
High-Level Environment Representations for Mo-
bile Robots

Sapienza University of Rome

Dottorato di Ricerca in Engineering in Computer Science – XXX Ciclo

Candidate

Federico Nardi
ID number 1463717

Thesis Advisors

Prof. Giorgio Grisetti
Prof. Daniele Nardi

February 2019

Thesis defended on 22 February 2019
in front of a Board of Examiners composed by:

Prof. Riccardo Torlone (chairman)
Prof. Alessandro Farinelli
Prof. Paolo Prinetto

High-Level Environment Representations for Mobile Robots
Ph.D. thesis. Sapienza – University of Rome
ISBN: 000000000-0
© 2019 Federico Nardi. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Version: January 21, 2019

Author’s email: fnardi@diag.uniroma1.it

mailto:fnardi@diag.uniroma1.it

Dedicated to
who has made its writing possible and whoever will read it

v

Abstract

In most robotic applications we are faced with the problem of building a digital
representation of the environment that allows the robot to autonomously complete
its tasks. This internal representation can be used by the robot to plan a motion
trajectory for its mobile base and/or end-effector. For most man-made environments
we do not have a digital representation or it is inaccurate. Thus, the robot must
have the capability of building it autonomously. This is done by integrating into an
internal data structure incoming sensor measurements. For this purpose, a common
solution consists in solving the Simultaneous Localization and Mapping (SLAM)
problem. The map obtained by solving a SLAM problem is called “metric” and it
describes the geometric structure of the environment. A metric map is typically
made up of low-level primitives (like points or voxels). This means that even though
it represents the shape of the objects in the robot workspace it lacks the information
of which object a surface belongs to. Having an object-level representation of
the environment has the advantage of augmenting the set of possible tasks that a
robot may accomplish. To this end, in this thesis we focus on two aspects. We
propose a formalism to represent in a uniform manner 3D scenes consisting of
different geometric primitives, including points, lines and planes. Consequently, we
derive a local registration and a global optimization algorithm that can exploit this
representation for robust estimation. Furthermore, we present a Semantic Mapping
system capable of building an object-based map that can be used for complex task
planning and execution. Our system exploits effective reconstruction and recognition
techniques that require no a-priori information about the environment and can be
used under general conditions.

vii

Acknowledgments

This is the section of the thesis devoted to gratitude. Gratitude is a wonderful yet
complex feeling and, as all complex things in life, it takes practice to handle it. In
this moment, all my gratitude goes to the members of the LabRoCoCo that I met
during this adventure. Despite I joined late this group, I have been warmly welcomed.
It took me a while to realize how lucky I was to end up in such a nice community, so
I’m taking this chance to say it now. I could thank each of them separately but it
would not be accurate, because each of them knows better than me what was his/her
contribution to this work and how much patience they had to exercise while I made
them upset with my bad attitude ("Sorry for that! I’m working on it!"). What I
really want to do is to thank every single member of the lab for the lessons I learned
from them. Apart from the technical aspects, I can say that I learnt from this group
how to become a better person and cultivate the values of responsibility, honesty and
respect.

ix

Contents

1 Introduction 1
1.1 Research Context . 1
1.2 Addressed issues . 2
1.3 Contributions . 4

I Basics 7

2 Related Work 9
2.1 Geometric Registration . 9

2.1.1 Global Registration . 9
2.1.2 Local Registration . 10
2.1.3 Geometric Primitives Detection 12

2.2 Simultaneous Localization and Mapping 14
2.2.1 Graph-based SLAM . 14
2.2.2 SLAM with Geometric Primitives 15

2.3 Semantic Mapping . 16
2.3.1 Semantic Information Extraction 16
2.3.2 Map Construction . 17
2.3.3 Active Vision . 19

3 Fundamentals 21
3.1 State Estimation . 21

3.1.1 Bayesian Framework . 21
3.1.2 Gauss-Newton . 22
3.1.3 Smooth Manifolds . 24

3.2 Local Registration . 28
3.2.1 Iterative Closest Point . 28
3.2.2 Least-Squares Solution . 29

3.3 Global Optimization . 31
3.3.1 Multi-Point Registration . 31
3.3.2 Factor Graphs and Sparse Least-Squares 32

x Contents

II Metric maps 35

4 Taxonomy of Metric Map Representations 37
4.1 Sparse Representation . 38
4.2 Dense Representation . 39
4.3 Volumetric Representation . 40
4.4 Object-based Representation . 41
4.5 Comparison . 41

5 Unifying Local Registration Algorithms 43
5.1 Generalized Local Registration . 43

5.1.1 Representation . 45
5.1.2 Transformation . 45
5.1.3 Distance . 46
5.1.4 Registration . 47

5.2 Front-End . 50
5.2.1 Detecting Matchables from RGB-D data 50
5.2.2 Data Association . 51

5.3 Experimental Evaluation . 52
5.3.1 Synthetic Data . 52
5.3.2 Simulated and Real Data . 53

6 Unifying Global Optimization Algorithms 57
6.1 Multi-Primitive Registration . 58

6.1.1 State . 58
6.1.2 Error . 59

6.2 Front-End . 61
6.2.1 Pose Tracker . 62
6.2.2 Loop Detector . 62

6.3 Experimental Evaluation . 63
6.3.1 Synthetic Experiments . 63
6.3.2 Real-world Experiments . 64

III Semantic maps 67

7 Taxonomy of a Semantic Mapping System 69
7.1 Perception . 69
7.2 Map Construction . 71
7.3 Action . 71

8 Generating a Semantic Map 73
8.1 System Overview . 74

8.1.1 Perception . 74
8.1.2 Map Construction . 76
8.1.3 Action . 80

8.2 Experimental Evaluation . 82
8.2.1 Constructing the Map . 84

Contents xi

8.2.2 Exploring the Environment 85

IV Conclusions 89

9 Final Discussion 91
9.1 Metric Maps . 91
9.2 Semantic Maps . 92
9.3 Future Directions . 92

xiii

List of Figures

1.1 Example of environment reconstructions obtained with: (a) Velodyne
(image from [175]) and (b) Kinect (image from [171]). 2

1.2 Convolutional Neural Network [81]: (a) AlexNet architecture and (b)
recognition results. 3

4.1 Incremental map building process. 38
4.2 Example of sparse representations: (a) image from [22] (b) image

from [76]. 39
4.3 Example of dense representations: (a) image from [102] (b) image

from [170]. 39
4.4 Example of volumetric representations: (a) image from [103] (b) image

from [64]. 40
4.5 Example of object-based representation, image from [132]. 41

5.1 A typical scenario addressable with the proposed representation: we
want to register a moving scene (red) onto a fixed scene (black).
The scenes are composed by points (pt), lines (l) and planes (pl).
Green lines indicate the constraints between two geometric entities.
The proposed representation allows to model both homogeneous (e.g.
line-line) and heterogeneous (e.g. point-plane) constraints. 44

5.2 Front-end. When a new pair of images is available, we extract a set
of matchables from raw data using the strategy outlined in Sec. 5.2.1,
here we show only planes for more clarity. Subsequently, we find
corresponding matchables (here, linked by a red line) between the
newly generated scene and the “fixed” scene with the methodology in
Sec. 5.2.2. Finally, a minimization is conducted to find the transform
that best aligns the two scenes according to Sec. 5.1.4. 50

5.3 Planes extraction. From left to right and top to bottom: (a) input
depth image, (b) estimated surface normals, (c) connected regions (in
black), (d) detected planes (in red). 51

5.4 Synthetic Experiments - Error Evolution. In solid blue is shown the
evolution of the error without noise, while in dashed red is reported
the low-noise case and in point-dashed yellow the high-noise case. For
each constraint, the left plot reports the Iterative Solver evolution,
while the right plot shows the error after one Direct Solver iteration. 53

6.1 Applying a perturbation to the matchable direction. 59

xiv List of Figures

6.2 Front-end for global optimization. 61
6.3 Visual comparison of the two factor graphs rendered by the g2o_viewer:

(a) before optimization (b) after optimization. Notice that we draw
just the matchable point pm. 65

6.4 Synthetic experiments: normalized chi2 evolution. opt: starting from
the optimal intial guess, span: initial guess from the spanning tree. . 66

7.1 Semantic mapping system. 70

8.1 Comparison of the extraction procedure with the ROS depthim-
age_to_laserscan tool and our method in [101]. The RGB-D camera
is represented by the black box on top of the robot, the virtual laser
is represented by the 3D model of an Hokuyo sensor. 75

8.2 Semantic segmentation procedure: (a) input point cloud (b) models
bounding boxes superimposed to the cloud (c) points belonging to
the detected objects (each one is colored depending on the object type). 76

8.3 Semantic segmentation result: (a) input (b) output. Pixels that do
not belong to an object are in black. 77

8.4 Representation of the object-based map. Each element has a: type
(color), position (axes), size (bounding box) and model (point cloud). 78

8.5 Candidate pose computation. 81
8.6 Ray-casting procedure. The axes show the candidate view, gray lines

represent the rays. The volumetric reconstruction is shown with
wireframe cubes: occupied (red), green (free). 82

8.7 Simulation environment for experiments. 83
8.8 Example evaluation of the reconstructed map. Grey meshes are

obtained from Gazebo models. Reconstructed objects are represented
through: reference frame (position), blue box (size), colored point
cloud (3D model). 83

8.9 Motion trajectories for both exploration strategies: (a) frontier-based,
(b) object-based. Green dot: starting point. Red dot: end point. . . 86

xv

List of Tables

4.1 Comparison of metric representations. 42

5.1 Matchables table. The shape of Ωm discriminates the type of primitive
represented by the matchable. The confidence ellipsoid obtained from
Ωm is a sphere if the matchable is a point. If the primitive is a line or
a plane the confidence ellipsoid degenerates respectively to a cylinder
or to two parallel planes. 45

5.2 Information Matrix Ω(m,m′) for each possible pair of matchables. 47
5.3 ICL-NUIM - Relative Pose Error. 55
5.4 TUM - Relative Pose Error. 55

6.1 Noise figures for the second set of synthetic experiments. 64
6.2 TUM - Absolute Trajectory Error [m]. 65

7.1 Semantic Mapping Systems taxonomy. 72

8.1 Position and size errors for the reconstructed objects. 84
8.2 Comparison of position and size errors for the two exploration strategies. 87

1

Chapter 1

Introduction

Recent years witnessed relevant progress in different technologies and disciplines
related to Robotics. More advanced sensing devices like the Velodyne Lidar and
Microsoft Kinect allowed for more accurate environmental modeling (Fig. 1.1).
Meanwhile, the huge amount of data available on the web and GPU computing
enabled the development of Deep Neural Networks that showed impressive results in
recognition tasks (Fig. 1.2).

These are enabling technologies that pave the way towards one of the long-
standing goals of Robotics researchers: to have robots operating in human environ-
ments, by collaborating with humans or replacing them in demanding or dangerous
activities. In this regard a fundamental question, that was also the inspiration for
this research work, is: what does a robot need to perform the desired tasks in human
environments?

An introductory answer will be given in this chapter, whose structure is as
follows: we first provide the reader with the research context (Sec. 1.1), we then
highlight the issues addressed in this thesis (Sec. 1.2), finally we report the proposed
contributions (Sec. 1.3).

1.1 Research Context

Robots, as we intend them today, have a quite recent history. They first appeared
in sci-fi novels around the beginning of the twentieth century but just by the end of
the fifties they started to be actually implemented.

Early models have been realized around the sixties and were the so-called
manipulator arms: kinematic chains of links and joints that were employed in
industrial plants for replacing humans in the assembly line. While, no more than
ten years later, the first prototype of mobile robot was developed at the Stanford
Research Institute.

These two types of robot present a substancial difference, the main reason being
the environment in which they have to be deployed. Factory environments are
designed for efficient production and no room for the unexpected is left. In this
context, the task of a robot is defined by strict protocols. Conversely, man-made
environments, i.e. all others but factories, are mostly unpredictable. This requires a
mobile robot to perceive the situation around it and choose its actions accordingly.

2 1. Introduction

(a)

(b)

Figure 1.1. Example of environment reconstructions obtained with: (a) Velodyne (image
from [175]) and (b) Kinect (image from [171]).

Apart from this difference, there are some statements that are generally valid for
robots. Every robot is designed to perform some tasks. Performing a task can be
reduced to interacting with the surrounding environment by estimating its state and
possibly modifiying it. This interaction is practiced by executing a motion trajectory
for the robot mobile base (mobile robot) or end-effector (manipulator arm).

To plan a motion trajectory, the robot requires a map. In this context, we refer to
a map as a digital representation of the environment. Furthermore, basic operations
on the map include inserting information when the robot acquires new knowledge
and retrieving information when the robot has to perform a task.

For the majority of human environments such a map is not available or, if it is
available, it can not be directly used. A typical example is the blueprint of a house.
This contains an exact description of walls and doors but information about the
furniture may be missing or outdated. For this reason, it is required to the robot the
capability of processing sensors data to recover the information needed to operate in
unknown environments.

In the next section we provide an introduction to this problem, present a quick
overview on the current development and highlight the particular aspects addressed
in this thesis.

1.2 Addressed issues

Building a digital representation of the environment is a well-known problem in the
Robotics community and it is typically referred to as Simultaneous Localization
and Mapping (SLAM). Solving the SLAM problem usually consists in finding
the configuration of sensor poses and landmark positions that best fit the sensor
measurements.

For its relevance, this problem has attracted a lot of attention in the last three
decades and a considerable amount of literature has been produced. At the core
of modern SLAM systems there are methods to register sets of data expressed in
different reference frames, which we survey in Sec. 2.1. Additionally, graph-based

1.2 Addressed issues 3

(a)

(b)

Figure 1.2. Convolutional Neural Network [81]: (a) AlexNet architecture and (b) recogni-
tion results.

formulations of the problem have been proposed, for these approaches we provide an
overview in Sec. 2.2. From these dissertations it is evident that the choice on how
to represent the scene geometry in the SLAM map has an impact on the algorithm
performance (Sec. 4.5). In particular, we are interested in robustness and usability.

Robustness refers to the capability of the algorithm to estimate a consistent map
and sensor trajectory also in challenging conditions. Instead, usability refers to the
property of the map of being suitable for task planning. A long-standing goal of
Robotics researchers is to find that particular SLAM formulation that guarantees
both.

As explained in Sec. 2.1.2, it is common practice to represent the scene geometry
with 3D points. This may be a good solution for tracking the sensor pose but it
does not provide a usable map. In Sec. 2.2.2 we show that several methods have
been investigated for representing a scene with higher level geometric primitives.
This is because, potentially, they could guarantee both robustness and usability.

At this point, a question raises naturally: which are the highest level geometric
primitives that we can consider for a meaningful and tractable SLAM formulation?
To our knowledge the answer is quadrics [105, 25]. However, it is straightforward
to notice that this choice of primitive, despite providing robust sensor tracking,
does not support, in general, robotic tasks. They provide a coarse representation of
objects surface that may be sufficient for avoiding obstacles during navigation but
not adequate for manipulation tasks.

It follows that, in principle, the usability requirement can be satisfied by a
map that encodes the notion of objects. In this regard, there have been efforts in
producing a map made of objects directly with SLAM [132], but only their locations
are considered in the formulation, thus, the optimization has no effect on the surface

4 1. Introduction

parameterizations.
This allows to believe that a mapping method to obtain both robustness and

usability is still not available. Consequently, it is a common practice to address
these two requirements separately. As reported in Sec. 2.3, the problem of building
a model of the environment that enables a more advanced collaboration between
humans and robots goes under the name of Semantic Mapping.

This can be basically addressed by enriching the representation obtained from
SLAM with human concepts like objects and places. Despite different modalities
exist for this purpose, like speech understanding and information retrieval, scene
analysis and image understanding techniques are taking over. In Sec. 2.3.1 we present
the state-of-the-art.

Beyond that, an important insight gained from the literature review is that
for generating usable semantic maps there are also two other aspects that can not
be neglected. On one side, it is not sufficient to attach semantic labels to the
SLAM map entities. This is because, as explained earlier, they are too low-level.
Instead, geometric and semantic information, coming respectively from SLAM and
image analysis techniques, should be combined to build an ad-hoc representation
(Sec. 2.3.2). On the other side, to obtain accurate models of the objects, that the
robot has to interact with, automated strategies for planning sensor motions must
be devised (Sec. 8.1.3).

1.3 Contributions
According to the issues mentioned in the previous section, in this thesis we present
the following contributions:

• a unified representation for a 3D scene consisting of the following geometric
primitives: points, lines and planes;

• both a local registration and a global optimization algorithm that exploit this
representation for robust estimation;

• the architecture of a semantic mapping system capable of building an object-
based map with no prior information about the environment whose feasibility
is demonstrated in simulation;

• a pedagogical instructive presentation of the SLAM problem and factor graphs.

Part of the content of this thesis is the result of papers published in international
journals and conferences. In the remainder of this section these publications are
listed chronologically:

• F. Nardi and M.T. Lázaro and L. Iocchi and G. Grisetti, “Gen-
eration of laser-quality 2d navigation maps from rgb-d sensors”, In
RoboCup Symposium, 2018

• F. Nardi and B. Della Corte and G. Grisetti, “Unified Represen-
tation and Registration of Heterogeneous Sets of Geometric Primi-
tives”, In IEEE Robotics and Automation Letters (RA- L), 2019

1.3 Contributions 5

• I. Aloise and B. Della Corte and F. Nardi and G. Grisetti, “Global
Optimization Using Heterogeneous Geometric Primitives”, In IEEE
Robotics and Automation Letters (RA- L)(submitted, in revision), 2019

7

Part I

Basics

9

Chapter 2

Related Work

This chapter is devoted to a literature survey for presenting relevant works that
focused on the problems introduced in Chapter 1. We first provide an overview on
Geometric Registration in Sec. 2.1, which is a fundamental techinque to perform
mapping. Subsequently, in Sec. 2.2, we review the state-of-the-art SLAM algorithms,
represented by graph-based approaches, as well as methods that extend their formu-
lation with geometric primitives other than points. Finally, in Sec. 2.3 we focused on
Semantic Mapping. Here, we considered separately the various aspects involved in
solving this problem: extracting semantic information from visual data, building a
semantic representation of the environment and planning sensor motion to improve
the acquired knowledge.

2.1 Geometric Registration

Geometric registration consists in seeking for an alignment between sets of data
expressed in different reference frames. It is an ubiquitous problem in Computer
Science and Applied Mathematics research fields. For this reason, it has been exten-
sively investigated in Computer Graphics [127, 159, 152] for surface reconstruction
and shape matching, as well as in Robotics [117, 5], where it is mostly applied for
mapping and localization. Then, depending on the application, this information
can be used to measure how a set fit into another (shape matching), to estimate
a relative pose (localization) or to integrate the sets in a common reference frame
(reconstruction).

Registration approaches can be divided in two general classes: global methods,
that match transform-invariant descriptors and local methods, that rely on an initial
guess of the alignment.

2.1.1 Global Registration

Global registration methods share a common pipeline. Given two sets of geomet-
ric primitives (usually points), called model and data, the first step is to sample
interesting points and compute a geometric descriptor [128, 143] for each of them.
After that, a matching procedure is performed to find correspondences between the
two sets. These matches can then be used to find the transform that better aligns

10 2. Related Work

them with error minimization. Since rigid transforms can be entirely determined by
only 3 point matches, a possible solution is to adopt the Random Sample Consensus
(RANSAC) scheme [40]. However, despite its simplicity, this method has a non
neglectable computational complexity that, in case of 3D points, is cubic in the
number of points [68, 16].

Gelfand et al. [49] proposed a more efficient scheme by exploiting robust shape
descriptors for feature identification before alignment and branch-and-bound op-
timization. Li and Guskov [88] focused their work on the sampling problem and
introduce a multi-scale salient feature extraction algorithm, inspired by SIFT fea-
tures [92]. Aiger et al. [1] reduced the number of trials required to establish a
reliable registration by extracting all coplanar 4-points sets that are approximately
congruent, under rigid transformation, to another given set of coplanar 4-points.
This brings the computational complexity from cubic to quadratic.

Papazov and Burschka [115] attempted to obtain a global optimal alignment
by explicitly tackling noise and outliers in input data. To this end, they casted a
non-linear stochastic optimization problem and used Simulated Annealing (SA) [75]
to solve it. Their choice is motivated by the fact that SA algorithms manage to
explore regions around points in search space at which the objective function takes
values greater than the current minimum, enabling it to escape from local minima.
Feature matching is notably addressed in the work of Cheng et al. [19]. Here the idea
is that pointwise matching can fail in the presence of ambiguities such as repeated
elements or similar local appearance. The authors instead propose matching groups
of features by using super-symmetric tensors to represent the constraints between
the tuples.

A different perspective on the problem has been proposed by Rodola et al. [123]
who base the registration methodology on a game-theoretic inlier selection ap-
proach [99]. In this framework, the matching problem is turned into the selection of
a small group of pairs, whose coherence follows from the notion of compatibility.

2.1.2 Local Registration

All methods mentioned so far rely on the assumption that matching features between
the data and model sets can be solved independently from the intial alignment.
This is convenient when this information is missing or the two sets display large
displacement. However these situations may involve high computational cost or
sub-optimal estimation. When an initial guess is available or the two datasets
are acquired at nearby locations, a better solution is to employ local registration
methods.

In this context, a well known solution is the Iterative Closest Point (ICP)
algorithm [8]. Despite its spread, the vanilla formulation of the method presents two
main drawbacks, namely: the assumption of perfect correspondence between the
data and model sets and the requirement of uniform sampling from the underlying
surface. To overcome these limitations, many solutions have been proposed [127].

Zhang [177] eliminated the perfect correspondence constraint by adding a robust
method of outlier rejection in the correspondence selection phase of the algorithm.
This allows to register scans acquired in realistic conditions. Chen and Medioni [18]
addressed the problem of object reconstruction from range images. Their method is

2.1 Geometric Registration 11

based on the idea that most range data is sampled from “locally planar” surface, thus
indicating the point-to-plane distance as a more meaningful metric and eliminating
the need for the uniform sampling assumption. Segal et al. [135] pushed this
approach a step further by proposing a probabilistic formulation of the problem
that includes [18] and, in general, allows to model sensor uncertainty in the error
minimization phase.

Beacuse of its simplicity, the robotics community has vastly adopted the ICP
algorithm as a core component for solving the SLAM problem. Lu and Milos [94]
demonstrated the effectiveness of the method for a wheeled mobile robot equipped
with a SICK rangefinder. Some years later, thanks to the advance in laser sensing
technologies, robotics researchers managed to employ registration techniques in a
growing number of applications. As an example, Nüchter et al. [108] presented a
6D SLAM system capable of recovering the 3D geometry of the environment and
estimating the 6DOF pose of the robot. Pathak et al. [116] propose a direct method
to solve the local registration problem based on the extraction of planar patches from
unorganized 3D point clouds. Contrary to other methods derived from ICP, they
perform least-squares pose estimation in one step by assuming that the uncertainty
associated to plane normals is directionally uniform. This leads to the decoupling of
the plane parameter covariance matrix. As a consequence, this method guarantees
fast registration of large scenes even with limited computational resources. However,
it is mainly tailored for stop-and-go fashion mapping scenarios where the range
sensor is mounted on a rotating station and a single frame captures a large portion
of the environment.

In the last decade, with the introduction of affordable RGB-D cameras, a new
wave of investigation hit the community [59, 118]. Despite their precision is not com-
parable with that of laser technology, RGB-D cameras provide rich visual and depth
information, making them very convenient for digital reconstruction. Steinbrücker et
al. [144] presented Dense Visual Odometry (DVO), an energy minimization approach
for visual odometry that directly exploits both the intensity and depth information.
The idea is that, for each edge in the intensity channel, can be computed the 3D
location from the depth channel. Then, the transformation is found by minimizing
the reprojection distance of the edges on the next frame. The main advantage is
that, because of the few processing required, this method can be executed at high
frame rates, making true the assumption of small displacement between frames. On
the other hand, it is very sensitive to intensity blur and severe lighting conditions.

Another relevant approach is KinectFusion (KinFu), proposed by Newcombe et
al. [103]. This work employs the implicit representation of surfaces to model the scene
geometry. More in detail, they fuse sensor readings in a Truncated Signed Distance
Function (TSDF) [26], to obtain a very detailed 3D model of the environment. A
TSDF is a scalar field, defined on a 3D grid, that stores for each cell a signed
distance to the underlying surface. The quality of the representation comes at high
computational cost. Indeed, to obtain real-time performance the authors make use
of GPU parallelization and the construction and management of a 3D grid greatly
reduces the scalability of the method. After the original method, several variants
have been proposed to tackle these issues [169, 171].

Recently, Serafin and Grisetti [137] presented the Normal Iterative Closest Point
(NICP) algorithm, a variant of ICP that can run on-line on a multi-core CPU. The

12 2. Related Work

novelty of this method consists in using a 6D error metric that extends the original
error metric of ICP by considering not only the distance between corresponding
points but also between corresponding surface normals. Additionally, the method
uses the surface curvature as additional cue for data association.

