2003]. The mapping from
R3 → SO(3) is therefore given as

r 7→ Rr = exp([θr̂]×) = I + (sin θ)[r̂]× + (1− cos θ)[r̂]2× (3.10)

where I is the 3× 3 identity matrix and [r̂]× is the cross-product matrix of r̂.

The mapping from SO(3)→ R3 involves the matrix logarithm and is given as

Rr 7→ r =



θb
sin(θ) if − 1 < trace(R) < 3

0 if trace(R) = 3

πv̂ if trace(R) = −1

(3.11)

where θ = arccos
(

1
2(trace(R)− 1)

)
is the rotation angle, b is the 3-vector whose

corresponding cross-product matrix [b]× = 1
2(R − Rᵀ) is the skew-symmetric part

of the rotation matrix, 0 is the zero 3-vector, and v̂ is the unit eigenvector of R
corresponding to the eigenvalue λ = 1, that is, satisfying Rv̂ = v̂. Indeed, the rotation
axis can always be solved by eigendecomposition, up to a sign ambiguity.

Rotations are not uniquely represented in angle-axis form, since the rotation en-
coded by θr̂ is equivalent to (2kπ + θ)r̂ and (2kπ − θ)(−r̂) for k ∈ Z. To ensure that
most of the encoded rotations are unique, the angle θ can be restricted to [0, π]. As a
result, the space of all 3D rotations can be represented as a solid, closed ball of radius π
in R3, denoted as B3

π. The mapping from B3
π → SO(3) is one-to-one on the interior of

the π-ball and two-to-one on the surface. The redundancy occurs at antipodal points
on the surface of the ball, since for a rotation of π radians, the direction of the rotation
axis is immaterial. The trade-off for restricting the parameter values is that a path
through B3

π must jump to a different region when it reaches the surface.
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In order to be composed with another rotation or applied to a set of vectors, an
angle-axis vector must first be converted to its matrix or quaternion representation.
As a result, they are not computationally efficient and are often only used as an inter-
mediate step. However, since they are minimal parametrisations, they are optimally
memory-efficient, requiring only three parameters to entirely define the rotation. Thus,
they are an appropriate choice for storing rotations when memory is constrained.

Critically, the angle-axis representation provides useful theoretical intuitions. For
example, it can be used to visualise rotations in 3D space, which may provide geometric
insight. It also facilitates the subdivision of rotation space using standard techniques
such as octrees. Moreover, it is naturally decomposable into a scalar rotation angle
and a vector rotation axis which makes it useful for measuring and bounding changes
in rotation angle and direction separately. Finally, manipulating R3 instead of SO(3)
admits addition, commutativity and scaling, since R3 is a vector space, unlike SO(3).

One disadvantage of the angle-axis representation is that a uniform subdivision of
angle-axis space B3

π ∈ R3 does not correspond to a uniform subdivision of rotation
space SO(3). Visualising SO(3) as a hemisphere of the unit 3-sphere S3, the corre-
sponding subdivision is warped and the elements are of non-uniform size. This occurs
because the Euclidean distance between angle-axis vectors is only an approximation of
the distance between the equivalent rotations on the rotation manifold [Li and Hartley,
2007]. Indeed, Hartley and Kahl [2009] observe that the angle-axis representation can
be thought of as an azimuthal-equidistant projection of S3, flattening the upper hemi-
sphere and causing tangential stretching at the periphery. While an exactly uniform
subdivision of S3 is non-trivial, a more uniform subdivision was investigated for the
rotation search problem in Straub et al. [2017], who demonstrated that uniformity was
advantageous for the efficiency of their search algorithm.

Quaternion Representation

Quaternions, conceived by Hamilton [1844], extend the concept of complex numbers
and comprise four real numbers (w, x, y, z) and four basis elements (1, i, j, k) and can
be written as q = w1 + xi + yj + zk. The basis elements i, j, k are unit imaginary
numbers with the property that i2 = j2 = k2 = ijk = −1. Alternatively, a quaternion
can be represented as a 4-vector q = w1 + xi + yj + zk = [w, x, y, z]ᵀ with respect to
the unit basis vectors (1, i, j,k) in R4 or as a scalar–vector pair q = (w,v) where v is
the imaginary vector [x, y, z]ᵀ.

Some useful mathematical operations arise from these definitions. The norm, con-
jugate and reciprocal of a quaternion q = (w,v) are given by the Euclidean norm
‖q‖ =

√
w2 + x2 + y2 + z2, the quaternion conjugate q∗ = (w,−v) and the quater-
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nion inverse q−1 = q∗‖q‖−2 respectively. The non-commutative Hamilton product for
two quaternions q1 = (w1,v1) and q2 = (w2,v2) is given by

q1q2 = (w1w2 − 〈v1,v2〉, w1v2 + w2v1 + v1 × v2) (3.12)

where 〈·, ·〉 is the inner product operator and × is the vector cross product. Finally,
the conjugation of q2 by q1 is given by q1q2q−1

1 .

A 3D rotation can be represented as a unit quaternion q̂ where ‖q̂‖ = 1. The
unit Euclidean norm constraint reduces the degrees of freedom to the required three
for rotation. The set of all unit quaternions is the 3-sphere S3, a smooth manifold
embedded in R4. Under the quaternion product, the unit quaternions form a Lie group
which is a double cover of the rotation group SO(3). Rotations q̂1 and q̂2 can be
composed using the quaternion product q̂2q̂1, which corresponds to the rotation q̂1

followed by the rotation q̂2. To rotate a vector p in R3 by a unit quaternion, the
vector p = [x, y, z]ᵀ is notated as a quaternion with real part equal to zero, that is
qp = (0,p). The conjugation of this quaternion by a unit quaternion q̂ = (w,v) is
given by q̂qpq̂−1 and corresponds to the rotation of vector p about the axis v by an
angle 2 arccos(w). A more efficient but less compact formula for rotating a vector p by
the unit quaternion is given by p + 2v× (v× p + wp).

The scalar-vector pair notation provides an intuition as to how unit quaternions are
related to the angle-axis representation. For an angle-axis vector r = θr̂, the mapping
from R3 → R4 is given by

r 7→ q̂ =
(

cos θ2 , sin
θ

2 r̂
)
. (3.13)

For a unit quaternion q̂ = (w,v), the mapping from R4 → R3 is given by

q̂ 7→ r =

2 arccos(|w|)v‖v‖−1 if |w| 6= 1

0 if |w| = 1
(3.14)

where 0 is the zero 3-vector and arccos(|w|) can be evaluated using the two-argument
arctangent function atan2(‖v‖, |w|) for greater numerical stability. Taking the absolute
value of w accounts for the sign ambiguity in the unit quaternion with the positive sign
chosen to ensure that the angle θ is in [0, π], as required. The mappings between quater-
nions and rotation matrices can be defined using the angle-axis mappings previously
described. However, for a rotation matrix R, an explicit mapping from SO(3) → R4

is given by

R 7→ q̂ =


(
w,

1
2wb

)
if w 6= 0

(0, û) if w = 0
(3.15)
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where w = 1
2
√

1 + trace(R), b is the 3-vector whose corresponding cross-product ma-
trix [b]× = 1

2(R − Rᵀ) is the skew-symmetric part of the rotation matrix, and û is
the unit eigenvector of R corresponding to the eigenvalue λ = 1, satisfying Rû = û.
Finally, for a unit quaternion q̂, the mapping from R4 → SO(3) is given by

q̂ 7→ R =
(
w2 − vᵀv

)
I + 2vvᵀ + 2w[v]× (3.16)

where I is the 3× 3 identity matrix and [v]× is the cross-product matrix of v.
A significant advantage of the quaternion representation is its computational effi-

ciency. In particular, it requires 17 fewer operations to compose two unit quaternions
than to compose two rotation matrices, using 16 multiplications and 12 additions for
the Hamilton product. However, quaternions are slightly less efficient than matrices at
rotating vector sets, requiring 15N multiplications and 15N additions when applied to
a set of N vectors, in contrast to 9N and 6N for matrices. Indeed, it is more efficient
to first convert the quaternion into a rotation matrix for N > 1, requiring only 12+9N
multiplications and 12 + 6N additions in this case. The quaternion representation
also provides a meaningful mechanism to reduce numerical errors during computation.
Normalising the quaternion ensures that the object is a valid rotation and is more
computationally efficient than Gram-Schmidt orthonormalisation of a rotation matrix.
This helps reduce numerical errors caused by repeated rounding in floating point arith-
metic. Another advantage is its memory efficiency. It is a compact representation,
requiring only four parameters to be stored in memory. By this measure, it is prefer-
able to the matrix representation and is comparable to the angle-axis representation.
Finally, the quaternion representation provides several useful theoretical insights. In
particular, they provide a way to visualise SO(3) as a hemisphere of S3. The hyper-
sphere S3 in R4 is a double covering of SO(3) in which antipodal points represent
the same rotation. For rotation angles in [0, π], rotations are mapped one-to-one to
the upper ‘northern’ hemisphere except on the ‘equator’. The ‘North Pole’ of this
representation is the identity rotation q̂ = [1, 0, 0, 0]ᵀ.

3.2 Distance Measures for Rigid Transformations

This section provides a general overview of the distance measures or metrics that are
used to measure transformations in SE(n). It is not exhaustive, but instead focuses
on those that are frequently used in geometric sensor data alignment and this work in
particular. The treatment is divided into translation and rotation measures as before,
with the predominant focus being on rotation measures. For the group of translations,
d : Rn × Rn → R+ is a distance measure that maps two vectors in Rn to a non-
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negative real number. Similarly, for the group of rotations, d : SO(n)× SO(n) → R+

is a distance measure that maps two elements of the rotation group in SO(n) to a
non-negative real number.

In this section, Lp-norm functions are written with their appropriate subscripts.
However, whenever a norm subscript is not notated in this document, the norm is
to be understood as an L2 norm unless otherwise specified. In addition, the subscript
notation Lp is used instead of the more common superscript notation Lp for consistency
with the computer vision literature.

3.2.1 Euclidean Distance

The natural distance measure for translations is the Euclidean distance dE, not least
because the translation group is isomorphic to Euclidean space. For the group of
translations, the Euclidean distance between two n-vectors x and y in Rn is given by
the L2-norm of the vector difference, that is

dE(x,y) = ‖x− y‖2 =
√

(x− y)ᵀ(x− y) =

√√√√ n∑
i=1

(xi − yi)2 (3.17)

where xi and yi are the components of x and y respectively. This metric is suitable
for both 2D and 3D translations. When the only relevant information is the relative
ordering of translations from a fixed translation, the squared Euclidean distance may
be used instead, which is more efficient to calculate.

3.2.2 Angular Distance

The natural distance measure for rotations is the angular distance d∠ that takes values
in the range [0, π]. The angular distance between a rotation R and the identity rotation
I is given by the angle of rotation ∠(R) of the matrix R, chosen such that 0 6 ∠(R) 6
π. In 2D, this corresponds to the (unsigned) rotation angle about the origin, reversing
the direction of rotation if necessary. In 3D, this corresponds to the rotation angle
about an axis, reversing the direction of the axis if necessary. In both cases, the rotation
angle is the angle between v⊥ and Rv⊥ where v⊥ is a vector perpendicular to the axis
of rotation. For two rotation matrices R1 and R2, the angular distance d∠(R1,R2) is
defined as the angle of rotation ∠(Rᵀ

1R2) of the matrix Rᵀ
1R2, or equivalently R1Rᵀ

2 ,
Rᵀ

2R1 or R2Rᵀ
1 , again chosen to be in the range [0, π] [Hartley and Kahl, 2009].

For R ∈ SO(2) or R ∈ SO(3), the angular distance is given by

d∠(R1,R2) = d∠(Rᵀ
1R2, I) = 1√

2
‖ log(Rᵀ

1R2)‖F (3.18)
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where ‖A‖F denotes the Frobenius norm given by
√∑∑ |aij |2. The factor of (

√
2)−1

arises from the skew-symmetry of log(R) and the observation that the rotation angle
is given by ‖r‖2, for [r]× = log(R). Taking the Frobenius norm of both sides gives the
expression ‖ log(R)‖F = ‖[r]×‖F =

√
2‖r‖2.

In 2D, the angular distance can be expressed explicitly as

d∠(R1,R2) = arccos
(

trace(Rᵀ
1R2)

2

)
. (3.19)

It may also be calculated using min(|θ1 − θ2|, 2π − |θ1 − θ2|) where θi = ∠(Ri). In 3D,
the angular distance can be written as

d∠(R1,R2) = arccos
(

trace(Rᵀ
1R2)− 1
2

)
. (3.20)

These trace expressions make use of the properties of the eigenvalues of two- and three-
dimensional rotation matrices. An alternative approach for 3D rotations is to compute
the angle from the quaternion representation of the rotation matrices. If q̂1 and q̂2 are
unit quaternions representing the same rotations as R1 and R2 respectively, then

d∠(R1,R2) = 2 arccos(|w|) = 2 arccos |〈q̂1, q̂2〉| (3.21)

where (w,v) = q̂−1
2 q̂1 using the Hamilton product, 〈·, ·〉 is the quaternion inner product

and the positive absolute value is taken to ensure that the angle lies in the range [0, π]
as required [Hartley et al., 2013].

3.2.3 Chordal Distance

Another rotation distance measure is found by calculating the Euclidean distance be-
tween two rotation matrices in their embedding space Rn×n. Designated the chordal
distance dC between two matrices R1 and R2, it is given by

dC(R1,R2) = ‖R1 −R2‖F (3.22)

where the Frobenius norm ‖ · ‖F is an extension of the Euclidean norm to matrices.
An advantage of this measure is that is computationally inexpensive, without matrix
multiplications or trigonometric functions.

For rotations in both SO(2) and SO(3), Hartley et al. [2013] show that the angular
distance is related to the chordal distance by

dC(R1,R2) = 2
√

2 sin
(1

2d∠(R1,R2)
)
. (3.23)
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3.2.4 Quaternion Distance

Similar to the definition of the chordal distance, the quaternion distance is found by
calculating the Euclidean distance between two unit quaternions in their embedding
space R4. However, since antipodal points of the unit quaternion sphere are identified,
q̂ and −q̂ represent the same rotation. The problem of choosing the correct sign is
resolved by defining the quaternion distance between two unit quaternions q̂1 and q̂2,
the quaternion representations of rotation matrices R1 and R2 respectively, as

dQ(R1,R2) = min{‖q̂1 − q̂2‖2, ‖q̂1 + q̂2‖2} (3.24)

where both the positive and negative branches of q̂2 are considered. Unlike the angular
and chordal distances, the quaternion distance does not exist for 2D rotations.

As obtained in Hartley et al. [2013], the angular distance is related to the quaternion
distance by

dQ(R1,R2) = 2 sin
(1

4d∠(R1,R2)
)
. (3.25)

3.2.5 Angle-Axis Distance

The angle-axis distance is also defined using the Euclidean distance, in this case between
two angle-axis vectors in R3. However, if the angle-axis vectors are restricted to lie
within the ball B3

π of radius π, as previously defined, then this measure would have
discontinuities. For example, rotations close to π radians about opposite axes are
close by the angular distance measure but not close by the Euclidean distance measure
in B3

π, since they are almost antipodal. To remove these discontinuities, the angle-
axis distance dAA between two rotation matrices R1 and R2 in SO(3) considers all
equivalent angle-axis vectors r1 and r2, including those outside B3

π, and is defined as

dAA(R1,R2) = min
r1,r2
‖r1 − r2‖2 (3.26)

where exp([r1]×) = R1 and exp([r2]×) = R2. Like the quaternion distance, the angle-
axis distance does not exist for 2D rotations.

As observed in Hartley et al. [2013], the angle-axis distance is not bi-invariant.
Therefore, there is no equality relationship between the angular distance and the angle-
axis distance. However, the useful inequalities

d∠(R1,R2) 6 dAA(R1,R2) 6 π

2 d∠(R1,R2) (3.27)

can be shown for this distance measure [Li and Hartley, 2007; Hartley and Kahl, 2009].
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3.3 Sensor Data Representations

Sensor data can be represented in many different ways, each with concomitant ad-
vantages and disadvantages. It is important to recognise that sensor data has been
sampled from real (or simulated) surfaces. At macroscopic scales, the observable part
of real-world scenes are primarily composed of a single continuous surface, with air-
borne objects forming additional disjoint surfaces. Despite the complexity of real-world
scenes, they should in principle be able to be well-represented by a 2D manifold. How-
ever, when data is collected from the environment, it is invariably sampled from this
continuous surface at discrete locations, regardless of the sensor used.

In addition to the loss of information engendered by discretely sampling a contin-
uous surface, the samples themselves are subject to sensor noise. Sensor data taken
from a single viewpoint at a single instant of time can be viewed as a signal that may
contain additional undesired signals representing information that is not present in
the observed scene. These noise signals consist of small-scale errors and can be mod-
elled using probability distribution functions. Sensor noise is typically assumed to be
Gaussian, additive and independent at each measurement, caused primarily by thermal
noise. Other noise sources are modelled using the uniform distribution for quantisation
noise, the Poisson distribution for shot noise, and fat-tailed distributions for impul-
sive salt-and-pepper noise. This problem is exacerbated by data collected over a finite
time period, particularly when the sensor or objects in the scene are moving. These
time-displaced signals result in motion blur, ghosting and other inconsistencies.

The other major problem associated with sensor data arises when two or more sets
(frames) of data are considered together. Outliers are points or pixels that do not
correspond between sets of sensor data taken from different viewpoints or at different
times. Outliers may be random or structured, with random outliers often being caused
by significant sensor noise (such as salt-and-pepper noise) and structured outliers be-
ing caused by occlusion. In the latter case, parts of a scene may be occluded from
one viewpoint but not another, resulting in partially-overlapping observations. In the
context of alignment problems where correspondences are provided, the term ‘outlier’
often denotes an outlier (incorrect) correspondence. However, this terminology will not
be used without clarification in this work.

As previously mentioned, motion can be another confounding factor when scenes
are observed over multiple instances of time. Under certain assumptions, a scene can
be decomposed into a static part and a dynamic part. The static part consists of
infrequently-changing surfaces such as buildings, in contrast to the dynamic part that
consists of moving objects such as vehicles. A static assumption is reasonable for many
man-made structures and elements of the natural world, but is less reasonable for fixed,



§3.3 Sensor Data Representations 59

deformable objects such as trees. Even rigid man-made structures cannot be considered
static parts of a scene indefinitely, since they are liable to be removed or altered at
some point. Nonetheless, sensor motion is calculated with respect to the static part of
a scene, which is assumed to be fixed. In the context of this work, dynamic objects
are treated in a twofold way. Within a single frame, the motion blur of a moving
object is considered to be intra-frame noise. Between several frames, a moving object
is considered to consist of structured outliers, points or pixels without correspondences
in another frame of sensor data. Dynamic sensors also generate noise and structured
outliers, however these are present in both the dynamic and static portions of the scene.

The entities to be aligned can take many forms and range from discrete point-sets
or images to continuous surfaces or probability densities. Geometric sensor data can be
classified as positional or directional, that is, containing the spatial position or direction
of the sample with respect to the sensor. In addition, sensor data representations can
be classified as raw or processed, with processed representations having been generated
for some advantage, being more compact, continuous, visually-appealing or amenable
to calculation than the raw data. For this classification, the first category of data
representation is the raw output of the sensor. The term raw is perhaps a misnomer
for this data type, since some low-level processing has already occurred by this stage,
however these data types are typically available directly from the sensor. This category
includes colour or greyscale images, depth images and 2D or 3D point-sets. The second
category involves higher-level processing of the sensor data. The types of processed
sensor data representations are multifarious, and include bearing vector sets, meshes,
primitives, occupancy grids, spherical harmonic images and mixture models.

An ideal sensor data representation would model the underlying surface accurately
and completely. However, given noisy and incomplete observations, a good sensor data
representation should be

1. compact for memory efficiency;
2. robust or invariant to sensor noise;
3. robust to structured outliers;
4. adaptive to local surface complexity without over-smoothing; and
5. data-driven, imposing minimal structure on the recovered surface.

These criteria are a guide to selecting a good representation, but should not be taken
as being necessary or sufficient. In the final analysis, the best representation is the
one that generates the best results for the task of geometric alignment. Robustness to
structured outliers is an important criterion, because occlusions and missing data are
extremely prevalent in data captured from the real world. Using knowledge about the
sensor pose to model unobserved regions or using a probabilistic Bayesian approach
that does not put too much credence on any one observation can improve the outlier



60 Geometric Sensor Data Alignment

(a) Greyscale Image (b) Depth Image

(c) 3D Point-Set (d) Gaussian Mixture Model

Figure 3.1: Four sensor data representations of a loom, captured by an RGB-D camera.

robustness of a sensor data representation. Overall, the representation should attempt
to discern the underlying structure without imposing a strong prior.

An overview of the raw and processed sensor data representations used in this work
follows. For the raw data types, the sensors used to collect the data will be discussed,
including their predominant noise characteristics. The advantages and disadvantages
of the data types will also be discussed, in the context of the criteria outlined above.
Examples of various sensor data representations are shown in Figure 3.1.

3.3.1 Point-Sets

Point-sets, also known as point clouds, are a discrete spatial data representation that
at minimum contain 2D or 3D positional information. That is, each data element must
contain the spatial position of the observed element but may also contain additional
information, such as reflectance, colour, labelling, mesh structure or a feature descrip-
tor. This data type is very prevalent, since it is a standard low-level representation
provided by many sensors. An example is shown in Figure 3.1(c).
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Point-sets can be captured with a diverse range of sensors. One class of sensor used
frequently in surveying and robotics is the lidar sensor. A portmanteau of ‘light’ and
‘radar’, lidar is an active sensing technique that makes point-wise depth measurements
with a range finder, based on the time-of-flight, wavelength shift or triangulation of
laser pulses. In a scanning lidar system, the device changes the viewing direction of
the range finder to take measurements across its field-of-view. In a scannerless lidar
system such as a time-of-flight or depth camera, the device consists of an array of depth
sensors. Due to its mode of operation, lidar is susceptible to noise caused by reflective
or transparent surfaces. In particular, transparent or translucent materials such as
glass, water and airborne particles can cause non-Gaussian and potentially structured
noise, with ghosting effects being common. Moreover, since most scanning lidar systems
produce a 2D or 3D point-set by reflecting the light pulses on a rotating mirror, the
signals are not received simultaneously, generating a form of motion blur. In addition,
the scale of the noise is distance-dependent, with small angular errors corresponding
to large spatial errors for points far from the sensor. Finally, the point density is also
distance-dependent, with surfaces near the sensor being sampled much more densely
than distant surfaces. Lidar technology is used in many commercial sensors, including
the Velodyne systematic scanning sensor, the Zebedee unsystematic scanning sensor
[Bosse et al., 2012] and the Microsoft Kinect V2 scannerless sensor.

Another class of active sensor for capturing point-sets is the structured light sensor.
This technology makes depth measurements by projecting a pattern of light on the scene
and quantifying the deformation of the pattern when viewed by a camera that is offset
from the projector. While noise associated with reflective and transparent surfaces is
also common for these sensors, they are not subject to the same problems of motion
distortion as lidar systems since they capture the entire scene at one instant of time.
However, interference from light sources other than the projector can cause incorrect
or inaccurate detections, with outdoor operation being a challenge for early systems.
Many commercial structured light systems exist, with the original Microsoft Kinect
(V1) sensor being a well-known example.

Passive sensors, such as RGB cameras, can also be used to construct point-sets.
While this data representation is not the raw output of the sensor, Structure-from-
Motion (SfM) and stereopsis algorithms can extract 3D structure from 2D images
using the principles of multiple view geometry. In many cases, the scale of these point-
sets is unknown and must be ascertained separately before distance measurements can
be made. Also, each point in an SfM point-set is associated with an image feature, such
as a SIFT feature, from which correspondences were found. This attribute can be very
useful for alignment algorithms. A unique property of the noise characteristics for these
point-sets is that they may contain reconstruction errors from incorrect or imprecise
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correspondences. SfM and stereopsis are mature technologies that are deployed in
commercial applications such as Google’s Tango platform for smartphones and tablets.

The point-set data representation has several advantages. Firstly, this data type
is a standard raw output of many lidar and structured light sensors. In addition, the
data points of these active sensors represent physical measurements of real surfaces
that can be very accurate and do not impose external structure on the underlying
surface. Moreover, the point-set data type is well-supported by 3D visualisation and
processing software, and code libraries for point-set processing are prevalent, including
Point Cloud Library [Rusu and Cousins, 2011]. However, the point-set representation
also has many shortcomings. When captured by an active sensor, the point-set is a
non-uniform discrete sampling of a continuous surface. It has significant redundancy,
with high point densities near the sensor and more samples of many surfaces than
parameters needed to minimally represent them, particularly for planar surfaces. For
a given level of detail, point-sets are therefore not memory-efficient. Moreover, the
representation is not robust to sensor noise or structured outliers and does not adapt
to local surface complexity.

In this work, set notation is used to describe point-sets. That is, the point-set P
containing the 2D or 3D points p1, p2, . . . , pN is given by

P = {pi}Ni=1. (3.28)

3.3.2 Depth Images

A depth image is a structured 2D array of depth values, where each pixel records the
distance to the closest surface in that direction. They are a subset of the 3D point-set
data representation, since the depth measurements at each pixel of a depth image can
be converted into a structured point-set if the intrinsic camera calibration parameters
are known. Accordingly, depth images are positional sensor data representations. An
example is shown in Figure 3.1(b).

Depth images can be captured by several sensors, including time-of-flight, struc-
tured light and stereo cameras. These previously-discussed sensors are distinct from
general 3D sensors because all the depth measurements within the field-of-view are
made simultaneously and are structured in a grid pattern. This is similar to a normal
camera and therefore the natural data representation is an image, with a depth channel
instead of the colour channels.

The depth image data representation has many of the same advantages and dis-
advantages as point-sets. For example, depth images are a low-level output of depth
cameras, consist of physical measurements that can be quite accurate and are well-
supported by software packages and code libraries. However, they do have several
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unique advantages. Firstly, they are not subject to the same level of motion distortion
as asynchronous sensors such as lidar scanners because all the depth measurements
are made simultaneously. Additionally, the grid structure can be exploited by many
algorithms originally designed to process image data. For example, a depth image can
be used as an input to a convolutional neural network, whereas this is non-trivial for
an unstructured point-set. Depth images also have many disadvantages. Like lidar
sensors, depth cameras sample a continuous surface, have a higher sampling density
on surfaces near the sensor and over-parametrise simple surfaces. These redundant
samples mean that depth images are not memory-efficient. Moreover, the representa-
tion is not robust to sensor noise or structured outliers and does not adapt to local
surface complexity. In particular, structured light depth cameras are very susceptible
to structured outliers caused by projecting the pattern onto reflective or transparent
surfaces. For example, these cameras are often unable to distinguish objects from their
reflections and reconstruct a Carrollian mirror world.

In this work, matrix notation is used to describe depth images. That is, the depth
image D is an m×n matrix of mn pixels, where the value of each element is the depth
measurement or a special value representing “no measurement”.

3.3.3 Greyscale Images

A greyscale digital image is a structured 2D array of intensity values, where each pixel
records the intensity measurement in that direction. If the intrinsic camera calibration
parameters are known, each pixel can be converted to a bearing vector. Hence, images
are directional sensor data representations. An example is shown in Figure 3.1(a).

Greyscale images can be captured using a digital camera, possibly with an addi-
tional processing step to convert colour information to intensity. For most cameras,
the intensity values at every pixel are measured simultaneously.

The greyscale image data representation has many advantages. Firstly, it is a ubiq-
uitous representation produced by an inexpensive sensor, with extremely large datasets
available. It is also information-rich, with even a single image containing a large amount
of information about scene geometry and appearance. The geometry cues from a sin-
gle image can be very useful for alignment algorithms, in addition to the geometric
information available from multiple images. As with depth images, the grid structure
is algorithmically convenient and images are used pervasively as inputs to convolu-
tional neural networks. However, the image representation has several disadvantages
for alignment algorithms. Significantly, images from calibrated cameras contain only
directional information, not positional information. Missing one dimension of spatial
information provides an additional level of challenge for alignment algorithms since the
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problem can be under-constrained and susceptible to ambiguities. For example, with
depth unknown, geometric cues taken from images may be optical illusions. More-
over, visual images are a very complex modality, with imaged objects having varying
appearances when viewed from different directions or with different illumination.

In this work, matrix notation is used to describe greyscale images. That is, the
image Y is an m × n matrix of mn pixels, where the value of each element is the
intensity measurement. For a linear RGB space, the formula to convert a colour image
to a greyscale image Y while preserving luminance is

Y = 0.2126R + 0.7152G + 0.0722B (3.29)

where R, G and B are the red, green and blue channels of the image in matrix form.

3.3.4 Bearing Vector Sets

Now that the predominant raw sensor data representations have been discussed, the
processed representations used in this work will be introduced. Bearing vector sets are
generated from greyscale images captured by a calibrated camera using rudimentary
processing and consist of a set of 3D vectors. To make the 2D directional nature of
the data more explicit, bearing vectors are typically normalised to have unit length,
reducing the degrees of freedom by one. Each data element must contain a vector di-
rected towards the observed element but may also contain additional information, such
as intensity, colour, labelling or a feature descriptor. While predominantly generated
from images, they are not limited to structured data of that type.

An important aspect of the conversion from image pixels to bearing vectors is the
selection of which pixels, known as keypoints or feature points, to include. Not all pixels
contain geometric information useful for alignment. For example, while a skyline may
be useful for alignment, the majority of sky pixels are unlikely to provide useful cues
about the geometric structure of the scene. Therefore, the selection of relevant pixels is
a challenge that must be addressed by this data representation. Some possibilities for
pixel selection criteria include whether they are identified as visual edges or corners,
which may be geometrically meaningful, or whether they have been labelled with a
‘structural’ class, such as ‘building’.

Bearing vector sets have some advantages over images for the alignment problem.
They are a natural representation for directional data and make it explicit that a
calibrated camera is an angle measurement device. In addition, many alignment al-
gorithms, such as most perspective-n-point algorithms, operate directly on bearing
vectors. However, many disadvantages of images persist when they are converted to
bearing vector sets. The lack of depth information leads to alignment ambiguities with
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this data type and changes in appearance can affect the repeatability of pixel selection.
Keypoint selection is non-trivial and can lead to significant difficulties with alignment.

In this work, set notation is used to describe bearing vector sets. That is, the set
F containing the 3D bearing vectors f1, f2, . . . , fN is given by

F = {fi}Ni=1. (3.30)

The conversion of a 2D image point x to a bearing vector f is given by

f ∝ K−1x̂ (3.31)

where K is the matrix of intrinsic camera parameters and x̂ is the homogeneous image
point x̂ = (x, 1)ᵀ. Bearing vectors are typically normalised to have unit length.

3.3.5 Gaussian Mixture Models

One processed sensor data representation that can be constructed from low-level po-
sitional representations, such as point-sets and depth images, is the Gaussian Mixture
Model (GMM). This positional data representation can be used to model the continuous
underlying surfaces of a scene from a discrete sampling of those surfaces. Specifically,
a GMM models observations, such as 3D points, as being generated from a mixture of
finitely many Gaussian distributions. They can admit arbitrarily accurate estimates
of many noisy surface densities [Devroye, 1987, Theorem 2.2]. An example GMM is
shown in Figure 3.1(d).

There are a plethora of ways in which a GMM can be generated from point-set
data. These include Kernel Density Estimation (KDE) [Jian and Vemuri, 2011; Detry
et al., 2009; Comaniciu, 2003; Xiong et al., 2013a], Expectation Maximisation (EM)
[Dempster et al., 1977; Deselaers et al., 2010], Dirichlet Process (DP) estimation [Anto-
niak, 1974; Straub et al., 2017] or mixture-mapped Support Vector Machines (SVMs)
[Campbell and Petersson, 2015]. With the exception of the last method, these are
generative models that attempt to find the distribution from which the samples were
generated. This is different to modelling the distribution of surfaces in the scene, since
the sampled data also incorporates information about the sensor. That is, a naïve gen-
erative model will attempt to model the scene as observed by the sensor, including the
sensor-specific artefacts such as discretisation and distance-dependent point density.

The most general, expressive and least constrained GMM has non-identical mixture
weights, full and non-identical covariance matrices, and an adaptive number of Gaus-
sian components. However, more restrictive conditions are often imposed to expedite
GMM generation or simplify the expressions. These include:



66 Geometric Sensor Data Alignment

• tied (identical) mixture weights;
• tied (identical) covariance matrices;
• constrained covariance matrices; and
• a fixed or restricted number of components.

Any or all of these restrictions can be selected. Two common constraints on the co-
variance matrices are the requirement that they be diagonal or scalar matrices. Off-
diagonal elements are zero for both constraints, encoding the assumption that the vari-
ates are uncorrelated. Scalar matrices have the additional constraint that all diagonal
elements be equal, that is, having the form σ2I. This constraint is often referred to as
an isotropic or spherical covariance condition, since the surfaces of constant likelihood
about the Gaussian mean value are spheres.

The Gaussian mixture model data representation has several advantages. Firstly,
it is a probabilistic model that has been estimated from the data, providing a rich sta-
tistical representation that can be mathematically interrogated, such as with Bayesian
inference. For example, the question ‘how likely is this new observation?’ has a precise
probabilistic answer. Moreover, the model can incorporate sampling effects and mea-
surement uncertainty, reflecting the inherent uncertainty in the real sensing process.
Importantly, the GMM representation attempts to model the underlying surfaces of
the scene, since these are the entities that are being measured. As previously noted,
for the GMM to accurately model these surfaces, parameter estimation must include
an understanding of the non-uniformity of the sampling.

Another advantage of the GMM representation is that it is continuous, like the
physical surfaces that were measured. Significantly, the data association problem for
continuous representations is implicit, not combinatorial like for discrete point-sets. In
addition, the class of objective functions admitted for continuous data representations
is different than those for discrete representations and tend to have a wider region of
convergence. Moreover, the representation is very memory efficient, since many points
may be represented by a single Gaussian density. For example, points densely sampled
on a plane can be replaced entirely by a single Gaussian whose covariance matrix has
two large eigenvalues and a third eigenvalue equal to zero. GMMs are also robust to
Gaussian sensor noise, since this is modelled implicitly by the representation. They are
also robust to structured outliers since the probability of a point being sampled at any
location is non-zero and the outlier distribution, if it is known, can be added to the
mixture. Finally, the representation can be very adaptive to local surface complexity
and is inherently data-driven, typically imposing no structure on the recovered surface
(see Magnusson et al. [2007] for a counter-example).

However, the GMM representation also has some disadvantages. Inferring a con-
tinuous surface from a discretely sampled one is an inherently challenging problem
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and methods used to solve this by generating GMMs from sensor data are not equally
successful and all involve trade-offs. In addition, the GMM representation is an ab-
straction that has its own set of algorithmic challenges. Directly operating with the
raw sensor data can often be faster than interposing an additional data processing step.
Finally, the representation does not explicitly model free or unobserved regions. Free
regions include the line between a laser rangefinder and each sampled point, which is
known to be ‘empty’ or transparent to the laser, such as air. As a result, information
that could be used to reason about structured outliers is lost.

Let θ = {µi,Σi, φi}ni=1 be the parameter set of an n-component GMM generated
from the point-set P, with means µi, covariance matrices Σi, and mixture weights
φi > 0, where ∑n

i=1 φi = 1. The probability density function given these parameters is

p(p|θ) =
n∑
i=1

φiN (p|µi,Σi) (3.32)

where
N (p|µ,Σ) = 1√

|2πΣ| exp
(
−1

2(p− µ)ᵀΣ−1(p− µ)
)

(3.33)

is the probability density function for a Gaussian random variable and | · | is the
determinant. In a slight abuse of notation, N (p|µ,Σ) is used to denote the probability
density function pX(p) of a Gaussian random variableX, whereas the notationN (µ,Σ)
is used to denote the normal distribution itself.

A useful identity [Petersen and Pedersen, 2012, §8.1.8] is given by∫
N (p|µ1,Σ1)N (p|µ2,Σ2) dp = N (0|µ1 − µ2,Σ1 + Σ2). (3.34)

where the left hand side is integrated over the entire domain of p, that is R3. This
identity is helpful in deriving closed-form equations for distance measures between
Gaussian densities.

3.3.6 Mixture Models on the Sphere

By analogy to Gaussian mixture models in RD, mixture models may also be defined on
the sphere SD−1. Where GMMs can provide a probabilistic model of positional data
such as 2D or 3D points, mixture models on the sphere can provide a probabilistic
model of directional data, such as bearing vectors. In the field of directional statistics,
many probability distributions on the sphere have been defined, several of which are
relevant to the sensor data alignment problem: the von Mises–Fisher [Fisher, 1953],
Fisher–Bingham [Kent, 1982] and Projected Normal [Mardia, 1972; Watson, 1983]
distributions.
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Figure 3.2: Visualisation of a von Mises–Fisher distribution as the concentration parameter
κ increases. A 2D slice of the 3D distribution is shown for clarity. As κ→∞, the distribution
approaches a delta function on the sphere.

The von Mises–Fisher (vMF) distribution, visualised in Figure 3.2, is closely related
to the isotropic Gaussian distribution on the sphere SD−1 in RD and is frequently used
to describe directional data [Gopal and Yang, 2014; Straub et al., 2015]. In two dimen-
sions, it is a close and tractable approximation to the wrapped normal distribution, the
circular analogue of the normal distribution. There are several methods for generating
a von Mises–Fisher Mixture Model (vMFMM) from a bearing vector set. These include
k-means [Dhillon and Modha, 2001], Expectation Maximisation (EM) [Banerjee et al.,
2005], and the posterior of a Dirichlet process [Straub et al., 2015]. The last approach
is nonparametric and automatically infers the number of components.

Let θ = {µi, κi, φi}ni=1 be the parameter set of an n-component von Mises–Fisher
Mixture Model (vMFMM) generated from the bearing vector set F , with mean di-
rections µi ∈ SD−1, concentrations κi > 0, and mixture weights φi > 0, where∑n
i=1 φi = 1. The probability density function given these parameters is

p(f |θ) =
n∑
i=1

φi vMF(f |µi, κi) (3.35)

where
vMF(f |µ, κ) = CD(κ) exp(κµ

ᵀf) (3.36)

is the probability density function for a von Mises–Fisher random variable [Fisher,
1995] and CD(κ) is the normalisation constant for dimension D is given by

CD(κ) = κD/2−1

(2π)D/2ID/2−1(κ)
(3.37)

where Iα denotes the modified Bessel function of the first kind of order α, defined as

Iα(x) =
∞∑
n=0

1
n! Γ(n+ α+ 1)

(
x

2

)2n+α
(3.38)
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where Γ is the gamma function [Abramowitz and Stegun, 1964]. For D = 3, the
normalisation constant simplifies to

C3(κ) = κ

4π sinh κ = κ

2π(exp(κ)− exp(−κ)) (3.39)

and the probability density function for the vMFMM simplifies to

p(f |θ) =
n∑
i=1

φi
κi exp(κi(µᵀ

i f − 1))
2π(1− exp(−2κi))

. (3.40)

The Fisher–Bingham (FB) or Kent distribution [Kent, 1982] is closely related to the
non-isotropic (bivariate) Gaussian distribution on the sphere SD−1 in RD. As with the
vMF distribution, a Fisher–Bingham mixture model can be estimated from a bearing
vector set. The probability density function for an FB random variable is

FB(f |γ1,γ2,γ2, κ, β) = (C(κ, β))−1 exp
(
κγ

ᵀ
1f + β

((
γ
ᵀ
2f
)2 − (γᵀ

3f
)2)) (3.41)

where γ1 is the mean direction, γ2 and γ3 are the major and minor axes of the elliptical
contours of equal probability, κ > 0 is the concentration or spread of the distribution
and β < κ/2 controls the ellipticity. The normalising constant C(κ, β) involves an
infinite sum of modified Bessel functions of the first kind Iα and is given by

C(κ, β) = 2π
∞∑
n=0

Γ
(
n+ 1

2

)
Γ(n+ 1) β

2n
(
κ

2

)−2n− 1
2
I2n+ 1

2
(κ). (3.42)

While more expressive than the vMF distribution, the parameters of the FB distribu-
tion are substantially more difficult to estimate because the FB distribution does not
have a closed form.

The Projected Normal (PN) distribution [Mardia, 1972; Wang and Gelfand, 2013]
is the projection of a non-isotropic Gaussian distribution in RD onto the sphere SD−1.
Interestingly, the resulting distribution is not necessarily unimodal, depending on the
length of the mean vector and the covariance matrix. This distribution is useful for
modelling a 3D scene as observed by a 2D sensor, such as a camera. Unlike the previous
distributions, a Projected Normal mixture model can be estimated from a point-set,
not a bearing vector set. Consider a vector p ∈ RD that follows a multivariate normal
distribution, that is p ∼ N (µ,Σ), which has zero probability of being the zero vector,
that is p(p = 0) = 0. Then the bearing vector f = p/‖p‖ follows a projected normal
distribution PND(µ,Σ), also known as the offset normal [Mardia, 1972] or angular
Gaussian distribution [Watson, 1983; Pukkila and Rao, 1988]. The probability density
function for a Projected Normal random variable, in a formulation derived by Pukkila
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and Rao [1988], is given by

PN(f |µ,Σ) = |2πΣ|−1/2Q
−D/2
3 exp

(
−1

2
(
Q1 −Q2

2Q
−1
3

))
ID
(
Q2Q

−1/2
3

)
(3.43)

where Q1 = µᵀΣ−1µ, Q2 = µᵀΣ−1f , Q3 = fᵀΣ−1f , and the function ID is given by

I3(x) =
√

2πΦ(x)
(
1 + x2

)
+ x exp

(
−1

2x
2
)

(3.44)

for D = 3, where Φ(x) =
(√

2π
)−1 ∫ x

−∞ exp
(
− t2

2

)
dt is the cumulative distribution

function of the standard normal distribution. A simpler form can be found for an
isotropic Gaussian distribution in R3 with Σ = σ2I, given by

PN(f |µ, σ2)= 1
(2π)

3
2

exp
(
−‖µ‖

2

2σ2

)[
µᵀf
σ

+
√

2πΦ
(

µᵀf
σ

)
exp

(
1
2

[
µᵀf
σ

]2)(
1+
[

µᵀf
σ

]2)]
.

(3.45)

3.4 Objective Functions for Sensor Data Alignment

The objective functions in this section consider 2D or 3D sensor data or both, depend-
ing on the suitability of the measure for each modality. For 3D, only positional (spatial)
information is examined, such as a point-set of 3-vectors or a 3D Gaussian mixture
model. For 2D, two types of sensor data are examined: positional information, such
as a point-set of 2-vectors from a 2D laser scan or image pixels, and directional infor-
mation, such as a set of bearing 3-vectors with unit norm. The latter may correspond
to 2D points imaged by a calibrated camera, which is an angle-measuring device.

A good objective function will attain an optimum at the ‘correct’ alignment of the
sensor data. However, this simply means that the true rigid transformation between
the two sets of sensor data has been found. Consequently, the objective function should
enable the discovery of a transformation that is as close to the ground truth transforma-
tion as possible, on all relevant datasets. Clearly this is not well-defined, particularly
in the presence of sensor noise and outliers, making alignment a non-trivial problem.
Therefore, a good objective function needs to be robust to noise and outliers in the
data if it is to attain an optimum at the true alignment across many datasets. While
random outliers can be problematic, the more pervasive and challenging type are struc-
tured outliers, such as those caused by occlusion or sampling. Finally, a good objective
function will also be cheap to evaluate on a computer, with closed-form expressions and
efficiently computable functions being advantageous. Differentiability is also beneficial
for many optimisation algorithms, particularly when closed-form derivatives exist.
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Some examples of challenging 2D point-set alignment problems are shown in Fig-
ure 3.3. The underlying surfaces from which the samples were drawn are shown in Fig-
ure 3.3(a). A common source of error for many objective functions is sensor noise. In
Figure 3.3(b), the correct alignment is obvious to a human observer, but the Gaussian
noise may cause an algorithm using a non-robust objective function to find an incorrect
minimum. In Figure 3.3(c), the correct alignment is nearly impossible for a human or
computer to distinguish. It is clear that there is a breakdown point for humans and
computers, but a good objective function should tolerate a low signal-to-noise ratio.
Another common source of error is outliers. In Figure 3.3(d), the random outliers
may be problematic for a non-robust objective function but are trivial for a human to
handle, even in large quantities. In Figure 3.3(e), the point-sets overlap incompletely
(partial-to-partial alignment), inducing structured outliers. For lower amounts of over-
lap, the problem becomes increasingly challenging, for both humans and computers.
Even when one point-set is a subset of the other (partial-to-full alignment), as shown
in Figure 3.3(f), repeated structures and other symmetries can be confounding factors.
A good objective function should mimic the human response of considering multiple
transformations as equally likely. Finally, structured outliers can also arise from sam-
pling itself, because data elements in one set may not have a corresponding element in
the other set. This can pose a significant challenge for sparsely sampled surfaces.

