17,417 research outputs found

    The Skip Quadtree: A Simple Dynamic Data Structure for Multidimensional Data

    Full text link
    We present a new multi-dimensional data structure, which we call the skip quadtree (for point data in R^2) or the skip octree (for point data in R^d, with constant d>2). Our data structure combines the best features of two well-known data structures, in that it has the well-defined "box"-shaped regions of region quadtrees and the logarithmic-height search and update hierarchical structure of skip lists. Indeed, the bottom level of our structure is exactly a region quadtree (or octree for higher dimensional data). We describe efficient algorithms for inserting and deleting points in a skip quadtree, as well as fast methods for performing point location and approximate range queries.Comment: 12 pages, 3 figures. A preliminary version of this paper appeared in the 21st ACM Symp. Comp. Geom., Pisa, 2005, pp. 296-30

    Setting Parameters by Example

    Full text link
    We introduce a class of "inverse parametric optimization" problems, in which one is given both a parametric optimization problem and a desired optimal solution; the task is to determine parameter values that lead to the given solution. We describe algorithms for solving such problems for minimum spanning trees, shortest paths, and other "optimal subgraph" problems, and discuss applications in multicast routing, vehicle path planning, resource allocation, and board game programming.Comment: 13 pages, 3 figures. To be presented at 40th IEEE Symp. Foundations of Computer Science (FOCS '99

    An Efficient Index for Visual Search in Appearance-based SLAM

    Full text link
    Vector-quantization can be a computationally expensive step in visual bag-of-words (BoW) search when the vocabulary is large. A BoW-based appearance SLAM needs to tackle this problem for an efficient real-time operation. We propose an effective method to speed up the vector-quantization process in BoW-based visual SLAM. We employ a graph-based nearest neighbor search (GNNS) algorithm to this aim, and experimentally show that it can outperform the state-of-the-art. The graph-based search structure used in GNNS can efficiently be integrated into the BoW model and the SLAM framework. The graph-based index, which is a k-NN graph, is built over the vocabulary words and can be extracted from the BoW's vocabulary construction procedure, by adding one iteration to the k-means clustering, which adds small extra cost. Moreover, exploiting the fact that images acquired for appearance-based SLAM are sequential, GNNS search can be initiated judiciously which helps increase the speedup of the quantization process considerably

    The Case for Learned Index Structures

    Full text link
    Indexes are models: a B-Tree-Index can be seen as a model to map a key to the position of a record within a sorted array, a Hash-Index as a model to map a key to a position of a record within an unsorted array, and a BitMap-Index as a model to indicate if a data record exists or not. In this exploratory research paper, we start from this premise and posit that all existing index structures can be replaced with other types of models, including deep-learning models, which we term learned indexes. The key idea is that a model can learn the sort order or structure of lookup keys and use this signal to effectively predict the position or existence of records. We theoretically analyze under which conditions learned indexes outperform traditional index structures and describe the main challenges in designing learned index structures. Our initial results show, that by using neural nets we are able to outperform cache-optimized B-Trees by up to 70% in speed while saving an order-of-magnitude in memory over several real-world data sets. More importantly though, we believe that the idea of replacing core components of a data management system through learned models has far reaching implications for future systems designs and that this work just provides a glimpse of what might be possible
    • …
    corecore