Even before the advent of RGB-D cameras, Magnusson and Duckett [97] intro-
duced the 3D Normal Distribution Transform (NDT), a volumetric representation
for the model surface that describes the probability of finding a point at a certain
position. One of the advantages of this representation is that it simplifies the step
of data-association, but, as for the TSDF, the descriptivity of the model is bounded
to the grid resolution.

2.1.3 Geometric Primitives Detection

All methods presented so far attempt to register low-level geometric primitives, i.e.,
points or voxels. This is mainly due to the existence of well-known techniques for
detecting and matching such primitives. In contrast to that, another line of research,
which is what we follow, has gone in the direction of augmenting these techniques
with high-level features like lines and planes. In the remainder of this section, we
review the literature regarding the detection of such primitives both from images
and point clouds.

Points

Point feature detection is a fundamental step for solving problems like object recogni-
tion or 3D reconstruction. For RGB images a vast literature on this problem exists.
Proposed methods can be divided in: edge-, corner- and blob-based approaches.

Edges are sets of pixels where the image intensity changes neatly and, conse-
quently, the gradient has high magnitude. This usually happens at the frontiers
between distinguishable regions. Popular edge detection methods are based on
differential operator techniques and high-pass filtering [46]. A more robust approach
has been proposed by Canny [13], who defined a method to guarante low error rate,
good localization and minimal response.

A pixel in which two edges intersect or, equivalently, whose neighborhood has two
or more non-parallel edges is a corner. Additionally, since corners can be detected
through the image gradient curvature, in some cases, also a small white spot on
black background is considered to be a corner. Most feature detection methods
compute a corner response function for each image pixel. Pixels which exceed a
threshold cornerness value (and are locally maximal) are then retained [57, 154].
Despite it is possible to obtain high quality features with these methods, they do
not meet real-time requirements. Another category of corner detectors work by
comparing a small patch of an image with a “template” corner, since they do not
involve second derivatives computations, noise reduction is not needed. This greatly
improves timing performance, allowing these methods to be used in most computer
vision and robotics applications [124].

A blob is formed by a group of connected pixels that share analogous char-
acteristics. Many interest point detection methods work by detecting corners at
different scales, thus, in general, the term blob captures also the concept of interest

2.1 Geometric Registration 13

point. Blob-based approaches aim at identifying the unique regions in an image by
comparing local properties (e.g., intensity and colour) to their neighboring regions in
scale spaces. The Scale Invariant Feature Transform (SIFT) algorithm by Lowe [92]
is considered one of the most relevant. This method uses a pyramidal approach
to make the features invariant to the scale and assigns them orientation to obtain
invariance to image rotation.

Lines

Line segments can be defined as intervals of a straight line in an image that are
orthogonal to the image gradient at most of their points [165].

A seminal work in the detection of line segments is the Hough Transform Method
(HTM) [67]. This method detects line segments in an image through a voting scheme.
That is, if for a certain point of the image there is a family of lines that can pass
through it, we can say, alternatively, that a line is “voted” by a certain number of
points. The Hough method works by counting for each line the number of votes
received by edge pixels in the image. A line is detected when the votes exceed a
certain threshold.

As pointed out by Desolneu et al.in [32], a drawback of this method is that it
supposes that what it wants to find, in this case lines, is in the image. Building
on this idea, Von Gioi et al. [166] presented the Line Segment Detector (LSD), a
parameterless method, that can be considered state-of-the-art. It computes for each
pixel a level-line that is the direction of the intensity gradient at that pixel. Then,
a clustering procedure detects the so-called line support regions and a validation
procedure retains only good line candidates. This method is aimed at solving three
fundamental issues: over-detection (false positives), under-detection (false negatives)
and the accuracy of each detection.

Planes

All techniques mentioned so far detect features in intensity images. On the other
hand, plane extraction works directly on 3D data. This problem received great
interest in the past years, since it is a fundamental component of many scene
understanding and reconstruction applications. Proposed methods in literature
mainly fall in two classes: RANSAC-based and region-growing approaches.

RANSAC-based methods work by randomly selecting a plane model from a
subset of the input data and then comparing it to the remaining points, once a plane
model is supported by a sufficient number of points, they are removed from the
input data and the procedure continues until no other planes can be found. A clear
drawback of this approach is that uninformed selection can increase computation
time [134].

Oehler et al. [109] combine Hough transform with RANSAC to improve efficiency.
Their plane model selection is based on a coarse-to-fine strategy: they compute surface
normals at different resolutions and discard surfels whose normal is inconsistent with
planes at a coarser resolution. Remaining surfels are fed to the Hough transform to
perform a rough segmentation of the scene and then RANSAC is used for robust
detection. As a final step, co-planar connected plane segments are merged.

14 2. Related Work

Similarly, Hulik et al. [66] apply RANSAC on local patches of the point cloud,
then use a seed-fill algorithm to find all points in the patch that fit the plane and
then grow the region from the locally found plane instance to the whole point cloud.

On the other hand, region-growing methods work by selecting random points
and then expanding a region around it until a certain criterion is satisfied. Poppinga
et al. [119] grow a region by considering each time a point that is not further than a
certain distance. Then, the selected point is added to the region if the mean square
error (MSE) to the plane of the region is less than a threshold. Holz et al. [62]
extend this approach by adding as a pre-processing step the estimation of surface
normals, and incrementally update the plane’s normal equation. This has the effect
of improving time performance.

RGB-D cameras provide organized point clouds that are particularly suited for
3D segmentation and structure detection. Feng et al. [39] construct a graph by
dividing the input cloud into non-overlapping regions according to point neighborhood
information. Consecutively, agglomerative hierarchical clustering (AHC) is performed
on the graph. Planes are detected by finding the region that has the minimum fitting
MSE and merging it with the neighbor that minimizes MSE.

Trevor et al. [157] propose an efficient method for segmenting organized point
clouds based on connected-component segmentation. In addition to color information,
they segment image regions exploiting also 3D coordinates of each point and surface
normals.

2.2 Simultaneous Localization and Mapping
In the last three decades, the SLAM problem gained considerable attention from the
Robotics community and two main approaches have been proposed: filtering and
smoothing. Filtering approaches are usually defined as on-line SLAM methods, since
they aim at estimating the current robot pose and the map as a new measurement
becomes available. On the other side, smoothing approaches estimate the full
trajectory of the robot and the map from all the measurements acquired by the
robot. Therefore, are said to solve the full SLAM problem.

In the remainder, we will focus on relevant approaches to solve the latter. In
this context, the optimizaion problem is usually modeled using a factor graph [52].
Therefore we refer to graph-based techniques. Furthermore, we will present methods
that consider the usage of different geometric primitives in the SLAM formulation.

2.2.1 Graph-based SLAM

Lu and Milios [93] laid the foundation of graph-based approaches. Their method
derives from the necessity of handling inconsistencies that may arise in the mapping
process. This typically happens when the robot revisits a place after some time and,
due to error accumulation, there is no overlap between the past and the current
pose. To handle this situation, they propose to build a network of spatial relations
between robot poses and landmark observations, so that, when an inconsistency is
detected, it is possible to propagate the corrections to all the related poses.

Leveraging on the same idea, Gutmann and Konolige [54] extended this work
with the Local Registration and Global Correlation (LRGC) method to obtain robust

2.2 Simultaneous Localization and Mapping 15

loop detection and efficient optimization. Their method works by accumulating
consecutive scans in local maps. This allows: (a) to find the correlation between
two poses even if they have large intial displacement and (b) to perform global
optimization only upon loop detection instead of doing it for each new measurement.

Since then, many approaches for minimizing the error in the constraint network
have been proposed. Howard et al. [65] generalized the SLAM problem by represent-
ing it on a mesh of springs and proposed a relaxation scheme to solve it. In a similar
fashion, Duckett et al. [34] proposed a fast, on-line energy minimization algorithm.
However their convergence rate is linear, involving more iterations compared to
Least Squares. A refined version has been presented by Frese et al. [43] that employs
multi-level relaxation to increase the convergence speed.

The complexity of solving the SLAM problem can be mainly associated to: (1)
the large search space deriving from the high number of robot poses and landmarks,
(2) the bad intial guess obtained from odometry. Olson et al. [112] introduced
a nonlinear map optimization algorithm aimed at dealing with these issues. In
particular, they proposed an alternative state space representation that allows to
update many poses in a single iteration and a variant of Stochastic Gradient Descent
(SGD) that is robust to local minima.

Grisetti et al. [53] extended this approach by introducing a tree-based network
parameterization, so that the complexity of the solution depends only on the size
of the environment and not on the robot trajectory. Subsequently, Ni et al. [104]
and Grisetti et al. [51] applied divide and conquer strategies to address the issues of
poor initial guess and scalability. While the first method relies on nested dissection
to solve the linear system, the latter assembles a set of non-linear sparser problems
from local portions of the graph.

A relevant aspect of the SLAM problem is that in a single constraint only a
small subset of the state variables are involved. This results in a sparse Hessian
matrix of the linear system. Dellaert et al. [31] exploited this sparsity in their system,
known as

√
SAM . Afterwards, Kaess et al. presented an on-line version with partial

reorderings [72], to compute the sparse factorization, and new data structures to the
original system configuration [71].

In parallel Kümmerle et al. [83] proposed g2o, an optimization tool that allows to
easily prototype sparse least-squares solvers for factor graphs. This is designed in a
way to separate the problem definition from its solution and can be easily extended
through plugins. Enabling the user to apply different strategies to solve the factor
graph, and to extend the types of factors and node variables.

2.2.2 SLAM with Geometric Primitives

The straightforward benefit of using high-level features has been extensively exploited
to improve the robustness of landmark-based SLAM approaches. Castellanos et
al. [14] proposed the symmetries and perturbation map (SPmap). In their model, a
geometric feature is represented by combining a perturbation vector that expresses
the uncertainty about its location and a binding matrix that accounts for its shape.
Despite providing a powerful tool to represent and propagate uncertainty for any
type of geometric entity, the authors limit themselves to line segments.

Building on this idea, other approaches have been presented that aim at improving

16 2. Related Work

the accuracy of camera tracking with edges and lines. Klein and Murray [77] augment
the map with edge features and rely on their resilience to motion blur for obtaining
more robust tracking in case of rapid camera motions. Eade and Drummond [35]
follow the same paradigm and extend it by paying particular attention to the
selection, observation and estimation problem of edge features. In both works edges
are parametrized as points with a direction. Lemaire and Lacroix [87] presented
an effective method to incorporate lines in monocular SLAM. In particular, they
propose a delayed landmark initialization step based on Gaussian sum. This consists
in adding the landmark to the map only after a certain number of observations are
gathered, then each new observation is used to update the probability distribution
that will eventually converge to a single Gaussian. The authors make use of Plücker
coordinates to represent 3D line segments. Smith et al. [141] integrated straight lines
into a monocular Extended Kalman Filter SLAM (EKF SLAM) system without
compromising timing performance. In particular, they propose a simplistic yet
effective method to detect line segments in the image frame. Instead of fitting
methods or Hough transform, which are not suited for online operation, they search
for corners in the image and then evaluate all possible lines between them. As a
consequence, lines are parametrized through their endpoints.

As mentioned earlier, the advent of RGB-D cameras implied a greater diffusion
of mapping techniques and SLAM with high-level features makes no exception. Choi
et al. [20] exploit rich information provided by these sensors, in terms of intensity
and depth, through the detection of various types of edges. Apart from edges in the
color channel (Sec. 2.1.3), they also extract edges by considering depth and normals
discontinuities.

Lu and Song [95] proposed a robust RGB-D visual odometry approach by
combining points and lines. Points are extracted with [4] and back-projected in 3D
leveraging on depth information, while 3D lines are detected directly from the depth
with a RANSAC method.

Additionally, organized (and colored) point clouds returned by these sensors are
particularly suited for 3D segmentation and structure detection and raised interest in
registration methods that consider planes as higher level features [70, 158, 151, 96].

2.3 Semantic Mapping
Acquisition and modeling of semantic information is a key requisite for mobile robots
to be deployed in human environments. In this field, fundamental aspects faced by
research are: the recognition of places and objects, the construction of semantic
models and the exploration strategies to enrich contextual knowledge.

In this section, we will present relevant work that focused on the mentioned
problems, namely: semantic information extraction, map construction and active
vision.

2.3.1 Semantic Information Extraction

Thanks to relevant advances in Computer Vision, a growing number of robotics
applications are designed to extract semantic information from images. Image
Analysis can be decomposed into sub-tasks, depending on the information one is

2.3 Semantic Mapping 17

interested to extract from the input data. These sub-tasks can be organized on a
progression that goes from coarse to fine grained inference.

Image classification is the task of assigning a semantic label to an input image from
a fixed set of categories. Ulrich and Nourbakhsh [160] propose an appearance-based
place recognition system for topological localization. They use colour histogram
features [148] and a simple voting scheme for nearest-neighbor matching. In a
similar fashion, Torralba et al. [156] derive an Hidden Markov model (HMM) for
place recognition and new place categorisation based on the global statistic feature
retrieved from texture [111]. In contrast, Lisin et al. [89] propose to model classes
of images as a probability distribution over local features, in order to be combined
with global features. This method has proven to perform well in applications where
a rough segmentation of objects is available.

Object detection consists in making a prediction not only of object categories
but also of their spatial locations. A seminal work can be considered that of Viola
and Jones [164], who proposed a fast and robust face detection. Their method
makes use of Haar-like features [114] to search for likely face candidates, which can
then be refined using a cascade of more expensive but selective detection algorithms
[44]. Likewise, a well-known example of pedestrian detection has been proposed by
Dalal and Triggs [27], who use a set of overlapping Histogram of Oriented Gradients
(HOG) descriptors fed into a Support Vector Machine (SVM) [24].

Image segmentation is the task of finding groups of pixels that possess some
“similarity” and is one of the oldest and most widely studied problems in Computer
Vision. Early techniques focus on local region merging and splitting [110, 10], while,
more recent algorithms often optimize some global criterion, such as intra-region
consistency and inter-region boundary lengths or dissimilarity [23, 139, 38, 15, 113].

Despite the popularity of the presented methods, a recent breakthrough in Scene
Understanding has been the adoption of Convolutional Neural Networks (CNNs) [47].
Krizhevsky et al. [81] presented the pioneering deep CNN that, despite its simplicity,
won the Imagenet 2012 classification challenge with wide margin on the closest
competitor. Similarly, different object detection methods based on deep neural
netowrks have shown to outperform the state-of-the-art [122, 37, 90]. Consequently,
the capabilities of such networks have been also investigated in pixel-level labeling
problems like semantic segmentation. In this context, a milestone is the work of
Long et al. [91] who transformed existing classification models ([140, 149]) into fully
convolutional ones to output spatial maps instead of classification scores. One of the
main reason behind its popularity is that, with this approach, CNNs can be trained
end-to-end and efficiently learn to make dense predictions with inputs of arbitrary
size.

2.3.2 Map Construction

To enable the robot to perform complex tasks one is faced with the problem of
augmenting metric maps with human-level knowledge, like: object/place categories,
functions, properties and so on. A traditional view of the problem is that of
overlapping to the metric map other representation layers to encode the information
needed by the robot to perform its tasks [45].

Zender et al. [173] proposed a system to build a Multi-Layered Spatial Rep-

18 2. Related Work

resentation with different modalities, composed of three modules: the perception
subsystem for evaluation of sensors input, the communication subsystem for situated
spoken dialog and the subsystem for multi-layered conceptual spatial mapping that
grounds the semantic symbols to the map features. As a result, their representation
of the environment adds to the metric map a navigation and a topological map,
with the nodes of the latter linked to symbols in a conceptual map that can be
exploited by the robot for reasoning. In a similar fashion, Pronobis and Jensfelt [121]
presented a probabilistic framework to fuse information coming from heterogeneous
modalities into their layered representation.

With the progress in visual and ranging technologies there has been a grow-
ing interest in extracting semantic information directly from images or 3D point
clouds. In this context, the route has been traced by the work of Nüchter and
Hertzberg [107]. Their processing pipeline is composed as follows: they first obtain
a metric reconstruction of the environment with a wheeled robot equipped with a
3D laser scanner; then, a first interpretation of the scene is performed by classifying
regions of the final point cloud as belonging to floor, walls, ceiling and so on; finally,
a shape matching procedure is used for object detection. Despite its novelty, this
method was able to work only under strong assumptions.

Leveraging on this idea, Rusu et al. [130] proposed a region growing segmentation
technique based on surface geometric information, i.e., normals and curvature. Then,
since their robot was assumed to operate in kitchen environments, the object
detection routine was performed with cuboid fitting. Tenorth et al. [153] build their
environment representation, called KNOWROB-MAP, with a similar pipeline and
focus particularly on the symbol grounding aspect [56]. To do so, they extend the
recognition system with encyclopedic, action-related and common-sense knowledge.
To perform segmentation of general indoor scenes, Koppula et al. [79] proposed a
learning approach. Their method is based on a Probabilistic Graphical Model (PGM)
whose classification features are: visual appearance, local shape and geometry and
geometrical context. Similarly, Valentin et al. [161] proposed to perform Surface
Reconstruction for obtaining a surface mesh and, on that, use a Conditional Random
Field (CRF) [84] for semantic inference.

These methods are limited by two main factors: (a) they need a reconstruction of
the environment for objects/places recognition, (b) they return a coarse segmentation
of the scene. At the same time, impressive image understanding results have been
obtained with Random Decision Forests (RF) [9] and Convolutional Neural Networks
(CNNs) [82]. For this reason, thanks to the availability of affordable RGB-D cameras,
a new paradigm for Semantic Mapping arised that combines reconstruction from
range information and recognition from visual information.

Stüeckler et al. [145] proposed an on-line method following this paradigm. They
use SLAM to register different views of the scene in a common reference frame and
build a volumetric reconstruction. Subsequently, they use RFs to obtain object-
class segmentation of the views and fuse per-voxel predictions with a Bayesian
filter. Following this approach, Hermans et al. [60] proposed a dense 3D Semantic
Mapping system. Unlike [145], they use Random Forests to obtain per-pixel (dense)
classification. Additionally, after Bayesian fusion, prediction results are smoothed
with a CRF.

Similarly, Vineet et al. [163] applied the same technique on data acquired with a

2.3 Semantic Mapping 19

stereo camera, to extend this method to outdoor and large-scale environments, and
showed remarkable results on the well-known KITTI dataset [48]. Finally, a step
further has been made by McCormac et al. [98] with SemanticFusion, where they
have been able to obtain improved semantic segmentation thanks to recent advances
in Convolutional Neural Networks.

The success of several classification methods may be credited to environment
specific training. To alleviate this need, Sünderhauf et al. [147] proposed a place
categorization method for mobile robots that is transferable and extendible. These
features are obtained using CNNs, that generalize well, combined with one-vs-all
classifiers, that can learn to recognize new classes online. As a consequence, this
method is particularly suited for long-term autonomous operations and life-long
learning.

Brucker et al. [11] propose a novel place categorization method based on semantic
information acquisition from different modalities. The input to their method is a 3D
textured mesh obtained with Surface Reconstruction techniques. This is projected
on a 2D plane at the floor level to obtain an occupancy grid representation of the
environment. The obtained map is first segmented based on geometric cues and
then processed to sample a set of viewpoints for rendering RGB-D frames from
the mesh representation. Finally, classification results coming from both sources of
information are fused together employing a CRF.

Semantic maps typically model facts about robot percepts as either true or not,
neglecting uncertainty arising, for example, from the inaccurate modeling of elements
in the robot workspace. Ruiz-Sarmiento et al. [126] tackle this issue by employing a
Probabilistic Graphical Model, namely a CRF, that allows to measure beliefs about
symbol grounding and perform probabilistic inference according to spatial relations
among percepts. To this end, they present a novel representation, called Multiversal
Semantic Map (MvSmap), that considers different possible groundings as instances
of onthologies with probability values for their grounded concepts and relations.

2.3.3 Active Vision

To support complex task execution, it is necessary to provide the robot with the
ability of actively building object models. Foissotte et al. [41] consider the problem
of building 3D models of an object for a humanoid robot equipped with a dense range
sensor. To this end, they limit the sensor configuration space to a sphere around
the object and cast the NBV evaluation into an optimization problem. The object
is modeled with a 3D occupancy grid, thus, the objective function is maximized
according to the amount of unknown visible voxels.

On the other hand, Torabi and Gupta [155] presented an integrated eye-in-hand
system for 3D object modeling. The main novelty of this work consists in the fact
that the NBV planning is computed in the 6DoF configuration space of the sensor
that is not known a-priori. This allows this method to be employed in unknown
environments and in situations where the objects to be modeled can not be moved.
However, the high dimensionslity of the search space and the inverse kinematics
computation render this method computationally expensive.

Alternatively, Potthast and Sukhatme [120] proposed to plan in Cartesian space
and presented an efficient approach based on Probabilistic Road Map (PRM) planners.

20 2. Related Work

Vazquez-Gomez et al. [162], instead, impose a pre-defined set of views for each object
to reconstruct and define an accurate NBV evaluation metric based on: information
gain, collision avoidance, surface overlap and path cost.

So far, the presented methods addressed only the geometry reconstruction
problem. Eidenberger and Scharinger [36] propose a sensor planning method based on
Partially Observable Markov Decision Processes (POMDPs) to model and recognize
all objects in a scene. The predicted effects of future sensing actions are measured
through an information gain metric and the next best sensing action is determined
to improve the scene knowledge. The main drawback of this method is that a reward
function needs to be learned beforehand.

Stampfer et al. [142] proposed a method that exploits active vision to improve
object recognition. Assuming to have a-priori knowledge of the objects present in
the scene, they adopt an information-driven view planning approach. This has the
advantage of allowing to fuse the outcomes of different recognition routines but, at
the same time, the number of objects for which this method is applicable is limited.

Kriegel et al. [80] proposed an integrated system for active scene expoloration
intended at both reconstructing and recognizing objects in the scene. They used
a robot equipped with both an accurate 3D laser scanner and an RGB-D camera.
The former is used to build a models database for the detected objects during the
exploration of the scene, while the latter serves to determine the next best view.

Wu et al. [172] tackled the 3D object recognition and pose estimation for indoor
table top scenes. They propose an active recognition strategy suitable for dynamically
exploring a cluttered scene while localising the pre-trained objects. In their approach,
an object is represented using two models: a dense point cloud model, used for 3D
Object Recognition and a sparse feature cloud model, used for view evaluation.

21

Chapter 3

Fundamentals

3.1 State Estimation

Mathematical optimization is a powerful tool that can be used to solve a variety of
problems in applied sciences. In many, if not all, engineering disciplines optimization
techniques allow to solve real-world problems in effective and elegant ways. Computer
and robotics engineers make no exception, since they heavily employ Least Squares
methods to solve state estimation problems, particular examples are registration
and SLAM.

3.1.1 Bayesian Framework

In many application scenarios the state of a system can be described by a set of
variables x = {x1, . . . ,xN}. Usually, these variables cannot be directly measured,
rather, we observe indirectly the state of the system through a set of measurements
z = {z1, . . . , zK}. In real world, measurements are corrupted by noise, thus, each zk
is a random variable and estimating the state of the system turns into computing the
probability distribution over the possible states given the measurements. Formally,
the goal is to estimate:

p(x | z) = p(x1, . . . ,xN | z1, . . . , zK) (3.1)
= p(x1:N | z1:K) (3.2)

In practice there is no closed-form solution to obtain Eq. (3.2). However, Bayes
rule, along with simplifying assumptions, can be adopted to turn the problem in a

22 3. Fundamentals

solvable form:

p(x1:N | z1:K) = (3.3)

[Bayes rule] =

likelihood︷ ︸︸ ︷
p(z1:K | x1:N) ·

prior︷ ︸︸ ︷
p(x1:N)

p(z1:K)︸ ︷︷ ︸
normalizer

(3.4)

[uniform prior] = p(z1:K | x1:N) · px
pz

(3.5)

= ηpxp(z1:K |x1:N) (3.6)
[measurements independence] ∝

∏
k

p(zk | x1:N). (3.7)

Bayes rule allows to decompose our initial distribution in three terms. The
likelihood or observation model p(zk | x) encodes the probability of obtaining the
measurement zk in case the system is in the state x. The prior p(x1:N) assigns a
probability to each possible state x1:N , assuming we have no a priori knowledge
of our system, this is a constant. Finally, considering that the measurements are
conditionally independent from the state, the joint distribution is equivalent to
the product of the marginals and we get to Eq. (3.7). This equation tells us that
the initial distribution that we were looking for is proportional to the likelihood,
therefore, we can turn the original problem the other way round and search for the
state that better explains the measurements or, in other words, that maximizes their
likelihood.