It is apparent that selecting an appropriate objective function is one of the most
crucial steps in sensor data alignment. Among the considerations referred to so far,
robustness to noisy sensor data with many outliers is particularly critical. Therefore,
one of the purposes of this section is to survey some of the most frequently used
objective functions and to outline the advantages and disadvantages of each. Moreover,
this section is restricted to objective functions that do not require correspondences.
That is, the functions can all be used to solve the general geometric alignment problem.
In addition, objective functions that are used or referred to in later chapters of this
work will be treated in more detail than other functions.

3.4.1 Least Squares

Least squares objective functions consist of the sum of the squared residuals between
elements of the data sets. While the least squares minimiser is not robust to outliers,
it can be useful for refining an approximate alignment.

A frequently used nD–nD least squares objective function is the function min-
imised by the Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992; Chen
and Medioni, 1992]. The function uses closest-point residuals, that is, the Euclidean
distance between a point in the transformed set and its closest-point in the other set.
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Figure 3.3: Examples of challenging 2D point-set alignment problems. The datasets sampled
from the underlying surfaces (a) have different noise characteristics (b)–(c), random outliers (d)
or structured outliers from partially-overlapping observations (e)–(f).

The ICP algorithm iteratively alternates between finding closest-point correspondences
and finding the least squares transformation parameters given those correspondences.
The second step can be solved in closed-form using the method of Horn [1987] or
singular value decomposition [Arun et al., 1987]. Let p ∈ Rn be an nD point and
Pk = {pki}Nk

i=1 be a set of Nk points. The non-symmetric ICP objective function is

f(R, t) =
∑

p1∈P1

min
p2∈P2

d2
E(Rp1 + t,p2) =

∑
p1∈P1

min
p2∈P2

‖Rp1 + t− p2‖22 (3.46)

for a rotation R ∈ SO(n) and a translation t ∈ Rn. The symmetric ICP objective
function that treats both point-sets identically is given by

f(R, t) =
∑

p1∈P1

min
p2∈P2

‖Rp1 + t− p2‖22 +
∑

p2∈P2

min
p1∈P1

‖Rp1 + t− p2‖22. (3.47)

These objective functions use point-to-point residuals [Besl and McKay, 1992], however
other residuals such as point-to-plane [Chen and Medioni, 1992] have also been pro-
posed. In addition, while the original ICP algorithm was a local optimisation method,
requiring a good initial transformation estimate, the ICP objective function has also
been used in a global optimisation framework [Yang et al., 2016].
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Another least squares objective function used to globally solve the rotation-only
alignment problem was given in Li and Hartley [2007]. The main observation was
that if N1 = N2 and there is a one-to-one correspondence (bijection) between the
elements of P1 and P2, then the geometric alignment problem can be treated as a
joint transformation and correspondence problem. That is, if the correspondences
are known, the least squares solution for the transformation parameters can be found
optimally and in closed-form, and if the transformation is known, the correspondences
can be found optimally by solving a linear assignment problem [Papadimitriou and
Steiglitz, 1982]. The objective function is given by

f(R, t,P) =
N1∑
i=1
‖Rp1i + t− p2jPi

‖22 (3.48)

where the index of p2 is
jPi = arg max

j
Pij (3.49)

where Pij is the Boolean value at the ith row and jth column of the permutation matrix
P ∈ Pn. The permutation matrix enforces the one-to-one correspondence between
data elements. However, the one-to-one assumption is incorrect for most geometric
alignment problems, where elements in one set of data do not have correspondences in
the other set and vice versa, due to outliers from occlusion, partial overlap or sampling.
The ICP objective function does not assume a bijection between P1 and P2.

For 2D–3D alignment, a least squares objective function can be constructed analo-
gously to the ICP criterion using the angular distance measure. Let f ∈ Rn and p ∈ Rn

be an nD bearing vector and point respectively, F = {fi}Mi=1 be a set of M bearing
vectors and P = {pi}Ni=1 be a set of N points. Then the non-symmetric ‘angular ICP’
objective function is given by

f(R, t) =
∑
f∈F

min
p∈P

d2
∠(f ,Rp + t). (3.50)

However, least squares is not frequently used for this problem, since the sum of the
angular distances is easier to compute than the squares and is more robust to outliers.

3.4.2 Robust Least Squares Alternatives

While least squares objective functions are ideal for sensor data that has been corrupted
by Gaussian noise, they are not robust to outliers. In particular, data elements in one
set that do not have a corresponding element in the other set can bias the least squares
parameter estimate significantly. Efforts to address this problem seek to reduce the
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weight assigned to incorrect correspondences or prune them entirely. Many heuristic
approaches have been used to identify incorrect correspondences, including reasoning
about the Euclidean distance between correspondences or the angular distance between
the normals of the correspondences [Rusinkiewicz and Levoy, 2001]. However, more
rigorous approaches use robust statistics.

M-estimators are a general class of robust estimators that typically have a high
breakdown point and good efficiency [Huber, 1981]. In addition, they do not necessarily
relate to a probability density function and so can be used with raw, discrete sensor
data. For geometric alignment, M-estimators are the parameters R∗ and t∗ that satisfy

arg min
R,t

n∑
i=1

ρ(εi(R, t)) (3.51)

for a function ρ and a set of n residuals ε(R, t), being the Euclidean or angular distances
between corresponding data elements.

The least squares estimator is itself an M-estimator with ρ(ε) = ε2, however more
robust estimators have been proposed. The ρ functions associated with more robust
estimators include the Lp norms ρ(ε) = |ε|p, the Huber or Winsorised loss function and
Tukey’s biweight function [Huber, 1981]. The key feature is that large (outlier) residuals
are not penalised at the same rate as small residuals. The Huber loss function for
example is quadratic for small residuals and linear for large residuals. The optimisation
problem (3.51) can be solved for these ρ functions with the iteratively reweighted least
squares algorithm. However, correspondences need to be known or estimated for this
formulation. As with the ICP objective function, closest-point correspondences are
typically used to find the residuals.

One disadvantage of many M-estimators, including those that use the Winsorised
or biweight functions, is that they require a threshold to be set. This defines at what
size a residual should be considered an outlier, which may not be known in advance.
In contrast, sparsity-inducing functions such as Lp norms for p ∈ (0, 1] do not require a
threshold, reward inliers and only weakly penalise outliers. As such, their M-estimators
are related to the estimators found by inlier set cardinality maximisation.

Two robust alternatives that can be used for raw, discrete sensor data will be
discussed in more detail in the following sections: least trimmed squares and inlier
set cardinality. The least trimmed squares estimator can be formulated as an M-
estimator with an adaptive threshold value from analysing the distribution of residuals.
In contrast, the inlier set cardinality estimator is not typically analysed as an M-
estimator. After this, robust objective functions for processed sensor data in the form of
probability density functions will be introduced. These objective functions downweigh
observations probabilistically, not geometrically like the aforementioned functions.
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3.4.3 Least Trimmed Squares

Least trimmed squares objective functions consist of the sum of the K smallest squared
residuals between elements of the data sets. Trimming is a technique used in statistics
to obtain a more robust statistic by excluding outlier values. However, it is predicated
upon knowing the number of data elements K from one set that have a corresponding
element in the other set, which is non-trivial in practise.

The trimmed ICP objective function minimised in Chetverikov et al. [2005] uses
a subset T of cardinality K of the closest-point residuals at each iteration for the
transformation calculation. Let p ∈ Rn be an nD point, Pk = {pki}Nk

i=1 be a set of
Nk points, and T ⊆ P1 be the subset of min{K, |P1|} points in P1 with the smallest
closest-point residuals for a given rotation and translation. Then the non-symmetric
trimmed ICP objective function is given by

f(R, t) =
∑

p1∈T
min

p2∈P2
d2

E(Rp1 + t,p2) =
∑

p1∈T
min

p2∈P2
‖Rp1 + t− p2‖22 (3.52)

for a rotation R ∈ SO(n) and a translation t ∈ Rn. This objective function has also
been used in a global optimisation framework [Yang et al., 2016].

For 2D–3D alignment, a least trimmed squares objective function can be con-
structed analogously. Let f ∈ Rn and p ∈ Rn be an nD bearing vector and point
respectively, F = {fi}Mi=1 be a set of M bearing vectors, P = {pi}Ni=1 be a set of N
points, and T ⊆ F be the subset of min{K, |F|} bearing vectors in F with the smallest
closest ray residuals for a given rotation and translation. Then the non-symmetric
trimmed ‘angular ICP’ objective function is given by

f(R, t) =
∑
f∈T

min
p∈P

d2
∠(f ,Rp + t). (3.53)

A similar objective function, which does not square the angular residuals, was used in
a global optimisation framework by Brown et al. [2015].

While trimming improves the robustness of a function to outliers, it also requires the
user to specify the inlier fraction, which can rarely be known in advance. It is also less
intuitive to select than other geometrically meaningful thresholds. However, the main
problem with this approach is that if the inlier fraction is over- or under-estimated,
the global optimum of the function may not occur at the correct pose. Figure 3.4
demonstrates how a global optima of a trimmed objective function, as used by Brown
et al. [2015] and Yang et al. [2016], may not occur at the true pose, a problem that is
exacerbated when the inlier fraction is guessed incorrectly.
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Figure 3.4: Three zero-error 1D alignments of 2 point-sets with 8 trimmed ‘outliers’. For
the correct transformation (top), the point-sets overlap completely and the trimmed objective
function attains the global minimum (zero). For the two incorrect transformations (middle and
bottom), the trimmed objective function also attains the global minimum but the alignment
is incorrect. With noise, the global optimum of a trimmed objective function may not even
occur at the true pose, particularly if an incorrect trimming fraction is selected. The problem
is exacerbated with higher dimensions and degrees of freedom.

3.4.4 Inlier Set Cardinality

The cardinality of the inlier set is a robust objective function that is frequently max-
imised in geometric sensor data alignment problems [Breuel, 2003; Aiger et al., 2008;
Parra Bustos et al., 2016]. It can be viewed as a discrete function that counts the
number of inliers given a specific rigid transformation. For this objective function, an
inlier must be defined precisely, using a hard threshold θ to decide whether a data
element is a member of the inlier or outlier sets. The inlier sets considered here are
inherently asymmetric, containing only elements from one of the datasets. However,
a symmetric objective function can also be constructed if needed by evaluating the
inlier set cardinality in both directions and selecting the minimum. Also, while inlier
set cardinality objective functions can be defined over continuous data representations,
they are typically used for discrete data such as point-sets and bearing vector sets.

The primary advantage of inlier set cardinality is that it is inherently robust to
outliers, while still operating on raw data representations. It also avoids the problems
associated with trimming and robust loss functions, which require the user to specify a
parameter such as the inlier fraction, which can rarely be known in advance. Moreover,
these parameters are often less intuitive to select than a geometrically meaningful inlier
threshold, such as the maximum allowable spatial or angular error.

Let x ∈ Rn be an nD point or bearing vector and Xk = {xki}Nk
i=1 be a set of Nk

points or bearing vectors. Then the inlier set cardinality for a rotation R ∈ SO(n) and
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a translation t ∈ Rn with an inlier threshold θ > 0 is given by

ν(R, t, θ) = |SI | (3.54)

SI = {x1 ∈ X1 | ∃x2 ∈ X2 : d(x1,Rx2 + t) 6 θ} (3.55)

where | · | denotes the set cardinality and d(·, ·) denotes an arbitrary distance measure
between vectors. An equivalent formulation is given by

ν(R, t, θ) =
∑

x1∈X1

max
x2∈X2

1(θ − d(x1,Rx2 + t)) (3.56)

where 1(x) , 1R≥0(x) is the indicator function that has the value 1 for all elements of
the non-negative real numbers and the value 0 otherwise, given by

1(x) =

1 if x ∈ R≥0

0 else.
(3.57)

This objective function, which is to be maximised, is a highly non-concave function.
Equivalently, with more familiar terminology, the additive inverse of the inlier set
cardinality is a highly non-convex objective function. Consequently, the function has
many local optima, making it difficult to optimise effectively. In addition, the objective
function makes the asymmetry of the inlier set cardinality explicit, since switching X1

and X2 may lead to a different solution. The inlier set cardinality in the other direction
is given by ν ′(R, t, θ) = |S ′I | for the inlier set

S ′I = {x2 ∈ X2 | ∃x1 ∈ X1 : d(x1,Rx2 + t) 6 θ} (3.58)

The symmetric inlier set cardinality objective function for a rotation R ∈ SO(n) and
a translation t ∈ Rn with an inlier threshold θ is therefore given by

νsym(R, t, θ) = min
{
ν(R, t, θ), ν ′(R, t, θ)

}
. (3.59)

The Largest Common Point-set (LCP) between point-sets P1 and P2 is a related
concept [Akutsu et al., 1998], defined as the subset P ′1 ⊆ P1 with the largest possible
cardinality such that the distance between P ′1 and T (P ′2,R, t) is less than θ, where
P ′2 ⊆ P2 and T is a transformation function. LCP under the Hausdorff distance [Chew
et al., 1997], which is the maximum distance between a point and its nearest neighbour
in the other set, is very similar to the inlier set cardinality function. In contrast,
LCP under the bottleneck matching metric [Efrat et al., 2001], which seeks a bijection
between the subsets, is more restrictive than the inlier set cardinality.
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When correspondences are provided, another related objective function can be con-
structed, sometimes referred to as the consensus set cardinality [Li, 2009]. Let x ∈ Rn

be an nD point or bearing vector and Xk = {xki}Ni=1 be a set of N points or bearing
vectors. Then the consensus set cardinality for two ordered equally-sized datasets X1

and X2 with putative correspondences x1i ↔ x2i, for a rotation R ∈ SO(n) and a
translation t ∈ Rn with an inlier threshold θ > 0 is given by

νC(R, t, θ) = |I| (3.60)

I = {i ∈ [1, N ] | d(x1i,Rx2i + t) 6 θ} (3.61)

An equivalent formulation is given by

νC(R, t, θ) =
N∑
i=1

1(θ − d(x1i,Rx2i + t)). (3.62)

Note the subtle but crucial difference between the consensus set and inlier set cardinal-
ity objective functions. The inlier set cardinality is a much more challenging objective
function to optimise, because the transformation and correspondence set must both
be solved jointly. The original RANSAC algorithm [Fischler and Bolles, 1981] was
designed to maximise the consensus set cardinality objective function, albeit in a non-
deterministic and heuristic way. Globally-optimal methods, such as Li [2009], have
also been proposed.

Specific formulations of the inlier set cardinality function can also be written for
positional or directional sensor data by selecting a distance measure. For nD–nD
positional sensor data alignment, the inlier set consists of those points in P1 that are
within θ of any point in P2 with respect to the Euclidean distance metric. Let p ∈ Rn

be an nD point and Pk = {pki}Nk
i=1 be a set of Nk points. Then the inlier set cardinality

for a rotation R ∈ SO(n) and a translation t ∈ Rn with an inlier threshold θ > 0 is
given by

ν(R, t, θ) = |SI | (3.63)

SI = {p1 ∈ P1 | ∃p2 ∈ P2 : ‖p1 −Rp2 − t‖ 6 θ} (3.64)

or equivalently
ν(R, t, θ) =

∑
p1∈P1

max
p2∈P2

1(θ − ‖p1 −Rp2 − t‖). (3.65)

For 2D–3D directional sensor data alignment, the inlier set consists of those bearing
vectors in F that are within θ of any point in P with respect to the angular distance
metric. Given a set of points P = {pi}Mi=1 and bearing vectors F = {fi}Ni=1 and an
inlier threshold θ, the inlier set cardinality for a rotation R ∈ SO(3) and a translation
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(b) Degenerate case

Figure 3.5: An example of the degenerate case for 2D–3D directional sensor data alignment
when the cardinality of the set of 3D point inliers is maximised instead of the set of bearing
vector inliers. A vector that lies within any of the cones is within the inlier threshold of the
nearest bearing vector. (a) The pose that maximises the cardinality of the set of bearing vector
inliers (3) is the correct camera pose. (b) The pose that maximises the cardinality of the set of
3D point inliers (8) is incorrect. This is a degenerate case where all 3D points become inliers
when the translation of the camera is sufficiently far from the 3D points. In this example, the
cube vertices are all within the angular inlier threshold of one bearing vector.

t ∈ R3 is given by
ν(R, t, θ) = |SI | (3.66)

SI = {f ∈ F | ∃p ∈ P : ∠(f ,R(p− t)) 6 θ} (3.67)

or equivalently
ν(R, t, θ) =

∑
f∈F

max
p∈P

1(θ − ∠(f ,R(p− t))) (3.68)

where ∠(·, ·) denotes the angular distance between vectors. It is important to observe
that it is the cardinality of the set of bearing vector inliers that is measured, not the
cardinality of the set of 3D point inliers. Maximising the latter measure results in a
set of degenerate poses where all 3D points are inliers with respect to a single bearing
vector. These degenerate poses position the camera far from the point-set such that
all points fall within the inlier cone of one bearing vector, as shown in Figure 3.5.

3.4.5 Probability Distribution Divergences

There are many statistical divergences and distances that can be used to align sets of
sensor data when they are represented as probability distributions, such as Gaussian
and von Mises–Fisher mixture models. Statistical divergences are non-negative and
attain zero when the distributions are identical, however, unlike distances, they need
not be symmetric or satisfy the triangle inequality. Usefully, many of these divergences
weight observations probabilistically, not geometrically, providing a principled way to
handle outliers. In this section, some divergence measures will be briefly outlined,
focusing on those that have been used as alignment objective functions.
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A large family of divergences was identified by Jones et al. [2001], and is given by

1
φ

(∫
p1+α

1 (x) dx
)φ
− 1 + α

αφ

(∫
pα1 (x)p2(x) dx

)φ
+ 1
αφ

(∫
p1+α

2 (x) dx
)φ

(3.69)

for probability density functions p1 and p2. When φ = 1, (3.69) becomes the density
power divergence [Basu et al., 1998], a subset of the Bregman divergence functions
[Bregman, 1967]. When φ → 0, (3.69) becomes the Windham divergence [Windham,
1995]. The estimators associated with these two cases have been shown to be exactly
unbiased [Jones et al., 2001] and M-estimators [Hampel et al., 1986; Stewart, 1999].
Both cases have similar performance, although the density power divergence has a
better asymptotic efficiency and breakdown point [Jones et al., 2001]. Furthermore,
when α = 1, the density power divergence becomes the L2 distance between densities
and the Windham divergence becomes the correlation between densities [Scott and
Szewczyk, 2001]. These are both robust measures and have been used as closed-form
alignment objective functions [Jian and Vemuri, 2011; Tsin and Kanade, 2004; Sandhu
et al., 2010]. When α→ 0, both divergences become the asymmetric Kullback–Leibler
(KL) divergence [Kullback and Leibler, 1951], minimised by the Maximum Likelihood
Estimator (MLE). Since the MLE is not robust to outliers, algorithms that used objec-
tive functions based on the KL divergence [Chui and Rangarajan, 2000a,b; Magnusson
et al., 2007; Myronenko and Song, 2010] include an additional Gaussian component
to account for outliers. Furthermore, Jian and Vemuri [2011] showed that the ICP al-
gorithm could be interpreted as minimising the approximated KL divergence between
mixtures, accounting for its sensitivity to outliers.

Alternative probability distribution divergences include the Rényi [Van Erven and
Harremos, 2014], Jensen–Shannon [Lin, 1991] and Jensen–Rényi [Hamza and Krim,
2003] divergences. These divergences generalise the KL divergence and have been
used for sensor data alignment [Wang et al., 2008, 2009]. The Jensen–Rényi diver-
gence is also symmetric and has a closed-form expression, which are useful properties
for an alignment objective function. The L2 distance shares these properties and its
application to sensor data alignment will be considered in the next two sections.

3.4.6 L2 Distance between Gaussian Mixtures

As previously discussed, there are many statistical measures that can be used to align
volumetric or probabilistic sensor data signals. However, the L2 distance between
probability distributions, a density power divergence [Basu et al., 1998], has many
favourable properties for the geometric alignment problem [Jian and Vemuri, 2011]. In
particular, the L2 distance between Gaussian mixtures is a robust objective function
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[Scott, 2001] that can be expressed in closed-form and efficiently implemented. These
properties will be addressed in more detail later in this section.

The advantages of representing 2D or 3D positional sensor data as Gaussian Mix-
ture Models (GMMs) were discussed in Section 3.3.5. Two key benefits are that Gaus-
sian mixtures can admit arbitrarily accurate estimates of many noisy surface densities
[Devroye, 1987] and can be computed efficiently from point-set data. However, GMMs
are not suitable for modelling directional data such as bearing vectors and therefore
cannot be used for certain alignment problems.

Let θk = {µki,Σki, φki}nk
i=1 be the parameter set of an arbitrary nk-component

GMM with means µki, covariance matrices Σki, and mixture weights φki > 0, where∑nk
i=1 φki = 1. Then the L2 distance between Gaussian mixtures for a rotation R ∈

SO(n) and a translation t ∈ Rn is given by

f(R, t) =
∫
Rn

[p(p|T (θ1,R, t))− p(p|θ2)]2 dp

=
∫
Rn

[p(p|T (θ1,R, t))]2 − 2p(p|T (θ1,R, t))p(p|θ2) + [p(p|θ2)]2 dp (3.70)

where p(p|θ) is the Gaussian mixture probability density function (3.32) and T is the
function defined by

{µi,Σi, φi}ni=1 7→
{
Rµi + t,RΣiRᵀ

, φi
}n
i=1 (3.71)

that maps a Gaussian mixture parameter set to another parameter set representing
a rigid transformation of the original GMM. A closed-form objective function can be
found using the following observations. Firstly, the first term of (3.70) is invariant
under rigid transformations and the last term is independent of the transformation.
Therefore the transformation that optimises a function without these terms will also
optimise the L2 distance function and thus the terms can be dropped. Secondly, the
middle term is the inner product of two Gaussian mixtures and has a closed form. This
can be seen by substituting (3.32) into (3.70), giving∫

Rn
p(p|T (θ1,R, t))p(p|θ2) dp

=
∫
Rn

n1∑
i=1

φ1iN
(
p
∣∣Rµ1i + t,RΣ1iRᵀ) n2∑

j=1
φ2jN

(
p
∣∣∣µ2j ,Σ2j

)
dp (3.72)

=
n1∑
i=1

n2∑
j=1

φ1iφ2j

∫
Rn
N (p∣∣Rµ1i + t,RΣ1iRᵀ)N(p∣∣∣µ2j ,Σ2j

)
dp (3.73)

=
n1∑
i=1

n2∑
j=1

φ1iφ2jN
(
0
∣∣∣Rµ1i + t− µ2j ,RΣ1iRᵀ + Σ2j

)
(3.74)
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where (3.72) is a consequence of identity (3.34). Finally, by substituting (3.33) and
(3.74) into (3.70) and removing the invariant or independent terms, the objective
function to optimise the L2 distance between Gaussian mixtures is given by

f(R, t) = −
n1∑
i=1

n2∑
j=1

φ1iφ2j
exp

(
−1

2(Rµ1i+t−µ2j)ᵀ(RΣ1iRᵀ+Σ2j)−1(Rµ1i+t−µ2j)
)

√
|2π(RΣ1iRᵀ + Σ2j)|

(3.75)
where | · | is the matrix determinant. The partial derivatives or gradient of this function
with respect to the transformation parameters can also be found in closed-form.

Other than having a computationally-efficient closed form and thereby avoiding
numerical integration, a primary advantage of this objective function is its robustness
to outliers. This arises from the “inherently robust” L2E estimator that minimises
the L2 distance between densities without requiring any tuning factors, unlike many
other robust functions [Scott, 2001]. The robustness of the estimator to outliers has
been demonstrated both empirically and from its connection with M-estimators [Basu
et al., 1998; Jones et al., 2001; Scott, 2001]. While counter-intuitive, it arises from the
Gaussian attenuation of outlying values. Basu et al. [1998] remarked that the function
downweights observations probabilistically not geometrically, such that an observation
with a lower probability of occurrence under the model is given a smaller weight,
regardless of how far the observation is from other observations. The L2 distance
between densities was also shown to be a special case (α = 1) of the density power
divergence [Basu et al., 1998]. The density power divergence for probability density
functions p1 and p2 is given by∫ {

p1+α
1 (x)− 1 + α

α
pα1 (x)p2(x) + 1

α
p1+α

2 (x)
}

dx. (3.76)

Jones et al. [2001] compared the class of density power divergences with the class
of Windham divergences [Windham, 1995], both of which have been shown to be M-
estimators [Hampel et al., 1986; Stewart, 1999], and concluded that the classes perform
similarly but the density power divergence has a better asymptotic efficiency and break-
down point. It is also notable that α, which parametrises the density power divergence,
provides a continuous bridge between the Kullback-Leibler (KL) divergence (α → 0)
and the L2 distance (α = 1). The KL divergence is minimised by the Maximum Like-
lihood Estimator (MLE) and has better asymptotic efficiency than the L2E estimator
but is less robust [Basu et al., 1998]. The parameter α can be used to control the
trade-off between efficiency and robustness, but only has a closed form for α = 1.

A toy example demonstrating that the L2E estimator is not biased by systematic
outliers, unlike the Maximum Likelihood Estimator (MLE), is shown in Figure 3.6. In
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Figure 3.6: Toy example demonstrating the robustness of the L2E estimator. (a) Two 1D
point-sets A and B which overlap exactly, except for a single outlier in each. As point-set B
translates with respect to point-set A, the L2 distance between Gaussian mixtures (constructed
from the point-sets using kernel density estimation) and the negative log-likelihood is evaluated
and plotted for different scales σ. (b) At a scale of σ = 0.2, the L2E estimator is globally-optimal
and multiple local minima exist. (c) At the same scale (and below), the Maximum Likelihood
Estimator (MLE) is severely biased by the outliers and finds the incorrect translation. It also
has multiple local minima. (d)–(e) At larger scales (such as σ = 1.0), the MLE is still biased,
but less so. As the scale increases further, both estimates converge towards aligning the centres-
of-mass of the point-sets. The estimators (L2E and MLE) that minimise the L2 distance and
negative log-likelihood are marked as black dots.

contrast, Figure 3.7 shows that, in the absence of outliers, the MLE is more efficient
for the alignment task.
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(d) L2 Distance and L2E Estimator (σ = 0.2)
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Figure 3.7: Toy example demonstrating the alignment of two point-sets without outliers.
(a) Two 1D point-sets A and B which overlap exactly. As point-set B translates with respect to
point-set A, the L2 distance between Gaussian mixtures (constructed from the point-sets using
kernel density estimation) and the negative log-likelihood is evaluated and plotted for different
scales σ. (b) At a scale of σ = 0.05, the L2E estimator is globally-optimal and the profile of the
L2 distance function contains many local minima. (c) At the same scale, the MLE estimator
is also globally-optimal, but the negative log-likelihood profile has fewer, much shallower local
minima. (d)–(e) At larger scales (σ = 0.2), both profiles smooth out and both still find the
global optimum. The estimators (L2E and MLE) that minimise the L2 distance and negative
log-likelihood are marked as black dots.
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3.4.7 L2 Distance between von Mises–Fisher Mixtures

An L2 distance between densities can also be applied to directional data, with the same
properties of robustness and asymptotic efficiency. However, directional data densities
have their own set of challenges, with many formulations of the L2 distance not having a
closed form. An exception to this is the L2 distance between von Mises–Fisher Mixture
Models (vMFMMs) on the sphere, used in Straub et al. [2017], which is both robust
to outliers and can be calculated in closed-form. Unfortunately, vMFMMs are not
as expressive as other mixture models on the sphere, being analogous to GMMs with
isotropic covariances. Moreover, the L2 distance only has a closed-form for vMFMMs
in R2 or R3 since it requires the evaluation of modified Bessel functions of the first kind,
which are not closed-form for higher dimensions. In addition, since they only model
directional information, they cannot easily be used to determine translation, even if
one or both vMFMMs were generated from point-set data.

The advantages of representing 3D directional sensor data as von Mises–Fisher
mixtures were discussed in Section 3.3.6. Two key benefits are that vMFMMs can
admit arbitrarily accurate estimates of noisy sphere-projected surface densities and
can be computed efficiently from point-set or bearing vector set data. However, they
are not suitable for modelling positional data such as point-sets and therefore cannot
be used for certain alignment problems.

Let θk = {µki, κki, φki}nk
i=1 be the parameter set of an arbitrary nk-component

vMFMM with means µki, concentrations κki, and mixture weights φki > 0, where∑nk
i=1 φki = 1. Then the L2 distance between von Mises–Fisher mixtures in R3 for a

rotation R ∈ SO(3) is given by

f(R) =
∫
S2

[p(f |T (θ1,R))− p(f |θ2)]2 df

=
∫
S2

[p(f |T (θ1,R))]2 − 2p(f |T (θ1,R))p(f |θ2) + [p(f |θ2)]2 df (3.77)

where p(f |θ) is the von Mises–Fisher mixture probability density function (3.40) and
T is the function defined by

{µi, κi, φi}ni=1 7→ {Rµi, κi, φi}ni=1 (3.78)

that maps a von Mises–Fisher mixture parameter set to another parameter set rep-
resenting a rotation of the original vMFMM. A closed-form objective function can be
found using the same observations as for the GMMs. The first term of (3.77) is in-
variant under rotations and the last term is independent of the rotation, and therefore
both terms can be dropped. Secondly, the middle term is the inner product of two von
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Mises–Fisher mixtures and has a closed form. This can be seen by substituting (3.35)
into (3.77) giving∫

S2
p(f |T (θ1,R))p(f |θ2) df

=
∫
S2

n1∑
i=1

φ1i vMF(f |Rµ1i, κ1i)
n2∑
j=1

φ2j vMF
(
f
∣∣∣µ2j , κ2j

)
df (3.79)

=
n1∑
i=1

n2∑
j=1

φ1iφ2j

∫
S2

vMF(f |Rµ1i, κ1i) vMF
(
f
∣∣∣µ2j , κ2j

)
df (3.80)

=
n1∑
i=1

n2∑
j=1

φ1iφ2jC3(κ1i)C3(κ2j)
∫
S2

exp
((
κ1iRµ1i + κ2jµ2j

)ᵀ
f
)

df (3.81)

=
n1∑
i=1

n2∑
j=1

φ1iφ2jC3(κ1i)C3(κ2j)
[
C3
(∥∥∥κ1iRµ1i + κ2jµ2j

∥∥∥)]−1
(3.82)

where (3.36) is substituted into (3.80) to get (3.81) and the integral is the inverse
of the normalisation constant of a vMF density with κ = ‖κ1iRµ1i + κ2jµ2j‖ and
µ = (κ1iRµ1i + κ2jµ2j)/κ, which can be seen from the identity∫

S2
C3(κ) exp

(
κµ

ᵀf
)

df = 1. (3.83)

Finally, by substituting (3.39) and (3.82) into (3.77) and removing the invariant or
independent terms, the objective function to optimise the L2 distance between von
Mises–Fisher mixtures is given by

f(R) = −
n1∑
i=1

n2∑
j=1

φ1iφ2jκ1iκ2j
sinh κ1i sinh κ2j

sinh
∥∥∥κ1iRµ1i + κ2jµ2j

∥∥∥∥∥∥κ1iRµ1i + κ2jµ2j

∥∥∥ . (3.84)

The argument for the robustness of this objective function proceeds in the same
way as for GMMs in Section 3.4.6 and will not be reiterated.

3.5 Local Optimisation for Alignment

Given an objective function, the next step is to optimise it to find the parameter
vector that best aligns the sensor data. In this section, the local optimisation problem
is formulated and methods for optimising it in a neighbourhood local to the initial
parameter vector are briefly outlined. The keyword local means that the optimiser will
at best find a local optimum and is not searching across the entire parametric domain.
For convex objective functions, this is not problematic because the local optimum is
the global optimum. However, geometric alignment problems are typically non-convex,
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usually exceedingly so. Therefore, a good parameter initialisation is essential for local
optimisation to retrieve the correct result.

The local optimisation problem for geometric sensor data alignment can be written
as follows. Given an objective function f and an initial rotation R0 and translation t0,

optimise
R,t

f(R, t) (3.85)

subject to R ∈ SO(n)
t ∈ Rn

and return the arguments R∗ and t∗ at the optimum. Note that any optimisation
problem can be written as a minimisation problem modulo a negative sign. If available
or required, functions to compute the first and second order partial derivatives with
respect to the parameters (the gradients and Hessian) can also be supplied to the solver.

Hence, the alignment problem is a constrained nonlinear optimisation problem,
with a constraint on the rotation parameters ensuring that they represent a valid ro-
tation. An optional constraint can be placed on the translation parameters if only a
subset of Rn is to be searched. The main class of local optimisation methods used
in geometric alignment are iterative methods that converge to a solution after a non-
deterministic number of steps. This class can be further subdivided into those methods
that just require the function, such as golden-section search and interpolation meth-
ods; those methods that also require gradients or approximate gradients from finite
differences, such as gradient descent, Gauss-Newton, quasi-Newton and Levenberg–
Marquardt methods; and those methods that also require Hessians or approximate
Hessians, such as Newton’s method and interior point methods. For many of these ap-
proaches, line searches or trust regions are used to ensure the method converges. There
is often a trade-off between the number of iterations and the computational complexity
of each iteration, so the choice of method is problem-dependent.

The constraints on the rotation parameters require some care. They can be en-
forced by using manifold optimisation or Lagrange multipliers, or by renormalising the
rotation representation at each optimisation iteration. Where a quaternion parametri-
sation is used, a common approach is to allow the parameters to vary freely during
each optimisation iteration and then project the updated solution back to the space
of valid rotations by normalising the quaternion [Schmidt and Niemann, 2001]. Al-
ternatively, the unit-norm constraint can be enforced by using Lagrange multipliers.
Where a rotation matrix parametrisation is used, Gram–Schmidt orthonormalisation
can be applied. In contrast, the constraints on the translation parameters can often be
expressed as box constraints, which can be solved by optimisers such as BFGS-B.

In whatever way the local optimisation problem is solved, it will still be suscepti-
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ble to local optima since the objective function is highly non-convex over the search
space. There are many heuristic approaches to alleviate the problem of converging to
local optima. One such approach is to adopt a multi-resolution approach by decreasing
any scale parameter at each iteration. This annealing approach starts with a smooth
objective function, enabling large motions towards a good region of the search space,
and progressively reduces the smoothness of the objective function, enabling smaller
motions towards more precise optima. Another approach is to repeat the optimisa-
tion process many times from different initial parameter settings that systematically,
randomly or quasi-randomly cover the domain. While the former approach can help
widen the algorithm’s basin of convergence, the latter approach explicitly searches over
a larger region of the parametric domain. This provides a smooth transition between
local and global optimisation algorithms, from searching within a local neighbourhood
region to searching across an entire domain.

3.6 Global Optimisation for Alignment

In contrast to local optimisation, global optimisation searches over the entire paramet-
ric domain. Optimising over the entire domain does not guarantee that the optimal
solution is found, however; for that, a globally-optimal algorithm is required. In this
section, the global optimisation problem is formulated and methods for optimising it in
across the entire parametric domain are briefly outlined. The fundamental property of
global optimisation algorithms is that a good parameter initialisation is not required.

The global optimisation problem for geometric sensor data alignment uses the same
formulation as (3.85), except parameter initialisations are not required. As for the
local optimisation formulation, functions to compute the first and second order partial
derivatives with respect to the parameters can also be supplied to the solver if required.

Non-convexity and non-differentiability are the primary motivators for global op-
timisation. Due to the non-convexity of the objective function, local optimisation can
at best find a local optimum, typically the optimum closest in some sense to the initial
parameter vector. While objective functions can be designed to smooth out the func-
tion landscape and widen the basin of convergence of the correct solution, this cannot
mitigate the problem entirely. The more the objective function is smoothed, the less it
represents the underlying geometric alignment problem. Thus, while it might be easier
to find the solution, the solution may no longer be relevant to the alignment problem.
Non-differentiability presents a different challenge. Most good local optimisation algo-
rithms need to compute exact or approximate gradients in order to converge to a local
optimum. As a result, continuous and differentiable functions can be handled well by
local optimisers, but discrete and non-differentiable functions cannot.
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As observed in Section 3.5, the alignment problem is a constrained nonlinear opti-
misation problem. There are many approaches to solving this problem globally. It can
be helpful to think of geometric alignment algorithms as jointly solving for the trans-
formation and correspondences. Hence, there are two options for a global algorithm:
to lead with search over the transformation space or the correspondence space.

The first approach has transformation search lead the correspondence search. As
foreshadowed in Section 3.5, a naïve approach is to run multiple instances of a local
optimisation algorithm using different initial parameters. These initialisations can
cover the parametric domain systematically or randomly, however it can be useful to
use an optimally self-avoiding quasi-random distribution [David et al., 2002]. More
sophisticated approaches in this class apply methods such as particle filtering [Sandhu
et al., 2010], genetic algorithms [Silva et al., 2005] or Kalman filtering [Moreno-Noguer
et al., 2008] to intelligently select the parameter initialisations.

While any local optimisation algorithm can be made global in this way, specifically
global algorithms tend to approach the problem in a different way. In particular, many
methods search over the parametric domain implicitly by instead searching explicitly
over the correspondences. Hence in these approaches correspondence search leads the
transformation search. RANdom SAmple Consensus (RANSAC), introduced by Fis-
chler and Bolles [1981], is a robust but non-deterministic global method for solving the
consensus set maximisation problem (3.62). As such, it requires a set of putative cor-
respondences and is therefore not solving the geometric alignment problem. Nonethe-
less, it is a fundamental algorithm and the underlying principle has been extended to
correspondence-free alignment. RANSAC maximises the consensus set by stochasti-
cally generating a minimal set, computing the transformation from this set, computing
the cardinality of the consensus set given this transformation, updating the parameters
if a better cardinality was found, and repeating. The minimal sets differ depending
on the data and the problem. For example, three 3D–3D point correspondences are
a minimal set for point-set registration and three 2D–3D point correspondences are a
minimal set for camera pose estimation. The RANSAC algorithm can be modified to
work without correspondences by introducing another stochastic step, where a minimal
set is selected at random from dataset X2 after one has been selected at random from
dataset X1 [Grimson, 1990]. This approach scales very poorly with the number of data
elements and is not practical for most problems.

The most common way to pre-compute a correspondence set for RANSAC is using
feature correspondences [Rusu et al., 2009]. Within a single modality, this can be an
effective strategy, particularly if the features are robust and reproducible. However,
for feature extraction across multiple modalities, such as 2D–3D alignment, this is
a non-trivial unsolved problem. Even in a single modality, factors such as variable
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sampling densities, repetitive features and occlusions make the correspondence prob-
lem challenging. However, one class of RANSAC-based approaches does not require
feature extraction: congruent set methods. These methods extract all approximately-
congruent near-minimal sets directly from the raw sensor data and use RANSAC to
find the alignment using these sets. The 4-Points Congruent Sets method (4PCS)
[Aiger et al., 2008], which provides a way to rapidly extract coplanar 4-point sets, its
extension Super4PCS [Mellado et al., 2014], which exploits a clever data structure to
achieve linear-time performance, and the 2-Points+Normal Sets (2PNS) method [Ra-
poso and Barreto, 2017], which uses normals to reduce the number of points needed,
are examples of these methods.

The primary disadvantage of all of these global optimisation methods is that they
do not necessarily converge to the global optimum. While they are not restricted to
finding the local optimum in the neighbourhood of a parameter initialisation, they may
instead find a local optimum somewhere else in the parametric domain. To guarantee
that the global optimum has been found, globally-optimal methods, such as branch-
and-bound, must be used.

3.7 Branch-and-Bound for Globally-Optimal Alignment

To solve highly non-convex and NP-hard optimisation problems, such as geometric
sensor data alignment, the global optimisation technique of Branch-and-Bound (BB)
[Land and Doig, 1960; Lawler and Wood, 1966] may be applied, outlined in Figure 3.8.
It provides a framework for optimisation with some guarantees that the solution found
is the global optimum within the domain. Depending on the objective and bounding
functions, BB may guarantee full global optimality or a weaker ε-suboptimality. The
latter ensures that the solution is within ε of the true global optimum, for a user-defined
value ε. The trade-off is typically between optimality and runtime, with smaller values
of ε requiring longer runtimes.

To apply the BB paradigm, a suitable means of parametrising and branching (or
partitioning) the function domain must be found, as well as an efficient way to calculate
upper and lower bounds of the function on each branch. An important requirement
is that the upper and lower bounds must converge as the size of the branches tend
to zero. BB algorithms that are ε-suboptimal have bounding functions that converge
asymptotically as the branch size decreases. That is, the limit as the branch size δ
tends to zero of the difference between the upper and lower function bounds f̄ and

¯
f is

given by lim
δ→0

(f̄(δ)−
¯
f(δ)) = 0. In contrast, those that are fully optimal have bounding

functions that converge to zero before the limit: f̄(δ) −
¯
f(δ) = 0 for δ > 0. A BB

algorithm systematically subdivides the search space using a branching strategy and
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(a) Branching

Upper Bound
Lower Bound

(b) Bounding

(c) Pruning

Figure 3.8: Overview of the branch-and-bound algorithm for a 1D maximisation problem. A
queue is initialised with a node containing the entire function domain, then the following steps
are iterated: (a) remove a node from the queue and subdivide its domain into branch nodes;
(b) evaluate upper and lower bounds of the function maximum within each branch; (c) if the
bounds indicate that a branch cannot contain the global maximum, discarded it. A node is
pruned if its upper bound is less than the greatest lower bound found so far.

then prunes the search space using the bounding functions. If halted at any time, the
global optimum (or an ε-suboptimum) is guaranteed to be attained in the remaining
branches and not attained in the discarded branches.

While the bounds need to be computationally efficient to calculate, the time and
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memory efficiency of the algorithm also depends on how tight the bounds are. In this
context, tight refers to the how well the bounding function approximates the actual
maximum and minimum function values for any given branch. This affects the time
and memory efficiency of the algorithm because tighter bounds reduce the search space
quicker by allowing suboptimal branches to be pruned. These two requirements are
generally in opposition and must be optimised together. For this reason, it is always
important to check whether more sophisticated, tighter bounding functions increase
the time or memory efficiency of the algorithm: theoretical novelty is not a sufficient
criterion. One confounding factor, however, is that the time and memory efficiency of a
bounding function may be dependent on the data itself. Therefore, it is recommended
that a new bounding function be tested with a range of typical datasets.

3.7.1 Parametrising the Domain

To find a globally-optimal solution to the geometric sensor data alignment problem,
the objective function must be optimised over the domain of 3D motions, that is, the
group SE(3) = SO(3)×R3. However, the space of these transformations is unbounded.
Therefore, to apply the BB paradigm, the space of translations is restricted to be within
the bounded set Ωt. Since Ωt can be arbitrarily but nonetheless finitely large, it is often
reasonable that the optimal translation is contained in this set. If additional domain
specific knowledge is available, a smaller set may be justifiable.