3.1.2 Gauss-Newton

The measurements likelihood depends on the particular sensor used. Assuming that
we have a mathematical model that describes the behavior of our sensor and that
the noise affecting the measurements is zero mean normally distributed, we can
choose to model the likelihood as:

p(zk | x) ∝ exp(−(ẑk − zk)> (3.8)

where ẑk = hk(x) is the predicted measurement obtained from the sensor model and
Ωk = Σ−1

k is the information matrix of the conditional measurement.
However, we notice that in most situations the sensor model hk is a non-linear

function of the state. Therefore, even if the measurement noise is gaussian, p(zk | x)
will not be normally distributed. To fix this, we can apply Taylor expansion to
obtain a linear approximation of the sensor model,

hk(x̆ + ∆x) ' hk(x̆)︸ ︷︷ ︸
z̆k

+ ∂hk(x)
∂x

∣∣∣∣
x=x̆︸ ︷︷ ︸

Jk

·∆x, (3.9)

and, consequently, a gaussian likelihood.
Now, let us rewrite Eq. (3.8). In particular, we decide to linearize hk around the

optimal state x∗, that is, the state that better fits the measurements:

x∗ = argmax
x

p(z | x). (3.10)

3.1 State Estimation 23

In this way, by substituting hk(x∗ + ∆x) in Eq. (3.8) and treating x∗ as constant,
we obtain a new distribution p(z |∆x) that depends only on the increments ∆x:

p(zk|x∗+∆x) ∝ exp
[
−(hk(x∗) + Jk∆x− zk)TΩk(hk(x∗) + Jk∆x− zk)

]
. (3.11)

Eq. (3.11) measures how the likelihood changes according to a small perturbation
of the state. Having a gaussian likelihood allows us to formulate an optimization
problem with a closed-form expression and, letting the gaussian depend on the state
increments, to find a solution to the said optimization problem.

The optimization problem can be formulated as follows. We want to find the
optimal state x∗ that maximizes Eq. (3.8):

x = argmax
x

K∏
k=1

p(zk|x) (3.12)

[gaussian assumption] = argmax
x

K∏
k=1

exp[−(hk(x)− zk)TΩk(hk(x)− zk)] (3.13)

[taking the logarithm] = argmax
x

K∑
k=1

[−(hk(x)− zk)TΩk(hk(x)− zk)] (3.14)

[removing the minus] = argmin
x

K∑
k=1

(hk(x)− zk)TΩk(hk(x)− zk). (3.15)

In this context, the term hk(x)−zk has a particular meaning. It is the difference
between the measurement prediction, based on the current estimate of the state,
and the actual measurement acquired with the sensor. Thus, it measures how good
is the state estimate. Then, by minimizing the sum of all errors between predictions
and measurements we seek for the optimal state.

For convenience, let us rewrite the objective function as:

F (x) =
K∑
k=1

ek(x)TΩkek(x)︸ ︷︷ ︸
ek(x)

, (3.16)

where,
ek(x) = hk(x)− zk, (3.17)

is the error function. If we have an initial estimate x̆ of the state of our system,
using Eq. (3.9), we can rewrite a single summand of the objective function as:

ek(x̆ + ∆x) = (hk(x̆ + ∆x)− zk)TΩk(hk(x̆ + ∆x)− zk) (3.18)
[plugging in Eq. (3.9)] ' (Jk∆x + hk(x̆)− zk)TΩk(Jk∆x + hk(x̆)− zk)− zk) (3.19)

[Eq. (3.17)] = (Jk∆x + ek)TΩk(Jk∆x + ek) (3.20)
[grouping the terms] = ∆xT JkΩkJk︸ ︷︷ ︸

Hk

∆x− 2 ekΩkJk︸ ︷︷ ︸
bk

∆x + eTkΩkek (3.21)

= ∆xTHk∆x + 2bk∆x + eTkΩkek. (3.22)

24 3. Fundamentals

Considering again the summation, we have:

F (x̆ + ∆x) '
K∑
k=1

∆xTHk∆x + 2bk∆x + eTkΩkek (3.23)

[pushing in the summations] = ∆xT
[
K∑
k=1

Hk

]
︸ ︷︷ ︸

H

∆x + 2
[
K∑
k=1

bk

]
︸ ︷︷ ︸

b

∆x +
[
K∑
k=1

eTkΩkek

]
︸ ︷︷ ︸

c

.

(3.24)

To wrap up, we rearranged the objective function in Eq. (3.15) to consider its
linear approximation around a neighborhood of the initial state x̆. As we have seen
in Eq. (3.11), this depends only on the state increments ∆x. Since our goal is to
reach the optimal state x∗, we can compute the increments that locally minimize
the error and, by repeating this step several times, “hope” to get to the optimum.

The derivative of Eq. (3.24) is:

(∂∆xTH∆x + 2b∆x + c)
∂∆x = 2H∆x + 2b, (3.25)

thus, we can find the minimum by solving the linear system:

H∆x∗ = −b, (3.26)

and apply it to the current state estimate to get closer to the optimum:

x∗ = x̆ + ∆x∗. (3.27)

The whole procedure is the Gauss-Newton (GN) algorithm and is described in
detail in Algorithm 1. In general we are not guaranteed to solve the optimization
problem in Eq. (3.15). This is because it is ill-posed, since the solution is not unique
and its behavior does not change continuously with the initial condition. In practice,
this is captured by the event of getting stuck in local minima during the optimization.
However, we can have good chances to get to the optimum when we start from a
good initial guess and the objective function presents a good convexity.

3.1.3 Smooth Manifolds

From the previous section we learned a general technique to approach non-linear
optimization problems. As we have seen, starting from an initial estimate of the
system state, we build a linear approximation of the error function and then we
compute the increments that, applied to the state, locally minimize the error.

It is important to notice that the choice of the state representation is arbitrary.
However, it should satisfy at least two requirements: (a) the set of variables should
describe in an adequate way the phenomenon under consideration and (b) they
should be compatible with the optimization algorithm, that is, the state evolution
has to be coherent with the optimization results.

While, a common choice would be to use a set of n real variables, real world
problems often force to consider also non-euclidean topological spaces. As an example,

3.1 State Estimation 25

Require: x̆: initial guess. C = {〈zk(·),Ωk〉}: measurements
Ensure: x∗ : new solution

1: //compute the current error
2: Fnew ← F̆
3: // iterate until no substantial improvements are made
4: repeat
5: F̆ ← Fnew
6: b← 0 H← 0
7: for all k = 1 . . .K do
8: // Compute the prediction ẑk, the error ek and the jacobian Jk
9: ẑk ← hk(x̆)

10: ek ← ẑk − zk
11: Jk ← ∂hk(x̆)

∂∆x

∣∣∣
x=x̆

12: // compute the contribution of this measurement to the linear system
13: Hk ← JtkΩkJk
14: bk ← etkΩkJk
15: // accumulate the contribution to construct the overall system
16: H += Hk

17: b += bk
18: end for
19: // solve the linear system
20: ∆x← solve(H ∆x = −b)
21: // update the state
22: x̆ += ∆x
23: // compute the new error
24: Fnew ← F (x̆)
25: until F̆ − Fnew > ε
26: return x̆

Algorithm 1: Gauss-Newton minimization algorithm

this situation arises when representing the 3D pose of a rigid body: its orientation
lies in SO(3), the group of rotations about the origin in <3. A 3D rotation can be
described by a 3× 3 orthonormal matrix.

However, using the 9 matrix parameters as state variables is not feasible since,
for the orthonormality constraint, they are not independent. For this reason, a
parameterization of minimal dimension is better suited and the typical choice are
Euler angles. Unfortunately, treating these parameters as real variables may lead to
singularities, i.e., configurations where very large changes in the parameterization
are required to represent small changes in the state space.

Since optimization algorithms, like Least-Squares or the Kalman Filter, operate
on a local neighborhood of the current estimate, Hertzberg et al. [61] proposed to
view the space of rotations SO(3) as a manifold S. That is, every point of the space
has a neighborhood which is homeomorphic to <n. If we consider the Euler angles
as the locally euclidean parameterization, the mapping can be implemented with

26 3. Fundamentals

two functions:

u = toVector(R) (3.28)
R = fromVector(u), (3.29)

where u = [ρ, θ, φ]> is the vector containing the Euler angles and R a 3D rotation
matrix.

This allows to define compare and modify operations, while retaining the global
topology:

� : S ×<n → S, [box-plus] (3.30)
� : S × S → <n, [box-minus] (3.31)

where � modifies a point in S by applying a small change expressed in <n, while �
expresses in <n the difference between two points in S. By applying these operators
for the case of 3D rotations we get:

u = R � R0 = toVector(R−1
0 ·R), (3.32)

R = R0 � u = R0 · fromVector(u). (3.33)

With this in mind, let us see how to modify the optimization procedure of Sec. 3.1.2
for the case of non-euclidean state spaces. In the remainder, we assume that our
state has a redundant parameterization X and a minimal one x. Likewise, the sensor
model can be formulated both as hk(X) and hk(x).

To deal with non-linear objective functions, we derived a linear approximation
of the sensor model in Eq. (3.9). In case of manifold state spaces, this becomes:

hk(X̆ � ∆x) ' hk(X̆) + ∂hk(X̆ � ∆x)
∂∆x

∣∣∣∣∣
∆x=0

·∆x (3.34)

= hk(X̆) + Jk ·∆x (3.35)

where the linearization point X̆ is fixed. Accordingly, updating the current state
estimate after having found the optimal increments ∆x∗ results in applying the �
operator:

X̆← X̆ � ∆x∗. (3.36)

If the measurements lie in a non-euclidean space, we need to modify the error
function in Eq. (3.17) to take it into account. This time we make use of � operator
and Eq. (3.17) becomes:

ek(x) = hk(x) � zk. (3.37)

It is important to remark that this formula is meaningful only when the prediction
and the real measurement are “close” enough. Otherwise the assumption of local
homeomorphicity to <n is violated. Finally, if we want to carry on the optimization
as in Eq. (3.15), we need to let the error function depend on the state increments:

ẽk(ẑk � ∆zk, zk) ' ẽk(ẑk, zk) + ∂ek(ẑk � δzk, zk)
∂δzk

∣∣∣∣
δzk=0︸ ︷︷ ︸

Jzk

∆zk. (3.38)

3.1 State Estimation 27

Require: x̆: initial guess. C = {〈zk(·),Ωk〉}: measurements
Ensure: x∗ : new solution

1: //compute the current error
2: Fnew ← F̆
3: // iterate until no substantial improvements are made
4: repeat
5: F̆ ← Fnew
6: b← 0 H← 0
7: for all k = 1 . . .K do
8: // Compute the prediction ẑk, the error ek and the jacobians J̃k and Jzk

9: z̃k ← ĥk(x)
10: ẽk ← ẑk � zk
11: Jzk

← ∂ẑk�δzk
∂δzk

∣∣∣
δzk=0

12: J̃k ← ∂ek(hk(x̆�δx),zk)
∂δxk

∣∣∣
δxk=0

13: Ω̃k ← Jzk
Ω−1
k JTzk

14: // compute the contribution of this measurement to the linear system
15: Hk ← JtkΩ̃kJk
16: bk ← etkΩ̃kJk
17: // accumulate the contribution to construct the overall system
18: H += Hk

19: b += bk
20: end for
21: // solve the linear system
22: ∆x← solve(H ∆x = −b)
23: // update the state
24: x̆← x̆ � ∆x
25: // compute the new error
26: Fnew ← F (x̆)
27: until F̆ − Fnew > ε
28: return x̆

Algorithm 2: Gauss-Newton minimization algorithm for manifold measurement
and state spaces

Based on this result, we can compute the gaussian approximation of the condi-
tional distribution of the error as

p(ek|x) ∼ N (ẑk � δzk,Jzk
Ω−1
k JTzk︸ ︷︷ ︸

Σek|x

). (3.39)

Note that when we project the measurement to a minimal space through �, the
conditional covariance of the error Σek|x depends on ẑk = hk(x), thus on x, and it
needs to be recomputed at every iteration.

With these things in place, we can derive a modified version of the Gauss-Newton
algorithm, as shown in Algorithm 2.

28 3. Fundamentals

3.2 Local Registration
The last two decades have witnessed important progress in technologies for visual and
range data acquisition. Examples are digital monocular cameras, laser range finders
and RGB-D cameras. These new devices play the role of enabling technologies for a
huge number of engineering applications and have been extensively used in different
field of research like Computer Graphics, Computer Vision and Robotics, just to
name a few. In this context, a fundamental problem is geometric registration. It
consists in seeking for an alignment between sets of data acquired from different
positions and serves as a basis for different processing pipelines.

3.2.1 Iterative Closest Point

When an initial guess of the alignment is given or it can be assumed close to the
identity, we refer to “local” registration. The Iterative Closest Point (ICP) algorithm
is certainly the most adopted method to solve this problem. It refines the estimate
of the tranform between the input sets by iteratively performing two steps:

1. find corresponding primitives between the two sets

2. compute a transform that minimizes the distance between matching primitives

The procedure is outlined in Algorithm 3, where it is assumed that the match-
ing step has already been executed and the two sets, A = {ai}i=1,...,N and B =
{bi}i=1,...,N , are indexed according to their correspondences (i.e., ai corresponds
with bi).

Require: Two sets of data: A = {ai}, B = {bi},
Transform initial guess: T0

Ensure: The optimal transform: T
1: T ← T0;
2: while not converged do
3: for i = 1 : N do
4: mi ← findClosestInA(T · bi)
5: end for
6: T ← argmin

T

∑
i ‖T · bi −mi‖2

7: end while
Algorithm 3: Iterative Closest Point Algorithm

Usually the vanilla algorithm works only in ideal case. Chen and medioni [18]
proposed a variant that’s better suited to real case scenarios. They proposed a
different metric to measure point distance, instead of the usual euclidean norm
between the points they adopted a point-to-plane metric. This consists in projecting
the point distance along the surface normal, so that, line 6 of Algorithm 3 becomes:

T ← argmin
T

∑
i

‖ηi · (T · bi −mi)‖2 , (3.40)

where ηi is the surface normal at mi.

3.2 Local Registration 29

Segal et al. [135] further extended this approach by proposing a general distance
metric, based on a probabilistic viewpoint, that captures several ICP variants, like:
point-to-point, point-to-plane and plane-to-plane. To derive their formulation, they
start from the consideration that the two data sets can be thought of as sampled from
the underlying real data, Â = {âi} and B̂ = {b̂i}, according to a normal distribution,
i.e., ai ∼ N (âi, CAi) and bi ∼ N (b̂i, CBi). Therefore, if we set di(T) = bi−T · ai, line
6 of Algorithm 3 becomes:

T ← argmin
T

∑
i

− log(p(di(T))). (3.41)

Since ai and bi are normally distributed, di(T) is still a gaussian and the previous
equation can be rewritten as:

T ← argmin
T

∑
i

di(T)>(CBi + TCAi T
>)−1di(T). (3.42)

From this formula it is easy to verify that when:

CBi = I3×3 (3.43)
CAi = 03×3 (3.44)

we obtain the point-to-point metric. If:

CBi = P−1
i (3.45)

CAi = 03×3 (3.46)

with Pi orthogonal projection matrix, we get the point-to-plane metric. Finally,
with:

CBi = Rµi ·

ε 0 0
0 1 0
0 0 1

 ·R>µi
(3.47)

CAi = Rνi ·

ε 0 0
0 1 0
0 0 1

 ·R>νi
(3.48)

Eq. (3.42) implements the plane-to-plane metric, where Rµi and Rνi are the 3D
rotation matrices built from the surface normals.

3.2.2 Least-Squares Solution

So far, we discussed distance metrics for the ICP algorithm but nothing has been
said on how to actually minimize that distance. With the tools presented in Sec. 3.1,
we can approach local registration as a state estimation problem.

State

If we consider the general case, where we want to align surfaces, our state space will
be the Lie Group SE(3) of 3D rigid transformations. Since this topological group is

30 3. Fundamentals

a smooth manifold, according to Sec. 3.1.3, we provide both parameterizations of
the state:

X ∈ SE(3) : [R | t] [full] (3.49)
x ∈ <6 : (x y z︸ ︷︷ ︸

t

αx αy αz︸ ︷︷ ︸
u

)> [minimal] (3.50)

with:
• R ∈ SO(3), 3D rotation matrix

• t ∈ <3, translation vector

• u ∈ <3, Euler angles.
The mapping between these two representations is implemented as in Eq. (3.28)

and Eq. (3.29). Thus, a perturbation to the state is performed as:

X � ∆x = fromVector(∆x)X (3.51)
= [R(∆u)R | R(∆u)t + ∆t]. (3.52)

Error Function

In the standard ICP algorithm the sets to be aligned are point clouds. Let us assume
the usual convention and call them model and data. In a robotic mapping scenario,
the model point cloud is the map that the robot has built up to a certain time
istant, while the data point cloud is a new measurement acquired with its sensors
at that time istant. It follows that an effective and sound parameterization for the
measurements is a 3D vector, that is:

zk ∈ <3. (3.53)

Consequently, we can define an observation model. This is a function that
predicts a virtual measurement, given the current state estimate. For an euclidean
measurement, the prediction function is:

hk(X) = R · pk + t, (3.54)

where pk is the point in the model that matches with zk in the data. Therefore, the
error function is:

ek(X � ∆x) = hk(X � ∆x)− zk (3.55)
= R(∆u) [R · pk + t]︸ ︷︷ ︸

p′
k

+∆t− zk, (3.56)

and the Jacobian:

Jk = ∂ek(X � ∆x)
∂∆x

∣∣∣∣
∆x=0

(3.57)

=
(
∂ek(·)
∂∆t

∂ek(·)
∂∆u

)∣∣∣∣
∆x=0

(3.58)

=
(
∂∆t
∂∆t

∂R(∆u)p′k
∂∆u

)∣∣∣∣
∆x=0

(3.59)

=
(
I bp′kc×

)
. (3.60)

3.3 Global Optimization 31

3.3 Global Optimization

In the previous section we have seen how the powerful Bayesian State Estimation
framework can be adopted to cast the local registration problem into a minimization
one and how to solve it with the Least-Squares method. For its generality, the
same framework is also used to solve another central problem in Robotics, namely,
Simultaneous Localization and Mapping and we will see that, despite some differences
with the registration setting, the same methodology provides an effective tool to
tackle this problem.

In the remainder, we will focus on the smoothing approach for SLAM and present
a technique, based on factor graphs, that provides an efficient solution.

3.3.1 Multi-Point Registration

Similar to Sec. 3.1.1, our goal is to estimate the probability distribution over the
possible states of our system given a set of measurements (see Eq. (3.2)). For the
Multi-Point Registration problem we consider the following setting. A robot explores
an unknown environment populated with distinguishable landmarks and observes
them with a 3D sensor. For the robot poses Xr

1:N we choose the usual space of
3D rigid transformations, i.e, Xr

i ∈ SE(3). The landmarks xl1:M are 3D points,
with xlj ∈ <3. At each robot pose the sensor returns a set of observations, where
an observation zi,j ∈ <3 consists in the perceived landmark xlj expressed in the
robot local frame Xr

i . We want to estimate the robot poses xr1:n and the landmark
positions xl1:m, given all the measurements {zi,j}. Again, we follow the methodology
presented in Sec. 3.1 to carry on the optimization.

State

The state X is composed by the robot poses and the landmark positions:

X : X = {X[1]
r , . . . ,X[N]

r ,x[1]
l , . . . ,x

[M]
l } (3.61)

X[n]
r ∈ SE(3) : X[n]

r =
(
R[n]|t[n]

)
(3.62)

x[m]
l ∈ <3 : x[m]

l =
(
x[m] y[m] z[m]

)>
(3.63)

where we inverted subscript and superscript for readability. It follows that the
perturbation of the state will be a vector containing the proper minimal perturbation
for each state variable:

∆x ∈ <6N+3M : ∆x =
(
∆x[1]>

r , . . . ,∆x[N]>
r ,∆x[1]>

l , . . . ,∆x[M]>
l

)>
(3.64)

∆x[n]>
r ∈ <6 : ∆x[n]>

r = (∆x[n] ∆y[n] ∆z[n]︸ ︷︷ ︸
∆t[n]

∆α[n]
x ∆α[n]

y ∆α[n]
z︸ ︷︷ ︸

∆α[n]

)> (3.65)

∆x[m]>
l ∈ <3 : ∆x[m]>

l = (∆x[m] ∆y[m] ∆z[m]︸ ︷︷ ︸
∆t[m]

)>. (3.66)

32 3. Fundamentals

As in Eq. (3.52), the perturbation is applied with the � operator:

X′ = X � ∆x (3.67)
X[n]′
r = ∆x[n]

r � X[n]
r (3.68)

= v2t(∆x[n]
r)X[n]

r (3.69)

X[m]′
l = X[m]

l + ∆x[m]
l , (3.70)

by taking care of incrementing each state block accordingly.

Error Function

The measurement of landmark m from robot pose n is:

z[n,m] ∈ <3 : z[n,m] =
(
x[n,m] y[n,m] y[n,m]

)>
(3.71)

In this case, the prediction and error functions resemble those of the ICP algorithm:

h[n,m](X) = X[n]
r x[m]

l (3.72)

e[n,m](X) = X[n]
r x[m]

l − z[n,m] (3.73)

e[n,m](X � ∆x) = v2t(∆x[n]
r)X[n]

r (X[m]
l + ∆x[m]

l)− z[n,m] (3.74)

The difference is that h[n,m](X) depends only on robot pose n and landmark m. The
consequence is that the Jacobian J[n,m] will be non-zero only in correspondence of
these block indices:

∂e[n,m](X � ∆x)
∂∆x =

(
· · ·03×6 · · ·

∂e[n,m](X � ∆x)
∂∆xnr

· · ·03×6

03×3 · · ·
∂e[n,m](X � ∆x)

∂∆xml
· · ·03×3 · · ·

)
(3.75)

ẑ[n,m] = X[n]
r x[m]

l (3.76)
∂e[n,m](X � ∆x)

∂∆xnr

∣∣∣∣∣
∆x[n]

r =0
=
(
I3×3|b−ẑ[m,n]c×

)
︸ ︷︷ ︸

Jn,m
r

(3.77)

∂e[n,m](X � ∆x)
∂∆xml

∣∣∣∣∣
∆x[m]

l
=0

= R[n]︸︷︷︸
Jn,m

l

(3.78)

J[n,m] =
(
· · ·03×6 · · ·J[n,m]

r · · ·03×603×3 · · ·J[n,m]
l · · ·03×3 · · ·

)
(3.79)

3.3.2 Factor Graphs and Sparse Least-Squares

As promised, we again used the Bayesian framework to address an estimation
problem, namely, Multi-Point Registration. Therefore, the final goal is to estimate a
posterior probablity of this form:

p(x | z) = p(x1:N | z1:M). (3.80)

3.3 Global Optimization 33

For a real-world problem, we immediately notice that, having defined the state as
in Eq. (3.61), we have to deal with a complex task. For this reason, we seek for
mathematical manipulations and simplifying assumptions that allow to turn the said
problem in a more tractable form. In this context, we will see that by leveraging
on concepts borrowed from Graph Theory it is possible to represent the problem in
a way that allows to have a better insight and, as a consequence, to solve it more
efficiently.

The Multi-Point Registration is a Maximum A Posteriori (MAP) estimation
problem. That is, we want to find the state x∗ that maximizes Eq. (3.80):

x∗ = argmax
x

p(x | z) (3.81)

[Bayes rule] = argmax
x

p(z | x)p(x) (3.82)

[Independence] = argmax
x

p(x)
∏
k

p(zk | xk) (3.83)

= argmin
x
− log

(
p(x)

∏
k

p(zk | xk)
)

︸ ︷︷ ︸
F(x)

(3.84)

= argmin
x

F(x). (3.85)

Where, under the gaussian assumption as in Eq. (3.13), we can rewrite the objective
function as:

F(x) =
∑
k

ek(xk, zk)>Ωkek(xk, zk). (3.86)

Now, let us delve deeper in Eq. (3.86). The state x = (x>1 , . . . ,x>N)> is a vector
of parameters, each xi can be seen as a parameter block. The subscript k refers
to the kth constraint in the objective function that involves a subset of the state
xk = (x>k1

, . . . ,x>kq
)> ⊂ x = (x>1 , . . . ,x>N)> and has mean zk and information matrix

Ωk. As usual, the error function ek(xk, zk) = hk(xk)− zk measures how close is the
prediction from parameter blocks in xk to the actual measurement zk.

From our knowledge of the problem, we recall that in a single constraint only a
small subset of the parameters vector is interested, e.g. a single landmark measure-
ment z[n,m] is affected only by the robot pose X[n]

r and the landmark position x[m]
l .

This allows a graphical representation of the posterior distribution that highlights
the correlation between the problem variables. The measurements independence
assumption (Eq. (3.83)) implies a factorization of the PDF. Thus, we can use a
factor graph to represent it. The nodes of this graph are the state parameters, while
an edge among the nodes represents a constraint between the linked nodes. This
representation allows to have a visual feedback on the structure of the problem.

From Eq. (3.21), we know that the matrix H and the vector b are built by
summing the contributions deriving from each constraint:

H =
∑
k∈C

Hk. (3.87)

b =
∑
k∈C

bk (3.88)

34 3. Fundamentals

with bk = J>k Ωkek and Hk = J>k ΩkJk. We recall that, in the considered problem,
the Jacobian has the following structure:

Jk =
(
0 · · ·0 Jk1 · · · Jki

· · ·0 · · · Jkq0 · · ·0
)
, (3.89)

where Jki
= ∂e(xk)

∂xki
are the derivatives of the error function with respect to the nodes

connected by the kth hyper-edge, with respect to the parameter block xki
∈ xk.

Therefore, we have:

Hk =

. . .
JTk1

ΩkJk1 · · · JTk1
ΩkJki

· · · JTk1
ΩkJkq

...
...