The parametrisation of the domain is a design choice that may depend on the spe-
cific problem or bounding strategy. Several options were presented in Section 3.1. For
the alignment problem, translation space R2 or R3 is typically parametrised with 2-
or 3-vectors in a Cartesian coordinate system within a bounded domain chosen as the
cuboid Ωt, as shown in Figure 3.9(a). In 2D, rotation space is parametrised by the
scalar rotation angle θ. In 3D, both angle-axis 3-vectors and unit quaternions are use-
ful parametrisations of rotation space SO(3). For angle-axis vectors, as discussed in
Section 3.1.2, the space of all 3D rotations can be represented as a solid ball of radius
π in R3. For ease of manipulation and branching, the 3D cube that circumscribes the
π-ball can be used as the rotation domain Ωr [Li and Hartley, 2007], as shown in Fig-
ure 3.9(b). Quaternions may also be used, although the tessellation and subdivision of
a hemisphere of the space of unit quaternions S3 is non-trivial. One tetrahedron-based
approach is presented in Straub et al. [2017], where the initial exactly uniform tessella-
tion of rotation space is found by normalising the vertices of a 4D 600-cell and selecting
the resulting tetrahedra that cover a single hemisphere. The subdivision scheme is also
non-trivial, since a subdivision pattern must be chosen for each tetrahedron to ensure
the rotation range shrinks, and does not preserve exact uniformity.
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τx

τz

τy

(a) Translation Domain Ωt

π

(b) Rotation Domain Ωr

Figure 3.9: Parametrisation of translation and rotation domains in 3D. (a) The translation
space R3 can be parametrised by 3-vectors bounded by a cuboid with half-widths [τx, τy, τz].
(b) The rotation space SO(3) can be parametrised by angle-axis 3-vectors in a radius-π ball.

3.7.2 Branching the Domain

In its most general form, branch-and-bound partitions the space of parameters hi-
erarchically and may therefore be structured as a tree. For any objective function
f : Ω → R, where Ω is the parametric domain, the BB algorithm subdivides the do-
main into k regions whose union is the original domain and are preferably but not
necessarily disjoint. In this scheme, k is the branching factor and each subdivided
region of the search space is a node of the tree.

Commonly used structures for branching different dimensional spaces include the
octree family (quadtrees, octrees, hyperoctrees), kd-trees, triangular or tetrahedral
tessellations, and golden-section interval selection. In the specific case of an angle-axis
parametrisation, the domain of the π-ball-circumscribing cube can be branched into
sub-cubes using an octree data structure. In the case of a quaternion parametrisation,
the domain of tetrahedrons providing a cover of a hemisphere of S3 can be branched
into sub-tetrahedra using a tetrahedron tessellation scheme.

In some situations it is justifiable to reduce the dimensionality of the search space
of BB by nesting a BB problem within another BB problem. While the entire search
space is still explored in this scheme, it is often computationally preferable to solve a
smaller problem multiple times than a large problem once. For alignment problems,
translation and rotation search can be nested in this way.

3.7.3 Bounding the Branches

The success of a BB algorithm is predicated on the quality of its bounds, where quality
is assessed with respect to computational cost and tightness. For any BB optimisation
problem, the objective function f needs to be bounded when evaluated within some
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subset Ψ of the parametric domain Ω, that is Ψ ⊆ Ω. This allows the algorithm to
perform a feasibility test on the subset of the domain. Let

¯
fΨ and f̄Ψ be lower and

upper bounds of the function for any subset Ψ of Ω. Then for a minimisation problem

¯
fΨ 6 min

θ∈Ψ
f(θ) 6 f̄Ψ (3.86)

and for a maximisation problem

¯
fΨ 6 max

θ∈Ψ
f(θ) 6 f̄Ψ (3.87)

where θ is a parameter vector in the set Ψ. For the minimisation problem, an entire
branch (subset) can be pruned (discarded) whenever its lower bound is greater than
the lowest upper bound found so far. The reverse process holds for a maximisation
problem. In this way, branches that cannot contain the global optimum are found to
be infeasible and are discarded.

To prove that a BB algorithm converges to the global optimum as the branch size
tends to zero, it is only necessary to show that the upper and lower bounds are valid,
that is, provably correct, and converge as the size of the branches tend to zero. The
bounds are not required to converge asymptotically or continuously and may converge
well before the branch size diminishes appreciably, especially for discrete functions.

A BB algorithm for a minimisation (or maximisation) problem terminates when
the difference between the lowest lower bound (or highest upper bound) across all
remaining branches and the lowest upper bound (or highest lower bound) found so
far is less than a user-specified threshold ε. For problems where ε = 0, typically for
discrete optimisation problems, full optimality is achieved. For problems where ε > 0,
typically for continuous optimisation problems, ε-suboptimality is achieved. In the
latter case, the solution is within ε of the global optimum. Note that the ε gap applies
to the function value, not the parameter values. The optimal parameter values may be
entirely different than those that generated the ε-suboptimal solution. For this reason,
it is important to ensure that the value of ε is as small as practical so that incorrect
local optima are not returned by the algorithm. Unfortunately, it can be difficult to
know in advance what a suitably small value would be for a given problem. As with
other parameter selection problems, the best approach is often to use cross-validation
with data that has a known ground-truth.

Another approach to mitigate the problem of ε-suboptimality is to instead termi-
nate the algorithm when some condition about the remaining branches is met. That
is, using parameter space criteria to decided when to terminate. For example, termi-
nating when only a single cluster remains in the parameter space and the radius of the
cluster-enclosing hypersphere is below a given threshold εr. The single cluster criterion
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ensures that all ‘distant’ local minima have been excluded and all remaining feasible
regions are proximal in parameter space. The hypersphere radius criterion ensures
that the parameter vector associated with the best solution is at most εr from the
optimum parameter vector by the Euclidean distance metric. The hypersphere radius
criterion subsumes the single cluster criterion, however the latter is easier to evaluate
and therefore is useful as a first condition. For the geometric alignment problem, the
termination strategy can be split between translation and rotation domains with a dif-
ferent threshold for each. For example, BB can be set to terminate when the maximum
possible deviation in translation and rotation is 0.01m and 0.1◦ respectively.

In BB, one of the bounds can be trivial to obtain. For a minimisation problem, an
upper bound can be found by evaluating the function at any parameter vector in the
subset Ψ. For a maximisation problem, a lower bound can be found in the same way.
Typically, the parameter vector chosen is the one which is quickest to evaluate. How-
ever, there are many cases where a more sophisticated bound is useful. One strategy
is to apply a local optimisation algorithm initialised at any parameter vector in the
domain subset. However, consideration must be given to the computational cost of the
bounding functions. Therefore, it may be sensible to only apply the more sophisticated
bound when the cheap bound is better than any that have been previously discovered.

The other (non-trivial) bound tends to be problem-dependent and more sophisti-
cated techniques can be applied. Again, consideration must be given to the computa-
tional cost, since sophisticated and tight bounds may be too slow to evaluate. The BB
algorithm is consistently in tension between using sophisticated techniques and speed.

3.7.4 Search Strategies

There are several search strategies that can be used with branch-and-bound. The
specific choice is problem-dependent, so in this section an overview of some alternatives
is given. A search strategy is a rule for choosing which branch to explore or subdivide
next. At any given stage, there may be a significant number of remaining branches, all
of which will have some values associated with them. These will include the lower and
upper function bounds computed for each branch and may include information such as
the branch’s size or level in the tree.

Depth-First Search

Two common tree search strategies are depth-first and breadth-first search. Depth-
first search continually expands each tree node, following a single expansion path, until
a branch is discarded or a maximum depth level is reached. It then returns to the
previous level of the tree and expands the next node of that branch. This strategy uses
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less memory than the other ones because it reaches the deeper levels where pruning
is more likely before expanding shallower nodes. However, it may also fully expand
unpromising nodes if it is explored before a reasonable optima has been found that
facilitates pruning. That is, a depth-first strategy may traverse an entire path to the
leaves of an initial branch which is soon shown to be unpromising. Alternatively, the
structure of the problem and data may be such that a ‘push-your-luck’ strategy may
be appropriate, finding the correct solution much earlier than a breadth-first approach.

Breadth-First Search

A breadth-first strategy searches all nodes on the same level before progressing to nodes
on the next level. For most branching strategies, this search strategy is equivalent to
exploring nodes that represent a larger subset of the parameter space before exploring
smaller subsets. While the strategy systematically explores the parametric domain in a
coarse-to-fine way, it is memory intensive since branches are retained more often than
they are pruned at the upper level of the tree.

Best-First Search

Another search strategy is greedy or best-first search. This strategy expands the most
promising nodes in the tree first. For a minimisation problem, this would be the
node with the lowest lower bound. For a maximisation problem, it would be the
node with the greatest upper bound. The utility of this approach depends on the
specific objective function. For an objective function that does not change rapidly as
the parameters change, this strategy is appropriate. For a discrete objective function
where the function value is likely to change significantly in the neighbourhood of the
parameter vector of the parent branch, it would not be an appropriate strategy.

Heuristic, Combination and Parallel Search

Other search strategies may invoke an easily-calculable heuristic which depends on
the particular problem. For example, if previous experience suggests that the solution
may lie in a particular region of parameter space, nodes closer to that region could be
expanded first. This can be an effective way to incorporate prior knowledge about the
solution into the algorithm without voiding the optimality guarantee.

In many cases, two or more strategies can be applied. For example, if the primary
search strategy is breadth-first, the exploration order of the nodes within a level of the
tree still needs to be determined. One of the other strategies, such as best-first, could
be used to choose this ordering.
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Parallel processing offers additional choices for search strategies. While breadth-
first search lends itself to parallel implementations, other possibilities arise when mul-
tiple experiments can be run simultaneously. These include using a random search
strategy for every instance of the algorithm and running many instances, or using
each strategy in a different instance. The latter is the most robust approach to do-
main shifts, where specific knowledge about the datasets and therefore the appropriate
search strategy can no longer be relied upon.

Search Strategies for Geometric Alignment

Many of these strategies have been applied to geometric alignment problems. Hartley
and Kahl [2009] reported that both depth-first and breadth-first search worked effec-
tively for 3D rotation search. Yang et al. [2016] found best-first search to be the most
effective for 3D–3D alignment. Breadth-first search can also be suitable in many cases
because searching a wide swathe of the transformation domain will often lead to a good
function value being found early in the search [Campbell and Petersson, 2016]. Quickly
finding a good best-so-far upper bound for minimisation or lower bound for maximisa-
tion is essential for BB since it facilitates the pruning of higher-level branches. In turn,
this greatly reduces the amount of redundant calculations undertaken. It has been
previously observed [Yang et al., 2016] that finding the global optimum of a geometric
alignment problem requires a small fraction of the time required to guarantee that it
is the global optimum. Since finding the optimum is not normally the limiting factor,
the search strategy should aim to reduce the amount of redundant node expansions.

3.7.5 Branch-and-Bound Algorithm

To summarise the main details of the previous sections, the branch-and-bound algo-
rithm for a minimisation problem using best-first search is presented in generic form
in Algorithm 3.1. On line 1, the variable f∗ that keeps track of the best function value
found so far is initialised to infinity. In practise, a non-infinite value can be found by
evaluating the objective function at any parameter vector in the domain. Next, the first
branch is initialised to the entire parametric domain with associated upper and lower
bounds (line 2). Then the branch is pushed into the empty priority queue (line 3).

The main loop now begins by accessing and removing the top element of the priority
queue (line 5). Best-first search can be implemented using a priority queue with priority
inversely proportional to the lower bound (for minimisation). The queue itself handles
the tracking of the lowest lower bound, since this will always be the lower bound of the
first (top) element in the queue. For other search strategies, this critical value will need
to be updated by another method. For discrete objective functions, this can be achieved
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Algorithm 3.1 Prototypical best-first branch-and-bound minimisation algorithm
Input: parametric domain Ω and tolerance ε
Output: ε-suboptimal function value f∗ and corresponding parameters θ∗ ∈ Ω

1: Initialise the best-so-far function value: f∗ ←∞
2: Initialise the first branch (root): Ψ← {Ω,

¯
f = −∞, f̄ =∞}

3: Add branch to priority queue Q: Q← Ψ
4: loop
5: Remove branch Ψ with lowest lower-bound

¯
f from Q

6: if f∗ −
¯
f 6 ε then terminate

7: for all sub-branches Ψi do
8: Evaluate f̄Ψi

9: if f̄Ψi < f∗ then (f∗,θ∗)← g(f̄Ψi ,θΨi)
10: Evaluate

¯
fΨi

11: if
¯
fΨi 6 f∗ then add branch to queue: Q← Ψi

using a histogram of lower bounds which counts the number of remaining branches in
each category. Priority queues are useful data structures for BB because they have a
time complexity of O(1) for finding the highest priority element and O(logn) for insert
and remove operations, in contrast to O(n) and O(1) for an unsorted list.

The algorithm terminates when the gap between the best function value and the
lowest lower bound is less than the tolerance ε (line 6), which may be zero depending
on the problem. On the next line (7), the branching step occurs, where Ψ is subdivided
according to a refinement scheme, such as octree subdivision. Next, the upper bound
of the function is evaluated for the current sub-branch Ψi (line 8). If this value is
less than the best-so-far function value, f∗ and the associated parameter vector are
updated (line 9). Local optimisation can be incorporated at this step, abstracted here
as a function g. The local optimisation algorithm is initialised with the parameter
vector θΨi and may find a better function value f∗ and parameter vector θ∗. Certain
local algorithms provide the stronger guarantee that they will find a lower or equal
function value. The final steps are shown in lines 10 and 11, where the lower bound of
the function is evaluated for the current sub-branch Ψi and the sub-branch is pruned
if

¯
fΨi > f∗. It is clear from this step that the closer the lower bound is to the true

function minimum on the sub-branch, the earlier the sub-branch will be removed.
A simplified example of the branching and bounding step is presented in Figure 3.10.

It shows the branching of the partition Ψ into sub-branches Ψi for which the upper and
lower function bounds are evaluated. Sub-branches Ψ1 and Ψk are pruned because their
lower bounds are greater than the best-so-far function value f∗. However, sub-branch
Ψ2 is further branched because its lower bound is less than the best-so-far function
value. In addition, its upper bound is also less than the best-so-far function value so
this value is updated with that upper bound.
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Figure 3.10: A simplified example of branching and bounding. Consider a best-so-far function
value f∗ of 3 and an initial partition Ψ of the parametric domain. Ψ is branched into k partitions
Ψi, for each of which the upper and lower function bounds are evaluated. For Ψ1 and Ψk, the
lower bounds are greater than the best-so-far function value (

¯
f1 > 3 and

¯
fk > 3) so those

branches are pruned and not explored further. For Ψ2, the lower bound is less than the best-
so-far function value (

¯
f2 6 3) so it is subdivided as shown. In addition, the upper bound is

also less than the best-so-far function value (f̄2 6 3) so the value is updated: f∗ ← f̄2.

3.8 Summary

This chapter formulated the geometric sensor data alignment problem and presented
the technical background material necessary to understand the main algorithms used
to solve this problem. Elements basic to the geometric alignment problem were pre-
sented first, including the parametrisations of rigid motions, distance measures and
sensor data representations. Following this, different objective functions for geomet-
ric alignment were introduced, emphasising the progression from non-robust to robust
functions with respect to how they operate in the presence of noise and random or
structured outliers. Finally, optimisation was discussed, emphasising the progression
from local to global optimisation techniques, and then from stochastic methods to
guaranteed optimal branch-and-bound methods. These dual progressions, motivated
at each step, are critical to the argument of this thesis.
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The fundamental building blocks for geometric alignment that have been presented
in this chapter will be used throughout the remaining work. The focus of Chapter 4 is
robust 2D–2D and 3D–3D geometric alignment, which will use many of the elements
from this toolkit. The remaining elements, global optimisation and branch-and-bound,
will be incorporated into Chapters 5 and 6, where the focus is on robust and globally-
optimal 3D–3D and 2D–3D geometric alignment.



Chapter 4

Robust nD–nD Alignment

The focus of this chapter is the geometric alignment of two sets of 2D or 3D positional
sensor data, such as laser scans, where the data may be corrupted by noise and random
or structured outliers. This can be used to solve the problem of estimating the 3
or 6 degrees-of-freedom pose of a 2/3D sensor with respect to a previously-acquired
2/3D point-set or the relative pose of two 2/3D sensors. Algorithms for solving the
2D–2D and 3D–3D registration problems have matured over time, with a twofold
progression towards outlier robustness and global search. That is, non-robust local
optimisation registration algorithms, such as the prototypical Iterative Closest Point
(ICP) algorithm, have been improved by applying robust objective functions to reduce
susceptibility to outliers and widen the region of convergence, such as Gaussian Mixture
Alignment (GMA), and by applying global search to reduce susceptibility to local
minima, such as Globally-Optimal ICP (Go-ICP). While much progress has been made
in both these directions, outliers remain problematic to handle, particularly structured
outliers caused by partial overlap and occlusion. Since typical instances of the geometric
alignment problem have a large proportion of outliers and many local minima, a useful
solver needs to be very robust to outliers and have a wide region of convergence.

In this chapter, a novel local optimisation algorithm for geometric alignment is pro-
posed, which manifests strong robustness to outliers and a wide region of convergence.
The algorithm, named Support Vector Registration (SVR), minimises the robust GMA
objective function between Support Vector–parametrised Gaussian Mixtures (SVGMs).
This novel data representation is generated by training a one-class support vector ma-
chine with a Gaussian radial basis function kernel and subsequently approximating the
output function with a Gaussian mixture model. An SVGM has a sparse parametri-
sation that is adaptive to local surface complexity and, being a discriminative model
of the point-set, is more invariant to viewpoint than a generative model since it does
not model sampling artefacts, such as distance-dependent point density. The resulting
SVR algorithm that minimises the L2 distance between SVGMs is efficient, robust to
outliers and sampling artefacts, and has a large region of convergence, as demonstrated
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Figure 4.1: Robust point-set registration and merging framework. An nD point-set is repre-
sented as an SVGM by (a) training a one-class SVM and then (b) mapping it to a GMM. The
mixtures are aligned using (c) the SVR algorithm, which minimises the L2 distance between
two SVGMs. Finally, the mixtures are parsimoniously fused using (d) the GMMerge algorithm.
The SVMs are visualised as support vector points scaled by mixture weight and the SVGMs
are coloured by probability value. Best viewed in colour.

on a range of 2D and 3D datasets. Finally, a novel algorithm is proposed to parsimo-
niously and equitably merge aligned mixture models. Hence, the work constitutes a
framework for rigid 2D–2D and 3D–3D registration and merging, able to be used for
reconstruction and mapping.

4.1 Introduction

Estimating the 3 or 6 degrees-of-freedom alignment of a set of 2/3D positional sensor
data with respect to another set of 2/3D positional sensor data is the core task for
solving the 2D–2D or 3D–3D rigid registration problem. A general-purpose registration
algorithm that operates on positional sensor data, such as a point-set, may not assume
that other information is available, such as colour, semantic labels or mesh structure.
Gaussian Mixture Alignment (GMA), the problem of finding the transformation that
best aligns one Gaussian mixture with another, has a natural application to point-set
registration, visualised in Figure 4.1, which endeavours to solve the same problem as
GMA for discrete point-sets in Rn. Indeed, the Iterative Closest Point (ICP) algorithm
[Besl and McKay, 1992; Zhang, 1994] and several other local registration algorithms
[Chui and Rangarajan, 2000a,b; Tsin and Kanade, 2004; Myronenko and Song, 2010]
can be interpreted as special cases of GMA [Jian and Vemuri, 2011].

Applications of 2D–2D and 3D–3D rigid registration include merging multiple par-
tial scans into a complete model [Blais and Levine, 1995; Huber and Hebert, 2003];
using registration results as fitness scores for object recognition [Johnson and Hebert,
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(a) Missing correspondences can lead to incor-
rect data association

(b) Optimisation gets trapped in local minima

Figure 4.2: Local optimisation techniques such as Iterative Closest Point (ICP) can be sus-
ceptible to missing correspondences and local minima. Missing correspondences can lead to
incorrect data association and, without a good initialisation, optimisation can get trapped in
local minima, producing erroneous alignment results.

1999; Belongie et al., 2002]; registering a view into a global coordinate system for
sensor localisation [Nüchter et al., 2007; Pomerleau et al., 2013]; fusing cross-modality
data from different sensors [Makela et al., 2002; Zhao et al., 2005]; and finding relative
poses between sensors [Yang et al., 2013a; Geiger et al., 2012].

The dominant solution for 2D–2D and 3D–3D rigid registration is the ICP algo-
rithm [Besl and McKay, 1992; Zhang, 1994] and variants, due to its conceptual simplic-
ity, ease of use and good performance. However, ICP is limited by its assumption that
closest point pairs should correspond, which fails when the point-sets are not coarsely
aligned or the moving ‘model’ point-set is not a proper subset of the static ‘scene’ point-
set. The latter occurs frequently, since differing sensor viewpoints and dynamic objects
lead to occlusion and partial-overlap. This closest-point assumption means that ICP is
susceptible to missing correspondences, which lead to incorrect data association, and
local minima, in which the optimisation gets trapped, producing erroneous estimates
without a reliable means of detecting failure, as shown in Figure 4.2.

Gaussian mixture alignment [Chui and Rangarajan, 2000a; Tsin and Kanade, 2004;
Jian and Vemuri, 2011] mitigates these problems by eschewing explicit correspondences
and using a robust objective function. By aligning point-sets without establishing
explicit point correspondences, GMA is less sensitive to missing correspondences from
partial overlap or occlusion and is less susceptible to local minima, having a wider
basin of convergence. Robust objective functions can also be applied, such as the L2

distance between mixtures [Jian and Vemuri, 2011].

However, the transformation that aligns the Gaussian mixtures only corresponds to
the transformation that aligns the underlying surfaces if the mixtures represent those
surfaces adequately. Existing methods use generative models that optimise represen-



104 Robust nD–nD Alignment

tation, modelling the scene as sampled by the sensor instead of the scene itself. As a
result, sampling artefacts, such as occlusions and variable point densities that depend
on the distance of the surface from the sensor, are also modelled and thus the model
is not especially invariant to viewpoint. While this is unavoidable to some extent, it
can be reduced by using a discriminative model that optimises classification, deciding
whether the sampled points are well-classified by a surface. This implicit surface is
closer to the underlying surface than the probability density of a generative model,
since it regularises the sampled points, creating a smoother surface while still adapting
to local surface complexity. Moreover, it does not depend strongly on the point density
since a dense cluster of points can be classified equally well by a surface as a few points
in the same location. It also helps to alleviate the problem of occlusions, which create
holes in the sampled surface behind the occluding objects. With a generative model,
the lower density edges of the holes are given little weight, whereas a greater weight
will be assigned by a discriminative model, helping to in-fill the region. The differences
between generative and discriminative models are demonstrated in Figure 4.3.

In this chapter, a Gaussian mixture alignment approach is proposed to solve the
nD–nD rigid registration problem using a discriminative sensor data model. The ap-
proach has a wider region of convergence than existing local optimisation methods and
is more robust to sampling artefacts and structured outliers from occlusions and partial
overlap. The central idea is that the robustness of registration is dependent on the data
representation used. The Support Vector–parametrised Gaussian Mixture (SVGM), a
continuous data representation, is introduced for this purpose. An SVGM is generated
from a discrete point-set by training a discriminative model using a one-class Support
Vector Machine (SVM) and mapping it to a Gaussian Mixture Model (GMM), as shown
in Figure 4.1. Since an SVM is parametrised by a sparse, intelligently-selected subset of
data points, an SVGM is compact, adaptive to local surface complexity, and robust to
sampling artefacts including varying point densities, noise, and occlusions [Van Nguyen
and Porikli, 2013], crucial qualities for efficient and robust registration.

The Support Vector Registration (SVR) algorithm minimises the L2 distance be-
tween SVGMs, which is inherently robust to outliers as discussed in Section 3.4.6.
Unlike the benchmark GMA algorithm in Jian and Vemuri [2011], SVR uses an adap-
tive, sparse and discriminative representation with non-uniform, data-driven mixture
weights, enabling faster performance and improving the robustness to sampling arte-
facts and structured outliers. Finally, a novel Gaussian Mixture Merging (GMMerge)
algorithm is proposed that parsimoniously and equitably merges aligned mixtures.
Merging Gaussian mixtures is useful for applications where each point-set may con-
tain unique information, such as reconstruction and mapping. The full framework for
robust point-set registration and merging using SVGMs is visualised in Figure 4.1.
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(a) Point-set

(b) Generative model (c) Discriminative model

Figure 4.3: Generative and discriminative models for sensor data representation. (a) A 2D
point-set with a wall (light grey rectangle) and an occluding structure (light grey square) closer
to the sensor. For a constant angular resolution, there is a higher point density on the occluding
structure because the density is dependent on the distance from the sensor. (b) A Gaussian
mixture constructed using a generative model (kernel density estimation). Undue weight is
given to regions where the point-set is dense, such as the occluding structure and the centre
of the two sampled regions on the wall, even though this may be an artefact of the sampling
method. (c) A Gaussian mixture constructed using a discriminative model (support vector
machine) with the same scale σ. The probability density does not depend strongly on point
density. As a result, the probability density is not biased by regions of high point density and
can in-fill small occluded regions.
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The chapter is organised as follows: the problem is contextualised by summarising
the relevant literature in Section 4.2; a robust sensor data representation, the SVGM,
is introduced in Section 4.3; an algorithm is proposed for robust 2D–2D and 3D–
3D registration by minimising the L2 distance between two SVGMs in Section 4.4;
an algorithm is proposed for parsimoniously merging SVGMs in Section 4.5; and the
framework’s performance is evaluated and discussed in Sections 4.6 and 4.7.

4.2 Related Work

The large quantity of work published on ICP, its variants and other local registration
techniques precludes a comprehensive list. The reader is directed to the surveys on ICP
variants [Rusinkiewicz and Levoy, 2001; Pomerleau et al., 2013] and recent 3D point-
set and mesh registration techniques [Tam et al., 2013] for additional background. Of
relevance to this work are extensions that improve robustness to outliers, including
trimming [Chetverikov et al., 2005] and outlier rejection [Zhang, 1994; Granger and
Pennec, 2002], and extensions that enlarge ICP’s region of convergence, including
LM-ICP [Fitzgibbon, 2003], which applies the Levenberg-Marquardt algorithm [Moré,
1978] and a distance transform to optimise the ICP error without establishing explicit
point correspondences.

The family of Gaussian mixture alignment approaches, to which this work be-
longs, also seeks to improve robustness to outliers and poor pose initialisations. No-
table GMA-related algorithms for rigid and non-rigid registration include Robust Point
Matching [Chui and Rangarajan, 2003] that uses soft assignment and deterministic an-
nealing, Coherent Point Drift [Myronenko and Song, 2010] and Kernel Correlation [Tsin
and Kanade, 2004] that minimises a distance measure between mixtures. The Gaus-
sian Mixture Model Registration (GMMReg) algorithm [Jian and Vemuri, 2011] defines
an equally-weighted Gaussian at every point in the set with identical and isotropic
covariances and minimises the robust L2 distance between densities. The Normal Dis-
tributions Transform (NDT) algorithm [Magnusson et al., 2007; Stoyanov et al., 2012]
defines Gaussians for every cell in a grid and estimates full data-driven covariances.

Unlike these local optimisation algorithms, approaches that use global optimisation
are not dependent on the initial transformation. There are many heuristic or stochastic
methods for global alignment that are not guaranteed to converge to the optimal align-
ment, such as particle filtering [Sandhu et al., 2010], genetic algorithms [Silva et al.,
2005] and feature-based alignment [Rusu et al., 2009]. A recent example is Super
4PCS [Mellado et al., 2014], a random sampling method that uses four-point congru-
ent sets [Aiger et al., 2008] and exploits a clever data structure to achieve linear-time
performance. In contrast, globally-optimal algorithms [Li and Hartley, 2007; Yang
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Figure 4.4: Two partially-overlapping point-sets from the dragon-stand dataset of the
Stanford Computer Graphics Laboratory. The point-sets were captured from two different
locations and do not overlap completely, making them challenging to register accurately.

et al., 2016] are guaranteed to find the optimal transformation for a particular ob-
jective function. While global methods are less susceptible to local optima, they are
typically much slower than local optimisation approaches, and may be less robust to
outliers or make restrictive assumptions about the point-sets or transformations.

4.3 Support Vector–Parametrised Gaussian Mixtures

The central idea of this work is that the robustness of 2D–2D and 3D–3D registration
is dependent on the sensor data representation used. Robustness to structured outliers
is of primary concern, because sensor data rarely overlaps completely, such as when
an object or scene is sampled from different sensor locations, shown in Figure 4.4.
Robustness to sampling artefacts is also very important, because variable sampling
densities, noise and occlusions can greatly change the geometry of an object or scene,
limiting its invariance to viewpoint. Another consideration is the class of optimisation
problem a particular representation admits. Framing registration as a continuous op-
timisation problem involving continuous density functions can make the registration
problem more tractable than the equivalent discrete problem [Jian and Vemuri, 2011].

Consequently, an adaptive, sparse and discriminative sensor data representation
is developed, named the Support Vector–parametrised Gaussian Mixture (SVGM). In
order to construct an SVGM from a point-set, a discriminative Support Vector Machine
(SVM) is trained and then transformed to a Gaussian Mixture Model (GMM). Since
an SVM selects a sparse subset of the data points that best classifies the dataset, the
representation is compact, adaptive to local surface complexity, and robust to sampling
artefacts [Van Nguyen and Porikli, 2013], attributes that persist through to the GMM.
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4.3.1 One-Class Support Vector Machine

The output function of an SVM can be used to approximate the surface described by
noisy and incomplete point-set data, providing a continuous implicit surface represen-
tation [Steinke et al., 2005]. Van Nguyen and Porikli [2013] demonstrated that this
representation was robust to noise, fragmentation, missing data and other artefacts
for 2D shapes, with the same behaviour expected in 3D. An SVM classifies data by
constructing a hyperplane that separates data of two different classes, maximising the
margin between the classes while allowing for some mislabelling [Cortes and Vapnik,
1995]. Since point-set data contains only positive samples, a one-class SVM [Schölkopf
et al., 2001] can be used to find the hyperplane that maximally separates the data
points from the origin or viewpoint in feature space. The training data is mapped to a
higher-dimensional feature space, where it may be linearly separable from the origin,
with a non-linear kernel function.

The output function f(p) of a one-class SVM is given by

f(p) =
N∑
i=1

αiK(p,pi)− ρ (4.1)

where pi are the point vectors, αi are the weights, ρ is the bias, N is the number of
training samples and K is the kernel function

K(p,pi) = Φ(p) · Φ(pi) (4.2)

that evaluates the inner product of data vectors mapped to a feature space by Φ. In
order to map the SVM to a GMM, a Gaussian Radial Basis Function (RBF) kernel
[Aizerman et al., 1964] was selected, given by

K(p,pi) = exp
(
−γ‖p− pi‖22

)
(4.3)

where γ is the Gaussian kernel width. The learning problem is formulated as the
quadratic program [Schölkopf et al., 2001]

min
w, ξ, ρ

1
2wᵀw− ρ+ 1

νN

N∑
i=1

ξi

subject to wᵀΦ(pi) > ρ− ξi
ξi > 0

for i = 1, . . . , N

(4.4)
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where ξi are the slack variables and w is given by

w =
N∑
i=1

αiΦ(pi). (4.5)

This optimisation problem attempts to correctly classify as much of the data as possible,
while keeping the model simple and the margin maximal. The formulation has a
parameter ν ∈ (0, 1] that controls the trade-off between training error and model
complexity. It is a lower bound on the fraction of support vectors and an upper bound
on the misclassification rate [Schölkopf et al., 2001]. The data points with non-zero
weights αi are the support vectors, with index set SV = {i ∈ [1, N ] |αi > 0}.

The kernel width γ can be estimated automatically for each point-set by noting
that it is inversely proportional to the square of the scale σ. For an N ×D point-set
in matrix form P with mean p̄, the estimated scale σ̂ is proportional to the 2Dth root
of the generalised variance [Wilks, 1932], that is

σ̂ ∝
∣∣∣∣ 1
N − 1(P− 1p̄ᵀ)ᵀ(P− 1p̄ᵀ)

∣∣∣∣ 1
2D

. (4.6)

If a training set is available, better performance can be achieved by finding γ using
cross-validation on the registration accuracy, searching in the neighbourhood of 1/2σ̂2.
Note that classifier accuracy cannot be used for cross-validation since one-class SVM
can trivially classify all points correctly.

The computational complexity of this data representation is polynomial in the
number of points N . In this work, the LIBSVM [Chang and Lin, 2011] implementation
of one-class SVM is used, which applies a modified version [Fan et al., 2005] of the
sequential minimal optimisation algorithm [Platt, 1999] with a time complexity of
O(N) per iteration. The number of iterations was empirically found to be sublinear
with respect to N , for the datasets used in this work. Approximate variants can also
be used for further reductions in learning time [Joachims, 1999; Tsang et al., 2005].

An example one-class SVM output function with 3401 support vectors, trained
using the Stanford Dragon model, is visualised in Figure 4.5. The output function was
sampled at every point in a dense 3D grid and inlier points for which f(p) > 0 were
plotted, shaded according to their output value.

4.3.2 Gaussian Mixture Model Transformation

In order to make use of the trained SVM for point-set registration, it must first be
approximated as a GMM. The transformation identified by Deselaers et al. [2010] is
used to represent the SVM in the framework of a GMM, without altering the decision
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Figure 4.5: One-class SVM inliers, coloured by output function value. A one-class SVM was
trained using the Dragon model from the Stanford Computer Graphics Laboratory and the
output function was sampled at every point in a dense 3D grid. Points for which the output
function was positive (inliers) were plotted, shaded by value (darker colours are more probable).

boundary. A similar principle was used by Schölkopf et al. [1997] to train a Gaussian
RBF network with the SVM algorithm.

A GMM converted from an SVM will necessarily optimise classification performance
instead of data representation, since SVMs are discriminative models, unlike standard
generative methods used to construct GMMs. This allows it to discard redundant data
and reduces its susceptibility to sampling artefacts such as varying point densities,
which are prevalent in real datasets.

The decision function of an SVM with a Gaussian RBF kernel can be written as

r(p) = arg max
k∈{−1,1}

{∑
i∈SV

kαi exp
(
−γ‖pi − p‖22

)
− kρ

}
(4.7)

where k is the class, positive for inliers and negative otherwise. The GMM decision
function can be written as

r(p) = arg max
k∈{−1,1}

{
nk∑
i=1

p(k)p(i|k) 1(
2πσ2

k

)D/2
exp

(
−‖p− µki‖22

2σ2
k

)}
(4.8)

where nk is the number of clusters for class k, p(k) is the prior probability of class k,
p(i|k) is the cluster weight of the ith cluster of class k, D is the dataset dimension, and
µki and σ2

k are the mean and variance of the ith Gaussian component of class k.
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Noting the similarity of (4.7) and (4.8), the following mapping can be applied:

µki =

pi if k = +1

0 else
(4.9)

σ2
k =

1/2γ if k = +1

∞ else
(4.10)

φi = p(k)p(i|k) =

αi(2πσ
2
k)

D/2 if k = +1

ρ(2πσ2
k)

D/2 else
(4.11)

for i ∈ SV, where φi is the mixture weight, that is, the prior probability of the ith

component. The bias term ρ is approximated by an additional density given to the
negative class with arbitrary mean, high variance and a cluster weight proportional to
ρ. This term is omitted from the registration framework because it does not affect the
optimisation. The resulting GMM, named a Support Vector–parametrised Gaussian
Mixture (SVGM), has the parameter set θ =

{
µi, σ

2, φi
}
for all i ∈ SV.

The use of GMMs as sensor data representations was discussed in detail in Sec-
tion 3.3.5. While in this work the GMMs are generated from an SVM, there are many
other ways to construct a GMM from point-set data. Kernel Density Estimation (KDE)
with identically-weighted Gaussian densities has frequently been used for this purpose,
including fixed-bandwidth KDE with isotropic covariances [Jian and Vemuri, 2011; De-
try et al., 2009], variable-bandwidth KDE with non-identical covariances [Comaniciu,
2003] and non-isotropic covariance KDE [Xiong et al., 2013a]. While using full covari-
ances may increase the representational power of the model, it can be inefficient and is
not necessarily advantageous [Wand and Jones, 1995, p. 107]. The primary disadvan-
tage of these methods is that the number of Gaussian components is typically equal
to the point-set size, which can be very large for real-world datasets. In contrast, this
work intelligently selects a sparse subset of the data points to locate the Gaussian den-
sities and weights them non-identically. Moreover, an SVM is a discriminative model,
which is more robust than generative models to sampling artefacts such as occlusions,
missing data and variable sampling densities, as demonstrated in Figure 4.6.

Expectation Maximisation (EM) [Dempster et al., 1977] can also be used to con-
struct a GMM, with fewer components than the KDE method. EM finds the maximum
likelihood estimates of the GMM parameters. Unlike an SVM, the number of densities
is generally specified a priori for the EM algorithm. Strategies to handle this require-
ment, such as overestimating the number of components, can be slow and sensitive to
initialisation [Scott and Szewczyk, 2001, p. 326].
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(a) Point-Set A (b) KDE-GMM A (c) SVGM A

(d) Point-Set B (e) KDE-GMM B (f) SVGM B

Figure 4.6: The effect of significant occlusion on two point-set representations, using the
same parameters for both. The SVGM representation is, qualitatively, almost identical when
occluded (f) and unoccluded (c), whereas the fixed-bandwidth KDE representation is much less
robust to occlusion (e).

4.4 Support Vector Registration

Once the point-sets are in mixture model form, the registration problem can be posed
as the problem of minimising a discrepancy measure between mixtures, as shown in
Figure 4.7. If the point-sets are well-represented by the Gaussian mixtures, the trans-
formation that aligns the GMMs will correspond to the transformation that aligns the
point-sets. As discussed in Section 3.4.6, the L2 distance between Gaussian mixtures
[Jian and Vemuri, 2011] has favourable properties for the geometric alignment prob-
lem. It can be expressed in closed-form and efficiently implemented since it avoids
numerical approximations of the integral. More critically, it has an estimator that is
inherently robust to outliers [Scott, 2001], unlike the maximum likelihood estimator
that minimises the Kullback-Leibler divergence. See Section 3.4.6 for a detailed dis-
cussion on the robustness of the L2E estimator that minimises the L2 distance between
probability densities.
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Figure 4.7: Two misaligned 1D Gaussian mixtures (left), generated from partially-overlapping
point-sets, are aligned by minimising the distance between mixtures (right).

The objective function for the L2 distance between Gaussian mixtures (3.75) was
derived in Section 3.4.6 for the general case. In this chapter, the Gaussian covariances
are constrained to be isotropic and identical, due to the use of an SVM in the learning
procedure. This is a standard choice for many GMA approaches that balances the
expressiveness of the mixture model against evaluation speed of the objective func-
tion. Let θk =

{
µki, σ

2
k, φki

}
i∈SVk

be the parameter set of an nk-component SVGM
with index set SVk, means µki, variances σ2

k, and mixture weights φki > 0, where∑
i∈SVk

φki = 1. Then the L2 distance between Gaussian mixtures, up to a constant
factor (2π(σ2

1 + σ2
2))−n/2 and addition by a constant, for a rotation R ∈ SO(n) and a

translation t ∈ Rn (n = 2 or 3) is given by the objective function

f(R, t) = −
n1∑
i=1

n2∑
j=1

φ1iφ2j exp

−
∥∥∥Rµ1i + t− µ2j

∥∥∥2

2
2
(
σ2

1 + σ2
2
)

. (4.12)

This can be expressed in the form of a discrete Gauss transform with a computational
complexity of O(n1n2) or a fast Gauss transform [Greengard and Strain, 1991] with a
complexity of O(n1 + n2).

The gradient vector is derived in the same way as in Jian and Vemuri [2011]. Let
M0 =

[
µ1,1, . . . ,µ1,n1

]ᵀ
be the n1 × n matrix of the mean vectors from the GMM

parametrised by θ1 and M = T (M0,λ) be the matrix after applying a transformation
parametrised by λ. Using the chain rule, the gradient is ∂f

∂λ = ∂f
∂M

∂M
∂λ . Let G = ∂f

∂M
be an n1 × n matrix, which can be found while evaluating the objective function by

Gi = − 1
σ2

1 + σ2
2

m∑
j=1

(
Rµ1i + t− µ2j

)
fij(R, t) (4.13)

where Gi is the ith row of G and fij is a summand of f . For a rigid motion, M =
M0Rᵀ + 1n1tᵀ where 1d is a d-dimensional column vector of ones. The gradients with
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respect to each motion parameter are given by

∂f

∂t = Gᵀ1n1 (4.14)
∂f

∂ri
= 1ᵀ

n

((
GᵀM0

) ◦ ∂R
∂ri

)
1n (4.15)

where ◦ is the element-wise Hadamard product and ri are the elements parametrising
R: a rotation angle α for 2D rotations and a unit quaternion for 3D rotations.

The objective function is smooth, differentiable and convex in the neighbourhood
of the optimal motion parameters and therefore gradient-based numerical optimisation
methods can be used, such as nonlinear conjugate gradient or quasi-Newton methods.
For this implementation, an interior-reflective Newton method was selected [Coleman
and Li, 1996], being time and memory efficient and scaling well with the number of
Gaussian components. For the quaternion parametrisation of 3D rotations, the unit-
norm constraint was enforced by projecting the quaternion back to the space of valid
rotations after each update by normalisation. An alternate formulation using Lagrange
multipliers was also implemented, however it converged slightly less frequently than
the normalisation method. See Section 3.5 for a more detailed discussion about this
constraint and the alternatives that can be used to enforce it.

Although the objective function is locally convex, it is rarely convex over the entire
transformation domain. As a result, this approach is susceptible to local optima, as
with all local optimisation methods. This is particularly problematic for alignment
problems with large motions and 3D data with symmetries or near-symmetries. There
are many heuristic approaches that can alleviate this problem. Since a scale param-
eter is an input to the algorithm, a multi-resolution approach can be adopted. Like
simulated annealing, the scale parameter γ is increased at each iteration, with the algo-
rithm initialised by the transformation found at the previous scale. This coarse-to-fine
strategy is appropriate because the objective function is smoother for smaller values
of γ and approaches the ICP objective function as γ increases. Another strategy is to
use random-start local search, initialising the algorithm at randomly sampled points in
the transformation domain. However, this can be deployed for any local optimisation
algorithm and so was not used to ensure a fair comparison.

The Support Vector Registration (SVR) algorithm is outlined in Algorithm 4.1.
The initial rotation and translation are typically the identity rotation and translation
unless prior information is available from odometry, GPS or some other source. The
training parameters ν and γ can be estimated, using (4.6) for γ, or by cross-validation
on a training set. For most applications, the γ value is identical for both point-sets,
although this is not mandatory.
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Algorithm 4.1 Support Vector Registration (SVR): a robust algorithm for point-set
registration using support vector–parametrised Gaussian mixtures.
Input: two point-sets Pk = {pki}nk

i=1 with k = 1, 2; initial rotation R0; initial transla-
tion t0; initial scale parameters γ1, γ2; one-class SVM parameter ν

Output: rotation R and translation t such that P1 transformed by (R, t) is well-
aligned with P2

1: Initialise rotation and translation: R ← R0, t← t0
2: repeat
3: Train an SVM from each point-set:

θSVM
k = {pki, γk, αki}i∈SVk

← trainSVM(Pk, γk, ν)
4: Map the SVMs to GMMs using (4.9), (4.10) and (4.11):

θk =
{
µki, σ

2
k, φki

}
i∈SVk

← mapToGMM
(
θSVM
k

)
5: Optimise the objective function f(R, t) (4.12) using the gradients (4.14), (4.15),

and update the transformation parameters: (R, t)← arg minR,t f(R, t)
6: Anneal the scale parameter: γ ← γδ
7: until change in function value or transformation parameters is below a threshold

4.5 Merging Gaussian Mixtures

For the Support Vector–parametrised Gaussian Mixture (SVGM) representation to be
useful for applications where each set of sensor data may contain unique information,
such as reconstruction and mapping, an efficient method of merging two aligned mix-
tures is desirable. A naïve approach is to use a weighted sum of the Gaussian mixtures
[Deselaers et al., 2010]. However, this generates a mixture with an unnecessarily high
number of components with substantial redundancy. Importantly, the probability of
regions not observed in both point-sets would decrease, meaning that regions that are
often occluded would disappear from the model as more mixtures were merged. While
the time-consuming process of sampling from the combined mixture and re-estimating
it using expectation maximisation would eliminate redundancy, it would not alleviate
the missing data problem. The same disadvantage afflicts faster sample-free variational-
Bayes approaches [Bruneau et al., 2010]. Finally, re-estimating an SVGM from samples
of the combined mixture or point-sets would circumvent these problems, since the dis-
criminative framework of the SVM is insensitive to higher-density overlapping regions,
but this is not time efficient.