...
JTki

ΩkJk1 · · · JTki
ΩkBki

· · · JTki
ΩkJkq

...
...

...
JTkq

ΩkJk1 · · · JTkq
ΩkBki

· · · JTkq
ΩkJkq

. . .

(3.90)

bk =

...
Jk1Ωkek

...
JTki

Ωkek
...

JTkq
Ωkek
...

, (3.91)

where, for readability, we omitted the zero blocks. From this analysis we note that:

• the block structure of the matrix H is the adjacency matrix of the graph,

• H is a sparse symmetric matrix,

• an edge connecting q vertices introduces q2 non-zero blocks in H.

The sparsity of H allows to perform efficient and fast optimization, especially to solve
the linear system in Eq. (3.26). Many approaches have been proposed to efficiently
solve sparse linear systems, either with direct [29] or iterative [131] methods. One of
the most employed direct method uses the Cholesky factorization of H - namely the
LU decomposition.

35

Part II

Metric maps

37

Chapter 4

Taxonomy of Metric Map
Representations

The main purpose of SLAM algorithms is to recover the geometric structure of an
environment. Such representation is referred to as “metric map”. Informally speaking,
the term metric means that it is a 1 : 1 scale representation of the environment and,
thus, can be used to measure distance to goals or avoid real obstacles.

A metric map is built with an incremental process. This consists in integrating
into a global reference frame the sequence of sensor measurements acquired by the
robot during navigation. As depicted in Fig. 4.1, this process can be seen as the
continuous iteration of two steps: registration and fusion.

When a robot acquires a new measurement, its percepts (points for range sensors
and intensities for visual sensors) will be expressed in the local reference frame
attached to the sensor. Registration is used to find an alignment between the new
data and the map built so far, to transform it from the local to the global reference
frame. After that, it is possible to update the global map.

Simply adding these incoming percepts to the map is rarely a good idea, since it
results in a lot of redundant information and a non-negligible consumption of memory.
However, consecutive views of the environment must present a certain overlap to be
registered. With a data association procedure it is possible to find pair of percepts
among consecutive views generated from the same real-world element. Therefore,
associated ones are fused together, usually taking some form of average, while
un-associated ones are added to the map, for being considered as new information.

To represent an object surface there are different possible ways. From Differential
Geometry we learn that a surface S can be expressed in three analytical forms [33]:

explicit - when it is described by the set of primitives pi that compose it:

S = {pi} (4.1)

parametric - in this case it is identified as a mapping between a domain Ω ∈ <2

and points in <3:
S : Ω ∈ <2 → <3 (4.2)

38 4. Taxonomy of Metric Map Representations

Registration

Sensor
Measurements Aligned

Data

Global
MapUpdated

Map

Fusion

Figure 4.1. Incremental map building process.

implicit - if it is defined on a scalar field as the set of points that satisfy a certain
condition:

S = {(x, y, z) | f(x, y, z) = 0} (4.3)

In robotics applications, it is very unlikely to recover an analytical form of the
scene geometry. Nevertheless, the digital representations built in robotics can be
considered as good approximations. Indeed, from the previous defintions we may
notice that: point clouds and voxel grids can be considered as explicit representations,
digital elevation maps (dem) as parametric and signed distance functions as implicit.

Apart from dems which, in general, are not suited for 3D geometry, in the
remainder we will provide a categorization of the various representations proposed
in literature along with a final comparison.

4.1 Sparse Representation

As we have seen in Sec. 2.1.1, it is possible to align two surfaces by considering
only a subset of interesting points from the two sets of data. This approach is
typically used for data coming from monocular or stereo cameras [100, 78] and in
Computer Vision it is usually referred as Structure from Motion [58]. In this way,
the scene is represented with a set of sparse 3D landmarks that usually correspond
to distinguishable elements of the environment.

Sparse point clouds obtained success in robotics applications because they can
be obtained from the output of range sensors [22] and, as we have seen in Sec. 2.1.2,
common techniques exist to align this data.

Another reason why this representation has been adopted by the majority of
mapping systems, is because with a simple SLAM formulation it is still possible to
achieve robust sensor tracking and loop detection. Furthermore, as will be shown in
Chapters 5 and 6, there is an ongoing line of research to extend these methods for
including other geometric primitives as landmarks, i.e., lines and planes.

4.2 Dense Representation 39

(a)
(b)

Figure 4.2. Example of sparse representations: (a) image from [22] (b) image from [76].

(a)

(b)

Figure 4.3. Example of dense representations: (a) image from [102] (b) image from [170].

4.2 Dense Representation

Despite their efficiency, landmark-based methods present two main limitations: (1)
they heavily depend on the feature extraction process and (2) they provide a rather
poor representation of the environment since they tend to filter out featureless
portions.

To provide detailed 3D models of the environment that are better suited for
visualization and rendering, methods based on dense representations have been
proposed. They work by considering the whole output of 3D sensors, like Laser
Scanners or RGB-D cameras, for reconstrucion. As a consequence, they represent
the scene with large unstructured sets of points [102] or surfels [137]. Of course, this
comes at the price of an higher computational cost.

40 4. Taxonomy of Metric Map Representations

(a)

(b)

Figure 4.4. Example of volumetric representations: (a) image from [103] (b) image from
[64].

4.3 Volumetric Representation

Another line of investigation is to adopt structured representations, such as the
ones used in Computer Graphics for Surface Reconstruction [6]. These are called
"boundary representations", since they define 3D objects in terms of their surface
boundary.

In this context, implicit surface representation has gained increasing attention.
This is caused by two main reasons: first, they can represent a surface of arbitrary
genus and second, their data structure is naturally suited for geometry processing like
Boolean operations and Dynamics simulation. A common implicit representation of
surfaces is the Signed Distance Function (SDF), that can be estimated with different
methods [26, 63].

Other relevant volumetric representations are based on spatial-partitioning. The
most common technique is to decompose the 3D space into identical cubes (voxels),
arranged in a regular 3D grid. Since this representation scales poorly, adaptive ones
have been proposed, like: hierarchical data-structures (octrees [174] or N3 trees [17])
and flat hash-tables [106].

4.4 Object-based Representation 41

Figure 4.5. Example of object-based representation, image from [132].

4.4 Object-based Representation
Despite all the representations mentioned so far can be considered as an approx-
imation to the scene geometry, they are all built from low-level primitives. This
limits the robot planning and reasoning capabilities, since we human perceive the
environments in terms of the objects it is made of.

The solution proposed in the seminal works by Moreno et al. [132], Civera et
al. [21] and Dame et al. [28] is to investigate object-based representations, where the
map is made of objects and solid shapes as it is the case in Computer Aided Design
(CAD).

Of course, building such a map is an expensive procedure and requires many
simplifying assumptions. Nevertheless, still this type of representation is very
attractive because it naturally lends itself to represent also objects semantic and
physical properties, which can be essential for the robot to execute its tasks.

4.5 Comparison
To wrap up, in Tab. 4.1 we propose a comparison of the presented approaches based
on four indices:

Robustness: it is a measure of the pose tracking capabilities. Sparse methods
can be considered robust because they rely on distinguishable features of the
environment and can count on efficient loop detection. On the other side,
dense and SDF-based methods achieve robustness by exploiting the rich source
of information coming from range sensors.

Accuracy: it describes how well the reconstructed model approximates the real
surface. Occupancy-based representations can be used for navigation but are
too coarse to describe objects shapes. While other representations, apart from
sparse ones, are better indicated to recover the scene geometry.

42 4. Taxonomy of Metric Map Representations

Complexity: it refers to the processing cost, in terms of computational complexity.
Sparse methods can be considered the most efficient ones because they work
on a compact representation and are the most scalable. Other methods need
to process a large amount of data (dense) and/or perform complex pre and
post-processing (volumetric, object-based).

Usability: it indicates the application possibilities of the reconstructed map. Dense
and SDF representations provide detailed models but can be used only for
visualization. While occupancy and object-based representations are suitable
for task planning and execution.

Robustness Accuracy Complexity Usability
Sparse 33 3 33 77

Dense 33 33 77 3

Volumetric Occupancy 3 7 7 33

SDF 33 33 77 3

Object-based 3 33 77 33

Table 4.1. Comparison of metric representations.

43

Chapter 5

Unifying Local Registration
Algorithms

As we have seen in Chapter 2, the spread of landmark-based SLAM approaches is
mainly due to the existence of well-known techniques for detecting, matching and
registering point primitives. Despite their efficiency, these techniques have known
drawbacks: detection may fail in textureless scenes, matching is hindered by the
features low descriptiveness and registration may be unable to recover large rotations.
In all the above mentioned situations, pose tracking is likely to yield poor results.

At the same time, man made environment are rich in structure. Planar items
such as walls, floors and tables cover a great portion of the environment. Similarly,
the edges of these planar structures often form lines. In this chapter we propose
a unified representation for different types of primitives such as points, lines and
planes. In this way, it is possible to devise a registration algorithm for aligning
hybrid scenes in a single formulation. Moreover, we can define correspondences
among items in the scenes that belong to different classes: besides enforcing that
two planes or two points in the scenes are the same, we can also express constraints
such as “a point lies on a line”, or “a line lies on a plane”.

Exploiting structure to describe a scene has clear advantages on the storage:
describing a room as a set of walls and a floor requires far less memory than storing the
corresponding point cloud. In turn, registration algorithms might gain in efficiency
and display larger alignment capability coming from the higher descriptiveness of
the primitives.

The derivations proposed in this chapter capture in a uniform manner several
Iterative Closest Point (ICP) variants [7, 135, 138]. Our system benefits from the
structure when present, while it degrades to regular ICP in absence of structure.
Furthermore, it provides compact models that can be used to reproduce the geometry
of the scene.

5.1 Generalized Local Registration

Registration aims at finding the transform that better aligns two scenes through
non-linear optimization of an objective function. As a consequence, the choice of this
function will have a strong impact on the final solution. In general, convex objective

44 5. Unifying Local Registration Algorithms

Figure 5.1. A typical scenario addressable with the proposed representation: we want to
register a moving scene (red) onto a fixed scene (black). The scenes are composed by
points (pt), lines (l) and planes (pl). Green lines indicate the constraints between two
geometric entities. The proposed representation allows to model both homogeneous (e.g.
line-line) and heterogeneous (e.g. point-plane) constraints.

functions are preferred, since they lead to an easier convergence. In practice, the
objective functions used for registration problems are not convex, thus it is likely to
fall in local minima.

With the proposed formulation, we can model not only point-point correspon-
dences but any of the nine possible pairings between points, lines and planes (see
Fig 5.1). This allows to exploit the higher descriptiveness of geometric primitives
such as lines and planes for widening the objective function convergence basin and,
consequently, avoiding local minima.

Of course, a straightforward approach is to define an ad-hoc error function for
each type of correspondence (e.g., point-point, point-line, line-plane and so on).
Then, for each of them, a different optimization has to be formulated. Our approach
is to define a single parametrization for different geometric primitives. Therefore,
once a primitive is represented as a unified entity, all the other computation modules
are agnostic of the primitve’s type.

In the remainder of this section, we first introduce our representation of primitives.
Subsequently, we define how to apply an isometry to a scene. With this basic
operation defined, we show how to define an error function between two primitives
that are connected by a constraint. Finally, we propose both an iterative and a direct
implementation of a solver capable of finding the optimal transformation between
two scenes, given a set of correspondences.

5.1 Generalized Local Registration 45

type pm Rm Ωm Shape of Ωm

point p R diag(1, 1, 1)

line pl Rl diag(0, 1, 1)

plane pπ Rπ diag(1, 0, 0)

Table 5.1. Matchables table. The shape of Ωm discriminates the type of primitive
represented by the matchable. The confidence ellipsoid obtained from Ωm is a sphere if
the matchable is a point. If the primitive is a line or a plane the confidence ellipsoid
degenerates respectively to a cylinder or to two parallel planes.

5.1.1 Representation

Our representation stems from the fact that points, lines and planes can be defined in
terms of degenerate quadrics. In general, a quadric can be described by the following
equation:

(x− p)>A(x− p) = 0. (5.1)

Here, p ∈ <3 is the origin of the quadric and A a symmetric matrix. A point
x ∈ <3 lies on the quadric if it satisfies Eq. (5.1). A can be factorized as A = RΩR>,
where the columns of R are the axes of the quadric, and Ω is a diagonal matrix
containing the eigenvalues of A. The shape of the quadric is entirely determined by
its eigenvalues. In the remainder, we refer to the first column of R as the direction
d of a primitive.

Points can be represented as spheres with a null radius, thus all eigenvalues
should be equal and positive: Ω = diag(1, 1, 1). Lines can be represented as cylinders
having null radius, thus, assuming the cylinder axis is parallel to the direction d, the
corresponding omega is Ω = diag(0, 1, 1). Finally, planes can be represented through
quadric as two matching planes. In this case, being the plane normal parallel to d,
Ω = diag(1, 0, 0).

The reader might notice that the Ω used to represent the above primitives can be
scaled arbitrarily by any positive number. Setting the non-null eigenvalues to 1 has
however the effect of turning the value of the left hand side ‖x− p‖2A of Eq. (5.1)
to the squared euclidean distance between x and the closest point on the quadric.
Tab. 5.1 summarizes the parameters used for each type of primitive.

In our system we call such quadrics matchables. For a matchable m we store:
the origin pm, the rotation matrix Rm and the eigenvalues matrix Ωm:

m :
〈
pm, Rm, Ωm

〉
. (5.2)

5.1.2 Transformation

Let X = [Rx|tx] ∈ SE(3) be a transformation. The operation of applying a
transformation to a matchable m results in a new matchable m′ = X ·m with the

46 5. Unifying Local Registration Algorithms

following parameters:

m′ =

 Rxpm + tx
RxRm

Ωm

 . (5.3)

Here we parametrized X as a rotation matrix Rx ∈ SO(3) and a translation
vector tx ∈ <3. Intuitively, applying an isometry to a matchable results in a
transformation of the Euclidean component pm and in a rotation of the matrix Rm,
leaving unchanged Ωm.

5.1.3 Distance

In this section we present a metric to evaluate a distance e(m,m′) between a pair
of matchables m and m′. If m is a point and m′ is any primitive Eq. (5.1) allows
us to compute the squared distance between a point and the quadric in m′ as:

e(m,m′) = (pm − pm′)>Am′(pm − pm′) (5.4)

To compute the distance between two planes (or, equivalently, two lines) we need
to consider in the difference their directions dm and dm′ . Adding to Eq. (5.4) a
quadratic term ‖dm − dm′‖2 that captures the difference in directions results in a
metric that is zero when the two planes or lines are the same:

e(m,m′) = ‖pm − pm′‖2Am′ + ‖dm − dm′‖2 (5.5)

While, for the distance between a line and a plane, we consider that a line lies
on a plane if: the point of the line lies on the plane, their direction vectors are
orthogonal. The first requirement is satisfied when Eq. (5.4) evaluates to 0. To
capture the orthogonality constraint expressed by the second requirement we add to
the metric an additional semi-positive term that is zero when the two directions are
orthogonal:

e(m,m′) = ‖pm − pm′‖2Am′ +
∥∥∥d>mdm′

∥∥∥2
= 0 (5.6)

Having considered how to measure the distance between all possible combinations
of matchables, we want to have a unique formulation for all of them. This will be
useful in the remainder, as we will derive the registration procedure only once for all
possible types of constraint.

To this end, we rewrite the difference between two matchables as the following
7D vector:

e(m,m′) =

 ep
ed
eo

 =

 R>m′ (pm − pm′)
dm − dm′

dTmdm′

 (5.7)

A distance e(m,m′) between matchables is a non-negative scalar computed
from the difference vector. If the distance is zero, the constraint between the two
matchables is satisfied. To compute the distance, we employ adapted Ω-norm (i.e.
‖v‖Ω = v>Ωv) to difference vector:

5.1 Generalized Local Registration 47

m′
point line plane

m

po
in
t Ωp = I

Ωd = 0
Ωo = 0

Ωp = Ωm′

Ωd = 0
Ωo = 0

Ωp = Ωm′

Ωd = 0
Ωo = 0

lin
e Ωp = Ωm

Ωd = 0
Ωo = 0

Ωp = Ωm′

Ωd = I
Ωo = 0

Ωp = Ωm′

Ωd = 0
Ωo = 1

pl
an

e Ωp = Ωm
Ωd = 0
Ωo = 0

Ωp = Ωm
Ωd = 0
Ωo = 1

Ωp = Ωm′

Ωd = I
Ωo = 0

Table 5.2. Information Matrix Ω(m,m′) for each possible pair of matchables.

e(m,m′) =
∥∥e(m,m′)

∥∥2
Ω(m,m′)

= e(m,m′)>Ω(m,m′)e(m,m′). (5.8)

The information matrix Ω(m,m′) ∈ <7×7 activates the appropriate components
of the difference vector during the minimization, based on the type of constraint,
according to Tab. 5.2. In particular, we enforce the following block diagonal structure
for Ω(m,m′):

Ω(m,m′) =

 Ωp 0 0
0 Ωd 0
0 0 Ωo

 (5.9)

With this formulation, the generic distance between two matchables is computed
as:

e(m,m′) =
∥∥e(m,m′)

∥∥2
Ω(m,m′) (5.10)

= e(m,m′)TΩ(m,m′)e(m,m′) (5.11)
= ‖ep‖2Ωp

+ ‖ed‖2Ωd
+ ‖eo‖2Ωo

Consequently, the lower e(m,m′) is, the “closer” the two primitives are.

5.1.4 Registration

Having defined how to transform the matchables, and a way to compute how “far”
is a constraint from being satisfied, we seek for the optimal transformation X∗ that
better alignes two scenes:

48 5. Unifying Local Registration Algorithms

X∗ = argmin
X

∑
k

e(Xmk,m′k)

= argmin
X

∑
k

∥∥∥e(Xmk,m′k)T
∥∥∥2

Ω(mk,m′
k
)

(5.12)

for each pair of matchables 〈mk,m′k〉1:K between the “moving” and the “fixed” scene.
In Chapter 3 we have seen that a standard way to minimize the above equation

is through the Gauss-Newton iterative optimization of Alg. 2. In this context, we
propose two different schemes for the minimization problem: a non-linear iterative
solver and a direct solver. The non-linear solution is obtained by iteratively perform-
ing the optimization on a local parameterization of the perturbations. The direct
solution does not require an initial guess of the transform, and finds the minimum in
just one iteration. It is obtained by relaxing the constraint on the rotation matrix
of the transform, and then recovering the orthonormality of the solution through
Singular Value Decomposition (SVD).

Consequently, we specify for both cases, iterative and direct, the specific repre-
sentation of the state space X, the perturbation vector ∆x and the � operator to
perform the update. For completeness, we report the derivation of the Jacobian
matrix of line 12 of Alg. 2.

Iterative Solver

We represent the perturbation vector ∆x ∈ <6 as the following vector:

∆x := (∆x ∆y ∆z︸ ︷︷ ︸
∆t

∆αx ∆αy ∆αz︸ ︷︷ ︸
∆α

)T , (5.13)

where ∆t is the translational part, while ∆α embeds the rotations around the x, y
and z axes. To apply this perturbation to X we first convert ∆x into a rotation
matrix and a translation vector through the v2t function, and then we multiply the
homogeneous transforms:

∆X = v2t(∆x) (5.14)

=
(

Rx(∆αx)Ry(∆αy)Rz(∆αz) ∆t
0 1

)
X � ∆x := ∆X ·X (5.15)

We can expand the Jacobian J as follows:

J = ∂e((X � ∆x)m,m′)
∂∆x

∣∣∣∣
∆x=0

= ∂e(v2t(∆x)
m̃︷︸︸︷

Xm,m′)
∂∆x

∣∣∣∣∣∣∣∣∣
∆x=0

(5.16)

= ∂e(m,m′)
∂m

∣∣∣∣
m=m̃︸ ︷︷ ︸

Je

∂v2t(∆x)m̃
∂∆x

∣∣∣∣
∆x=0︸ ︷︷ ︸

Jx

. (5.17)

5.1 Generalized Local Registration 49

The calculations leads to the following form for the difference Jacobian Je and
the transformation Jacobian Jx:

Je =

 R>m′ −R>m′bp̃mc×
0 −bd̃mc×
0 [1 0 0]R>mR>x bd′mc×

 (5.18)

Jx =
(

I3×3 −bp̃mc×
0 −bd̃mc×

)
. (5.19)

Here, bac× denotes the skew symmetric matrix obtained from a 3D vector a, while
p̃m and d̃m are respectively the Euclidean and direction components of m̃ = X ·m.

Direct Solver

For the direct solution of the Gauss-Newton algorithm, we consider a perturbation
∆x ∈ <12 composed as follows

∆x =
(
∆tT ∆rT1 ∆rT2 ∆rT3

)T
(5.20)

where ∆rTi stands for the ith column of a rotation matrix ∆R

∆R =

 ∆rT1
∆rT2
∆rT3

 . (5.21)

We define the � operator as:

X � ∆x :=
(

R + ∆R t + ∆t
0 1

)
. (5.22)

Notice that during the solution we do not enforce the orthonormality of the
rotation matrices involved. To lessen this problem, after applying the perturbation,
we recondition the rotation matrix of X through SVD decomposition as follows:

USV = R (5.23)
R′ = UV. (5.24)

The above procedure provides us with the “closest” rotation matrix to the original
R. If S is close to the identity, the SVD approximation is good, otherwise the direct
solver provides a suboptimal solution. This typically occurs when several outliers
are present in the constraints. Similar to the iterative case, the Jacobian can be
computed from Eq. (5.19), and using the chain rule we need to rewrite only the
transformation Jacobian Jx:

Jx =

I3×3

pTm
pTm

pTm

0
dTm

dTm
dTm

 . (5.25)

Since in the direct case the Jacobian does not depend on the transformation, it
does not change during the iterations. Accordingly, a solution can be found in a
single iteration.

50 5. Unifying Local Registration Algorithms

Detection
Data
Association

Registration

RGB-D
data

Moving

Fixed

Constraints Registered
Scenes

Figure 5.2. Front-end. When a new pair of images is available, we extract a set of
matchables from raw data using the strategy outlined in Sec. 5.2.1, here we show only
planes for more clarity. Subsequently, we find corresponding matchables (here, linked by
a red line) between the newly generated scene and the “fixed” scene with the methodology
in Sec. 5.2.2. Finally, a minimization is conducted to find the transform that best aligns
the two scenes according to Sec. 5.1.4.

5.2 Front-End

To validate the representation and the solvers proposed in Sec. 5.1 on real data we
realized a front-end based on RGB-D data. The processing pipeline, as shown in
Fig. 5.2, is divided in three steps: detection, data association and registration.

5.2.1 Detecting Matchables from RGB-D data

In Sec. 2.1.3 we presented different methods to detect features in sensors data.
Arguably, the most common technique is to extract corners from intensity images to
obtain interest points. At the same time, most man-made objects are made of flat
surfaces, this results in image edges that form straight lines. In a textureless scene,
where a point feature detector is likely to fail, there are still good chances to detect
lines.

Image based feature detectors do not account for the geometry of the scene
and rely solely on the inensity channel. For this reason, their main limitation is a
performance drop in detection under varying or severe lighting conditions. On the
other hand, plane detection from range data depends on the 3D structure of the
scene and is immune to light changes. However, plane detection depends on the
estimation of geometric features (i.e. surface normals and curvature) which may be
severely limited by noisy and non-uniform data returned by range sensors.

Since our representation comprehends all these geometric entities, we can combine
different detection techniques to compensate for their singular shortcomings. In the
remainder we present the details on the detection of these primitives in our system.

Points and Lines

Points and lines are extracted in image coordinates using the intensity channel. In
particular we use the FAST detector [125] to find salient pixels in the image, and
we add to the scene the corresponding 3D point retrieved from the depth channel.
Lines are found on the intensity image using the Line Segment Detector introduced
in [167]. Each line in the image is back-projected by considering the 3D points at
the extrema. To lessen the effect of spurious detections, we reject all lines that are

5.2 Front-End 51

(a) (b)

(c) (d)

Figure 5.3. Planes extraction. From left to right and top to bottom: (a) input depth
image, (b) estimated surface normals, (c) connected regions (in black), (d) detected
planes (in red).

too short or do not have sufficient support from the depth data. As an additional
cue for points and lines matching, we label each point with a BRIEF descriptor [12]
computed at the keypoint location. Similarly, we add to each line matchable a
descriptor computed according to [176].

Planes

We first generate an organized 3D point cloud from the depth image and compute
the surface normals for each point according to [30]. Subsequently, we mark each
point characterized by a significant local variation of depth or normal. After this
procedure, each pixel is classified as belonging to a continuous region or not and
we recover the connected regions by visiting the image according to an 8 neighbor
connectivity (see Fig. 5.3). For each of these regions that has a minimum number of
points, we fit a plane. If the residual error of the fitted plane is below a threshold,
we add a new plane to the scene. We repeat this procedure until no planes can be
generated.

5.2.2 Data Association

The set of matchables detected in the current RGB-D frame constitutes the moving
scene S = {m1:N}. While, the set of matchables previously detected and registered
in a global reference frame forms the fixed scene S ′ = {m′1:N ′}. The goal of the data
association module is to find corresponding elements between the two sets. Then,
each correspondence will result in a constraint for the solver.