Algorithm 4.2 outlines GMMerge, an efficient algorithm for parsimoniously ap-
proximating the merged mixture without weighting the intersection regions dispropor-
tionately. Each density of the mixture with parameter set θ1 is re-weighted using a
sparsity-inducing piecewise linear function. The parameter t ∈ [0,∞) controls how
many densities are added. For t = 0, the merged mixture with parameter set θ12

contains only θ2. As t → ∞, θ12 additionally contains every non-redundant density



116 Robust nD–nD Alignment

Algorithm 4.2 GMMerge: an algorithm for parsimonious Gaussian mixture merging
Input: two aligned mixture models, with parameter sets θk =

{
µki, σ

2
k, φki

}nk

i=1, mean
vectors µki, variances σ2

k and mixture weights φki, and a merging parameter t
Output: merged model θ12

1: Initialise merged model: θ12 ← θ2
2: for i = 1, . . . , n1 do
3: For the ith density of θ1, calculate: ∆ = p(µ1i|θ1i)− p(µ1i|θ2)
4: Update weight using a sparsity-inducing function: φ1i ← φ1i max(0,min(1, t∆))
5: if φ1i > 0 then
6: Add to merged mixture: θ12 ← θ1i · θ12

7: Renormalise the merged mixture θ12

(a) GMM θ1 (b) GMM θ2 (c) Naïve merge (d) GMMerge (e) Ground truth

Figure 4.8: Merging aligned Gaussian mixtures (a) and (b) with a naïve weighted sum (c)
and GMMerge (d). The mixture produced by GMMerge is almost identical to the ground truth
(e), while the naïve approach over-emphasises overlapping regions.

from θ1. Figure 4.8 shows the SVGM representations of two 2D point-sets, the naïvely
merged mixture and the GMMerge mixture.

4.6 Results

The Support Vector Registration (SVR) algorithm was tested using many different
point-sets, including synthetic and real datasets in 2D and 3D, at a range of motion
scales and outlier, noise and occlusion fractions. In all experiments, the initial rotation
and translation parameters (R0, t0) were the identity rotation and translation, ν was
0.01 and γ was selected by cross-validation, except where otherwise noted. For this,
a small subset (< 5%) of the dataset was withheld and the value of γ that achieved
the best registration accuracy on this training set was chosen. Parameter values were
tested in the neighbourhood of the estimate γ̂ = 1/2σ̂2 (4.6). Only a small subset of
the dataset was required because the registration accuracy is not very sensitive to γ,
as will be demonstrated. For all benchmark methods, parameters were chosen using a
grid search optimising registration accuracy.
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(a) road with rotation (b) contour with outliers and rotation

(c) fish with noise and rotation (d) glyph with occlusion and rotation

Figure 4.9: Datasets for 2D registration. A rotation and a range of perturbations are applied
to each point-set, including random outliers, Gaussian noise, and occlusion.

4.6.1 2D Registration Experiments

To test the efficacy of SVR for 2D registration, the four point-sets in Figure 4.9 were
used: road [Tsin and Kanade, 2004], contour, fish and glyph [Chui and Rangara-
jan, 2003]. The point-sets are available at the websites specified in the bibliography.
Three benchmark algorithms were chosen: Gaussian Mixture Model Registration (ab-
breviated to GMR) [Jian and Vemuri, 2011], Coherent Point Drift (CPD) [Myronenko
and Song, 2010] and Iterative Closest Point (ICP) [Besl and McKay, 1992]. Anneal-
ing was applied for both SVR (δ = 10) and GMR. Note that the advantages of SVR
manifest themselves more clearly on denser point-sets than the sparse sets tested here.

The range of motions that attained a correct registration result was tested by
rotating the model point-set by α ∈ [−3.14, 3.14] radians with a step size of 0.01.
Table 4.1 reports the range of contiguous initial rotations for which the algorithm
converged, chosen as a rotation error 6 1◦. The results show that SVR has a wider
basin of convergence than the other methods, even for sparse point-sets. Better results
for GMR were reported in Jian and Vemuri [2011], but were not able to be reproduced
in these experiments. This may be attributable to an annealing process that was not
specified in the paper.

To test the algorithm’s robustness to outliers, additional points were drawn ran-
domly from the uniform distribution and then were concatenated with the model and
scene point-sets separately. To avoid bias, the outliers were sampled from the minimum
covering circle of the point-set. The motion was fixed to a rotation of 1 radian (57◦)
and the experiment was repeated 50 times with different outliers each time. The mean
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Table 4.1: Rotational convergence range (in radians) for 2D registration. The tested algorithm
converged to the correct alignment (rotation error 6 1◦) when initialised to any rotation within
these ranges. The results indicate that SVR has the widest basin of convergence.
Point-Set SVR GMR CPD ICP
road -3.1–3.1 -3.0–3.0 -1.6–1.6 -0.8–0.8
contour -1.6–1.6 -1.5–1.5 -1.5–1.5 -0.1–0.1
fish -1.6–1.6 -1.5–1.5 -1.2–1.3 -0.4–0.5
glyph -1.6–1.6 -1.6–1.6 -1.6–1.5 -0.4–0.4
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Figure 4.10: Effect of outliers, noise and occlusions for 2D registration. The mean rotation
error (in radians) of 50 repetitions is reported for each point-set pair. The results show that
SVR is relatively robust to a large range of perturbations commonly found in real data.

rotation error for a range of outlier fractions is shown in Figure 4.10(a) and indicates
that the proposed method is more robust to outliers than the others for large outlier
fractions. At this rotation, ICP performs poorly even without outliers.

To test for robustness to noise, a noise model was applied to the model point-set by
adding Gaussian noise to each point sampled from the distribution N (0, (λσ̂)2), where
λ is the noise fraction and σ̂ is the estimated generalised standard deviation across the
entire point-set (4.6). A fixed rotation of 1 radian was used and the experiment was
repeated 50 times, resampling each time. The average rotation error for a range of
noise fractions is shown in Figure 4.10(b) and indicates that SVR is comparable to the
other GMA methods.

To test for robustness to occlusions, a random seed point was selected and a fraction
of the second point-set was removed using a k-nearest neighbour algorithm. A fixed
rotation of 1 radian was used and the experiment was repeated 50 times with different
seed points. The mean rotation error for a range of occlusion fractions is shown in
Figure 4.10(c) and indicates that the algorithm is more robust to occlusion than the
other algorithms.
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Table 4.2: Number of correctly aligned point-set pairs (out of 30) for a range of relative poses.
Mean computation time in seconds is also reported.

Local Global
Pose SVR GMR CPD ICP GOI S4P
±24◦ 30 29 26 28 30 29
±48◦ 29 20 18 19 27 24
±72◦ 16 13 14 13 18 17
±96◦ 4 2 3 1 10 13

Runtime 0.2 19.2 5.7 0.04 1407 399

4.6.2 3D Registration Experiments

The advantages of SVR are particularly apparent with dense 3D point-sets. For eval-
uation, the dragon-stand [Curless and Levoy, 2014], aass-loop [Magnusson, 2011]
and hannover2 [Wulf, 2011] datasets were used, available at the websites specified
in the bibliography. Seven benchmark algorithms were evaluated: GMMReg (abbrevi-
ated to GMR) [Jian and Vemuri, 2011], CPD [Myronenko and Song, 2010], ICP [Besl
and McKay, 1992], NDT Point-to-Distribution (NDP) [Magnusson et al., 2007] and
NDT Distribution-to-Distribution (NDD) [Stoyanov et al., 2012], Globally-Optimal
ICP (GOI) [Yang et al., 2013b] and Super 4PCS (S4P) [Mellado et al., 2014]. An-
nealing was used only where indicated.

To evaluate the performance of the algorithm with respect to motion scale, the
experiment in Jian and Vemuri [2011] using the dragon-stand dataset was replicated.
This dataset contains 15 self-occluding scans of the dragon model acquired by rotating
the model in 24◦ increments on a turntable. All 30 point-set pairs with a relative
rotation of ±24◦ were registered and this was repeated for ±48◦, ±72◦ and ±96◦. The
criterion for convergence was q̂ ·q > 0.99, as specified in Jian and Vemuri [2011], where
q̂ and q are the estimated and ground truth quaternions respectively. In addition
to testing the performance with respect to a range of rotations, this experiment also
evaluates the algorithm’s robustness to increasing levels of occlusion, correlated with
the rotation angle. The number of correctly converged registrations is reported in
Table 4.2, showing that SVR has a significantly larger basin of convergence than the
other local methods and is competitive with the slower global methods. While γ was
selected by cross-validation, using the estimate σ̂ yielded a very similar result. A
representative sensitivity analysis for γ and ν is shown in Figure 4.11 for the dragon-
stand dataset. It indicates that rotation error is quite insensitive to perturbations in
γ and is very insensitive to ν, justifying the choice of fixing this parameter.

To evaluate the robustness of SVR to occlusion, the same procedure was followed as
for 2D using the dragon-stand dataset. The mean rotation error (in radians) and the
fraction of correctly converged point-set pairs with respect to the fraction of occluded
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Figure 4.11: Sensitivity analysis for γ and ν. The median rotation error (in radians) for all
dragon-stand point-sets with pose differences of ±24◦ are plotted with respect to multiples
of γ̂ = 1/2σ̂2.
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Figure 4.12: Mean rotation error (in radians) and convergence rate of all dragon-stand
point-sets with ±24◦ and ±48◦ pose differences, with respect to the fraction of occluded points.

points is shown in Figure 4.12, for relative poses of ±24◦ and ±48◦. The results show
that SVR is significantly more robust to occlusion than the other methods.

The final experiments evaluated the performance of SVR on two large real-world 3D
datasets, shown in Figure 4.13: aass-loop (60 indoor point-sets with ∼13 500 points
on average) and hannover2 (923 outdoor point-sets with ∼10 000 points on average),
after downsampling using a 0.1 m grid. Both were captured using a laser scanner and
ground truth was provided. These are challenging datasets because sequential point-
sets overlap incompletely and occluded regions are frequently present. The results for
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(a) aass-loop (b) hannover2

Figure 4.13: Aerial views of two large-scale 3D datasets.

Table 4.3: Registration results for aass-loop. While mean translation error (in metres) and
rotation error (in radians) are commonly reported, the success rate (translation error 6 0.5 m
and rotation error6 0.2 radians) is a more useful metric for comparison. The mean computation
time (in seconds) is also reported. SVR+ is SVR with annealing.
Metric SVR SVR+ GMR ICP NDP NDD S4P
Translation Error 0.95 0.67 1.61 0.99 1.10 0.85 0.71
Rotation Error 0.08 0.06 0.12 0.04 0.02 0.06 0.32
Success Rate 81.4 86.4 18.6 55.2 50.0 63.8 78.0
Runtime 3.43 29.7 599 10.8 9.12 1.02 60.7

Table 4.4: Registration results for hannover2. The mean translation error (in metres),
rotation error (in radians), success rate (%) and mean runtime (in seconds) are reported.
SVR+ uses annealing.
Metric SVR SVR+ GMR ICP NDP NDD S4P
Translation Error 0.10 0.09 1.32 0.43 0.79 0.40 0.40
Rotation Error 0.01 0.01 0.05 0.05 0.05 0.05 0.03
Success Rate 99.8 99.8 8.88 74.4 54.2 76.4 75.0
Runtime 14.0 32.6 179 5.68 4.03 0.51 39.7

registering adjacent point-sets are shown in Table 4.3 for aass-loop and Table 4.4 for
hannover2. The ICP and annealed NDT results are reported directly from Stoyanov
et al. [2012] and their criteria for a successful registration is used: translation error
6 0.5m and rotation error 6 0.2 radians. SVR outperforms the other methods by a
significant margin, even more so when annealing (δ = 2) is applied (SVR+).

The mean computation speeds of the experiments, regardless of convergence, are
reported in Tables 4.2, 4.3 and 4.4. All experiments were run on a PC with a 3.4 GHz
Quad Core CPU and 8 GB of RAM. The SVR code is written in unoptimised MATLAB,
except for a cost function in C++, and uses the LIBSVM [Chang and Lin, 2011] library.
The benchmarking code was provided by the respective authors, except for ICP, for
which a standard MATLAB implementation with kd-tree nearest-neighbour queries
was used. For the dragon-stand runtime comparison, all point-sets were randomly
downsampled to 2 000 points, because GMR, CPD, GOI and S4P were prohibitively
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slow for larger point-sets. In contrast, the entire point-sets were used for the aass-
loop and hannover2 runtime comparisons, since the ICP, NDP and NDD methods
work better with more points. Hence, these experiments give a good indication of how
the algorithms’ runtimes scale with the number of points.

4.7 Discussion

The experimental evaluation shows that SVR has a larger region of convergence than
the other local optimisation methods and is more robust to sampling artefacts such
as occlusions and variable point densities. This is an expected consequence of the
SVGM representation, since it is demonstrably robust to these complicating factors, as
depicted in Figures 4.3 and 4.6. In addition, the computation time results show that
the algorithm scales well with point-set size, unlike GMR and CPD, largely due to the
data compression property of the one-class SVM. There is a trade-off, controlled by
the parameter γ, between registration accuracy and computation time.

It is important to emphasise the role of the discriminative model in improving ro-
bustness to sampling artefacts. A discriminative model is better able to represent the
underlying surfaces of a scene than a generative model, because it optimises classifica-
tion, deciding whether the sampled points are well-classified by a surface. This implicit
surface regularises the sampled points while adapting to local surface complexity and
does not depend strongly on the point density, since a dense cluster of points can be
classified equally well as a sparse set of points in the same location. As a result, the
probability density is not biased by regions of high point density and can in-fill small
occluded regions. In contrast, generative models optimise representation and there-
fore model the scene as it was sampled by the sensor. As a result, sampling artefacts
such as occlusions and variable point densities are also modelled. This reduces the
model’s invariance to viewpoint significantly. Moreover, the model is less effective at
in-filling occluded regions, since it assigns a lower probability density to the sparser
areas adjacent to an occlusion.

This framework for registration and merging can be extended to accurate recon-
struction applications. To do so, the one-class SVM may be replaced with a two-class
SVM in order to better model the fine details of a scene. As demonstrated by Steinke
et al. [2005], an SVM regression algorithm may be used to approximate the signed
distance function in the vicinity of the surface. To generate training samples from
the negative class (free space), surface points were displaced along their approximated
normal vectors by a fixed distance d and then those points that were closer than 0.9d to
their nearest surface point were discarded [Carr et al., 2001]. The SVGMs constructed
using this approach may be fused using GMMerge. However, capturing fine detail is
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unnecessary, counter-productive and inefficient for the purpose of registration.
While SVR is a local algorithm, it can still outperform global algorithms on a

number of measures, particularly speed, for certain tasks. In Section 4.6.2, SVR was
compared to the guaranteed-optimal method Globally-Optimal ICP (GOI) [Yang et al.,
2013b] and the faster but non-optimal method Super 4PCS (S4P) [Mellado et al.,
2014]. The motion scale results of GOI were comparable to the SVR results, while
the average runtime was four orders of magnitude longer. Note that a globally-optimal
alignment with respect to the ICP error function is not necessarily the correct alignment
for point-sets with missing data or partial overlap. S4P had a more favourable runtime–
accuracy trade-off but was nonetheless outperformed by SVR.

A limitation of the SVR algorithm is its time complexity of O(n1n2) for nk being
the number of Gaussian components in the kth mixture. Therefore the runtime scales
quadratically with the number of components. As a result, scenes cannot be modelled to
a high resolution without increasing the runtime significantly, increasing the ambiguity
of the alignment problem. However, the number of Gaussian components scales with
the complexity and size of the scene, not the number of points, helping to mitigate this
problem for point-sets with high point-density.

Several strategies can be introduced to reduce the runtime of the algorithm. Firstly,
the learning time required to train the one-class SVM can be reduced by using approxi-
mate variants of the core algorithm [Joachims, 1999; Tsang et al., 2005]. Secondly, the
discrete Gauss transform, which evaluates the sum of Gaussian kernels and underpins
the algorithm, has a time complexity of O(n1n2) and dominates the complexity be-
haviour of the algorithm as a whole. The time complexity can be reduced to O(n1 +n2)
by using an approximation such as the (improved) fast Gauss transform [Greengard
and Strain, 1991; Yang et al., 2003]. Alternatively, a data structure can be designed by
analogy to the distance transform, storing the set of K least-attenuated Gaussians at
each point in R3 and reducing the time complexity to O(Kn1). In this formulation, the
second mixture could have an arbitrary number of components without affecting the
runtime. Finally, the number of iterations could be reduced by applying more sophis-
ticated optimisation techniques that utilise analytically-expressed Hessian matrices.

4.8 Summary

This chapter developed a theoretical framework for robust 2D–2D and 3D–3D reg-
istration and merging by solving the Gaussian mixture alignment problem under the
L2 distance for a novel sensor data representation. The Support Vector–parametrised
Gaussian Mixture (SVGM) data representation was constructed from a discriminative
SVM model and is therefore robust to sampling artefacts, including occlusions and
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variable point densities, and is parametrised by a sparse subset of the data points,
compressing the data and adapting to local surface complexity. Robustness without
over-parametrisation are crucial attributes for efficient and robust registration. The
central algorithm, Support Vector Registration (SVR), outperformed state-of-the-art
approaches in 2D and 3D rigid registration, exhibiting a larger basin of convergence
on challenging datasets, including two large-scale field datasets. In particular, the al-
gorithm was shown to be computationally efficient and robust to structured outliers
induced by partial-overlap and occlusion. The GMMerge algorithm complements the
registration algorithm by providing a parsimonious and equitable method for merging
aligned mixtures, which can subsequently be used as an input to SVR.

A key finding from this work was that a useful local optimisation algorithm for
sensor data alignment needs to be very robust to structured outliers and have a wide
basin of convergence. A second key finding was that these attributes are strongly de-
pendent on the sensor data representation used, not just the robustness of the objective
function. This is a consequence of the many sampling artefacts inherent in sensor data
that are not viewpoint invariant. A data representation that models the sampling arte-
facts instead of the underlying surfaces stymies the alignment of data captured from
different viewpoints.

There are several areas that warrant further investigation. Firstly, there is signif-
icant scope for optimising the algorithm using approximations such as the improved
fast Gauss Transform [Yang et al., 2003] or faster optimisation algorithms that require
an analytic Hessian. Secondly, non-rigid registration is a natural extension to this work
and should benefit from the robustness of SVR to missing data. It may also be useful
to train the SVM with full data-driven covariance matrices [Abe, 2005] and use the
full covariances for registration, as in Stoyanov et al. [2012]. Finally, extending the al-
gorithm to global optimality using branch-and-bound would remove the susceptibility
of SVR to local optima.

As just prefigured, the following chapter will extend the investigation of robust
data representations and objective functions to the globally-optimal 3D–3D geometric
alignment problem. There will be some elements in common with this chapter, includ-
ing the data representation and L2 objective function, however much of the material
is characteristic to the problem. This predominantly stems from the requirement that
tight bounds on the objective function be derived so that a branch-and-bound frame-
work can be applied. In addition, a sensible branching strategy and implementation of
the bounding functions is needed, so that the algorithm has a feasible runtime.



Chapter 5

Robust and Globally-Optimal
3D–3D Alignment

The focus of this chapter is the geometric alignment of two sets of 3D positional sensor
data, such as laser scans, where the data may be corrupted by noise and random or
structured outliers. This can be used to solve the problem of estimating the six degrees-
of-freedom pose of a 3D sensor with respect to a previously-acquired 3D point-set or the
relative pose of two 3D sensors. Algorithms for solving the 3D–3D registration problem
have matured over time, progressing from non-robust local optimisation approaches
that are susceptible to local minima and outliers, such as the prototypical Iterative
Closest Point (ICP) algorithm, to robust local optimisation approaches that widen the
basin of convergence and use objective functions that are robust to outliers, such as
Gaussian Mixture Alignment (GMA), to a globally-optimal approach that inherits the
non-robust ICP objective function, Globally-Optimal ICP (Go-ICP). However, none
of these approaches are robust to outliers and immune to local minima. Since typical
instances of the 3D–3D registration problem have a large proportion of outliers and
many local minima, a useful solver needs to be both robust and global. Globally-
optimal approaches have the additional advantage of reliability, providing a guarantee
that the solution is a global optimum.

In this chapter, a novel globally-optimal approach is proposed that inherits the
robust GMA objective function. The algorithm, named Globally-Optimal Gaussian
Mixture Alignment (GOGMA), is the first to find the optimal solution to the 3D rigid
Gaussian mixture alignment problem. It improves on the family of GMA approaches
by using global optimisation and so not requiring a good pose initialisation. It im-
proves on Go-ICP by using a robust objective function and so being less sensitive to
outliers. The approach employs branch-and-bound to search the 6D space of 3D rigid
motions SE(3), guaranteeing global optimality without requiring a pose prior. The
geometry of SE(3) is used to find novel upper and lower bounds for the objective
function and local optimisation is integrated into the scheme to accelerate convergence

125
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without voiding the optimality guarantee. Evaluation on a range of datasets empiri-
cally supports the optimality proof and shows that the method performs much more
robustly on challenging datasets than existing approaches.

5.1 Introduction

Estimating the 6 degrees-of-freedom alignment of two sets of 3D positional sensor data
is the core task for solving the 3D–3D rigid registration problem. A related task is
Gaussian Mixture Alignment (GMA), which is the problem of finding the transforma-
tion that best aligns one Gaussian mixture with another. It has a natural application
to point-set registration, which endeavours to solve the same problem as GMA for
discrete point-sets in Rn. Indeed, the Iterative Closest Point (ICP) algorithm [Besl
and McKay, 1992; Zhang, 1994] and several other local registration algorithms [Chui
and Rangarajan, 2000a,b; Tsin and Kanade, 2004; Myronenko and Song, 2010] can
be interpreted as special cases of GMA [Jian and Vemuri, 2011].

Applications of 3D–3D rigid registration include merging multiple partial scans into
a complete model [Blais and Levine, 1995; Huber and Hebert, 2003]; using registration
results as fitness scores for object recognition [Johnson and Hebert, 1999; Belongie
et al., 2002]; registering a view into a global coordinate system for sensor localisation
[Nüchter et al., 2007; Pomerleau et al., 2013]; fusing cross-modality data from different
sensors [Makela et al., 2002; Zhao et al., 2005]; and finding relative poses between
sensors [Yang et al., 2013a; Geiger et al., 2012].

The dominant solution for 3D–3D rigid registration is the ICP algorithm [Besl and
McKay, 1992; Zhang, 1994] and variants, due to its conceptual simplicity, ease of use
and good performance. However, ICP is limited by its assumption that closest point
pairs should correspond, which fails when the point-sets are not coarsely aligned or
the moving ‘model’ point-set is not a proper subset of the static ‘scene’ point-set. The
latter occurs frequently, since differing sensor viewpoints and dynamic objects lead
to occlusion and partial-overlap. This closest-point assumption means that ICP is
susceptible to missing correspondences, which lead to incorrect data association, and
local minima, in which the optimisation gets trapped, producing erroneous estimates
without a reliable means of detecting failure, as shown in Figure 4.2.

Gaussian mixture alignment [Chui and Rangarajan, 2000a; Tsin and Kanade, 2004;
Jian and Vemuri, 2011; Campbell and Petersson, 2015] mitigates these problems by
eschewing explicit correspondences and using a robust objective function. By aligning
point-sets without establishing explicit point correspondences, GMA is less sensitive
to missing correspondences from partial overlap or occlusion and is less susceptible to
local minima, having a wider basin of convergence. Robust objective functions can also
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Figure 5.1: Desirable features for a registration algorithm. GOGMA lies in the intersection,
being both robust and globally-optimal. Iterative Closest Point (ICP) is non-robust and locally-
optimal, such that missing correspondences lead to incorrect data association and optimisation
gets trapped in local minima. Gaussian Mixture Alignment (GMA) is robust but locally-
optimal, eschewing explicit correspondences and using a robust cost function, but still requiring
a good initialisation to converge. Globally-Optimal ICP (GO-ICP) is non-robust but globally-
optimal, inheriting the ICP cost function and susceptible to occlusion and partial-overlap.

be applied, such as the L2 distance between mixtures [Jian and Vemuri, 2011; Campbell
and Petersson, 2015]. However, GMA still requires a good initialisation and cannot
guarantee global optimality. Moreover, the transformation that aligns the Gaussian
mixtures only corresponds to the transformation that aligns the points if the point-sets
are well-represented by their Gaussian mixtures.

Existing globally-optimal registration algorithms use branch-and-bound to avoid
local minima, but assume translation or correspondences are known. The exception is
Go-ICP [Yang et al., 2013b, 2016], which was the first globally-optimal algorithm for
the 3D–3D rigid registration problem defined by ICP. Specifically, it used a branch-
and-bound approach to find the global minimum of the ICP error metric, the L2 norm
of closest-point residuals. Despite solving the problem of local minima, Go-ICP inherits
the non-robust ICP cost function that is susceptible to occlusion and partial overlap.
Yang et al. [2016] proposed a trimming strategy to handle outlier correspondences.
However, this increased the runtime significantly and required the user to set an outlier
fraction parameter that is rarely known in advance.

In this chapter, the first globally-optimal solution is proposed to the 3D Gaussian
mixture alignment problem under Euclidean (rigid) transformations. It inherits the
robust L2 density distance objective function of L2 GMA while avoiding the problem
of local minima, as shown in Figure 5.1. The method, named GOGMA, employs the
branch-and-bound algorithm to guarantee global optimality regardless of initialisation,
using a parametrisation of SE(3) space that facilitates branching. The pivotal contri-
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bution is the derivation of the objective function bounds using the geometry of SE(3).
In addition, local GMA optimisation is applied whenever the algorithm finds a better
transformation, to accelerate convergence without voiding the optimality guarantee.

The chapter is organised as follows: the problem is contextualised by summarising
the relevant literature in Section 5.2; a robust GMA objective function for 3D–3D reg-
istration is introduced in Section 5.3; a parametrisation of the domain of 3D motions,
a branching strategy and a derivation of the bounds are developed in Section 5.4; an
algorithm is proposed for globally-optimal Gaussian mixture alignment in Section 5.5;
and its performance is evaluated and discussed in Sections 5.6 and 5.7.

5.2 Related Work

The large quantity of work published on ICP, its variants and other local registration
techniques precludes a comprehensive list. The reader is directed to the surveys on
ICP variants [Rusinkiewicz and Levoy, 2001; Pomerleau et al., 2013] and recent 3D
point-set and mesh registration techniques [Tam et al., 2013] for additional background.
To improve the robustness of ICP to occlusion and partial overlap, approaches have
included trimming [Chetverikov et al., 2005] and outlier rejection [Zhang, 1994]. To
enlarge its basin of convergence, approaches have included LM-ICP [Fitzgibbon, 2003],
which used the Levenberg–Marquardt algorithm [Moré, 1978] and a distance transform
to optimise the ICP error without establishing explicit point correspondences.

The family of Gaussian mixture alignment approaches also sought to improve ro-
bustness to poor initialisations, noise and outliers. Notable GMA-related algorithms
for rigid and non-rigid registration include Robust Point Matching [Chui and Ran-
garajan, 2003] that used soft assignment and deterministic annealing, Coherent Point
Drift [Myronenko and Song, 2010] and Kernel Correlation [Tsin and Kanade, 2004]
that minimised a distance measure between mixtures. The Gaussian Mixture Model
Registration algorithm [Jian and Vemuri, 2011] defined an equally-weighted Gaussian
at every point in the set with identical and isotropic covariances and minimised the
robust L2 distance between densities. The Normal Distributions Transform algorithm
[Magnusson et al., 2007; Stoyanov et al., 2012] defined Gaussians for every cell in a
grid and estimated full data-driven covariances. The Support Vector Registration algo-
rithm [Campbell and Petersson, 2015] used an SVM to construct a Gaussian mixture
with non-uniform weights that adapts to the structure of the point-set and is robust
to occlusion, partial overlap and varying point densities. While more robust than ICP,
these methods all employ local optimisation, which is dependent on the initial pose.

There are many heuristic or stochastic methods for global alignment that are not
guaranteed to converge. One class utilises stochastic optimisation techniques, such as
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particle filtering [Sandhu et al., 2010], particle swarm optimisation [Wachowiak et al.,
2004], genetic algorithms [Silva et al., 2005; Robertson and Fisher, 2002] and sim-
ulated annealing [Blais and Levine, 1995; Papazov and Burschka, 2011], which often
need good initialisations to converge. Another class is feature-based alignment, which
exploits the transformation invariance of a local descriptor to build sparse feature
correspondences, such as fast point feature histograms [Rusu et al., 2009]. The trans-
formation can be found from the correspondences using random sampling [Rusu et al.,
2009], greedy algorithms [Johnson and Hebert, 1999], Hough transforms [Woodford
et al., 2014] or branch-and-bound [Gelfand et al., 2005; Bazin et al., 2012]. Super
4PCS [Mellado et al., 2014] is a recent example of a method that uses random sampling
without features. It is a four-points congruent sets method [Aiger et al., 2008] that
exploits a clever data structure to achieve linear-time performance.

In contrast, globally-optimal techniques avoid local minima by searching the entire
transformation space, often using the branch-and-bound paradigm. Existing 3D meth-
ods [Li and Hartley, 2007; Olsson et al., 2009; Parra Bustos et al., 2014; Yang et al.,
2013b, 2016; Straub et al., 2017] are often very slow or make restrictive assumptions
about the point-sets, correspondences or transformations. For example, Li and Hartley
[2007] minimised a Lipschitzised L2 error function using branch-and-bound, but as-
sumed that the point-sets were the same size and the transformation was pure rotation.
Olsson et al. [2009] found optimal solutions to point-to-point/line/plane registration
using branch-and-bound and bilinear relaxation of rotation quaternions, but assumed
correspondences were known. Parra Bustos et al. [2014] achieved efficient run-times
using stereographic projection techniques for optimal 3D alignment, but assumed that
translation was known. The first globally-optimal algorithm for full 6-DoF 3D–3D
rigid alignment without correspondences was proposed by Yang et al. [2016]. The al-
gorithm (Go-ICP) found the optimal solution to the closest point L2 error between
point-sets and was accelerated by using local ICP as a sub-routine. However, it was
sensitive to occlusion and partial overlap, due to its non-robust cost function. The pro-
posed trimming strategy went some way to alleviating this, but increased the runtime,
required an estimate of the overlap percentage and may lead to ambiguity in the so-
lution. Moreover, the implementation used a distance transform to make the problem
tractable. This approximation meant that ε-suboptimality could not be guaranteed un-
less the resolution of the distance transform was sufficiently high. Finally, Straub et al.
[2017] proposed a 6-DoF alignment algorithm that decoupled rotation and translation
search by first rotationally aligning translation-invariant surface normal distributions,
and then aligning Gaussian mixtures to estimate the translation given rotation. Tight
bounds on the robust L2 distance objective function were derived for a rectangular
tessellation of translation space R3 and a near-uniform tetrahedral tessellation of rota-
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Figure 5.2: Two misaligned 1D Gaussian mixtures (left), generated from partially-overlapping
point-sets, are registered with Gaussian mixture alignment (right).

tion space SO(3), which is more efficient to optimise over than angle-axis tessellations.
Decoupling rotation and translation search improved the optimisation efficiency sig-
nificantly, since the complexity scales exponentially in the search space dimension.
However, it meant that the solutions for rotation and translation were not jointly opti-
mal, creating alignment failure modes. Moreover, the method required surface normals,
which limited the applicability of the algorithm to smoother, densely-sampled surfaces.

5.3 Gaussian Mixture Alignment

The alignment of Gaussian Mixture Models (GMMs) to solve the point-set registration
task, as shown in Figure 5.2, is a well-studied problem [Chui and Rangarajan, 2000a;
Tsin and Kanade, 2004; Magnusson et al., 2007; Jian and Vemuri, 2011; Campbell
and Petersson, 2015]. The use of GMMs as sensor data representations was discussed
in detail in Section 3.3.5. They can be generated from point-set data using Kernel
Density Estimation (KDE) [Jian and Vemuri, 2011; Detry et al., 2009; Comaniciu,
2003], Expectation Maximisation (EM) [Dempster et al., 1977; Deselaers et al., 2010],
Dirichlet Process (DP) estimation [Antoniak, 1974; Straub et al., 2017] or mixture-
mapped Support Vector Machines (SVMs) [Campbell and Petersson, 2015].

Once the point-sets are in GMM form, the registration problem can be posed as min-
imising a discrepancy measure between GMMs. If the point-sets are well-represented
by the Gaussian mixtures, the transformation that aligns the GMMs will correspond
to the transformation that aligns the point-sets. As discussed in Section 3.4.6, the L2

distance between Gaussian mixtures [Jian and Vemuri, 2011] has favourable properties
for the geometric alignment problem. It can be expressed in closed-form, efficiently
implemented and has an estimator that is inherently robust to outliers [Scott, 2001].
See Section 3.4.6 for a detailed discussion on the robustness of the L2E estimator that
minimises the L2 distance between probability densities.

The objective function for the L2 distance between Gaussian mixtures (3.75) was
derived in Section 3.4.6 for the general case. In this chapter, the Gaussian covariances
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are constrained to be isotropic, a standard choice for most GMA approaches. While
GMMs with full covariances are more expressive, the bounding functions for full co-
variance GMMs are much less tractable. Let θk =

{
µki, σ

2
ki, φki

}nk

i=1 be the parameter
set of an nk-component GMM with means µki, variances σ2

ki, and mixture weights
φki > 0, where ∑nk

i=1 φki = 1. Then the L2 distance between Gaussian mixtures, up to
a constant factor (2π)−n/2 and addition by a constant, for a rotation R ∈ SO(n) and
a translation t ∈ Rn is given by the objective function

f(R, t) = −
n1∑
i=1

n2∑
j=1

φ1iφ2j(
σ2

1i + σ2
2j

)n
2

exp

− (eij(R, t))2

2
(
σ2

1i + σ2
2j

)
 (5.1)

where eij(R, t) is the pairwise residual error given by

eij(R, t) =
∥∥∥Rµ1i + t− µ2j

∥∥∥
2
. (5.2)

While this objective function can also be used for 2D–2D registration, only 3D–3D
registration is considered in this chapter, that is, n = 3.

The objective function (5.1) is minimised using a branch-and-bound approach with
local optimisation to accelerate convergence. For this, the quasi-Newton L-BFGS-B
algorithm [Byrd et al., 1995] was selected, using the closed-form partial derivatives
from Campbell and Petersson [2015]. A quaternion parametrisation (see Section 3.1.2)
was used for rotation. To enforce the unit-norm constraint, the 4 parameters were
allowed to vary within the box constraints [−1, 1] before being projected back to the
space of valid rotations by normalising the quaternion [Schmidt and Niemann, 2001].

5.4 Branch-and-Bound

To minimise the highly non-convex Gaussian mixture alignment objective function
(5.1), the global optimisation technique of Branch-and-Bound (BB) [Land and Doig,
1960] may be applied. To do so, a suitable means of parametrising and branching
(partitioning) the function domain must be found, as well as an efficient way to cal-
culate upper and lower bounds of the function for each branch, which converge as the
branch size tends to zero. While the bounds need to be computationally efficient to
calculate, the time and memory efficiency of the algorithm also depends on how tight
the bounds are, since tighter bounds reduce the search space quicker by allowing sub-
optimal branches to be pruned. These two factors are generally in opposition and must
be optimised together. Many more details on the branch-and-bound algorithm and its
application to the geometric alignment problem can be found in Section 3.7.
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π

(a) Rotation Domain Ωr

τ

(b) Translation Domain Ωt

Figure 5.3: Parametrisation of SE(3). (a) The rotation space SO(3) is parametrised by
angle-axis 3-vectors in a solid radius-π ball. (b) The translation space R3 is parametrised
by 3-vectors bounded by a cube with half side-length τ . The joint domain is branched into
sub-hypercubes using a hyperoctree data structure. One sub-hypercube is shown in the figure,
depicted as two sub-cubes in the rotation and translation dimensions.

5.4.1 Parametrising and Branching the Domain

To find a globally-optimal solution, the L2 distance between Gaussian mixtures must
be minimised over the domain of 3D motions, that is, the group SE(3) = SO(3)×R3.
However, the space of these transformations is unbounded. Therefore, to apply the
BB paradigm, the space of translations is restricted to be within the bounded set Ωt,
a cube with half side-length τ . Together, these domains form a 6D hypercube, shown
as separate 3D cubes in Figure 5.3.

Rotation space SO(3) is minimally parametrised with angle-axis 3-vectors r with
rotation angle ‖r‖ and rotation axis r/‖r‖. The notation Rr ∈ SO(3) is used to
denote the rotation matrix obtained from the matrix exponential map of the skew-
symmetric matrix [r]× induced by r. The Rodrigues’ rotation formula (3.10) can be
used to efficiently calculate this mapping. See Section 3.1.2 for more details. Using
this parametrisation, the space of all 3D rotations can be represented as a solid ball of
radius π in R3. The mapping is one-to-one on the interior of the π-ball and two-to-one
on the surface. For ease of manipulation, the 3D cube circumscribing the π-ball is
used as the rotation domain Ωr, as in Li and Hartley [2007]. Translation space R3 is
parametrised with 3-vectors in a bounded domain chosen as the cube Ωt with half side-
length τ . If the GMMs were generated from point-sets scaled to fit within [−0.5, 0.5]3,
choosing τ = 1 would ensure that the domain covered every feasible translation. In
practice, a smaller value of τ can generally be used, such as 0.5, since the more the
point-set bounding boxes overlap, the smaller τ can be without loss of optimality.

In this implementation of BB, the domain is branched into sub-hypercubes using a
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hyperoctree data structure. The sub-hypercubes are defined as

C = Cr(r0, δr)× Ct(t0, δt) (5.3)

Cx(x0, δ) = {x ∈ R3 | eᵀi (x− x0) ∈ [−δ, δ], i = [1, 3]} (5.4)

where δ is the half side-length of the cube and ei is the ith standard basis vector.
To simplify the notation, let Cr = C(r0, δr) and Ct = C(t0, δt) for the rotation and
translation sub-cubes respectively.

5.4.2 Bounding the Branches

The success of a branch-and-bound algorithm is predicated on the quality of its bounds.
For Gaussian mixture alignment, the GMA objective function (5.1) needs to be bounded
within a transformation domain Cr × Ct. Some preparatory material is now presented.

Uncertainty Bounds

If a branch contained a single rotation or translation, then the new mean vector of a
Gaussian transformed by that branch would be known with certainty. However, each
branch contains a set of (infinitely) many different rotations or translations. Trans-
forming a Gaussian mean vector by a contiguous set of rotations or translations induces
a transformation region, shown for rotation and translation separately in Figure 5.4.
The transformed mean vector may lie anywhere in the transformation region, which is
the Minkowski sum of an umbrella-shaped spherical patch and a cube for rotation and
translation dimensions respectively.

To bound the objective function on a branch, the pairwise residual errors given
by eij(R, t) = ‖Rµ1i + t − µ2j‖ need to be bounded. This residual is the Euclidean
distance between a transformed mean vector from one Gaussian mixture and a mean
vector from the other Gaussian mixture. To find a bound on this residual, the rotation
and translation uncertainty need to be bounded. An upper bound on the rotation
uncertainty can be given by the uncertainty angle ψr, shown in Figure 5.4(a), and an
upper bound on the translation uncertainty can be given by the uncertainty distance
ρt, shown in Figure 5.4(b).

The rotation uncertainty angle is the angle by which a vector rotated by Rr0 may
differ from that vector rotated by Rr for r ∈ Cr. To bound the uncertainty angle due
to rotation, Lemmas 1 and 2 from Hartley and Kahl [2009] are used. For reference,
the relevant parts are merged into Lemma 5.1. The lemma indicates that the angle
between two rotated vectors is less than or equal to the Euclidean distance between
their rotations’ angle-axis representations in R3.
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ψr

O

Rr0µ1

(a) Rotation Transformation Region

ρt

µ2 − t0

(b) Translation Transformation Region

Figure 5.4: Transformation region induced by hypercube C = Cr × Ct, shown for rotation
and translation separately. (a) Rotation transformation region for Cr with centre Rr0µ1. The
optimal rotation of µ1 may be anywhere within the heavily-shaded umbrella-shaped trans-
formation region, which is entirely contained by the lightly-shaded spherical cap uncertainty
region defined by the mean vector Rr0µ1 and the aperture angle ψr(Cr). The angle ψr(Cr) is
an upper bound on the rotation uncertainty. (b) Translation transformation region for Ct with
centre µ2−t0. The optimal translation of µ2 may be anywhere within the cubic transformation
region, which is entirely contained by the translation uncertainty region, a circumscribed sphere
with radius ρt(Ct). The distance ρt(Ct) is an upper bound on the translation uncertainty.

Lemma 5.1. For an arbitrary vector p and two rotations, represented as Rr1 and Rr2

in matrix form and r1 and r2 in angle-axis form,

∠(Rr1p, Rr2p) 6 ‖r1 − r2‖. (5.5)

From this, the maximum angle between a mean vector µ rotated by r0 and µ

rotated by r ∈ Cr, for a cube of rotation angle-axis vectors Cr, can be found. This
upper bound on the rotation uncertainty angle, also from Hartley and Kahl [2009], is
reproduced here.

Lemma 5.2. (Rotation uncertainty angle) Given a 3D point vector µ and a rotation

cube Cr of half side-length δr centred at r0, then ∀r ∈ Cr,

∠(Rrµ,Rr0µ) 6 min{
√

3δr, π} , ψr(Cr). (5.6)
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Proof. Inequality (5.6) can be derived as follows:

∠(Rrµ,Rr0µ) 6 min{‖r− r0‖, π} (5.7)

6 min{
√

3δr, π} (5.8)

where (5.7) follows from Lemma 5.1 and the maximum possible angle between point
vectors and (5.8) follows from max ‖r − r0‖ =

√
3δr, the half space diagonal of the

rotation cube, for r ∈ Cr.

The translation uncertainty distance is the distance by which a vector translated
by t0 may differ from that vector translated by t for t ∈ Ct. To bound the uncertainty
distance due to translation, the translation cube is enclosed within a circumsphere of
radius ρt, shown in Figure 5.4(b). From this, the maximum distance between a mean
vector µ translated by t0 and µ translated by t ∈ Ct, for a cube of translation vectors
Ct, can be found. This upper bound on the translation uncertainty distance, also used
in Yang et al. [2016], is given in Lemma 5.3.

Lemma 5.3. (Translation uncertainty distance) Given a 3D point vector µ and a

translation cube Ct of half side-length δt centred at t0, then ∀t ∈ Ct,

‖(µ− t)− (µ− t0)‖ 6
√

3δt , ρt(Ct). (5.9)

Proof. Inequality (5.9) can be derived as follows:

‖(µ− t)− (µ− t0)‖ = ‖t− t0‖ (5.10)

6 max
t∈Ct

‖t− t0‖ (5.11)

=
√

3δt (5.12)

where (5.12) is the half space diagonal of the translation cube Ct.

Objective Function Bounds

As a first step towards bounding the GMA objective function (5.1), the preceding
lemmas are used to bound the minimum pairwise residual error eij(Rr, t) within a
transformation domain Cr ×Ct. The pairwise residual error is the L2 distance between
the Gaussian means Rrµ1i and µ2j − t. An upper bound on the minimum error can
be found by evaluating the function at any transformation in the branch. In this case,
the transformation at the centre of the rotation and translation cubes is convenient
and quick to evaluate.
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ρt

µ2j−t0

ψr

O

Rr0µ1i
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Figure 5.5: Bounding the minimum pairwise residual error. The minimum pairwise residual
error e∗ij = minr∈Cr,t∈Ct

eij(Rr, t) is the minimum distance between the umbrella-shaped ro-
tation and cubic translation transformation regions. It is bounded above by the distance ēij
between the centres of the spherical cap and the sphere and is bounded below by the minimum
distance

¯
eij between the spherical cap and the sphere. That is,

¯
eij 6 e∗ij 6 ēij .

Theorem 5.1. (Upper bound of the minimum pairwise residual error) For the trans-

formation domain Cr×Ct centred at (r0, t0), the upper bound of the minimum pairwise

residual error can be chosen as

ēij , eij(Rr0 , t0). (5.13)

Proof. The validity of the upper bound follows from

min
r∈Cr
t∈Ct

eij(Rr, t) 6 eij(Rr0 , t0). (5.14)

That is, the minimum within the domain is less than or equal to the function value at
a specific point within the domain.

A lower bound on the minimum pairwise residual error within a transformation
domain Cr × Ct can be found using the bounds on the rotation and translation uncer-
tainties, the angle ψr and the distance ρt respectively. The geometric intuition is that
the minimum distance between the umbrella-shaped rotation transformation region
and the cubic translation transformation region is greater than the minimum distance
between the spherical cap rotation uncertainty region and spherical translation uncer-
tainty region, as shown in Figure 5.5.
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Rr0µ1i

||µ1i||

α

µ2j− t0

γ

pij(ψr,0)

pij(γ, 0)

ψr

(a) Viewpoint A: The point pij(γ, 0) lies on
the spherical cap and is defined as the rotation
of the vector Rr0µ1i about the origin towards
(µ2j − t0) by an angle γ ∈ [0, ψr]. All points
in the diagram are coplanar.

Rr0µ1i

µ2j − t0

pij(ψr, 0)

pij(γ, 0)
pij(γ, θ)

θ

(b) Viewpoint B: the point pij(γ, θ) lies on the
spherical cap and is defined as the rotation of
the vector pij(γ, 0) about the axis Rr0µ1i by
an angle θ ∈ [0, 2π). All points in the diagram
other than pij(γ, θ) are coplanar.

Figure 5.6: Defining the set of points on a spherical cap as a function of two angles γ and θ.
As the angles vary within their bounds, the function pij(γ, θ) generates a set of points that lie
on the spherical cap. For θ = 0, the points pij are coplanar and lie on an arc of a great circle of
the sphere. (a) The spherical cap (the bold curve) is viewed in the direction orthogonal to the
plane defined by points {Rr0µ1i,µ2j − t0,O}. (b) The spherical cap (the grey shaded circle)
is viewed in the direction of the large red arrow in (a).

A critical component of the lower bound is finding the minimum distance between
a point in R3 and a spherical cap. The set of points on a spherical cap can be expressed
as a function pij(γ, θ) of two angles γ ∈ [0, ψr] and θ ∈ [0, 2π) by first rotating the
point vector Rr0µ1i about the origin towards (µ2j−t0) by an angle γ and then rotating
this intermediate vector about the axis Rr0µ1i by an angle θ, as shown in Figure 5.6.
If the origin O, the centre of the spherical cap Rr0µ1i and (µ2j − t0) are collinear, the
first rotation can be toward any point. While this is not the most natural definition
of a spherical cap, it creates a pairwise coordinate system that is useful for the proof.
The minimum distance between a point and a spherical cap is given in Lemma 5.4.

Lemma 5.4. (Spherical cap distance) For the spherical cap defined by the point func-

tion pij(γ, θ) for γ ∈ [0, ψr] and θ ∈ [0, 2π), the minimum distance from a point

(µ2j − t0) to the spherical cap is given by

min
γ,θ
‖pij(γ, θ)− (µ2j − t0)‖ =


∣∣‖µ1i‖ − ‖µ2j − t0‖

∣∣ for α 6 ψr(Cr)
‖pij(ψr(Cr), 0)− (µ2j − t0)‖ for α > ψr(Cr)

(5.15)



138 Robust and Globally-Optimal 3D–3D Alignment

where the angle ψr(Cr) was given in Lemma 5.2, the angle α is given by

α = ∠
(
Rr0µ1i,µ2j − t0

)
= arccos

(Rr0µ1i) · (µ2j − t0)
‖µ1i‖‖µ2j − t0‖

(5.16)

and the distance ‖pij(ψr, 0)− (µ2j − t0)‖ is given by

‖pij(ψr, 0)−(µ2j − t0)‖=
√
‖µ1i‖2+‖µ2j−t0‖2−2 cos(α−ψr)‖µ1i‖‖µ2j−t0‖. (5.17)

Proof. An arbitrary point pij(γ, θ) on the spherical cap can be expressed as the rotation
of the point Rr0µ1i about the origin towards (µ2j − t0) by an angle γ, followed by a
rotation of this intermediate vector (denoted pij(γ, 0)) about the axis Rr0µ1i by an
angle θ. To simplify the derivation, let µ0

1i = Rr0µ1i and µ0
2j = µ2j − t0. The first

axis of rotation, perpendicular to the plane formed by µ0
1i and µ0

2j , is given by

û =
µ0

1i × µ0
2j

‖µ1i‖‖µ0
2j‖ sinα. (5.18)

Therefore, by the Rodrigues’ rotation formula (3.10),

pij(γ, 0) = cos γ µ0
1i + sin γ û× µ0

1i + (1− cos γ)(û · µ0
1i)û (5.19)

= cos γ µ0
1i + sin γ û× µ0

1i (5.20)

= cos γ µ0
1i + sin γ

(µ0
1i · µ0

1i)µ0
2j − (µ0

1i · µ0
2j)µ0

1i
‖µ1i‖‖µ0

2j‖ sinα (5.21)

= ‖µ1i‖
(

sin(α− γ)
sinα

µ0
1i

‖µ1i‖
+ sin γ

sinα
µ0

2j
‖µ0

2j‖

)
(5.22)

where (5.20) follows, after substituting in (5.18), from the result that the scalar triple
product is zero if any two vectors involved are equal, (5.21) follows from a vector triple
product identity and (5.22) follows by expanding, simplifying and using µ0

1i · µ0
2j =

‖µ1i‖‖µ0
2j‖ cosα. Rotating about the second axis of rotation µ0

1i by an angle θ using
the Rodrigues’ rotation formula gives

pij(γ, θ) = cos θ pij(γ, 0)+sin θ µ0
1i × pij(γ, 0)
‖µ1i‖

+(1−cos θ)µ0
1i · pij(γ, 0)
‖µ1i‖

µ0
1i

‖µ1i‖
(5.23)

= ‖µ1i‖
((

cos γ − cosα sin γ cos θ
sinα

)
µ0

1i
‖µ1i‖

+ sin γ sin θ
sinα

µ0
1i × µ0

2j
‖µ1i‖‖µ0

2j‖

+sin γ cos θ
sinα

µ0
2j

‖µ0
2j‖

)
(5.24)

where (5.24) follows from substituting in (5.22), expanding and simplifying. Now, the
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squared distance between point µ0
2j and an arbitrary point pij(γ, θ) on the spherical

cap is given by

‖pij(γ, θ)−µ0
2j‖2 =(pij(γ, θ)− µ0

2j) · (pij(γ, θ)− µ0
2j) (5.25)

=pij(γ, θ) · pij(γ, θ) + µ0
2j · µ0

2j − 2pij(γ, θ) · µ0
2j (5.26)

=‖µ1i‖2+‖µ0
2j‖2−2

(
cos γ− cosα sin γ cos θ

sinα

)
µ0

1i · µ0
2j

− 2sin γ cos θ
sinα

‖µ1i‖
‖µ0

2j‖
µ0

2j · µ0
2j (5.27)

=‖µ1i‖2+‖µ0
2j‖2−2

(
cosα cos γ− cos2 α sin γ cos θ

sinα

)
‖µ1i‖‖µ0

2j‖

− 2sin γ cos θ
sinα ‖µ1i‖‖µ0

2j‖ (5.28)

=‖µ1i‖2+‖µ0
2j‖2−2(cosα cos γ+sinα sin γ cos θ)‖µ1i‖‖µ0

2j‖ (5.29)

where (5.27) follows from substituting in (5.24) and noting that the scalar triple prod-
uct is zero if any two vectors involved are equal and (5.29) follows from the identity
cos2 α = 1− sin2 α. The squared distance is minimised when θ = 0 and is given by

min
θ
‖pij(γ, θ)− µ0

2j‖2 = ‖µ1i‖2 + ‖µ0
2j‖2 − 2 cos(α− γ)‖µ1i‖‖µ0

2j‖. (5.30)

When α 6 ψr (Case 1), equation (5.30) is minimised when γ = α, giving

min
γ,θ
‖pij(γ, θ)− µ0

2j‖2 =
(
‖µ1i‖ − ‖µ0

2j‖
)2

(5.31)

Therefore, for α 6 ψr

min
γ,θ
‖pij(γ, θ)− (µ2j − t0)‖ =

∣∣‖µ1i‖ − ‖µ2j − t0‖
∣∣. (5.32)

When α > ψr (Case 2), equation (5.30) is minimised when γ = ψr, giving

min
γ,θ
‖pij(γ, θ)− µ0

2j‖2 = ‖µ1i‖2 + ‖µ0
2j‖2 − 2 cos(α− ψr)‖µ1i‖‖µ0

2j‖ (5.33)

= ‖pij(ψr, 0)− µ0
2j‖2 (5.34)

Therefore, for α > ψr

min
γ,θ
‖pij(γ, θ)− (µ2j − t0)‖ = ‖pij(ψr, 0)− (µ2j − t0)‖, (5.35)

thus proving the lemma for both cases.
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Using this lemma, a lower bound on the minimum pairwise residual error within a
transformation domain Cr × Ct can be found.

Theorem 5.2. (Lower bound of the minimum pairwise residual error) For the trans-

formation domain Cr×Ct centred at (r0, t0), the lower bound of the minimum pairwise

residual error can be chosen as

¯
eij ,


max

{∣∣‖µ1i‖ − ‖µ2j − t0‖
∣∣− ρt(Ct), 0} for α 6 ψr(Cr)

max
{
‖pij(ψr(Cr), 0)− (µ2j − t0)‖ − ρt(Ct), 0

}
for α > ψr(Cr)

(5.36)

Proof. Observe that ∀(r, t) ∈ (Cr × Ct),

eij(Rr, t) = ‖Rrµ1i − (µ2j − t)‖ (5.37)

= ‖Rrµ1i − (µ2j − t0)− (t0 − t)‖ (5.38)

>
∣∣∣‖Rrµ1i − (µ2j − t0)‖ − ‖t0 − t‖

∣∣∣ (5.39)

> max
{
‖Rrµ1i − (µ2j − t0)‖ − ‖t0 − t‖, 0

}
(5.40)

> max
{
‖Rrµ1i − (µ2j − t0)‖ − ρt(Ct), 0

}
(5.41)

> max
{

min
r∈Cr

‖Rrµ1i − (µ2j − t0)‖ − ρt(Ct), 0
}

(5.42)

> max
{

min
γ,θ
‖pij(γ, θ)− (µ2j − t0)‖ − ρt(Ct), 0

}
(5.43)

=


max

{∣∣‖µ1i‖ − ‖µ2j − t0‖
∣∣− ρt(Ct), 0} for α 6 ψr(Cr)

max
{
‖pij(ψr(Cr), 0)− (µ2j − t0)‖ − ρt(Ct), 0

}
for α > ψr(Cr)

(5.44)

where (5.39) follows from the reverse triangle inequality ‖x−y‖ > |‖x‖ − ‖y‖|, (5.40)
states that the absolute value of a quantity is positive, (5.41) follows from Lemma 5.3,
(5.42) follows from minimising the norm over the rotation domain, (5.43) states that
the minimum distance to a constrained point on the spherical cap (that is, a point in
the umbrella-shaped region) is greater than or equal to the minimum distance to an
unconstrained point on the cap, and (5.44) follows from Lemma 5.4. Finally, since
the inequality is true for all (r, t) ∈ (Cr × Ct), it is also true for (r∗, t∗) that minimise
eij(Rr, t) over the transformation domain, that is e∗ij > ¯

eij .

The geometric intuition for the lower bound of the minimum pairwise residual error
(Theorem 5.2) is shown in Figure 5.7. The minimum distance to the spherical cap is
equal to (i) the radial distance to the sphere if the point (µ2j − t0) lies within the
rotation cone such that ∠(Rr0µ1i,µ2j − t0) 6 ψr; or (ii) the distance to the edge of
the cap if the point lies outside the rotation cone.
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¯
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(a) Case 1: (µ2j − t0) is within the rotation
cone (α 6 ψr)

O
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α
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¯
eij+ρt
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(b) Case 2: (µ2j − t0) is outside the rotation
cone (α > ψr)

Figure 5.7: Upper and lower bounds of the minimum pairwise residual error. A 2D cross-
section in the plane defined by points {Rr0µ1i,µ2j − t0,O} is shown. The spherical cap
cross-section is depicted as a bold curve. Observe that the minimum distance to the spherical
cap is equal to (i) the radial distance to the sphere or (ii) the distance to the edge of the cap,
depending on the relative position of the point (µ2j − t0).

Bounds on the minimum of the GMA objective function (5.1) can be found by
summing the kernelised upper and lower bounds of the pairwise residual errors in
(5.13) and (5.36) for all n1 × n2 Gaussian pairs.

Corollary 5.1. (Bounds of the GMA objective function) For the 3D transformation

domain Cr × Ct centred at (r0, t0), the upper bound f̄ and the lower bound
¯
f of the

minimum objective function value f(Rr, t) can be chosen as

f̄ = −
n1∑
i=1

n2∑
j=1

φ1iφ2j(
σ2

1i + σ2
2j

)3
2

exp

− ē2
ij

2
(
σ2

1i + σ2
2j

)
 (5.45)

¯
f = −

n1∑
i=1

n2∑
j=1

φ1iφ2j(
σ2

1i + σ2
2j

)3
2

exp

− ¯
e2
ij

2
(
σ2

1i + σ2
2j

)
. (5.46)

Comparison of Pairwise Lower Bounds

In Yang et al. [2016], a rotation uncertainty distance was derived that provided an
upper bound on the maximum distance between the points Rrµ1i and Rr0µ1i for
r ∈ Cr. Using the notation of this chapter, their rotation uncertainty distance was
given by

ρr(µ1i, Cr) , 2 sin
(
min

{√
3δr/2, π/2

})
‖µ1i‖ > max

r∈Cr

‖Rrµ1i −Rr0µ1i‖. (5.47)
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From this, a weaker lower bound on the minimum pairwise residual error was given by

¯
ewij , max

{
‖Rr0µ1i − (µ2j − t0)‖ − ρr(µ1i, Cr)− ρt(Ct), 0

}
. (5.48)

Neglecting translation, this represents the distance from (µ2j−t0) to a sphere a radius
ρr enclosing the spherical cap.

The lower bound of the pairwise residual error presented in this chapter
¯
eij is greater

than the weaker lower bound
¯
ewij from Yang et al. [2016], leading to tighter bounds on

the objective function. This improves the efficiency of the branch-and-bound algorithm,
allowing sub-optimal branches to be pruned earlier. The inequality

¯
eij > ¯

ewij is proved
in Lemma 5.5 and shown in Figure 5.8.

Lemma 5.5. (Pairwise residual error inequality) For the transformation domain Cr×
Ct centred at (r0, t0),

¯
eij > ¯

ewij . (5.49)

Proof. To prove inequality (5.49) is to prove that

min
γ,θ
‖pij(γ, θ)− (µ2j − t0)‖ > ‖Rr0µ1i − (µ2j − t0)‖ − ρr(µ1i, Cr) (5.50)

since the translation terms in (5.36) and (5.48) cancel out. For case 1 (α 6 ψr),

min
γ,θ
‖pij(γ, θ)− (µ2j − t0)‖ = ‖pij(α, 0)− (µ2j − t0)‖ (5.51)

= ‖(Rr0µ1i − (µ2j − t0))− (Rr0µ1i − pij(α, 0))‖ (5.52)

> ‖Rr0µ1i − (µ2j − t0)‖ − ‖Rr0µ1i − pij(α, 0)‖ (5.53)

> ‖Rr0µ1i − (µ2j − t0)‖ − ρr(µ1i, Cr) (5.54)

where (5.53) follows from the reverse triangle inequality and (5.54) follows from (5.47).
Similarly for case 2 (α > ψr),

min
γ,θ
‖pij(γ, θ)− (µ2j − t0)‖ = ‖pij(ψr, 0)− (µ2j − t0)‖ (5.55)

= ‖(Rr0µ1i−(µ2j − t0))−(Rr0µ1i−pij(ψr, 0))‖ (5.56)

> ‖Rr0µ1i − (µ2j − t0)‖ − ‖Rr0µ1i − pij(ψr, 0)‖ (5.57)

= ‖Rr0µ1i − (µ2j − t0)‖ − ρr(µ1i, Cr). (5.58)

See Figure 5.8 for diagrams of the relevant triangles.
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Figure 5.8: Comparison of the pairwise lower bound. For both cases 1 and 2, the triangle
inequality a + b > c holds, with a = ‖pij(γ, 0) − (µ2j − t0)‖, b = ‖Rr0µ1i − pij(γ, 0)‖ and
c = ‖Rr0µ1i − (µ2j − t0)‖ for γ = α and ψr respectively.

5.5 The GOGMA Algorithm

The Globally-Optimal Gaussian Mixture Alignment (GOGMA) algorithm is outlined
in Algorithm 5.1. It employs branch-and-bound with depth-first search using a priority
queue where the priority is inverse to the lower bound (Line 4). The algorithm termi-
nates with ε-optimality, whereby the difference between the best function value so far
f∗ and the global lower bound

¯
f is less than ε (Line 5).

Algorithm 5.1 GOGMA: a branch-and-bound algorithm for globally-optimal Gaus-
sian mixture alignment in SE(3).
Input: two Gaussian mixture models with parameter sets θk =

{
µki, σ

2
ki, φki

}nk

i=1,
means µki, variances σ2

ki, and mixture weights φki; optimality tolerance ε; initial
transformation domain Ω = Ωr × Ωt centred at (r0, t0)

Output: ε-optimal value f∗ and corresponding transformation (r∗, t∗)
1: Run local optimisation: (f∗, r∗, t∗)← GMA(r0, t0)
2: Add transformation domain Ω to priority queue Q
3: loop
4: Remove hypercube C = Cr × Ct with lowest lower-bound

¯
f from Q

5: if f∗ −
¯
f 6 ε then terminate

6: In parallel, evaluate f̄i (5.45) and
¯
fi (5.46) for all sub-hypercubes of C

7: for all sub-hypercubes Ci do
8: if f̄i < f∗ then (f∗, r∗, t∗)← GMA(r0i, t0i)
9: if

¯
fi < f∗ then add Ci to queue: Q← Ci

In this implementation, the upper and lower bounds of 4096 sub-cubes are found
simultaneously on the GPU (line 6). A higher branching factor can be used, although
memory considerations must be taken into account to ensure that the priority queue
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does not increase much faster than it can be pruned. A branching factor of 4096
performs well and does not require a high-end GPU. Other than the bound calculations,
the code is executed entirely on the CPU.

Lines 1 and 8 show how local optimisation is integrated into the algorithm using
Gaussian Mixture Alignment (GMA). Firstly, the best-so-far function value f∗ and
the associated transformation parameters are initialised using GMA (line 1). Within
the main loop, GMA is run whenever the BB algorithm finds a sub-hypercube Ci that
has an upper bound less than the best-so-far function value f∗ (line 8). GMA is
initialised with (r0i, t0i), the centre transformation of Ci. In this way, BB and GMA
collaborate, with GMA quickly converging to the closest local minimum and BB guiding
the search into the convergence basins of increasingly lower local minima. Hence, BB
jumps the search out of local minima and GMA accelerates convergence by refining
f∗. Importantly, the faster f∗ is refined, the more sub-hypercubes are discarded, since
those with lower bounds higher than f∗ are culled (line 9).

The algorithm is designed in such a way that early termination outputs the best-
so-far transformation. Hence, if a limit is set on the runtime, a best-guess transfor-
mation can be provided for those alignment experiments that exceed the limit. While
ε-optimality will not be guaranteed for them, in practise this is often adequate. In view
of this, and to accelerate the removal of redundant sub-hypercubes, line 8 may be mod-
ified such that GMA is run for every sub-hypercube of the first subdivision and f∗ is
updated with the best function value of that batch. This is denoted as batch-initialised
GOGMA.

In the following sections, convergence results and a time complexity analysis of the
algorithm are provided.

5.5.1 Convergence of the Upper and Lower Bounds

A requirement of branch-and-bound is that the upper and lower bounds converge as
the size of the branch tends to zero. The convergence of the bounds can be proved as
follows. As the branch size tends to zero, the rotation uncertainty angle ψr(Cr) also
tends to zero since it is linearly dependent on the half side-length δr of the rotation
sub-cube Cr. Furthermore, as ψr(Cr) tends to zero, pij(γ, θ) (5.24) tends to Rr0µ1i for
γ ∈ [0, ψr → 0] and θ ∈ [0, 2π). Similarly, the translation uncertainty distance ρt(Ct)
tends to zero as the branch size tends to zero since it is linearly dependent on the half
side-length δt of the translation sub-cube Ct. From pij(γ, θ) → Rr0µ1i as δr → 0 and
ρt(Ct) → 0 as δt → 0, it is clear that

¯
eij (5.36) tends to ēij (5.13) as the branch size

tends to zero. Hence, the lower bound of the objective function (5.46) converges to the
upper bound (5.45) as the branch size decreases.
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5.5.2 Time Complexity

For a given rotation tolerance ηr and translation tolerance ηt, it possible to derive a
bound on the worst-case search tree depth and thereby obtain the time complexity of
the algorithm. In terms of the size of the input, the GOGMA algorithm is O(n1n2),
where nk is the number of Gaussian components in each mixture model. However, the
notation conceals a very large constant. Including the constant factors that can be
selected by the user yields O(max{η−6

r , δ6
t0η
−6
t }n1n2) for the time complexity, where

δt0 is the half side-length of the initial translation cubes, that is, one-quarter the half
side-length τ of the translation domain.

Calculating the upper and lower bounds involves a summation over the components
of both mixture models, therefore the complexity is O(n1n2). However, it is as of
yet unclear how the number of iterations (explored sub-hypercubes) depends on the
inputs. The central finding is that branch-and-bound is exponential in the worst-case
tree search depth D, but D is logarithmic in η−1

r and η−1
t . Therefore the complexity

of BB is polynomial in η−1
r and η−1

t , the rotation and translation tolerances.

Theorem 5.3. (Search Depth and Time Complexity) Let δr0 = π/4 be the half side-

length of the initial rotation sub-cubes Cr0 and δt0 = τ/4 be the half side-length of the

initial translation sub-cubes Ct0. Then

D = max
{⌈

1
2 log2

√
3δr0

ηr

⌉
,

⌈
1
2 log2

√
3δt0
ηt

⌉
, 0
}

(5.59)

is an upper bound on the worst-case search tree depth for a rotation tolerance ηr and

translation tolerance ηt, and O(max{η−6
r , δ6

t0η
−6
t }n1n2) is the time complexity of the

GOGMA algorithm.

Proof. To achieve a rotation tolerance of at least ηr, then ψr(Cr) 6 ηr. From (5.6),

ψr(Cr) = min{
√

3δr, π} 6
√

3δr. (5.60)

At the search tree depth Dr, the half side-length is given by

δrDr
= 1

4δrDr−1 = 2−2Drδr0 . (5.61)

Substituting into (5.60) gives

ψr(CrDr
) 6
√

3δrDr
= 2−2Dr

√
3δr0 . (5.62)
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To find the worst-case search tree depth, the constraint ψr(Cr) 6 ηr is applied:

ψr(CrDr
) 6 2−2Dr

√
3δr0 6 ηr. (5.63)

Taking the logarithm of both sides yields

Dr >
1
2 log2

√
3δr0

ηr
. (5.64)

Therefore, since Dr is required to be a non-negative integer,

Dr =
⌈

1
2 log2

√
3δr0

ηr

⌉
. (5.65)

To achieve a translation tolerance of at least ηt, then ρt(Ct) 6 ηt. From (5.9),

ρt(Ct) =
√

3δt. (5.66)

At the search tree depth Dt, the half side-length is given by

δtDt
= 1

4δtDt−1 = 2−2Dtδt0 . (5.67)

Substituting into (5.66) gives

ρt(CtDt
) 6
√

3δtDt
= 2−2Dt

√
3δt0 . (5.68)

To find the worst-case search tree depth, the constraint ρt(Ct) 6 ηt is applied:

ρt(CtDt
) 6 2−2Dt

√
3δt0 6 ηt. (5.69)

Taking the logarithm of both sides yields

Dt >
1
2 log2

√
3δt0
ηt

. (5.70)

Therefore, since Dt is required to be a non-negative integer,

Dt =
⌈

1
2 log2

√
3δt0
ηt

⌉
. (5.71)

Equation (5.59) follows from the requirement that D = max{Dr, Dt}.
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Now, the BB algorithm will have examined at most

N = 4096(1 + 4096 + 40962 + · · ·+ 4096D) = 4096
4095

(
(2D+1)12 − 1

)
(5.72)

sub-hypercubes at search depth D, due to the hyperoctree structure. Finally, substi-
tuting (5.59) into (5.72) and simplifying using Bachmann–Landau notation gives

N = O

(
max

{(
δr0

ηr

)6
,

(
δt0
ηt

)6})
= O

(
max

{
η−6
r , δ6

r0η
−6
t

})
. (5.73)

The δr0 term is removed because it is a constant (equal to π/4) that is not selected by
the user. For each sub-hypercube, the upper and lower bounds of the objective function
are calculated with a time complexity of O(n1n2). Combining this with the number of
explored sub-hypercubes gives the time complexity of the GOGMA algorithm.

While tolerances on rotation and translation are easily implemented by only branch-
ing sub-hypercubes above a certain size, in this implementation a single value ε is used
instead. This limits the gap between the objective function bounds when the algorithm
terminates and ensures that the optimal L2 distance between the Gaussian mixtures
is within ε of the output L2 distance. As such, this time complexity analysis does not
apply strictly to the implementation tested in the next section.

It is also important to observe that experimental evaluation of runtime is more
revealing for BB algorithms than time complexity analysis. The main reason to use
BB is that it can prune large regions of the search space, reducing the size of the
problem. This is not reflected in the complexity analysis.

5.6 Results

The GOGMA algorithm was evaluated with respect to the baseline local algorithms
Iterative Closest Point (ICP) [Besl and McKay, 1992] and Coherent Point Drift (CPD)
[Myronenko and Song, 2010], and the nearest competitor Globally-optimal ICP (Go-
ICP) [Yang et al., 2016] on two large-scale field datasets. It was also evaluated on
3D data collected under controlled laboratory conditions to test its optimality and the
effect of different factors on the runtime.

In order to test the algorithms across a uniformly-distributed sample of rotation
space SO(3), the 72 base grid rotations from Incremental Successive Orthogonal Im-
ages (ISOI) [Yershova et al., 2010] were used. Translation perturbations were not
applied since the point-sets were centred and scaled to [−1, 1]3 in a pre-processing step
before being converted to GMMs, which removes any translation perturbations. The
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transformation domain was set to be [−π, π]3 × [−0.5, 0.5]3. This translation domain
corresponds to an explored volume over 3× larger than the bounding box of the largest
point-set (1.5× per dimension).

Except where otherwise specified, the convergence threshold was set to ε = 0.1,
the number of Gaussian components was set to n1, n2 ≈ 50, batch initialisation was
used and the GMMs were Support Vector–parametrised Gaussian Mixtures (SVGMs),
whereby an SVM and a mapping are used to efficiently construct an adaptive GMM
from point-set data [Campbell and Petersson, 2015]. SVGMs allow the user to specify
the approximate number of components and set equal variances σ2 automatically, based
on the desired number of components.

Although GOGMA is a general-purpose Gaussian mixture alignment algorithm, the
runtime results include the time required for GMM construction in order to facilitate
comparison with other point-set registration algorithms. All experiments were run on
a PC with a 3.7GHz Quad Core CPU with 32GB of RAM and a Nvidia GeForce
GTX 980 GPU. The GOGMA code is written in unoptimised C++ and uses the VXL
numerics library [VXL, 2014] for local GMA optimisation.

5.6.1 Fully-Overlapping Registration Experiments

To demonstrate optimality of the algorithm with respect to the objective function,
fully-overlapping point-sets were used. That is, each point-set pair was sampled from
the same surface in its entirety, with no structured outliers from partial-overlap or oc-
clusion. For these experiments, the reconstructed dragon-recon [Curless and Levoy,
2014] and bunny-recon [Turk and Levoy, 2014] point-sets from the Stanford Com-
puter Graphics Laboratory, shown in Figure 5.9, were aligned with transformed copies
of themselves, using the 72 ISOI rotations. Identical point-sets were required in order
to obtain the ground-truth optimal objective function values, because the global opti-
mum does not necessarily coincide with the ground-truth transformation for partially-
overlapping point-sets. The global optimum was found for all 144 registration experi-
ments, with mean separations from the optimal value being 9×10−8 and 3×10−7 and
mean runtimes being 17s and 14s, for dragon and bunny respectively. With batch
initialisation, the mean separations were 8×10−8 and 7×10−8 and the mean runtimes
were 33s and 29s, for dragon and bunny respectively.

The evolution of the global upper and lower bounds is shown in Figure 5.10. It
can be seen that BB and GMA collaborate to reduce the upper bound: BB guides the
search into the convergence basins of increasingly lower local minima and GMA refines
the bound by jumping to the nearest local minimum. Discontinuities in the lower bound
occur when an entire sub-hypercube level has been explored. With batch initialisation,
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(a) dragon-recon (b) bunny-recon

Figure 5.9: The dragon-recon and bunny-recon reconstructed models from the Stanford
Computer Graphics Laboratory.

the global minimum is generally captured at the start of the algorithm. The remaining
time is spent increasing the lower bound until ε-optimality can be guaranteed. While
batch initialisation can increase the runtime for less challenging datasets or larger values
of ε, it typically reduces runtime and is the preferred setting.

5.6.2 Partial-to-Full Registration Experiments

In this section, the more challenging problem of partial-to-full registration is addressed.
That is, one of the point-sets was sampled from a subset of the surfaces that the other
point-set was sampled from, resulting in structured outliers. In these experiments,
the performance of the GOGMA algorithm was evaluated by aligning single-view par-
tial scans with a full 3D model, a common registration task. The point-sets were
drawn from the Stanford Computer Graphics Laboratory’s dragon dataset [Curless
and Levoy, 2014] and consist of one reconstructed model (dragon-recon) and 15
partial scans (dragon-stand). The 72 base ISOI rotations were used as the initial
transformations for the partial scans. For the standard parameter settings, GOGMA
found the correct alignment for all 1080 experiments, with all translation errors less
than 0.01m and all rotation errors less than 3◦. Quantitative results are given in the
SVM column of Table 5.1.

To investigate the effect of other GMM types on the accuracy and runtime of the al-
gorithm, the experiment was repeated with GMMs generated by fixed-bandwidth Ker-
nel Density Estimation (KDE) [Jian and Vemuri, 2011] and Expectation Maximisation
(EM) [Dempster et al., 1977]. The number of components was fixed (n1, n2 = 50), but
the variances and mixture weights were set by the algorithms. For KDE, the variance
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(b) bunny-recon

Figure 5.10: Evolution of the upper and lower bounds for the reconstructed dragon-recon
and bunny-recon models. The normalised objective function value is plotted against time.
Updates to the best-so-far L2 distance from BB are shown as black squares and updates from
GMA are shown as blue dots.

was found by parameter search and the point-sets were randomly downsampled to n1

points, the GMM mean vectors. The pose error for the optimally aligned KDE-GMMs
was very high, since KDE was unable to represent the underlying surfaces sufficiently
well with n1 components. KDE-GMMs are typically highly over-parametrised, however
the O(n1n2) time complexity of GOGMA imposes tractability limits on the number of
components used. The performance of the EM-GMMs show that they are a suitable
input to GOGMA in terms of alignment accuracy, however the EM implementation
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Table 5.1: Effect of GMM type on the accuracy and runtime of the GOGMA algorithm. The
15 single-view partial scans from dragon-stand, perturbed by the 72 ISOI rotations, were
aligned with the reconstructed model dragon-recon using GMMs generated from a Support
Vector Machine (SVM), fixed-bandwidth Kernel Density Estimation (KDE) and Expectation
Maximisation (EM). The mean/max translation error, rotation error and runtime are reported.
GMM Type SVM KDE EM
Translation (m) 0.004/0.008 0.14/0.21 0.02/0.18
Rotation (◦) 1.5/2.7 116/167 7.2/80
Runtime (s) 34/50 15/15 4960/4965

[Figueiredo and Jain, 2002] imposed significant runtime overheads, taking 4 663s to
process the model (containing 437 645 points) and 256s on average to process each
scan (containing 31 280 points on average), making it impractical unless more efficiently
implemented. Considering both speed and accuracy, SVGMs are recommended.

To investigate the effect of other factors on the runtime, one was varied while
the others were kept at the default settings: n1, n2 ≈ 50, ε = 0.1 and the GOGMA
lower bound. The 72 ISOI rotations were applied to scan 0 from the dragon-stand
set and the mean runtimes were reported for standard and batch initialisations. The
scan, aligned by GOGMA, is shown in Figure 5.11(a) in red. The results for differing
numbers of Gaussian components n1, n2 are shown in Figure 5.11(b). The quadratic
shape reflects the O(n1n2) time complexity of the algorithm. The results for differing
values of the convergence threshold ε are shown in Figure 5.11(c). For values of ε
close to zero, the runtime increases steeply, while larger values allow the algorithm to
terminate quicker, albeit with a looser optimality guarantee. The setting ε= 0.1 is a
suitable default value, having a 100% success rate for all experiments. For cases where
many local minima have near-optimal alignments, such as for near-symmetries in the
data, ε can be reduced. The runtime is also affected by the quality of the lower bound,
as shown in Figure 5.11(d). The GOGMA lower bound, which uses the spherical cap
distance (5.36), is tighter and more efficient than the Go-ICP lower bound [Yang et al.,
2013b], which uses the distance to an uncertainty sphere containing the cap (5.48).

5.6.3 Partially-Overlapping Registration Experiments

In this section, the most challenging problem of partially-overlapping registration is
addressed, where both point-sets are sampled from non-identical subsets of the un-
derlying model or scene, resulting in many structured outliers in both point-sets. For
these experiments, the performance of GOGMA was evaluated on two large-scale field
datasets [Pomerleau et al., 2012], characterised in Table 5.2. stairs is a structured
indoor/outdoor dataset with large and rapid variations in scanned volumes. wood-
summer is an unstructured outdoor dataset with dynamic objects. The symmetric in-
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Figure 5.11: Mean runtime of GOGMA on the dragon dataset with respect to different
factors, for the alignment of dragon-recon with point-set 0 of dragon-stand, transformed
by 72 uniformly distributed rotations. Note the logarithmic scale in (c).

lier fraction ω∆ was used to calculate the overlap: the fraction of points from the joint
set IP1,P2(∆)∪ IP2,P1(∆) within ∆ of a point from the other point-set. Here, ∆ = 10d̄
where d̄ is the mean closest point distance. The equations for the non-symmetric inlier
set IP1,P2(∆) and the symmetric inlier fraction ω∆ are

IP1,P2(∆) = {p1 ∈ P1 | ∃p2 ∈ P2 : ‖p1 − p2‖ 6 ∆} (5.74)

ω∆ = |IP1,P2(∆)|+ |IP2,P1(∆)|
|P1|+ |P2|

. (5.75)

For these experiments, sequential point-sets were aligned using GOGMA, Go-ICP
[Yang et al., 2013b], ICP [Besl and McKay, 1992] and CPD [Myronenko and Song,
2010] with the 72 ISOI rotations as initial transformations. GOGMA with refinement
was also tested, a variant that applies local GMA refinement with n1, n2≈1000 compo-
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Table 5.2: Characteristics of the large-scale field datasets from Pomerleau et al. [2012].
Dataset stairs wood-summer
Number of point-sets 31 37
Mean number of points 191 000 182 000
Bounding box size 21×111×27m 30×53×20m
Mean overlap percentage 76% 77%
Number of alignments 31×72 37×72

Table 5.3: Alignment results for the stairs dataset. The mean translation error (in metres),
rotation error (in degrees), and runtime (in seconds), and the coarse (C), medium (M) and fine
(F) registration success rates (defined in the text) are reported. GOGMA with refinement is
denoted by GOGMAR and Go-ICP with ε=10−4 and ε=5×10−5 by Go-ICPa and Go-ICPb.
Method GOGMA GOGMAR Go-ICPa Go-ICPb ICP CPD
Translation Error 0.26 0.04 1.63 1.17 4.67 5.24
Rotation Error 1.25 0.32 30.9 19.4 107 88.8
Success Rate (C) 100 100 71.8 80.9 15.5 38.8
Success Rate (M) 100 100 48.5 51.9 13.4 28.6
Success Rate (F) 80.0 99.7 19.6 21.2 6.5 7.1
Runtime 49.6 71.2 31.6 103 0.38 4.2

Table 5.4: Alignment results for the wood-summer dataset. The mean translation error (in
metres), rotation error (in degrees), and runtime (in seconds), and the coarse (C), medium (M)
and fine (F) registration success rates (defined in the text) are reported.
Method GOGMA GOGMAR Go-ICPa Go-ICPb ICP CPD
Translation Error 0.72 0.13 1.33 0.69 7.37 8.13
Rotation Error 3.09 0.68 9.66 5.19 109 90.7
Success Rate (C) 100 100 78.2 84.1 11.3 39.5
Success Rate (M) 75.0 99.9 36.6 64.5 10.8 19.3
Success Rate (F) 16.7 99.9 13.2 27.5 5.4 0.8
Runtime 29.5 49.6 26.2 77.7 0.44 4.2

nents initialised with the output transformation of the standard GOGMA algorithm.
Quantitative results are given in Tables 5.3 and 5.4 and Figure 5.12, and qualitative re-
sults in Figure 5.13. The coarse, medium and fine registration success rates are defined
as the fraction of alignments with translation and rotation errors less than 2m/10◦,
1m/5◦, and 0.5m/2.5◦ respectively. The runtime values include the time to construct
the GMMs (for GOGMA) and build the distance transform (for Go-ICP).

GOGMA significantly outperformed Go-ICP, ICP and CPD in these experiments,
finding the correct transformation in all cases under the coarse criterion. Crucially, a
subsequent refinement step (GOGMAR) was able to find the correct transformation
in virtually all cases under the fine criterion. This indicates that GOGMA without
refinement was always able to find the correct alignment, up to the granularity of
the 50 component representation. Go-ICP performed poorly with a loose convergence
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(a) Translation error stairs dataset
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(b) Translation error wood-summer dataset
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(c) Rotation error stairs dataset
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(d) Rotation error wood-summer dataset

Figure 5.12: Box plots of the translation and rotation errors for the stairs and wood-
summer datasets. GOGMA with refinement is denoted by GOGMAR and Go-ICP with con-
vergence threshold ε=10−4 and ε=5×10−5 by Go-ICPa and Go-ICPb. GOGMA generated few
outliers, all of which were in the vicinity of the correct transformation. In contrast, Go-ICP
generated many outliers, most of which were incorrect even by the coarsest success criterion.
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(a) stairs point-sets 4 and 5 (b) wood-summer point-sets 0 and 1

Figure 5.13: Qualitative results for two large-scale datasets. The blue scan was aligned by
GOGMA from an arbitrary initial pose against the red scan, followed by GMA refinement.

threshold of ε = 10−4 and N = 50 points. With ε an order of magnitude smaller
(10−5), N an order of magnitude greater (500), or any trimming, the runtime became
prohibitively slow. For example, the stairs experiments with ε=10−5 and N=50 did
not terminate within 7 days, at which point it had completed 60% of the experiments
with runtimes of up to 5000s per alignment. The tightest feasible ε (5×10−5) had a more
reasonable runtime but still failed to coarsely align 19% of point-set pairs for stairs
and 16% for wood-summer. These failure cases were likely due to the prevalence of
structured outliers in the data and are undesirable for a globally-optimal algorithm.
Finally, the results show that ICP and CPD both perform poorly without a good pose
prior, converging to local minima for most initialisations.

The box-plots in Figure 5.12 provide a detailed look at the results for the GOGMA
and Go-ICP algorithms. GOGMA generated few alignment outliers, all of which were
in the vicinity of the correct transformation, demonstrating the robustness of the ap-
proach. In contrast, Go-ICP generated many alignment outliers, most of which were
incorrect even by the coarsest success criterion. These alignment outliers were likely
due to the structured outliers inherent to partially-overlapping point-sets. Under the
Go-ICP framework, trimming would be required to handle these outliers, however any
trimming made the runtime prohibitive for these datasets.

5.6.4 Application: The Kidnapped Robot Problem

A specific application of partial-to-full registration is the kidnapped robot problem:
finding the pose of a sensor within a 3D map. Also known as global localisation, this
requires a 3D map of the entire environment in which the sensor could be located and
does not assume a pose prior is available (hence having been ‘kidnapped’). For this
experiment, the apartment dataset from Pomerleau et al. [2012] was used, which
provides a global map of the apartment with a bounding box of 17× 10× 3m, single-
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Table 5.5: Sensor localisation results for scans of four rooms (A–D) from the apartment
dataset. The mean translation error (in metres), rotation error (in degrees), and runtime (in
seconds), and the fine (F) registration success rate (defined in the text) are reported.
Room Scan A B C D
Translation Error 0.16 0.22 0.40 0.35
Rotation Error 0.93 0.89 1.95 2.35
Success Rate (F) 100 100 100 100
Runtime 328 383 379 409

A

C

B

D

Figure 5.14: Pose estimates (black spheres) of the sensor locations for 4 room scans (red,
blue, green and purple) found by aligning each scan with the entire map (grey) using GOGMA.

viewpoint scans with an average of 365 000 points and an accurate ground-truth. The
dataset contains many dynamic elements, including moved boxes, chairs and people.

Four sensor positions (A–D) were selected, which correspond to four different rooms
in the apartment. The scans from these positions were centred with respect to their
bounding boxes, removing any translation prior, and were perturbed by the 72 ISOI
rotations, removing any rotation prior, to simulate being lost or kidnapped. Finally,
the GOGMA algorithm was used to localise the scans within the map. As shown in
Table 5.5 and Figure 5.14, all positions were correctly localised.

5.7 Discussion

As discussed in Section 3.4, finding the global optimum of an objective function does
not necessarily imply finding the ground-truth transformation. For Gaussian mixture
alignment, there are two confounding factors: the quality of the representation and
structured outliers induced by partial overlap and occlusion. The former refers to how
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well the Gaussian mixtures describe the underlying surfaces. Increasing the number of
components or using non-isotropic covariances can enable a Gaussian mixture to model
increasingly complex surfaces, depending on the method used to learn the mixture.
However, this is limited by the sampling rate of the point-sets. A mixture with too many
components may model the sampled point-set very well, but may model the underlying
surfaces less well. A smaller number of components is often more satisfactory, since it
regularises the mixture, creating a smoother surface while still adapting to local surface
complexity. However, if the number of components is too small, the mixture may not
model the underlying surfaces well and hence the optimal alignment of this mixture
with another may not occur at the true alignment of the surfaces.

Structured outliers induced by partially-overlapping point-sets and occlusion may
also cause the optimal transformation to diverge from the ground-truth transformation.
For Gaussian mixtures generated from partially-overlapping point-sets, there may exist
an alignment that produces a smaller function value than the ground-truth alignment.
However, the L2 density distance objective function is much less susceptible to par-
tial overlap and occlusion than other objective functions, being robust to structured
outliers. This is reflected in the results presented in Section 5.6, which show that opti-
mality with respect to the L2 distance measure closely corresponds to optimality with
respect to the true alignment. See Section 3.4.6 for more details on how the robustness
of this objective function arises.

It is important to ask whether it is necessary to find the global optimum instead of a
local optimum, with respect to accuracy, reliability and runtime. The results presented
in Section 6.6 indicate that this is certainly the case for accuracy and especially relia-
bility. This is unsurprising, since the objective function is highly non-convex, having a
very large number of local minima. Local solvers, such as ICP and CPD, are likely to
become trapped at a local minimum near the pose prior with which the algorithm was
initialised. However, whether the optimality–runtime trade-off is acceptable depends
on the application.