Given the formalism presented in Sec. 5.1.1, we are able to find two types of
constraints: homogeneous and heterogeneous. A homogeneous constraint arises when
we re-observe the same matchable, e.g. a point in the moving scene matches a point

52 5. Unifying Local Registration Algorithms

in the fixed scene. While, a heterogeneous constraint derives from a correspondence
between primitives of different types, such as a line in the moving scene lies on a
plane in the fixed scene.

We perform the constraints search in two steps, i.e. we first look for matchables
of the same type and then we perform a hybrid match search.

Homogeneous Constraints

We designed a data association schema based on a Nearest Neighbor Search. Given
the fixed scene S ′, the moving scene S, and the current estimate X, for each
matchable m we want to find the matchable m′∗ such that the error in Eq. (5.10) is
minimized:

m′∗ = argmin
m′∈S

e(Xm,m′). (5.26)

For efficiency, we perform an approximate search, organizing the matchables
of the fixed scene S′ in three KD-trees: one for each primitive. We perform an
additional culling to remove bad associations. Matched planes are discarded if their
distance is bigger than a certain threshold, while for points and lines we reject those
associations whose descriptors are not similar.

Heterogeneous Constraints

Once performed the homogeneous search, we use the unassociated matchables of the
moving scene m to perform a brute force search with the matchables of different
type in the fixed scene. We evaluate the hybrid matchables distance as in Eq. (5.10),
and we discard the constraints with error higher than a specified threshold tcross.

5.3 Experimental Evaluation

In this section we present a set of experiments aiming at evaluating the performance
of both the iterative and the direct version of the solver proposed in Section 5.1. To
this extent, we used a synthetically generated scene with known correspondences
under different levels of noise and we analyzed the convergence behavior of the
solver under different constraints. Section 5.3.1 reports the outcome of this set of
experiments. Subsequently, in Section 5.3.2 we report the results of a comparative
evaluation that involves a full registration pipeline built on top of our solver and
other state-of-the-art approaches. The experiments have been conducted on standard
benchmarking datasets.

5.3.1 Synthetic Data

We designed a first experiment with synthetic data to validate our method presented
in Section 5.1. We isolate the effects of the front-end and analyze the behavior of
each type of constraint on both iterative and direct solver. To this end, for each
type of constraint, we generated two noise-free scenes with 10 matchables of each
type, such that the corresponding constraints were fully satisfied.

5.3 Experimental Evaluation 53

N L H0 2 4 6 8 10
1e+0

1e+1

1e+2

1e+3

1e+4

(a) point-point
N L H0 2 4 6 8 10

1e+0

1e+1

1e+2

1e+3

1e+4

(b) point-line
N L H0 2 4 6 8 10

1e+0

1e+1

1e+2

1e+3

1e+4

(c) point-plane

N L H0 2 4 6 8 10
1e+1

1e+2

1e+3

1e+4

1e+5

(d) line-point
N L H0 2 4 6 8 10

1e+0

1e+1

1e+2

1e+3

1e+4

(e) line-line
N L H0 2 4 6 8 10

1e+0

1e+1

1e+2

1e+3

1e+4

(f) line-plane

N L H0 2 4 6 8 10
1e+0

1e+1

1e+2

1e+3

1e+4

(g) plane-point
N L H0 2 4 6 8 10

1e+0

1e+1

1e+2

1e+3

1e+4

(h) plane-line
N L H0 2 4 6 8 10

1e+0

1e+1

1e+2

1e+3

1e+4

(i) plane-plane

Figure 5.4. Synthetic Experiments - Error Evolution. In solid blue is shown the evolution
of the error without noise, while in dashed red is reported the low-noise case and in
point-dashed yellow the high-noise case. For each constraint, the left plot reports the
Iterative Solver evolution, while the right plot shows the error after one Direct Solver
iteration.

In Fig. 5.4 we report the error evolution of the iterative solver for 10 iterations,
while for the direct solver we present the result after one iteration. To estimate the
effect of noise in the measurements we repeated the previous experiment by adding
varying levels of noise to the matchables in one scene. The corresponding curves
are marked as N: no-noise, L: low-noise [σ2

t ∼ 0.05, σ2
r ∼ 0.025] and H: high-noise

[σ2
t ∼ 0.1, σ2

r ∼ 0.05].
For the same type of constraint and level of noise both solvers operate on the

same data and start from the same initial guess [tx = 0.3, ty = −0.8, tz = 0.6, qx =
0.5, qy = −0.5, qz = 0.5]. As evident from Fig. 5.4 both iterative and direct variants
of our solver converge close to the optimum. As expected the iterative solver is less
sensitive to the measurement noise, at a cost of multiple iterations. Conversely the
direct solver should be preferred in low noise situations since it finds the optimum
in just one step.

5.3.2 Simulated and Real Data

We compared the position tracking performances of our approach and three other
state-of-the-art methods, namely: Normal ICP (NICP) [138], Dense Visual Odometry
(DVO) [74] and Multi-Cue Photometric Registration (MPR) [30]. We used the
author’s open source implementations 1. The comparison has been conducted on
the following publicly available datasets with ground truth:

• ICL-NUIM dataset [55], simulated RGB-D measurements in indoor scenarios.

1Source: https://github.com/tum-vision/dvo_slam (V.O. only)
Source: https://srrg.gitlab.io/nicp.html
Source: https://srrg.gitlab.io/mpr.html

https://github.com/tum-vision/dvo_slam
https://srrg.gitlab.io/nicp.html
https://srrg.gitlab.io/mpr.html

54 5. Unifying Local Registration Algorithms

• TUM benchmark suite [146], acquired with a Kinect v1 sensor in office-like
environments.

For all the presented experiments we provide the achieved accuracy in terms
of relative pose error (RPE), computed with the evaluation script provided by the
TUM benchmark suite. For both datasets, we set tcross = 0.01 as threshold to
discard heterogeneous associations, as described in Sec. 5.2.2.

In Tab. 5.3 we report the results of each approach in terms of relative translational
and rotational pose error per second on the ICL-NUIM sequences. The presented
results show that our approach achieves accuracy comparable with state-of-the-art
methods. To highlight the effects of using high-level primitives we present two
variants of our approach, denoted as SA-PT and SA-SHA. SA-PT considers only
points, while SA-SHA uses all primitives generated by the front end. SA-PT and
SA-SHA does not present significant differences except in the first two sequences,
where the camera is repeatetly pointed towards textureless walls, and salient features
are poorly detected, causing an observable weakness in the SA-PT performances.
On the other hand, the SA-SHA version takes advantage of the high-level geometric
primitives. To provide the reader with an estimate of the memory occupancy of our
method, we also report the number of matchables for our approach and the point
cloud size of [138] in the final reconstructed scenes.

We repeated the same procedure on eight sequences of the TUM benchmark suite.
The data have been acquired with a Kinect v1 in office-like environments. Despite
the simplistic front-end procedure we used in this work to extract matchables, our
approach performs well on real data, as reported in Tab. 5.4. SA-SHA outperforms
SA-PT in all the sequences, except when no structure is present (fr3/nostr-text-
near-loop), where the two versions perform similarly. This encourages to further
improve the front-end part to perform a more robust registration.

5.3 Experimental Evaluation 55

MPR DVO NICP SA-PT SA-SHA
[m/s] [rad/s] [m/s] [rad/s] [m/s] [rad/s] [m/s] [rad/s] [m/s] [rad/s]

lr/tr0 0.0182 0.7055 0.0063 0.5347 0.0063 0.5403 0.0121 0.6466 0.0077 0.5499
{2041773} {956 / 82 / 14}

lr/tr1 0.0216 0.6307 0.0019 0.4773 0.0014 0.4751 0.0134 0.5802 0.0042 0.4857
{1357503} {608 / 75 / 16}

lr/tr2 0.0193 0.6366 0.0046 0.4983 0.0047 0.4948 0.0071 0.5667 0.0053 0.3843
{1865157} {1180 / 69 / 13}

lr/tr3 0.0218 0.6351 0.0055 0.3607 0.0065 0.3907 0.0096 0.6553 0.0059 0.3512
{2997922} {981 / 65 / 10}

tr0 0.0243 0.6464 0.0064 0.4967 0.0068 0.4988 0.0104 0.5254 0.0094 0.5159
{2140708} {1149 / 85 / 13}

tr1 0.0272 0.7173 0.0045 0.4834 0.0043 0.4783 0.0069 0.5223 0.0057 0.4918
{1654631} {999 / 105 / 17}

tr2 0.0309 0.7469 0.0053 0.5068 0.0052 0.5078 0.0094 0.5472 0.0071 0.5146
{1895441} {890 / 68 / 15}

tr3 0.0223 0.5733 0.0037 0.3567 0.0039 0.3533 0.0056 0.3685 0.0052 0.3639
{2300953} {1257 / 145 / 16}

Table 5.3. ICL-NUIM - Relative Pose Error.

MPR DVO NICP SA-PT SA-SHA
[m/s] [rad/s] [m/s] [rad/s] [m/s] [rad/s] [m/s] [rad/s] [m/s] [rad/s]

fr1/desk 0.0617 3.3369 0.0487 2.8261 0.1123 8.6928 0.0919 5.0505 0.0888 2.6464
{15488164} {282 / 29 / 2}

fr1/desk2 0.0921 5.1575 0.0752 4.4137 0.1989 9.9035 0.1565 6.1042 0.0974 5.9066
{18325912} {295 / 33 / 1}

fr2/desk 0.0364 1.6511 0.0377 1.5691 0.1032 2.8895 0.0236 0.9921 0.0206 0.8661
{17430749} {7934 / 59 / 2}

fr2/person 0.0478 1.4512 0.0332 0.9791 0.3479 13.8372 0.0245 0.8820 0.0224 0.7693
{20887437} {10146 / 45 / 4}

fr3/long-household 0.0262 1.2773 0.0441 1.4096 0.1412 4.8721 0.0354 1.4398 0.0274 1.1352
{24204397} {3849 / 93 / 10}

fr3/nostr-text-near-loop 0.2505 7.6629 0.0249 1.0935 0.3179 8.9081 0.0211 0.9506 0.0227 1.0219
{893384} {2058 / 154 / 1}

fr3/str-text-far 0.0413 1.2862 0.0943 2.4563 0.1002 1.4571 0.0240 0.6646 0.0228 0.6546
{3133948} {713 / 107 / 5}

fr3/str-text-near 0.0451 2.1518 0.0364 1.9501 0.0736 2.3584 0.0376 1.6553 0.0282 1.2725
{4480124} {1223 / 26 / 2}

Table 5.4. TUM - Relative Pose Error.

57

Chapter 6

Unifying Global Optimization
Algorithms

Sensor range and field-of-view limits cause each frame to contain only a partial view
of the environment. To observe it all, the robot has to move within its workspace so
that, as described in Chapter 4, the map is built incrementally by registering and
fusing together the measurements acquired during exploration. During this process
inconsistencies may arise due to the accumulation of a drift.

In this context, a crucial requirement is to maintain a globally consistent map over
time. For this reason, modern SLAM systems are typically made of four components:
a sensor tracker, to estimate the current pose of the sensor (camera, laser, etc...)
along the trajectory; a local map manager, to gather a set of measurements from
a chunk of trajectory that relate to the same portion of the environment; a loop
detector, to recognize if a place has been revisited and a global optimizer to determine
the state configuration that better fits the measurements.

In the last decade, graph-based approaches have shown to be effective solutions
to the full SLAM problem and techniques for both constructing the graph (front-end)
and carrying on the optimization (back-end) have been proposed (Sec. 2.2). The
majority of these approaches consider simple, or low-level, geometric primitives
in their formulation, like points. However, as shown in Chapter 5, higher level
primitives can improve registration results thanks to their greater descriptiveness.

Both for filtering and smoothing approaches, the use of lines and planes has
been investigated to improve estimation accuracy. In this chapter, we adopt the
representation introduced in Sec. 5.1.1 that is able to describe different types of
primitive with a single parameterization and can capture both homogeneous and
heterogeneous constraints between them. In this way, it is possible to recover, in
a globally consistent way, the sensor poses along with a map representation of the
environment made of points, lines and planes.

Based on this representation, we derive in Sec. 6.1 a global optimization procedure
to solve the full SLAM problem. Subsequently, in Sec. 6.2 we present the details of the
front-end we implemented to test our method on real data. Finally, an experimental
evaluation based on both synthetic and real data is reported in Sec. 6.3.

58 6. Unifying Global Optimization Algorithms

6.1 Multi-Primitive Registration
In this section, we derive a generalized version of the Multi-Point Registration
algorithm of Sec. 3.3.1 to obtain a globally optimal reconstruction of the sensor
poses and the scene made of primitives.

The input to this algorithm is a factor graph (see Sec. 3.3.2) that encodes an
initial guess of the sensor poses and the primitives positions along with a set of
constraints (or edges). Each edge may specify: (a) from which pose a primitive has
been observed and (b) a relative transform between two poses.

Based on the parameterization introduced in Sec. 5.1.1, we first define the state
space of the optimization problem and how to apply a perturbation to it. With this
basic operation defined, we show how to compute an error between the predicted
and the measured matchables. Finally, we derive a Gauss-Newton solver capable of
finding the state configuration that better explains the measurements.

6.1.1 State

Similar to Sec. 3.3, we assume to have a sensor capable of perceiving distinguishable
geometric primitives that is used to explore an unknown environment. Therefore,
the state X of our problem will be composed by the set of poses at which new
measurements have been acquired and the set of matchables seen along the trajectory:

X = {X[1]
r , . . . ,X[N]

r ,X[1]
m , . . . ,X[M]

m } (6.1)

with:

• sensor pose X[n]
r ∈ SE(3)

• matchable X[m]
m as in Eq. (5.2).

The goal is to find the best X∗ that satisfies the factor-graph constraints. As we
have seen in Sec. 3.1.2, non-linear optimization techniques work by locally applying
a perturbation to the state in order to reach the optimum. For the sensor pose, the
perturbation is defined as in Eq. (3.52). While, we define the euclidean perturbation
of a matchable as:

∆m ∈ <5 : ∆m = (∆x ∆y ∆z︸ ︷︷ ︸
∆p

∆αy ∆αz︸ ︷︷ ︸
∆α

)T , (6.2)

where ∆p account for the translation and ∆α represents the rotation around the y
and z axes. The latter is used to perturb the direction of a matchable, see Fig. 6.1.
To express this perturbation only two parameters are needed because, intuitively,
rotating the vector also around the x axis has no effect on the direction. Another way
to see this, is that a direction can be considered as a point on the unit sphere, thus,
it may be expressed in spherical coordinates with just two parameters: the polar
and the azimuth angle. It follows that the perturbation is applied to a matchable in
the following way:

m′ = m � ∆m (6.3)

=

 pm + ∆p
Rm ·∆R

Ωm

 (6.4)

6.1 Multi-Primitive Registration 59

Figure 6.1. Applying a perturbation to the matchable direction.

where ∆R = Ry(αy) ·Rz(αz) is the composition of the elementary rotations around
the y and z axes. The reader might notice that it is multiplied to the right of the
matchable rotation matrix. In this way, the perturbation is first evaluated in the
origin and then added to Rm.

Having defined how to perturb a matchable, we can now consider how to apply
an increment to the whole state. In particular, the increments ∆x ∈ <6N+5M will
be represented by a large vector containing the minimal perturbation for each state
variable:

∆x = (∆x[1]>
r , . . . ,∆x[N]>

r ,∆x[1]>
m , . . . ,∆x[M]>

m)> (6.5)

with:

∆x[n]>
r ∈ <6 : (6.6)

∆x[n]>
r = (∆x[n]∆y[n]∆z[n]︸ ︷︷ ︸

∆t[n]

∆α[n]
x ∆α[n]

y ∆α[n]
z︸ ︷︷ ︸

∆α[n]

)>

and ∆x[m]>
m ∈ <5 as defined in Eq. (6.2). Applying the individual perturbations for

each variable block results in:

X′ = X � ∆x (6.7)
X[n]′
r = ∆x[n]

r � X[n]
r

= v2t(∆x[n]
r)X[n]

r

X[m′]
m = ∆x[m]

m � X[m]
m

6.1.2 Error

In Sec. 5.1.3, we have shown that the proposed parameterization for a matchable
allows to define a single error function that can measure the distance between
different primitives both of the same type and heterogeneous. In this section, we
exploit this representation to define the error between a predicted and a measured
matchable. This holds true regardless of the matchables type and allows to derive
the Jacobians of the error function only once.

60 6. Unifying Global Optimization Algorithms

We define the measurement of the matchable m, performed by the sensor pose n
as:

z[n,m] ∈ <15 : (6.8)
z[n,m] = (x[n,m], y [n,m], z [n,m]︸ ︷︷ ︸

p[n,m]
m

, r[n,m]

1,1 , . . . , r
[n,m]

3,3︸ ︷︷ ︸
linearized R[n,m]

m

, ω [n,m]

x , ω [n,m]

y , ω [n,m]

z︸ ︷︷ ︸
Ω[n,m]

m diagonal

)>.

Given the state X and the difference vector defined in Eq. (5.7), the predictions
and the error of these measurements are:

h[n,m](X) = X[n]
r X[m]

m (6.9)
e[n,m](X) = X[n]

r X[m]
m − z[n,m] (6.10)

e[n,m](X � ∆x) = v2t(∆x[n]
r)X[n]

r (∆x[m]
m � X[m]

m)− z[n,m] (6.11)

The jacobian J of the error function between the actual measurement m and the
one predicted from pose n is:

∂e[n,m](X�∆x)
∂∆x =

= (· · ·07×6 · · ·
∂e[n,m](X � ∆x)

∂∆xnr︸ ︷︷ ︸
Jn,m

r

· · ·07×6 · · ·

· · ·07×6 · · ·
∂e[n,m](X � ∆x)

∂∆xmm︸ ︷︷ ︸
Jn,m

m

· · ·07×6 · · ·).

(6.12)

with:

Jn,mr =

∂e[n,m]

p
∂∆xn

r

∂e[n,m]
d

∂∆xn
r

∂e[n,m]
o

∂∆xn
r

 (6.13)

that can be decomposed according to the difference vector components:

∂e[n,m]
p

∂∆xnr
=
[
R>m′ −R>m′S(Rxpm + tx)

]
(6.14)

∂e[n,m]
d

∂∆xnr
=

03×3 − S

RxRm

 1
0
0

 (6.15)

∂e[n,m]
o

∂∆xnr
=

01×3 [1 0 0]R>x R>mbRm′

 1
0
0

cx
 (6.16)

and:

Jn,mm =

∂e[n,m]

p
∂∆xm

m

∂e[n,m]
d

∂∆xm
m

∂e[n,m]
o

∂∆xm
m

 (6.17)

6.2 Front-End 61

which can be expanded as:

∂e[n,m]
p

∂∆xmm
=
[
−R>m′ − F (R>m′(Rxpm + tx)− pm′)

]
(6.18)

∂e[n,m]
d

∂∆xnr
=

03×3 Rm′F

 1

0
0

 (6.19)

∂e[n,m]
o

∂∆xnr
=

01×3 − [1 0 0]R>mR>x Rm′F

 1

0
0

 . (6.20)

where we considered only the last two components of the skew-symmetric matrices
involved in the derivations:

∆R(α)v
∂α

= −bvcx ·

0 0
1 0
0 1

 (6.21)

= −F (v)︸ ︷︷ ︸
clipped skew

. (6.22)

6.2 Front-End

So far we described an optimization problem and followed the methodology of Sec. 3.1.2
to derive an algorithm capable of solving it (back-end). This allows to solve the
so-called graph-based formulation of SLAM. In order to apply this algorithm on
real-world problems, we need a system to collect data and setup the optimization
properly (front-end).

In the remainder of this section, we will present some details on the implementa-
tion of our front-end. As visible from Fig. 6.2, it has the task of building the factor
graph and it comprises a pose tracker, Sec. 6.2.1, and a loop-detector, Sec. 6.2.2.

Pose
Tracker

Loop
Detector

Front-end Back-end

RGB-D
Data

Global
Optimizer

closures

edges

vertices

Figure 6.2. Front-end for global optimization.

62 6. Unifying Global Optimization Algorithms

6.2.1 Pose Tracker

To build a factor graph we need three processing modules, namely:

Matchable Detector: it is in charge of extracting points, lines and planes from
sensor output. It returns the set of matchables M = {mi} currently observed
by the sensor.

Correspondence Finder: it is used to perform data association between the
current scene returned by the detector and the global map built so far.

Scene Aligner: it takes as input the matches returned by the correspondence finder
and estimates the sensor pose.

Leveraging on the processing pipeline of Sec. 5.2, when a new RGB-D frame is
available we are able to estimate the current camera pose. Consequently, we are
ready to update the factor graph.

To do so, we add a pose vertex to the graph with the current transform estimate,
expressed in the global reference frame, and we link it to the previous pose vertex
through a pose-pose edge. Then, we process the observed matchables. To prevent
the graph from containing spurious landmarks, we implemented a filtering technique
based on the matchables “age”. When we observe a new landmark, its age is
initialized to 1. Then, we count how many times it is re-observed, according to the
output of the data association. We add a matchable vertex to the graph only if
its age is higher that a certain threshold and we link it to the current pose with a
pose-matchable edge. For future observations we add further pose-matchable edges.
The process is described in Algorithm 4.

6.2.2 Loop Detector

In parallel, we process the RGB image for Visual Place Recognition. That is, for a
new frame fi we first extract nk keypoints with the FAST detector and compute a
BRIEF descriptor for each of them. Then, we use an Hamming distance-embedding
Binary Search Tree (HBST) [133] to find matches between previous frames. The
tree returns a vector containing a score ns for each past frame, based on the number
of matching descriptors. According to this score, we get the best matching frame fj
and we keep it if it satisfies the following criteria:

• i− j > αth

• ns > γth

• ns/nk > βth

with αth, βth and γth arbitrary thresholds. If the previous check is passed, we want
to find an alignment between the two frames. To this end, we run the iterative solver
of Sec. 5.1.4 using the correspondeces returned by the HBST and we encode the
estimated transform in a pose-pose edge.

Subsequently, the relative transform is given as initial guess to the KD-Tree for
performing data association between scene i and scene j. In this way, it is possible
to check if there are duplicated vertices in the graph and merge them accordingly.

6.3 Experimental Evaluation 63

Require: Matchables set: M = {mi}
Ensure: Set of vertices V and edges E

to insert into the graph.
1: for i = 1 : N do
2: association_id ← mi.associationId(); //retrieve the association

identifier
3: //CASE 1: un-associated
4: if association_id < 0 then
5: mi.age() = 1; //seen for the first time
6: continue;
7: end if
8: mass ← mi.association(); //we found an association
9: mi.age() ← mass.age() + 1;

10: //CASE 2: in graph
11: if mass.graphId() ! = −1 then
12: e ← generateMatchableMeasurement(mi);
13: E.insert(e); //add edge to output
14: continue;
15: end if
16: //CASE 3: re-observed but not in graph
17: if promotedInGraph(mi) then
18: v ← generateMatchableVertex(mi);
19: e ← generateMatchableMeasurement(mi);
20: V .insert(v); //add vertex to output
21: //CASE 4: under-age
22: else
23: //do nothing (and just update stats)
24: end if
25: end for

Algorithm 4: Graph Update for each new matchables scene

6.3 Experimental Evaluation

In this section we present two sets of experiments in order to evaluate the performance
of the optimization algorithm presented in this chapter. First we analyzed the
behavior of our solver on synthetic data. Details on the proposed setting and
convergence results are reported in Sec. 6.3.1. Subsequently, we tested the same
solver on real data employing the front-end illustrated in Sec. 6.2. The experiments
were conducted on a standard benchmarking dataset and are described in Sec. 6.3.2.

6.3.1 Synthetic Experiments

To generate the synthetic data for this set of experiments, we implemented a “world
simulator”. This allows to: (1) build an environment made of points, lines and
planes, (2) generate a motion trajectory for the matchable sensor and (3) collect the
virtual measurements acquired along the trajectory.

64 6. Unifying Global Optimization Algorithms

Nt(0,Σt)[m] NR(0,ΣR)[rad] Np(0,Σp)[m] Nd(0,Σd)[rad]
low-noise [0.01 0.01 0.001] [0.001 0.001 0.005] [0.005 0.005 0.005] [0.001 0.001]
mid-noise [0.1 0.1 0.01] [0.01 0.01 0.05] [0.05 0.05 0.05] [0.01 0.01]
high-noise [1.0 1.0 0.01] [0.01 0.01 0.1] [0.5 0.5 0.5] [0.1 0.1]

Table 6.1. Noise figures for the second set of synthetic experiments.

To investigate the effects of using multiple constraints for solving the Multi-
Primitive Registration problem, we compared the convergence results of our solver
using different factors combinations. A factor models a constraint between two
matchables. In particular, we consider: all factor types (all), only homogeneous
factors (hom: point-point, line-line, plane-plane) and only heterogeneous factors
(non-hom: line-point, plane-point, plane-line).