GOGMA provides an additional level of flexibility for this trade-off, since the rep-
resentation resolution (the number of Gaussian components) can be reduced, thereby
reducing the runtime. The experiments in Section 5.6.3 using GOGMA with refine-
ment show how a highly accurate result can be obtained by running GOGMA with a
relatively small number of components (~50), then refining the result with local opti-
misation with a higher number of components (~1000). While optimality cannot be
guaranteed with respect to the 1000-component mixtures, it is very probable that the
result is optimal. Evidence for this is shown in the box-plots of Figure 5.12, where the
outlier (incorrect) alignments for 50-component GOGMA were few and always in the
vicinity of the correct transformation. This means that the alignment of the low resolu-
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tion mixtures corresponded closely with the alignment of the high resolution mixtures
despite being orders of magnitude faster.

The GOGMA algorithm has two significant limitations. The first is the coupling of
rotation and translation. In many cases it would be preferable for these transformation
parameters to be decoupled. For example, when the translation domain is large, it may
be desirable to branch further over the translation sub-cubes, without branching further
over the rotation sub-cubes. Alternatively, the datasets may have many rotational near-
symmetries, for which further subdivision of the rotation but not translation sub-cubes
may be necessary. Moreover, if a specific application provides prior information about
the pose, such as restricting the set of possible rotations, a decoupled approach would
be better. This could be done using a nested octree structure, such as that in Yang
et al. [2016], where translation search is nested inside rotation search. However, this
structure is less easily parallelisable than the hyperoctree structure.

The second limitation is time complexity. The GOGMA algorithm has a time com-
plexity of O(n1n2) and therefore cannot handle large numbers of Gaussian components
without increasing the runtime substantially. As a result, scenes cannot be modelled
to a high resolution, increasing the ambiguity of the alignment problem. One solution
is to introduce a data structure analogous to the distance transform that stores the
set of K least-attenuated Gaussians at each point in R3, reducing the time complex-
ity to O(Kn1). This makes use of the observation that Gaussians far from any given
point have very little influence on the function value at that point, due to the rapid
attenuation of Gaussians. By reducing the time complexity in this way, both Gaus-
sian mixtures could contain more components, and one mixture could be substantially
larger. This would enable the algorithm to be used for the kidnapped robot problem
in large environments, where the map is many times the size of the single-view scan.

5.8 Summary

This chapter developed a theoretical framework for robust and globally-optimal 3D–3D
registration by solving the Gaussian mixture alignment problem under the L2 distance.
The algorithm applied the branch-and-bound paradigm to guarantee global optimal-
ity regardless of initialisation and used local optimisation to accelerate convergence.
The pivotal contribution was the derivation of the objective function bounds using the
geometry of SE(3). The algorithm outperformed other local and global methods on
challenging field datasets, due to an objective function that is robust to structured out-
liers induced by partial-overlap and occlusion. The experimental evaluation provided
evidence that a robust objective function and global optimality are critical for reliable
3D–3D alignment.



§5.8 Summary 159

There are several areas that warrant further investigation with regard to the imple-
mentation of the algorithm. Firstly, runtime benefits could be realised by implementing
the local optimisation on the GPU instead of the CPU. Furthermore, using a dynamic
branching factor would allow more parallelism for the same memory requirements. Fi-
nally, a serial implementation could be developed to enable devices without a GPU to
run the algorithm, with a time-efficient nested branch-and-bound structure. Beyond
improving the implementation, there are also elements of the theory for which fur-
ther work would be justified. Firstly, the rotation and translation uncertainty bounds
could be tightened by inspecting the rotation and translation cubes directly, rather
than using the spherical cap and circumsphere. Finally, extending the lower bound to
handle full covariances with the Mahalanobis distance would enable the algorithm to
be applied to more expressive Gaussian mixtures.

The following chapter will extend the investigation of robust objective functions
and global optimality to the 2D–3D geometric alignment problem. There will be some
elements in common with this chapter, including the branch-and-bound framework,
however much of the material is characteristic to the problem. This predominantly
stems from combining directional and positional data for 2D–3D alignment. In addi-
tion, the bounds on the transformation uncertainty proposed in this chapter will be
extended in the next, deriving tighter and more sophisticated bounds applicable to
both the 2D–3D and the 3D–3D problems.
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Chapter 6

Robust and Globally-Optimal
2D–3D Alignment

The focus of this chapter is the geometric alignment of 2D directional sensor data, such
as an image, with 3D positional sensor data, such as a laser scan, where the data may
be corrupted by noise and random or structured outliers. This can be used to solve the
problem of estimating the six degrees-of-freedom pose of a camera (or the viewpoint
of a multi-camera system) from a single image relative to a precomputed 3D point-
set. Perspective-n-Point (PnP) solvers are routinely used for camera pose estimation,
but are contingent on the provision of a good quality set of 2D–3D correspondences.
Finding cross-modality correspondences between 2D and 3D points is non-trivial, par-
ticularly when only geometric (position) information is known. Existing approaches to
the 2D–3D simultaneous pose and correspondence problem use local optimisation, and
are therefore unlikely to find the optimal solution without a good pose initialisation,
or introduce restrictive assumptions and non-robust objective functions. Since a large
proportion of outliers and many local optima are common for this problem, a useful
alignment solver needs to be both robust and global. Globally-optimal approaches have
the additional advantage of reliability, providing a guarantee that the solution is the
global optimum.

In this chapter, a novel inlier set cardinality maximisation algorithm is proposed
to jointly and robustly estimate the optimal camera pose and correspondences. The
approach employs branch-and-bound to search the 6D space of camera poses, guar-
anteeing global optimality without requiring a pose prior. The geometry of SE(3) is
used to find novel upper and lower bounds for the objective function and local optimi-
sation is integrated to accelerate convergence. Evaluation on a range of synthetic and
real data empirically supports the optimality proof and shows that the method per-
forms much more robustly than existing approaches, with runtime characteristics for
the GPU implementation that are competitive with non-optimal approaches. Finally,
another robust and globally-optimal approach based on minimising the L2 distance

161
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GOPAC
R t,

Figure 6.1: Estimating the 6-DoF absolute pose of a calibrated camera from a single image,
relative to a 3D point-set, with no 2D–3D correspondences. The GOPAC algorithm solves this
general case of the absolute camera pose problem with minimal assumptions about the data,
simultaneously solving for the position and orientation of the camera in the world coordinate
frame and the 2D–3D correspondences. To do so, a globally-optimal branch-and-bound ap-
proach is used, with tight novel bounds on the cardinality of the inlier set. In this example, the
algorithm is used for the visual localisation of a car from a camera, with respect to a large-scale,
unorganised 3D point-set captured by vehicle-mounted laser scanner.

between mixture models is outlined using the same framework developed for the cardi-
nality maximisation algorithm. The outline demonstrates how the theoretical insights
from the first algorithm can be transferred to develop algorithms with other objective
functions and sensor data representations.

6.1 Introduction

Estimating the pose of a calibrated camera given a set of 2D points in the camera frame
and a set of 3D points in the world frame, as shown in Figure 6.1, is a fundamental part
of the general 2D–3D registration problem of aligning an image with a 3D scene or
model. The ability to find the pose of a camera and map visual information onto a 3D
model and vice versa is useful for many tasks, including camera localisation and tracking
[Fischler and Bolles, 1981; Nöll et al., 2011; Kneip et al., 2015], augmented reality
[Marchand et al., 2016], motion segmentation [Olson, 2001] and object recognition
[Huttenlocher and Ullman, 1990; Mundy, 2006; Aubry et al., 2014].

When correspondences are known, this becomes the Perspective-n-Point (PnP)
problem for which many solutions exist [Haralick et al., 1994; Lepetit et al., 2009;
Kneip et al., 2011; Hesch and Roumeliotis, 2011]. However, while hypothesise-and-test
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frameworks such as RANSAC [Fischler and Bolles, 1981] can mitigate the sensitivity
of PnP solvers to outliers in the correspondence set, few approaches are able to handle
the case where 2D–3D correspondences are not known in advance.

There are many circumstances under which correspondences may be difficult to
ascertain, including the general case of aligning an image with a textureless 3D point-
set or CAD model. While feature extraction techniques provide a relatively robust
and reproducible way to detect interest points such as edges or corners within each
modality, finding correspondences across the two modalities is much more challeng-
ing, as shown in Figure 6.2. Even when the point-set has sufficient visual information
associated with it, such as colour, reflectance or SIFT features [Lowe, 2004], repeti-
tive elements, occlusions and perspective distortion make the correspondence problem
non-trivial. Moreover, appearance and thus visual features may change significantly
between viewpoints, lighting conditions, weather and seasons, whereas scene geometry
is often less affected. When re-localising a camera in a previously mapped environment
or bootstrapping a tracking algorithm, this thesis contends that geometry is often
more reliable. Therefore, there is a need for methods that solve for both pose and
correspondences.

Efficient local optimisation algorithms for solving this joint problem have been pro-
posed [David et al., 2004; Moreno-Noguer et al., 2008]. However, they require a pose
prior, search only for local optima and do not provide an optimality guarantee, yielding
erroneous pose estimates without a reliable means of detecting failure. Hypothesise-
and-test approaches such as RANSAC [Fischler and Bolles, 1981], when applied to the
correspondence-free problem [Grimson, 1990], are global methods that are not reliant
on pose priors but quickly become computationally intractable as the number of points
and outliers increase and do not provide an optimality guarantee. More recently, a
global and ε-suboptimal method has been proposed [Brown et al., 2015], which uses a
branch-and-bound approach to find a camera pose whose trimmed geometric error is
within ε of the global minimum.

In this chapter, the first globally-optimal inlier set cardinality maximisation solution
to the simultaneous pose and correspondence problem is proposed. Named GOPAC,
the algorithm has three key features, summarised in Figure 6.3. The approach employs
a branch-and-bound framework to guarantee global optimality without requiring a pose
prior, ensuring that it is not susceptible to local optima. The space of rigid motions, the
Special Euclidean group SE(3), is parametrised in a way that facilitates branching and
allows tight and novel bounds on the objective function to be derived for each branch. In
addition, local optimisation methods are tightly integrated to accelerate convergence
without voiding the optimality guarantee. A multi-threaded implementation on the
GPU provides an additional means for greatly accelerating the algorithm.
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? ? ?

Figure 6.2: The cross-modality correspondence problem. 2D–3D correspondences are difficult
to obtain, particularly across modalities. In the situation illustrated here, the point-set was
captured by a laser scanner and has no visual information associated with it, making the
correspondence problem challenging.

There are several advantages to using a cardinality maximisation approach. Firstly,
it allows an exact optimiser to be found, unlike the ε-suboptimality inherent to the
continuous objective function used in Brown et al. [2015]. More critically, cardinality
maximisation is inherently robust to 2D and 3D outliers without smoothing the func-
tion surface and thereby moving or concealing the location of the global optimum. In
contrast, other techniques to robustify geometric alignment objective functions, such
as trimming or using robust loss functions, smooth and distort the surface of the orig-
inal objective function. This may move the location of the global optimum and reduce
its prominence with respect to other optima. In addition, trimming requires the user
to specify the inlier fraction, which can rarely be known and is less intuitive to se-
lect than a geometrically meaningful inlier threshold. If the inlier fraction is over- or
under-estimated, this approach may converge to the wrong pose, without a means to
detect failure. Figure 3.4 demonstrates how the global optimum of a trimmed objec-
tive function, as used by Brown et al. [2015] and Yang et al. [2016] for registration
problems, may not occur at the true pose, a problem that is exacerbated when the
inlier fraction is guessed incorrectly. A final advantage of cardinality maximisation is
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Correspondence
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GOPAC

Figure 6.3: Key features of the GOPAC algorithm, a globally-optimal algorithm for camera
pose and correspondence recovery. GOPAC lies in the intersection region of three desirable
features for 2D–3D registration algorithms. It is robust to outliers since it maximises the
number of inliers directly, unlike Brown et al. [2015]. It uses branch-and-bound with tight
novel bounds to find the global maximum of the objective function, and therefore does not
need a pose prior, unlike SoftPOSIT [David et al., 2004] and BlindPnP [Moreno-Noguer et al.,
2008]. Finally, it jointly solves for pose and correspondences using only geometry and therefore
does not need any correct correspondences to be provided, unlike PnP methods including robust
P3P–RANSAC.

that it operates directly on discrete sensor data representations, 2D and 3D points,
without making assumptions about the underlying structure of the data. As a result,
it can be applied in situations where the structure is not obvious from the data, such as
for sparse point-sets. For example, it could be used to align an image and a point-set
captured simultaneously of a flock of birds or a swarm of drones.

While this cardinality maximisation approach operates directly on discrete sensor
data, not every pixel in an image is geometrically meaningful. For example, there are
no 3D points in a point-set that correspond to sky pixels in an image. Similarly, there
may be no 3D points that correspond to pixels of dynamic objects such as vehicles,
since they may not have been present in the scene when the point-set was captured.
Consequently, a pre-processing step must be applied to extract 2D points that may
correspond to elements in the point-set. Emphatically, this step does not seek to find
putative 2D–3D correspondences, it seeks to isolate points in the image that may
appear in the point-set, that is, structural elements of the scene.
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The chapter is organised as follows: the problem is contextualised by summarising
the relevant literature in Section 6.2; a robust cardinality maximisation objective func-
tion for 2D–3D alignment is introduced in Section 6.3; a parametrisation of the domain
of 3D motions, a branching strategy and a derivation of the bounds are developed in
Section 6.4; an algorithm is proposed for globally-optimal pose and correspondence in
Section 6.5; and its performance is evaluated and discussed in Sections 6.6 and 6.7.
Finally, the transferability of the theoretical framework is demonstrated by applying
the main results to another robust objective function in Section 6.8.

6.2 Related Work

A large body of work exists for solving the 2D–3D registration problem when corre-
spondences are provided. When the correspondences are known perfectly, Perspective-
n-Point (PnP) solvers [Haralick et al., 1994; Lepetit et al., 2009; Kneip et al., 2011;
Hesch and Roumeliotis, 2011] are able to estimate the pose of a calibrated camera
given a set of noisy image points and their corresponding 3D points. When outliers are
present in the correspondence set, the RANSAC framework [Fischler and Bolles, 1981;
Chum and Matas, 2008] or robust global optimisation [Enqvist and Kahl, 2008; Li,
2009; Enqvist et al., 2012; Ask et al., 2013; Svärm et al., 2014; Enqvist et al., 2015;
Svärm et al., 2016] can be used to find the inlier set. Alternatively, outlier removal
schemes can make the problem more tractable [Sim and Hartley, 2006; Olsson et al.,
2010; Yu et al., 2011; Chin et al., 2016]. Other methods develop sophisticated match-
ing strategies to avoid outlier correspondences at the outset [Li et al., 2010; Sattler
et al., 2011, 2012; Li et al., 2012]. However, these methods are only feasible when some
correct correspondences are available. For this reason, they are often only practical
for 3D models that have been constructed using stereopsis or Structure-from-Motion
(SfM). These models associate an image feature with each 3D point, facilitating inter-
modality feature matching. Generic point-sets do not have this property; a point may
lie anywhere on the underlying surfaces in a laser scan, not just where strong image
gradients occur. It should be observed that some of these approaches [Fischler and
Bolles, 1981; Enqvist and Kahl, 2008] can be extended to the correspondence-free case
by providing the algorithm with all possible permutations of the correspondence set.
However, this leads to a hard combinatorial problem that quickly becomes infeasible.

When correspondences are unknown, the problem becomes more challenging. For
the 2D–2D case, problems such as correspondence-free rigid registration [Besl and
McKay, 1992; Breuel, 2003], SfM [Dellaert et al., 2000; Makadia et al., 2007; Lin
et al., 2012] and relative camera pose [Fredriksson et al., 2016] have been addressed.
For the 2D–3D case, solutions have been proposed for registering a collection of images



§6.2 Related Work 167

[Paudel et al., 2015b] or multiple cameras [Paudel et al., 2015a] to a 3D point-set.
The more general problem, however, is pose estimation from a single image. David
et al. [2004] proposed the SoftPOSIT algorithm to efficiently solve the simultaneous
pose and correspondences problem from a single image. It alternates correspondence
assignment using SoftAssign [Gold and Rangarajan, 1996] with an iterative pose update
algorithm POSIT [Dementhon and Davis, 1995], applying deterministic annealing to
encourage a large basin of convergence. A similar approach was taken by Moreno-
Noguer et al. [2008] with the BlindPnP algorithm, which represents the pose prior
as a Gaussian mixture model from which a Kalman filter is initialised for matching.
It outperforms SoftPOSIT when large amounts of clutter, occlusions and repetitive
patterns are present but is otherwise comparable. However, both of these approaches
are susceptible to local optima, require good pose priors and cannot guarantee that the
global optimum is attained.

Grimson [1990] applied a RANSAC-like approach to the correspondence-free case,
removing the need for a pose prior, but the method was not optimal and quickly became
intractable as the number of points increased. In contrast, globally-optimal methods
find a camera pose that is guaranteed to be an optimiser of an objective function
without requiring a pose prior, but tractability remains a challenge. A Branch-and-
Bound (BB) [Land and Doig, 1960] strategy may be applied in these cases, for which
bounds need to be derived. For example, Breuel [2003] used BB for 2D–2D registration
problems, Hartley and Kahl [2009] for optimal relative pose estimation by bounding
the group of 3D rotations, Li and Hartley [2007] for rotation-only 3D–3D registration,
Olsson et al. [2009] for 3D–3D registration with known correspondences, Yang et al.
[2016] for full 3D–3D registration and Campbell and Petersson [2016] for robust 3D–
3D registration. While not optimal, Jurie [1999] used an approach similar to BB for
2D–3D alignment with a linear approximation of perspective projection. More recently,
Brown et al. [2015] proposed a global and ε-suboptimal method using BB. It found a
camera pose whose trimmed geometric error, the sum of angular distances between the
bearings and their rotationally-closest 3D points, was within ε of the global minimum.
While not susceptible to local minima, it required the inlier fraction to be specified,
which can rarely be known in advance, in order to trim outliers. In addition, the use
of ε annealing in their framework invalidates the guarantee of ε-suboptimality, since
branches containing the correct pose may be pruned early.

The work presented in this chapter is the first globally-optimal inlier set cardinality
maximisation solution to the simultaneous pose and correspondence problem. It is
guaranteed to find the exact global optimum without requiring a pose prior and is
robust to 2D and 3D outliers while avoiding the distortion of trimming.
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6.3 Inlier Set Cardinality Maximisation

The cardinality of the inlier set is a robust objective function, discussed in detail in
Section 3.4.4, that counts the number of inliers given a specific transformation of the
data. A data element is classified as a member of the inlier or outlier sets with reference
to a distance measure and a threshold θ. The objective function can operate directly
on raw data representations without making assumptions about the structure of the
data and is inherently robust to outliers without smoothing the objective function and
thereby distorting or concealing the location of the global optimum.

For 2D–3D directional sensor data alignment, the inlier set consists of those bearing
vectors that are within θ of any point in the point-set with respect to the angular
distance metric, as shown in Figure 6.4. Let p ∈ R3 be a 3D point and f ∈ R3 be a
bearing vector with unit norm, corresponding to a 2D point imaged by a calibrated
camera. That is, f ∝ K−1x̂ where K is the matrix of intrinsic camera parameters and x̂
is the homogeneous image point. Given a set of points P = {pi}Mi=1 and bearing vectors
F = {fi}Ni=1 and an inlier threshold θ, the objective is to find a rotation R ∈ SO(3)
and translation t ∈ R3 that maximises the cardinality ν of the inlier set SI

ν∗ = max
R, t
|SI | (6.1)

SI = {f ∈ F | ∃p ∈ P : ∠(f ,R(p− t)) 6 θ} (6.2)

where ∠(·, ·) denotes the angular distance between vectors. An equivalent formulation
is given by

ν∗ = max
R, t

f(R, t) (6.3)

ν = f(R, t) =
∑
f∈F

max
p∈P

1
(
θ − ∠(f ,R(p− t))

)
(6.4)

where 1(x) , 1R≥0(x) is the indicator function that has the value 1 for all elements of
the non-negative real numbers and the value 0 otherwise. All correspondences (fi,pj)
with respect to θ can be found from the optimal transformation parameters R∗ and t∗

by identifying all pairs for which ∠(fi,R∗(pj − t∗)) 6 θ.
An important consideration is which asymmetric inlier measure to apply. If the

number of 3D point inliers were maximised, a set of degenerate poses would be found,
where all 3D points were inliers with respect to a single bearing vector. These degen-
erate poses position the camera far from the point-set such that all points fall within
the inlier cone of one bearing vector, as shown in Figure 3.5. Instead, the number of
bearing vector inliers is maximised. However, this can also result in degenerate poses,
where the camera is positioned close to a region of 3D points, such as a wall. If the
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Figure 6.4: Definition of the inlier set for 2D–3D directional sensor data alignment. The
inlier set is defined as the set of those bearing vectors in F that are within θ of any point in P
with respect to the angular distance metric.

region is sufficiently densely-sampled and the camera field-of-view is less than 180◦, all
bearing vectors can become inliers with respect to several of the 3D points. However,
this is much less common in real datasets, particularly for panoramic imagery, and can
be avoided by setting a minimum point-to-camera distance. The relative advantages
and disadvantages of symmetric objective functions will be discussed in Section 6.7.

6.4 Branch-and-Bound

To solve the highly non-convex cardinality maximisation problem (6.1), the global
optimisation technique of Branch-and-Bound (BB) [Land and Doig, 1960] may be
applied. To do so, a suitable means of parametrising and branching (partitioning) the
function domain must be found, as well as an efficient way to calculate upper and
lower bounds of the function for each branch that converge as the branch size tends
to zero. While the bounds need to be computationally efficient to calculate, the time
and memory efficiency of the algorithm also depends on how tight the bounds are,
since tighter bounds reduce the search space quicker by allowing suboptimal branches
to be pruned. These two factors are generally in opposition and must be optimised
together. Many more details on the branch-and-bound algorithm and its application
to the geometric alignment problem can be found in Section 3.7.
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(a) Rotation Domain Ωr
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τz
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(b) Translation Domain Ωt

Figure 6.5: Parametrisation of SE(3). (a) The rotation space SO(3) is parametrised by
angle-axis 3-vectors in a solid radius-π ball. (b) The translation space R3 is parametrised
by 3-vectors bounded by a cuboid with half-widths [τx, τy, τz]. The domain is branched into
sub-cuboids as shown using nested octree data structures.

6.4.1 Parametrising and Branching the Domain

To find a globally-optimal solution, the cardinality of the inlier set SI must be optimised
over the domain of 3D motions, that is, the group SE(3) = SO(3)×R3. However, the
space of these transformations is unbounded. Therefore, to apply the BB paradigm,
the space of translations is restricted to be within the bounded set Ωt. For a suitably
large set, it is reasonable to assume that the camera centre lies within Ωt. That is, the
camera can be assumed to be a finite distance from the 3D points. The domains are
shown in Figure 6.5.

Rotation space SO(3) is minimally parametrised with angle-axis 3-vectors r with
rotation angle ‖r‖ and rotation axis r/‖r‖. The notation Rr ∈ SO(3) is used to
denote the rotation matrix obtained from the matrix exponential map of the skew-
symmetric matrix [r]× induced by r. The Rodrigues’ rotation formula (3.10) can be
used to efficiently calculate this mapping. See Section 3.1.2 for more details. Using
this parametrisation, the space of all 3D rotations can be represented as a solid ball of
radius π in R3. The mapping is one-to-one on the interior of the π-ball and two-to-one
on the surface. For ease of manipulation, the 3D cube circumscribing the π-ball is used
as the rotation domain Ωr, as in Li and Hartley [2007].

Translation space R3 is parametrised with 3-vectors in a bounded domain chosen
as the cuboid Ω′t containing the bounding box of P. If the camera is known to be inside
the 3D scene, Ω′t can be set to the bounding box, otherwise it is set to an expansion of
the bounding box. To avoid the non-physical case where a 3D point is located within a
very small value ζ of the camera centre, the translation domain is restricted such that
Ωt = Ω′t ∩ {t ∈ R3 | ‖p− t‖ > ζ,∀p ∈ P}.
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In this implementation of BB, the domain is branched into sub-cuboids using nested
octree data structures. They are defined as

C(x0, δ) = {x ∈ R3 | eᵀi (x− x0) ∈ [−δi, δi], i = 1, 2, 3} (6.5)

where δ is the vector of half side-lengths of the cuboid and ei is the ith standard basis
vector. To simplify the notation, Cr = C(r0, δr) and Ct = C(t0, δt) is used for the
rotation and translation sub-cuboids respectively.

6.4.2 Bounding the Branches

The success of a branch-and-bound algorithm is predicated on the quality of its bounds.
For inlier set maximisation, the objective function (6.4) needs to be bounded within a
transformation domain. Some preparatory material is now presented.

Uncertainty Angle Bounds

If a branch contained a single rotation or translation, then the new position of a point
transformed by that branch would be known with certainty. However, each branch
contains a set of (infinitely) many different rotations or translations. Transforming a
point by a contiguous set of rotations or translations induces a transformation region,
shown in Figure 6.6. The transformation region lies on a sphere for rotations and in
R3 for translations.

To bound the objective function on a branch, a bound on the maximum or worst-
case angular deviation needs to be calculated, with respect to some arbitrary reference
transformation in the branch. For simplicity, the reference transformation is the rota-
tion or translation associated with the centre of the cuboidal branch. In this work, the
maximum deviation is termed the uncertainty angle because it expresses how far from
the reference transformation the optimal in-branch transformation might be.

The uncertainty angles induced by a rotation and translation sub-cuboid on a point
p are shown in Figure 6.6. The transformed point lies within a cone with aperture
angle equal to the sum of the rotation and translation uncertainty angles.

A weak bound on the uncertainty angle due to rotation was derived in Hartley
and Kahl [2009] using a proof, summarised in Lemma 5.1, that the angle between two
rotated vectors is less than the Euclidean distance between their rotations’ angle-axis
representations in R3. From this, a bound on the maximum angle between a vector p
rotated by r0 and p rotated by r ∈ Cr for a cube of rotation angle-axis vectors Cr can
be found. For reference, the bound is reproduced here.
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Figure 6.6: Uncertainty angles induced by rotation and translation sub-cuboids. (a) Rotation
uncertainty angle ψr for Cr. The optimal rotation of p may be anywhere within the umbrella-
shaped region on the sphere, which is entirely contained by the cone defined by Rr0p and ψr.
(b) Translation uncertainty angle ψt for Ct. The optimal translation of p may be anywhere
within the cuboidal region, which is entirely contained by the cone defined by p− t0 and ψt.

Lemma 6.1. (Weak rotation uncertainty angle bound) Given a 3D point p and a

rotation cube Cr of half side-length δr centred at r0, then ∀r ∈ Cr,

∠(Rrp,Rr0p) 6 min{
√

3δr, π} , ψwr (Cr). (6.6)

Proof. Inequality (6.6) can be derived as follows:

∠(Rrp,Rr0p) 6 min{‖r− r0‖, π} (6.7)

6 min{
√

3δr, π} (6.8)

where (6.7) follows from Lemma 5.1 and the maximum possible angle between points
on a sphere and (6.8) follows from max ‖r− r0‖ =

√
3δr, the half space diagonal of the

rotation cube, for r ∈ Cr.

However, a tighter bound can be found by observing that a point rotated about an
axis parallel to the position vector of the point is not displaced. Therefore, equally-
sized rotation cubes will displace a point by differing amounts depending on the an-
gle between the point vector and the angle-axis vectors. To exploit this, the angle
∠(Rrp,Rr0p) is instead maximised over the surface Sr of the cube Cr as follows.
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Lemma 6.2. (Rotation uncertainty angle bound) Given a 3D point p and a rotation

cube Cr centred at r0 with surface Sr, then ∀r ∈ Cr,

∠(Rrp,Rr0p) 6 min
{

max
r∈Sr

∠(Rrp,Rr0p), π
}
, ψr(p, Cr). (6.9)

Proof. Inequality (6.9) can be derived as follows:

∠(Rrp,Rr0p) 6 min
{

max
r∈Cr

∠(Rrp,Rr0p), π
}

(6.10)

= min
{

max
r∈Sr

∠(Rrp,Rr0p), π
}

(6.11)

where (6.10) follows from maximising the angle over the rotation cube Cr and capping
the angle at the maximum possible angle between points on a sphere and (6.11) is a
consequence of the order-preserving mapping, with respect to the radial angle, from
the convex cube of angle-axis vectors to the spherical surface patch (see Figure 6.6(a)),
since the mapping is obtained by projecting from the centre of the sphere to the surface
of the sphere. See Section 6.5.4 for further details.

A weak bound on the uncertainty angle due to translation was derived in Brown
et al. [2015] by enclosing the translation cuboid within a circumsphere of radius ρt.
From this, a bound on the maximum angle between a vector p translated by t0 and p
translated by t ∈ Ct for a cube of translation vectors Ct can be found. For reference,
the bound is reproduced here.

Lemma 6.3. (Weak translation uncertainty angle bound) Given a 3D point p and a

translation cuboid Ct centred at t0 with half space diagonal ρt, then ∀t ∈ Ct,

∠(p− t,p− t0) 6


arcsin

(
ρt

‖p− t0‖

)
if ‖p− t0‖ > ρt

π else

, ψwt (p, Ct). (6.12)

Proof. As given in Brown et al. [2015].

However, a tighter bound can be found by using the cuboid of translated points
(Figure 6.6(b)) directly instead of its circumsphere. When the cuboid does not contain
the origin, the angle can be found by maximising over the cuboid vertices.

Lemma 6.4. (Translation uncertainty angle bound) Given a 3D point p and a trans-

lation cuboid Ct centred at t0 with vertices Vt, then ∀t ∈ Ct,

∠(p− t,p− t0) 6


max
t∈Vt

∠(p− t,p− t0) if p /∈ Ct

π else
, ψt(p, Ct). (6.13)
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Proof. Observe that for p ∈ Ct, the cuboid containing all translated points p − t also
contains the origin. Therefore the vectors p−t and p−t0 can be antiparallel (oppositely
directed) and thus the maximum angle is π. For p /∈ Ct,

∠(p− t,p− t0) 6 max
t∈Ct

∠(p− t,p− t0) (6.14)

= max
t∈Vt

∠(p− t,p− t0) (6.15)

where (6.14) follows from maximising the angle over the translation cuboid Ct and
(6.15) follows from the convexity of the angle function in this domain. The maximum
of a convex function over a convex set must occur at one of its extreme points, which
for this set are the vertices. Geometrically, the cuboid p − t for t ∈ Ct and p /∈ Ct
projects to a spherical hexagon on the unit sphere. The geodesic from an arbitrary
fixed point in the hexagon to any point in the hexagon is maximised when the variable
point is a vertex of the hexagon.

Objective Function Bounds

The preceding lemmas are used to bound the maximum of the objective function (6.4)
within a transformation domain Cr × Ct. A lower bound can be found by evaluating
the function at any transformation in the branch. In this case, the transformation at
the centre of the rotation and translation cuboids is convenient and quick to evaluate.

Theorem 6.1. (Lower bound) For the transformation domain Cr×Ct centred at (r0, t0),
the lower bound of the inlier set cardinality can be chosen as

¯
ν , f(Rr0 , t0). (6.16)

Proof. The validity of the lower bound follows from

f(Rr0 , t0) 6 max
r∈Cr
t∈Ct

f(Rr, t). (6.17)

That is, the function value at a specific point within the domain is less than or equal
to the maximum within the domain.

An upper bound on the objective function within a transformation domain Cr × Ct
can be found using the bounds on the uncertainty angles ψr and ψt. The geometric in-
tuition for the upper bound is that it relaxes the inlier threshold by the two uncertainty
angles, creating a more permissive inlier set, as shown in Figure 6.7.



§6.4 Branch-and-Bound 175

θ+ψr+ψt
O

f

θ

Rr0(p−t0)

Figure 6.7: Geometric intuition for the upper bound. The inlier threshold is relaxed by the
two uncertainty angles ψr and ψt, creating a more permissive inlier set and hence an upper
bound on the cardinality.

Theorem 6.2. (Upper bound) For the transformation domain Cr × Ct centred at

(r0, t0), the upper bound of the inlier set cardinality can be chosen as

ν̄ ,
∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψr(f , Cr) + ψt(p, Ct)

)
. (6.18)

Proof. Observe that ∀(r, t) ∈ (Cr × Ct),

∠
(
f ,Rr(p− t)

)
= ∠

(
R−1

r f ,p− t
)

(6.19)

> ∠(R−1
r0 f ,p− t)− ∠(R−1

r f ,R−1
r0 f) (6.20)

> ∠(R−1
r0 f ,p− t0)− ∠(R−1

r f ,R−1
r0 f)− ∠(p− t,p− t0) (6.21)

> ∠
(
f ,Rr0(p− t0)

)− ψr(f , Cr)− ψt(p, Ct) (6.22)

where (6.20) and (6.21) follow from the triangle inequality in spherical geometry (see
Figure 6.8) and (6.22) follows from Lemmas 6.2 and 6.4. Substituting (6.22) into
(6.4) completes the proof.

By inspecting the translation component of Theorem 6.2 and removing one of
the two applications of the triangle inequality (6.21), a tighter upper bound can be
found. A similar approach cannot be taken for the rotation component since R−1

r f is
a complex surface due to the nonlinear conversion from angle-axis to rotation matrix
representations. To reduce computation, it is only necessary to evaluate this tighter
bound when ∠

(
f ,Rr0(p− t0)

)
6 θ + ψr(f , Cr) + ψt(p, Ct), since otherwise the point is

definitely an outlier and does not need to be investigated further.
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Figure 6.8: The triangle inequality in spherical geometry, given by γ 6 α + β. (a) First
inequality: ∠

(
R−1

r0
f ,p− t

)
6 ∠

(
R−1

r f ,p− t
)

+ ∠
(
R−1

r f ,R−1
r0

f
)
. (b) Second inequality:

∠
(
R−1

r0
f ,p− t0

)
6 ∠

(
R−1

r0
f ,p− t

)
+ ∠(p− t,p− t0). The transformed points have been

normalised to lie on the unit sphere.

Theorem 6.3. (Tighter upper bound) For the transformation domain Cr × Ct centred
at (r0, t0), the upper bound of the inlier set cardinality can be chosen as

ν̄ ,
∑
f∈F

max
p∈P

Γ(f ,p) (6.23)

where

Γ(f ,p) = max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ψr(f , Cr)

)
. (6.24)

Proof. Observe that ∀(r, t) ∈ (Cr × Ct),

1
(
θ − ∠

(
f ,Rr(p− t)

))
= 1

(
θ − ∠(R−1

r f ,p− t)
)

(6.25)

6 1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ∠(R−1

r f ,R−1
r0 f)

)
(6.26)

6 max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ψr(f , Cr)

)
(6.27)

where (6.26) follows from the triangle inequality in spherical geometry (see Figure 6.8)
and (6.27) follows from Lemma 6.2 and maximising over t. Substituting (6.27) into
(6.4) completes the proof. See Section 6.5.4 for implementation details.

Comparison of Uncertainty Angle Bounds

The weaker sphere-based uncertainty angle bounds ψwr and ψwt given in (6.6) and (6.12)
appeared originally in Hartley and Kahl [2009] and Brown et al. [2015] respectively.
The tighter cuboid-based uncertainty angle bounds ψr and ψt given in (6.9) and (6.13)
are original to this work and lead to tighter bounds on the objective function. This
can be seen from Theorems 6.1 and 6.2, where it is clear that ν̄ −

¯
ν is smaller when
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the uncertainty angle bounds ψr and ψt are smaller. The proofs that ψr 6 ψwr and
ψt 6 ψwt will now be given.

Lemma 6.5. (Rotation uncertainty angle bounds inequality) Given a 3D point p and

a rotation cube Cr centred at r0 with surface Sr and half side-length δr, then

ψr(p, Cr) 6 ψwr (Cr). (6.28)

Proof. Inequality (6.28) can be derived as follows:

ψr(p, Cr) = min
{

max
r∈Sr

∠(Rrp,Rr0p), π
}

(6.29)

= min{∠(Rr∗p,Rr0p), π} (6.30)

6 min
{√

3δr, π
}

(6.31)

= ψwr (Cr) (6.32)

where (6.30) replaces the maximisation with an arg max rotation r∗ and (6.31) follows
from Lemma 6.1.

Lemma 6.6. (Translation uncertainty angle bounds inequality) Given a 3D point p
and a translation cuboid Ct centred at t0 with vertices Vt and half space diagonal ρt,

then

ψt(p, Ct) 6 ψwt (p, Ct). (6.33)

Proof. Inequality (6.33) can be derived as follows. For ‖p − t0‖ > ρt, which is guar-
anteed for ρt 6 ζ,

ψt(p, Ct) = max
t∈Vt

∠(p− t,p− t0) (6.34)

6 max
t∈S2

t

∠(p− t,p− t0) (6.35)

= arcsin
(

ρt
‖p− t0‖

)
(6.36)

= ψwt (p, Ct) (6.37)

where (6.35) follows from maximising the angle over the circumsphere S2
t of the cuboid

instead of the vertices and (6.36) is shown in Brown et al. [2015] with ρt being the half
space diagonal of the translation sub-cuboid Ct. For the alternate case ‖p− t0‖ < ρt,

ψt(p, Ct) 6 π = ψwt (p, Ct). (6.38)
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Figure 6.9: Comparison of translation uncertainty angle bounds when the centre p − t0 of
the translation cuboid p − t lies along a ray from the origin towards (a) any face centre and
(b) any vertex. For clarity, the translation cuboids are cubes with half side-lengths equal to δt.
(c)–(d) The novel bound ψt is tighter across the entire domain in both cases.

Therefore, the weaker uncertainty angle bounds ψwr and ψwt are larger than the
uncertainty angle bounds ψr and ψt for a given rotation or translation sub-cuboid.
Consequently, the objective function bounds using ψr and ψt are tighter than those
using ψwr and ψwt . More specifically, the maximum angular difference between ψt and
ψwt is π − arctan(√2/

√
3− 1) = 117◦ for translation cuboids with equal side-lengths

(cubes). The difference is even more pronounced for cuboids with non-equal side-
lengths. Figure 6.9 compares both translation uncertainty angle bounds across a range
of values.

6.5 The GOPAC Algorithm

The Globally-Optimal Pose And Correspondences (GOPAC) algorithm for a calibrated
camera is outlined in Algorithms 6.1 and 6.2.
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Algorithm 6.1 GOPAC: a branch-and-bound algorithm for globally-optimal camera
pose and correspondence estimation
Input: bearing vector set F , point-set P, inlier threshold θ, initial domains Ωr and Ωt

Output: optimal number of inliers ν∗, camera pose (r∗, t∗), 2D–3D correspondences
1: ν∗ ← 0
2: Add translation domain Ωt to priority queue Qt
3: loop
4: Update greatest upper bound ν̄t from Qt
5: Remove cuboid Ct with greatest width δtx from Qt
6: if ν∗ > ν̄t then terminate
7: for all sub-cuboids Cti ∈ Ct do
8: (

¯
νti, r)← RBB(ν∗, t0i, ψt = 0)

9: if ν∗ < 2
¯
νti then (ν∗, r∗, t∗)← Refine(r, t0i)

10: (ν̄ti, ∅)← RBB(ν∗, t0i, ψt)
11: if ν∗ < ν̄ti then add Cti to queue Qt

Algorithm 6.2 RBB: a rotation search subroutine for GOPAC
Input: bearing vector set F , point-set P, inlier threshold θ, initial domain Ωr, best-

so-far cardinality ν∗, translation t0, translation uncertainty ψt
Output: optimal number of inliers ν∗r , rotation r∗

1: ν∗r ← ν∗

2: Add rotation domain Ωr to priority queue Qr
3: loop
4: Remove cube Cr with greatest upper bound ν̄r from Qr
5: if ν∗r > ν̄r then terminate
6: for all sub-cubes Cri ∈ Cr do
7: Calculate

¯
νri by (6.39) or (6.41) with parameters r0i, t0, ψt

8: if ν∗r < ¯
νri then ν∗r ← ¯

νri, r∗ ← r0
9: Calculate ν̄ri by (6.40) or (6.42) with parameters r0i, t0, ψt, ψr

10: if ν∗r < ν̄ri then add Cri to queue Qr

6.5.1 Nested Branch-and-Bound Structure

As in Yang et al. [2016], a nested branch-and-bound structure is employed for compu-
tational efficiency. In the outer breadth-first BB search, upper and lower bounds are
found for each translation cuboid Ct ∈ Ωt by running an inner best-first BB search over
rotation space SO(3) (denoted RBB). The upper bound ν̄ , ν̄t (6.18) for the cuboid
Ct is found by running RBB until convergence with the following bounds

¯
νr ,

∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψt(p, Ct)

)
(6.39)

ν̄r ,
∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψt(p, Ct) + ψr(f , Cr)

)
. (6.40)
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The tighter upper bound (6.23) instead uses

¯
νr ,

∑
f∈F

max
p∈P

max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

))
(6.41)

ν̄r ,
∑
f∈F

max
p∈P

max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ψr(f , Cr)

)
. (6.42)

The lower bound
¯
ν ,

¯
νt (6.16) is found by running RBB using bounds (6.39) and

(6.40) with ψt set to zero. That is,

¯
νr ,

∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

))
(6.43)

ν̄r ,
∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψr(f , Cr)

)
. (6.44)

The nested structure has better memory and computational efficiency than directly
branching over 6D transformation space, since it maintains a queue for each 3D sub-
problem, rather than one for the entire 6D problem. This requires significantly fewer
simultaneously enqueued sub-cubes, reducing the runtime of priority queue operations.
Moreover, with rotation search nested inside translation search, ψt only has to be
calculated once per translation t not once per pose (r, t), and F can be rotated (by R−1)
instead of P which typically has more elements. This makes it possible to precompute
the rotated bearing vectors and rotation bounds for the top five levels of the rotation
octree to reduce the amount of computation required in the inner BB subroutine.
Finally, nesting does not weaken the optimality guarantee of this algorithm. In contrast,
ε-suboptimality cannot be guaranteed when ε-suboptimal BB algorithms are nested.

6.5.2 Integrating Local Optimisation

Line 9 of Algorithm 6.1 shows how local optimisation methods are incorporated into the
algorithm to refine the camera pose, in a similar manner to Brown et al. [2015] and Yang
et al. [2016]. Whenever the BB algorithm finds a sub-cube pair (Cr, Ct) with a greater
lower bound

¯
ν than half the best-so-far cardinality ν∗, the Perspective-n-Point (PnP)

problem is solved, with correspondences given by the inlier pairs at the pose (r0, t0).
This solves the sub-problem of finding the camera pose given the correspondences. For
this algorithm, a nonlinear optimisation solver [Kneip and Furgale, 2014] was selected,
minimising the sum of angular distances between corresponding bearing vectors and
points. The local optimisation method SoftPOSIT [David et al., 2004] is also applied at
this stage to refine the camera pose without using correspondences. If a greater number
of inliers ν is found by these refinement methods, ν∗ is updated. In this way, BB and the
refinement methods collaborate, with PnP finding the best pose given correspondences,
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SoftPOSIT finding the nearest local maxima without correspondences and BB guiding
the search for correspondences and jumping out of local maxima. PnP and SoftPOSIT
accelerate convergence since the faster ν∗ is increased, the sooner sub-cubes (with
ν̄ 6 ν∗) can be culled (Alg. 6.1, Line 11).

6.5.3 Parallel Implementations

To improve the runtime characteristics of GOPAC, optional CPU multithreading was
used. This variant of the algorithm divides the initial translation domain into sub-
domains and runs GOPAC for each sub-domain in separate threads. It returns the
greatest ν∗ and the associated pose and correspondences. However, this approach has
the disadvantage that sub-optimal sub-domains may be culled slower than a single-
threaded implementation because their individual best ν values may be lower than the
best ν value for the entire domain. Therefore a good parallel implementation should
communicate the best ν value found so far between threads.

In view of this, a massively parallel version of the algorithm was implemented on the
GPU with regular communication between the threads. It directly branches over 6D
transformation space with each thread computing the bounds for a single branch. In
this work, 16384 concurrent threads were used and an adaptive branching strategy was
implemented that chooses to subdivide the rotation or translation dimensions based on
which has the greater angular uncertainty, substantially reducing redundant branching
and computation.

6.5.4 Further Implementation Details

Initialising the Number of Inliers

If the best-so-far number of inliers ν∗ is initialised to a value close to the optimal value,
sub-optimal branches are pruned sooner, reducing the overall runtime. However, the
user is unlikely to know a tight lower bound on the optimal value of inliers. Therefore, in
this work a P3P-RANSAC strategy and a guess-and-verify strategy are implemented.
The former estimates a lower bound on the number of inliers using the RANSAC
algorithm with randomly-sampled correspondences. The latter guesses a putative lower
bound on the number of inliers and uses GOPAC to verify if an optimal solution is
attainable from that initialisation. If not, it reduces its guess. This does not void
the guarantee of optimality or distort the objective function, unlike an incorrectly
guessed outlier fraction for a trimming strategy, and provides especial benefit when 2D
outliers are rare. It proceeds as follows: set ν∗ = n; run GOPAC; stop if an optimality
guarantee is found, otherwise update n← max(n− s, 0) and repeat. The initial value
of n is set to N − 1 and s is set to d0.1Ne.
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Rotation Uncertainty Angle Bound

Lemma 6.2 (rotation uncertainty angle) requires the evaluation of the angle maximiser
maxr∈Sr ∠(Rrp,Rr0p), where p is any 3D point, r0 is the angle-axis vector at the
centre of rotation cube Cr with surface Sr and Rr is the rotation matrix induced by
angle-axis vector r ∈ Cr. While it is possible to calculate the bound by sampling
the cube surface using a grid of step-size σg, evaluating the angle at each sample and
adding √2/2 × σg to the greatest angle calculated (by Lemma 5.1), it is significantly
more computationally efficient to use a different approach.

The alternative approach is contingent on two assumptions: (i) the maximum al-
ways occurs on the cube skeleton (edges and vertices), not the faces; and (ii) the
angle function along each edge is quasiconvex or concave (specifically unimodal). As-
sumption (i) has been demonstrated empirically in simulations and can be seen in
Figure 6.10, where it can be observed that rotation vectors on the cube faces are not
projected beyond the convex hull of the projection of the edges for a given point.
Therefore, the projected angle maximiser can always be found on an edge or vertex.
Assumption (ii) has also been demonstrated empirically in simulations for all rotation
cubes used in the GOPAC algorithm (that is, octree subdivisions of the angle-axis cube
[−π, π]3). In the vast majority of cases, the function is (quasi)convex. Consequently,
the angle maximiser occurs at one of the two vertices joined by the edge (the extreme
points). In a small fraction of cases, the maximum occurs on the edge, as in Figure 6.10.
In these cases the assumption of unimodality enables the use of an efficient search rou-
tine, golden-section search, which does not require the time-consuming evaluation of
the derivative. However, the sign of the derivative at the vertices needs to be evaluated
to identify when the angle maximiser occurs on an edge. The derivative of the rotation
angle function is obtained in Lemma 6.7.

Lemma 6.7. (Derivative of the rotation angle function) Given a unit 3D bearing vector

f and a rotation cube Cr centred at r0 with vertices {ri}i∈[1,8], then the derivative of

the rotation angle function

Aij(λ) = arccos
(
(R−1

r0 f) · (R−1
rij(λ)f)

)
(6.45)

with respect to λ, for an edge parametrisation of rij(λ) = ri +λ(rj − ri) with λ ∈ [0, 1],
is given by

dAij
dλ

=
−fᵀRr0R

ᵀ
rij(λ)[f ]×

(
rij(λ)rij(λ)ᵀ − (Rrij(λ) − I)[rij(λ)]×

)(
rj − ri

)
‖rij(λ)‖2

√
1− (fᵀRr0R

ᵀ
rij(λ)f)2

. (6.46)
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(a) Rotation cube in angle-
axis space, with centre r0
(blue dot), projected angle
maximiser r∗ (red dot), ori-
gin (black circle) and un-
rotated 3D point p (black
dot). Cube edges and ver-
tices are shown as thin
black lines and small black
dots respectively.

(b) Rotation of 3D point p by angle-axis vectors on the surface of
the cube, with centre-rotated point Rr0p (blue dot), angle max-
imiser Rr∗p (red dot) and origin (black circle). 40 equally-spaced
lines across each face are plotted in grey. All points and lines,
other than the origin and lines to the origin, lie on the surface
of a sphere with radius ‖p‖. Cube edges and vertices are shown
as thin black lines and small black dots respectively. The weak
rotation uncertainty angle ψwr corresponds to the aperture angle
of the cone formed by the origin and the large grey circle. The
tighter rotation uncertainty angle ψr corresponds to the aperture
angle of the cone formed by the origin and the black circle.

Figure 6.10: A rotation cube of angle-axis vectors and the surface induced by rotating a 3D
point by all angle-axis vectors on the surface of that cube. Observe that the rotation vector
that maximises the angle ∠(Rrp,Rr0p) lies on an edge of the cube. Also observe that rotation
vectors on the face of the cube (grey lines in the projection) do not rotate the point beyond
the convex hull of the point rotated by the edges.

Proof. Equation (6.46) can be derived from the following differential.

dAij = −1√
1−(fᵀRr0R

ᵀ
rij(λ)f)2

d
(
(R−1

r0 f) · (R−1
rij(λ)f)

)
(6.47)
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= −1√
1−(fᵀRr0R

ᵀ
rij(λ)f)2

fᵀRr0d
(
Rᵀ

rij(λ)f
)

(6.48)

= −1√
1−(fᵀRr0R

ᵀ
rij(λ)f)2

fᵀRr0d
(
R−rij(λ)f

)
(6.49)

=
fᵀRr0R−rij(λ)[f ]×√
1−(fᵀRr0R

ᵀ
rij(λ)f)2

(−rij(λ))(−rij(λ))ᵀ+(Rᵀ
−rij(λ)−I)[−rij(λ)]×

‖ − rij(λ)‖2 d(−rij(λ))

(6.50)

=
−fᵀRr0R

ᵀ
rij(λ)[f ]×√

1−(fᵀRr0R
ᵀ
rij(λ)f)2

rij(λ)rij(λ)ᵀ−(Rrij(λ)−I)[rij(λ)]×
‖rij(λ)‖2 (rj − ri)dλ (6.51)

where (6.50) uses Result 1 from Gallego and Yezzi [2015].

Since the derivative is computationally expensive to calculate, only the sign of the
derivative at the vertices is evaluated. Corollary 6.1 presents the simplified equations.

Corollary 6.1. (Sign of the derivative of the rotation angle function at the vertices)

Given a unit 3D bearing vector f and a rotation cube Cr centred at r0 with vertices

{ri}i∈[1,8], then

sgn

dAij
dλ

∣∣∣∣∣
λ=0

 = sgn
(
−fᵀRr0R

ᵀ
ri

[f ]×
(
rirᵀi − (Rri − I)[ri]×

)(
rj − ri

))
(6.52)

and

sgn

dAij
dλ

∣∣∣∣∣
λ=1

 = sgn
(
−fᵀRr0R

ᵀ
rj

[f ]×
(
rjrᵀj − (Rrj − I)[rj ]×

)(
rj − ri

))
. (6.53)

The method for calculating the rotation uncertainty angle ψr(f , Cr) for a bearing
vector f and a rotation cube Cr, centred at angle-axis vector r0 with vertices {ri}i∈[1,8]

and an edge parametrisation of rij(λ) = ri + λ(rj − ri), is as follows:
(i) for each edge, evaluate the sign of the derivative of the angle function Aij(λ) =

∠(R−1
rij(λ)f ,R−1

r0 f) with respect to λ at λ = 0 and λ = 1 using (6.52) and (6.53);
(ii) if (6.52) is positive and (6.53) is negative, use golden-section search [Kiefer, 1953]

with a tolerance of π/2048 to find the angle maximiser on that edge and add the
tolerance π/2048 to the result;

(iii) otherwise, the angle maximiser on that edge is one of the vertices: evaluate the
angle with respect to the projected cube centre at both vertices and choose the
maximum; and

(iv) choose the maximum angle over all edges as ψr.
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Note that golden-section search terminates at a tolerance of π/2048. By Lemma 5.1, the
bound is therefore incorrect by at most π/2048 = 0.088◦, a value that is added to the
upper bound to ensure optimality.

Tighter Upper Bound

The upper bound given in Theorem 6.3 requires the evaluation of Γ(f ,p) for a given
translation cuboid Ct. Γ may be evaluated by observing that the minimum angle
between a ray f and a cuboid Rr0(p− t) for t ∈ Ct is (a) zero if the ray passes through
the cuboid or (b) the angle between the ray and the point on the skeleton of the cuboid
(vertices and edges) with least angular displacement from f . Thus, for the translation
domain Ct with skeleton Skt,

Γ(f ,p) =


max
t∈Skt

1
(
θ − ∠

(
f ,Rr0(p− t)

)
+ ψr(f , Cr)

)
if ∠

(
f ,Rr0(p− t0)

)
> ψt(p, Ct)

1 else. (6.54)

The key here is finding ∠(f ,Rr0(p− t)) which maximises Γ over the skeleton. For the
first case in (6.54), this can be done by finding p− t with least angular displacement
from R−1

r0 f . The following technique is applied:
(i) find the octant of p−t0 with respect to the coordinate axes and project the cube

to the unit sphere as a spherical hexagon;
(ii) determine in which lune induced by the spherical hexagon R−1

r0 f resides; and
(iii) solve for the point on the hexagon edge in that lune with least angular displace-

ment from R−1
r0 f .

As a result of the design of the data structure, it is known that the cuboid of translated
points p − t for t ∈ Ct lies entirely in one octant of R3. By finding the octant (i),
the cuboid can be projected to a spherical hexagon on the unit sphere, as shown in
Figure 6.11. That is, the 6 vertices and edges of the cuboid that project to the spherical
hexagon can be determined. This simplifies the problem to finding the closest point
v̂∗ on the hexagon to the rotated bearing vector. Finding in which lune the rotated
bearing vector lies (ii) further simplifies the problem to one of finding the closest point
on a geodesic to the rotated bearing vector. This can be solved in closed form (iii):

v∗ =


v if λ 6 0

v + 2δtiλei if λ ∈ (0, 1)

v + 2δtiei if λ > 1

(6.55)

λ =
(R−1

r0 f) · ei − ((R−1
r0 f) · v̂)(v̂ · ei)

(R−1
r0 f) · v̂− ((R−1

r0 f) · ei)(v̂ · ei)
‖v‖
2δti

(6.56)



186 Robust and Globally-Optimal 2D–3D Alignment

O

R−1
r0 f

p − t0

v̂
v̂∗

γ

Draft Copy – 6 February 2018

Figure 6.11: Unit sphere onto which the vertices and edges of the translation cuboid p − t
for t ∈ Ct have been projected. The resulting spherical hexagon, comprising 6 vertices and 6
edges of the projected cuboid, simplifies the angle calculation by reducing it to finding in which
spherical lune (surface of the spherical wedge) the rotated bearing vector R−1

r0
f resides and

then solving for the closest point on the geodesic of the hexagon edge in that lune. This angle
γ = ∠(R−1

r0
f , v̂∗) is the smallest angle between R−1

r0
f and any point in the translation cuboid.

where v, ei and δti are the cuboid vertex v = p−tv that projects to the hexagon vertex
v̂ = v/‖v‖, the ith standard basis vector in the direction of the next cuboid vertex in
the hexagon cycle and the half side-length of the cuboid in that direction respectively.

Precomputing Angles on the Sphere

To reduce the time complexity of the bound calculations, the angle between the trans-
lated 3D points p − t0 and any location on the unit sphere may be precomputed.
Thus, for a fixed translation, the angle between any rotated bearing vector and its
rotationally-closest 3D point may be precomputed. This is the analogue in S2 of a
distance transform in Rn, in that the surface of the sphere is discretised and a look-
up table constructed. It exploits the nested structure of the algorithm, since many
bounds for different rotations are calculated for a single translation. By using this
precomputation, the max operations in (6.39)–(6.44) are reduced from O(M) to O(1).

The procedure for constructing the look-up table is as follows. The sphere is sub-
divided into 98304 regions by projecting it onto an enclosing cube whose faces are
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partitioned with quad-trees. A linear projection onto the cube is used to facilitate
the rapid conversion from a unit vector to a location in the data structure. The dis-
advantage of a linear projection is that the cell sizes are not uniform. However, the
configuration chosen ensures that the maximum angle between an arbitrary point and
its nearest cell centre is 0.6◦. Hence, the effect of using this data structure is to relax
θ by up to 0.6◦. This means that the result is no longer optimal with respect to θ.
Nonetheless, for most practical uses, the optimal result is still obtained and it may be
useful for solving problems for which the number of 3D points M is large. For the
purposes of evaluating the algorithm, this feature was not used in the experiments.

6.5.5 Convergence of the Upper and Lower Bounds

A requirement of branch-and-bound is that the upper and lower bounds converge as
the size of the branch tends to zero. The convergence of the bounds can be proved
as follows. It is clear that the upper bound (6.18) is equal to the lower bound (6.16)
when the uncertainty angle bounds ψr(f , Cr) and ψt(p, Ct) are zero. Similarly, the
tighter upper bound (6.23) is equal to the lower bound when the rotation uncertainty
angle ψr(f , Cr) is zero and the translation sub-cuboid Ct is of size zero, since then
∠
(
f ,Rr0(p−t)

)
= ∠

(
f ,Rr0(p−t0)

)
for t ∈ Ct. It remains to be seen that ψr(f , Cr) and

ψt(p, Ct) tend to zero as the size of the sub-cuboids Cr and Ct tend to zero, irrespective
of the values of f and p.

The rotation uncertainty angle bound ψr(f , Cr) involves a maximisation over all
rotations on the surface of the sub-cube Cr. As the sub-cube size tends to zero, in
the limit the surface and centre of the cube become identified and therefore the angle
∠(Rrf ,Rr0f) equals zero. The translation uncertainty angle bound ψt(p, Ct) involves
a maximisation over all translations on the vertices of the sub-cuboid Ct. As the sub-
cuboid size tends to zero, in the limit the vertices and centre of the cuboid become
identified and therefore the angle ∠(p− t,p− t0) equals zero. The point p cannot lie
inside the sub-cuboid for a sufficiently small cuboid, since the translation domain has
been restricted to exclude translations for which ‖p− t‖ < ζ. Therefore the upper and
lower bounds converge as the size of sub-cuboids (branches) tend to zero.

However, an advantage of the inlier maximisation formulation is that the gap be-
tween the bounds becomes exactly zero substantially before the branch size becomes
infinitesimal. There are nonetheless critical configurations of points and bearing vectors
for which the bounds will only converge in the limit. The simplest case is illustrated
in Figure 6.12. In this rotation-only example, the angle between the 3D point vectors
is infinitesimally less than π − 2θ. To prove that the maximum number of inliers is 1,
infinitesimally small rotation sub-cubes would be required.



188 Robust and Globally-Optimal 2D–3D Alignment

θ

O
f1f2

θ

p1p2

<π−2θ

Figure 6.12: Example of a critical configuration (rotation only). The angle between the 3D
point vectors ∠(p1,p2) is infinitesimally less than π− 2θ. To prove that the maximum number
of inliers is 1, infinitesimally small rotation sub-cubes would be required.

In order to guarantee that the algorithm terminates in finite time, a small tolerance
value η must be subtracted from the uncertainty angles. That is, the uncertainty angles
in all the formulae must be replaced with their primed versions: ψ′r = ψr − η and
ψ′t = ψt−η. For the tighter upper bound, η also has to be added to ∠

(
f ,Rr0(p−t)

)
. The

upper bound ν̄ , ν̄t (6.18) for the translation cuboid Ct, rewritten with the tolerances,
is found by running rotation BB until convergence with the following bounds

¯
νr ,

∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψ′t(p, Ct)

)
(6.57)

ν̄r ,
∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψ′t(p, Ct) + ψ′r(f , Cr)

)
. (6.58)

The tighter upper bound (6.23) instead uses

¯
νr ,

∑
f∈F

max
p∈P

max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

)− η) (6.59)

ν̄r ,
∑
f∈F

max
p∈P

max
t∈Ct

1
(
θ − ∠

(
f ,Rr0(p− t)

)− η + ψ′r(f , Cr)
)
. (6.60)

The lower bound
¯
ν ,

¯
νt (6.16) for Ct is found by running rotation BB until convergence

using bounds (6.57) and (6.58) with ψ′t set to zero. That is, the bounds

¯
νr ,

∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

))
(6.61)

ν̄r ,
∑
f∈F

max
p∈P

1
(
θ − ∠

(
f ,Rr0(p− t0)

)
+ ψ′r(f , Cr)

)
. (6.62)
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In this work, η was set to machine epsilon for maximal precision. In C++, this can be
accessed by using the command std::numeric_limits<float>::epsilon().

6.5.6 Time Complexity

Explicitly including the tolerance η in the bound formulae makes it possible to derive
a bound on the worst-case search tree depth and thereby obtain the time complexity of
the algorithm. In terms of the size of the input, the GOPAC algorithm is O(MN), or
O(N) if angle precomputation is used, where M is the number of 3D points and N is
the number of bearing vectors. However, the notation conceals a very large constant.
Including the constant factors that can be selected by the user yieldsO(ρ3

t0ζ
−3η−6MN),

where ρt0 is the half space diagonal of the initial translation cuboids, that is one-quarter
the space diagonal of the translation domain, and ζ and η are small previously-defined
constants set by the user.

Calculating the upper and lower bounds involves a summation over F and a max-
imisation over P, therefore the complexity is O(MN). If angle precomputation is
used, the maximisation becomes a constant-time lookup leading to a bound complex-
ity of O(N). However, it is as of yet unclear how the number of iterations (explored
sub-cuboids) depends on the inputs. The central finding is that branch-and-bound
is exponential in the worst-case tree search depth D, but D is logarithmic in η−1.
Therefore the complexity of BB is polynomial in η−1, where η is the angle tolerance.
Rotation and translation search will be treated separately before being combined into
an analysis of nested rotation and translation search.

Theorem 6.4. (Rotation Search Depth and Complexity) Let ρr0 =
√

3δr0 = √
3π/2 be

the half space diagonal of the initial rotation sub-cube Cr0. Then

Dr = max
{⌈

log2
ρr0

η

⌉
, 0
}

(6.63)

is an upper bound on the worst-case rotation tree search depth for an uncertainty angle

tolerance η and O(η−3) is the time complexity of rotation BB search.

Proof. Rotation BB converges when
¯
νr > ν̄r. For any ψ′t(p, Ct) in (6.57) and (6.58),

¯
νr > ν̄r when ψ′r(f , Cr) 6 0 or equivalently ψr(f , Cr) 6 η for all f ∈ F . Now,

ψr(f , Cr) = min
{

max
r∈Sr

∠(Rrf ,Rr0f), π
}

(6.64)

= min{∠(Rr∗f ,Rr0f), π} (6.65)

6 min
{√

3δr, π
}

(6.66)

6 ρr (6.67)
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where (6.65) replaces the maximisation with the arg max rotation r∗, (6.66) follows
from Lemma 6.1 (6.6) and ρr is the half space diagonal of the rotation sub-cube Cr.
At rotation search tree depth Dr, the half space diagonal is given by

ρrDr
= 1

2ρrDr−1 = 1
2Dr

ρr0 . (6.68)

Substituting into (6.67) gives

ψr(f , CrDr
) 6 ρrDr

= 2−Drρr0 . (6.69)

To find the worst-case rotation search tree depth, the constraint ψr(f , Cr) 6 η is applied:

ψr(f , CrDr
) 6 2−Drρr0 6 η. (6.70)

Taking the logarithm of both sides yields

Dr > log2
ρr0

η
. (6.71)

Equation (6.63) follows from the requirement that Dr be a non-negative integer. Now,
rotation BB will have examined at most

Nr = 8(1 + 8 + 82 + · · ·+ 8Dr ) = 88Dr+1 − 1
8− 1 = 8

7
(
(2Dr+1)3 − 1

)
(6.72)

sub-cubes at search depth Dr, due to the octree structure. Finally, substituting (6.63)
into (6.72) and simplifying using Bachmann–Landau notation gives

Nr = O

((
ρr0

η

)3
)

= O
(
η−3

)
. (6.73)

The ρr0 term is removed because it is a fixed constant not set by the user.

The analysis of the worst-case search depth and time complexity for translation
search proceeds in a similar manner.

Theorem 6.5. (Translation Search Depth and Complexity) Let ρt0 be the half space

diagonal of the initial translation sub-cuboid Ct0. Then

Dt = max
{⌈

log2
ρt0

ζ sin η

⌉
, 0
}

(6.74)

is an upper bound on the worst-case translation tree search depth for an uncertainty

angle tolerance η and O(ρ3
t0ζ
−3η−3) is the time complexity of translation BB search.
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Proof. Translation BB converges when
¯
νt > ν̄t. This condition is met when ψ′t(p, Ct) 6

0 or equivalently ψt(p, Ct) 6 η for all p ∈ P. This can be seen by inspecting (6.57)
and (6.61) and noting that at convergence the upper and lower rotation bounds will
be equal. Now for ‖p− t0‖ > ρt, which is guaranteed for ρt 6 ζ,

ψt(p, Ct) = max
t∈Vt

∠(p− t,p− t0) (6.75)

6 max
t∈S2

t

∠(p− t,p− t0) (6.76)

= arcsin
(

ρt
‖p− t0‖

)
(6.77)

6 arcsin
(
ρt
ζ

)
(6.78)

where (6.76) follows from maximising the angle over the circumsphere S2
t of the cuboid

instead of the vertices, (6.77) is shown in Brown et al. [2015], and (6.78) follows from
the restriction ‖p− t‖ > ζ. At depth Dt, the half space diagonal of CtDt

is

ρtDt
= 2−1ρtDt−1 = 2−Dtρt0 . (6.79)

Substituting into (6.78) gives

ψt(p, CtDt
) 6 arcsin

(
ρtDt

ζ

)
= arcsin

(
ρt0
ζ2Dt

)
. (6.80)

To find the worst-case translation search tree depth, the constraint ψt 6 η is applied

ψt(p, CtDt
) 6 arcsin

(
ρt0
ζ2Dt

)
6 η. (6.81)

Taking the sine and logarithm of both sides yields

Dt > log2
ρt0

ζ sin η . (6.82)

Equation (6.74) follows from the requirement that Dt be a non-negative integer. Now,
translation BB will have examined at most

Nt = 8(1 + 8 + 82 + · · ·+ 8Dt) = 88Dt+1 − 1
8− 1 = 8

7
(
(2Dt+1)3 − 1

)
(6.83)

sub-cuboids at search depth Dt. Finally, substituting (6.74) into (6.83) gives

Nt = O
(
ρ3
t0ζ
−3(sin η)−3

)
= O

(
ρ3
t0ζ
−3η−3

)
(6.84)

using Bachmann–Landau simplification and the Taylor expansion of sin η.
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In the nested BB search structure detailed at the beginning of Section 6.5, for
every translation sub-cuboid examined, rotation BB search is run once to find the lower
translation bound and again to find the upper translation bound. Thus the number
of rotation sub-cubes examined is at worst equal to 2NtNr. For each rotation sub-
cube, the upper and lower bounds are calculated with a time complexity of O(MN).
Thus the number of bound calculations is at worst equal to 4NtNr. Combining the
time complexity analyses (6.73) and (6.84) with the time complexity of the bound
calculations leads to the following corollary.

Corollary 6.2. (Time Complexity of GOPAC) Let ρt0 be the half space diagonal of

the initial translation sub-cuboid Ct0, ζ be the translation restriction parameter, η be

the uncertainty angle tolerance, M be the number of 3D points and N be the number

of bearing vectors, then the time complexity of the GOPAC algorithm is given by

O
(
ρ3
t0ζ
−3η−6MN

)
. (6.85)

It is important to observe that experimental evaluation of runtime is more revealing
for BB algorithms than time complexity analysis. The main reason to use BB is that
it can prune large regions of the search space, reducing the size of the problem. This
is not reflected in the complexity analysis.

6.6 Results

The GOPAC algorithm, denoted GP, was evaluated with respect to the baseline al-
gorithms RANSAC [Fischler and Bolles, 1981], SoftPOSIT [David et al., 2004] and
BlindPnP [Moreno-Noguer et al., 2008], denoted RS, SP and BP respectively, using
both synthetic and real data. The RANSAC approach uses the OpenGV framework
[Kneip and Furgale, 2014] and the P3P algorithm [Kneip et al., 2011] with randomly-
sampled correspondences. SoftPOSIT and BlindPnP are local optimisation algorithms
and hence require a pose prior. Therefore, a torus or cube prior was used in the syn-
thetic experiments to allow a fair comparison. In general, the space of camera poses is
much larger than the restrictive torus prior and a good prior can rarely be known in
advance. The registration algorithm in Brown et al. [2015] was not evaluated because
the code and 2D–3D feature sets were not released publicly and the method is not
easily reimplementable. However, it was shown theoretically in Section 6.4.2 that the
bounds in this work are tighter and this will be shown experimentally in Section 6.6.1.

Except where otherwise specified, the inlier threshold θ was set to 1◦, the lower
bound from Theorem 6.1 and the upper bound from Theorem 6.2 were used, SoftPOSIT
and nonlinear PnP refinement were applied and the point-to-camera limit ζ was set to
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0.1. All experiments were run on a PC with a 3.4GHz quad core CPU, 8 threads were
used for CPU multithreading, and up to 4 GeForce GTX 1080 Ti GPUs were used
for GPU multithreading. The GOPAC code was written in unoptimised C++ and
uses the Eigen library [Guennebaud et al., 2010] for matrix calculations, the OpenGV
library [Kneip and Furgale, 2014] for RANSAC and PnP refinement and the Armadillo
library [Sanderson and Curtin, 2016] for SoftPOSIT refinement.

6.6.1 Synthetic Data Experiments

To evaluate GOPAC in a setting where the true camera pose was known, 50 inde-
pendent Monte Carlo simulations were performed per parameter setting, using the
framework of Moreno-Noguer et al. [2008]: M random 3D points were generated from
[−1, 1]3; a fraction ω3D of the 3D points were randomly selected as outliers to model
occlusion; the inliers were projected to a 640×480 virtual image with an effective focal
length of 800; normal noise was added to the 2D points with a standard deviation
σ of 2 pixels; and random points were added to the image such that a fraction ω2D

of the 2D points were outliers. In addition to these random point experiments, the
same procedure was applied to a repetitive CAD structure with M = 27 3D points.
Examples of both datasets and 2D alignment results are shown in Figure 6.13(a)–(b).

The evolution over time of the global lower and upper bounds is shown in Fig-
ure 6.13(c) for both examples. Branch-and-Bound (BB) and the refinement methods
(PnP and SoftPOSIT) collaborate to increase the lower bound with BB guiding the
search into convergence basins with increasingly higher local maxima and the refine-
ment methods jumping to the nearest local maximum (the staircase pattern). It can be
observed that the majority of the runtime is spent decreasing the upper bound, indi-
cating that it will often find the global optimum when terminated early, albeit without
an optimality guarantee.

To facilitate fair comparison with SoftPOSIT and BlindPnP, pose priors were used
for these experiments. The torus prior constrains the camera centre to a torus around
the 3D point-set with the optical axis directed towards the model, replicating the
experimental design of Moreno-Noguer et al. [2008]. For BlindPnP, the poses were
represented by a 20 component Gaussian mixture model generated from the torus.
For SoftPOSIT, the 20 mean poses from the mixture model were used to initialise the
algorithm. For GOPAC, the torus was approximated by a translation domain formed
from a set of 12 translation cubes with side-length 1. However, GOPAC was given no
rotation prior, giving the local methods a very significant advantage. The cube prior
constrains the camera centre to a cube centred randomly in [−1, 1]3 with side-length
0.5 and has no restriction on rotation. This is a more realistic prior than the torus
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(a) 3D Results (b) 2D Results (c) Bound Evolution

Figure 6.13: Sample 2D and 3D results for two experiments using the random points and
CAD structure datasets. (a) 3D models, true and GOPAC-estimated camera fulcra (com-
pletely overlapping) and toroidal pose priors. Only non-occluded 3D points are shown. (b) 2D
alignment results. True projections of non-occluded 3D points are shown as black dots, 2D
outliers as red dots, GOPAC projections as black circles and GOPAC-classified 3D outliers as
red crosses. (c) Evolution over time of the upper (red) and lower (magenta) bounds, remaining
unexplored translation volume (blue) and translation queue size (green) as a fraction of their
maximum values.

since it assumes much less about the camera pose and does not impose restrictive
constraints on camera rotation and translation. The intent of this prior is to simulate
the task of camera pose estimation with respect to a scene, such as locating a camera
inside a building, in contrast to the torus prior which simulates the task of camera
pose estimation with respect to an object, such as a teapot on a table, for a known
camera height. For BlindPnP, the poses were represented by a 50 component Gaussian
mixture model generated from a set of 200 random camera centres in the cube and
200 uniform random rotation matrices [Mezzadri, 2007]. While Moreno-Noguer et al.
[2008] recommend 20 components, the increased number was necessary to model the
increased rotation uncertainty. For SoftPOSIT, the 50 mean poses from the mixture
model were used to initialise the algorithm. For GOPAC, the prior was passed directly
to the algorithm as the translation domain.

The results are shown in Tables 6.1 and 6.2 and Figures 6.14 and 6.15. Two
success rates are reported: the fraction of trials where the true maximum number of
inliers was found and the fraction where the correct pose was found, where the angle
between the output rotation and the ground truth rotation is less than 0.1 radians
and the camera centre error ‖t− tGT‖/‖tGT‖ relative to the ground truth tGT is less
than 0.1, as used in Moreno-Noguer et al. [2008]. The 2D and 3D outlier fractions
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Table 6.1: Camera pose results for the random points (M = 80) dataset with the torus prior
and 50% 3D outliers (ω3D = 0.5). Quartiles (Q2Q1

Q3) for translation error (×102), rotation error
and runtime and the mean inlier recall and success rates are reported.
Method GOPAC RANSAC SoftPOSIT BlindPnP
Translation Error 0.890.41

1.95 52.5 17.2
112 6.810.23

42.6 1.020.29
26.7

Rotation Error (◦) 0.490.33
0.66 1139.13

134 8.480.14
101 0.620.19

28.3

Recall (Inliers) 1.00 0.43 0.66 0.67
Success Rate (Inliers) 1.00 0.08 0.50 0.56
Success Rate (Pose) 1.00 0.24 0.50 0.62
Runtime (s) 8.023.85

10.4 26.326.2
26.5 2.05 1.99

2.12 1.680.78
1.88

Table 6.2: Camera pose results for the CAD structure (M = 27) dataset with the torus prior
and 50% 3D outliers (ω3D = 0.5). Quartiles (Q2Q1

Q3) for translation error (×102), rotation error
and runtime and the mean inlier recall and success rates are reported.
Method GOPAC RANSAC SoftPOSIT BlindPnP
Translation Error 0.800.31

1.51 4.20 1.55
50.9 39.3 1.30

70.4 1.710.48
29.1

Rotation Error (◦) 0.540.28
0.94 1.800.89

168 13.80.45
133 0.940.37

82.8

Recall (Inliers) 1.00 0.81 0.69 0.74
Success Rate (Inliers) 1.00 0.36 0.30 0.52
Success Rate (Pose) 1.00 0.56 0.30 0.60
Runtime (s) 1.22 1.00

2.16 2.422.25
2.62 0.720.65

0.79 0.710.37
0.92

were fixed to 0 when not being varied and CPU multithreading was used when 2D
outliers were present (ω2D > 0). GOPAC outperformed the other methods, reliably
finding the global optimum while still being relatively efficient, particularly when the
fraction of 2D outliers was low. For the repetitive CAD structure, GOPAC retrieved
some incorrect poses when 75% of the 3D points were occluded, while still finding the
optimal number of inliers, due to the highly symmetric nature of the model. For the
cube prior, SoftPOSIT was rarely able to find the correct pose, principally because it
is unable to handle 3D points behind the camera, something the torus prior prevents.
BlindPnP is also sensitive to this and, with 50 mixture model components, the method
is relatively slow. However, it was necessary to use 50 components in order to obtain
reasonable results for the camera pose. Moreover, both local methods have significant
difficulty finding the camera pose without a strong rotation prior.

An early termination strategy, “truncated GOPAC”, was also investigated following
the observation that the majority of the runtime of the algorithm was spent decreasing
the upper bound once the global optimum had already been attained. The experiments
with the random points dataset and the torus prior were repeated with the GOPAC
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(d) ω3D = 0.75

Figure 6.14: Results for the random points dataset with the torus prior. The mean success
rates and median runtimes are plotted with respect to the number of random 3D points and
the 3D outlier fraction, for 50 Monte Carlo simulations per parameter value.

algorithm terminated after 30s. At termination, the algorithm returned the best-so-
far cardinality and camera pose, as well as a flag to indicate that the result was not
guaranteed to be optimal. Despite being terminated early, the algorithm achieved the
same 100% success rates while capping the runtime at ~30s. For some applications, it
may be worth sacrificing optimality for the sometimes significant decrease in runtime.
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Figure 6.15: Results for the random points (M = 30) and CAD structure (M = 27) datasets with the torus and cube priors. The mean success
rates and median runtimes are plotted with respect to the 3D and 2D outlier fractions, for 50 Monte Carlo simulations per parameter value.
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Figure 6.16: Comparison of the different upper bound functions. Runtime is plotted relative
to the maximum value. The weakest upper bound using the uncertainty angles ψwr and ψwt
(leftmost) is 50% slower than the tightest upper bound using the uncertainty angle ψr and
bounding function Γ (rightmost).

To show the improvement attributable to the tighter upper bounds derived, the
runtime of the algorithm was measured using the different upper bounds, with 10 ran-
dom 3D points and 50% 2D outliers, as shown in Figure 6.16. The weak sphere-based
bounding functions, using the uncertainty angles (6.6) and (6.12), are denoted ψwr and
ψwt respectively, the tighter cuboid-based bounding functions, using the uncertainty
angles (6.9) and (6.13), are denoted ψr and ψt respectively and the bounding function
from (6.23) is denoted Γ. The weakest upper bound, which uses the weak uncer-
tainty angles ψwr and ψwt , is 50% slower than the tightest upper bound, which uses the
uncertainty angle ψr and the bounding function Γ.

6.6.2 Real Data Experiments

To evaluate the algorithm on real data, the Data61/2D3D (formerly NICTA) [Namin
et al., 2015] and Stanford 2D-3D-Semantics (2D-3D-S) [Armeni et al., 2017] datasets
were used. They are both large and repetitive multi-modal datasets with panoramic
2D images, large-scale 3D point-sets, and semantic annotations for both modalities.
The former is an outdoor dataset collected from a survey vehicle with a laser scanner
and 360◦ camera. Usefully, each 3D point is annotated with its corresponding pixels,
with many points being viewed from multiple images. The ground-truth camera pose
for each image can be determined from these 2D–3D correspondences. In this work the
pose is obtained using EPnP [Lepetit et al., 2009] followed by nonlinear PnP [Kneip
and Furgale, 2014]. The latter is an indoor dataset collected with a structured-light
RGBD camera. The ground-truth camera pose is supplied for each image.

Finding the pose of a camera with respect to a point-set with only geometric (posi-
tional) information from a single image and without a good initialisation is an unsolved
problem. The sub-problem of extracting points that correspond to known pixels in an
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image is itself a challenging unsolved problem for 2D–3D registration pipelines. How-
ever, since GOPAC jointly solves for pose and correspondences, this problem can be
relaxed to that of isolating regions of the point-set that appear in the image and vice
versa. To do this, semantic labels of the images and point-set were used to select
regions that were potentially observable in both modalities: building points for the
outdoor dataset and furniture points for the indoor dataset. The number of selected
pixels and points were then reduced to a manageable size using grid downsampling and
k-means clustering, and the pixels were converted to bearing vectors using the camera
calibration matrix. As a result, there is a good chance that each bearing vector has a
3D point inlier, despite not knowing the correspondences in advance.

Outdoor Dataset

For the first set of experiments, two datasets were generated using this pre-processing
technique for scene 1 and 5 of the Data61/2D3D dataset, shown in Figures 6.17 and
6.18, each consisting of a 3D point-set with 88 or 98 points respectively, a set of
11 images containing 30 2D features and a set of ground truth camera poses. The
first dataset is a residential scene, while the second is mixed-use, with residential and
industrial areas, and covers a smaller area with fewer buildings. The inlier threshold
θ was set to 2◦, the 2D outlier fraction guess ω2D was set to 0.25 and the translation
domain was set to 50 × 5 × 5m, covering two lanes of the road since the camera was
known to be mounted on a survey vehicle.

Qualitative results for the GOPAC and RANSAC algorithms are shown in Fig-
ures 6.17 and 6.18 and quantitative results in Tables 6.3 and 6.4, for scenes 1 and 5
respectively. GOPAC found the optimal number of inliers for all frames and the correct
camera pose for the majority of frames, despite the naïvety of the 2D/3D point extrac-
tion process, surpassing the other methods. It is clear however that finding the optimal
inlier set does not always correspond to finding the optimal pose for such a weak feature
extraction procedure. The failure modes for GOPAC were 180◦ rotation flips, due to
ambiguities arising from the low angular separation of points in the vertical direction.
The difficulty of this ill-posed problem is illustrated by the performance of truncated
GOPAC, which was not able to find all optima even after running for 30s, motivating
the necessity for globally-optimal guided search. RANSAC achieved better results on
the second scene than the first, since it contained fewer, denser 3D clusters. This is
beneficial for RANSAC because it reduces the implicitly-searched pose space, whereas
it is disadvantageous for GOPAC because it does not reduce the search space and can
mean that the inlier set at the correct pose has a lower cardinality than the inlier set
at some incorrect poses. Results are not shown for SoftPOSIT and BlindPnP because
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(a) 3D point-set (grey and green), 3D features (black dots) and ground-truth (black), RANSAC
(red) and GOPAC (blue) camera poses. The ground-truth and GOPAC camera poses coincide,
whereas the RANSAC pose has a translation offset and a 180◦ rotation offset.

(b) Panoramic photograph and extracted 2D features (top), building points projected onto
the image using the RANSAC camera pose (middle) and building points projected using the
GOPAC camera pose (bottom).

Figure 6.17: Qualitative camera pose results for scene 1 of the Data61/2D3D dataset, showing
the pose of the camera when capturing image 10 and the projection of 3D building points onto
the image.

Table 6.3: Camera pose results for scene 1 of the Data61/2D3D dataset. Quartiles (Q2Q1
Q3)

for translation error, rotation error and runtime and the mean inlier recall and success rates
are reported. bGOPACc denotes truncated GOPAC, where search is terminated after 30s, with
no optimality guarantee. RANSACK denotes RANSAC with K million iterations.
Method GOPAC bGOPACc RANSAC20 RANSAC280

Translation Error (m) 2.30 1.77
4.37 3.10 1.85

6.31 20.3 13.0
24.8 28.5 19.2

38.4

Rotation Error (◦) 2.08 1.75
3.15 3.04 1.92

137 17890.2
179 179 117

179

Recall (Inliers) 1.00 0.97 0.75 0.81
Success Rate (Inliers) 1.00 0.45 0.00 0.00
Success Rate (Pose) 0.82 0.64 0.09 0.09
Runtime (s) 477311

496 3433
34 3433

35 471453
480
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(a) 3D point-set (grey and green), 3D features (black dots) and ground-truth (black), RANSAC
(red) and GOPAC (blue) camera poses. The ground-truth and GOPAC camera poses nearly
coincide, whereas the RANSAC pose has a translation offset and a 180◦ rotation offset.

(b) Panoramic photograph and extracted 2D features (top), building points projected onto
the image using the RANSAC camera pose (middle) and building points projected using the
GOPAC camera pose (bottom).

Figure 6.18: Qualitative camera pose results for scene 5 of the Data61/2D3D dataset, showing
the pose of the camera when capturing image 6 and the projection of 3D building points onto
the image.

Table 6.4: Camera pose results for scene 5 of the Data61/2D3D dataset. Quartiles (Q2Q1
Q3)

for translation error, rotation error and runtime and the mean inlier recall and success rates
are reported. bGOPACc denotes truncated GOPAC, where search is terminated after 30s, with
no optimality guarantee. RANSACK denotes RANSAC with K million iterations.
Method GOPAC bGOPACc RANSAC20 RANSAC240

Translation Error (m) 2.03 1.59
11.2 2.72 1.70

11.3 31.57.79
45.8 4.11 1.74

14.9

Rotation Error (◦) 3.282.14
179 3.70 1.95

179 179 117
179 1403.52

179

Recall (Inliers) 1.00 0.98 0.78 0.86
Success Rate (Inliers) 1.00 0.55 0.00 0.09
Success Rate (Pose) 0.55 0.55 0.18 0.45
Runtime (s) 346229

409 3333
33 2929

32 347339
382
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Table 6.5: Comparing camera pose results for serial and parallel implementations of GOPAC
for scenes 1 and 5 of the Data61/2D3D dataset. Quartiles (Q2Q1

Q3) for translation error, rotation
error and runtime and the mean inlier recall and success rates are reported.
Implementation Serial Parallel: CPU Parallel: GPU
Angular Tolerance η 0 10−3 0 10−3 0 10−3

Scene 1
Translation Error (m) 2.30 1.72

4.37 2.22 1.72
4.27 2.30 1.77

4.37 2.29 1.72
4.52 2.22 1.72

4.57 2.22 1.75
4.49

Rotation Error (◦) 2.18 1.76
3.15 2.08 1.80

3.15 2.08 1.75
3.15 2.09 1.88

3.14 2.10 1.93
3.16 2.09 1.83

3.17

Recall (Inliers) 1.00 1.00 1.00 1.00 1.00 1.00
Success Rate (Inliers) 1.00 1.00 1.00 1.00 1.00 1.00
Success Rate (Pose) 0.82 0.82 0.82 0.82 0.82 0.82
Runtime (s) 614318

768 352234
561 477311

496 323 180
397 86

12 65
10

Scene 5
Translation Error (m) 2.03 1.58

11.09 1.80 1.58
11.3 2.03 1.59

11.2 3.08 1.66
11.1 1.80 1.35

11.2 1.80 1.22
11.6

Rotation Error (◦) 3.282.03
179 3.282.13

179 3.282.14
179 4.242.52

179 4.302.56
179 4.253.05

179

Recall (Inliers) 1.00 1.00 1.00 1.00 1.00 1.00
Success Rate (Inliers) 1.00 1.00 1.00 1.00 1.00 1.00
Success Rate (Pose) 0.55 0.55 0.55 0.55 0.55 0.55
Runtime (s) 307 114

851 20577
538 346229

409 222 125
234 54

10 54
9

they were unable to find the correct camera pose for any image in these datasets, even
when supplied the ground truth pose as a prior, due to the weak ground truth corre-
spondences and an inability to handle 3D points behind the camera. Moreover, they
do not natively support panoramic imagery and required an artificially restricted field
of view to function.

Quantitative results comparing the runtime of the serial and parallel (CPU and
GPU) implementations of the GOPAC algorithm are shown in Tables 6.5 and Fig-
ure 6.19. The runtime of the GPU implementation is two orders of magnitude faster
than the serial implementation without any loss of optimality or accuracy. In addition,
the effect of relaxing the angular tolerance η from 0 (machine epsilon) to 10−3 radians
is reported. Some reduction in runtime is observed, without any loss of optimality.
However, if the angular tolerance is too large, the algorithm may discard branches
containing the optimal pose. Therefore, η should be at least an order of magnitude
smaller than θ.

The complete 2D qualitative results for scene 1, excluding image 10 shown in Fig-
ure 6.17, are given in Figures 6.20 and 6.21, including the two failure cases with respect
to camera pose (albeit optimal with respect to the number of inliers). In both cases
(images 6 and 9), a semantic segmentation error caused some of the extracted 2D fea-
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Figure 6.19: Comparing the runtime of the serial and parallel (CPU and GPU) implementa-
tions of GOPAC for scenes 1 and 5 of the Data61/2D3D dataset. The GPU implementation is
two orders of magnitude faster than the serial implementation without any loss of optimality
or accuracy. Relaxing the angular tolerance η from 0 (machine epsilon) to 10−3 radians also
reduces the runtime.

tures to lie on non-building pixels, creating particularly undesirable 2D outliers. This
is likely to have contributed to the algorithm finding the incorrect pose.
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(a) Image 1

(b) Image 2

(c) Image 3

(d) Image 4

(e) Image 5

Figure 6.20: The first 5 images of scene 1 with 2D features (top) and 3D building points
projected using the RANSAC (middle) and GOPAC (bottom) camera poses.
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(a) Image 6

(b) Image 7

(c) Image 8

(d) Image 9

(e) Image 11

Figure 6.21: The remaining 5 images of scene 1 with 2D features (top) and 3D building points
projected using the RANSAC (middle) and GOPAC (bottom) camera poses.