For these experiments we track the error evolution for the different combinations
of factors and we compare it with point only factors. To evaluate the performance of
these approaches under varying noise conditions, we added to the original datasets
noise sampled from Nt(0,Σt),NR(0,ΣR),Np(0,Σp) and Nd(0,Σd) respectively for
the translational and rotational part of the sensor pose and the point and direction
of the matchable.

Then, we measured the convergence varying both the statistical parameters
of the noise distributions, see Tab. 6.1, and the initial guess, computed from the
optimum and the spanning tree. The graph is composed of 10000 poses and 18000
matchables. The optimization has been performed in the g2o framework using the
Levenberg-Marquardt solver. Both the implemented factors and scripts to reproduce
the experimental evaluation are available online1.

In Fig. 6.4 we plot the evolution of the residual quadratic error, obtained by
summing the components e[n,m] for each measurement z[n,m] (chi2), for 100 iterations.
For more clarity, we normalized the chi2 according to its initial value. As evident from
the plots, with all combinations of factors our solver converges to the optimum and,
in general, displays better performance than the Multi-Point registration algorithm.

6.3.2 Real-world Experiments

With this set of experiments we want to evaluate the benefit of using global op-
timization for correcting the error in the camera pose estimation, that is usually
accumulated while tracking. For this purpose, we considered the fr2/desk and
fr3/office sequences of the TUM benchmark suite, since they contain a trajectory
loop.

To conduct the experiments we first process a sequence with the tracker of Sec. 5.2.
This allows to estimate the sensor pose for each RGB-D frame. At the same time,
we use this information along with the extracted matchables to build the factor
graph and detect closures, as explained in Sec. 6.2.2. Finally, we use our solver to
optimize the graph.

Using the evaluation tool provided by the TUM benchmark we measure the
absolute trajectory error (ATE) for both: the trajectory estimated with the tracker

1source: https://github.com/istinj/g2o

6.3 Experimental Evaluation 65

tracker-only optimized DVO-SLAM
fr2/desk 0.238 0.144 0.017
fr3/office 0.296 0.197 0.035
Table 6.2. TUM - Absolute Trajectory Error [m].

(tracker-only) and the one returned by the solver (optimized). Results are shown
in (tab), where we report as reference the performance on the same sequences of
DVO-SLAM [73].

The evaluation confirms that our global optimizer is capable of improving the
estimation accuracy. This is visible from Fig. 6.3, where we have circled in green
some of the corrections introduced by the method.

It is also evident that w.r.t to a state-of-the-art method there is a difference
in performance of an order of magnitude. This may be credited to the simplistic
processing pipeline used as front-end, since no local-map management has been
implemented and the solver is called just once after all data has been processed.
However, the results promote futher investigation along this line.

(a) (b)

Figure 6.3. Visual comparison of the two factor graphs rendered by the g2o_viewer: (a)
before optimization (b) after optimization. Notice that we draw just the matchable
point pm.

66 6. Unifying Global Optimization Algorithms

0 10 20 30 40 50 60 70 80 90
iterations

0

50000

100000

150000

200000

250000

n-
ch

i2

Normalized All Factors vs. Pt Only: low_noise
all / opt
all / span
pt / opt
pt / span

(a) all w/ low-noise

0 10 20 30 40 50 60 70 80 90
iterations

0

50000

100000

150000

200000

250000
n-
ch
i2

Normalized Homogeneous Factors vs. Pt Only: low_noise
hom / opt
hom / span
pt / opt
pt / span

(b) hom w/ low-noise

0 10 20 30 40 50 60 70 80 90
iterations

0

1000000

2000000

3000000

4000000

5000000

6000000

n-
ch
i2

Normalized Non-Homogeneous Factors vs. Pt Only: low_noise
non-hom / opt
non-hom / span
pt / opt
pt / span

(c) non-hom w/ low-noise

0 10 20 30 40 50 60 70 80 90
iterations

0

10000

20000

30000

40000

50000

60000

n-
ch

i2

Normalized All Factors vs. Pt Only: mid_noise
all / opt
all / span
pt / opt
pt / span

(d) all w/ mid-noise

0 10 20 30 40 50 60 70 80 90
iterations

0

10000

20000

30000

40000

50000

60000

n-
ch
i2

Normalized Homogeneous Factors vs. Pt Only: mid_noise
hom / opt
hom / span
pt / opt
pt / span

(e) hom w/ mid-noise

0 10 20 30 40 50 60 70 80 90
iterations

0

200000

400000

600000

800000

1000000

1200000

1400000

n-
ch
i2

Normalized Non-Homogeneous Factors vs. Pt Only: mid_noise
non-hom / opt
non-hom / span
pt / opt
pt / span

(f) non-hom w/ mid-noise

0 10 20 30 40 50 60 70 80 90
iterations

0

1000

2000

3000

4000

5000

6000

n-
ch
i2

Normalized All Factors vs. Pt Only: high_noise
all / opt
all / span
pt / opt
pt / span

(g) all w/ high-noise

0 10 20 30 40 50 60 70 80 90
iterations

0

1000

2000

3000

4000

5000

6000

n-
ch
i2

Normalized Homogeneous Factors vs. Pt Only: high_noise
hom / opt
hom / span
pt / opt
pt / span

(h) hom w/ high-noise

0 10 20 30 40 50 60 70 80 90
iterations

0

5000

10000

15000

20000

n-
ch
i2

Normalized Non-Homogeneous Factors vs. Pt Only: high_noise
non-hom / opt
non-hom / span
pt / opt
pt / span

(i) non-hom w/ high-noise

Figure 6.4. Synthetic experiments: normalized chi2 evolution. opt: starting from the
optimal intial guess, span: initial guess from the spanning tree.

67

Part III

Semantic maps

69

Chapter 7

Taxonomy of a Semantic
Mapping System

The Semantic Mapping problem raised particular interest of the robotics community
in the last two decades and a deeper investigation is envisioned in the next years. In
this chapter, we present a possible categorization of the several methods proposed
in literature.

The underlying idea of this taxonomy is that a semantic mapping system involves
the interplay of processing modules to solve different subproblems. By considering
the subproblems which each method focuses on, we devised a system architecture
that includes all of them and, at the same time, allows to compare them based on
the particular techniques they adopt.

In general, a semantic mapping system should be made of three fundamental
components (see Fig. 7.1): perception, map construction and action. In the remainder,
we will delve deeper into each of them by describing its task and the proposed
approaches to accomplish it. This survey is summarized in Tab. 7.1. The reader
might notice that we refer to the methods reviewed in Sec. 2.3.

7.1 Perception

Mobile robots are usually equipped with exteroceptive sensors to sense the envi-
ronment surrounding them. The perception module has the task of processing the
measurements acquired with these sensors to extract geometric and/or semantic
information. This is then inserted into the map to update the robot knowledge of
the environment.

As discussed in Chapter 4, there are various ways to represent the geometric
structure of the environment. In this context, we refer to this aspect as recon-
struction. From a survey on relevant literature, we noticed that the most frequent
representations are: 2D/3D occupancy grids and point clouds. Furthermore, it is
also frequent to build a topological representation of the workspace that allows the
robot to assess the connectivity between places and/or objects in the environment.

Next, with recognition we indicate the process of extracting patterns from sensor
output representing objects/scenes categories and assign them the corresponding
semantic label. As we have seen in Sec. 2.3.1, this problem has been extensively

70 7. Taxonomy of a Semantic Mapping System

Map Construction

Active Vision

Action

Recognition

Perception

Reconstruction

Update

Matching

Figure 7.1. Semantic mapping system.

studied in Computer Vision and Robotics. For Semantic Mapping applications, the
most common techniques are:

• image classification: assigning a semantic label to an image from a fixed set
of categories.

• object detection: making a prediction not only of object categories but also
of their spatial locations.

• image segmentation: finding groups of pixels that possess some "similarity"
among each other.

• scene labeling: assigning a semantic label to each geometric feature of the
scene.

• 3d object recognition: given an input model and a 3d scene, finding the
location of the input model inside the scene.

From this distinction, it is possible to discriminate methods that focus on the
perception aspect according to the order in which they perform reconstruction and
recognition. Possible approaches are:

• geometric only: consists in recovering only the geometric structure of the
environment. This is the case, of maps that contain no semantic information.

• pipelined: consists in recovering a geometric model of the environment and,
subsequently, using this model to extract semantic information.

• parallel: reconstruction and recognition are performed separately (and simul-
taneously) and then, their results are fused together.

7.2 Map Construction 71

7.2 Map Construction
The map construction module is in charge of incrementally updating the semantic
map with new information coming from the perception module.

In order to renew the semantic map each time a sensor measurement is acquired,
it is necessary to establish a correspondence between the percepts in the current
sensor frame and the robot internal representation (matching).

After that, the incoming information is inserted in the map with an update
procedure. Similar to the fusion strategy depicted in Fig. 4.1, this involves merging
matched percepts, followed by adding unseen ones to the map. For semantic maps
there are two possible ways of performing this step:

• bayesian: the update of a map element considers only past observations.

• context-aware: the update of an element considers also spatial relations with
other elements.

Among the considered methods, the construction of the map is performed:

• off-line: the semantic map is built after all sensor measurements have been
acquired by the robot during exploration.

• frame-by-frame: the map is built while the robot is exploring the environ-
ment and acquiring sensor measurements.

7.3 Action
The action module takes as input the updated map representation to plan a motion
trajectory for the robot sensors. The obiective of this plan is typically to improve
the robot knowledge about the environment. In particular, possible objectives are:

• reconstruction: if the robot needs accurate 3D models of the objects present
in the scene, as in the case of manipulation tasks.

• recognition: if the robot needs a precise categorization of the objects in the
scene. As an example, this enables multi-view recognition approaches.

In general this problem is approached by first determininga a space of candidate
views for the sensor. Then, a metric is defined to perform an evaluation of the views
and choose the best one. To find the next best view, possible approaches can be
classified as:

• search-based: the trajectory is determined by computing a plan in the sensor
configuration space.

• optimization-based: each new sensor pose is computed optimizing an objec-
tive function.

72 7. Taxonomy of a Semantic Mapping System

A
pproach

P
erception

R
econstruction

R
ecognition

M
ap

C
onstruction

U
pdate

A
ction

A
ctive

V
ision

[173]
pipelined

2D
occupancy

grid
+

topological
object

detection
fram

e-by-fram
e

bayesian
[107]

pipelined
point

cloud
scene

labeling
+

3D
object

recognition
offl

ine
[130]

pipelined
point

cloud
scene

labeling
+

3D
object

recognition
offl

ine
[41]

geom
etric

only
voxelgrid

reconstruction
optim

ization
[36]

pipelined
point

cloud
+

topological
3D

object
recognition

reconstruction
+

recognition
optim

ization
[153]

pipelined
point

cloud
scene

labeling
+

3D
object

recognition
offl

ine
[120]

geom
etric

only
voxelgrid

reconstruction
search

[79]
pipelined

m
etric

scene
labeling

offl
ine

[155]
geom

etric
only

voxelgrid
reconstruction

search
[142]

parallel
point

cloud
object

detection
+

3D
object

recognition
reconstruction

+
recognition

search
[145]

parallel
voxelgrid

sem
antic

segm
entation

fram
e-by-fram

e
bayesian

+
context-aw

are
[121]

parallel
2D

occupancy
grid

+
topological

place
categorization

+
object

detection
fram

e-by-fram
e

bayesian
+

context-aw
are

[161]
pipelined

point
cloud

scene
labeling

offl
ine

[80]
pipelined

point
cloud

3D
object

recognition
fram

e-by-fram
e

bayesian
search

reconstruction
+

recognition
[60]

parallel
point

cloud
sem

antic
segm

entation
fram

e-by-fram
e

bayesian
+

context-aw
are

[162]
geom

etric
only

voxelgrid
reconstruction

search
[163]

parallel
point

cloud
sem

antic
segm

entation
fram

e-by-fram
e

context-aw
are

[172]
parallel

point
cloud

object
detection

fram
e-by-fram

e
bayesian

optim
ization

reconstruction
+

recognition
[98]

parallel
point

cloud
sem

antic
segm

entation
fram

e-by-fram
e

bayesian
+

context-aw
are

T
able

7.1.
Sem

antic
M
apping

System
s
taxonom

y.

73

Chapter 8

Generating a Semantic Map

To be fully operative in human environments, robots need particular information to
be encoded in their representation of the workspace. As an example, if we want a
service robot to accomplish the task “bring me a bottle of water”, it needs to have a
notion of the items present in a domestic environment and their location. Likewise,
if we want an autonomous car to drive in real traffic, it has to be equipped with
some system to detect and recognize road signs as well as other cars and pedestrians.

As we have seen in Chapter 4, SLAM algorithms return a “metric” map. Aug-
menting this representation with information that may support more complex tasks is
a well-known problem in Robotics and many solutions have been proposed (Sec. 2.3).

From Tab. 7.1 in Chapter 7, it is evident that existing methods mainly focused
on a single aspect of the problem, namely: perception or action. On one hand,
“perception” methods addressed the issue of attaching a semantic label to the
geometric primitives of the metric representation, like points or voxels. Thus, the
map is enriched with semantic information, but it is still inefficient to be used by
the robot, because these primitives are too low-level.

On the other hand, “action” methods guarantee to obtain accurate 3D models of
the elements that the robot has to interact with but they typically require a prior
knowledge of the environment. This aspect severly limits their range of applicability,
rendering them effective only if strong simplifying assumptions are satisifed.

In the remainder, we present a Semantic Mapping system that aims at bridging
the gap between these two approaches by:

• Building an object-based map that can be used for complex task planning and
execution.

• Exploiting efficient techniques for reconstruction and recognition that require
no a-priori information and can be used under general conditions.

Our system follows the architecture defined in Fig. 7.1. In Sec. 8.1 we describe in
detail each component. To study the feasibility of this approach a simulation envi-
ronment has been used, the details of which, along with the conducted experiments,
are presented in Sec. 8.2.

74 8. Generating a Semantic Map

8.1 System Overview

As evident from recent years publications the range of mobile robotic applications
is certainly wide. However, for our purpose, we need to deal with a setting whose
specifications may be valid in general conditions. This allows to avoid addressing
application-specific issues and to provide a general model of semantic mapping
system.

Therefore we consider the setting of a service robot that has to operate in a
household environment. Indoor scenarios facilitate the mapping task by allowing to
exploit two basic assumptions:

• Most indoor settings have a flat floor, this enables the use of out-of-the-box
2D SLAM techniques to build an accurate metric map.

• RGB-D cameras are known to be better suited for indoor scenes because of
the almost constant lighting conditions and they can be employed to obtain
dense geometric and appearance information.

Conversely, if one wants to apply the same system in outdoor scenarios (like
roads, harsh terrains or underground mines), for which robust mapping techniques
exist [150, 97], it is sufficient to substitute some of the modules with the most
suitable ones.

8.1.1 Perception

The perception module processes the image frames acquired with the RGB-D camera.
Following the definitions in Sec. 7.1, our perception approach is parallel, that is, the
depth and RGB images are processed separately.

The first is used to recover the robot pose and a point cloud expressed in global
coordinates (reconstruction). While, from the latter we infer the semantic class of
each pixel (recognition).

By combining this information, we extract a set of objects, see Sec. 8.1.2. Subse-
quently, this will be passed to the map construction module and used to update the
map.

Reconstruction

To estimate the robot pose, we follow the procedure presented in [101]. This consists
in extracting a virtual laser scan from the depth image (Fig. 8.1) and feed it to a
robust 2D SLAM algorithm [86].

Having estimated the pose of the robot w.r.t. a global reference frame, we are
able to exploit this information for building 3D models of the scene elements. This is
eventually done by fusing together partial views of each object in its corresponding
model. In this work, we model objects surface with 3D point clouds and we make
use of the Point Cloud Library (PCL) [129] to process them.

As a first step, we need to convert the depth image D into a point cloud. To
this end, it is necessary to apply an unprojection function π−1 that depends on the

8.1 System Overview 75

Figure 8.1. Comparison of the extraction procedure with the ROS depthimage_to_laserscan
tool and our method in [101]. The RGB-D camera is represented by the black box on
top of the robot, the virtual laser is represented by the 3D model of an Hokuyo sensor.

intrinsic camera parameters. A common solution is to assume a pinhole camera
model, whose calibration matrix [58] is:

K =

f 0 px
0 f py
0 0 1

 (8.1)

with f focal length and (px, py)> coordinates of the principal point. For a depth
camera, the unprojection function will be:

cx =

 x1
x2
x3

 = π−1(u, v, d) = K−1d

 u
v
1

 =

 (u− px)d/f
(v − py)d/f

d

 (8.2)

with d = D(u, v) the depth value at the pixel (u, v). The set of 3D points obtained
in this way is expressed in the camera reference frame. Considering the camera pose
w.r.t the map mT c, it is possible to transform these points in the global reference
frame with the simple operation:

gx = gT c
cx. (8.3)

Next, we will see how to identify to which object each point belongs.

Recognition

The RGB image is processed to detect and localize objects in the environment.
To this end, various Computer Vision techniques are available. In a single frame

76 8. Generating a Semantic Map

(a) (b) (c)

Figure 8.2. Semantic segmentation procedure: (a) input point cloud (b) models bounding
boxes superimposed to the cloud (c) points belonging to the detected objects (each one
is colored depending on the object type).

different objects may be captured by the camera, thus, simple image classification is
not sufficient. In this case, object detection is better suited. However, the typical
output of an object detector is a set of 2D bounding boxes, each labeled with a
semantic class. This is a rather imprecise information for determining the exact 3D
position of the objects in the scene.

For this reason, we decided to apply a semantic segmentation technique. In this
way, we obtain a dense classification, that is, each pixel of the image gets assigned a
label. This is a convenient information because it allows to group together pixels
marked with the same label and from that we can obtain the 3D points that belong
to each partial view of the objects.

Given an RGB image I and a set of semantic labels L = {l1 . . . lN}, semantic
segmentation consists in computing an assignment L(x) of labels li to each image
pixel x = I(u, v). In a simulated environment it is possible to execute this task by
performing geometrical computations.

The camera field-of-view can be defined through: aspect ratio, horizontal angle-
of-view and far and near clipping planes. Knowing the sensor pose, this allows
to infer which objects the sensor is framing with a common Computer Graphics
technique called view frustum culling [2]. The result is a list of objects with the
corresponding 3D bounding boxes.

After that, it is necessary to evaluate which elements in the view frustum are
visible by the robot, and which are hidden. This is typically done with the so-called
Z-buffer algorithm [50]. We can assume that the depth image is indeed a Z-buffer,
thus, we use this information for occlusion check.

Given the depth point cloud and the models bounding boxes, for each point we
compute to which model it belongs (see Fig. 8.2). Then, we mark the corresponding
image pixel with the model label. The result of this procedure is shown in Fig. 8.3.

8.1.2 Map Construction

A common approach to build an object-based map is to build a database of CAD
models and perform 3D Object Recognition to determine the pose and the type
of the various objects that constitute the scene [132, 21, 28]. Then, this kind of
representation can be used for tasks like human-robot interaction or manipulation.
However, this method has two shortcomings:

8.1 System Overview 77

(a) (b)

Figure 8.3. Semantic segmentation result: (a) input (b) output. Pixels that do not belong
to an object are in black.

• 3D Object Recognition is a computationally expensive process and it fails
when the points sampled from an object surface are not dense enough, e.g. for
small objects or distant from the sensor.

• The requirement of building a models database beforehand limits the generality
of the method, especially in the context of human environments which are
mostly unpredictable.

The alternative is to adopt an incremental approach to build the object models.
This is similar to the process described in Chapter 4, with the difference that, instead
of low-level primitives, in this case we consider a map composed of objects. In the
remainder, we will give a formal definition of object-based map and present the two
main steps to build it.

Representation

In our system an object-based semantic map is a collection of elements:

SM = {E1, . . . ,EN}, (8.4)

where each element Ei is characterized by both geometric and semantic information.
To fully qualify an element geometry we make use of:

• position: p ∈ <3 expressed in the global reference system.

• size: S =< L,U >∈ <3 represented by a pair of 3D vectors that define the
element bounding box.

• model: M = {x1:N} a point cloud representing the element surface.

Moreover, each element of the map can be described by the following semantic
properties:

• type: t ∈ L the element category. It is selected by the recognition module
among the possible semantic labels L = {l1 . . . lM}.

• properties: P = {p1 . . . pK} other semantic information related to the ele-
ment, e.g. relationships with other elements, physical properties, functionalities.

78 8. Generating a Semantic Map

Figure 8.4. Representation of the object-based map. Each element has a: type (color),
position (axes), size (bounding box) and model (point cloud).

The map construction module has the task of building these elements. It does so
by continuously integrating into the map the information coming from the perception
module, see Fig. 8.4 for an example.

To this end, first it is necessary to establish a correspondence between the
currently observed objects and their representation in the map. Then it is possible
to: (1) update the representation of objects that have already been observed and (2)
add the unobserved ones.

Matching

We refer to the list of elements returned by the perception module as a local map
SML. Where the term local indicates that it represents a limited portion of the
environment. Consequently, we refer to the representation built so far as the global
map SMG.

Matching consists in finding a set of correspondences C = {c[i,j]
1 , . . . , c[i,j]

K }
between elements in the two maps, with c[i,j]

k =< EL
i ,EG

j >. Such a correspondence
can be assessed through a similarity measure d(EL

i ,EG
j). Different choices of d are

possible. In this work, we found that the most distinctive attributes of an element
are the type and the position, i.e. they are informative enough to uniquely identify
it. To measure their similarity, we first check that two objects belong to the same
semantic class. If this is the case, we compute the distance between their position,
otherwise we set it to a big arbitrary number.

Therefore, given the global map SMG and the local map SML, for each element
EL
i , we want to find the element EG∗ that minimizes d:

EG∗ = argmin
EG

j

d(EL
i ,EG

j). (8.5)

In our system we find the set of correspondences C through a Nearest Neighbor
Search.

8.1 System Overview 79

Require: SM: map, Tr: robot pose
1: exit = false;
2: while !exit do
3: En ← findNearestObject(SM,Tr);
4: if !En then
5: exit = true;
6: continue;
7: end if
8: reconstructed = false;
9: while !reconstructed do

10: SM ← receiveMap();
11: Tr ← receiveRobotPose();
12: V ← generateCandidateViews(En);
13: reached = false;
14: while !V .empty() & !reached do
15: [v∗, sunn] ← computeNBV(V);
16: if sunn < αnew then
17: reconstructed = true;
18: continue;
19: end if
20: reached ← goToPose(v∗);
21: V .pop();
22: end while
23: end while
24: end while

Algorithm 5: Active vision strategy

Update

After the matching procedure, we iterate through the set of correspondences C to
update the global map. In principle for each object both the geometric and the
semantic attributes should be updated.

Regarding the semantic part, typical CNNs return a confidence score about their
predictions. This should be averaged to the value obtained from past observations.
Since in our system this module is simulated, we are not considering this aspect and
we update only the geometric information.

To do so, for each correspondence c[i,j]
k , we first merge the models MG and ML of

the two objects. This is done by adding the two point clouds and then downsampling
the result with a VoxelGrid filter (using the PCL implementation). After that we
compute: (a) the new object position pG, by extracting the cloud centroid and (b)
the new bounding box SG, by computing the minimum and maximum values along
the x, y and z dimensions of the point cloud MG. Finally, the obects in the local
map that have not been associated are simply inserted in the global map.

80 8. Generating a Semantic Map

8.1.3 Action

So far, we referred to incremental map building as the process of integrating sensor
measurements acquired along a motion trajectory but nothing has been said about
the nature of the trajectory. Where possible, a practical solution is to have a human
teleoperating the robot. In other cases, e.g. for planetary rovers or robots designed
to map dangerous areas, automatic exploration techniques are required.

For wheeled robots the terrain surface on which they navigate can be represented
with Occupancy Grids or Digital Elevation Maps (DEMs). Common exploration
approaches adopt frontier-based strategies [168, 136]. On a grid, frontiers are sets of
adjacent cells that have at least a neighboring cell whose value is unknown. Once
frontiers are detected on the map, a score is assigned to each of them depending
on some criteria (e.g. information gain, distance and bearing w.r.t the robot,
traversability) and the robot is directed towards the top scoring one. Another
strategy to detect frontiers is based on randomized search techniques that sample
the robot configuration space and find traversable paths to expand the mapped
area [85, 42].

These methods guarantee a complete coverage of the area to map. However, for
our purpose, it is not enough. Borrowing the terminology from [3], navigation tasks
require “perception in the large”. This is because the main objective is to conduct
the robot towards a goal destination while taking care of avoiding obstacles. In this
sense, it is sufficient to detect the area the latters occupy and overestimating it does
not cause problems. On the other side, manipulation tasks require “perception in
the small”. In this case, it is necessary to accurately recover the 3D geometry of the
objects in order to plan a motion trajectory for the end-effector. To this end, we
integrate an active vision strategy in our system.

Our approach derives from the NBV framework and we make use of the Octomap
library [64] to obtain a volumetric reconstruction of an object. This allows to perform
view evaluation through ray-casting by computing a score based on the number of
unknown traversed cells. In the remainder we provide details for each step of the
procedure. A pseudo-code sketch is shown in Algorithm 5.