206 Robust and Globally-Optimal 2D–3D Alignment

Table 6.6: Camera pose results for the quad-GPU implementation of GOPAC for the
Data61/2D3D dataset. Quartiles (Q2Q1

Q3) for translation error, rotation error and runtime
and the mean inlier recall and success rates are reported.
Scene 1 2 3 4 5
Number of 3D Points 514 572 721 314 259
Translation Error (m) 1.110.63

1.36 0.970.64
1.40 1.060.84

2.52 1.57 1.06
2.44 1.120.81

2.09

Rotation Error (◦) 0.700.56
1.66 1.450.98

1.83 1.510.94
2.10 1.360.94

1.81 1.150.84
1.88

Recall (Inliers) 1.00 1.00 1.00 1.00 1.00
Success Rate (Inliers) 1.00 1.00 1.00 1.00 1.00
Success Rate (Pose) 1.00 1.00 1.00 1.00 1.00
Runtime (s) 15 12

22 2724
96 116

14 75
10 119

17

Scene 6 7 8 9 10
Number of 3D Points 234 245 439 819 899
Translation Error (m) 1.12 1.03

1.70 0.340.26
0.59 1.500.86

4.40 0.870.69
1.00 0.830.36

1.59

Rotation Error (◦) 0.840.69
1.14 0.590.50

0.85 1.400.95
1.77 0.830.74

1.42 1.45 1.13
1.91

Recall (Inliers) 1.00 1.00 1.00 1.00 1.00
Success Rate (Inliers) 1.00 1.00 1.00 1.00 1.00
Success Rate (Pose) 1.00 1.00 0.91 1.00 1.00
Runtime (s) 25 19

36 77
11 20 14

46 25 17
32 24 15

43

For the next set of experiments, the number of 2D and 3D features were increased
to 50 2D and 500 3D features on average (2m3 voxel downsampling). All 10 scenes
from the Data61/2D3D dataset were processed, with 11 images per scene. The inlier
threshold θ was set to 1◦, the angular tolerance η was set to 10−3, and the translation
domain was set to 50×5×5m. Quantitative results for the quad-GPU implementation
of GOPAC are given in Table 6.6. The single pose failure case (< 1%) was caused by a
symmetry in the bearing vector set. In contrast, RANSAC was only able to correctly
localise 13% of the images when run for 2 minutes per alignment, as shown in Table 6.7.

The effect of restricting the field-of-view to 90◦ was also tested by cropping the
images. For scene 1, the optimal number of inliers was retrieved for every image and
the correct pose was retrieved for 64% of the images. For this dataset, where the
3D features are far from the camera, many of the cropped regions do not contain
discriminative features. A more sophisticated feature extraction procedure would be
needed for better performance.

Indoor Data

For these experiments, a dataset was generated from area 3 of the 2D-3D-S dataset,
using the same pre-processing technique as the previous section with 0.3m3 voxel down-
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Table 6.7: RANSAC camera pose results for the Data61/2D3D dataset. Quartiles (Q2Q1
Q3)

for translation error, rotation error and runtime and the mean inlier recall and success rates
are reported.
Scene 1 2 3 4 5
Number of 3D Points 514 572 721 314 259
Translation Error (m) 11.68.60

41.0 24.2 10.1
28.7 86.262.3

104 76.126.8
88.2 36.29.79

79.5

Rotation Error (◦) 83.47.34
180 54.724.0

92.8 17668.0
179 16549.0

177 1739.15
178

Recall (Inliers) 0.61 0.60 0.69 0.64 0.57
Success Rate (Inliers) 0.00 0.00 0.00 0.00 0.00
Success Rate (Pose) 0.09 0.18 0.00 0.00 0.18
Runtime (s) 117 116

119 120 118
123 119 117

120 120 119
125 118 117

118

Scene 6 7 8 9 10
Number of 3D Points 234 245 439 819 899
Translation Error (m) 14.77.74

26.3 35.25.91
78.2 32.3 18.0

45.8 43.229.8
53.2 11.07.69

19.0

Rotation Error (◦) 1799.72
180 1754.71

178 13844.2
179 17759.1

179 9.414.54
177

Recall (Inliers) 0.59 0.51 0.62 0.49 0.61
Success Rate (Inliers) 0.00 0.00 0.00 0.00 0.00
Success Rate (Pose) 0.27 0.27 0.00 0.00 0.36
Runtime (s) 116 114

117 116 115
116 114 113

114 115 114
117 113 112

113

sampling. It consists of 15 rooms (lounges, offices, WCs and a conference room) and
27 sets of 50 bearing vectors, where the camera is at least 80cm from any item of fur-
niture. The rooms were treated as separate point-sets to model visibility constraints,
which assumes that the location of the camera is known to the room level. The inlier
threshold θ was set to 2.5◦, the angular tolerance η was set to 0.25◦, and the transla-
tion domain was set to the room size. Results for the quad-GPU implementation of
GOPAC and RANSAC are given in Figure 6.22 and Table 6.8.

A more sophisticated feature extraction technique was also tested, which selected
corners of the walls and doors in 2D and 3D using the instance-level segmentations. For
the central lounge and θ = 1◦, the median/maximum translation error was 0.03/0.05m,
the rotation error was 0.52/0.76◦ and the runtime was 4/5s. This shows that additional
pre-processing can greatly improve the pose accuracy and runtime of the method.
However, this may require some domain-specific knowledge, since it makes a Manhattan
world assumption, and is therefore less generally applicable than the downsampling
pre-processing technique.
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(a) 3D point-set (grey and green), 3D features (black dots) and ground-truth (black), RANSAC
(red) and GOPAC (blue) camera poses.

(b) Panoramic photograph and extracted 2D features (top), furniture points projected onto
the image using the RANSAC camera pose (middle) and furniture points projected using the
GOPAC camera pose (bottom).

Figure 6.22: Qualitative camera pose results for lounge 1 of the Stanford 2D-3D-S dataset,
showing the camera pose and the projection of the 3D furniture points onto the image.
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Table 6.8: Camera pose results for the quad-GPU implementation of GOPAC and RANSAC
for area 3 of the Stanford 2D-3D-S dataset. Quartiles (Q2Q1

Q3) for translation error, rotation
error and runtime and the mean inlier recall and success rates are reported.
Room type lounge office other
Number of 3D Points 534 299 365
Method GOPAC RANSAC GOPAC RANSAC GOPAC RANSAC
Translation error (m) 0.070.05

0.14 0.680.34
1.86 0.180.10

0.34 1.850.28
3.21 0.130.10

0.19 1.870.61
2.15

Rotation error (◦) 1.74 1.17
3.23 13.04.94

52.5 3.402.22
4.64 89.7 11.8

171 2.952.60
3.43 37.528.4

66.4

Recall (inliers) 1.00 0.62 1.00 0.63 1.00 0.59
Success rate (inliers) 1.00 0.00 1.00 0.00 1.00 0.00
Success rate (pose) 1.00 0.20 0.80 0.10 1.00 0.14
Runtime (s) 127

38 121 121
123 40 14

168 121 120
122 35 13

50 121 120
122

6.7 Discussion

As discussed in Section 3.4, there is often a mismatch between the task of optimising
an objective function and the task of aligning sensor data. While a good objective
function will attain its optimum at the true alignment, this is not often well-defined
for sampled surfaces. However, robustness to outliers in the data is clearly a necessary
condition for any objective function to be good in this sense.

Inlier set cardinality fulfils this robustness criterion by finding the largest set of
consistent inlier correspondences, but the large number of outliers common to practical
alignment tasks may still lead to alignment errors and ambiguities. Thus, finding the
global optimum does not necessarily imply finding the ground-truth transformation. In
particular, there may be false global optima created by noise and outliers or multiple
global optima created by symmetries or near-symmetries in the data. Nonetheless, the
results presented in Section 6.6 indicate that optimality with respect to the number of
inliers closely corresponds to optimality with respect to the camera pose.

An important question is whether it is necessary to find the global optimum instead
of a local optimum. The results presented in Section 6.6 answer this emphatically in the
affirmative. This is unsurprising, since the objective functions are highly non-convex
or non-concave, having a very large number of local optima even for a relatively small
number of points, as shown in Figure 6.23. Local solvers, such as SoftPOSIT, are likely
to become trapped at a local optimum near the pose prior with which the algorithm
was initialised. Even when provided with a torus prior from which the true camera
pose was randomly drawn, and therefore essentially running local solvers from many
different poses, both SoftPOSIT and BlindPnP were unable to retrieve the correct pose
in many cases. For example, SoftPOSIT and BlindPnP found incorrect poses in 50%
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(a) 10 random 2D and 3D points (b) 30 random 2D and 3D points

Figure 6.23: Inlier set cardinality optima for a slice of the rotation domain passing through the
optimal rotation (marked with a circle) and the Z-axis, for two alignment problems. The colours
indicate the maximum number of inliers at each point in the rotation domain, evaluated by
translation-only BB search, with lighter colours corresponding to greater inlier set cardinalities.
Many local optima are evident, hence local optimisation in the neighbourhood of a pose prior is
a bad strategy. Moreover, local optima are even more pervasive in the real alignment problem,
for which rotation and translation are solved jointly.

and 38% respectively of experiments with 80 random points and 50% 3D outliers (see
Table 6.1). Without the pose priors, such as in Section 6.6.2, they were not able to
find the correct pose for any experiment. In contrast, RANSAC, being a global but
non-optimal solver, was able to find the correct pose in some of these experiments,
albeit with a significantly lower success rate than GOPAC. This shows that stochastic
search over the correspondences was sometimes able to find a sufficient local optimum.
However, the experiments reported in Figure 6.14 indicate that the likelihood of finding
the correct pose decreases sharply as the number of points or outlier fraction increases,
due to the combinatorial nature of the algorithm.

Another question is whether it is necessary to prove that the global optimum has
been found. This was tested by implementing truncated GOPAC, which benefits from
guided branch-and-bound search over the pose space without requiring the sometimes
time-consuming proof of optimality. In this way, there can be a trade-off between the
runtime and the likelihood of finding a good local optimum. Terminating the algorithm
at 30s had no negative impact on the success rates for the synthetic data experiments
in Section 6.6.1, however it did reduce the success rates for the real data experiments
in Tables 6.3 and 6.4. It should also be noted that the correct alignment of data with
near-symmetries is much more likely to be found by a globally-optimality solver. Hence,
providing a guarantee of optimality may be considered a design choice, depending on
the importance of reliability for the specific application.



§6.7 Discussion 211

For the challenging application of camera pose estimation using the large-scale out-
door datasets in Section 6.6.2, running the full globally-optimal GOPAC algorithm did
provide a significant accuracy benefit. This can be attributed to the many alignment
ambiguities and local optima created by the naïvety of the 2D/3D point extraction
procedure. Downsampling and clustering the 2D pixels and 3D points is a very unso-
phisticated approach and is unlikely to create many true correspondences. Indeed, at
the ground-truth pose, the angles between the bearing vectors and their rotationally-
closest 3D points is very large. For example, only 17% of the bearing vectors have an
inlier point at an angle of less than 1◦ and only 53% less than 2◦ for image 1 of scene
1 of the Data61/2D3D dataset. As a result, a large inlier threshold was required (2◦),
which increases the likelihood that an incorrect pose will have an equally large or larger
number of inliers than the ground-truth pose.

While the naïve sampling and extraction procedure made the task much more chal-
lenging, GOPAC was still unexpectedly effective at finding the correct camera pose.
This highlights the usefulness of a robust and optimal solver. However, using more so-
phisticated techniques in the feature extraction part of the 2D–3D alignment pipeline
would tighten the correspondence between finding the optimal number of inliers and
finding the correct camera pose. These could include using corner or edge detectors
in 2D and 3D to find geometrically-meaningful points that are likely to have corre-
spondences in the other modality. Regardless, using a robust and optimal solver like
GOPAC relaxes the correspondence problem to one of extracting a set of 2D and 3D
points that are likely to have some correspondences, without needing to know which
of those points actually correspond.

Despite relaxing the correspondence problem, GOPAC has a significant limitation
that was accentuated by these experiments. The algorithm has a time complexity
of O(MN) and therefore cannot handle large numbers of points and bearing vectors
without increasing the runtime substantially. As a result, it was impractical to use
all points and pixels extracted by the semantic segmentation, as would be preferable.
Instead, downsampling and clustering was required, which created the attendant am-
biguity problems discussed previously. Moreover, GOPAC operates on discrete points,
unlike the underlying task of aligning semantic regions in 2D and 3D. This motivates
a surface-based approach, aligning regions on the unit sphere.

In Section 6.3, it was observed that using an asymmetric inlier measure could lead
to sets of degenerate poses. Symmetric inlier measures offer some advantages, but
introduce significant additional computation and may still be susceptible to these de-
generate configurations. For example, measures that add or multiply the number of
2D and 3D inliers can still lead to degenerate poses, particularly if the cardinality of
either the 2D or 3D data dominates the other. Furthermore, enforcing one-to-one cor-
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respondences does not circumvent the second type of degeneracy, where the camera is
brought close to dense regions of 3D points. In addition, many-to-one correspondences
are sometimes appropriate, particularly for point-sets with low density regions.

An ideal objective function would be symmetric, cardinality-invariant, and reach
its optimum at a pose that explains as much of the 2D and 3D information as possible.
However, it is not clear how to optimally balance the two. One alternative would be to
maximise the ratio of mutual information to joint entropy, that is, the intersection over
union or Jaccard Index, on the sphere but within the image boundaries. The bearing
vectors and 3D points induce inlier cones with half-aperture angle θ, which form circles
on the sphere that can be used to calculate the Jaccard Index. Using the inlier cones
for the alignment measure also partially circumvents the effect of variable sampling
densities. However, not only is this symmetric measure very difficult to compute, the
visibility constraints also vary with the pose, that is, the 3D points that were observable
from that pose for a given field-of-view. As a result, it would be extremely challenging
to find bounds for this function.

6.8 Transferring the Theoretical Framework

The theoretical framework developed in Section 6.4 can be transferred to other ob-
jective functions for 2D–3D registration. While the inlier set cardinality objective
function has many advantages, being inherently robust to outliers, finding an exact
optimiser and operating on raw sensor data, other objective functions may also have
useful characteristics. One example is the L2 distance between mixture models, which
is inherently robust to outliers and operates on statistical densities generated from the
raw sensor data. The densities model the underlying surfaces of the scene, which is
beneficial because the fundamental 2D–3D registration problem is a surface alignment
problem, not a discrete sample alignment problem.

In this section, theoretical insights from the cardinality maximisation approach are
transferred to an L2 distance minimisation approach. Firstly, the objective function will
be introduced, with some discussion about the practical considerations that constrain
its form. Next, the required bounding functions will be developed. This section is
intended to outline the approach, so implementation details will not be considered.

6.8.1 L2 Distance Between Mixture Models

Given the argument of Chapter 5, it is natural to consider whether a mixture model ap-
proach is suitable for the 2D–3D registration problem. While the L2 distance between
mixture models fulfils the criterion of being robust to outliers, tractability becomes a
challenge in the 2D–3D case for two reasons.
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Firstly, mixture models of directional data, such as those discussed in Section 3.3.6,
lie on the unit sphere S2, a more complex space than R3. As a result, most do not have
a closed-form probability density function. An exception to this is the von Mises–Fisher
Mixture Model (vMFMM), which has a closed-form probability density function (3.35),
can admit arbitrarily accurate estimates of noisy sphere-projected surface densities, and
can be computed efficiently from point-set or bearing vector set data. The trade-off
is that the von Mises–Fisher distribution [Fisher, 1953] is isotropic and therefore less
expressive than other probability distributions on the sphere, such as the non-isotropic
Fisher-Bingham distribution [Kent, 1982].

Secondly, challenges arise from the structure of the problem, since 2D–3D registra-
tion involves positional data (3D points) as well as directional data (bearing vectors).
While the directional data cannot be elevated to positional data unless the pixel depths
are known, positional data can be projected onto the unit sphere for a fixed camera
translation. Thus the L2 distance between mixture models for 2D–3D registration
must be defined on the sphere and a means of projecting the positional data onto the
sphere must be established, both of which have tractability challenges.

As discussed in Section 3.3.5, a Gaussian Mixture Model (GMM) can be estimated
from positional data to model the underlying surfaces of the scene. The projection of a
Gaussian distribution in R3 to the unit sphere S2 is given by the Projected Normal (PN)
distribution [Mardia, 1972; Wang and Gelfand, 2013]. A Projected Normal Mixture
Model (PNMM) is useful for modelling a 3D scene as observed by a camera and has
a probability distribution function given by (3.45) for isotropic Gaussian components.
However, the L2 distance between a vMFMM (bearing vectors) and a PNMM (3D
points) is not tractable, since it does not simplify to a closed form when integrated
over the sphere and would therefore require time-consuming numerical integration.

Instead, a simplified projection from R3 to S2 is considered, mapping an isotropic
GMM to an over-parametrised vMFMM. Each component of the vMFMM is given by
the parameter set {µ̂i, κi, φi} with mean direction µ̂i ∈ S2, concentration κi > 0 and
mixture weight φi > 0 calculated according to

µ̂i = µ′i
‖µ′i‖

(6.86)

κi =
(
‖µ′i‖
σ′i

)2

+ 1 (6.87)

φi = φ′i (6.88)

where {µ′i, σ′i, φ′i} is the parameter set of the GMM component with mean µ′i ∈ R3,
standard deviation σ′i > 0 and mixture weight φ′i > 0. The primary requirement of
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the projection is that the concentration κ increases with the square of the length of
the Gaussian mean vector for each component, since the further away the Gaussian,
the more certain its direction. Equation (6.87) can be derived by comparing the vMF
and PN distributions. It is important that their probability density functions evaluate
to similar values in the direction of the mean vector. Setting ∠(f , µ̂) = 0, the vMF
probability density function (3.36) becomes

vMF(f |µ̂, κ) = κ

2π(1− exp(−2κ)) ≈
κ

2π (6.89)

and the PN probability density function (3.45) becomes

PN(f |µ′, σ′) = 1
(2π)

3
2

exp
(
−1

2ρ
2
)[
ρ+
√

2πΦ(ρ) exp
(1

2ρ
2
)(

1 + ρ2
)]

(6.90)

for ρ = ‖µ′‖/σ′. As ρ→∞, it becomes

PN(f |µ′, σ′) = 1
2π

((‖µ′‖
σ′

)2
+ 1

)
. (6.91)

Equating (6.89) and (6.91) gives the equation for κ (6.87). Therefore the simplified
projection is close to the true PN distribution at the mean vector when ‖µ′‖ � σ′.

To show that the projected vMFMM is close to the true PNMM, the discrepancy
between the vMFMM and PNMM for each component was quantified across a range
of values of ρ = ‖µ′‖/σ′ and α = ∠(f , µ̂). The two distributions are very similar, even
for relatively low values of ρ, as shown in Figure 6.24(a) for ρ = 1. For example, the
root mean square error across the entire angular range is less than 0.01 for all ρ > 1.
Figure 6.24(b) shows the error in relative likelihood as the angle α between the mean
vector and the evaluation vector increases and Figure 6.24(c) shows the root mean
square error across the entire angular range as ρ increases.

Moreover, this simplified projection reduces the objective function to the L2 dis-
tance between vMFMMs, which is robust to outliers and can be calculated in closed-
form. This function was used by Straub et al. [2017] for 3D–3D rotational alignment,
however here it is used for 2D–3D rotational and translational alignment. Unlike the
standard L2 distance between vMFMMs, one of the vMFMMs is a projection from
a GMM and is therefore function of camera translation. As a result, the objective
function is a function of both camera rotation and translation.
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(a) PN and vMF probability density functions with respect to ∠(f , µ̂) for ρ = 1
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(c) RMS error with respect to ρ

Figure 6.24: Comparison of the true PN distribution and vMF approximation for projecting
an isotropic Gaussian distribution onto the unit sphere. (a) The vMF and PN probability
density functions are plotted with respect to the angle ∠(f , µ̂) between the mean direction µ̂

and the evaluation direction f for ρ = 1. The distributions are very close, even for a relatively
small ρ = 1. (b) The error PN− vMF is plotted with respect to the angle ∠(f , µ̂) for a range
of values of ρ ∈ [0.2, 5] at intervals of 0.2. For ρ > 1, the error is small and tends to 0 as the
angle increases. (c) The Root Mean Square Error (RMSE) across the entire angular range is
plotted with respect to ρ and is less than 0.01 for all ρ > 1.
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The derivation of the L2 distance between vMFMMs was given in Section 3.4.7.
For 2D–3D sensor data alignment, the first term of the expanded L2 distance is not
invariant to translation and therefore cannot be dropped. Let θ1 = {µ1i, σ1i, φ1i}n1

i=1 be
the parameter set of an n1-component GMM with isotropic covariances generated from
the point-set P, with means µ1i, standard deviations σ1i > 0, and mixture weights
φ1i > 0, where ∑n1

i=1 φ1i = 1. Also let θ2 = {µ̂2j , κ2j , φ2j}n2
j=1 be the parameter set

of an n2-component vMFMM generated from the bearing vector set F with mean
directions µ̂2j ∈ S2, concentrations κ2j > 0, and mixture weights φ2j > 0, where∑n2
j=1 φ2j = 1. Then the objective is to find a rotation R ∈ SO(3) and translation

t ∈ R3 that minimises the L2 distance between the projected GMM and the vMFMM

d∗L2 = min
R, t

f(R, t) (6.92)

f(R, t) =
n1∑
i=1

n1∑
j=1

φ1iφ1jZ(K1i1j(t))
Z(κ1i(t))Z(κ1j(t)) − 2

n1∑
i=1

n2∑
j=1

φ1iφ2jZ(K1i2j(R, t))
Z(κ1i(t))Z(κ2j)

(6.93)

where
Z(x) = sinh(x)

x
= exp(x)− exp(−x)

2x , (6.94)

K1i1j(t) ,
∥∥∥∥∥κ1i(t) µ1i − t

‖µ1i − t‖ + κ1j(t)
µ1j − t
‖µ1j − t‖

∥∥∥∥∥, (6.95)

K1i2j(R, t) ,
∥∥∥∥κ1i(t)R µ1i − t

‖µ1i − t‖ + κ2jµ̂2j

∥∥∥∥, and (6.96)

κ1i(t) =
(‖µ1i − t‖

σ1i

)2
+ 1. (6.97)

The function value dL2 = f(R, t) is equal to the L2 distance up to a constant factor
(1/4π) and addition by a constant. Also, Z(x) is a monotonically increasing function
for x > 0 with Z(x) > 1.

While there are many differences between this objective function and the inlier
set cardinality objective function, the one that has the largest effect on bounding the
function is the dependence of κ on ‖µ− t‖. That is, the function is dependent on the
distance to each translated Gaussian mean, unlike the inlier set cardinality function
which is independent of the distance to each 3D point. This occurs because the L2

distance between mixture models is a surface alignment method, whereas the inlier set
cardinality is a point alignment method. Specifically, the (infinitesimal) surface area
of a projected point does not scale with the square of the distance to the point, unlike
the surface area of a projected Gaussian.
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6.8.2 Bounding Functions

Similar arguments to those used in Section 6.4.2 can be used to bound the objective
function (6.93) within a transformation domain Cr×Ct. An upper bound can be found
by evaluating the function at any transformation in the branch. The transformation at
the centre of the rotation and translation cuboids is convenient and quick to evaluate.

Theorem 6.6. (Upper bound) For the transformation domain Cr×Ct centred at (r0, t0),
an upper bound of the L2 distance between the projected GMM and the vMFMM is

d̄L2 , f(Rr0 , t0). (6.98)

Proof. The validity of the upper bound follows from

f(Rr0 , t0) > min
r∈Cr
t∈Ct

f(Rr, t). (6.99)

That is, the function value at a specific point within the domain is greater than or
equal to the minimum within the domain.

A lower bound on the objective function within a transformation domain Cr × Ct
can be found using the bounds on the uncertainty angles ψr and ψt.

Theorem 6.7. (Lower bound) For the transformation domain Cr×Ct centred at (r0, t0),
a lower bound of the L2 distance between the projected GMM and the vMFMM is

¯
dL2 ,

n1∑
i=1

n1∑
j=1

φ1iφ1jZ(
¯
K1i1j(Ct))

Z(κ̄1i(Ct))Z(κ̄1j(Ct))
− 2

n1∑
i=1

n2∑
j=1

φ1iφ2jZ
(
K̄1i2j(Cr, Ct)

)
Z(

¯
κ1i(Ct))Z(κ2j)

(6.100)

where

¯
K1i1j(Ct) , max

{
0,K1i1j(t0)−

√
κ̄2

1i(Ct) + κ2
1i(t0)− 2κ̄1i(Ct)κ1i(t0) cosψt(µ1i, Ct)

−
√
κ̄2

1j(Ct) + κ2
1j(t0)− 2κ̄1j(Ct)κ1j(t0) cosψt(µ1j , Ct)

}
(6.101)

K̄1i2j(Cr, Ct) , K1i2j(Rr0 , t0) +
√
κ̄2

1i(Ct) + κ2
1i(t0)− 2κ̄1i(Ct)κ1i(t0) cosψt(µ1i, Ct)

+ κ2j
√

2− 2 cosψr(µ̂2j , Cr) (6.102)

κ̄1i(Ct) ,
max

t∈Vt

‖µ1i − t‖
σ1i

2

+ 1 (6.103)

¯
κ1i(Ct) ,

min
t∈Ct

‖µ1i − t‖
σ1i

2

+ 1. (6.104)
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Proof. Observe that ∀t ∈ Ct,

K1i1j(t) =
∥∥∥∥∥κ1i(t) µ1i − t

‖µ1i − t‖ + κ1j(t)
µ1j − t
‖µ1j − t‖

∥∥∥∥∥ (6.105)

=
∥∥∥∥∥κ1i(t0) µ1i − t0

‖µ1i − t0‖
+ κ1j(t0)

µ1j − t0

‖µ1j − t0‖

−
(
κ1i(t0) µ1i − t0

‖µ1i − t0‖
− κ1i(t) µ1i − t

‖µ1i − t‖

)

−
(
κ1j(t0)

µ1j − t0

‖µ1j − t0‖
− κ1j(t)

µ1j − t
‖µ1j − t‖

)∥∥∥∥∥ (6.106)

>
∣∣∣∣∣
∥∥∥∥∥κ1i(t0) µ1i − t0

‖µ1i − t0‖
+ κ1j(t0)

µ1j − t0

‖µ1j − t0‖

∥∥∥∥∥
−
∥∥∥∥∥
(
κ1i(t0) µ1i − t0

‖µ1i − t0‖
− κ1i(t) µ1i − t

‖µ1i − t‖

)

+
(
κ1j(t0)

µ1j − t0

‖µ1j − t0‖
− κ1j(t)

µ1j − t
‖µ1j − t‖

)∥∥∥∥∥
∣∣∣∣∣ (6.107)

> max
{

0,
∥∥∥∥∥κ1i(t0) µ1i − t0

‖µ1i − t0‖
+ κ1j(t0)

µ1j − t0

‖µ1j − t0‖

∥∥∥∥∥
−
∥∥∥∥κ1i(t0) µ1i − t0

‖µ1i − t0‖
− κ1i(t) µ1i − t

‖µ1i − t‖

∥∥∥∥
−
∥∥∥∥∥κ1j(t0)

µ1j − t0

‖µ1j − t0‖
− κ1j(t)

µ1j − t
‖µ1j − t‖

∥∥∥∥∥
}

(6.108)

= max
{

0,K1i1j(t0)

−
√
κ2

1i(t)+κ2
1i(t0)−2κ1i(t)κ1i(t0) cos∠

(
µ1i − t
‖µ1i−t‖ ,

µ1i − t0
‖µ1i−t0‖

)

−
√
κ2

1j(t)+κ2
1j(t0)−2κ1j(t)κ1j(t0) cos∠

(
µ1j − t
‖µ1j−t‖ ,

µ1j − t0

‖µ1j−t0‖

)}
(6.109)

> max
{

0,K1i1j(t0)

−
√
κ̄2

1i(Ct) + κ2
1i(t0)− 2κ̄1i(Ct)κ1i(t0) cosψt(µ1i, Ct)

−
√
κ̄2

1j(Ct) + κ2
1j(t0)− 2κ̄1j(Ct)κ1j(t0) cosψt(µ1j , Ct)

}
(6.110)

where (6.107) and (6.108) follow from the (reverse) triangle inequality, (6.109) follows
from the cosine rule, and (6.110) follows from Lemma 6.4.
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Also observe that ∀(r, t) ∈ (Cr × Ct),

K1i2j(Rr, t) =
∥∥∥∥κ1i(t) µ1i − t

‖µ1i − t‖ + κ2jR−1
r µ̂2j

∥∥∥∥ (6.111)

=
∥∥∥∥∥κ1i(t0) µ1i − t0

‖µ1i − t0‖
+ κ2jR−1

r0 µ̂2j

+
(
κ1i(t) µ1i − t

‖µ1i − t‖ − κ1i(t0) µ1i − t0
‖µ1i − t0‖

)

+ κ2j
(
R−1

r µ̂2j −R−1
r0 µ̂2j

)∥∥∥∥∥ (6.112)

6
∥∥∥∥κ1i(t0) µ1i − t0

‖µ1i − t0‖
+ κ2jR−1

r0 µ̂2j

∥∥∥∥
+
∥∥∥∥κ1i(t) µ1i − t

‖µ1i − t‖ − κ1i(t0) µ1i − t0
‖µ1i − t0‖

∥∥∥∥
+ κ2j

∥∥∥R−1
r µ̂2j −R−1

r0 µ̂2j

∥∥∥ (6.113)

= K1i2j(Rr0 , t0)

+
√
κ2

1i(t)+κ2
1i(t0)−2κ1i(t)κ1i(t0) cos∠

(
µ1i − t
‖µ1i−t‖ ,

µ1i − t0
‖µ1i−t0‖

)
+ κ2j

√
2− 2 cos∠

(
R−1

r µ̂2j ,R−1
r0 µ̂2j

)
(6.114)

6 K1i2j(Rr0 , t0)

+
√
κ̄2

1i(Ct)+κ2
1i(t0)−2κ̄1i(Ct)κ1i(t0) cosψt(µ1i, Ct)

+ κ2j
√

2− 2 cosψr(µ̂2j , Cr) (6.115)

where (6.113) follows from the triangle inequality, (6.114) follows from the cosine rule,
and (6.115) follows from Lemmas 6.2 and 6.4.

These bounds can be implemented using the same 2D–3D registration framework
developed in Sections 6.4 and 6.5 and the same rotation and translation uncertainty
angles ψr and ψt. Many of the implementation details from Section 6.5 can be trans-
ferred to this approach, including nesting rotation search inside translation search.

However, one significant difference is that the L2 distance approach can only achieve
ε-suboptimality, not full optimality, since the bounding functions converge asymptoti-
cally as the branch sizes decrease but only coincide at infinitesimal branch sizes. There-
fore, the user is required to set a small value ε such that the solution will be guaranteed
to be within ε of the true global optimum.
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6.9 Summary

This chapter developed a theoretical framework for robust and globally-optimal 2D–
3D registration and demonstrated how this could be used to solve the simultaneous
camera pose and correspondence problem using inlier set cardinality maximisation.
The method applied the branch-and-bound paradigm to guarantee global optimality
regardless of initialisation and used local optimisation to accelerate convergence. The
pivotal contribution was the derivation of the objective function bounds using the
geometry of SE(3). The algorithm outperformed other local and global methods on
challenging synthetic and real datasets, finding the global optimum reliably, with a
GPU implementation greatly reducing runtime. These experiments provided evidence
that a robust objective function and global optimality are critical for reliable 2D–3D
alignment. Finally, another robust and globally-optimal approach, minimising the L2

distance between mixture models, was outlined using the same framework developed
for the cardinality maximisation algorithm. This demonstrated how theoretical insights
from the first algorithm can be transferred to develop algorithms with other objective
functions that have different properties.

Further investigation is warranted to develop a complete 2D–3D alignment pipeline.
Extracting structural features that exist in both the image and point-set is itself a chal-
lenging problem. The insight that semantic segmentations in 2D and 3D can isolate
regions that are potentially observable in both modalities merits further research, mak-
ing use of recent developments in 2D–3D segmentation. Finally, several opportunities
arise from the mixture model approach, including a novel local solver based on the ob-
jective function with coarse-to-fine annealing on the number of mixture components,
trading off optimality for speed.

The following chapter will bring together the conclusions drawn in this and pre-
vious chapters on the necessity of robust objective functions and global optimality
for geometric alignment tasks. It will also summarise the contributions made by this
thesis and will discuss directions for ongoing and future research germinated by these
investigations.
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Conclusions

This thesis has addressed the problem of geometric sensor data alignment, finding the
rigid transformation that correctly aligns one set of sensor data with another without
any prior knowledge about how the data correspond. In this investigation, the objective
was to develop tractable algorithms for geometric sensor data alignment that were
robust to outliers and not susceptible to spurious local optima. This was considered
a valuable pursuit because outliers are highly prevalent in sensor data and alignment
problems are highly non-convex, key challenges that have not been fully and jointly
resolved by the literature. As a response to these challenges, this thesis presented
the case that robust and optimal methods are necessary for geometric sensor data
alignment without correspondences to handle outliers and non-convexity.

The approach taken in this thesis was to first analyse the limitations of the prior
art in geometric sensor data alignment, with particular attention to the literature that
proposed solutions to the nD–nD and 2D–3D alignment problems studied in this the-
sis. This analysis identified outliers and non-convexity as the key challenges inherent to
the alignment problem. The analysis further identified that most alignment methods
failed to consider both factors or treated one of the factors as a post hoc requirement,
not a core feature. For example, several authors developed algorithms that were not
robust to outliers, for which techniques to robustify the approach, such as trimming,
were applied retrospectively. Other authors developed algorithms that were susceptible
to local optima, for which stochastic global optimisation techniques, such as a random-
start strategy, were applied after the fact. Following this analysis, the approach taken
was to consider the challenges presented by outliers and non-convexity from the outset
when developing geometric alignment algorithms. That is, building robustness to out-
liers directly into the algorithms through intrinsically robust objective functions, and
reducing susceptibility to local optima from the initial choice of optimisation technique.

In this chapter, the primary and secondary contributions of the investigation are
outlined, limitations of the approaches taken are discussed, and future work stemming
from the research is considered.
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7.1 Contributions

The major contributions of this thesis were:

1. A novel positional sensor data representation, the Support Vector–parametrised
Gaussian Mixture (SVGM), that is sparsely-parametrised, discriminative and ef-
ficient to compute. As a sparse parametrisation of the data that adapts to local
surface complexity, it is time efficient, having fewer components to align, and
memory efficient, compressing the data without sacrificing model fidelity. As a
discriminative model, it has better viewpoint invariance than generative models
since it does not model sampling artefacts, such as varying point density and
occlusion, to the same extent.

2. A novel local optimisation algorithm, Support Vector Registration (SVR), for
aligning positional sensor data under the robust L2 distance between densities.
In comparison to other local optimisation algorithms, SVR manifested a greater
robustness to outliers and sampling artefacts, a wider region of convergence,
and a superior time complexity. In comparison to existing global optimisation
algorithms, SVR had a better trade-off between accuracy and speed, except for
very large motions.

3. A novel global optimisation algorithm, Globally-Optimal Gaussian Mixture Align-
ment (GOGMA), for optimally aligning 3D positional sensor data under the
robust L2 distance between densities. GOGMA was the first optimal solution
proposed for 3D–3D geometric alignment with an inherently robust objective
function. The pivotal contribution was the derivation of novel bounds on the
objective function using the geometry of SE(3). These were used within a par-
allel branch-and-bound framework to guarantee global optimality regardless of
initialisation. In comparison to other 3D–3D alignment algorithms, GOGMA
performed more robustly on challenging datasets due to its guaranteed optimal-
ity and outlier robustness, without unduly increasing the runtime.

4. A novel global optimisation algorithm, Globally-Optimal Pose And Correspon-
dences (GOPAC), for optimally aligning 2D directional and 3D positional sensor
data under the robust inlier set cardinality objective function. GOPAC was the
first optimal solution proposed for 2D–3D alignment with an inherently robust
objective function. The pivotal contribution was the derivation of novel bounds
on the objective function using the geometry of SE(3). These were used within
a nested branch-and-bound framework to guarantee global optimality regardless
of initialisation. In comparison to other 2D–3D alignment algorithms, GOPAC
performed more robustly on challenging datasets due to its guaranteed optimality
and outlier robustness, with a GPU implementation greatly reducing runtime.
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5. A novel global optimisation algorithm for optimally aligning 2D directional and
3D positional sensor data under the robust L2 distance between densities. The
pivotal contributions incorporated into this surface alignment algorithm were the
derivations of a novel projection of Gaussian mixture models onto the unit sphere
and novel bounds on the closed-form objective function.

Secondary contributions of this thesis included:

1. An analysis of discriminative and generative models for sensor data, showing that
discriminative models have useful properties for alignment problems, such as a
robustness to sampling artefacts including varying point density and occlusion.

2. A novel and time-efficient algorithm, GMMerge, for merging aligned mixture
models without retaining redundant components or weighting the intersection
regions disproportionately. GMMerge is useful for reconstruction and mapping
applications, particularly those that have time and memory limitations.

3. A tight and novel bound on the rotation uncertainty distance that can be directly
transferred to other 3D–3D geometric alignment algorithms that use branch-and-
bound [Yang et al., 2016] to improve the quality of their bounds and the runtime
of their implementations.

4. Tight and novel bounds on the rotation and translation uncertainty angles that
can be directly transferred to other branch-and-bound geometric alignment al-
gorithms [Brown et al., 2015; Yang et al., 2016; Parra Bustos et al., 2016] to
improve the quality of their bounds and the runtime of their implementations.

5. A tighter objective function bound that considers the interaction between the
elements of both datasets (see Section 6.4.2). The same insight can be applied to
tighten the bounds of other branch-and-bound geometric alignment algorithms
[Brown et al., 2015; Yang et al., 2016; Campbell and Petersson, 2016; Parra Bus-
tos et al., 2016].

6. Insights into how branch-and-bound methods for alignment problems can be
made more efficient, including the use of sophisticated data structures, projec-
tions, and pre-computation.

7. A parallel branch-and-bound framework that implemented an adaptive branch-
ing strategy, significantly reducing redundant branching and computation. The
strategy orders the the dimensions to subdivide by their angular uncertainty.

8. An analysis of the novel spherical projection of a Gaussian mixture model, in-
cluding the discrepancy between the projection and the true distribution, the
projected normal mixture model.



224 Conclusions

7.2 Limitations of the Approach

The proposed algorithms have several limitations that restrict their applicability. The
most significant limitations include:

1. Time Complexity and Runtime: The primary limitation of the algorithms
developed in this thesis is their theoretical time complexity and their runtime
in practice. All of the algorithms have a quadratic time complexity of O(MN)
with respect to the input size, where M and N are the number of Gaussian
components or the number of points. As a result, scenes and objects cannot
be modelled to a high resolution without increasing the runtime significantly.
This in turn increases the ambiguity of the alignment problem, since the optimal
alignment of low resolution models may not correspond to the correct alignment
of the underlying surfaces. More importantly, the runtime of the branch-and-
bound algorithms can be quite high in practice, due to the size of the search
space, and is data-dependent. This excludes real-time applications and those
that require a consistent runtime.

2. Alignment Objective Functions: Another limitation is attributable to the
mismatch between the task of optimising an objective function and the task of
aligning sensor data. While the robust objective functions used in this thesis
typically attain their optimum at the true alignment, this is not always the case.
False optima can result from the sampling process itself, as well as symmetries or
near-symmetries in the data. This reflects the underlying nature of the problem
as that of aligning surfaces, which are only approximated by the discrete samples.

3. Degenerate Cases: A limitation of the GOPAC algorithm is the degenerate
poses that can result from optimising the asymmetric objective function. While
degenerate configurations are unavoidable for 2D–3D alignment due to the nature
of the problem, they can be exacerbated by the choice of objective function.
However, objective functions with fewer degenerate cases can be non-trivial to
compute and bound.

4. Transformation Classes: The scope of this investigation was limited to rigid
transformations, to the exclusion of affine, projective, piecewise-rigid and non-
rigid transformations. As a result, the algorithms proposed in this thesis cannot
be applied directly to non-rigid problems, such as face and body alignment.

7.3 Ongoing and Future Work

There are several theoretical and technical areas of this research that warrant further
analysis and investigation:
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1. Data Representations: For the mixture model approaches, estimating full co-
variance matrices from the data would increase the representational power of the
model while requiring fewer components. For example, more spherical Gaussians
are required to model flat surfaces than would be required by anisotropic Gaus-
sians. Once estimated, an SVM could be trained with the full covariances [Abe,
2005] to produce a discriminative model. For the SVR algorithm, incorporating
the full covariances into the objective function and optimisation process is not
problematic, as shown in Section 3.4.6. However, tractability becomes a chal-
lenge for mixture models on the sphere, which do not have a closed-form in the
anisotropic case, and for the optimal methods, which would require new bounds
on the Mahalanobis distance to remain valid. Finally, approximate algorithms
could be applied to reduce the training time of the SVGM data representation
[Joachims, 1999; Tsang et al., 2005].

2. Data Structures: Further research could usefully explore how data structures
could be applied to improve the time efficiency of the algorithms. The SVR and
GOGMA algorithms evaluate a discrete Gauss transform, the sum of n1 Gaussians
at n2 points in D dimensions, as part of the L2 distance computation. This
imposes a time complexity of O(n1n2) and dominates the complexity behaviour
of the algorithms. The time complexity can be reduced to O(n1 + n2) by using
an approximation such as the fast Gauss transform [Greengard and Strain, 1991]
or improved fast Gauss transform [Yang et al., 2003] and an associated data
structure with memory requirements proportional to n1 + n2. A similar data
structure could be applied for estimating the L2 distance between mixture models
on the sphere. Alternatively, a data structure could be designed by analogy to
the distance transform, storing the set of K least-attenuated Gaussians at each
point in R3 and reducing the time complexity to O(Kn1). This makes use of the
observation that Gaussians far from any given point have very little influence on
the function value at that point, due to the rapid attenuation of Gaussians. In this
formulation, the second mixture could have an arbitrary number of components
without affecting the runtime, suitable for large-scale maps.

3. Parallel Processing: A natural progression of this work is to analyse how ad-
vanced parallel processing techniques could be applied to the existing parallel
implementations. For example, implementing a dynamic branching factor would
reduce redundant computation and allow for more parallelism at the same mem-
ory requirements. Furthermore, using dynamic parallelism would make it possible
to implement the nested branch-and-bound structure on the GPU. This has sev-
eral advantages, including better memory and computational efficiency and the
ability to precompute uncertainty angles and transformations. Finally, runtime
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benefits could also be realised by implementing local optimisation on the GPU,
reducing the amount of serial processing required.

4. Optimisation Techniques: Another possible area of future research would be
to investigate the application of more sophisticated optimisation techniques to
the problem, particularly for the local optimisation approaches used in SVR and
GOGMA. For example, the number of iterations required could be reduced by
utilising analytically-expressed Hessian matrices in the optimiser. In addition,
techniques for expanding the search domain, such as random-start optimisation
or particle filtering, could be applied.

5. Transformation Class: Extending the class of transformations handled to the
non-rigid case would be a useful addition. For SVR, this would be trivial, since
a direct application of the approach of Jian and Vemuri [2011] would be suf-
ficient. For the other algorithms, this would not currently be tractable, since
the dimensionality of the problem is already very high for a branch-and-bound
approach.

6. 2D–3D Alignment Pipeline: Further investigation is warranted to develop a
complete 2D–3D alignment pipeline. In particular, the insight that semantic seg-
mentations can be used to extract features that are observable in both modalities
merits further research. Exploiting recent developments in multi-modal classi-
fication is a natural way to incorporate appearance information into geometric
alignment problems.
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