Active Vision

To start building the map we place the robot in its initial position and let it
acquire measurements of the scene. They are processed by the perception and map
construction modules as described in the previous sections. In this way it is possible
to trigger the active vision strategy by providing it with the map and the robot pose.

As defined in Sec. 8.1.2, the map SM is composed of a list of objects. To actively
reconstruct them, we consider the closest one, according to the robot pose Tr. To
this end, we iterate through the list of objects. For each of them, if it has not been
yet processed, we compute the euclidean distance from the robot and we set the
nearest En as the one to be reconstructed next.

A crucial requirement to compute the NBV is a volumetric reconstruction of
the object. The Octomap library allows to build it from a 3D point cloud. This
is done by first building an octree whose dimensions are defined according to the
object bounding box. After that, the octree will contain only unknown voxels. Then,

8.1 System Overview 81

Require: N : number of poses, r: radius
Ensure: Set of candidate poses V

1: for i = 0 : N − 1 do
2: α = i · 2π/N
3: x = r · cos(α)
4: y = r · sin(α)
5: θ = atan2(−y,−x)
6: V ← [En.x+ x,En.y + y, θ]
7: end for

Algorithm 6: Candidate views computation

Object
radius

Robot
radius

Figure 8.5. Candidate pose computation.

a scan is generated for each point to mark the free and occupied voxels.
To generate the candidate views we define a set of 2D poses V on a circle around

the object to reconstruct, each of which points towards its centroid. To do so, we
follow the procedure in Algorithm 6, where we usually set r as the sum of the object
and the robot radius. As shown in Fig. 8.5, the object radius is choosen as the
biggest horizontal size of its bounding box.

After that, we evaluate each pose v ∈ V by generating a virtual view. This is
done by casting a set of rays and counting how many unknown voxels are traversed.
The rationale behind this approach is that we want to maximize the information
gain of each partial view.

A ray is a 3D line that can be defined in different ways. Since we are using the
computeRay() function from the Octomap library, a ray has to be parameterized
through an origin and an endpoint. To compute the virtual view we let each ray
start from the camera origin and pass through a pixel of the sensor. Recalling that
each 2D point (u, v) on the image plane backprojects to a 3D line [58], we compute
a ray endpoint with the following formula:

xend = K−1︸ ︷︷ ︸
Inverse
camera
matrix

·(u, v, 1)>. (8.6)

Then, we set the length of this ray to lmax by normalizing xend and multiplying
it by lmax. Finally, we use the robot pose to transform it into global coordinates. We
repeat this computation for each pixel of the image, the result is shown in Fig. 8.6.

For each view we count how many unknown cells are hit by the rays and store it

82 8. Generating a Semantic Map

Figure 8.6. Ray-casting procedure. The axes show the candidate view, gray lines represent
the rays. The volumetric reconstruction is shown with wireframe cubes: occupied (red),
green (free).

in sunn. Consequently, the score for each view is computed as:

s(v) = sobs · scost · sunn, (8.7)

where sobs is 1 when the candidate pose is reachable, 0 otherwise and scost is the
inverse of the path cost returned by the planner. The best scoring pose v∗ is
choosen as next destination for the robot and while it is reached we acquire new
measurements. These update the map, including the object model, and are then
integrated in its volumetric reconstruction.

The computation of candidate views and their evaluation is repeated until no
new relevatn information can be added to the object model. That is, sunn is below
a threshold αnew. Consequently, the object is inserted in the processed list and we
search again for the nearest one. The algorithm terminates when there are no more
objects to reconstruct.

8.2 Experimental Evaluation
The system described in this chapter is made of a combination of different hardware
and software components and implementing it would require a considerable amount
of human and economic resources. A common pattern in robotic applications is
to rely on a simulation engine to study the feasibility of a system. The benefit is
twofold: (1) it reduces the time needed to setup the experimental setting and (2)
it abstracts from real-world complexity allowing to focus on the core processing
aspects.

In this work we used the Gazebo simulator1, which provides a basic physics
engine and several customization options. The first step to setup the environment
for experiments has been to extend the models database. Since we want our robot
to operate in a household setting, we retrieved from the Google 3D Warehouse2 the
CAD models of different pieces of furniture and imported them into Gazebo.

1wiki: http://gazebosim.org/
2web: https://3dwarehouse.sketchup.com/?hl=it

8.2 Experimental Evaluation 83

Figure 8.7. Simulation environment for experiments.

Figure 8.8. Example evaluation of the reconstructed map. Grey meshes are obtained
from Gazebo models. Reconstructed objects are represented through: reference frame
(position), blue box (size), colored point cloud (3D model).

Subsequently, we designed our robotic platform. For this setting we used a
differential-drive wheeled robot equipped with an RGB-D camera. The Robot
Operating System (ROS)3 allows to represent a robot model through the Unified
Robot Description Format (URDF) in terms of links, joints, actuators and sensors.
This format is also supported in Gazebo and acts as an interface between the two
frameworks. On one side, Gazebo provides the physics to simulate the behavior of
sensors and actuators while, on the other side, ROS allows to process the gathered
data and send commands to the platform.

The simulation environment and the robotic platform to run the experiments
are shown in Fig. 8.7. The models used in simulation along with the configuration
scripts to execute the experiments are available online4.

3web: http://www.ros.org/
4source: https://github.com/schizzz8/lucrezio_simulation_environments

84 8. Generating a Semantic Map

Position Error [m] Size Error [m3]
burner_stove 0.00566078 0.00936389
cabinet_ikea_malm_big 0.00231613 0.00173253
chair_ikea_borje 5.59976e-04 5.21541e-04
couch 0.000113901 0.000226796
milk 0.0605588 0.000696493
salt 0.0247678 0.000261408
sink 0.0118303 0.0163019
table_ikea_bjursta 1.00426e-03 2.18749e-03
table_tv 0.0987725 0.096771
tomato_sauce 0.0189905 0.000209789
tv_samsung 1.31447e-04 4.17084e-04
zwieback 0.0139543 0.00031704
Table 8.1. Position and size errors for the reconstructed objects.

8.2.1 Constructing the Map

As a first experiment, we test the map construction module. For this purpose, we
run the ROS node5 that implements this functionality and we move the robot within
the environment by tele-operating it.

On a mobile Intel Core i7-4710HQ with 2.50GHz the execution time of the
semantic segmentation procedure is ~0.2s. Therefore, we do not process every frame
from the RGB-D camera, instead, the map construction procedure is triggered every
second. As in [60], this is not a limitation, since in most typical scenarios the
movement between consecutive frames is small and the recognition process does not
need to be real-time capable.

For reconstruction and recognition techniques different evaluation metrics exist.
For SLAM algorithms one typically measures the Absolute Trajectory Error (ATE),
while, classification can be evaluated through “precision and recall” curves or F1
score. However, one of the advantages of using a simulation environment is that of
having a ground-truth for the map. This is contained in the configuration files to
launch the simulation and can be used to measure the accuracy of the reconstructed
objects (Fig. 8.8).

In particular, we measure the position and size error between the reconstructed
and the ground-truth objects. The position error is the norm of the difference
between the two position vectors, while the size error is computed by subtracting
the volumes of the two objects measured from the corresponding bounding boxes.
Tab. 8.1 reports these errors for the tele-operated experiment.

The reader might notice that all errors are very close zero. This is because the
algorithm works in ideal conditions. However, in the remainder we will make some
considerations about more realistic scenarios.

For the reconstruction aspect, it is likely that the pose estimate may drift.
Nevertheless, especially in the 2D case, graph-based approaches may still be able to
recover a globally consistent map (see Sec. 2.2.1). Therefore, in this case a viable
solution would be to keep in memory the partial views of the object to reconstruct
(by simply storing the point cloud and a pose identifier). Then, when a loop closure
occurs, the objects can be rendered from the stored views and the corrected poses.

5source: https://github.com/schizzz8/lucrezio_semantic_mapper

8.2 Experimental Evaluation 85

Moreover, there are more sophisticated models for the fusion problem. One of that is
the TSDF, Sec. 4.3 that is more robust to noise than a point cloud and can provide
smoother models.

For the recognition aspect, it is known that no existing method is able to
guarantee 100% accuracy. This typically results in false positives and false negatives.
A possible strategy to tackle these issues would be to insert an object in the map
only if it has been detected for a certain number of consecutive frames. This allows
to filter “outliers” and avoids populating the map with inconsistent information.
Moreover, recent CNNs return a confidence value about their prediction. This
information can be considered as a further tool for preserving consistency.

8.2.2 Exploring the Environment

The comparison between two semantic mapping systems is hardly possible because:
(a) there is not yet a common agreement on standard evaluation metrics and
benchmarks and (b) usually no open-source implementations are available.

Therefore, we limit ourselves to show that indeed the proposed representation is
usable by the robot, in this case to plan a trajectory for its sensor, and it can be
built from scratch without a pre-built models database.

Furthermore, to evaluate the performance of the active vision strategy presented
in Sec. 8.1.3, we compare it with a frontier-based one. Both strategies are imple-
mented as ROS nodes and available online6. For the robot motion planning and
execution, we rely on the move_base planner implemented in ROS7.

For both runs we report the computed motion trajectories in Fig. 8.9 and the
position and size errors for the reconstructed objects in Tab. 8.2. The frontier-based
strategy just aims at maximing the area perceived by the sensor. This results in a
faster execution time (72.046s) and a shorter trajcectory. However, as expected, the
obtained models are only partially reconstructed. On the other hand, at a cost of
an higher execution time (423.118s), the active vision method allows to obtain more
accurate models.

As a final remark. For the active vision strategy, it is clear that searching
only in 2D space is a strong limitation. By mounting the sensor on a manipulator
arm, it is possible to exploit more degrees of freedom and provide more complete
reconstructions. However, the main problem with the augmentation of the search
space is of course an increase in computational complexity. For this reason, this
seems fertile ground for a learning-based approach and interesting investigations are
appearing in this context [69].

6source: https://github.com/schizzz8/lucrezio_semantic_explorer
7wiki: http://wiki.ros.org/move_base

86 8. Generating a Semantic Map

(a)

(b)

Figure 8.9. Motion trajectories for both exploration strategies: (a) frontier-based, (b)
object-based. Green dot: starting point. Red dot: end point.

8.2 Experimental Evaluation 87

frontier-based object-based
Position Error [m] Size Error [m3] Position Error [m] Size Error [m3]

burner_stove 0.0189602 0.0271541 0.00162562 0.00268817
cabinet_ikea_malm_big 0.0861186 0.116559 0.0027411 0.00204489
chair_ikea_borje 0.000802786 0.000677571 3.9217e-04 3.62098e-04
couch 0.00352228 0.0105351 0.00467137 0.0141263
milk 0.00829845 0.00015917 0.019375 0.000233552
salt 0.0476797 0.000395995 0.0151248 0.000198576
sink 0.102379 0.108796 0.00660678 0.0184774
table_ikea_bjursta 0.000147986 0.000270009 1.11544e-03 7.98702e-03
table_tv 0.00142145 0.00171903 0.0217376 0.0213282
tomato_sauce 0.0477151 0.000356746 0.00860188 9.31322e-05
tv_samsung 0.0422653 0.122738 3.04694e-04 6.14524e-04
zwieback 0.0106996 0.000259349 0.0166117 0.000390024

Table 8.2. Comparison of position and size errors for the two exploration strategies.

89

Part IV

Conclusions

91

Chapter 9

Final Discussion

In many social and professional contexts there is the request by humans of being
assisted by technology. Examples of this need are: (1) autonomous cars that should
replace humans to provide more safe and efficient transportation (2) service robots
intended to facilitate domestic daily tasks. At the time of writing, the general feeling
is that these robotic applications are close to leave research laboratories to reach a
broader public. However, this step poses a big challenge.

In order to collaborate with or replace humans in their activities, robots need a
digital representation of the environment. This can be used for different operations,
like: localization in the environment, recognition of objects or planning actions to
complete a task. For us humans, these operations are fundamental for survival and
are learned in the early ages of our life. Therefore, they seem to us pretty natural.

On the contrary, reproducing these behaviors on a computer has shown to be
challenging both in terms of: (a) defining and building mathematical models that
are able to describe man-made environments at a level of abstraction that captures
their complexity (b) implementing strategies to process the information encoded in
these models and produce the sequence of instructions that allow the machine to
execute the desired actions.

These challenges have been accepted by scientific researchers and constitute the
main fields of investigation for Mobile Robotics and Artificial Intelligence. In this
context, the research work presented in this thesis addresses the general problem
of robot mapping and localization and aims at contributing novel and relevant
algorithms in the field.

9.1 Metric Maps

The main technical contributions start presenting a taxonomy of metric map rep-
resentations in Chapter 4. In Chapter 5 we propose a unified representation for
different types of primitives such as points, lines and planes. This approach allows to
devise a registration algorithm for aligning hybrid scenes in a unifying formulation.
By allowing different hybrid associations to contribute to the objective function, the
proposed algorithm can potentially use more varied sources of information than any
of the specific ICP variants. We evaluate the method on standard benchmarking
datasets and show that it performs on par with current state-of-the-art registra-

92 9. Final Discussion

tion methods. Similarly, we exploit the proposed representation to derive a global
optimization algorithm which aims at aligning geometric primitives observed in
different scans into a consistent map. The proposed global optimization scheme is
evaluated as a SLAM back-end in a mapping system. The experiments confirm that
the method is capable of improving the estimation accuracy. However results lag
behind the state of the art due to the simplified front-end.

9.2 Semantic Maps
The second part of the thesis is focused on the usability aspect of environment
representations. Chapters 7 and 8 present the contributions aimed at adding
semantics to the map. This allows to build object-centered environment models that
can support more complex robot operations. To this end, we first highlight which
are the three fundamental aspects to consider in addressing this issue. Based on this
aspects, we both propose a taxonomy of existing methods and a general architecture
of a Semantic Mapping system that is capable of building object-based maps with no
prior information about the environment. This is an advancement in the state-of-the-
art since no other method considered jointly these aspects and still it is not available
a system that can work under general conditions. Due to the complexity of actually
implementing this system, its feasibility has been demonstrated in simulation.

9.3 Future Directions
Beyond these results, the proposed solutions indicate research lines to further
implement the deployment of robots in man-made environments. In particular it
may be relevant investigating about the extension of the representation introduced in
Chapter 5 to model also objects, e.g. as a composition of simpler primitives. Likewise,
based on the positive results obtained in simulation, the real implementation of the
mapping system proposed in Chapter 8 can be of interest for the community.

93

Bibliography

[1] Aiger, D., Mitra, N. J., and Cohen-Or, D. 4-points congruent sets
for robust pairwise surface registration. In ACM Transactions on Graphics
(TOG), vol. 27, p. 85. ACM (2008).

[2] Assarsson, U. and Moller, T. Optimized view frustum culling algorithms
for bounding boxes. Journal of graphics tools, 5 (2000), 9.

[3] Bajcsy, R., Aloimonos, Y., and Tsotsos, J. K. Revisiting active
perception. Autonomous Robots, 42 (2018), 177.

[4] Bay, H., Tuytelaars, T., and Van Gool, L. Surf: Speeded up robust
features. In European conference on computer vision, pp. 404–417. Springer
(2006).

[5] Bellekens, B., Spruyt, V., Berkvens, R., Penne, R., and Weyn, M.
A benchmark survey of rigid 3d point cloud registration algorithm. Int. J.
Adv. Intell. Syst, 8 (2015), 118.

[6] Berger, M., Tagliasacchi, A., Seversky, L., Alliez, P., Levine, J.,
Sharf, A., and Silva, C. State of the art in surface reconstruction from
point clouds. In EUROGRAPHICS star reports, vol. 1, pp. 161–185 (2014).

[7] Besl, P. and McKay, N. D. A method for registration of 3-d shapes. IEEE
Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 14 (1992),
239.

[8] Besl, P. J. and McKay, N. D. Method for registration of 3-d shapes.
In Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp.
586–607. International Society for Optics and Photonics (1992).

[9] Breiman, L. Random forests. Machine learning, 45 (2001), 5.

[10] Brice, C. R. and Fennema, C. L. Scene analysis using regions. Artificial
intelligence, 1 (1970), 205.

[11] Brucker, M., Durner, M., Ambruş, R., Márton, Z. C., Wendt, A.,
Jensfelt, P., Arras, K. O., and Triebel, R. Semantic labeling of indoor
environments from 3d rgb maps. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pp. 1871–1878. IEEE (2018).

94 Bibliography

[12] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. Brief: Binary
robust independent elementary features. In Proc. of the Europ. Conf. on
Computer Vision (ECCV), pp. 778–792 (2010).

[13] Canny, J. A computational approach to edge detection. IEEE Transactions
on pattern analysis and machine intelligence, (1986), 679.

[14] Castellanos, J. A., Montiel, J., Neira, J., and Tardós, J. D. The
spmap: A probabilistic framework for simultaneous localization and map
building. IEEE Transactions on robotics and Automation, 15 (1999), 948.

[15] Chan, T. F. and Vese, L. A. Active contours without edges. IEEE
Transactions on image processing, 10 (2001), 266.

[16] Chen, C.-S., Hung, Y.-P., and Cheng, J.-B. Ransac-based darces: A new
approach to fast automatic registration of partially overlapping range images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 21 (1999),
1229.

[17] Chen, J., Bautembach, D., and Izadi, S. Scalable real-time volumetric
surface reconstruction. ACM Transactions on Graphics (ToG), 32 (2013), 113.

[18] Chen, Y. and Medioni, G. Object modelling by registration of multiple
range images. Image and vision computing, 10 (1992), 145.

[19] Cheng, Z.-Q., Chen, Y., Martin, R. R., Lai, Y.-K., and Wang, A.
Supermatching: Feature matching using supersymmetric geometric constraints.
IEEE Transactions on Visualization and Computer graphics, 19 (2013), 1885.

[20] Choi, C., Trevor, A. J., and Christensen, H. I. Rgb-d edge detection and
edge-based registration. In Proc. of the IEEE/RSJ Intl. Conf. on Intelligent
Robots and Systems (IROS), pp. 1568–1575. IEEE (2013).

[21] Civera, J., Gálvez-López, D., Riazuelo, L., Tardós, J. D., and
Montiel, J. Towards semantic slam using a monocular camera. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on,
pp. 1277–1284. IEEE (2011).

[22] Cole, D. M. and Newman, P. M. Using laser range data for 3d slam
in outdoor environments. In Robotics and Automation, 2006. ICRA 2006.
Proceedings 2006 IEEE International Conference on, pp. 1556–1563. IEEE
(2006).

[23] Comaniciu, D. and Meer, P. Mean shift: A robust approach toward feature
space analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence
(TPAMI), 24 (2002), 603.

[24] Cortes, C. and Vapnik, V. Support-vector networks. Machine learning,
20 (1995), 273.

Bibliography 95

[25] Crocco, M., Rubino, C., and Del Bue, A. Structure from motion with
objects. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 4141–4149 (2016).

[26] Curless, B. and Levoy, M. A volumetric method for building complex
models from range images. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques, pp. 303–312. ACM (1996).

[27] Dalal, N. and Triggs, B. Histograms of oriented gradients for human
detection. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), vol. 1, pp. 886–893. IEEE (2005).

[28] Dame, A., Prisacariu, V. A., Ren, C. Y., and Reid, I. Dense recon-
struction using 3d object shape priors. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1288–1295 (2013).

[29] Davis, T. A. Direct methods for sparse linear systems. SIAM (2006).

[30] Della Corte, B., Bogoslavskyi, I., Stachniss, C., and Grisetti, G. A
general framework for flexible multi-cue photometric point cloud registration.
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA), (2018).

[31] Dellaert, F. and Kaess, M. Square root sam: Simultaneous localization
and mapping via square root information smoothing. The International Journal
of Robotics Research, 25 (2006), 1181.

[32] Desolneux, A., Moisan, L., and Morel, J.-M. Meaningful alignments.
International Journal of Computer Vision, 40 (2000), 7.

[33] Do Carmo, M. P. Differential Geometry of Curves and Surfaces: Revised
and Updated Second Edition. Courier Dover Publications (2016).

[34] Duckett, T., Marsland, S., and Shapiro, J. Fast, on-line learning of
globally consistent maps. Autonomous Robots, 12 (2002), 287.

[35] Eade, E. and Drummond, T. Edge landmarks in monocular slam. Journal
on Image and Vision Computing (IVC), 27 (2009), 588.

[36] Eidenberger, R. and Scharinger, J. Active perception and scene modeling
by planning with probabilistic 6d object poses. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RSJ International Conference on, pp. 1036–1043.
IEEE (2010).

[37] Erhan, D., Szegedy, C., Toshev, A., and Anguelov, D. Scalable object
detection using deep neural networks. In Proc. of the IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR), pp. 2147–2154 (2014).

[38] Felzenszwalb, P. F. and Huttenlocher, D. P. Efficient graph-based
image segmentation. Intl. Journal of Computer Vision (IJCV), 59 (2004),
167.

96 Bibliography

[39] Feng, C., Taguchi, Y., and Kamat, V. R. Fast plane extraction in
organized point clouds using agglomerative hierarchical clustering. In Robotics
and Automation (ICRA), 2014 IEEE International Conference on, pp. 6218–
6225. IEEE (2014).

[40] Fischler, M. A. and Bolles, R. C. Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated cartogra-
phy. Communications of the ACM, 24 (1981), 381.

[41] Foissotte, T., Stasse, O., Escande, A., Wieber, P.-B., and Kheddar,
A. A two-steps next-best-view algorithm for autonomous 3d object modeling
by a humanoid robot. In Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on, pp. 1159–1164. IEEE (2009).

[42] Freda, L. and Oriolo, G. Frontier-based probabilistic strategies for sensor-
based exploration. In Robotics and Automation, 2005. ICRA 2005. Proceedings
of the 2005 IEEE International Conference on, pp. 3881–3887. IEEE (2005).

[43] Frese, U., Larsson, P., and Duckett, T. A multilevel relaxation al-
gorithm for simultaneous localization and mapping. IEEE Transactions on
Robotics, 21 (2005), 196.

[44] Freund, Y. and Schapire, R. E. A decision-theoretic generalization of
on-line learning and an application to boosting. Journal of computer and
system sciences, 55 (1997), 119.

[45] Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P., Fernandez-
Madrigal, J.-A., and González, J. Multi-hierarchical semantic maps for
mobile robotics. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005
IEEE/RSJ International Conference on, pp. 2278–2283. IEEE (2005).

[46] Gao, W., Zhang, X., Yang, L., and Liu, H. An improved sobel edge
detection. In Computer Science and Information Technology (ICCSIT), 2010
3rd IEEE International Conference on, vol. 5, pp. 67–71. IEEE (2010).

[47] Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez,
V., and Garcia-Rodriguez, J. A review on deep learning techniques applied
to semantic segmentation. arXiv preprint arXiv:1704.06857, (2017).

[48] Geiger, A., Lenz, P., and Urtasun, R. Are we ready for autonomous
driving? the kitti vision benchmark suite. In Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pp. 3354–3361. IEEE (2012).

[49] Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H. Robust
global registration. In Symposium on geometry processing, vol. 2, p. 5 (2005).

[50] Greene, N., Kass, M., and Miller, G. Hierarchical z-buffer visibility. In
Proceedings of the 20th annual conference on Computer graphics and interactive
techniques, pp. 231–238. ACM (1993).

Bibliography 97

[51] Grisetti, G., Kümmerle, R., and Ni, K. Robust optimization of factor
graphs by using condensed measurements. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pp. 581–588. IEEE
(2012).

[52] Grisetti, G., Kummerle, R., Stachniss, C., and Burgard, W. A tuto-
rial on graph-based slam. IEEE Intelligent Transportation Systems Magazine,
2 (2010), 31.

[53] Grisetti, G., Stachniss, C., Grzonka, S., and Burgard, W. A tree
parameterization for efficiently computing maximum likelihood maps using
gradient descent. In Robotics: Science and Systems, vol. 3, p. 9 (2007).

[54] Gutmann, J.-S. and Konolige, K. Incremental mapping of large cyclic
environments. In Computational Intelligence in Robotics and Automation,
1999. CIRA’99. Proceedings. 1999 IEEE International Symposium on, pp.
318–325. IEEE (1999).

[55] Handa, A., Whelan, T., McDonald, J., and Davison, A. A benchmark
for RGB-D visual odometry, 3D reconstruction and SLAM. In Proc. of the
IEEE Intl. Conf. on Robotics & Automation (ICRA) (2014).

[56] Harnad, S. The symbol grounding problem. Physica D: Nonlinear Phenom-
ena, 42 (1990), 335.

[57] Harris, C. and Stephens, M. A combined corner and edge detector. In
Alvey vision conference, vol. 15, pp. 10–5244. Citeseer (1988).

[58] Hartley, R. and Zisserman, A. Multiple view geometry in computer vision.
Cambridge university press (2003).

[59] Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. Rgb-d
mapping: Using kinect-style depth cameras for dense 3d modeling of indoor
environments. The International Journal of Robotics Research, 31 (2012), 647.

[60] Hermans, A., Floros, G., and Leibe, B. Dense 3d semantic mapping of
indoor scenes from rgb-d images. In Robotics and Automation (ICRA), 2014
IEEE International Conference on, pp. 2631–2638. IEEE (2014).

[61] Hertzberg, C., Wagner, R., Frese, U., and Schröder, L. Integrating
generic sensor fusion algorithms with sound state representations through
encapsulation of manifolds. Information Fusion, 14 (2013), 57.

[62] Holz, D. and Behnke, S. Fast range image segmentation and smoothing
using approximate surface reconstruction and region growing. In Intelligent
autonomous systems 12, pp. 61–73. Springer (2013).

[63] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle,
W. Surface reconstruction from unorganized points, vol. 26. ACM (1992).

98 Bibliography

[64] Hornung, A., Wurm, K., Bennewitz, M., Stachniss, C., and Burgard,
W. OctoMap: An efficient probabilistic 3d mapping framework based on
octrees. Autonomous Robots, 34 (2013), 189. Available from: http://www.
informatik.uni-freiburg.de/~stachnis/pdf/hornung13auro.pdf.

[65] Howard, A., Mataric, M. J., and Sukhatme, G. Relaxation on a mesh:
a formalism for generalized localization. In Intelligent Robots and Systems,
2001. Proceedings. 2001 IEEE/RSJ International Conference on, vol. 2, pp.
1055–1060. IEEE (2001).

[66] Hulik, R., Beran, V., Spanel, M., Krsek, P., and Smrz, P. Fast and
accurate plane segmentation in depth maps for indoor scenes. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on,
pp. 1665–1670. IEEE (2012).

[67] Illingworth, J. and Kittler, J. A survey of the hough transform. Com-
puter vision, graphics, and image processing, 44 (1988), 87.

[68] Irani, S. and Raghavan, P. Combinatorial and experimental results for
randomized point matching algorithms. Computational Geometry, 12 (1999),
17.

[69] Johns, E., Leutenegger, S., and Davison, A. J. Pairwise decomposition
of image sequences for active multi-view recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 3813–3822
(2016).

[70] Kaess, M. Simultaneous Localization and Mapping with Infinite Planes. In
Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA) (2015).

[71] Kaess, M., Johannsson, H., Roberts, R., Ila, V., Leonard, J. J., and
Dellaert, F. isam2: Incremental smoothing and mapping using the bayes
tree. The International Journal of Robotics Research, 31 (2012), 216.

[72] Kaess, M., Ranganathan, A., and Dellaert, F. isam: Fast incremental
smoothing and mapping with efficient data association. In Robotics and
Automation, 2007 IEEE International Conference on, pp. 1670–1677. IEEE
(2007).

[73] Kerl, C., Sturm, J., and Cremers, D. Dense visual slam for rgb-d cameras.
In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International
Conference on, pp. 2100–2106. Citeseer (2013).

[74] Kerl, C., Sturm, J., and Cremers, D. Robust odometry estimation for
rgb-d cameras. In Proc. of the IEEE Intl. Conf. on Robotics & Automation
(ICRA), pp. 3748–3754. IEEE (2013).

[75] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by
simulated annealing. science, 220 (1983), 671.

http://www.informatik.uni-freiburg.de/~stachnis/pdf/hornung13auro.pdf
http://www.informatik.uni-freiburg.de/~stachnis/pdf/hornung13auro.pdf

Bibliography 99

[76] Klein, G. and Murray, D. Parallel tracking and mapping for small ar
workspaces. In Mixed and Augmented Reality, 2007. ISMAR 2007. 6th IEEE
and ACM International Symposium on, pp. 225–234. IEEE (2007).

[77] Klein, G. and Murray, D. Improving the agility of keyframe-based slam. In
Proc. of the Europ. Conf. on Computer Vision (ECCV), pp. 802–815. Springer
(2008).

[78] Klein, G. and Murray, D. Parallel tracking and mapping on a camera
phone. In Mixed and Augmented Reality, 2009. ISMAR 2009. 8th IEEE
International Symposium on, pp. 83–86. IEEE (2009).

[79] Koppula, H. S., Anand, A., Joachims, T., and Saxena, A. Semantic
labeling of 3d point clouds for indoor scenes. In Advances in neural information
processing systems, pp. 244–252 (2011).

[80] Kriegel, S., Brucker, M., Marton, Z.-C., Bodenmuller, T., and
Suppa, M. Combining object modeling and recognition for active scene
exploration. In Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on, pp. 2384–2391. IEEE (2013).

[81] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems, pp. 1097–1105 (2012).

[82] Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pp. 1097–1105 (2012).

[83] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., and Bur-
gard, W. g 2 o: A general framework for graph optimization. In Robotics and
Automation (ICRA), 2011 IEEE International Conference on, pp. 3607–3613.
IEEE (2011).

[84] Lafferty, J., McCallum, A., and Pereira, F. C. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. (2001).

[85] LaValle, S. M. Rapidly-exploring random trees: A new tool for path
planning. (1998).

[86] Lázaro, M. T., Capobianco, R., and Grisetti, G. Efficient long-term
mapping in dynamic environments. In IEEE/RSJ International Conference
on Intelligent Robots and Systems (2018).

[87] Lemaire, T. and Lacroix, S. Monocular-vision based slam using line
segments. In Proc. of the IEEE Intl. Conf. on Robotics & Automation (ICRA),
pp. 2791–2796 (2007). doi:10.1109/ROBOT.2007.363894.

[88] Li, X. and Guskov, I. Multiscale features for approximate alignment of
point-based surfaces. In Symposium on geometry processing, vol. 255, p. 217.
Citeseer (2005).

http://dx.doi.org/10.1109/ROBOT.2007.363894

100 Bibliography

[89] Lisin, D. A., Mattar, M. A., Blaschko, M. B., Learned-Miller, E. G.,
and Benfield, M. C. Combining local and global image features for object
class recognition. In Computer vision and pattern recognition-workshops, 2005.
CVPR workshops. IEEE Computer society conference on, pp. 47–47. IEEE
(2005).

[90] Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-
Y., and Berg, A. C. Ssd: Single shot multibox detector. In Proc. of the
Europ. Conf. on Computer Vision (ECCV), pp. 21–37. Springer (2016).

[91] Long, J., Shelhamer, E., and Darrell, T. Fully convolutional networks
for semantic segmentation. In Proc. of the IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR), pp. 3431–3440 (2015).

[92] Lowe, D. G. Distinctive image features from scale-invariant keypoints.
International journal of computer vision, 60 (2004), 91.

[93] Lu, F. and Milios, E. Globally consistent range scan alignment for environ-
ment mapping. Autonomous robots, 4 (1997), 333.

[94] Lu, F. and Milios, E. Robot pose estimation in unknown environments
by matching 2d range scans. Journal of Intelligent and Robotic systems, 18
(1997), 249.

[95] Lu, Y. and Song, D. Robust rgb-d odometry using point and line features.
In Proc. of the IEEE Intl. Conf. on Computer Vision (ICCV), pp. 3934–3942
(2015).

[96] Ma, L., Kerl, C., Stückler, J., and Cremers, D. CPA SLAM: Consistent
Plane-Model Alignment for Direct RGB-D SLAM. In Proc. of the IEEE
Intl. Conf. on Robotics & Automation (ICRA) (2016).

[97] Magnusson, M., Lilienthal, A., and Duckett, T. Scan registration for
autonomous mining vehicles using 3d-ndt. Journal of Field Robotics (JFR),
24 (2007), 803.

[98] McCormac, J., Handa, A., Davison, A., and Leutenegger, S. Seman-
ticfusion: Dense 3d semantic mapping with convolutional neural networks. In
2017 IEEE International Conference on Robotics and Automation (ICRA), pp.
4628–4635. IEEE (2017).

[99] Morgenstern, O. and Von Neumann, J. Theory of games and economic
behavior. Princeton university press (1953).

[100] Mur-Artal, R. and Tardós, J. D. ORB-SLAM2: an open-source
SLAM system for monocular, stereo and RGB-D cameras. arXiv preprint
arXiv:1610.06475, (2016).

[101] Nardi, F., Lázaro, M. T., Iocchi, L., and Grisetti, G. Generation of
laser-quality 2d navigation maps from rgb-d sensors. In RoboCup Symposium
2018 (2018).

Bibliography 101

[102] Newcombe, R. A., Lovegrove, S. J., and Davison, A. J. Dtam: Dense
tracking and mapping in real-time. In Computer Vision (ICCV), 2011 IEEE
International Conference on, pp. 2320–2327. IEEE (2011).

[103] Newcombe, R. A., et al. KinectFusion: Real-Time Dense Surface Mapping
and Tracking. In Proc. of the Intl. Symposium on Mixed and Augmented Reality
(ISMAR), pp. 127–136 (2011). Available from: https://www.microsoft.com/
en-us/research/wp-content/uploads/2016/02/ismar2011.pdf.

[104] Ni, K., Steedly, D., and Dellaert, F. Tectonic sam: Exact, out-of-core,
submap-based slam. In Robotics and Automation, 2007 IEEE International
Conference on, pp. 1678–1685. IEEE (2007).

[105] Nicholson, L. J., Milford, M. J., and Sunderhauf, N. Quadricslam:
Dual quadrics from object detections as landmarks in object-oriented slam.
IEEE Robotics and Automation Letters, (2018).

[106] Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M. Real-time
3d reconstruction at scale using voxel hashing. ACM Transactions on Graphics
(ToG), 32 (2013), 169.

[107] Nüchter, A. and Hertzberg, J. Towards semantic maps for mobile robots.
Robotics and Autonomous Systems, 56 (2008), 915.

[108] Nuchter, A., Surmann, H., Lingemann, K., Hertzberg, J., and Thrun,
S. 6d slam with an application in autonomous mine mapping. In Robotics and
Automation, 2004. Proceedings. ICRA’04. 2004 IEEE International Conference
on, vol. 2, pp. 1998–2003. IEEE (2004).

[109] Oehler, B., Stueckler, J., Welle, J., Schulz, D., and Behnke, S. Ef-
ficient multi-resolution plane segmentation of 3d point clouds. In International
Conference on Intelligent Robotics and Applications, pp. 145–156. Springer
(2011).

[110] Ohlander, R., Price, K., and Reddy, D. R. Picture segmentation using
a recursive region splitting method. Computer Graphics and Image Processing,
8 (1978), 313.

[111] Oliva, A. and Torralba, A. Modeling the shape of the scene: A holistic
representation of the spatial envelope. Intl. Journal of Computer Vision
(IJCV), 42 (2001), 145.

[112] Olson, E., Leonard, J., and Teller, S. Fast iterative alignment of pose
graphs with poor initial estimates. In Robotics and Automation, 2006. ICRA
2006. Proceedings 2006 IEEE International Conference on, pp. 2262–2269.
IEEE (2006).

[113] Osher, S. and Sethian, J. A. Fronts propagating with curvature-dependent
speed: algorithms based on hamilton-jacobi formulations. Journal of computa-
tional physics, 79 (1988), 12.

https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ismar2011.pdf
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/ismar2011.pdf

102 Bibliography

[114] Papageorgiou, C. P., Oren, M., and Poggio, T. A general framework
for object detection. In Proc. of the IEEE Intl. Conf. on Computer Vision
(ICCV), pp. 555–562. IEEE (1998).

[115] Papazov, C. and Burschka, D. Stochastic optimization for rigid point set
registration. In International Symposium on Visual Computing, pp. 1043–1054.
Springer (2009).

[116] Pathak, K., Birk, A., Vaskevicius, N., and Poppinga, J. Fast registra-
tion based on noisy planes with unknown correspondences for 3-d mapping.
IEEE Transactions on Robotics, 26 (2010), 424.

[117] Pomerleau, F., Colas, F., Siegwart, R., et al. A review of point
cloud registration algorithms for mobile robotics. Foundations and Trends®
in Robotics, 4 (2015), 1.

[118] Pomerleau, F., Magnenat, S., Colas, F., Liu, M., and Siegwart, R.
Tracking a depth camera: Parameter exploration for fast icp. In Intelligent
Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on,
pp. 3824–3829. IEEE (2011).

[119] Poppinga, J., Vaskevicius, N., Birk, A., and Pathak, K. Fast plane
detection and polygonalization in noisy 3d range images. In Intelligent Robots
and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on, pp.
3378–3383. IEEE (2008).

[120] Potthast, C. and Sukhatme, G. S. Next best view estimation with eye
in hand camera. In IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems
(IROS) (2011).

[121] Pronobis, A. and Jensfelt, P. Large-scale semantic mapping and reasoning
with heterogeneous modalities. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pp. 3515–3522. IEEE (2012).

[122] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. You only
look once: Unified, real-time object detection. In Proc. of the IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016).

[123] Rodolà, E., Albarelli, A., Bergamasco, F., and Torsello, A. A scale
independent selection process for 3d object recognition in cluttered scenes.
International journal of computer vision, 102 (2013), 129.

[124] Rosten, E. and Drummond, T. Machine learning for high-speed corner
detection. In European conference on computer vision, pp. 430–443. Springer
(2006).

[125] Rosten, E. and Drummond, T. Machine learning for high-speed corner
detection. In Proc. of the Europ. Conf. on Computer Vision (ECCV), pp.
430–443 (2006).

Bibliography 103

[126] Ruiz-Sarmiento, J.-R., Galindo, C., and Gonzalez-Jimenez, J. Build-
ing multiversal semantic maps for mobile robot operation. Knowledge-Based
Systems, 119 (2017), 257.

[127] Rusinkiewicz, S. and Levoy, M. Efficient variants of the icp algorithm.
In 3-D Digital Imaging and Modeling, 2001. Proceedings. Third International
Conference on, pp. 145–152. IEEE (2001).

[128] Rusu, R. B., Blodow, N., and Beetz, M. Fast point feature histograms
(fpfh) for 3d registration. In Robotics and Automation, 2009. ICRA’09. IEEE
International Conference on, pp. 3212–3217. Citeseer (2009).

[129] Rusu, R. B. and Cousins, S. 3D is here: Point Cloud Library (PCL). In
IEEE International Conference on Robotics and Automation (ICRA). Shanghai,
China (2011).

[130] Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz,
M. Towards 3d point cloud based object maps for household environments.
Robotics and Autonomous Systems, 56 (2008), 927.

[131] Saad, Y. Iterative methods for sparse linear systems. SIAM (2003).

[132] Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H.,
and Davison, A. J. Slam++: Simultaneous localisation and mapping at the
level of objects. In Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR), pp. 1352–1359. IEEE (2013).

[133] Schlegel, D. and Grisetti, G. HBST: A hamming distance embedding
binary search tree for visual place recognition. CoRR, abs/1802.09261 (2018).
Available from: http://arxiv.org/abs/1802.09261, arXiv:1802.09261.

[134] Schnabel, R., Wahl, R., and Klein, R. Efficient ransac for point-cloud
shape detection. In Computer graphics forum, vol. 26, pp. 214–226. Wiley
Online Library (2007).

[135] Segal, A., Haehnel, D., and Thrun, S. Generalized-icp. In Proc. of
Robotics: Science and Systems (RSS), vol. 2 (2009).

[136] Senarathne, P., Wang, D., Wang, Z., and Chen, Q. Efficient frontier
detection and management for robot exploration. In Cyber Technology in
Automation, Control and Intelligent Systems (CYBER), 2013 IEEE 3rd Annual
International Conference on, pp. 114–119. IEEE (2013).

[137] Serafin, J. and Grisetti, G. Using extended measurements and scene merg-
ing for efficient and robust point cloud registration. Robotics and Autonomous
Systems, 92 (2017), 91.

[138] Serafin, J. and Grisetti, G. Using extended measurements and scene
merging for efficient and robust point cloud registration. Journal on Robotics
and Autonomous Systems (RAS), 92 (2017), 91. Available from: https://doi.
org/10.1016/j.robot.2017.03.008, doi:10.1016/j.robot.2017.03.008.

http://arxiv.org/abs/1802.09261
http://arxiv.org/abs/1802.09261
https://doi.org/10.1016/j.robot.2017.03.008
https://doi.org/10.1016/j.robot.2017.03.008
http://dx.doi.org/10.1016/j.robot.2017.03.008

104 Bibliography

[139] Shi, J. and Malik, J. Normalized cuts and image segmentation. IEEE
Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 22 (2000),
888.

[140] Simonyan, K. and Zisserman, A. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, (2014).

[141] Smith, P., Reid, I. D., and Davison, A. J. Real-time monocular slam with
straight lines. Proc. of British Machine Vision Conference (BMVC), (2006).

[142] Stampfer, D., Lutz, M., and Schlegel, C. Information driven sensor
placement for robust active object recognition based on multiple views. In Tech-
nologies for Practical Robot Applications (TePRA), 2012 IEEE International
Conference on, pp. 133–138. IEEE (2012).

[143] Steder, B., Rusu, R. B., Konolige, K., and Burgard, W. Point feature
extraction on 3d range scans taking into account object boundaries. In Robotics
and automation (icra), 2011 ieee international conference on, pp. 2601–2608.
IEEE (2011).

[144] Steinbrücker, F., Sturm, J., and Cremers, D. Real-time visual odometry
from dense rgb-d images. In Computer Vision Workshops (ICCV Workshops),
2011 IEEE International Conference on, pp. 719–722. IEEE (2011).

[145] Stückler, J., Biresev, N., and Behnke, S. Semantic mapping using
object-class segmentation of rgb-d images. In Intelligent Robots and Systems
(IROS), 2012 IEEE/RSJ International Conference on, pp. 3005–3010. IEEE
(2012).

[146] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cremers,
D. A benchmark for the evaluation of rgb-d slam systems. In Proc. of the
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS) (2012).

[147] Sünderhauf, N., Dayoub, F., McMahon, S., Talbot, B., Schulz,
R., Corke, P., Wyeth, G., Upcroft, B., and Milford, M. Place
categorization and semantic mapping on a mobile robot. In Robotics and
Automation (ICRA), 2016 IEEE International Conference on, pp. 5729–5736.
IEEE (2016).

[148] Swain, M. J. and Ballard, D. H. Color indexing. Intl. Journal of Computer
Vision (IJCV), 7 (1991), 11.

[149] Szegedy, C., et al. Going deeper with convolutions. In Proc. of the IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR) (2015).

[150] Tabib, W., O’Meadhra, C., and Michael, N. On-manifold gmm registra-
tion. IEEE Robotics and Automation Letters, 3 (2018), 3805.

[151] Taguchi, Y., Jian, Y. D., Ramalingam, S., and Feng, C. Point-plane
slam for hand-held 3d sensors. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), pp. 5182–5189 (2013).

Bibliography 105

[152] Tam, G. K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y.,
Marshall, D., Martin, R. R., Sun, X.-F., and Rosin, P. L. Registration
of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE
transactions on visualization and computer graphics, 19 (2013), 1199.

[153] Tenorth, M., Kunze, L., Jain, D., and Beetz, M. Knowrob-map-
knowledge-linked semantic object maps. In Humanoid Robots (Humanoids),
2010 10th IEEE-RAS International Conference on, pp. 430–435. IEEE (2010).

[154] Tomasi, C. and Kanade, T. Detection and tracking of point features.
(1991).

[155] Torabi, L. and Gupta, K. An autonomous six-dof eye-in-hand system for
in situ 3d object modeling. The International Journal of Robotics Research,
31 (2012), 82.

[156] Torralba, A., Murphy, K. P., Freeman, W. T., and Rubin, M. A.
Context-based vision system for place and object recognition. In null, p. 273.
IEEE (2003).

[157] Trevor, A. J., Gedikli, S., Rusu, R. B., and Christensen, H. I. Efficient
organized point cloud segmentation with connected components. Semantic
Perception Mapping and Exploration (SPME), (2013).

[158] Trevor, A. J., Rogers, J. G., and Christensen, H. I. Planar surface
slam with 3d and 2d sensors. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), pp. 3041–3048. IEEE (2012).

[159] Tuytelaars, T., Mikolajczyk, K., et al. Local invariant feature detectors:
a survey. Foundations and trends® in computer graphics and vision, 3 (2008),
177.

[160] Ulrich, I. and Nourbakhsh, I. Appearance-based place recognition for
topological localization. In Proc. of the IEEE Intl. Conf. on Robotics &
Automation (ICRA), vol. 2, pp. 1023–1029. Ieee (2000).

[161] Valentin, J. P., Sengupta, S., Warrell, J., Shahrokni, A., and
Torr, P. H. Mesh based semantic modelling for indoor and outdoor scenes.
In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 2067–2074 (2013).

[162] Vasquez-Gomez, J. I., Sucar, L. E., and Murrieta-Cid, R. View
planning for 3d object reconstruction with a mobile manipulator robot. In
Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pp. 4227–4233. IEEE (2014).

[163] Vineet, V., et al. Incremental dense semantic stereo fusion for large-scale
semantic scene reconstruction. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pp. 75–82. IEEE (2015).

[164] Viola, P. and Jones, M. J. Robust real-time face detection. Intl. Journal of
Computer Vision (IJCV), 57 (2004), 137.

106 Bibliography

[165] Von Gioi, R. G., Jakubowicz, J., Morel, J.-M., and Randall, G. On
straight line segment detection. Journal of Mathematical Imaging and Vision,
32 (2008), 313.

[166] Von Gioi, R. G., Jakubowicz, J., Morel, J.-M., and Randall, G. Lsd:
A fast line segment detector with a false detection control. IEEE transactions
on pattern analysis and machine intelligence, 32 (2010), 722.

[167] von Gioi, R. G., Jakubowicz, J., Morel, J. M., and Randall, G.
Lsd: A fast line segment detector with a false detection control. IEEE
Trans. on Pattern Analysis and Machine Intelligence (TPAMI), 32 (2010),
722. doi:10.1109/TPAMI.2008.300.

[168] Wang, Y., Liang, A., and Guan, H. Frontier-based multi-robot map
exploration using particle swarm optimization. In Swarm Intelligence (SIS),
2011 IEEE Symposium on, pp. 1–6. IEEE (2011).

[169] Whelan, T., Kaess, M., Fallon, M., Johannsson, H., Leonard, J.,
and McDonald, J. Kintinuous: Spatially extended kinectfusion. (2012).

[170] Whelan, T., Leutenegger, S., Salas-Moreno, R., Glocker, B., and
Davison, A. Elasticfusion: Dense slam without a pose graph. In Proc. of
Robotics: Science and Systems (RSS) (2015).

[171] Whelan, T., Salas-Moreno, R. F., Glocker, B., Davison, A. J.,
and Leutenegger, S. Elasticfusion: Real-time dense slam and light source
estimation. The International Journal of Robotics Research, 35 (2016), 1697.

[172] Wu, K., Ranasinghe, R., and Dissanayake, G. Active recognition and
pose estimation of household objects in clutter. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pp. 4230–4237. IEEE (2015).

[173] Zender, H., Mozos, O. M., Jensfelt, P., Kruijff, G.-J., and Burgard,
W. Conceptual spatial representations for indoor mobile robots. Robotics and
Autonomous Systems, 56 (2008), 493.

[174] Zeng, M., Zhao, F., Zheng, J., and Liu, X. Octree-based fusion for
realtime 3d reconstruction. Graphical Models, 75 (2013), 126.

[175] Zhang, J. and Singh, S. Visual-lidar odometry and mapping: Low-drift,
robust, and fast. In Robotics and Automation (ICRA), 2015 IEEE International
Conference on, pp. 2174–2181. IEEE (2015).

[176] Zhang, L. and Koch, R. An efficient and robust line segment matching
approach based on lbd descriptor and pairwise geometric consistency. Visual
Communication and Image Representation, (2013), 794.

[177] Zhang, Z. Iterative point matching for registration of free-form curves. Ph.D.
thesis, Inria (1992).

http://dx.doi.org/10.1109/TPAMI.2008.300

	Introduction
	Research Context
	Addressed issues
	Contributions

	I Basics
	Related Work
	Geometric Registration
	Global Registration
	Local Registration
	Geometric Primitives Detection

	Simultaneous Localization and Mapping
	Graph-based SLAM
	SLAM with Geometric Primitives

	Semantic Mapping
	Semantic Information Extraction
	Map Construction
	Active Vision

	Fundamentals
	State Estimation
	Bayesian Framework
	Gauss-Newton
	Smooth Manifolds

	Local Registration
	Iterative Closest Point
	Least-Squares Solution

	Global Optimization
	Multi-Point Registration
	Factor Graphs and Sparse Least-Squares

	II Metric maps
	Taxonomy of Metric Map Representations
	Sparse Representation
	Dense Representation
	Volumetric Representation
	Object-based Representation
	Comparison

	Unifying Local Registration Algorithms
	Generalized Local Registration
	Representation
	Transformation
	Distance
	Registration

	Front-End
	Detecting Matchables from RGB-D data
	Data Association

	Experimental Evaluation
	Synthetic Data
	Simulated and Real Data

	Unifying Global Optimization Algorithms
	Multi-Primitive Registration
	State
	Error

	Front-End
	Pose Tracker
	Loop Detector

	Experimental Evaluation
	Synthetic Experiments
	Real-world Experiments

	III Semantic maps
	Taxonomy of a Semantic Mapping System
	Perception
	Map Construction
	Action

	Generating a Semantic Map
	System Overview
	Perception
	Map Construction
	Action

	Experimental Evaluation
	Constructing the Map
	Exploring the Environment

	IV Conclusions
	Final Discussion
	Metric Maps
	Semantic Maps
	Future Directions

